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Abstract  

 There is a growing demand to continuously monitor the ECG over longer 

periods of time. This demand comes from all areas of life; from tracking sickness for 

improved treatment and prevention to optimizing performance for athletes and 

workers in dangerous environments. To meet this demand, wearable devices are 

designed to monitor health status continuously and autonomously. This is called 

wellness monitoring, and it has been shown to improve quality of life by reducing 

reliance on reactive treatments. When wellness monitoring is applied to ECG 

systems, the existing solutions have a variety of limitations oriented around the 

limits of traditional electrodes. Conductive textile electrodes offer an alternative to 

traditional electrodes but they come with their own challenges. One of the key 

challenges with textile electrodes is that it is not well understood how a given set of 

manufacturing parameters influence the ECG measurement. The current ways of 

relating manufacturing parameters to ECG measurements rely on physical trial-

and-error methodologies which inhibit design cycle iterations.   

This research presents a novel model of the ECG system, which ties the 

electrical behavior of woven textile electrodes to their manufacturing parameters. 

Specifically, this research investigates how the yarn type, weave pattern, and patch 

area of a woven electrode are related to the circuit parameters in the skin-electrode 

interface model. A parameterized model of the ECG system was constructed which 

depends on the circuit parameter of the skin-electrode interface as well as the 

circuit parameters of the associated circuitry. Through this relationship, the circuit 

parameters corresponding to woven electrodes were fit using an optimizer that 

minimizes the differences between a simulated and measured waveform.  
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The manufacturing parameters for 16 sets of woven electrodes were related to 

their electrical behavior. A yarn type with lower resistivity creates an electrode with 

lower skin-electrode impedance but higher variance. The Silver yarn electrodes 

have a variance of as much as 12MΩ. The larger the surface area of a woven 

electrode patch, the larger the capacitance, and the lower the impedance. The Area 

type electrodes increased in area from 0.5 in2 up to 5 in2 and their impedance 

decreased by 5MΩ, with one exception. The performance of the model was validated 

through a Leave One Out Cross Validation scheme which demonstrated a good 

model fit across 6 human subjects for 2 minutes of data collection.  

This equivalent model demonstrated for the first time the relationship between 

woven electrode manufacturing parameters and their electrical circuit parameters. 

By using this model, woven electrodes can be better designed for optimal ECG 

capture capability. Furthermore, ECG circuitry can be customized to accommodate 

the variation between different types of electrodes. This work builds from previous 

work on textile sensor development and enables future work to target even better 

textile sensor design.  
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I. Introduction and Motivation 

The measurement of the body’s physiological status through biometrics is a 

critical healthcare function, ranging from monitoring the sick and elderly, to 

tracking the performance of astronauts and athletes. Specifically, the 

electrocardiograph (ECG), which measures electrical impulses from the heart, is one 

of the most well-used methods today of capturing biometric activity to indicate 

health status. For example, the ECG is instrumental in monitoring cardiovascular 

disease (CVD) (Y Du 2017). CVD was the number one cause of death in the United 

States in 2019 and 2020 and was the single leading disease worldwide (Y Du 2017; 

Kochanek, Xu, and Arias 2020). Clinically, ECG signals are used to identify cardiac 

abnormalities and diagnose potential heart problems thus preventing more serious 

health issues from arising (John G. et al. 2010). 

Since the first human ECG measurement in 1895, biometric capture technology 

has evolved dramatically. While modern healthcare technology is continually 

finding new ways to diagnose and monitor the health and status of individuals, 

many chronic diseases are still difficult or impossible to cure. Proactive healthcare 

through wellness monitoring may be an effective way to prevent these challenging 

ailments. Wellness monitoring is the concept of using wearable devices coupled with 

automated data analysis to passively and continuously monitor individualized 

health status over time (Giovanni 2021). This enables proactive intervention which 

can prevent costly or detrimental healthcare problems from developing. In the 

above example, CVDs are among the leading causes of prolonged disability and 

early mortality, which makes the timely diagnosis of early symptoms a recurrent 

critical issue (Nikolova-Hadzhigenova 2019). Early diagnosis and prevention of 

CVD enabled by long-term monitoring can not only save lives but also carries 
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significant financial benefits as an alternative to costly detection and treatment (Y 

Du 2017). 

Monitoring the heart continuously has additional utility beyond addressing 

chronic illnesses. The human body’s normal heart rate is impacted by sleep, 

emotion, exercise, fever, and many other stimuli (John G. et al. 2010; Arquilla, 

Webb, and Anderson, n.d.; Arquilla 2021b; Huff et al. 2022; Cobarrubias 2020). The 

list of applications for heart data is ever growing. For example, athletes regularly 

monitor their own heart rate data to track their health and performance during 

exercise (Cobarrubias 2020). These applications are an extension of wellness 

monitoring into human performance optimization. Another application of 

continuously monitor ECG is psychophysiological monitoring which connects 

metrics such as heart rate variability (HRV) to psychological state (Arquilla 2021b; 

2021a). This can be as simple as diagnosing sleep related issues such as drowsiness 

or sleep apnea (Löfhede, Seoane, and Thordstein 2012) and can even be leveraged to 

monitor behavioral health objectively and continuously when coupled with 

advanced psychological state detection algorithms (Arquilla 2021a; Arquilla, Webb, 

and Anderson, n.d.).  

One key feature of assessing ECG in these applications is that the long-term 

capture of physiological data occurs outside the hospital setting, which creates a 

demand for personal health monitoring systems. With the miniaturization of 

electronics and improvements in affordability, personal health monitoring is 

becoming more accessible and ubiquitous (An and Stylios 2018; Heikenfeld et al. 

2018). Wearable devices are one form of personal health monitoring technology 

which has the potential to meet this demand and not only increase user convenience 

but also decrease the dependence on large and bulky hospital equipment (Yokus 

and Jur 2016). Wearable devices reduce high hospitalization expenses and improve 
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the quality of life for those who have chronic diseases and need to be monitored 

continuously (Yokus and Jur 2016).  

One of the key challenges for monitoring the heart with wearable devices is the 

inability to obtain the full ECG waveform. Fundamentally, the ECG is a graph of 

the voltage generated by the heart with each contractile action of segments of 

cardiac muscle (John G. et al. 2010). This is important because the ECG waveform 

provides insight into the electrical status of the heart’s state. The electrical 

impulses of the ECG correspond to the different chambers of the heart muscle. By 

noting changes in the waveform, it is possible to confidently infer what is occurring 

in the heart’s nerves and muscle tissue. These elements of the wave form have 

additional utility in human performance optimization and psychophysiology. Today 

there are a growing number of commercial devices available to the general public 

such as Fitbits and Apple watches which provide limited cardiovascular 

performance data. Critically, these devices largely utilize photoplethysmography, a 

technique which observes blood flow in the skin, to detect heart rate peaks and 

subsequently to infer general heart status (Heikenfeld et al. 2018; Taji et al. 2014; 

Arquilla, Webb, and Anderson 2021). This method does not measure cardiac 

electrical signals and therefore does not capture the complete ECG waveform which 

contains valuable smaller peak information (Taji et al. 2014). As such, many HRV 

metrics which depend on distortions in the ECG waveform or subject-specific 

assessment of cardiac status cannot be calculated since it only measures the largest 

peak of the wave. Subsequently the reliance on this method limits the identification 

of pathologies from those which would be revealed via the full ECG waveform 

(Arquilla, Webb, and Anderson, n.d.).   

Providing information of the full ECG waveform during chronic daily use outside 

of a clinical setting has been a technical challenge for implementing cardiac 

wellness monitoring (Arquilla, Webb, and Anderson 2021; Schauss 2022). The 
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challenge is associated with the traditional method of collecting the ECG waveform. 

Traditionally the ECG waveform is captured by applying adhesive electrodes with 

electrolyte gel to the skin surface. Those electrodes are connected to electrical 

circuitry which then captures and records the bioelectric signals generated by the 

body. Modern systems that capture ECG continuously rely on this sensor 

technology, despite the fact that it was not developed for persistent wearable 

formats (Bystricky et al. 2016). The Holter monitor, shown in Figure 1, is the current 

gold-standard device for clinically relevant monitoring. It is a battery-operated 

wearable device that uses traditional adhesive gel electrodes. It is worn during day-

to-day operation because some specific cardiac events are difficult to observe in the 

clinical setting. Certain events such as arrhythmias (abnormal heart rhythms) may 

occur infrequently or only under certain conditions, such as stress or activity. These 

monitors are usually accompanied by instructions to keep a log of activity and 

symptoms during the observation period. The information captured by the monitor 

and the log will then be reviewed by a doctor afterwards. The results can be used to 

determine if an abnormal heart condition is present or if a treatment for a known 

condition is working properly. The key challenge of this method, is that the 

adhesive gel electrodes have several limitations; they must be applied fresh on 

specific locations, are consumable, dry out over time, and can irritate the skin with 

chronic use [2], (Taji et al. 2014). Every reapplication of adhesive electrodes, has the 

potential to introduce placement and measurement errors which reduces the 

diagnostic capability of the ECG. Some of these characteristics are tolerable in 

settings where a fresh supply of replacement electrodes can be properly reapplied, 

but monitoring for long periods outside of those environments is often not feasible 

with traditional electrodes (Yoo and Hoi-Jun Yoo 2011).  
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Figure 1: Holter monitor on the body with corresponding ECG waveform reading 

One such application of key interest is in human spaceflight, where long term 

monitoring of the complete ECG waveforms is used to comprehensively monitor 

astronaut health (Huff et al. 2022). During Extravehicular Activities (EVAs) in 

particular, when astronauts are under severe physical and mental stress, 

monitoring the ECG waveform is used both for research and for risk mitigation  

(Johnston, Dietlein, and Berry 1975). During the Apollo missions a 

bioinstrumentation system was used to record the ECG of the astronauts (Johnston, 

Dietlein, and Berry 1975). According to the Biomedical Results of Apollo report, the 

electrode harness originally utilized adhesive taped Ag/AgCl electrodes filled with 

electrolyte paste. Several changes were made to the harness during the Apollo 

Program as a result of inflight problems, testing and operational changes. The 

electrode attachment technique was designed to maintain long-term body contact 

but attachment was difficult to maintain without discomfort and skin damage 

(Johnston, Dietlein, and Berry 1975).  Despite the challenges with the ECG, they 

were able to capture arrhythmias of Apollo astronauts (Anzai, Frey, and Nogami 

2014). As a specific case during Apollo 15, the waveform of astronaut James Irwin 

was observed to have bigeminal premature ventricular contraction (PVCs) and 

atrial premature contractions (APCs), which is believed to be the result of a 

deficiency in potassium electrolytes due to dehydration from fluid loss and over 

exertion (Johnston, Dietlein, and Berry 1975; Anzai, Frey, and Nogami 2014). This 
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observation would not have been possible with a modern blood flow monitor, since 

the shape of the waveform, not just the peak timing, had changed. Since the Apollo 

era, atrial and ventricular premature contractions, short-duration atrial fibrillation, 

and non-sustained ventricular tachycardia have all been reported during spaceflight 

missions (Huff et al. 2022; Anzai, Frey, and Nogami 2014).  

ECG monitoring has been included as part of the autogenic feedback training 

exercise (AFTE) from NASA Ames Research center as a method of biofeedback to 

aid in autogenic therapy for spaceflight stress (Arquilla et al. 2020). Both the 

hazardous environment of space and the heavy tasking placed upon astronauts 

means that their body is under tremendous chronic stress (Arquilla 2021a; Anzai, 

Frey, and Nogami 2014). However full-time monitoring from ground support teams 

is not always be possible, especially during the communication constraints of long-

duration or deep space missions. Furthermore, measurements at prescribed 

intervals allow for opportunities to miss potential cardiac events. Despite selecting 

for healthy participants, monitoring the heart health of astronauts continuously 

ensures wellness and prevents illness from arising during a mission. Additionally 

utilizing  the ECG continuously would improve our understanding of the human 

bodies adaptation in deep space which is valuable for scientific research (Anzai, 

Frey, and Nogami 2014). In long-term spaceflight operations, traditional disposable 

electrodes are not a feasible option, due to the high cost of launch masses, limited 

volume allocated for consumables, and limited astronaut time for tasking. As an 

estimate for using the traditional electrodes on a long-duration mission, assuming a 

crew of 5, on a 16-month trip to Mars, consuming three ECG electrodes per day per 

crew member; the required added launch mass is approximately 41kg from 8200 

disposable adhesive electrodes. This also assumes the shelf life for traditional ECG 

electrodes is at least 16 months. 
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To address these needs for long term ECG monitoring, novel sensors are 

currently being develop which improve upon the shortcomings of the traditional 

adhesive sensors. Conductive textile electrodes are one relatively new technology of 

interest (Paradiso and De Rossi 2006) and in this research woven textile electrodes 

specifically are presented as a potential solution. Textile electrodes are usually 

made of conductive yarns by weaving, knitting or embroidering processes; or by 

coating non-conductive fabrics with conductive polymers (An and Stylios 2018). The 

do not use gel electrolyte thus they are reusable, do not “dry out” or degrade over 

time, and can be integrated into larger garments (Arquilla, Webb, and Anderson 

2020a). Additionally, they do not use adhesive to adhere to the body, ensuring they 

do not irritate the skin on remove and reapplication (Bystricky et al. 2016). Textile 

electrodes are more biocompatible, comfortable, and convenient to wear for long-

durations than adhesive electrodes. These benefits though, are also their primary 

challenge. Without a gel electrolyte they have higher skin impedance and without 

adhesive they are more susceptible to motion related noise. Textile electrodes have 

the potential to fill the gaps left by other solutions by being a long-duration hands-

off solutions without recurring consumable mass (Arquilla, Webb, and Anderson 

2020a) but they do not come without drawbacks.  

While conductive textiles are appealing in many regards, there is a limited 

understanding of how to optimize performance to overcome their drawbacks. 

Characterizing the higher impedance of the skin interface of conductive textiles has 

been difficult. This is because there are many factors which contribute to impedance 

beyond the electrode’s physical characteristics, such as human subject 

characteristics, as well as fit and placement (Cobarrubias 2020). Typically, textile 

electrodes are evaluated through iterative fabrication and testing cycles (Schauss 

2022). This is because it is unclear which manufacturing parameters correspond to 

a textile’s electrical behavior and no predictive comprehensive model exists. More 
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precisely, for a given set of textile electrodes their electrical properties are unknown 

until measuring them after they have already been manufactured. This repetitive 

fabrication methodology is inefficient and limits their development. In order to use 

textile electrodes for chronic ECG applications, it is necessary to obtain a better 

understanding of their electrical behavior and how it relates to design and 

manufacturing (Taji et al. 2014). An equivalent model which relates the electrical 

behavior of textile electrodes to the manufacturing parameters would provide this 

understanding and would be instrumental in designing better integrated solutions 

for wellness monitoring. While there does exist a skin-electrode interface model 

from literature, it is used to generally describe the electrical behavior of electrodes 

on skin using classical circuit parameters (Medrano et al. 2007). No prior work has 

related the interface model to textile electrode manufacturing design parameters. 

When approaching healthcare from the proactive perspective of wellness 

monitoring, the demand for continuously monitoring the full ECG waveform is 

apparent. The introduction of wearable technology solutions combine today’s 

advances in electronics and communication technology with innovative cardiac 

recording capabilities resulting in a giant leap in the development of ambulatory 

monitoring (Nikolova-Hadzhigenova 2019). Commercially available wearable 

devices are functional, but they fall short by failing to capture the full ECG 

waveform. The traditional method of capturing the full ECG does not work well in 

continuous applications outside the clinical setting. Textile electrodes have the 

potential to capture the full ECG waveform for long periods of time while being low 

profile, consistent, comfortable, and reusable. In order to realize this potential and 

design these electrodes consistently, a generalized equivalent model is needed to 

characterize their behavior. 
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Objective 

The engineering objective of this paper is to close a development gap for 

manufacturing textile electrodes by providing an equivalent model. Generally 

speaking, an equivalent model is a mathematical representation of a system which 

describes how the system will behave for a given set of conditions and inputs. In 

this case the equivalent model is a transfer function which describes the ECG 

system and the conditions are the various types of electrodes determined by their 

design parameters. This research builds a model which simulates woven electrode 

behavior, by relating electrical signal generated internal to the body, to the 

electrical signal measured by the ECG system. The ECG system contains the 

manufacturing design parameters of the electrodes described in terms of their skin-

electrode interface circuit parameters. The model describes how the shape and 

amplitude of an ECG waveform changes when captured with a specific electrode. 

This model ties the ECG waveform to the manufacturing design parameters 

enabling faster optimization of long-term usage textile electrode designs. 

After completing the engineering objective two hypotheses will be investigated. 

• Hypothesis 1: The traditional skin-electrode interface model can describe the 

electrical behavior of woven textile electrodes 

• Hypothesis 2: The circuit parameters of the skin-electrode interface model 

can be related to the manufacturing parameters of woven textile electrodes.  

For hypothesis 1, the skin-electrode interface model is a circuit model described 

in Figure 6 with parameterized circuit elements, that describes how an electrical 

signal travels across the skin and into the ECG device. The “behavior of an 

electrode” refers to how the shape and amplitude of an ECG waveform changes 

when captured with that specific electrode relative to another electrode. This 

hypothesis investigates if the traditional skin-electrode model is sufficient to 

describe the interface or if a new circuit architecture is be needed. For hypothesis 2 

the manufacturing design parameters refer specifically to yarn type, weave pattern, 
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and surface area. This hypothesis investigates the relationship between the circuit 

parameters of the skin-electrode interface model and the manufacturing parameters 

of woven electrodes. To investigate this parameter space, woven electrodes were 

previously manufactured by Dr. Katya Arquilla (Arquilla 2021b; Arquilla, Webb, 

and Anderson 2021; 2020a). The electrodes were used by Dr. Arquilla to collect 

human subject data (Arquilla 2021b; Arquilla, Webb, and Anderson 2021; 2020a). 

This dataset provides the base content which is used to fit parameters in the 

equivalent model.  

In this thesis, a parametric model is built using measured ECG waveforms from 

a large set of woven electrode types, spanning several manufacturing parameters. 

Once the engineering objective is complete the electrical parameters, which have 

been found for a specific set of woven electrodes, can be related to the 

manufacturing parameters of woven textiles in general. This relation would aid in 

the design and manufacturing of future conductive textile electrodes for ECG 

devices and long-term monitoring solutions.  

Chapter II will review the existing literature on the ECG and textile electrodes. 

A description is given of the ECG waveform and how it is measured. The analog 

circuitry of the ECG system is described at the functional level. Then the existing 

traditional adhesive electrodes are described and compared against the novel woven 

textile electrodes. The parametric skin-electrode interface model is described. 

Finally, a table which provides a comprehensive comparison between textile and 

traditional electrodes is provided summarizing the discussion of chapter 2.   

Chapter III will build a parameterized transfer function of the full ECG system. 

The simplifying assumptions are stated and the overall methodology is described. 

The specific parameters for an adhesive electrode are collected from literature, and 

used to compute the in-body waveforms for all 10 subjects. A parametric transfer 

function of the ECG system is used to simulate the ECG waveform for a specific 
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textile. The circuit parameters corresponding to each electrode are numerically fit 

by comparing the measured and simulated waveforms across subjects.  

Chapter IV contains the results, which will look at the relationship between the 

specific circuit parameters of the fit transfer function model and the corresponding 

manufacturing parameters of the unique textile electrodes. A description of the 

validation and the results of the parameter fit are presented here. The results 

describe the electrical parameters of electrode sets, and a comparison of the in-body 

waveform and simulated waveform used per subject.  

Chapter V contains the discussion and conclusion. The discussion section will 

describe how well the electrical parameters of the model transform an input 

waveform into an output waveform. The discussion is also where the correlation 

between electrical and manufacturing parameters occurs and which parameters of 

the model are most influential for designing future textile electrodes. The 

concluding remarks provide guidance for the next steps in designing woven textile 

electrodes and suggestions and observations regarding improvements to the model. 
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II. Literature Review 

This chapter reviews the existing literature associated with the ECG waveform, 

the circuitry that captures it and specifically the electrodes that contact the skin. 

The properties of traditional adhesive electrodes are described and compared 

against the properties of conductive textile electrodes. The woven textile electrodes 

currently under investigation are included in the literature review comparison. The 

standard skin-electrode interface model is reviewed, as well as previous methods for 

modeling the ECG system as a transfer function. A method of determining the 

values of the components in the skin-electrode interface model. Finally, a summary 

table is provided which compares the pros and cons of the two electrode types side-

by-side.  

The Electrocardiograph 

In 1895 Willem Einthoven invented the first practical electrocardiograph and 

later received the Nobel prize for his work. The ECG device has seen many 

iterations and optimizations but fundamentally the electrophysiological processes 

that was used then is the same as what is used today. The human body biologically 

generates electrical signals called biopotentials as a result of electrochemical 

activity of excitable cells (John G. et al. 2010). The ECG describes the electrical 

signals specifically across the heart muscle as they periodically vary over time (Y 

Du 2017; John G. et al. 2010). This paper focuses mainly on the electrodes used to 

capture the ECG waveform so a brief description of the underlying mechanisms 

responsible for the ECG and the shape of the ECG waveform is presented here. 

The ECG waveform is a graph of voltage versus time describing the electrical 

depolarization and repolarization of specific chambers of the heart during the 

cardiac cycle (Tereshchenko and Josephson 2015). The electrical impulses, also 

known as action potentials, are initially generated by pace making nerve cells [14]. 

These impulses travel across the heart along the His-Purkinje nerve fibers causing 

the adjacent muscle fibers to contract (John G. et al. 2010; Tereshchenko and 
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Josephson 2015). The summation of all the electrical activity in the heart at any 

given time can be approximately represented by an equivalent electric dipole at the 

center of the heart [6]. This dipole moment is defined by a vector quantity 

containing the overall magnitude and direction of the electrical charges within the 

heart at a specific instant. As the heart beats the overall electric field changes 

thereby causing a change in the magnitude and orientation of the equivalent dipole 

vector. By simplifying the complex electrophysiology of the heart into a single dipole 

vector, the status of the heart can be quantifiably characterized [6]. The electric 

potentials at the heart then travel outwards through the conductive tissues and 

salty extracellular fluids of the thoracic cavity, to the surface layers of the skin 

where it then is transduced into electrical current by an electrode [14].  

