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Fine-wire instruments have long been used for the study of turbulence. Current research in-

volves the use of balloon-borne fine-wire instruments to make in-situ measurements of stratospheric

turbulence. These measurements are needed to characterize the turbulence through which hyper-

sonic cruise vehicles will fly. In the stratosphere, fine-wires experience Knudsen number values in

the transition regime between slip-flow and free-molecular flow. Fine-wire instruments have seldom

been used to study turbulence in transition regime conditions. Energy transfer models for fine-

wires in this new class of flow must be developed and validated, and a thorough phenomenological

understanding of these instruments is required to accurately process and interpret collected data.

This document presents results from a numerical study of fine-wires in low-speed, transition regime

flows.

A review of numerical methodologies for simulating transition regime flow is presented. Direct

Boltzmann Solvers appear most suited for low-speed transition regime simulations, however, there

is no readily available software, and much development is needed before a code could be applied to

general problems. The direct simulation Monte Carlo (DSMC) method remains the most accurate,

generally applicable, and available method for transition regime simulations. Therefore, the DSMC

method serves as the primary simulation tool for this work.

The DSMC method is well suited for simulations of high-speed flows. However, care must be

taken in the choice of boundary conditions for low-speed DSMC simulations. Analysis and discus-

sion of boundary conditions for low-speed DSMC simulations is included. A target mass flow rate

boundary condition for low-speed DSMC is presented. Preliminary results show good performance,

but further tuning and characterization are required before the method can be generally applied.
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Results from low-speed DSMC simulations are shown to be strongly dependent on the com-

putational domain size. This dependence is due to thermal conduction between the wire surface

and domain boundaries which dominates the energy transfer due to forced convection when the

computational domain is too small. Convergence is not achieved even for domain sizes that push

the limits of an available supercomputer resource. The dependence of simulated fine-wire power loss

is characterized with respect to simulated Reynolds and Knudsen numbers. A domain convergence

extrapolation method to correct results for the domain size effect is discussed, though results show

that the method can produce unrealistic corrections at lower simulated velocities.

A thorough investigation of the fine-wire parameter space is conducted. The sensitivity of

wire power loss with respect to Knudsen number, flow speed, surface accommodation coefficient,

gas composition, and temperatures is explored. Results validate the use of a previously derived em-

pirical models for analysis of data collected to-date in the HYFLITS research campaign. However,

it is shown that empirical models diverge significantly from simulation results for Knudsen number

values above 2 or altitudes above about 35 km. Measurements made at these higher altitudes would

require new energy transfer models to analyze data.

Comparisons with free-molecular theory are used to validate simulations of high Knudsen

number flows. It is observed that the derivative of power loss with respect to velocity at low

Reynolds numbers is positive in the continuum regime but negative in the free-molecular regime.

In agreement with this observation, simulation results show a decrease in power loss sensitivity

with respect to velocity as Knudsen number increases. Insensitivity of power loss with respect to

flow speed represents a fundamental limitation of thermal anemometry for sensing flow speed in the

transition regime. It is predicted that this would occur at some altitude between 40 and 50 km for

the HYFLITS measurement system, but further studies are required to more precisely characterize

where this insensitivity occurs.

Finally, the temperature jump around fine-wires through the transition regime is investigated.

As could be expected, simulation data show that temperature jump increases through the transition

regime to the point where the temperature of the gas surrounding the wire is equal to the free-
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stream and unaffected by the presence of the wire. This suggests that classical energy transfer

models based on evaluating fluid properties at the film temperature are not appropriate and may

introduce significant errors for fine-wires with a high temperature loading. An empirical model for

temperature jump derived from simulation data is presented and analyzed. Applicability of the

model over a range of wire temperatures, gas compositions, surface accommodation coefficients,

and flow velocities is demonstrated. When temperature loading is sufficiently high, the presented

model can be used to calculate fluid properties at the appropriate temperature throughout the

transition regime.