There are 5 main components to an ECG waveform annotated by the order they 

appear chronologically with the letters “PQRST” (Hurst 1998). The P wave is the 

leading peak which represents the depolarization of the atrial chamber of the heart 

(Gangemi 1995). The Q R and S peaks form a single complex which contains the 

most visually prominent peak, the R-peak. The QRS complex is a combination of the 

Q trough, R-peak, and S trough. This wave corresponds to the depolarization of the 

ventricles and the repolarization of the atria (Gangemi 1995). Lastly is the T wave 

which represents the repolarization of the ventricles (Gangemi 1995). Of note, since 

the repolarization of the atria occurs at the same time as the depolarization of the 

ventricles in the QRS complex, the atrial repolarization is not clearly detected by 

the ECG since the tissue mass of the ventricles is much larger than that of the atria 

(Gangemi 1995). The ECG waveform and its associated peaks are labeled in Figure 

2. 
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Figure 2: Idealized ECG waveform of a heart in ideal sinus rhythm  

in the time domain (Left) and frequency domain (right).  

Some popular metrics from the ECG are the R-R Interval, the peak amplitudes 

and shapes, the heart rate (HR), and various descriptions of Heart Rate Variability 

(HRV). The spacing between two adjacent R peaks is called the R-R Interval. The 

average spacing over time is the subjects heart rate. Heart rate variability is a 

measure of the fluctuations in successive R-R interval over time. In addition to the 

metrics between adjacent waveforms there are metrics within an individual 

waveform. For example: The P-R interval, Q-T interval and S-T interval measures 

of the time between the corresponding peaks of a given waveform. Metrics such as 

these, as well as the relative amplitudes of the individual peaks, can help a doctor 

diagnose if the heart is healthy and performing as expected or if there are 

symptoms of cardiac problem.  

The ECG waveform typically measured at the skin has a voltage range of 0.5mV 

to 5 mV, depending on human subject factors (John G. et al. 2010). The smaller 

peaks similarly vary in width and amplitude but the R-peak is typically the largest. 

The waveform’s frequency content ranges from 1Hz to 100Hz depending on the 

subject and their activity level (Y Du 2017; Tereshchenko and Josephson 2015). The 

cardiac cells have a resting electric potential of approximately -85mV [14]. These 
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electrical parameters are detected by precise circuitry and precise placement of 

electrodes. The circuitry used to capture the ECG waveform will be discussed next.   

The ECG Circuitry 

The fundamental ECG circuitry is designed to measure the voltage difference 

between two electrodes at the surface of the body. Starting at the electrode and 

working outwards from the body towards the computer display, the main functional 

buildings blocks, shown in Figure 3, are: the sensing electrode, the amplifier’s 

protection circuit, the lead selector, the amplifier stage (Amp), the filter stage, the 

isolation circuit, and the analog to digital converter (ADC) (John G. et al. 2010). 

After the signal is digitized, it can be post processed, saved in memory, and/or 

displayed directly for analysis.  

The specific ECG system used by Arquilla et al. for data collection was the 

BIOPAC MP160 ECG hardware suite (“MP System Hardware Guide” 2015).  This 

includes the BIONOMADIX wireless ECG transmitter. The BIONOMADIX is a 

portable device which connects to the electrodes and digitizes the signal before 

wirelessly relaying it back to the BIOPAC for further processing and display. The 

BIONOMADIX transmitter performs the general functions described below.  

 
Figure 3: Functional Block Diagram of a typical ECG system (Y Du 2017; John G. et al. 2010). 

The electrodes will be discussed in depth later, so the first block to be discussed 

is the amplifier’s protection circuit. The electrode can be thought of as the 
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transducers that convert flowing ions to flowing electrons (Y Du 2017). The 

protection circuit (PC) prevents damage to the rest of the circuit in case a high 

voltages appear across the input electrodes (John G. et al. 2010). Traditionally this 

is intended to protect the ECG device in case of the application of defibrillation, but 

for long term use, wearable devices would also need this function to protect against 

electrostatic discharge and events similarly harmful to electronics.  

The next block is the lead selector (LS). Since voltage is a differential 

measurement, pairs of electrodes are needed to make a measurement. Each 

electrode pair forms a lead. This circuitry is responsible for determining which lead 

(electrode pair) is measured at a given instance in time. The lead selector will then 

connect those electrodes to the rest remainder of the circuit. In the next instance in 

time, the lead selector will again connect a pair of electrodes to the next stage of the 

ECG circuit.  

The amplifier stage (Amp) is responsible for amplifying the ECG signal so that it 

is easier to capture and digitize. This stage has very high input impedance because 

ideally there should be as little current draw as possible since current distorts the 

electric field, and corrupts the signal (John G. et al. 2010). The specific voltage gain 

of the BIONOMADIX circuitry is 2000, or approximately 66 dB [22]. The 

differential input impedance of the BIONOMADIX amplifier is 2MΩ [22]. This stage 

also sets the signal to noise ratio (SNR) by amplifying both the signal and the 

background noise present at the electrodes.  SNR is defined as the ratio of the 

power of a signal to the power of the noise (Arquilla, Webb, and Anderson 2020b). 

When the signal is less powerful than the noise, the SNR will be negative (units in 

decibel) indicating that the signal is not retrievable from the ambient noise. When 

SNR is positive, the signal strength is stronger than the noise, and can be retrieved. 

The specific SNR depends on how much noise is present.  

The filter stage is perhaps the most important stage of the ECG circuitry 

because it is used to remove signals present which are not from the heart. A high 
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pass or DC filter (HPF) eliminates any DC offset developed between electrodes as 

well as ultra-low frequency signals (Y Du 2017). While a low pass filter (LPF) 

removes high frequency noise above the upper frequency components of the cardiac 

cycle (>100Hz) (Tereshchenko and Josephson 2015). A notch filter, or band stop 

filter (BSF), is used to block out specific signals known to be present such as the 

60Hz interference from power lines. The last part of the filter stage is associated 

with rejecting the common mode interference; noise that is present across multiple 

electrodes. The specific filters in the BIONOMADIX circuitry are maximally flat 

Butterworth filters: a single pole high pass filter with cutoff frequency of 1Hz, a 

single pole low pass filter with cutoff frequency of 35Hz, and a notch filter centered 

at 60Hz with a 2Hz bandwidth (“MP System Hardware Guide” 2015).  

Since filtering noise is a critical function, a brief detour to discuss noise sources 

is also provided here. Electrical noises affecting the signal quality mainly include 

intrinsic body noise, skin-electrode interface noise and environment noise. Intrinsic 

body-noise is the detection of the contraction or tension of non-cardiac muscles such 

as respiration, and is the dominant noise factor for long-term use (Y Du 2017). Skin-

electrode interface noise is the result of physical motion of the electrode on the skin 

in the form of sliding, slipping or gaps between the skin and the electrode. This is 

also the result of poor skin to electrode contact. The quality of the skin (i.e., sweaty 

vs. dry) can also introduce interface noise in long-term measurements since it may 

change over time. Long term measurements also require consistent placement of 

the electrode on the skin, because a misplaced electrode would introduce another 

source of measurement variation. Environmental noise is electrical noise from 

external sources. It can consist of power line interference, impulse noise, 

electrostatic potentials, stray capacitance, and nearby electronic devices (Heikenfeld 

et al. 2018). Regardless of where the noise is coming from, the signal must be 

separated from the noise, and this is why the ECG system relies on the filter stage. 
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The isolation circuitry (IC) is designed to protect the patient in case the ECG 

system malfunctions (John G. et al. 2010). It prevents harmful currents from 

coming back into the body. Traditionally this is because medical equipment is 

usually connected to high power lines, such as the 120V wall outlet. In the 

BIONOMADIX this block is moved after the digitization step, and is realized by 

means of radio isolation.  

The analog to digital converter (ADC) is the device responsible for converting the 

continuous analog signal of the heart to a discrete time signal (John G. et al. 2010). 

The ADC does this by sampling the continuous signal at a frequency called the 

Nyquist rate. The Nyquist sampling rate is at least two times the highest frequency 

component of the waveform so that aliasing does not occur [2]. Once digitized the 

ECG data is stored in memory where it can be retrieved for further post process 

analysis and display. For the BIONOMADIX transmitter, the sampling rate was 

2kHz.  

These are the main building blocks for an ECG measurement circuit. The last 

ECG building block to be discussed is the electrode itself. 

The Electrode  

Electrodes are the focus of this modeling effort, so greater detail will be spent 

discussing the existing literature associated with their characteristics and 

parameters. Specific attention will be given to the exact woven electrode types 

which were used to collect the ECG data for this thesis. Generally, an electrode is 

the component of the ECG device which makes contact with the skin. It measures 

the voltage potential across two points on the body, by converting the flow of ions 

underneath the skin to flowing electrons in the wires (John G. et al. 2010). The first 

characteristic of ECG electrodes, regardless of type, is the location of the electrode’s 

placement on the skin of the body. Electrode placement is critical to the 

repeatability and voltage magnitude of the ECG signal (Arquilla et al. 2020). As 

described in Medical Instrumentation: Application and Design by John G Webster: 
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“If the electrodes are located on different equal-potential lines of the electric field of 

the heart dipole, a non-zero voltage is measured. Different pairs of electrodes at 

different locations yield different voltages. Thus it is important to have certain 

standard positions for consistent evaluation of the ECG.” (John G. et al. 2010).  

Repeated ECG electrode placement on the body is non-trivial since slight 

variations in electrode placement can result in variation in the ECG waveform 

which can correspondingly lead to misdiagnoses and reduced trust in the 

monitoring system (Arquilla et al. 2020). There are several standards which have 

been adopted by the medical community starting with a three-electrode 

configuration and increasing electrode count to as many as twelve. According to a 

study performed by the Society of Cardiological Science and Technology in 2017, a 

repeated electrode placement tolerance of 19mm was deemed acceptable for making 

electrocardiograph measurements (Gregory et al. 2019). The three-electrode method 

used during data collection by Arquilla et al., 2020 is commonly called the three 

lead Einthoven’s triangle (Y Du 2017). The three electrodes, forming three leads, is 

the Einthoven triangle, graphically described in Figure 4. 

  
Figure 4: Einthoven's Triangle for 3 lead Electrocardiograph measurement  

In order to understand the Einthoven triangle, some terminology is useful to 

describe how the measurements are made. As described earlier, a pair of electrodes 

placed on the body forms a lead. A lead vector is defined as the unit vector which 

describes the orientation of the electrode pair placement (John G. et al. 2010). A 
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cardiac vector is defined as the dipole moment representing the summation of all 

electrical activity in the heart at a given instant in time. For some cardiac vector, 

M, and some lead unit vector, a, the measured voltage Va, the equation for which is 

shown in Eqn. 1, is simply the dot product between the two vectors, where θ is the 

angle between them:  

𝑉𝑎 = �̅�  ∙ �̅� =  |�̅�| ∗ cos(𝜃)  
( 1 ) 

For example, Voltage V1 is the voltage measured by lead 1 between the Right 

Arm (RA) and Left Arm (LA) electrodes, V2 is the voltage by lead 2 between the RA 

and Left Leg (LL) electrodes, and V3 is the voltage measured by lead 3 between the 

LA and LL electrodes. Cardiologists use a standard notation describing the 

direction of the lead vectors such that lead 1 is 0 degrees, lead 2 is 60 degrees, and 

lead 3 is 120 degrees. This grants the ECG the ability to “view” the heart from 

several angles. Techniques with more electrodes are adding more angular diversity.  

The electrodes themselves are placed to minimize noise contributions and 

maximize signals from the heart. The RA electrode is located under the right 

clavicle, the LA electrode is under the left clavicle, and the LL electrode is placed on 

the lower left abdomen within the rib cage frame between ribs. Admittedly there is 

a large variation in placement between population because there is a large variance 

in the anthropometry. Humans all vary significantly, for example in weight, BMI, 

fatty tissues, or physical size, therefore for long-term monitoring it is more 

important to have a consistent method of placement for a given person with 

repeated use than across people (subject to general placement constraints described 

previously). 

Wet Electrodes vs. Dry Electrodes 

After electrode placement, the next characteristic of interest is the electrode 

type. There are many different types but generally electrodes are divided into two 

categories in the literature, “wet” and “dry” (Heikenfeld et al. 2018; Arquilla, Webb, 
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and Anderson 2020a; Yoo and Hoi-Jun Yoo 2011). Wet electrodes are accompanied 

by a gel or electrolyte solution which aids in measurement by reducing the electrical 

contact impedance (Heikenfeld et al. 2018), while dry electrodes do not use an 

additional electrolyte gel. The traditional adhesive electrode is considered “wet” 

while the novel conductive textile electrodes proposed in this research are “dry”. The 

Wet/Dry terminology is a bit of a misnomer despite colloquial usage, because dry 

electrodes which are dry initially, quickly accumulate tiny amounts of skin moisture 

and perspiration making them functionally able to be modeled like “wet” electrodes 

(An and Stylios 2018). This is because the minute amount of moisture is 

functionally the same as a very thin layer of electrolyte which, from a modeling 

perspective, means the dry electrodes have the same functional model structure as 

wet electrodes after a given settling time (An and Stylios 2018; Geddes and 

Valentinuzzi 1973).  

The most commonly used “wet” electrodes are silver/silver chloride (Ag/AgCl) 

gel-based adhesive electrodes. These electrodes are rigid metal cylinders with an 

adhesive sticker and an electrolyte gel section on one side and a protruding metal 

attachment point on the other side (Arquilla, Webb, and Anderson 2021). The 

adhesive sticker ensures constant skin contact while the gel electrolyte ensures a 

low electrical impedance. They have many benefits such as being non polarizable, 

generating low noise, and being tolerant to motion but they have limitations in long 

term monitoring applications (An and Stylios 2018; Taji et al. 2014; Y Du 2017; 

Arquilla, Webb, and Anderson 2020a).  According to A Searle and L Kirkup the 

limitations associated with wet electrodes are oriented around the gel electrolyte 

(Searle and Kirkup 2000). The reliance on an electrolyte leads to reduced signal 

quality as the gel dehydrates and the reapplication of gel may not be feasible  

(Arquilla, Webb, and Anderson 2021; Searle and Kirkup 2000). The application and 

removal of electrolyte gel is unpleasant for the subject and time consuming for the 

clinician (Searle and Kirkup 2000). Furthermore with chronic use, both the 
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adhesive and the electrolyte can cause skin irritation (Arquilla, Webb, and 

Anderson 2021; John G. et al. 2010).  

“Dry” electrodes come in a variety of types, and the type discussed here is the 

dry textile electrode. Textile electrodes are swatches of fabric, either partially 

containing or entirely consisting of electrically conductive yarn. They are not 

inherently accompanied by adhesive or by electrolyte gel. Compared to traditional 

Ag/AgCl electrodes, textile electrodes have the advantage of being soft, flexible and 

breathable, allowing the wearer to feel more comfortable long term (An and Stylios 

2018; Arquilla, Webb, and Anderson 2021). Furthermore, textile electrodes are 

reusable, and potentially integratable into familiar everyday clothing. On a Likert 

scale characterization of comfort Woven electrodes have been reported as 

“scratchier” than adhesive electrodes, while also rating less “clingy”, “cold”, and 

“sticky” (Arquilla, Webb, and Anderson 2021). Since textile electrodes do not use 

adhesive to adhere to the body, they do not irritate the skin on removal and 

reapplication. Additionally, since they do not use an added gel electrolyte, their 

performance does not degrade over time. These benefits, though, are also their 

primary challenge. Without adhesive they are susceptible to motion related noise 

from poor skin contact, and without added gel electrolyte, they have higher 

electrical skin impedances (Nikolova-Hadzhigenova 2019). To address problem of 

skin contact Arquilla et al. utilized a placement garment described in (Arquilla et 

al. 2020). This garment helps ensure repeatable placement of the textile electrodes 

on the body and applied a constant pressure against the skin. 

There are some similarities between wet and dry electrodes. Both require some 

amount of stabilization time. This is likely due to human body factors, like skin 

temperature as well as skin moisture (An and Stylios 2018). Fortunately in long 

term monitoring applications, missing the first 5-10 minutes does not impose 

significant problems to a longer dataset (Yoo and Hoi-Jun Yoo 2011). Both 
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electrodes also utilize the same placement locations on the human body and are 

capable of capturing the complete ECG waveform. 

Manufacturing Parameters of Textile Electrodes 

Next the manufacturing parameters of textile electrodes will be discussed in 

more depth. Textile type is briefly mentioned because this paper focuses on woven 

fabric but it is worth mentioning that there are popular alternative textile solutions 

in the literature such as knit and embroidered electrodes. Within woven textile 

electrodes the three manufacturing design parameters of interest are yarn type, 

weave pattern, and surface area. It is also worth acknowledging that the 

manufacture of textiles in general includes design parameters beyond these three, 

but within the context of woven electrodes these parameters are the most relevant, 

and thus the focus of this thesis. 

Textile Type: Weave, knit, embroidery  

Textiles can be manufactured from different methods of converting yarn or 

thread into fabric. Woven textiles are created on a loom through the weaving 

process of interlacing threads perpendicularly according to a repeated pattern 

(Gustaf Hermann Oelsner 1915).  Woven fabric has the main benefit of 

inextensibility and fixed thread contact with the body, which primarily means 

woven electrodes have a constant electrical impedance (Arquilla, Webb, and 

Anderson 2021). This also makes it easy to integrate electrically conductive yarns 

which have little to no stretch (Devendorf and Di Lauro 2019). Mechanically, woven 

fabric does not remain pressed against the skin, unless an additional supporting 

structure is present such as a foam backing or an adjustable strap(Arquilla, Webb, 

and Anderson 2021). For manufacturing conductive textiles integrated into larger 

garments, woven fabrics are attractive because they more easily accommodate 

multiple yarns and yarn types.  

When compared to woven fabrics, knitted fabrics are created from the process of 

repeatedly intermeshing loops of yarn. Knitted fabrics are more flexible, 
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stretchable, and take up the curvature of the body when worn (An and Stylios 

2018). The elastic nature does still struggle to conform to concave surfaces of the 

body; for example, between pectorals or underneath collar bones. Since knits are 

traditionally formed from looping a single yarn, it is challenging to incorporate 

various yarn types during manufacture, and therefore it is more challenging to 

integrate knit electrodes into a non-conductive garment. Another trade-off with knit 

fabric is that the electrical properties change when stretching (Yokus and Jur 2016). 

Changes in shape and stitch contact density due to stretching correspondingly 

influence their electrical impedance, which adds a dimension of variation to the 

measurement and distorts the original signal. This additional variation associated 

with stretching is difficult to separate from the original signal. For the purposes of 

monitoring ECGs an electrode which changes shape or size, as is the case with 

knitting, would correspondingly change resistance and require more complex 

circuitry or postprocessing. 

Embroidery is the process of sewing a patch or design into an existing fabric. 

Unlike woven and knit electrodes, the embroidered electrodes are always added 

after the base fabric has been manufactured (Bystricky et al. 2016). Embroidered 

patches are highly customizable and easy to fabricate, but also require the 

additional step during fabrication (Bystricky et al. 2016; Kannaian, Neelaveni, and 

Thilagavathi 2013). Usually, embroidery is added to a woven base material, so they 

tend to also be inelastic, and experience similar characteristics as the base weave. 

Since embroidered patches are so customizable, there are more patterns and 

textures that can be explored than with knit and woven fabrics, but this comes at 

the cost of added complexity. The largest limitation of embroidered electrodes is 

that not all conductive threads can be used in sewing machines during the 

additional manufacturing step. Furthermore embroidery machines are more 

expensive than basic sewing machines, which makes embroidered electrodes a less 

cost-effective option (Arquilla, Webb, and Anderson 2020a).  
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It has been difficult to conclusively determine which type of textile structure 

performs best in ECG recording because it involves many factors, such as the 

geometry of the fibers and yarns, the stitch density, contact area, the 

manufacturing process as well as the conductive material type (An and Stylios 

2018). In this research, woven electrodes were chosen because conductive elements 

can be integrated seamlessly and exist in stable, inelastic structures that have 

constant resistance (Arquilla, Webb, and Anderson 2021).  

Yarn Type 

When manufacturing a woven textile, yarn type is one of the first design choices 

to consider – both for the base yarn and the conductive elements. This section will 

focus on the conductive elements and how the decision of yarn type impacts the 

manufacturability and long-term function of an electrode.  Electrical conductivity in 

textiles can occur via the thread material itself (e.g., spun steel thread) or the 

thread can be non-conductive (e.g., nylon thread) and a conductive coating can be 

applied (e.g., silver-coated nylon). There are various methods of applying a 

conductive coating to a base yarn such as chemical deposition, or simply screen 

printing. One of the main demands of textile electrodes is that they are reusable. 

This means over day-to-day use the garment will absorb sweat from the wearer and 

collect dirt from the environment so machine washability is a priority which is 

addressed through yarn type.  

For conductive threads one popular choice is steel spun thread. The thread is 

spun from stranded stainless-steel fibers so it is electrically conductive throughout 

its cross section. This resembles a structure of a spun staple fiber yarn where 

individual short lengths of steel fiber are given structure through the application of 

a spin or twist (Arquilla, Webb, and Anderson 2021). Using conductive threads can 

be more simple to manufacture but limits design freedom to the fabric stitch pattern 

(Arquilla, Webb, and Anderson 2021). Some conductive threads are very strong and 

inelastic which tend to degrade manufacturing machines faster than regular thread 
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(Bystricky et al. 2016). Stainless steel is generally corrosion resistance but it can 

and will rust in certain conditions. When considering washability, electrodes 

constructed with stainless steel threads have shown no significant degradation in 

performance, but time-to-failure tests have not yet been conducted (Arquilla, Webb, 

and Anderson 2020a). 