Results presented expand the current knowledge of fine-wire power loss in the transition

regime and have immediate implications for the analysis of turbulence data currently being collected

for the HYFLITS measurement campaign.
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Chapter 1

Introduction

1.1 Motivation for Low-Speed Rarefied Gas Simulations

Cruising hypersonic vehicles will fly at altitudes between 18 and 40 km. It has been shown

that free stream turbulence can affect the laminar to turbulent transition of hypersonic bound-

ary layers [50, 40]. The Hypersonic Flight in the Turbulent Stratosphere (HYFLITS) research

campaign, supported by the Air Force Office of Scientific Research (AFOSR) Multidisciplinary

University Research Initiative (MURI), is making in-situ measurements of stratospheric turbulence

with balloon-borne fine-wire instruments. Fine-wires have long been used to measure turbulent

fluctuations of velocity and temperature. Calibration of these instruments is a crucial step in this

research effort. Balloon-borne instruments will experience mean flow rates between 1 and 10 m/s

while collecting data. Corresponding fine-wire Reynolds number (Re) values at the altitudes of

interest have a wide range, 1.2 × 10−3 < Re < 4.2 × 10−1. Low air density in the stratosphere

results in fine-wire Knudsen number (Kn) values in the range 0.1 < Kn < 4 based on a wire

diameter of d = 5 µm (Kn = λ/d, where λ is the mean free path). These values correspond to

the transition regime between slip-flow and free-molecular flow. Figure 1.1 shows balloon-borne

fine-wire instrument flow conditions with altitude. Slip-flow, transition, and free-molecular flow

regimes are highlighted.

Most fine-wire applications to date have had Kn values that lie in the continuum or slip-

flow regimes. As fine-wire Kn values increase into the transition regime, heat transfer between

the wire and the surrounding fluid changes significantly [16, 63]. Only recently has there been
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Figure 1.1: Plot showing conditions of balloon-borne fine-wire instruments for altitudes up to 50
km. Air properties are calculated using the 1976 Standard Atmosphere [1]. Kn and Re values are
based on d = 5 µm. The measurement region of interest to the HYFLITS research campaign is
indicated. Slip-flow, transition, and free-molecular regimes are highlighted.

demand for using fine-wires at rarefied conditions, so relatively few studies have investigated Kn

dependence of fine-wire heat transfer for Kn values in the transition regime. The work presented

addresses this knowledge gap by using numerical simulation to investigate power loss from fine-wires

in the transition regime. Results help to address an immediate need for the HYFLITS research

campaign: a thorough understanding of heat transfer for balloon-borne fine-wire instruments at

altitudes between 18 and 40 km.
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In addition to the immediate motivation from the HYFLITS campaign, there are at least

two other notable applications of the current work. The first is for the simulation of fibrous

thermal protection system (TPS) materials which are used on hypersonic reentry vehicles. Fibrous

TPS materials are typically modeled as a matrix of randomly oriented micro cylinders [55, 49].

In flight, the fibrous TPS material, which is located in the vehicle boundary layer, experiences

rarefied subsonic gas flow. The second application is microelectromechanical systems (MEMS).

The small scale features of these systems can experience Kn values in the slip or transition regimes

even at standard atmosphere conditions. Numerous studies have investigated subsonic rarefied

flows in MEMS devices, but many of these are limited to enclosed systems such as channel flow

[9, 20, 44, 57]. Results of the current study contribute useful insight about the simulation methods

and physics of low-speed rarefied flows that could be applied to both these areas of work.

The remainder of this chapter presents an overview of fine-wire instruments and a review of

the relevant literature. General background of fine-wire operation is provided in §1.2. A review

of previously published research on fine-wire instruments is presented in §1.3. Particular focus

is placed on publications that investigate fine-wires in low-speed, rarefied flows and numerical

simulation studies of these instruments. Knowledge gaps in the field are highlighted in §1.4. The

chapter finishes with a discussion of the current project in §1.5.

1.2 Fine-Wire Instrument Background

Fine-wire instruments consist of a thin wire suspended between two prongs. Figure 1.2 shows

a schematic of a fine-wire instrument. Wires typically have diameters between 1 and 5 µm. During

operation, a known voltage or current is applied to the wire. Small wire diameters and typical

wire materials (platinum or tungsten) lead to the wire having a large resistance relative to the rest

of the serial electrical components. Joule heating in the wire causes the wire temperature to be

raised relative to the surrounding fluid. The working principle for these instruments is rooted in

the power balance of the wire. If the thermal time response of the wire is negligible (which is often
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the case because of the small wire diameters) the power balance can be written as