Screen printing is the process of applying a conductive coating to a fabric through a 

shaped screen. Chemical plating is the process of applying a conductive coating to a 

thread before it becomes a fabric. Conductive inks and pastes used in screen 

printing tend be expensive to purchase, and the curing process takes more time to 

be test-ready(Arquilla, Webb, and Anderson 2020a). With screen printing there is a 

risk of cracking, degrading signal quality, which is not a concern for conductive 

yarns or chemical plated threads. Silver-coated nylon is a popular chemical plated 

option which consists of several filaments of nylon, which are each chemically 

coated in silver nanoparticles and spun together. Compared to steel, silver is more 

biocompatible because it is antibacterial (Vojtech et al. 2013) and has a lower 

resistivity. Silver electrodes have performed better in detection of the P, Q and T 

peaks than spun steel thread electrodes (Arquilla, Webb, and Anderson 2021). 

Silver coated nylon has also been washed and measured after washing and shown 

no significant degradation in performance, but time-to-failure tests have not yet 

been conducted (Arquilla, Webb, and Anderson 2020a).  

Weave Pattern  

Within the category of woven fabrics there is an infinite variety of woven 

patterns which can be manufactured. Fundamentally weaving is a process of 

interlacing some length of yarn perpendicularly across another length of yarn (K. et 

al. 2012). The order and method in which this interlacing process occurs will 

determine the pattern, mechanical structure and functional surface area of the 

electrode (Arquilla, Webb, and Anderson 2021). To understand a weave pattern, it is 

helpful to first define some terminology commonly used in literature.  
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Warp and weft are the vertical and horizonal yarn lengths respectively. Warp 

threads are pulled taught by a loom, and a weft thread will alternatingly pass over 

and under the warp threads according to a predefined pattern (Gustaf Hermann 

Oelsner 1915). An anchor is an instance where the weft crosses over the warp. A 

float is an instance when a weft thread repeatedly passes beneath a warp thread. 

The number of warp threads that are passed between anchors is called the float 

count. An anchor offset is shift in anchor position in adjacent weft thread patterns. 

A simplified example of two patterns and their corresponding cross section are 

shown in Figure 5.  

 
Figure 5: Example patterns with skin cross section, left: ¼ Sateen pattern, right: 1/1 Plain weave pattern. 

The left has more conductive contact area with the skin because less weft length is spent transitioning over and 

under the warp threads. 

The pattern on the left represents a 1/4 sateen weave structure with a one 

anchor offset. The pattern on the right shows a plain weave structure, where the 

weft yarns alternate over and under the warp yarns. The vertical warp threads, 

spaced horizontally, are pulled tight by the loom which determines the warp thread 

spacing. The weft thread is passed horizontally by a shuttle and then pushed 

vertically up against the fell of the cloth determining the weft thread spacing. The 
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weft and warp thread spacing determine how tight or loose the overall fabric will 

be, and the overall thread density. The more frequently anchoring occurs, as in a 

plain weave, the tighter the fabric pattern will be. When anchoring occurs less 

frequently, as in the Sateen pattern, the fabric is softer and “puffier” because the 

weft threads are able to float (Arquilla, Webb, and Anderson 2021). This creates 

textiles which are not simple flat 2D surfaces but have some additional depth and 

texture.  

In this example, consider now that the weft yarn (blue) is conductive while the 

warp yarn (gray) is not. Any given pattern will determine how much conductive 

yarn contacts the skin. Instances of anchoring will create more gaps in the electrode 

surface area which reduces the skin-electrode surface area but also stabilizes the 

yarn reducing motion. Fewer anchor points mean longer floats, which increase 

surface area but looser fibers are prone to picking up noise from motion artifacts 

and are also less durable and more likely to snag. Yarn thickness, as well as thread 

density (weft and warp spacing) are also related to the conductive contact area. In 

one report, the measured skin-electrode impedance is positively related to the yarn 

diameter and negatively related to the stitch density (An and Stylios 2018). In the 

cross section view it is easier to see how a pattern with fewer anchors would result 

in an electrode with a larger contact surface area with the skin. 

Patch Surface Area 

The last manufacturing parameter in woven textile electrodes is the electrode 

patch area. A patch is a swatch of woven textile fabric used as an electrode in the 

ECG. The patch area is simply the surface area of the shape of the textile electrode. 

In the ideal example from Figure 5, the patch is a 5 by 5 unit square, with an 

overall patch area of 25 units2. In reality, the intended electrode design may differ 

from the as-built electrode size due to imprecise manufacturing processes. 

Furthermore, the as-built electrode area is different than the conductive surface 

area. The conductive surface area is defined as the functional surface area made by 
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conductive yarn which contacts the skin. Since the woven patch is a 3-dimensional 

structure of both conductive and non-conductive yarns, the conductive surface area 

is a smaller percentage of the area of the patch. The conductive surface area 

depends on both the pattern and area of the patch. It is therefore necessary to 

characterize the functional surface area of an electrode because the impedance of 

the skin-electrode interface is inversely proportional to the conductive contact 

surface area (Nikolova-Hadzhigenova 2019). A smaller area patch will have a 

higher skin-electrode impedance and introduce more high-frequency noise than 

larger patches (An and Stylios 2018; Nikolova-Hadzhigenova 2019). While a larger 

patch will capture more muscle signals and introduce more muscle contraction noise 

(An and Stylios 2018; Arquilla, Webb, and Anderson 2021). The conductive contact 

area affects the skin-electrode interface and correspondingly its impedance which 

strongly affects the acquired ECG signal (Taji et al. 2014). 

In the idealized example from Figure 5 both patterns have a square patch area 

of 25 units2 but they do not have the same functional conductive surface area. As a 

first order approximation, the conductive area is the summation of all the smaller 

blue areas. Using this approximation, the plain weave has a conductive surface area 

of 22% of the patch area. The 1/4 Sateen pattern is comparatively better but still 

only about 36% of the patch area. There are many assumptions imbedded in this 

example approximation, but the purpose is to illustrate how weave pattern and 

patch area can dramatically impact the functional conductive surface area of a 

particular woven textile electrode.  

Skin-Electrode Interface Model 

To capture the behavior of the textile electrode, a circuit model and a discussion 

of the parameters needed to describe an electrode’s electrical behavior is presented. 

When biopotentials are recorded from the surface of the skin, the conductive 

interface between the electrode and the skin is modeled using a circuit model called 

the skin-electrode interface model (John G. et al. 2010). This model, shown in Figure 
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6, characterizes the skin, the electrode, and the interface between them using 

passive circuit elements.  

Starting with the heart and working outwards toward the electrode, the ECG 

signal must pass through several layers of tissue. The innermost is the thoracic 

cavity and subcutaneous tissue, next is the dermis which is the thickest layer of the 

skin, and finally the outermost layer is the epidermis. The skin therefore should not 

be viewed as an information source but instead as an information barrier 

(Heikenfeld et al. 2018). According to J. Heikenfeld et al.  

“Electrical impedance is largely determined by the roughness of the skin 

which introduces pockets of air that can result in higher impedance. Wet 

electrodes reduce that resistance by closing the air gaps with electrolyte. The 

stratum corneum (SC) is electrically insulating with a resistance that is 

significantly higher than that of the underlying layers of the epidermis. The 

impedance can vary strongly depending on the activity and density of sweat 

glands, and the local thickness and composition of the stratum corneum. The 

entire epidermis including the SC can be treated equivalently with a parallel 

resistor/capacitor which is chosen according to the body location and 

electrodes.” (Heikenfeld et al. 2018).  

From the literature review there are two standard skin-electrode models 

describing the behavior of the skin interface. A “single-time” constant model 

developed by Swanson and Webster (John G. et al. 2010) contains a single stage 

parallel R/C pair. The single stage model attempts to combine the skin and 

electrode into one stage, but exhibits less accurate modeling results and therefore 

was not chosen in this analysis (Taji et al. 2014). A double time model developed by 

Neuman (An and Stylios 2018) uses two stages of parallel resistor capacitor pairs to 

represent the electrode interface. The double time model, shown in Figure 6, 

exhibits more accurate modeling results for traditional electrodes and was therefore 

chosen as a baseline for this analysis effort. It is the goal of Hypothesis 1 to 
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determine if woven textile electrode behavior can be described by the double-time 

skin electrode model or if a different architecture is needed.  

Some models include a voltage dependent voltage source to represent the current 

transform occurring at the skin interface. The signal is conducted through the 

body’s extracellular fluid by the flow of ions, meaning the charge carrier is Na+ or 

K+ ions. On the other side of the skin, the signal is conducted by the flow of 

electrons and current is measured in Amperes. The skin interface is where this 

current transforms from flowing ions to flowing electrons. For the purposes of the 

equivalent model the “raw signal” does not need to be replicated in ionic current 

units, and so this element has been excluded from the model.  

  
Figure 6: Double Time circuit model of the skin-electrode interface (Heikenfeld et al. 2018; Yokus and Jur 

2016; John G. et al. 2010; Löfhede, Seoane, and Thordstein 2012; Yoo and Hoi-Jun Yoo 2011; Medrano et al. 

2007; Assambo et al. 2007) 

According to the skin-electrode model, the cumulative impedance, ZE, can be 

represented as a complex function of frequency where 𝑗2 = −1 and ω is frequency. 

Before describing each term, ZE can be reorganized to a ratio of polynomials for ease 

of use in further analysis. The equations for the polynomial coefficients are shown 

in Table 1. To simplify the equation, let s = jw and substitute the terms for 
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polynomial coefficients. This notation is useful for frequency domain analysis as a 

transfer function which will be described in more detail in the next section. 

𝑍𝐸 = 𝑅𝑙𝑒𝑎𝑑 +
𝑅𝑑

1 + 𝑗𝜔𝑅𝑑𝐶𝑑
+ 𝑅𝑠 +

𝑅𝑒

1 + 𝑗𝜔𝑅𝑒𝐶𝑒
+ 𝑅𝑢 =

𝑏2𝑠2 + 𝑏1𝑠1 + 𝑏0 

𝑎2𝑠2 + 𝑎1𝑠1 + 𝑎0
 

( 2 ) 

Table 1: Coefficients for the impedance of the Skin-Electrode Interface Model 

𝑏2 =  (𝑅𝑙𝑒𝑎𝑑 + 𝑅𝑠 + 𝑅𝑢) ∗ 𝑅𝑑𝐶𝑑 𝑅𝑒𝐶𝑒 𝑎2 = 𝑅𝑑 𝐶𝑑𝑅𝑒𝐶𝑒   

𝑏1 =  (𝑅𝑙𝑒𝑎𝑑 + 𝑅𝑠 + 𝑅𝑢) ∗ (𝑅𝑒𝐶𝑒 + 𝑅𝑑𝐶𝑑 ) + 𝑅𝑑𝑅𝑒𝐶𝑒 + 𝑅𝑒𝑅𝑑𝐶𝑑 𝑎1 =  𝑅𝑒𝐶𝑒 + 𝑅𝑑 𝐶𝑑  

𝑏0 =  𝑅𝑙𝑒𝑎𝑑 + 𝑅𝑠 + 𝑅𝑢 + 𝑅𝑑 + 𝑅𝑒 𝑎0 =   1 

In this model: Ru represents the resistance of the dermis and subcutaneous 

layers, Re represents the resistance of the epidermis layer, Ce represents the 

capacitance induced by the nonconductive stratum corneum layer, Rs represents the 

resistance of the sweat or electrolyte depending on the electrode type, Rd represents 

the charge transfer resistance in the conductive electrode, Cd represents the 

capacitance across the electrode-electrolyte interface, and RLead represents the 

resistance of the connection to the wire leads traveling to the ECG input circuitry 

(An and Stylios 2018). The thoracic volume conductor, is considered a purely 

passive medium containing no electric sources or sinks and generate negligible DC 

potentials (John G. et al. 2010). Several papers have applied the double time model 

to textile electrodes, but this paper will explore how well that assumption holds.  

The components of the model which capture the skin’s behavior are Re, Ce, and 

Ru. The electrical properties of skin have great variation and depend upon many 

factors including, but not limited to, hydration, hairiness, thickness (%body fat), 

surface area and location on the body (An and Stylios 2018). This model shows that 

the impedance of electrodes is fundamentally frequency-dependent; As the 

frequency increases, the impedance decreases which is consistent with the 

capacitive behavior of the skin-electrode interface (An and Stylios 2018). For a 1 cm2 

patch of skin, the skin impedance (Re || Ce + Ru) reduces from approximately 

200kΩ at 1Hz to 200 Ω at 1 MHz (John G. et al. 2010).  
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The components of the model which capture the electrode’s behavior are Rd, Cd, 

Rs, and Rlead. The electrical properties of the electrode depend upon many factors 

including, but not limited to, the conductor metallic composition, conductor 

geometry, the presence/type of electrolyte, and conductive skin surface area. Similar 

to skin, electrodes display a fundamentally capacitive reactance. The lead wire 

resistance, RLead, is simply the DC resistance of the wire connecting the electrode to 

the ECG circuitry and on the order of 0.1- to 3Ωs depending on lead wire length.  

The specific values Rd, Cd, and Rs, are difficult to identify for a given textile 

electrode. It is possible to measure overall impedance ZE at various frequencies and 

determine the specific parameters retroactively, but currently there is not a method 

of predicting these circuit parameters prior to fabrication from the manufacturing 

parameters. It is for this reason that the goal of Hypothesis 2 is to search for a 

relationship between the parameters of the skin electrode impedance model and the 

manufacturing parameters (Yarn Type, Patch Area, and Weave Pattern).  

Transfer Functions 

When it comes to creating a computational model, a transfer function is a type of 

model which is described generally as a mathematical function which theoretically 

relates the systems outputs to each possible input (Girod, Rabenstein, and Stenger 

2001). This is an incredibly broad analysis tool because the transfer function 

captures everything in between the input and output, and it describes 

mathematically how the input becomes the output. A transfer function can relate 

any combination of inputs to outputs, such as single inputs to single outputs (SISO), 

and multiple inputs to multiple outputs (MIMO) (Girod, Rabenstein, and Stenger 

2001). When this concept is applied to the ECG system the electrical potential 

generated by the body is the input to the system. The measured waveform displayed 

on the computer screen is the output of the system (John G. et al. 2010). The ECG 

system is a discrete time periodic system because the input is a repetitive 

continuous signal, and the output is discreetly sampled in time by the ADC. For 



 

34 

 

time periodic systems, as is the case with the ECG, the frequency domain is often a 

useful basis for analysis with many papers presenting the ECG system as a function 

of frequency (An and Stylios 2018; Taji et al. 2014; Yoo and Hoi-Jun Yoo 2011; 

Tereshchenko and Josephson 2015; Rahul, Sora, and Sharma 2019). A transfer 

function in the frequency domain maps the frequency components of the input to 

the frequency components of the output. The Fast Fourier Transform (FFT) is one 

method used to convert signals from the time domain to the frequency domain 

(Rahul, Sora, and Sharma 2019). The general form of this type of transfer function, 

TF(jw), described in Eqn. ( 3 ), equals the ratio of the systems output, Vout, to the 

systems input, Vin.  
𝐹𝐹𝑇{𝑣𝑜𝑢𝑡(𝑡)}

𝐹𝐹𝑇{𝑣𝑖𝑛(𝑡)}
=

𝑉𝑜𝑢𝑡(𝑗𝑤)

𝑉𝑖𝑛(𝑗𝑤)
= 𝑇𝐹(𝑗𝑤) 

( 3 ) 

From circuit theory, a frequency dependent transfer function is also described as 

a ratio of two polynomials with coefficients (Thomas, Rosa, and Toussaint 2009). 

The generalized frequency dependent transfer function is defined below by Eqn. ( 4 ) 

(John G. et al. 2010; Thomas, Rosa, and Toussaint 2009). The transfer function 

depends on the circuit parameters of the system it describes. The circuit parameters 

are represented here by the A and B coefficients. These terms are weights assigned 

to the power of each frequency. Here the subscripts n and m indicate the highest 

order term used to define the system and s=jw is used to simplify the expression. 

𝑇𝐹(𝑗𝑤, 𝐴0,1,…,𝑛, 𝐵0,1,…,𝑚) =
𝐵𝑚(𝑗𝑤)𝑚 + ⋯  𝐵1(𝑗𝑤)1 + 𝐵0

𝐴𝑛(𝑗𝑤)𝑛 + ⋯ 𝐴1(𝑗𝑤)1 + 𝐴0
=

𝐵𝑚(𝑠)𝑚 + ⋯ 𝐵1(𝑠)1 + 𝐵0

𝐴𝑛(𝑠)𝑛 + ⋯  𝐴1(𝑠)1 + 𝐴0
 

( 4 ) 

Previous literature has used transfer functions to model various ECG systems 

(Oleksy and Tkacz 2010; Terada et al. 2021; Nakamura, Kato, and Ueno 2018; 

Wang and Lin 2021; Ozkan et al. 2020; Maji and Burke 2018). The focus of those 

efforts is mostly oriented around improving the traditional methods of ECG 

collection not on evaluating the electrode type as a function of its manufacturing 

parameters. Some examples consist of: Evaluating traditional electrode placement 
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of the 5-lead versus 12-lead methods (Oleksy and Tkacz 2010), Evaluating various 

circuit topologies for de-noising and amplifying the waveform (Terada et al. 2021; 

Wang and Lin 2021; Nakamura, Kato, and Ueno 2018), and evaluating filtering in 

order to improve diagnostic capability (Maji and Burke 2018). One noteworthy 

paper by Ozkan et al. presented a transfer function of a wearable 3-lead ECG 

system designed for long-term data capture using textile electrodes (Ozkan et al. 

2020). The paper offered a larger scope of work describing the whole wearable ECG 

system as a part of the Internet of Things (IoT). Their transfer function model 

described custom low-power circuitry as well as the textile electrodes but did not 

distinguish the specific contribution of the electrodes from the rest of the system 

(Ozkan et al. 2020). No work relating manufacturing parameters of textile 

electrodes to their electrical properties through a transfer function was found in the 

literature. 

Summary 

A summary of the literature review discussing electrode types is compiled in 

Table 2 below. The table shows the various electrode types and compares them side 

by side. Overall, the literature describes various types of textiles electrodes and 

justifies their adoption for long-term ECG monitoring. In the literature there exist 

equivalent models of the generalized skin-electrode interface, and transfer functions 

of various ECG systems, but none of them focus on the relationship between a 

textile electrodes electrical behavior and its manufacturing parameters. At the core 

of this research is the aim to build an equivalent model of a woven electrode from 

first principles, which is able to relate the manufacturing parameters of yarn type, 

weave pattern and patch area, to the circuit parameters in the skin-electrode 

interface model. This specific relationship is missing from the literature. 
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Table 2: Summary of Electrode Types and their Pros and Cons of Electrodes  

Parameter 

Electrode Types 

Traditional 

Adhesive Gel 

Textile Electrodes 

Weave Embroidered Knit 

Comfort 

Cold, clingy, 

sticky 

(Arquilla, 

Webb, and 

Anderson 2021) 

Scratchy(Arquilla, 

Webb, and Anderson 

2021), Soft flexible 

Breathable (An and 

Stylios 2018) 

Soft flexible 

Breathable (An and 

Stylios 2018) 

Soft flexible 

Breathable (An 

and Stylios 

2018) 

Stability 

Electrolyte 

dries over time 

(Yokus and Jur 

2016; Arquilla, 

Webb, and 

Anderson 2021; 

Yoo and Hoi-

Jun Yoo 2011) 

Minutes, Stable over 

time (An and Stylios 

2018; Yoo and Hoi-

Jun Yoo 2011) 

Stable over time (Yoo 

and Hoi-Jun Yoo 

2011) 

Minutes, Stable 

over time (An 

and Stylios 

2018; Yoo and 

Hoi-Jun Yoo 

2011) 

Reusability 

Disposable 

(Taji et al. 

2014) 

Washable (Arquilla, 

Webb, and Anderson 

2020a) 

Washable (Bystricky 

et al. 2016; Ankhili et 

al. 2019) 

Washable 

(Bystricky et al. 

2016) 

Mechanical 

Skin Contact 

Adhesive (Taji 

et al. 2014) 

Additional 

mechanism required 

(Arquilla, Webb, and 

Anderson 2020a) 

Additional 

mechanism required 

(Bystricky et al. 

2016; Ankhili et al. 

2019) 

Additional 

mechanism 

required 

(Bystricky et al. 

2016) 

Impedance 

(ohms) 

3k – 50k (Yoo 

and Hoi-Jun 

Yoo 2011) 

Constant (Arquilla, 

Webb, and Anderson 

2021; 2020a), 100k – 

1M (An and Stylios 

2018; Sriraam et al. 

2019) 

Constant (Arquilla, 

Webb, and Anderson 

2021), 

Variable 

(Yokus and Jur 

2016; Arquilla, 

Webb, and 

Anderson 

2021), 100k – 

1M (An and 

Stylios 2018; 

Sriraam et al. 

2019) 

Signal Quality 

Resist motion 

artifacts, Clean 

(Taji et al. 

2014) 

Vulnerable noise and 

false peaks (Arquilla, 

Webb, and Anderson 

2021) 

Vulnerable noise and 

false peaks 

(Bystricky et al. 

2016) 

Vulnerable 

noise and false 

peaks 

(Bystricky et al. 

2016) 

Ease of use 

Requires Skin 

prep (Taji et al. 

2014) 

Light weight, 

Convenient 

(Nikolova-

Hadzhigenova 2019) 

Light weight, 

Convenient 

(Nikolova-

Hadzhigenova 2019) 

Light weight, 

Convenient 

(Nikolova-

Hadzhigenova 

2019) 

Manufacture 
Familiar, 

inexpensive 

Easily integrated 

into clothing (Yokus 

and Jur 2016; 

Arquilla, Webb, and 

Anderson 2021) 

Easily integrated 

into clothing (Ankhili 

et al. 2019) 

Easily 

integrated into 

clothing (Yokus 

and Jur 2016) 
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Biocompatible 

Toxicological 

Skin Irritation 

(Nikolova-

Hadzhigenova 

2019; Yokus 

and Jur 2016; 

Arquilla, Webb, 

and Anderson 

2021; Taji et al. 

2014; Yoo and 

Hoi-Jun Yoo 

2011) 

Low irritation (An 

and Stylios 2018) 

Low irritation 

(Ankhili et al. 2019) 

Low irritation 

(An and Stylios 

2018) 

Mechanical 

Rigid (Arquilla, 

Webb, and 

Anderson 

2020a) 

Flexible 

inextensible(Arquilla, 

Webb, and Anderson 

2021) 

Flexible 

inextensible(Arquilla, 

Webb, and Anderson 

2021) 

Elastic 

(Arquilla, 

Webb, and 

Anderson 2021) 

Application 

Clinical 

Recording (Yoo 

and Hoi-Jun 

Yoo 2011) 

Long-Term 

Monitoring (Yokus 

and Jur 2016) 

Long-Term 

Monitoring (Yokus 

and Jur 2016; 

Bystricky et al. 2016; 

Paradiso and De 

Rossi 2006) 

Long-Term 

Monitoring 

(Yokus and Jur 

2016; Bystricky 

et al. 2016; 

Paradiso and 

De Rossi 2006) 
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III. Equivalent Model  

This chapter describes the model of the ECG system and how it is used to relate 

the manufacturing parameters of woven electrodes to their circuit parameters. 

First, the knowns, unknowns, and assumptions are defined. The set of 

manufactured woven electrodes are described as well as the corresponding ECG 

data collected previously in a human subject experiment. The equivalent model of 

the ECG system is explained as a parameterized transfer function in the frequency 

domain. The average measured waveforms are computed, and used to generate 

simulated waveform. The circuit parameters of the transfer function are fit by 

minimizing the difference between measured and simulated waveforms. Lastly the 

bode plot of the adhesive ECG system is provided to visualize the performance of 

the model across frequency.  

Method of Analysis 

First, we will define the knowns and unknowns. The block diagram describing 

the model of the ECG system as a transfer function relating inputs to outputs is 

shown in Figure 7. The heart produces an electrical in-body signal. This is the input 

waveform which is initially unknown. With the electrodes, we are able to collect a 

measured signal from a person on the skin’s surface. This is the output waveform, 

which is known. The transfer function that relates the in-body signal to the 

measured signal depends on the parameters in the skin-electrode interface model, 

and the parameters of circuit model (Taji et al. 2014). All the circuitry elements are 

either assumed or known, and for an adhesive electrode, the skin-electrode interface 

parameters are known. For woven electrodes, however, the transfer functions 

parameters are unknown. The method of analysis will systematically solve for the 

unknown terms. To do this, we must describe some properties of transfer functions.  
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Figure 7: Notional block diagram of ECG system. 𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 ∗ 𝑇𝐹 

The in-body signal is an input to the transfer function, which produces a measured output signal.   

This transfer function can be thought of as a three-variable system; The input, 

the output and the function relating them 
𝑉𝑜𝑢𝑡(𝑠)

𝑉𝑖𝑛(𝑠)
= 𝑇𝐹(𝑠) as seen in Eqn. ( 3 ). If two 

of the three are known it always is possible to numerically solve for the third. In our 

case, when the input signal is unknown, a known output signal can be propagated 

backwards through the known inverse transfer function to produce the input signal, 

𝑉𝑖𝑛(𝑠) = 𝑉𝑜𝑢𝑡(𝑠) ∗ 𝑇𝐹−1(𝑠). This will be done with data for the adhesive electrode to 

derive an in-body signal for each person. Similarly, when the output signal is 

unknown, a known input signal, such as the in-body signal, can be forward 

propagated through a transfer function to produce an output signal. Another way to 

say this is that the model is producing a simulated output waveform which would 

result, given the current set of parameters of the transfer function. This is useful 

because the parameters of transfer function can be tuned to define the shape of the 

resulting output waveform. When the transfer function is unknown, as is the case 

for the textile electrodes, the transfer function parameters can be solved by 

numerically fitting the output waveform with a known measured waveform. 

Finally, the simulated output waveforms for the textile electrodes will be analyzed 

to assess the relationship between the manufacturing parameters for each electrode 

set and corresponding skin-electrode interface parameters. The manufacturing 

parameters of interest are weave pattern, electrode surface area, and thread type. 

Initial Assumptions 

This research uses an existing textile electrode data set. Woven conductive 

electrodes were designed, fabricated, and used to capture human subject data by 

Arquilla et al. contained in references (Arquilla 2021a; Arquilla, Webb, and 
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Anderson, n.d.; 2021; 2020a; 2020b). Sixteen sets of conductive woven electrodes 

were built for a 3-lead ECG configuration. The electrodes were intentionally 

manufactured to investigate experimentally the manufacturing design parameters 

of previously stated. The woven electrodes, described in Table 3, vary in surface 

area (8 sizes), weave pattern (4 types), and yarn type (2 types). The conductive 

electrodes were integrated into a fabric structure of non-conductive cotton thread 

with a foam backing and a metal snap. In addition to the woven textile electrodes, a 

traditional adhesive electrode was captured with 5cm diameter Ag/AgCl electrodes. 

In total, 170 distinct data sets were collected, each lasting  approximately 2 minutes 

(Arquilla, Webb, and Anderson 2021). Permission was given to use these datasets 

for this modeling effort. The electrodes were used in conjunction with the BIOPAC 

MP160 ECG hardware suite described in the literature review (“MP System 

Hardware Guide” 2015). The full description of data collection procedure is outlined 

by Arquilla et al. in “Detection of the Complete ECG Waveform with Woven Textile 

Electrodes” (Arquilla, Webb, and Anderson 2021).  
Table 3: Electrode Manufacturing parameters 

ID Label Design 

Area (in) 

As Built 

Area (in) 

Yarn Type Pattern 

1 Area1 1.00 x 1.00 0.50 x 1.00 Steel Spun 1/15 Sateen 

2 Area2 1.33 x 1.33 0.50 x 1.33 Steel Spun 1/15 Sateen 

3 Area3 1.66 x 1.66 1.00 x 1.66 Steel Spun 1/15 Sateen 

4 Area4 2.00 x 2.00 1.00 x 2.00 Steel Spun 1/15 Sateen 

5 Area5 2.33 x 2.33 1.00 x 2.33 Steel Spun 1/15 Sateen 

6 Area6 2.66 x 2.66 1.50 x 2.66 Steel Spun 1/15 Sateen 

7 Area7 3.00 x 3.00 1.50 x 3.00 Steel Spun 1/15 Sateen 

8 Area8 3.33 x 3.33 1.50 x 3.33 Steel Spun 1/15 Sateen 

9 1Si 1.33 x 1.33 0.66 x 1.33 Silver Nylon 1/15 Sateen 

10 2Si 1.33 x 1.33 0.66 x 1.33 Silver Nylon Broken Twill 

11 3Si 1.33 x 1.33 0.66 x 1.33 Silver Nylon Twill 

12 4Si 1.33 x 1.33 0.66 x 1.33 Silver Nylon Birds Eye 

13 1St 1.33 x 1.33 0.66 x 1.33 Steel Spun 1/15 Sateen 

14 2St 1.33 x 1.33 0.66 x 1.33 Steel Spun Broken Twill 

15 3St 1.33 x 1.33 0.66 x 1.33 Steel Spun Twill 
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16 4St 1.33 x 1.33 0.66 x 1.33 Steel Spun Birds Eye 

17 Adh 3.04 in2 * 3.04 in2 * N/A* N/A* 

* The 5 cm diameter adhesive electrode has the following electrical circuit parameters:  

Re = 35.2k Ω, Ce = 0.9µF, Rd = 29.5k Ω, Cd = 5.8 µF, and Ru/2+Rs+Rlead = 3.6k Ω (Assambo et al. 

2007). 

The weave patterns designed by Arquilla et al. are presented in Figure 8 and 

electrode sizes presented in Figure 9 (Arquilla, Webb, and Anderson 2021). Each 

pixel represents a unit square equal to the intended warp and weft spacing. Black 

pixels represent an anchor and white pixels represent the float of the weft yarn. The 

weft threads are conductive while the warp threads are non-conductive. 

 
Figure 8: Pattern Types of woven electrodes. From Left to Right; 1/15 Sateen, Broken Twill, Twill, and 

Birdseye. Patterns not to scale. 

With these pixel patterns the difference between manufactured area and the 

functionally conductive area can be found. Since only the weft yarn is conductive 

the black pixels represent anchor points where the electrode is not electrically 

conductive. The ratio of conductive area to manufactured area is given by the Eqn. 

( 5 ) below. This ratio will be used to compute the functional surface area of a woven 

electrode from the manufactured surface area. 

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑖𝑜 =  
𝑡𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙 − 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙

𝑡𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙
 

( 5 ) 
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Figure 9: Relative Patch Surface Areas by design of the woven electrode. Smallest to largest from left to right.  

It is worth noting a distinction between the manufactured dimensions and the 

designed dimensions in Table 3. All electrodes were designed to be square but 

during manufacturing were distorted into rectangles. This occurred due to 

inconsistencies in the manufacturing process of packing the weft during fabrication 

due to the manually intensive nature of developing these electrodes. This deviation 

is not the focus of this research and so the “as built” areas will be used for analysis, 

not the designed areas since it most accurately represents the system from which 

the model parameters will be derived.   

The simplifying assumptions are broken into general categories: human subject, 

electrode, circuitry, and ECG waveform. It is outside the scope of this analysis to 

investigate how anthropometric characteristics effect the ECG waveform or the 

skin-electrode impedance. Therefore, constant values for skin properties are used 

across human subjects. Next, it is assumed the method of applying the electrodes to 

the subject was consistent. Regarding the circuitry, it is assumed the 

BIONOMADIX components from BIOPAC are operating as intended on the ECG 

waveform, and therefore can be treated as idealized components. Finally, the main 

method of computing input and output waveforms is done with the average 

waveform derived from the human subjects. The two minutes of data collection 

began after subjects wore the electrodes for approximately 5 minutes. Therefore it is 

assumed that any transient effect of the electrode being applied to the skin on the 

waveform had reached steady state (An and Stylios 2018). Comparing average 

waveforms, would reduce any other influences of outside factors while allowing the 
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effect of the electrode to remain. These simplifying assumptions are described in the 

list below. 

1) Human Subject Assumptions: Skin characteristic are constant and standardized 

across all 170 datasets. Specifically, Re, Ce, and Ru, are all constant throughout 

the analysis. Evaluation of the following characteristics is out of scope.  

a. Skin thickness (% body fat, BMI)  

b. Hairiness – smoothness versus roughness 

c. Hydration – skin moisture versus dryness  

2) Electrode Assumptions: Consistent application method during testing. 

a. Consistent location placement per subject per electrode.  

b. Consistent skin pressure per subject per electrode 

c. The circuit parameters for the adhesive electrode are known (Assambo et 

al. 2007). 

d. Manufacturing parameters of the woven electrodes are known (Arquilla, 

Webb, and Anderson 2021). 

3) Circuitry assumptions: Idealized BIOPAC components  

a. Circuitry remained the same for all 170 measurements.  

b. The protection circuit (PC), lead selector (LS), and isolation circuit (IC), all 

have negligible loss compared to gain and are excluded from the TF.  

c. The filters are assumed to be a standard 2nd order low pass, high pass 

and notch filters with cutoffs outside the band of the ECG waveform. 

d. The amplifier provides flat gain across in-band frequency.  

4) Waveform Assumptions: The electrodes have reached steady state.  

a. The Average ECG waveform is sufficient to compare electrode’s effect 

b. The Average in-body ECG Waveform is the same across datasets 

Parameterized Transfer Function  

The skin-electrode interface model is built from the simplified block diagram 

shown in  Figure 3. In order to build the full ECG system another beneficial 
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property of transfer functions can be leveraged, the cascade. Since the transfer 

function relates the input to the output, sequential transfer functions can be 

cascaded since the output of one becomes the input to the next one. The main 

benefit of representing the model in this way is that sequential blocks are simply 

multiplied together. Using this property, the transfer function of the ECG system 

up to the ADC is described in Eqn. . In this equation the ECG system described 

from Figure 3, is defined with all its functional blocks cascaded together. The 

subscripts describe each block from left to right: Protection Circuitry (PC), Lead 

Selector (LS), Amplifier, Filter, and Isolation Circuit (IC). 

𝑇𝐹𝐸𝐶𝐺 = 𝑇𝐹𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 ∗ 𝑇𝐹𝑃𝐶 ∗ 𝑇𝐹𝐿𝑆 ∗ 𝑇𝐹𝐴𝑀𝑃 ∗ 𝑇𝐹𝐹𝑖𝑙𝑡𝑒𝑟 ∗ 𝑇𝐹𝐼𝐶  
( 6 ) 

Transfer functions PC, LS, and IC can be dropped from this analysis per 

assumption 3b which leaves three transfer functions for which we need to solve, The 

electrode, the amplifier, and the filter.  

The electrode block contains the skin-electrode interface model. To build the 

transfer function, a pair of electrodes which connect to the differential input of an 

amplifier form the circuit shown in Figure 10. The input and the output voltages 

need to be related in terms of all intermediate circuit parameters.  

 
Figure 10: Electrode Circuit diagram with skin-electrode interface model 
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For simplicity, the circuit is condensed into a smaller form where Ze is the 

cumulative impedance from the skin electrode interface model. The representation 

in Figure 11 shows the simplifier circuit with the input and output voltages. The 

circuit resembles a voltage divider. 

 
Figure 11: ECG Circuit model of Electrode interface for a single lead (Left), Simplified circuit model (right)   

Using Kirchoff’s current law, the input can be related to the output by equating 

the current flowing around the loop (Thomas, Rosa, and Toussaint 2009). Equation 

( 7 ) below shows the fundamental current balance relating the input and output 

voltages with the circuit’s parameters. The input impedance to the amplifier is Ramp. 

The frequency dependent impedance from the skin-electrode interface model in 

equation ( 2 ) is ZE. Recall that ZE is a function of s, Rlead, Cd, Rd, Rs, Ce, Re, and Ru 

given by Table 1. 
𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡

2 ∗ 𝑍𝐸
=

𝑉𝑜𝑢𝑡 − 0 

𝑅𝐴𝑚𝑝
 

( 7 ) 

By rearranging this equation such that voltage is on one side and impedance is 

on the other, it is possible to put this equation into transfer function notation. The 

transfer function for this is shown below in Eqn. ( 8 ). The transfer function depend 

on the A and B coefficients which themselves are dependent on Rlead, Cd, Rd, Rs, Ce, 

Re, Ru and Ramp given in Table 4. These terms represent the electrical properties of 

the electrode, and the skin. 

𝑇𝐹𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒(𝑠, 𝐴0,1,2, 𝐵0,1,2) =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

𝑅𝐴𝑚𝑝/2 

𝑍𝐸 + 𝑅𝐴𝑚𝑝/2
=

𝐴2𝑠2 + 𝐴1𝑠1 + 𝐴0 

𝐵2𝑠2 + 𝐵1𝑠1 + 𝐵0
 

( 8 ) 
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Table 4: Coefficients for electrode transfer function in terms of skin-electrode impedance coefficients 

𝐵2 =  (𝑅𝑙𝑒𝑎𝑑 + 𝑅𝑠 + 𝑅𝑢) ∗ 𝑅𝑑𝐶𝑑𝑅𝑒𝐶𝑒 + 𝐴2 𝐴2 =
𝑅𝐴𝑚𝑝

2
∗ 𝑅𝑑𝐶𝑑𝑅𝑒𝐶𝑒 

𝐵1 =  (𝑅𝑙𝑒𝑎𝑑 + 𝑅𝑠 + 𝑅𝑢) ∗ (𝑅𝑒𝐶𝑒 + 𝑅𝑑𝐶𝑑) + 𝑅𝑑𝑅𝑒 (𝐶𝑒 + 𝐶𝑑) + 𝐴1 𝐴1 =
𝑅𝐴𝑚𝑝

2
∗ (𝑅𝑒𝐶𝑒 + 𝑅𝑑𝐶𝑑) 

𝐵0 = 𝑅𝑙𝑒𝑎𝑑 + 𝑅𝑠 + 𝑅𝑢 + 𝑅𝑑 + 𝑅𝑒 + 𝐴0 𝐴0 =
𝑅𝐴𝑚𝑝

2
∗ 1 

 

 The next step is to create the transfer functions of the amplifier and filter. The 

amplifier and filter block parameters, (gain and cut off frequencies) are collected 

from the BIOPAC hardware guide (“MP System Hardware Guide” 2015). The 

idealized TF of the amplifier is a linear voltage gain of 2000, or 66dB from the 

BIOPAC circuitry, and assumed to be flat across frequency, (TFAmp = 2000/1) (“MP 

System Hardware Guide” 2015). The filter consists of three sub filters whose order, 

and gain flatness are known from simplifying assumptions. The filter transfer 

functions are assumed to be a 2nd order high pass, low pass and notch filters 

cascaded together shown below in Equation ( 9 ). Here ωH is the high pass cut off 

frequency, 1Hz, ωL is the low pass cutoff frequency, 35Hz, and ωN is the notch 

frequency, 60Hz, d is the damping factor, 1, and b is the notch bandwidth, 2Hz. 

𝑇𝐹𝐹𝑖𝑙𝑡𝑒𝑟 =  𝑇𝐹𝐻𝑃𝐹 ∗ 𝑇𝐹𝐿𝑃𝐹 ∗ 𝑇𝐹𝐵𝑆𝐹 =
1

1 + 2𝑑ω𝐻 + ω𝐻
2

∗
ω𝐿

2

1 + 2𝑑ω𝐿 + ω𝐿
2

∗
1 + ω𝑁

2

1 + 𝑏 + ω𝑁
2
 

( 9 ) 

The transfer functions of the electrode, filter, and amplifier cascaded together 

form the transfer function of the full ECG system show in Equation ( 10 ) as 

dependent on knowns and unknowns. The entire system depends on the parameter 

terms given in Table 5 which are known from literature or assumed in the 

simplifying assumptions. In the instances where the adhesive electrode is used, the 

Cd, Rd, and Rs terms are known, but for all the remaining electrodes these terms are 

unknown. 

𝑇𝐹𝐸𝐶𝐺(𝑘𝑛𝑜𝑤𝑛𝑠, 𝑢𝑛𝑘𝑛𝑜𝑤𝑛𝑠) = 𝑇𝐹𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 ∗ 𝑇𝐹𝐴𝑀𝑃 ∗ 𝑇𝐹𝐹𝑖𝑙𝑡𝑒𝑟 
( 10 ) 
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Table 5: Parameters of the full ECG System, with constant and variable terms identified  

Knowns 

Rlead Ce Re Ru Ramp Gain ωH ωL ωN d b 

10Ω 0.9uF 35.2kΩ 2.6kΩ 2.6kΩ 66dB 1Hz 35Hz 60Hz 1 2Hz 

Unknowns 

s, Cd, Rd, Rs 

The complete ECG transfer function model shown in Eqn. ( 10 ) is built in 

MATLAB (all code in Appendix A), using the function tf([num],[den]). Here 

each block is built individually. For the electrode’s transfer function [num] is a 1x3 

matrix with the A coefficients in the numerator, and [den] is a 1x3 matrix with the 

B coefficients in the denominator and s is implicitly defined. The inverse transfer 

function is formed by inverting the numerator and denominator inputs. The same 

applies to the transfer functions for the filter and amplifier. This is a generalized 

function in variable form.  For simplicity, when the parameters of the transfer 

function are set for a specific electrode type, the transfer function will be referred to 

as that electrode’s transfer function. As an example, the skin-electrode interface 

parameters for a standard adhesive electrode are known. By plugging in these 

known values for the terms Cd, Rd, and Rs, the adhesive electrode’s transfer function 

is the transfer function describing the ECG system when adhesive electrodes are 

used. Similarly, the adhesive waveform refers to the ECG waveform that was 

captured with the adhesive ECG system. 

Average ECG Waveform  

To characterize the effect of the electrode on the ECG system, an average 

ECG waveform was generated from the 2 minutes of ECG data per subject per 

electrode. By computing the average waveform, the ECG signal as augmented by 

the electrode remains while the effects of noise artifacts and human subject 

variation are reduced. Further this allows this method to be robust to differences 

collected across different data collection trials. The average ECG waveform is 
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defined in this paper as the mean PQRST waveform produced during the 2-minute 

collection. This is extracted by finding the R-peaks of each ECG waveform, aligning 

them in time based on R-peak prominence, and then taking the average. The peaks 

are found using the function findpeaks()in conjunction with the function 

isoutlier(). These two functions will ensure only high-quality R-peaks are 

identified and minimized the number of errant waveforms retained (e.g., a motion 

artifact incorrectly identified as an R-peak). Figure 12 shows two example datasets, 

the left with minimal noise, and the right with a significant noise artefact. It can be 

seen that the motion artefact is not retained for analysis, and thus does not distort 

the average waveform. The corresponding average waveforms are shown as well as 

the frequency spectrum of the ECG data. This process is performed for each of the 

170 datasets. The averaged ECG waveform was passed forward and backward 

through the various transfer functions. It is also used to evaluate the fit of the 

transfer function parameters by comparing the average waveform to the simulated 

waveform produced with the fit parameters.  
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Figure 12: Measured ECG data from 2 human subjects with adhesive electrodes,  

(Left: Subject1, Right: Subject 3), (Top: Raw Data, Middle: Average Waveform, Bottom: ECG Spectrum) 

After calculating the average waveform, to ensure high quality waveforms were 

used, the signal to noise ratio was computed. In Figure 12 subject 1’s waveform (the 

left column) has a SNR = 14.3 and was computed from 123 R-peaks, while subject 

3’s waveform (right column) has SNR = 12.1 and was computed from 76 R-peaks. 

Any average waveform with SNR < 0 or fewer than 30 R-peaks, was excluded from 

consideration. Of the 170 datasets, none of the adhesive datasets were eliminated. 

It was found that four subjects only had two or fewer average signals that met these 

criteria (out of the 16 data sets collected per subject). With these criteria, four 

subjects, ID3, 5, 7 and 10 from Arquilla et al., were removed from this analysis. 