Q̇gen = Q̇c + Q̇r + Q̇h (1.1)

where Q̇gen is Joule heating in the wire, Q̇c is conduction through the wire ends to the prongs, Q̇r is

radiation from the wire surface, and Q̇h is the rate of heat transfer (power loss) to the surrounding

fluid. All terms in Equation 1.1 have units of watt (W). The value for Q̇h depends on properties

of the surrounding fluid such as temperature and velocity. The convective heat transfer coefficient

h is used to express the rate of convective heat transfer per unit surface area per unit temperature

and is given by

h =
Q̇h

As(Tw − T∞)
(1.2)

where Tw is the wire temperature, T∞ is the free stream fluid temperature, and As is the surface

area of the wire. The most common method of reporting power loss values for fine-wire instruments

is in terms of the Nusselt number (Nu) which is given by

Nu =
hd

k
(1.3)

Figure 1.2: Schematic of a fine-wire instrument.
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where k is thermal conductivity. Nu is the ratio of the total power loss from a surface to the rate

of conductive heat transfer through the surrounding fluid.

Fundamentally, a fine-wire works by calibrating Q̇h against a particular property of the

surrounding fluid. This methodology requires a thorough understanding and accurate predictions

of all other terms in Equation 1.1 (Q̇gen, Q̇c, and Q̇r). Joule heating can be expressed as a function

of the electrical properties of the wire by

Q̇gen = I2wRw = E2
w/Rw (1.4)

where Iw is electrical current through the wire, Rw is the wire resistance, and Ew is the voltage drop

across the wire. Joule heating is readily calculated from known electrical properties of a fine-wire

circuit. Any changes in the terms on the right hand side of Equation 1.1 can be sensed through

subsequent changes in Q̇gen. Under many conditions, Q̇c and Q̇r are negligible relative to Q̇h.

When this is the case, Equation 1.1 leads to the simple relation: Q̇gen = Q̇h. However, when Q̇h

is small, the relative significance of Q̇c and Q̇r increases. It has been shown that Q̇c is significant

for the fine-wires of interest to the current study [16, 52]. Precise modeling of Q̇c and Q̇r are not a

focus of the current work, and has been addressed by several previous studies, and so will not be

discussed here [16, 52]. The current work is focused on developing a precise understanding of Q̇h

in different flow conditions.

1.3 Previous Work

Many studies have investigated fine-wire power loss. The review presented here will mention

a few key works for this field, and it will focus on studies that consider rarefaction effects and

numerical simulation studies of heated cylinders.

A seminal work for hotwire anemometer power loss is that of [32] who first derived a relation

(known as King’s law) between wire heat transfer rate and streaming velocity. King’s law can be

expressed in non-dimensional form as

Nu = A+BRen (1.5)
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where Re is the wire Reynolds number and is given by

Re =
ρU∞d

µ
(1.6)

where ρ is the fluid density, µ is the fluid dynamic viscosity, and U∞ is the free stream fluid velocity.

Parameters A, B, and n are calibration constants. The original derivation in [32] suggested a value

of 0.5 for n. This has been shown to be fairly accurate for Re & 44, the value at which vortex-

shedding commences [15].

In [15], hotwires were experimentally investigated in low-Re flows. They propose a slightly

different power loss model than [32] that includes an explicit dependence on the ratio of the film

and free stream temperatures (Tf and T∞, respectively). That model is given by

Nu

(
Tf
T∞

)−0.17
= A+BRen. (1.7)

The film temperature Tf is equal to the arithmetic mean of Tw and T∞. Values for A, B, and n are

different depending on whether Re is above or below the value at which vortex shedding occurs.

The temperature ratio is included as a way of taking into account the fact that fluid properties are

a function of temperature. Many studies to develop power loss models have not found it necessary

to include an explicit temperature dependence. Instead they find that the effect of variable fluid

properties is sufficiently captured by calculating non-dimensional quantities using fluid properties

evaluated at the film temperature.

Fine-wires in low-Re flows and with Kn values in the slip to early transition regime were

investigated in [14]. Oseen’s theory for low-speed flow around a cylinder is compared with experi-

mental data. As with most theoretical treatments of fine-wires, only small values of Tw − T∞ are

considered. The expression for convective power loss that they derive from theory is

Nu =
2

log
(

8
RePr

)
− Γ

(1.8)

where Pr is the gas Prandtl number (Pr = µcp/k, where cp is specific heat of the fluid) and Γ is

Euler’s constant (Γ = 0.5772...). Their experimental results differ from this theory as Re → 0.
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They attribute this divergence to end-conduction (Q̇c) which was not taken into account. Though

their data does extend into the transition regime, the authors make no attempt at investigating

dependence of heat transfer on Kn.