This means that 170 minus 64 equals 106 datasets, which were used for analysis. 

Of the 6 remaining subjects, an additional 24 did not meet the criteria so were not 

used for fitting, but were included in the analysis of results 
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In-Body Signal  

With the adhesive transfer function and measured waveform identified, the 

raw signal can be found. In MATLAB the tool to simulate a time domain response 

from a frequency domain transfer function is lsim(sys,U,T). This function 

performs either operation: 𝑉𝑜𝑢𝑡 = 𝑇𝐹 ∗ 𝑉𝑖𝑛  or 𝑉𝑖𝑛 = 𝑇𝐹−1 ∗ 𝑉𝑜𝑢𝑡. In this function, the 

sys variable needed for the lsim function is generated by the tf() function. U the 

amplitude vector of the mean waveform signal, and T is time vector of the mean 

waveform signal. The result is an amplitude vector of the same length as the U 

vector. Figure 13, shows the block diagram of identifying the raw in-body signal 

from the measured adhesive data and the adhesive transfer function. This raw 

signal is assumed to be the same for all measurements per human subject. By 

solving for the initially unknown in-body signal, it can then be used to solve for the 

transfer function parameters of woven electrodes. 

 
Figure 13: ECG system with adhesive electrode performing the function of: 𝑉𝑖𝑛 = 𝑇𝐹−1 ∗ 𝑉𝑜𝑢𝑡 

Textile Transfer Function,  

This subsection describes the process of identifying the parameters of the 

textile transfer function and correspondingly the circuit parameters for a particular 

woven textile. The block diagram shown in Figure 14, depicts a woven electrode 

ECG system with, unknown parameters, producing some simulated output. The 

transfer function is unknown for a textile electrode, but with the input and output 

voltage waveforms, it is possible to solve for the transfer function through 

numerical iteration. The basic algorithm is to 1) start with a “guess” for the 

unknown parameters, 2) produce a simulated output using the known input signal, 



 

51 

 

3) compute an error term from the difference between measured and simulated 

data, 4) repeat this process by tuning the guessed parameters until the error term 

reaches a minimum. Once this state is reach, the circuit parameters are saved as 

the best fit for the particular measured textile type. An optimizer function iterates 

these steps automatically and returns the numerically solved values. Though the 

figure below indicates the woven electrode parameters are “unknown”, it is possible 

to input any variables into the transfer function and create a corresponding 

simulated waveform. The iterative process keeps track of which set of parameters 

produced the most accurate simulated waveform, and thereby identifies the 

unknown terms. 

 
Figure 14: ECG system of Textile electrode implemented with the best fit circuit parameters producing the 

corresponding Simulated waveform  

The key function used to tune the parameter is the MATLAB optimizer 

fmincon(FUN,X0,BOUNDS). This function finds a constrained minimum of a 

provided function for multiple variables. The first input to fmincon, FUN, is the 

error function. The error function, shown in Eqn. ( 11 ), is the normalized sum of 

square differences between the measured and simulated waveforms. When the error 

is zero, then the simulated and measured waveforms are identical. The more 

different the two signals are from one another the larger the error. This function 

will identify the parameters which minimize the error term.  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 = ∑ |
𝑉𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑉𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑

max(𝑉𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑)
|

2

 

( 11 ) 
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The next input to fmincon, X0, is the starting parameters, or the initial 

guess. The parameters, Cd, Rd, and Rs of the interface model are tuned by the 

optimizer to minimize the normalized error. All the other values of the model are 

kept constant. The last input to fmincon, BOUNDS, is the upper and lower bounds 

of the tuning parameters. This sets limits around what specific values are allowed 

by the optimizer. When fitting the parameters, X0, is initially a random number 

between the bounds. The upper bounds for the tuning parameters are 1uF, 50 MΩ, 

and 50 MΩ, and the lower bounds are 1nF, 1kΩ, and 1kΩ for Cd, Rd, and Rs 

respectively. These bounds were set such that the optimizer could produce a result 

which did not hit the bound. The function fmincon returns the parameters which 

drive the error closest to zero, and correspondingly best fit the data. 

Since the electrodes are the same between subjects, the transfer function 

parameters must also be the same. Therefore, by performing this process across all 

human subjects, a set of parameters which produces the overall lowest error 

represents the most accurate circuit model of the electrode. To fit the transfer 

function across subjects, the sum of the individual subject errors was minimized. 

This concepted is depicted below in the block diagram of Figure 15. 

 
Figure 15: Transfer function model for a single Electrode fit across subjects 
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 In other words, the errors of all 6 subjects are calculated with fmincon, and 

those individual errors are added together. The parameters which produce the 

lowest total error are selected as the parameters which best describe the particular 

textile. This process is repeated for each of the 16 woven electrode types. The circuit 

parameters, Rd, Cd, and Rs, fit across subjects are presented in the results in Table 6 

along with the corresponding ZE impedance expressed as magnitude and phase.  

Frequency Response 

A bode plot is a common method of graphing the frequency dependence of a 

transfer function. This plot relates in decibels how the output voltage is related to 

the input voltage across frequency. In Figure 16, the magnitude and phase of the 

adhesive ECG system is plotted against frequency. For this bode plot, magnitude 

indicates the gain or loss of the signal as it passes through the ECG system while 

phase indicates the delay of the signal as it passes through the ECG system.  

 
Figure 16: Bode Plot for Adhesive ECG system 

The adhesive ECG system has a relatively flag magnitude across in-band 

frequency with the 66dB gain from the amplifier and approximately 0.5dB loss. 
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There is a clear notch cutout at 60Hz, and there is magnitude roll off at the lower 

and upper edges of the band from the filter. The phase of the adhesive system is 

similarly flat across frequency with a sharp transition at the notch. From this plot it 

is apparent that the in-band frequency is from about 2 Hz up to about 50 Hz. Since 

impedance is frequency dependent, for simplicity magnitude and phase in the 

results section will be shown at 25Hz. This frequency was chosen because it is 

roughly in the center of the ECG waveform’s frequency content as shown in Figure 

12 and the ECG systems response is relatively flat across at 25Hz as shown in 

Figure 16. The bode plots of all 16 woven electrode ECG systems are presented in 

Appendix C. The parameterized model of the ECG system has been presented. Next 

the results of fitting this model to woven textile data will be analyzed.   
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IV. Analysis of Results  

In this chapter, the results of this research are presented and analyzed. First the 

fit circuit parameters from the skin-electrode interface model are given for each of 

the 16 types of woven electrodes. The measured versus simulated waveforms for the 

six best fits and six worst fits are show in Figure 17 and Figure 18, with the 

complete set of fit waveforms displayed in Appendix B. A brief analysis is provided 

of how each manufacturing parameter (yarn, pattern, area) is related to the fit 

circuit parameters. Last, the model is validated through a leave-1-out cross 

validation (LOOCV) scheme to confirm the models intended ability to predict 

waveforms.  

The fit circuit parameters, Cd, Rd, and Rs of each electrode type and the 

corresponding impedances, ZE, are shown in Table 6. These parameters were fit 

using the criteria of SNR > 0dB and number of peaks > 30, so not all 6 subjects were 

used to perform the fit. The skin-electrode impedance ZE, from Eqn. ( 2 ), is 

calculated from the fit parameters and is expressed in phasor notation as a 

magnitude, A, and phase, θ, given by 𝑍𝐸 = 𝐴𝑒𝑖𝜃 . The magnitude of impedance 

represents the cumulative resistance experienced by a time varying signal. The 

phase of impedance represents the shift in degrees between the voltage across the 

skin-electrode interface and the electrical current through the interface. Since there 

is some capacitance there is a small amount of phase delay by the current following 

the voltage.  
 Table 6: Fit Circuit Parameters and corresponding Electrode Impedance at 25Hz using SNR and number of 

peaks criteria. Adhesive electrode parameters are included here for convenient comparison.  

Label Cd (nF) Rd (MΩ) Rs(MΩ) |ZE| (MΩ) ∠ ZE (deg) 

Adh 5800 0.0026 0.001 0.00935 -57.59 

Area1 2.6 10.20 34.69 35.34 -3.79 

Area2 4 19.93 13.17 13.39 -6.80 

Area3 7.6 16.67 14.48 14.55 -3.30 

Area4 5.1 10.90 13.50 13.70 -5.23 

Area5 6.4 14.38 11.42 11.53 -4.94 

Area6 4.1 22.04 12.46 12.67 -7.03 
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Area7 17.9 8.80 11.06 11.09 -1.87 

Area8 7.1 5.40 8.49 8.69 -5.85 

1Si 9 6.15 6.14 6.26 -6.47 

2Si 4.5 44.46 18.28 18.38 -4.48 

3Si 7.7 5.98 10.03 10.18 -4.62 

4Si 6.1 8.81 13.99 14.15 -4.20 

1St 3.1 21.71 17.65 17.96 -6.47 

2St 8.9 49.98 15.11 15.14 -2.74 

3St 6.5 49.99 13.74 13.80 -4.09 

4St 9.7 21.34 17.89 17.93 -2.12 

Note: This magnitude and phase are of the impedance of ZE, in units of MΩ and degrees and are not the 

same metric as the magnitude and phase in the bode plot, which are in units of gain in dB and degrees. 

Using these fit circuit parameters, the corresponding simulated waveforms are 

shown. The six best fit simulated waveforms which produced the lowest errors are 

shown below in Figure 17. Note the different Y-axis of each waveform. The 

amplitude of each ECG waveform is a product of each subject and the corresponding 

electrode used for collection. Subject 2 appears in four of the top six best fit 

waveforms. The normalized sum of squared differences (SSD) cost term is shown for 

each plot. Of note, the Area 4 electrode type occurs 3 times in the top 6 best fit 

cases. 
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Figure 17: The 6 best fit simulated waveforms with their corresponding measured waveforms 

The worst fit simulated waveforms which produced the highest errors are shown 

below in Figure 18. These errors are dominated by either an under amplification of 

the R-peak or a poor shape fit. The model optimizer attempts to produce the lowest 

error across subjects by using the normalized error function in Eqn. ( 11 ). The 

normalized cost function was chosen so that the model would not disproportionately 

favor or penalize ECG waveforms for having larger or smaller amplitudes 

respectively. Of the 96 electrode types, the Area 1 electrode type occurs twice in the 

top 6 worst cases, and 3 times in the top 10 worst cases. Silver threaded Broken 

Twill, (2Si) also appears twice in the top 6 worst cases.  
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Figure 18: The 6 worst fit simulated waveforms with their corresponding measured waveforms 

Area Analysis 

The first analysis is of the manufacturing parameter of surface area. Another 

way to view the variation between the subjects of the measured waveforms is to plot 

the measured R-Peaks across the manufactured areas. Figure 19 shows the 

measured R-Peak magnitude of each mean ECG waveform for each subject specific 

to the Area type electrodes. Subject 9 clearly has the highest amplitude R-peaks 

followed by subject 6, while the rest of subjects have similar amplitude peaks. In 

this plot, despite the shifts in amplitude among subjects, there is a slight upward 

trend as area increases.  
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Figure 19: R-Peaks of Measured ECG Waveforms 

Next the manufactured area is plotted against the circuit parameters. In Figure 

20, and Figure 21, yarn type (Spun Steel) and pattern type (1/15 Sateen) are kept 

constant while area is swept from sizes 1 through size 8 as shown in Table 6. Here 

the as-manufactured areas are plotted against the skin-electrode interface 

impedance. Two sets of Ze parameters are shown, when the parameters are fit using 

the SNR and number of peaks criteria as indicated in Table 6, and then when the 

parameters are fit for all 6 subjects regardless of their criteria. This was done to 

demonstrate the stability of the model predictive capability. 

 
Figure 20: Surface Area Comparison versus impedance Ze;  

Yarn = Spun Steel, Pattern = 1/15 Sateen, Magnitude (left) and Phase (right) 
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The first trend is that as area increases, the magnitude of the impedance 

decreases and phase stays relatively the same. The width and length of the eight 

electrodes manufactured for the area sweep should also be noted. Though it is true 

that area increases for each type, the warp dimension does not monotonically 

increase like the weft direction does. This inconsistency creates three subgroups 

among the eight area swept electrodes. The first group consists of Area 1 and 2 with 

side length 0.5 in. The second group is Area 3, 4 and 5 all with side length 1 in. The 

last group is area 6, 7, and 8 with side length 1.5 in. These groupings are apparent 

in the plot of the magnitude of the impedance. The span of impedances, excluding 

area 1, is approximately 5MΩ.  Within each sub-group the trend of decreasing 

impedance is also valid. Though the change from Area 1 to Area 2 is much greater 

than the spans between other subgrouping. 

The fit circuit parameters of the area sweep are shown in Figure 21. Two sets of 

parameters are shown. The first set uses the criteria and matches Table 6 data. The 

second set is from fitting the parameters when all 6 subjects are used. The general 

trends indicate that as the area of a woven electrode increases, the capacitance Cd 

increases, while the resistance Rs and Rd decrease. The series resistance term, Rs, 

appears to strongly dominate the magnitude of impedance ZE. The capacitance 

values range from as low as 2.6nF with the lowest area up to 7.1nF at the largest 

area, with a notable exception of the area7 electrode having a capacitance of 17.9nF. 

The comparison of using the criteria versus using all subjects for fitting the circuit 

parameters was only performed on the area swept electrode types.  
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Figure 21: Surface Area Comparison versus Circuit Parameters;  

Yarn = Spun Steel, Pattern = 1/15 Sateen, Cd (left), Rd (middle) Rs (Right) 

Yarn Analysis 

The next design parameter comparison in Figure 22 and Figure 23 show yarn 

type and pattern type when manufactured area is constant. For these plots 

manufactured area is approximately 0.9 in2 for all eight electrode types. Recall that 

the two yarn types, were silver coated nylon with a resistivity of 13 Ω/ft and spun 

steel with a resistivity of 28 Ω/ft. The first figure shows the magnitude and phase of 

the skin-electrode interface impedance. Of the 4 pairs of silver/steel electrode pairs, 

3 of the silver electrodes (red) have a lower magnitude impedance than the steel 

electrodes (blue). With the Silver broken twill being the single case of higher 

impedance than Steel Broken twill. The span of impedances between steel and 

silver thread type pairs is greatest in the 1/15 Sateen pattern, at nearly 12MΩ. 

Whereas the span for the other 3 pairs is more consistently around 3MΩ. The phase 

of 3 out of 4 of the silver electrodes is more negative than the phase of the of the 

steel electrodes, but are nearly equivalent spanning a couple degrees or less. Of 

note, the electrodes labeled 1St and 1Si have similar phase, and the markers simply 

overlap in the figure. Silver impedance has a wider span than steel across patterns, 

with 2Si having the largest impedance, and 1Si having the smallest impedance. The 

span is of silver is 12MΩ while the span of steel is 4MΩ. 
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Figure 22: Pattern and Yarn type Comparison versus Impedance Ze, Manufactured Area = 0.9 in2; 

Magnitude (left), Phase (Right) 

With the circuit parameters shown in Figure 23, capacitance does not appear to 

depend on yarn type since steel is more capacitive in half the pairs while silver is 

more capacitive in the other half. Unlike with impedance steel has a slightly wider 

span of capacitance with both the largest and smallest capacitance, for a span of 

6nF compared to Silver’s span of 4.5nF. For parallel resistance Rd all 4 pairs show 

silver yarn has a lower resistance than steel yarn. For the series resistance Rs 3 of 

the 4 pairs show that silver yarn has a lower resistance than steel yarn. Just like 

with the area sweep, Rs dominates the impedance, while steel has a span of about 

4MΩ. 

 
Figure 23. Pattern and Yarn type Comparison versus Circuit parameters, Manufactured Area = 0.889 in2; 

Cd(Left) Rd(middle), Rs( Right) 
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Pattern Analysis  

For the pattern analysis the same figures from the yarn analysis are used. First, 

recall Figure 8 which shows the pixel patterns of the 4 pattern types and the 

distinction between an electrode’s manufactured area and its conductive area. The 

manufactured area, 0.9 in2, is scaled by the conductive ratio in Eqn. ( 5 ) for each 

pattern type. Table 7 below shows the conductive ratio for each of the pattern types 

and the corresponding conductive surface areas. 
Table 7: Pattern type breakdown for functional conductive area, manufactured area = 0.889 in2 

Pattern Anchor 

Count 

Total 

Pixel 

Conductive 

Ratio 

Conductive 

Area (in2) 

1/15 Sateen 80 1296 0.938 0.824 

Broken Twill 162 1296 0.875 0.768 

Twill 216 1296 0.833 0.732 

Birdseye 283 1296 0.781 0.686 

In Figure 22 the four patterns are plotted by their conductive areas. The 

smallest area is birdseye with the diamond mark, next is twill with the square 

marker, then broken twill with the x marker, and the largest area is 1/15 sateen 

with the circle marker. In a similar fashion to the area sweep, when the pattern 

types are plotted by their areas, a slight downward sloping trend in impedance is 

visible. This trend is less apparent than in the area sweep because the relative 

areas a much closer together. The largest conductive area pattern is the silver 1/15 

sateen, and it also has the lowest impedance at 6.3MΩ. Meanwhile the smallest 

conductive area pattern is steel birdseye, which has a relatively higher impedance 

of 18MΩ. The trends in phase are flat with area spanning only a couple degrees 

across pattern types. In Figure 23 Rs indicates a slight downward trend with 

conductive area that matches the impedance trend. The span in Rs is about 12MΩ 

from max to min. The capacitance shows a slight downward trend with conductive 

area. The highest capacitance is from steel birdseye, the pattern with the smallest 

conductive area. The smallest capacitance is from Steel 1/15 Sateen, the pattern 

with the largest conductive area.  
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Leave One Out Cross Validation 

The goal of LOOCV is to evaluate how well the predictions made by the 

model match the observed data. The basic process is to sequentially exclude each 

subject during the fit optimization step. Then to use the fit parameters to simulate 

a waveform for the subject which was excluded. The root means squared error 

(RMSE), shown in Eqn. ( 12 ), between measured and simulated waveforms is 

calculated. Here n is the number of samples in the average ECG waveform. After 

every subject has been excluded once, and their RMS error is calculated, the square 

root of the average of the RMSEs is computed for each electrode type.  

𝑅𝑀𝑆𝐸 =  √
∑ ((𝑉𝑚𝑒𝑎𝑠 − 𝑉𝑠𝑖𝑚)2)𝑛

𝑛
[𝑚𝑉] 

( 12 ) 

Below is  which depicts the RMS errors. The right most column is the average of 

the RMS errors for each electrode type. The column for each subject lists the RMS 

error when that subject was excluded from the optimizer fit. Since the previous 

criteria was to only include subjects, whose mean waveforms exceeded an SNR 

greater than 0dB, not all other subjects were used in the fitting. As an example, for 

the Area 1 electrode type, subjects 8 and 9 did not produce waveforms with SNR > 

0dB so they were not used for fitting the parameters. On t row only subjects 1, 2, 4 

and 6 produced passing waveforms and therefore the LOOCV iterated across this 

subset of subjects to determine the fit parameters. The subject 1 column for the 

Area 1 row is the RMSE when the parameters were fit with subjects 2, 4, and 6. The 

subject 2 column is the RMSE when the parameters with fit with subjects 1, 4 and 

6. The subject 8 column is the RMSE when the parameters were fit with subjects 1, 

2, 4 and 6. To indicate this nuance the subjects not used for fitting are colored grey. 

These greyed cells further validate the predictive strength of the model. From this 

validation analysis it is apparent that across subjects, subject 9 is the poorest fit, 

and across electrode types, and subject 2 is the best fit subject across electrodes. The 
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four silver electrodes are the four poorest fits across subjects. The mean RMSE 

column indicates the cumulative quality of the fit terms across all subjects. This 

indicates an overall good fitting function. 

 
Table 8: Leave One Subject Out Cross Validation Results 

 

Label 

RMSE of Excluded Subject (mV) 
𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅ 

1 2 4 6 8 9 

Area1 0.003 0.003 0.004 0.015 0.005 0.038 0.012 

Area2 0.007 0.011 0.009 0.020 0.010 0.104 0.027 

Area3 0.007 0.005 0.008 0.059 0.009 0.083 0.028 

Area4 0.007 0.006 0.010 0.017 0.012 0.051 0.017 

Area5 0.007 0.008 0.009 0.036 0.010 0.047 0.020 

Area6 0.021 0.008 0.007 0.050 0.025 0.046 0.026 

Area7 0.011 0.005 0.010 0.040 0.019 0.091 0.029 

Area8 0.015 0.010 0.010 0.037 0.015 0.095 0.030 

1Si 0.015 0.013 0.015 0.091 0.018 0.162 0.052 

2Si 0.016 0.003 0.008 0.042 0.007 0.155 0.039 

3Si 0.016 0.010 0.009 0.073 0.012 0.092 0.036 

4Si 0.008 0.005 0.013 0.072 0.007 0.235 0.056 

1St 0.018 0.004 0.006 0.021 0.021 0.046 0.019 

2St 0.005 0.005 0.006 0.035 0.011 0.030 0.015 

3St 0.003 0.003 0.005 0.037 0.006 0.023 0.013 

4St 0.007 0.004 0.003 0.021 0.008 0.116 0.026 

 

The specific parameters Cd Rd and Rs computed at each iteration of the LOOCV 

are shown in Appendix D. The mean and standard deviation of the circuit 

parameters are also recorded. 

V. Discussion, and Conclusion 

The primary contribution of this research is the development of the equivalent 

model of the ECG system. The engineering objective was to construct a 

computational model from first principals which could describe conductive woven 

electrodes. This objective was completed. The relationships between manufacturing 
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parameters and circuit performance have not been characterized for textile 

electrodes in prior work. Now new insights are possible regarding how the 

manufacturing parameters of woven electrodes impact their ability to capture ECG 

waveforms. The performance of the model was confirmed with a leave one out cross 

validation test. 

The first insights come in the form of the two hypotheses which were 

investigated after the completion of the engineering objective. The first hypothesis 

considered if the circuit parameters of the skin-electrode interface model could 

explain the electrical behavior of woven textile electrodes. This was confirmed by 

the model’s ability to accurately simulate ECG waveforms. The LOOCV scheme 

validated the model’s predictive strength, even for subjects which were not used to 

fit the model’s parameters. Because the model was built from first principles, a 

larger number of subjects, would only improve the model’s ability to fit and simulate 

accurate waveforms.  

The second hypothesis considered if the circuit parameters of the skin-electrode 

interface model could be related to the manufacturing parameters. By building a 

parameterized transfer function it is possible to peer inside the transfer function 

and observer how, and if, the circuit parameters are related to the manufacturing 

parameters. Furthermore, the robustness of the model ability to predict parameters 

was demonstrated by removing the conservative criteria of poor-quality waveforms. 

The resulting parameters remained relatively constant. 

For each of the three manufacturing parameters, there are interesting 

conclusions to discuss. The effect of the surface area of the electrode behaved in a 

manner consistent with that of the equations for parallel plate capacitor and a 

volume resistance. The capacitance of a parallel plate capacitor is directly 

proportional to the area of the plates. The plates in this context are the conductive 

surface area of the electrodes. The resistance of a volume is inversely proportional 

to the surface area of that volume. The volume in this context is the conductive 
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thread. The main observation from the area analysis is that a larger area patch, 

will have a higher capacitance and a lower resistance. As such, the smaller patches 

will collect lower amplitude waveforms through signal attenuation and capture 

more high frequency noise. The larger patches will collect larger amplitude 

waveforms, due to less signal attenuation and collect more low frequency noise. 

These relations are consistent with hypothesis 2. The insights about electrode area 

producing larger amplitude waveforms have been experimentally observed by 

others (Yokus and Jur 2016; Arquilla, Webb, and Anderson 2021).  

For Yarn type the two yarns have the same yarn diameter, but different 

resistivities. The resistance of a volume is directly proportional to the resistivity of 

that volume. Resistivity does not appear in the equations for capacitance, and 

correspondingly we do not see a big trend in capacitance or phase with yarn type. 

The main observation from the yarn analysis is that electrodes with lower 

resistivity yarn will have a lower resistance, and a lower ZE impedance but 

unchanged capacitance. Lower resistivity means less signal attenuation for both the 

ECG waveform and the noise. This is also confirmed by observing the relative spans 

of impedances between silver and steel yarns. Silver yarn has more varied 

impedance than steel, implying there may be more noise impacting the mean ECG 

measurement from silver electrodes which would be due to its lower resistivity. This 

is consistent with hypothesis 2. Arquilla et al. and others have made this 

observation through experimental measurements(Arquilla, Webb, and Anderson 

2021; 2020a; Vojtech et al. 2013).  

The effect of pattern type on the electrode was smaller than the other two 

effects. As with the area type, there is a downward trend in overall impedance as 

conductive area increases but because the conductive areas a closer together the 

trend less apparent. It appears the pattern types are not distinct enough from each 

other create clear trends in the circuit parameters. In turn, this means the pattern 

types did not cause a relative effect on the ECG waveform collection. The primary 
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method of analyzing the pattern types was through their conductive surface areas. 

Either the distinction between conductive surface area and patch area is not a 

viable discriminator, or the conductive areas of the patches were not different 

enough to compensate for the other factors such as yarn type or inter-subject 

variability. This manufacturing parameter confirmed hypothesis 2 but more 

investigation is definitely warranted regarding pattern type. Pattern type has been 

explored by Arquilla et al (Arquilla, Webb, and Anderson 2021). 

While this model is built from the traditional skin-electrode interface model, the 

specific circuit architecture chosen to model this behavior has implications for the 

fit parameters. The three fit parameters form a parallel resistor/capacitor (RC) pair 

in series with another resistor. The series resistance seemed to strongly dominate 

the impedance term because all frequency content must travel through the series 

resistance. At these frequencies the parallel RC allows higher frequency content to 

bypass the Resistance Rd, in favor of the lower impedance Cd. Furthermore the Rs 

term traditionally applies to the electrolyte gel, but for woven textile electrodes 

there is no electrolyte gel. The closest approximation would be the minute amount 

of perspiration which accumulates between the skin and electrode. Another factor 

which is not currently captured in the model is skin pressure and fit. It is possible 

that the Rs term captures how much the woven electrode is pressed into the skin. 

This could indicate that in order to reduce impedance some amount of contact 

pressure is required. Now that the model exists, it is possible to begin tracking 

relationships between these various factors and their corresponding circuit 

parameters.  

Future Work 

There are many areas which should be explored for future work. They are 

divided into two categories; expanding the base data sets, and improving the model. 

The first category involves exploring various electrode types used to fit the 

parameters. This data directly impacts our understand of how to manufacture 
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better woven electrodes for long-duration monitoring. Future work should 

investigate the following areas: 

• How fit and pressure for woven electrodes impacts ECG signal quality. This 

metric was “constant” but details beyond this were not captured. In worked 

performed by Schauss et al. the same woven electrodes manufactured by Dr. 

Arquilla were used to capture much higher quality data sets (less noise 

artifacts) (Schauss 2022). One of the main differences in this work is that a 

different foam backing and placing garment was used and correspondingly 

the fit pressure was increased. The data captured by Schauss, could be used 

to fit the model to produce the corresponding circuit parameters. This could 

help inform how fit and pressure impact the circuit parameters.  

• How varied manufacturing parameters impact ECG signal quality either 

through more pattern types, more yarn types, or finer steps in area. These 

manufacturing parameters provide a starting point, but there remain a wide 

variety of pattern types, and conductive yarns which were not included 

(Arquilla, Webb, and Anderson 2020a; Gustaf Hermann Oelsner 1915). For 

example, how would an electrode with conductive warp and weft thread 

impact the ECG waveform? Inherent in woven textiles with only conductive 

weft thread, is a raster pattern. This raster is broken by conductive warp 

threads.  

• How woven electrodes perform for longer durations. Since the goal is to 

replace systems like the Holtier monitor for chronic applications, ECG data 

should be collected for durations on the order of hours to days. This longer 

data set could be fed to the model for fitting of the corresponding circuit 

parameters. The model could also be used to evaluate if the electrodes 

performance changes over time.     

The second category involves improving the model itself. A more accurate model 

will dive into the simplifying assumptions and explore how a more comprehensive 
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model can make better predictions. Future work should investigate the following 

areas to improve the model: 

• How would better peak finding techniques used to isolate higher SNR 

waveforms impact the model’s ability to produce accurate circuit parameters? 

In this work the untreated waveforms were used for analysis, but techniques 

such as  De-noising, Daubechies Wavelet filtering, or Convolution filtering 

could be utilized as have been done in previous work (Cobarrubias 2020; 

Schauss 2022; Arquilla, Webb, and Anderson 2020a).  

• How would higher order polynomials for the skin-electrode interface model. 

The double-time architecture was evaluated, but there are other skin-

interface architectures which may provide even better fits. A generalized Nth 

order polynomial could also be investigated, though care should be taken to 

avoid fitting noise with higher order fits.  

• How would decomposing the skin-electrode interface model even further to 

represent each individual thread width contacting the skin. This approach 

was suggested in (Terada et al. 2021) 

• How would incorporating this model into other weave modeling software, 

such as AdaCAD (Friske, Wu, and Devendorf 2019), help reduce the delta 

between as designed and as manufactured textile electrodes? 

Conclusion 

This model represents, to our knowledge, the first validated computational 

model of woven textile electrodes. The overall trends for the yarn type and surface 

area design parameters align with the expectations, indicating that the model is 

appropriate and captures the electrical behavior of the woven electrodes. 

Simplifying assumptions were made which future work should explore. This work is 

the first to compare simulated and measured ECG waveforms collected with woven 

electrodes. This model is the first to identify the circuit parameters of the skin-

electrode interface model using ECG data captured with woven electrodes. 
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Additionally, more varied pattern types should be explored to determine how they 

impact ECG data. By building a predictive model, it can now be used as a guide to 

design future woven electrodes for long term ECG capture. In summary, this 

research facilitates a path for future development of these novel sensors to enable 

long-term ECG monitoring for woven textile electrodes.  
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Appendix 

Appendix contains content which to too unwieldy to place in the thesis but is 

supplementary information which was used for analysis and visualization. 

A. MATLAB Code 

This is the MATLAB code of the computation model. The code was written in 

MATLAB R2022a. For convenience, code was written across 6 scripts. The main 

mathematical model of transfer with the optimizer is saved in script 3) 

DeterModParams.m. All other scripts are supplemental scripts for data 

manipulation and figure creation. 

1) ReadAllData 

This script reads in all the text file data from BIOPAC then saves a *.mat 

files in convenient column row format for future processing. 

2) SaveAverageMetrics 

This script performs the peak finding steps and saves the average waveforms 

into a struct. It also computes a number of metrics such as SNR, and number 

of peaks, to determine waveform quality. It produces plots of the raw 

datasets, average waveforms and the spectrum of each dataset. 

3) DeterModParams 

This script is the meat of the code which contains the optimizer which uses 

the SNR criteria to fit parameters across subjects for each electrode type. 

4) MeanVsSimWaveform 

This script creates figures of measured versus simulated mean waveforms as 

well as figures of the bode plots.  

5) ParameterVisualizer 

This script creates figures of the circuit parameters and impedance terms 

versus the manufacturing parameters.  

6) Leave1Out 

This script performs the LOOCV analysis and returns the RMSE table.  
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ReadAllData.m 
% (1) This script saves all ECG data into a matlab cell variable. 
% it takes a file location and a data size as inputs 
% and it produces a mat file as an output which has header data and raw 
% data saved as workspace variables.  
 
%Load in all data into a cell  
startpath = pwd; 
datapath = 'C:\Users\peter\Documents\School\Fall2021\ASEN6950_MSThesis\data'; 
% delim = sprintf('\r\n');    %newline delimiter 
numsubject = 10;        %Number of human Subjects 
numdata = 17;           %Number of datasets 
dataset = cell(numsubject,numdata); %Preallocate data size 
headerset = cell(numsubject,numdata); %Preallocate data size 
for hh = 1:10   %ii is the human subject 
    dirname = sprintf('sub%d',hh); 
    folder = [datapath,'\',dirname]; 
    file = dir(folder); 
    for kk = 1:17 
        fname = file(kk+2).name 
        [data,header] = readECGtxt([folder,'\',fname]); 
        headerset{hh,kk} = header; 
        dataset{hh,kk} = data; 
    end 
    
end 
 
savefile = 'rawdataset.mat'; 
save(savefile, 'headerset','dataset'); 
 
function [data,header] = readECGtxt(fname) 
    header_rows=7;  %Number of header Rows in the data text file 
    header = cell(header_rows,1); 
    fid = fopen(fname); 
    for kk = 1:header_rows 
        header{kk} = fgets(fid); 
    end 
    datacell = textscan(fid,'%f%f','Headerlines',0); 
    if contains(header{6},'min') 
        datacell{1} = datacell{1}*60; 
        header{6}(1:3) = 'sec'; 
    end 
    data = [datacell{1},datacell{2}]; 
    fclose(fid); 
end 

SaveAverageMetrics.m 
% (2) This Script Loads all the data sets and creates a average ECG waveform for 
%each electrode for each subject. 
 
%% Begin Script 
clc;close all; 
clearvars -except dataset headerset 
if ~exist('dataset','var') 
    load('rawdataset.mat') 
end 
numee = [1:17]; 
numss = [1:10]; 
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%% Inputs 
makeplots = 1;      %Save to create the figures 
saveplots = 0;      %flag just to save plots or not 
 
savename = 'ECG_Metrics6.mat'; 
saveMeans = 0;      %Save the mean waveform data in the savename type 
 
%% Initialize Vairables 
ECGdata = struct('Vmean',cell(10,17),'Tmean',cell(10,17),... 
    'Vstd',cell(10,17),'numpks',zeros(1,1),'RRint',zeros(1,1)); 
SNR = nan(10,17); 
numpks = nan(10,17); 
%  
cc = 1;         %Sub plot counter 
%% Loop through entire data set 
% Start with Electrode first, to get all Adhesives first 
                    
for ee = numee                  %Electrode index 1 is Adhesive 
    for ss = numss              %Subject of interest 
%         close all;             
        fprintf('Subject %d, Electrode ID %d\n',ss,ee); %For troubleshooting 
        header = headerset{ss,ee};  %Headerdata 
        t = dataset{ss,ee}(:,1);                %(sec) Time Vector 
        vraw = dataset{ss,ee}(:,2);             %(mV) Voltage Vector 
        dt = 1/round(1/mean(diff(t)));         %(sec) time step 
        t = [0:length(t)-1]*dt;     %Make Monotonically increasing 
         
        %% Filter the ECG data using the circuitry of the BIOPAC system 
        [v] = filter1ECG(vraw,t); 
         
        %% Identify Peaks V and T positions 
        %If it is adhesive data, the typical findpeaks() is sufficient 
        %but if it is textile data, then a more rigorous peakfinder is 
        %required. CrossCorrelatePeaks, uses the know shape and spacing of  
        % the adhesive waveform to search for textile waveforms 
        if ee == 1  
            [Rpks,Tpks] = IdentifyPeaks(v,t,.5);  
            RRint(ss,ee) = checkRR(Tpks);    %Find RR Interval 
        else 
            RRint(ss,ee) = ECGdata(ss,1).RRint; 
            Vadh = ECGdata(ss,1).Vmean; 
            Tadh = ECGdata(ss,1).Tmean; 
            [Rpks,Tpks] = CrossCorrelatePeaks(v,t,Vadh,Tadh,RRint(ss,ee),3/4,3/4); 
        end 
         
        %Obtain index locations for each peak 
        locs = floor(Tpks/dt)+1;        %Location of Peak in t Vector 
        numpks(ss,ee) = length(Rpks);          %Number of peaks detected 
        if numpks(ss,ee) < 20 
            warning('Subj %d, Elec %d contains < 20 viable peaks',ss,ee) 
        end 
        numsamp = floor(RRint(ss,ee)/dt);%Number of samples in an average waveform 
         
        %Snip and Stack waveforms by their peak 
        Vwave = zeros(numsamp,numpks(ss,ee));  %Initialize V and T vectors 
        Twave = zeros(numsamp,numpks(ss,ee)); 
        for kk = 1:numpks(ss,ee)               %Loops through each peak 
            ix = (1:numsamp).'-floor(numsamp/2)+locs(kk); %Selects the indices around the peak 
            if min(ix) < 1 || max(ix) > length(v) 
                continue 
            end 
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            Vwave(:,kk) = v(ix);        %Saves that waveform 
            Twave(:,kk) = t(ix)-Tpks(kk);   %These should be basically identical 
        end 
 
        Tmean = median(Twave.').';        %somewhat redundant with Twave(:,1) 
        Vmean = mean(Vwave.').';        %Finds the Average Waveform 
        Vstd = std(Vwave.').';          %Finds the standard deviation of waveforms 
        Vstd2p = Vmean+2*Vstd; 
        Vstd2n = Vmean-2*Vstd; 
        SNR(ss,ee) = snr(Vmean,Vstd);       %Signal to Noise Ratio 
         
        %% Store Metrics in a struct for access later 
        ECGdata(ss,ee).Vmean = [Vmean];             %Voltage Vector 
        ECGdata(ss,ee).Tmean = [Tmean];             %Time Vector 
        ECGdata(ss,ee).Vstd = [Vstd];               %# Vector 
        ECGdata(ss,ee).RRint = RRint(ss,ee); %sec R to R interval 
        ECGdata(ss,ee).numpks = numpks(ss,ee);             %Number of used Peaks 
        ECGdata(ss,ee).SNR = SNR(ss,ee); 
         
        %% Make Plots    
        if makeplots 
            set(0,'defaultAxesFontSize',14);   
            f1 = figure; 
            subplot(3,1,1) 
            plot(t,v,Tpks,Rpks,'or') 
            grid on;  
            xlim([0,max(t)]) 
            headerstr = header{1}(10:end-6); 
            headerstr(headerstr == '_') = ' '; 
            titlestr = sprintf('ECG for %s data',headerstr); 
            title(titlestr);ylim(round([-max(Rpks),max(Rpks)]*1.3,2)) 
            xlabel('Time (sec)');ylabel('Voltage (mV)'); 
            legend('ECG Waveform','Rpeaks','location','sw') 
            subplot(3,1,2) 
            grid on; hold on 
            plot(Tmean,Vmean,'k','Linewidth',2) 
            plot(Tmean,Vstd2p,':k','Linewidth',1.5) 
            plot(Tmean,Vstd2n,':k','Linewidth',1.5) 
            plot(Twave,Vwave,':') 
            plot(Tmean,Vmean,'k','Linewidth',2) 
            xlabel('Time (sec)');ylabel('Voltage (mV)'); 
            tname = sprintf('Peak Aligned Waveforms, SNR=%2.1f, 
numPks=%d',SNR(ss,ee),numpks(ss,ee)); 
            title(tname); 
            legend('Mean ECG Waveform','+/- 2 standard Devations','location','Sw') 
 
            [f,P1,phi] = MakeSpectrum(t,v); 
            subplot(3,1,3) 
            plot(f,P1); 
            axis([0,100,0,max(P1)]) 
            xlabel('Frequency (Hz)');ylabel('Amplitude (mV)'); 
            title('Magnitude of Signal in Frequency Spectrum'); 
            grid on 
            f1.Position = [200,100,700,900]; 
 
            if saveplots 
                figname = sprintf('MeanECG_Sub%d_ID%d',ss,ee); 
                savepath = [pwd,'\Figures\',savename(1:end-4)]; 
                saveas(f1,[savepath,'\',figname],'jpg') 
            end 
        end 
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        cc = cc+1; 
    end 
end 
 
%% Extract Criteria for Good/Bad Data 
totSNR = sum(sum(SNR>0)) 
numNanSNR = sum(sum(isnan(SNR))) 
totpks = sum(sum(numpks>30)) 
 
if saveMeans 
    save(savename,'ECGdata','SNR','numpks') 
    fprintf('DataSaved!\n') 
end 
 
 
%% ======================== FUNCTION LIST ======================== 
 
% This function will use the waveform measured from a clean (Adhesive) 
% dataset to perform a convolution (Cross correlation) on the noisy dataset 
% in order to identify the actual ECG waveform peaks through the noise. 
function [Rpks,Tpks] = CrossCorrelatePeaks(v,t,Vadh,Tadh,RRint,alpha,beta) 
    %1) Find the peaks on the raw data This will have a high number of 
    %false positives, but a low number of false negatives 
    [R1,T1] = findpeaks(v,t,'MinPeakDistance',RRint);   
    R1p5 = rmoutliers(R1);               
    RR = .75*median(RRint);          %Find the spacing between peaks for fine tuning 
    [Rmid] = checkMid(R1p5);               %Find Average Peak Height 
 
    Vfilt = Vadh/max(Vadh)*Rmid;        %Scale the amplitude of the known good waveform  
    ynorm = sum(Vfilt.^2);              %Normalize convolution result     
    y = conv(v,flipud(Vfilt),'same')/ynorm;   %Convolution of dataset with Adhesive Waveform 
    [R2,T2] = findpeaks(y,t,'MinPeakDistance',RR,'MinPeakHeight',.5); 
 
    [R3,T3] = rmvPeaks(R2,T2,1+alpha,1-alpha,1);      %Remove outlier peaks in convolution 
 
    % Since the convoluted waveform is not the same, we need to find the 
    % peaks on the original t and v, that correspond to the peaks in the 
    % convoluted y.  
    ix = zeros(size(T3)); 
    for kk = 1:length(T3) 
        ix(kk) = find(T3(kk)==t); 
    end 
    R4 = v(ix); 
    T4 = t(ix); 
 
    [Rmid] = checkMid(R4); 
 
    Rpks = R4(~isoutlier(R4)); 
    Tpks = T4(~isoutlier(R4)); 
end 
 
 
% This function wil remove peaks larger than Rmax and less than Rmin, and 
% it will also remove peaks adjacent to the offending peak. 
function [Rpk,Tpk] = rmvPeaks(Rpk1,Tpk1,Rmax,Rmin,win) 
    IdPks = find(Rpk1>Rmax | Rpk1<Rmin); 
%     IdPks = isoutlier(Rpk1) | < Rpk1 < Rmin; 
%Removebad peaks and the adjacent peaks aswell 
    if ~isempty(IdPks) 
        badpks = []; 
        for kk = 1:length(IdPks) 
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            badpks = [badpks,IdPks(kk)+[-win:win]]; 
        end 
        badpks(badpks <= 0) = []; 
        badpks(badpks >= length(Rpk1)) = []; 
        Rpk1(unique(badpks)) = []; 
        Tpk1(unique(badpks)) = []; 
    end 
    Rpk = Rpk1; 
    Tpk = Tpk1; 
end 
 
% This function filters the ECG data with a 60Hz notch, a 2nd order LPF and 
% a 2nd order HPF.  
function [v] = filter1ECG(vraw,t) 
 
        w0 = 60*2*pi;               % Center Frequency of Notch 
        wc = 1.5*2*pi;              % Bandwith of Notch filter 
        Notch = tf([1,0,w0^2],[1,wc,w0^2]); 
         
        wlow = 2*pi*35;            %LPF Cutoff Frequency  
        d = 1;                      %Damping Factor 
%         LPF = tf([0,1],[1/wlow,1]); %Single pole Low Pass Filter 
        LPF = tf([0,0,wlow^2],[1,2*d*wlow,wlow^2]); %Double pole LPF 
         
        whigh = 2*pi*1;             %HPF Cutoff Frequency 
%         HPF = tf([1/whigh,0],[1/whigh,1]);  %Single pole High pass filter 
        HPF = tf([1,0,0],[1,2*d*whigh,whigh^2]); %Double Pole LPF 
        v = lsim(Notch*LPF*HPF,vraw,t); %Does the filtering without the Gain 
end 
 
% This function will scan through the v and t data identifying the R-peaks 
% and remove the outliers. This function uses findpeaks() and then removes 
% outlier peaks 
function [Rpks,Tpks] = IdentifyPeaks(v,t) 
     
    [R1,T1] = findpeaks(v,t,'MinPeakDistance',.5);    %Find Peaks preliminary1 
    RRint = median(diff(T1));       %Median RR Interval 
    % Bound RR interval 
    if RRint > 1.5 
        warning('Median RRinterval > 1.5sec') 
    elseif RRint < .5 
        warning('Median RRinterval < 0.5 sec') 
    end 
     
    Rpks = R1(~isoutlier(R1)); 
    Tpks = T1(~isoutlier(R1)); 
 
end 

 

DeterModParams.m 
% (3) This script will run through the methodology for a single subject and electrode 
 
clc;clear;close all; 
 
%% Load in Mean Measured Waveforms 
load('ECG_Metrics6.mat') 
valfitname = 'valsfit7_op5.mat'; 
makeplot = 0;  %Flag for making plots 
optmcnt =5;       %Optimizer Count limit 
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subjs = [1,2,4,6,8,9];    %Subjects of interest (excluded 3,5,7,10) 
ea = 1;             %Adhesive Electrode index 
 
%% Make Adhesive Transfer Function 
% "Detrmination of the parameters of the skin-electrode Impedance Model for ECG Measurement" 
% "By: Assambo, Baba, Dozio and Burke".  
Ce = 0.9e-6;        %(F) Capacitance of Epidermis 
Re = 35.2e3;        %(Ohm) Resistance of Epidermis 
Rop = 1e6;          %(Ohm) Impedance of Opamp (ECG100C Specification) 2Mohm/2 
R3 = 3.6e3;         %(Ohms) Rs+Rl+Ru, DC impedance Term 
Rs = 1e3;           %(ohm) Impedance of Electrolyte (Approximation) 
R2 = R3-Rs;         %(Ohms) DC term without Electrolyte 
Cd = 5.8e-6;        %(F) Capacitance of Electrode 
Rd = 25.9e3;        %(Ohm) Resistance of Electrode 
 
skinparams = [Ce,Re,Rop,R2];    %Skin Parameters 
elecparams = [Cd,Rd,Rs];        %[Farads, Ohms, Ohms] Electrode Parameters 
TFadh = GenTFdouble(elecparams,skinparams); %Adhesive Transfer function 
 
%% Make ECG transfer function with Adhesive Electrode 
Gain = 2000;        %(Linear) Gain of Amplifier Biodomadix 
Amp  = tf(Gain,1);  %Transfer Function of Amplifier 
 
TFecgA = Amp*TFadh;  %Transfer function of Adhesive ECG system 
iTFecgA = 1/TFecgA;   %Inverse Transfer Function of Adhesive ECG system 
 
%% Start For Loop 
valsfit = zeros(17,4);  %Initialize Variable to save optimized Parameters 
for ee = 2:17           %Loop through Each textile Electrode     
    fprintf('Subject FIT, Electrode ID %d\n',ee); %For troubleshooting 
 
    %% Run Optimizer to find the unknown parameters of Electrode 
    %Since Capacitance is on the order of uFarads, and resistance is on the 
    %order of MOhms, the units are changed here in order to allow the 
    %optimizer to optimize around similar 'magnitude' parameters. 
     
    %set up upper and lower bounds for uknowns put into single matrix [Cd,Rd,Rs];  
    Cmax = .1;                   %uFarads 
    Rdmax = 50;                 %Mohms 
    Rsmax = 50;                 %Mohms 
    ub = [Cmax,Rdmax,Rsmax];    %uFarad,MOhm,MOhm [Upper Boudns] 
    lb = 1e-4*[Cd/1e-6,Rd/1e6,Rs/1e6]; %lower bound is .1% of adhesive Values 
    cc = 0; 
    Cost = 1e10; 

 fminopt = optimoptions("fmincon","Display",'none'); 
    while cc<optmcnt  
        %Set up initial conditions for Electrode Parameters 
        init_ukn = rand(1,3).*(ub-lb)+lb;       %random starting variable 
        kno = skinparams; 
         
        ukn = fmincon(@(ukn) 
ErrFuncXsub(ukn,kno,ee,subjs,iTFecgA,ECGdata),init_ukn,[],[],[],[],lb,ub,[],fminopt); 
        cc = cc+1; 
        Cost(cc) = ErrFuncXsub(ukn,kno,ee,subjs,iTFecgA,ECGdata); 
        if cc == 1 
            uknbest = ukn; 
        elseif Cost(cc) < min(Cost(1:end-1)) 
            uknbest = ukn; 
        end 
    end 
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    valsfit(ee,:) = [uknbest,min(Cost)]; 
    [Cdfit,Rdfit,Rsfit] = deal(valsfit(ee,1),valsfit(ee,2),valsfit(ee,3)); 
     
end 
if exist(valfitname,'file') 
    warning('Did not Overwrite filename. DATA NOT SAVED.') 
else 
    save(valfitname,'valsfit') 
    fprintf('DATA SAVED in %s\n',valfitname) 
end 
 
fprintf('\n DeterModParams Complete! \n') 
 
%% ------------------ Functions --------------------- 
 
%Error Function that finds the error between a simulated and measured 
%signal 
function Error = ErrFunc(ukn,kno,Vsig,Vmeas,t) 
    ukn = ukn.*[1e-6,1e6,1e6];  %Convert from uF & Mohm to F and Ohm.  
    Gain = 2000;        %(Linear) Gain of Amplifier Biodomadix 
    Amp  = tf(Gain,1);  %Transfer Function of Amplifier 
    TFelec = GenTFdouble(ukn,kno);   %Generate electrode Transfer Function 
     
    TFecg = Amp*TFelec;  %Transfer function of ECG system 
     
    Vsim = lsim(TFecg,Vsig,t);   %Create a Simulated Waveform 
%     Error = sum(abs(Vmeas-Vsim).^2);    
    Error = sum(abs(Vmeas/max(Vmeas)-Vsim/(max(Vmeas))).^2);   
end 
 
% Error Function Across Subjects for Doubletime model 
function Error = ErrFuncXsub(ukn,kno,ee,subjs,iTFecgA,ECGdata) 
ea = 1; 
cc=1; 
for ss = subjs 
    ex = [9,9,9,8;12,9,6,4].';            %Manual Exclusion 
    flag1 = ECGdata(ss,ee).numpks> 30;      %keep criteria 
    flag2 = ~any(ss == ex(:,1) & ee == ex(:,2)); %Not a manual exclude 
    if flag1 && flag2 
        ixsub(cc) = ss; 
        cc=cc+1; 
    end 
 
end 
 
err = zeros(1,10); 
 
for ss = ixsub 
    Va = ECGdata(ss,ea).Vmean;         %mV Mean ECG Measured Adhesive 
    tA = ECGdata(ss,ea).Tmean;              %sec Time Vector Adhesive 
    Ve = ECGdata(ss,ee).Vmean;         %mV Mean ECG Measured Textile 
    tE = ECGdata(ss,ee).Tmean;              %sec Time Vector Textile 
    [Va,Ve,t] = TrimVectors(Va,Ve,tA,tE); 
     
    Vsig = lsim(iTFecgA,Va,t);  %In Body Signal  
    err(ss) = ErrFunc(ukn,kno,Vsig,Ve,t);   %Individual Errors 
end  
Error = sum(err);   %The fit error is the sum of the individual errors  
end 
 
% Generates the transfer function when no variables are known 
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function TFelec = GenTF(ukn) 
ord = length(ukn)/2; 
if isodd(length(ukn)) 
    error('ukn must be even number length'); 
end 
num = ukn(1:ord); 
den = ukn(ord+1:end); 
TFelec = tf(num,den); 
end 
 
% Trims lengths so they are the same  
function [Va,Ve,t] = TrimVectors(Va,Ve,tA,tE) 
    % ========= Adjust Vector Lengths to be same length ============= 
    % Trim the longer one so it is as long as the shorter one.  
    lenvA = length(Va);         %# Length of Adhesive datasete 
    lenvE = length(Ve);         %# Length of Textile datasete 
 
    if lenvA > lenvE            %Adhesive Vector is longer than Textile 
        %trim Adhesive Data 
        if isodd(lenvE)         %is The Textile Vector odd length? 
            lenvE = lenvE -1;   %make it even length 
        end 
        rmv = floor((lenvA-lenvE)/2);  %Number of indeces to remove 
        Va = Va(rmv+1:lenvE+rmv); 
        Ve = Ve(1:lenvE); 
        t = tE(1:lenvE)-min(tE); 
    elseif lenvE > lenvA 
        % trim Textile Data 
        if isodd(lenvA) 
            lenvA = lenvA - 1;  %If its odd subtract one from index 
        end 
        rmv = floor((lenvE-lenvA)/2);  %Number of indeces to remove 
        Ve = Ve(rmv+1:lenvA+rmv); 
        Va = Va(1:lenvA); 
        t = tA(1:lenvA)-min(tA); 
    else 
        %Same length Dont need to remove anything 
        t = tA-min(tA); 
        if mean(diff(tE))-mean(diff(tA)) > 1e-10 
            warning('Time Vectors are not equal') 
        end 
    end 
end 

 

MeanVsSimWaveform.m 
% (4) This script creates makes all Sim vs Meas Plots 
 
clc;clear;close all 
 
saveplots = 0; 
makebodeplot = 0; 
makeplots = 0; 
makeworst = 2;  % 1 for worst, 2 for best, 0 for no plots 
makeSweep = 0; 
 
fname1 = 'valsfit7_op5.mat' 
load(fname1) 
 
if ~exist('ECGdata','var') 
    load('ECG_Metrics6.mat') 
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end 
 
for ss = 1:10 
    for ee = 1:17 
        numpks(ss,ee) = ECGdata(ss,ee).numpks; 
        SNR(ss,ee) = ECGdata(ss,ee).SNR; 
    end 
end 
Label2 = {'Adhesive';'Area1';'1Si'; '1St';... 
     'Area2';'2Si';'2St';... 
     'Area3';'3Si'; '3St';'Area4';... 
     '4Si'; '4St';'Area5';'Area6';'Area7';'Area8'}; 
 
%% ========== Adhesive Values ========== 
[Cdfit,Rdfit,Rsfit,costfit] = deal(valsfit(:,1),valsfit(:,2),valsfit(:,3),valsfit(:,4)); 
% Adhesive Values 
Rs = 1e3;               %(ohm) Impedance of Electrolyte (Approximation) 
Cd = 5.8e-6;            %(F) Capacitance of Electrode 
Rd = 25.9e3;            %(Ohm) Resistance of Electrode 
Ce = 0.9e-6;            %(F) Capacitance of Epidermis 
Re = 35.2e3;            %(Ohm) Resistance of Epidermis 
Rop = 1e6;              %(Ohm) Impedance of Opamp (ECG100C Specification) 2Mohm/2 
R2 = 2.6e3;             %(Ohms) DC term without Electrolyte Approximation Rlead+Ru 
 
 
Cdfit1 = Cdfit/1e6;     %Convert CdFit from uF to F 
Rdfit1 = Rdfit*1e6;     %Convert Rdfit from MOhms to Ohms 
Rsfit1 = Rsfit*1e6;     %Convert Rsfit from MOhmz to Ohms 
Cdfit1(1) = Cd;         %Adding Adhesive to List 
Rdfit1(1) = Rd;         %Adding Adhesive to List 
Rsfit1(1) = Rs;         %Adding Adhesive to List 
R3 = R2+Rsfit1;         %(Ohms) Rs+Rl+Ru, DC impedance Term 
 
%% ================== Meas vs Sim'd Plots ====================== 
skinparams = [Ce,Re,Rop,R2];             
elecparams = [Cdfit1,Rdfit1,Rsfit1]; 
Error = zeros(10,17); 
RMSE = zeros(10,17); 
set(0,'defaultAxesFontSize',14);   
subjs = [1,2,4,6,8,9]; 
 
TFadh = GenTFdouble(elecparams(1,:),skinparams);    %Adhesive Transfer Function 
Amp = tf(2000,1); 
TFecgA = TFadh*Amp; 
iTFecgA = 1/TFecgA; 
ECGTFs(1) = TFecgA; 
 
%% ================== Save Simm'd metrics ========================= 
for ee = 2:17 
     
    TFelec = GenTFdouble(elecparams(ee,:),skinparams);  %The Electrodes Transferfunction 
 
    TFecgE = TFelec*Amp; 
    ECGTFs(ee) = TFecgE;        %Save all ECGs for Bode Plots 
 
    for ss = subjs 
         
        Vmeas = ECGdata(ss,ee).Vmean;      %Measured ECG signal 
        Tmeas = ECGdata(ss,ee).Tmean; 
        Vadh = ECGdata(ss,1).Vmean; 
        Tadh = ECGdata(ss,1).Tmean; 
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        t = Tadh-min(Tadh); 
         
        Vsig = lsim(iTFecgA,Vadh,t);       %inbody Signal 
         
         
        Vsim = lsim(TFecgE,Vsig,t);         %Simulated Signal 
        ECGdata(ss,ee).Vsim = Vsim; 
        ECGdata(ss,ee).Vsig = Vsig; 
        ECGdata(ss,ee).vals = elecparams(ee,:); 
    end 
end 
 
for ee = 2:17 
    cc = 1; 
    if makeplots 
        f1 = figure(100+ee); 
    end 
    for ss = subjs 
        Vmeas = ECGdata(ss,ee).Vmean;      %Measured ECG signal 
        Tadh = ECGdata(ss,1).Tmean; 
        t = Tadh-min(Tadh); 
        Vsim = ECGdata(ss,ee).Vsim; 
        if SNR(ss,ee) >0 %&& numpks(ss,ee) > 30 
            RMSE(ss,ee) = sqrt(mean((Vmeas-Vsim).^2)); 
        end 
        if makeplots 
            subplot(length(subjs)/2,2,cc) 
            grid on;hold on; 
            plot(t,Vmeas,'DisplayName','Measured Signal','Linewidth',2) 
            plot(t,Vsim,'-.','DisplayName','Simulated Signal','Linewidth',2) 
            legend('Show','Location','southeast') 
            title(sprintf('Sub %d, %s, SNR=%2.1f, Pks=%2.0f 
',ss,Label2{ee},SNR(ss,ee),numpks(ss,ee))) 
            if isodd(cc) 
                ylabel('Voltage (mV)') 
            end 
            if any(cc==[length(subjs)-1,length(subjs)]) 
                xlabel('time (sec)') 
            end 
        end 
        cc= cc+1; 
    end 
    
    if saveplots && makeplots 
        f1.Position = [1921 47 1280 907]; 
        tmp = split(fname1,'_'); 
        figname = sprintf('MeasVSim_%s_v%s',Label2{ee},tmp{1}(end)); 
        savepath = [pwd,'\Figures\MeasVsSim\',figname]; 
        saveas(f1,[savepath],'jpg')  
    end 
end 
 
%% ================= Area\Pattern sweep Plots ====================== 
if makeSweep 
area_ids = [2,5,8,11,14,15,16,17];  
patt_ids = [3,4,6,7,9,10,12,13]; 
plot_ids = area_ids; 
for ss = subjs 
    cc = 1; 
    Vadh = ECGdata(ss,1).Vmean; 
    Tadh = ECGdata(ss,1).Tmean; 
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    t = Tadh-min(Tadh); 
%     Vsig = lsim(iTFecgA,Vadh,t);       %inbody Signal 
    f2 = figure(200+ss); 
    for ee = plot_ids 
        Vmeas = ECGdata(ss,ee).Vmean;      %Measured ECG signal 
        Tmeas = ECGdata(ss,ee).Tmean; 
        Vsim = ECGdata(ss,ee).Vsim; 
        subplot(length(plot_ids)/2,2,cc) 
        grid on;hold on; 
        plot(t,Vmeas,'DisplayName','Measured Signal','Linewidth',2) 
        plot(t,Vsim,'-.','DisplayName','Simulated Signal','Linewidth',2) 
        legend('Show','Location','southeast') 
        title(sprintf('Sub %d, %s, SNR=%2.1f, Pks=%2.0f 
',ss,Label2{ee},SNR(ss,ee),numpks(ss,ee))) 
        if cc>ceil(length(plot_ids)/2) 
            xlabel('time (sec)') 
        end 
        if any(cc==[1,length(plot_ids)/2+1]) 
            ylabel('Voltage (mV)') 
        end 
        cc=cc+1; 
    end 
    if saveplots 
        f2.Position = [1921 47 1280 907]; 
        tmp = split(fname1,'_'); 
        figname = sprintf('AreaSwp_MeasVSim_Sub%d_v%s',ss,tmp{1}(end)); 
        savepath = [pwd,'\Figures\MeasVsSim\AreaSwp\',figname]; 
        saveas(f2,[savepath],'jpg') 
         
    end 
end 
 
%% ===================== RPeaks vs Area ===================== 
for ss = 1:10 
    for ee = 1:17 
        Vmeas = ECGdata(ss,ee).Vmean;      %Measured ECG signal 
        Rmax(ss,ee) = max(Vmeas); 
    end 
end 
ymax = round(max(max(Rmax(subjs,[1,area_ids])))*1.1,2) 
f22 = figure(200+22); 
for si = 1:6 
    ss = subjs(si); 
%     subplot(6,1,si); 
    grid on; hold on; 
    ylabel('Voltage (mV)');ylim([0,ymax]); 
     
%     legend(sprintf('Sub%d',ss)) 
    plot(0:8,Rmax(ss,[1,area_ids]),'-o') 
     
end 
xlabel('Area (Label)'); 
title('Rpeaks of Measured ECG Waveforms') 
tmp = split(sprintf('subj%d_',subjs),'_'); 
 
legend(tmp(1:length(subjs)),'location','best') 
end 
 
 
%% ================ best/worst ====================== 
if makeworst ~= 0 
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% make rows so the sort rows, can track which ID is the worst onces 
topX = 6;      %How many extreme to plot ones 
sub = 1:10; 
ele = [1:17].'; 
[S,E] = meshgrid(sub,ele); 
sub = reshape(S,numel(S),1); 
ele = reshape(E,numel(E),1); 
err = reshape(RMSE.',numel(RMSE),1); 
sortedErr = flipud(sortrows([err,sub,ele])); 
worstSubs = sortedErr(1:topX,2); 
worstElec = sortedErr(1:topX,3); 
ix = find(sortedErr(:,1)==0,1); 
BestSubs = sortedErr(ix-topX:ix-1,2); 
BestElec = sortedErr(ix-topX:ix-1,3); 
 
f3 = figure(300); 
for cc = 1:topX 
    if makeworst == 1 
        ee = worstElec(cc); 
        ss = worstSubs(cc); 
    else 
        ee = BestElec(cc); 
        ss = BestSubs(cc); 
    end 
    TFelec = GenTFdouble(elecparams(ee,:),skinparams);  %The Electrodes Transferfunction 
 
    TFecgE = TFelec*Amp; 
    ECGTFs(ee) = TFecgE;        %Save all ECGs for Bode Plots 
         
    Vmeas = ECGdata(ss,ee).Vmean;      %Measured ECG signal 
    Tmeas = ECGdata(ss,ee).Tmean; 
    Vadh = ECGdata(ss,1).Vmean; 
    Tadh = ECGdata(ss,1).Tmean; 
    t = Tadh-min(Tadh); 
     
    Vsig = lsim(iTFecgA,Vadh,t);       %inbody Signal 
    Vsim = lsim(TFecgE,Vsig,t);         %Simulated Signal 
    s(cc) = subplot(ceil(topX/2),2,cc); 
    grid on;hold on; 
 
    plot(t,Vmeas,'DisplayName','Measured Signal','Linewidth',2) 
    plot(t,Vsim,'-.','DisplayName','Simulated Signal','Linewidth',2) 
    legend('Show','Location','southeast') 
    title(sprintf('Sub %d, %s, RMSE=%2.3fmV',ss,Label2{ee},RMSE(ss,ee))) 
 
    if isodd(cc) 
        ylabel('Voltage (mV)') 
    end 
    if any(cc==[topX,topX-1]) 
        xlabel('Time (sec)') 
    end 
    cc= cc+1; 
end 
f3.Position = [1921 47 1280 907]; 
if saveplots && makeworst ~= 0 
    tmp = split(fname1,'_'); 
    if makeworst == 1 
        figname = sprintf('Top%d_Worstfit_v%s',topX,tmp{1}(end)); 
    else 
        figname = sprintf('Top%d_Bestfit_v%s',topX,tmp{1}(end)); 
    end 
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    savepath = [pwd,'\Figures\MeasVsSim\',figname]; 
    saveas(f3,[savepath],'jpg') 
end 
 
end 
 
 
%% ================= BODE PLOTS =============== 
if makebodeplot 
    area_ids = [2,5,8,11,14,15,16,17] 
ixArea = [1,area_ids];        %Area Sweep Indexes 
ixArea = 1; 
 
wlow = 100; 
whigh = 1; 
w0 = 60 
wc = 2; 
d = 1; 
 
LPF2 = tf([0,0,wlow^2],[1,2*d*wlow,wlow^2]); 
LPF = tf([0,1],[1/wlow,1]); 
HPF2 = tf([1,0,0],[1,2*d*whigh,whigh^2]); 
HPF = tf([1/whigh,0],[[1/whigh,1]]); 
Notch = tf([1,0,w0^2],[1,wc,w0^2]); 
FilterStage = LPF*HPF*Notch; 
 
col = jet(length(ixArea)); 
col = {'m','r','y','g','c','b','k','k--'}; 
 
f4 = figure(400); 
f4.Position = [680   450   800   500] 
cc = 0; 
    for kk = 1:length(ixArea) 
 
        bode(ECGTFs(ixArea(kk))*FilterStage,{1,100}); 
        sp = f4.Children(2); 
        sm = f4.Children(3); 
        grid on; hold on; 
        tmp{kk} = Label2{ixArea(kk)}; 
    end 
    title('Bode Plot for Adhesive ECG System TF') 
    sm.Children(end).LineWidth = 2; 
    sp.Children(end).LineWidth = 2; 
    for kk = 1:length(ixArea) 
        sp.Children(kk).Children.LineWidth = 2; 
        sm.Children(kk).Children.LineWidth = 2; 
    end 
 
    legend(sp,tmp,'location','w') 
    ylim(sm,[55,70]) 
    legend(sm,tmp,'location','w') 
end 

 
 

ParameterVisualizer.m 
% (5) The script creates plots of parameters  
clc;close all; 
clearvars -except ECGdata 
fname1 = 'valsfit7_op5.mat'; 
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load(fname1)                            %Load the fit data 
% Sort the data into variables 
[Cdfit,Rdfit,Rsfit,costfit] = deal(valsfit(:,1),valsfit(:,2),valsfit(:,3),valsfit(:,4)); 
ixValid = [3,4,5];                       %Validaiton Test 
ixArea = [2,5,8,11,14,15,16,17];        %Area Sweep Indexes 
ixPatt = [3,4,6,7,9,10,12,13];          %Pattern Indexes 
 
mkr = 'ok'; 
set(0,'defaultAxesFontSize',13);  
%% ========== Manufacturing Parameters ========== 
 
Radh = 5/2.54/2;    %(in) Radius of Adhesive Electrode 
adh_area = pi*Radh^2;    
Dsn_size = 
[1,adh_area;1,1;2,2;2,2;4/3,4/3;2,2;2,2;5/3,5/3;2,2;2,2;2,2;2,2;2,2;7/3,7/3;8/3,8/3;3,3;10/3,1
0/3]; 
Dsn_area = prod(Dsn_size,2);        %Designed Area 
Mfr_size = 
[1,adh_area;1/2,1;2/3,4/3;2/3,4/3;1/2,4/3;2/3,4/3;2/3,4/3;1,5/3;2/3,4/3;2/3,4/3;1,2;2/3,4/3;2/
3,4/3;1,7/3;3/2,8/3;3/2,3;3/2,10/3]; 
Mfr_area = prod(Mfr_size,2); 
 
Label = {'Adhesive';'Area1';'1Si'; '1St';... 
     'Area2';'2Si';'2St';... 
     'Area3';'3Si'; '3St';'Area4';... 
     '4Si'; '4St';'Area5';'Area6';'Area7';'Area8'}; 
Yarnnames = {'Adhesive';'Steel';'Silver';'Steel';'Steel';'Silver';... 
    'Steel';'Steel';'Silver';'Steel';'Steel';'Silver';... 
    'Steel';'Steel';'Steel';'Steel';'Steel'}; 
Pattnames = {'Adhesive';'1/15 Sateen';'1/15 Sateen'; '1/15 Sateen';... 
     '1/15 Sateen';'Broken Twill';'Broken Twill';'1/15 Sateen';... 
     'Twill'; 'Twill';'1/15 Sateen';'Birdseye'; 'Birdseye';... 
     '1/15 Sateen';'1/15 Sateen';'1/15 Sateen';'1/15 Sateen'}; 
Decoder = [Label,Yarnnames,Pattnames,num2cell(Dsn_area),num2cell(Mfr_area)]; 
 
 
Allnames = Label; 
 
StichNum = 36*36;       %Number of Stiches in a square pattern 
Yarnwidth = 1;        %~Ratio of yarn width to stich spacing, stitch density 
AnchorNum = [0,80,80,80,80,162,162,80,216,216,80,283,283,80,80,80,80].'; 
FloatNum = StichNum - AnchorNum; 
PatternRatio = Yarnwidth*FloatNum./StichNum; 
Cnd_area = Mfr_area.*PatternRatio;      %Conductive Surface Area 
 
%% ========== Adhesive Values ========== 
% Adhesive Values 
Rs = 1e3;               %(ohm) Impedance of Electrolyte (Approximation) 
Cd = 5.8e-6;            %(F) Capacitance of Electrode 
Rd = 25.9e3;            %(Ohm) Resistance of Electrode 
Ce = 0.9e-6;            %(F) Capacitance of Epidermis 
Re = 35.2e3;            %(Ohm) Resistance of Epidermis 
Rop = 1e6;              %(Ohm) Impedance of Opamp (ECG100C Specification) 2Mohm/2 
R2 = 2.6e3;             %(Ohms) DC term without Electrolyte Approximation Rlead+Ru 
 
 
Cdfit1 = Cdfit/1e6;     %Convert CdFit from uF to F 
Rdfit1 = Rdfit*1e6;     %Convert Rdfit from MOhms to Ohms 
Rsfit1 = Rsfit*1e6;     %Convert Rsfit from MOhmz to Ohms 
Cdfit1(1) = Cd;         %Adding Adhesive to List 
Rdfit1(1) = Rd;         %Adding Adhesive to List 
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Rsfit1(1) = Rs;         %Adding Adhesive to List 
R3 = R2+Rsfit1;         %(Ohms) Rs+Rl+Ru, DC impedance Term 
w= 2*pi*25;             %Frequency of operation 
 
a0 = ones(size(Rsfit1)); 
a1 = (Re.*Ce+Rdfit1.*Cdfit1); 
a2 = Cdfit1.*Ce.*Rdfit1.*Re; 
b0 = R3 + Rdfit1 + Re; 
b1 = R3.*(Re.*Ce+Cdfit1.*Rdfit1)+Rdfit1.*Re.*(Cdfit1+Ce); 
b2 = R3.*Cdfit1.*Ce.*Rdfit1.*Re; 
num = [(1i*w)^2,1i*w,1].*[b2,b1,b0]; 
den = [(1i*w)^2,1i*w,1].*[a2,a1,a0]; 
 
Zfit = sum(num,2)./sum(den,2); 
 
%% ========== Area Plot ========== 
[Dsn_area(ixArea),Mfr_area(ixArea),Cnd_area(ixArea)]; 
ixPlot = ixArea; 
 
tname = ' at 25Hz' 
fig3 = figure(30); 
 
subplot(1,2,1) 
title(['Z_e Magnitude',tname]) 
ylabel('Resistance (MOhms)'); 
xlabel('Area (in^2)'); ylim([0,50]) 
grid on;hold on; 
% plot(Dsn_area(ixPlot),abs(Zfit(ixPlot))/1e6,'xr','Linewidth',2,'DisplayName','Design area') 
plot(Mfr_area(ixPlot),abs(Zfit(ixPlot))/1e6,mkr,'Linewidth',2,'DisplayName','No SNR') 
% plot(Cnd_area(ixPlot),abs(Zfit(ixPlot))/1e6,'sb','Linewidth',2,'DisplayName','Conduc area') 
% legend('show','Location','ne') 
 
subplot(1,2,2) 
title(['Z_e Phase',tname]) 
ylabel('Angle (deg)');xlabel('Area (in^2)') 
grid on;hold on;ylim([-10,0]) 
% plot(Dsn_area(ixPlot),angle(Zfit(ixPlot))*180/pi,'xr','Linewidth',2,'DisplayName','Design 
area') 
plot(Mfr_area(ixPlot),angle(Zfit(ixPlot))*180/pi,mkr,'Linewidth',2,'DisplayName','Manufr 
Area') 
% plot(Cnd_area(ixPlot),angle(Zfit(ixPlot))*180/pi,'sb','Linewidth',2,'DisplayName','Conduc 
area') 
% legend('show','Location','ne') 
 
fig3.Position = [220,400,1050,400]; 
 
%% ========== Area Plot CdRdRs ========== 
xname = 'Area (in^2)'; 
fig31 = figure(31); 
subplot(1,3,1) 
title('Cd') 
ylabel('Capacitance (nF)'); ylim([0,30]) 
grid on;hold on; 
plot(Mfr_area(ixPlot),Cdfit(ixPlot)*1e3,mkr,'Linewidth',2) 
xlabel(xname) 
% set(gca,'xtick',xvar,'xticklabel',Allnames(ixPlot)) 
% xlim([0,length(ixPlot)+1]) 
 
subplot(1,3,2) 
title('Rd') 
ylabel('Resistance (MOhms)');ylim([0,50]) 
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grid on;hold on; 
plot(Mfr_area(ixPlot),Rdfit(ixPlot),mkr,'Linewidth',2) 
xlabel(xname) 
% set(gca,'xtick',xvar,'xticklabel',Allnames(ixPlot)) 
% xlim([0,length(ixPlot)+1]) 
 
subplot(1,3,3) 
title('Rs') 
ylabel('Resistance (MOhms)');ylim([0,50]) 
grid on;hold on; 
plot(Mfr_area(ixPlot),Rsfit(ixPlot),mkr,'Linewidth',2) 
xlabel(xname) 
% set(gca,'xtick',xvar,'xticklabel',Allnames(ixPlot)) 
% xlim([0,length(ixPlot)+1]) 
 
fig31.Position = [220,400,1050,400] 
 
%% ========== Pattern Plot ========== 
 
tname = sprintf(' @ %dHz',w/2/pi); 
xname = 'Conductive Area (in^2)'; 
ixPatt1 = [3,6,9,12];                   %Silver Pattern Indexes 
ixPatt2 = [4,7,10,13];                  %Steel Pattern Indexes 
iP = [ixPatt1,ixPatt2]; 
% symtyp = ['or';'ob';'xr';'xb';'sr';'sb';'dr';'db']; 
symtyp = ['or';'xr';'sr';'dr';'ob';'xb';'sb';'db';'or']; 
% symtyp = ['.b';'.b';'.b';'.b';'.b';'.b';'.b';'.b';'.b']; 
fig40 = figure(40); 
s1= subplot(1,2,1); 
title(['Z_e Magnitude',tname]) 
ylabel('Resistance (MOhms)'); ylim([0,50]) 
grid on;hold on; 
xlabel(xname); xlim([.65,0.85]) 
% legend('show','Location','ne') 
 
s2 = subplot(1,2,2); 
title(['Z_e Phase',tname]) 
ylabel('Angle (deg)'); ylim([-10,0]) 
grid on;hold on; 
xlabel(xname); xlim([.65,0.9]) 
 
for kk = 1:length(iP) 
    
plot(s1,Cnd_area(iP(kk)),abs(Zfit(iP(kk)))/1e6,symtyp(kk,:),'Linewidth',2,'DisplayName',Label{
iP(kk)}) 
    
plot(s2,Cnd_area(iP(kk)),angle(Zfit(iP(kk)))*180/pi,symtyp(kk,:),'Linewidth',2,'DisplayName',L
abel{iP(kk)}) 
end 
legend(s1,'show','Location','ne') 
legend(s2,'show','Location','ne') 
fig40.Position = [220,400,1050,400] 
 
%% ========== Pattern Plot CdRdRs ========== 
ixPlot = iP; 
fig41 = figure(41); 
s1 = subplot(1,3,1); 
title('Cd') 
ylabel('Capacitance (nF)'); ylim([0,30]) 
grid on;hold on; 
xlabel(xname); xlim([.65,0.9]) 
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s2 = subplot(1,3,2); 
title('Rd') 
ylabel('Resistance (MOhms)');ylim([0,50]) 
grid on;hold on; 
xlabel(xname); xlim([.65,0.9]) 
 
s3 = subplot(1,3,3); 
title('Rs') 
ylabel('Resistance (MOhms)');ylim([0,50]) 
grid on;hold on; 
xlabel(xname); xlim([.65,0.9]) 
 
for kk = 1:length(iP) 
    
plot(s1,Cnd_area(iP(kk)),Cdfit(iP(kk))*1e3,symtyp(kk,:),'Linewidth',2,'DisplayName',Label{iP(k
k)}) 
    
plot(s2,Cnd_area(iP(kk)),Rdfit(iP(kk)),symtyp(kk,:),'Linewidth',2,'DisplayName',Label{iP(kk)}) 
    
plot(s3,Cnd_area(iP(kk)),Rsfit(iP(kk)),symtyp(kk,:),'Linewidth',2,'DisplayName',Label{iP(kk)}) 
end 
legend(s1,'show','Location','ne') 
legend(s2,'off','Location','ne') 
legend(s3,'show','Location','ne') 
fig41.Position = [220,400,1050,400] 

Leave1Out.m 
% (6) This script will run through the methodology for a single subject and electrode 
 
clc;clear;close all; 
load('ECG_Metrics6.mat'); 
savefitname = 'Leave1out_1.mat'; 
 
subjs = [1,2,4,6,8,9];          %Subjects to be considered 
RMSE = zeros(16,length(subjs)); 
 
%% Make Adhesive Transfer Function 
% "Detrmination of the parameters of the skin-electrode Impedance Model for ECG Measurement" 
% "By: Assambo, Baba, Dozio and Burke".  
Ce = 0.9e-6;        %(F) Capacitance of Epidermis 
Re = 35.2e3;        %(Ohm) Resistance of Epidermis 
Rop = 1e6;          %(Ohm) Impedance of Opamp (ECG100C Specification) 2Mohm/2 
R3 = 3.6e3;         %(Ohms) Rs+Rl+Ru, DC impedance Term 
Rs = 1e3;           %(ohm) Impedance of Electrolyte (Approximation) 
R2 = R3-Rs;         %(Ohms) DC term without Electrolyte 
Cd = 5.8e-6;        %(F) Capacitance of Electrode 
Rd = 25.9e3;        %(Ohm) Resistance of Electrode 
 
skinparams = [Ce,Re,Rop,R2];    %Skin Parameters 
elecparams = [Cd,Rd,Rs];        %[Farads, Ohms, Ohms] Electrode Parameters 
TFadh = GenTFdouble(elecparams,skinparams); %Adhesive Transfer function 
 
%% Make ECG transfer function with Adhesive Electrode 
Gain = 2000;        %(Linear) Gain of Amplifier Biodomadix 
Amp  = tf(Gain,1);  %Transfer Function of Amplifier 
 
TFecgA = Amp*TFadh;  %Transfer function of Adhesive ECG system 
iTFecgA = 1/TFecgA;   %Inverse Transfer Function of Adhesive ECG system 
 
%% Optimizer Values 
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Cmax = .1;                  %uFarads 
Rdmax = 50;                 %Mohms 
Rsmax = 50;                 %Mohms 
ub = [Cmax,Rdmax,Rsmax];    %uFarad,MOhm,MOhm [Upper Boudns] 
lb = 1e-4*[Cd/1e-6,Rd/1e6,Rs/1e6]; %lower bound is .1% of adhesive Values 
optmcnt = 10;               %Number of times to run the optimizer 
 
valsfit = zeros(length(subjs),17,4);  %Initialize Variable to save optimized Parameters 
tic 
for nn = 1:length(subjs)            %Step through each subject 
    subout = subjs(nn);             %subject left out, of the fit 
    ixsubout = subjs(nn) == subjs;  %index of subjects left out 
    subin = subjs(~ixsubout);       %The remaining subjects included 
    for ee = 2:17 
        fprintf('Fit for Electrode ID %d, Subout ID %d\n',ee,subout) 
        %Determine the parameters for this electrode, fit across subjects 
        [bestfit,cost] = DetermParams(optmcnt,ub,lb,skinparams,ee,subin,iTFecgA,ECGdata); 
        valsfit(nn,ee,:) = [bestfit,cost];  %Save betsfits into a values matrix 
 
        % ===== Calculate the RMS Error for the excluded subject ===== 
        TFelec = GenTFdouble(bestfit.*[1e-6,1e6,1e6],skinparams);   %Transfer Functio of 
Electrode  
        TFecgE = TFelec*Amp; 
        Vmeas = ECGdata(subout,ee).Vmean; 
        Vadh = ECGdata(subout,ee).Vmean; 
        Tadh = ECGdata(subout,1).Tmean; 
        t = Tadh-min(Tadh); 
        Vsig = lsim(iTFecgA,Vadh,t); 
        Vsim = lsim(TFecgE,Vsig,t); 
        del = abs(Vmeas-Vsim);      % I dont think RMSE is what she wants 
        RMSD(ee-1,nn) = sqrt(sum((mean(del)-del).^2)/length(del)); 
        RMSE(ee-1,nn) = sqrt(sum((Vmeas-Vsim).^2)/length(Vmeas)); 
    end 
    fprintf('%d Done\n',subout) 
 
end 
Metric = sqrt(mean(RMSE,2)); 
save(savefitname,'Metric'); 
toc 

B. Measured versus Simulated Waveforms 

A depiction of the simulated waveforms overlayed with the measured waveforms 

is provided for all 96 waveforms. The simulated mean ECG waveforms were created 

using the best fit parameters across all subjects which passed the SNR criteria. The 

title of each subplot expresses the subject, the electrode type label, the SNR 

expressed in decibels and Pks representing the number of waveforms that went into 

generating the mean measured waveform.  
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C. Bode Plots for ECG Systems with Woven Electrodes 

 

The magnitude of the ECG system has a slight high pass filtering behavior, but 

is overall dominated by approximately 30dB of attenuation relative to the adhesive 

electrode. There is also about 20 deg of phase delay between the input and output 

voltage at 25Hz. There is a 360-degree phase shift for a couple of the data sets, this 

is an artefact of MATLAB’s plotting function failing to unwrap phase.  

D. Circuit Parameters fit during the LOOCV 

Below are the circuit parameters that were fit during the leave one out cross 

validation. Each highlighted cell represents the subjects which were not included in 

the fit. Since the subject was not included in the fit the circuit parameter is constant 

for a given row for those excluded subjects. The same criteria were used: SNR > 0dB 

and number of peaks > 30. The mean and standard deviation are given for each row 

of data.  
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Table 9: Parameter Cd fit during the LOOCV with the corresponding standard deviation and Mean  

 Cd fit of excluded subject (nF)    

Label 1 2 4 6 8 9  

Standard 
Deviation Mean  

Area1 1.9 6.7 13.6 2 2.6 2.6  4.624 4.900 

Area2 3.7 4 9.2 3.4 3.5 3.9  2.257 4.617 

Area3 5.7 7.6 14.7 6.7 7.6 7.5  3.222 8.300 

Area4 5 4.5 7.7 4.5 5.1 4.9  1.211 5.283 

Area5 5.5 6.5 11.6 5.8 6 6.2  2.311 6.933 

Area6 3.7 3.8 12.4 3.7 3.8 3.9  3.520 5.217 

Area7 18.2 22.7 17.9 14.2 18.9 17.9  2.715 18.300 

Area8 6.2 7.1 22.3 5.7 7.1 6.8  6.441 9.200 

1Si 8.8 9 20.7 8.1 6.9 9  5.101 10.417 

2Si 3.5 17.4 4.5 3.8 4.5 4.5  5.422 6.367 

3Si 6.6 6 75.8 6.9 7.7 7.7  28.103 18.450 

4Si 5 6.6 7.6 5.6 6.1 6.1  0.887 6.167 

1St 2.7 3.1 11.1 2.5 3.1 2.9  3.372 4.233 

2St 11 8.9 8.9 7.3 8.9 9  1.176 9.000 

3St 6.5 6.5 6.5 4.8 16.4 6.5  4.235 7.867 

4St 9.4 11.6 9.7 9.5 9.7 9.5  0.841 9.900 

 
Table 10: Parameter Rd fit during the LOOCV with the corresponding Standard Deviation and Mean 

 Rd fit of excluded subject (MOhm)    

Label 1 2 4 6 8 9  

Standard 
Deviation Mean 

Area1 28.49 50.00 50.00 13.47 10.20 10.20  19.013 27.062 

Area2 21.51 19.93 8.76 38.98 21.86 20.38  9.702 21.904 

Area3 11.43 16.67 11.64 29.14 16.67 19.37  6.502 17.487 

Area4 13.75 13.94 6.06 11.35 10.90 10.95  2.850 11.158 

Area5 16.19 16.17 11.65 18.29 14.70 14.87  2.205 15.311 

Area6 26.47 24.78 9.41 27.30 25.47 23.96  6.712 22.900 

Area7 6.51 3.65 8.80 14.17 8.43 8.35  3.452 8.318 

Area8 7.44 5.40 2.57 6.85 5.40 5.62  1.684 5.546 

1Si 13.51 6.15 1.61 7.65 6.79 6.15  3.831 6.976 

2Si 34.21 50.00 44.46 50.00 44.46 44.46  5.768 44.600 

3Si 8.33 9.41 1.05 7.41 5.98 5.98  2.925 6.359 

4Si 12.66 6.32 5.88 9.54 8.81 8.81  2.450 8.669 

1St 32.65 21.71 3.09 36.70 21.71 23.55  11.666 23.233 

2St 3.81 50.00 50.00 50.00 50.00 50.00  18.858 42.301 
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3St 50.00 50.00 50.00 50.00 8.58 50.00  16.910 43.096 

4St 11.65 50.00 21.34 22.24 21.34 21.72  13.023 24.714 

 

 

 
Table 11: Parameter Rs fit during the LOOCV with the corresponding Standard Deviation and Mean 

 Rs fit of excluded subject (MOhm)    

Label 1 2 4 6 8 9  

Standard 
Deviation Mean 

Area1 31.67 39.84 34.19 35.74 34.69 34.69  2.676 35.137 

Area2 13.32 13.17 11.26 13.52 13.70 13.51  0.909 13.081 

Area3 14.37 14.48 10.46 15.99 14.48 15.24  1.922 14.169 

Area4 13.55 13.56 12.97 13.26 13.50 14.01  0.347 13.472 

Area5 10.71 12.03 9.93 12.06 11.70 11.88  0.868 11.385 

Area6 13.22 13.27 6.96 13.20 12.92 13.04  2.523 12.101 

Area7 11.79 6.21 11.06 12.05 11.98 11.60  2.268 10.783 

Area8 9.41 8.49 5.12 9.28 8.49 8.97  1.602 8.296 

1Si 6.43 6.14 4.59 6.64 6.37 6.14  0.739 6.051 

2Si 20.86 5.65 18.28 20.70 18.28 18.28  5.697 17.006 

3Si 10.95 11.02 5.92 10.76 10.03 10.03  1.945 9.785 

4Si 14.33 10.53 14.92 14.62 13.99 13.99  1.610 13.730 

1St 19.36 17.65 8.11 19.76 17.65 18.71  4.381 16.874 

2St 6.44 15.11 15.11 17.21 15.11 16.68  3.945 14.276 

3St 13.74 13.74 13.74 17.09 5.92 13.74  3.714 12.993 

4St 18.74 12.25 17.89 19.76 17.89 18.28  2.651 17.468 

 

 

 