Another theoretical model of Nu was derived in [31]. That expression is of a higher order than

Equation 1.8, and it takes into account thermal and velocity slip at the wire surface. A subsequent

experimental study shows moderate to good agreement with the theory [2]. While these results

may be reasonable for slip-flow conditions, transition regime conditions were not considered.

In [5], hotwires with Kn values in the slip-flow regime are investigated. The relationship they

propose has the same form as King’s law (Equation 1.5) with A = 0.34, B = 0.65, and n = 0.45.

The Nu value given by that model (referred to as the continuum Nu) differs from the measured

value (Num) because of thermal slip at the wire surface. The relationship between Nu and Num is

given as

Nu =
Num

1− φKnNum
. (1.9)

Equation 1.9 is derived from kinetic theory and a first-order approximation of the temperature-

jump boundary condition. The value for φ depends on the accommodation coefficient at the surface

of the wire. A value of φ = 2 successfully captured the slip affects seen in the experimental data

of [5]. Equation 1.9 was also presented in [15], though they did not have enough experimental data

to thoroughly expound upon its validity. A similar expression was derived in [31] and partially

validated by [2].

Equation 1.9 is limited by the fact that its derivation depends on a first-order approxima-

tion of the thermal slip at the wire surface [17]. This assumption degrades at higher Kn values

because property gradients are no longer linear over a distance approximately equal to the mean

free path. Second-order slip boundary conditions were derived in [17]. Although these boundary

conditions have not been used to derive solutions for fine-wire heat transfer, they show only a slight

improvement over first-order boundary conditions in terms of the applicable range of Kn.

An experimental analysis of fine-wire heat transfer in transition regime air flows is presented
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in [16]. They show a strong dependence of Nu on Kn in the transition regime and claim that this

dependency increases with Re such that higher Re conditions converge to continuum behavior at

lower Kn values. It is concluded that as Kn values approach the free-molecular regime, the value

for Nu has no dependence on wire temperature, and significant dependence on wire temperature

is observed as continuum conditions are approached. It is unclear the exact meaning of that

conclusion, especially in light of free-molecular theory which shows an explicit dependence of wire

heat transfer on the ratio of wire to free stream temperature (T ∗ = Tw/T∞, §3.3).

Dependence on Péclet Number Pe is also investigated in [16]. Pe is defined as

Pe =
Ud

α
=

Ud

k/(ρcp)
= RePr (1.10)

and represents the ratio of the advection time scale to the thermal diffusion time scale. Thermal

diffusion becomes an increasingly dominant process for decreasing values of Pe. It was observed in

[16] that King’s Law is applicable for Pe > 10. This is a similar result to [15] who noted that a

shift in the heat transfer relation between Re and Nu changes for Re values above that at which

vortex shedding occurs (Re ≈ 44). Additionally, it can be seen from Equation 1.8 that the theory

of [14] predicts a dependency on Pe. Despite the relatively large amount of transition regime data

presented, no general relationship for fine-wire heat transfer in the transition regime is proposed in

[16].

A thorough review of fine-wire data over a wide range of Re and Kn values is performed

in [6]. That study presents a graphical model that covers Re values between 10−2 and 105 and

Mach Numbers between 0 and 1. This corresponds to Kn values from 0 (continuum flow) to > 10

(free-molecular flow). While their model ostensibly covers a wide range of conditions, practical use

of their model is difficult. The model is presented graphically on a log-log plot, and model lines

are sparse for slip and transition regime conditions. The model and data presented can, however,

serve as a good baseline for comparison with future results.

The dependence of heat transfer on wire temperature is also discussed in [6]. In continuum

conditions, they note that non-dimensionalizing by film-temperature fluid properties appears to
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effectively account for wire temperature effects. However, they point out that this approach is not

effective, and even detrimental, in transition and free-molecular regimes. The models presented

in [6] are based on evaluating fluid properties at the total free stream air temperature.

In [63], experimental heat transfer data for hotwires in the slip-flow and transition regimes are

presented for velocities between 0.5 and 20 m/s (10−3 < Kn < 3, 10−3 < Re < 20). In agreement

with previous studies, their results show a clear decrease in Nu with increasing Kn. They present

an empirical model for Nu as a function of Re and Kn given by

Nu = A+BRen + CKnm +DReiKnj . (1.11)

Values for the constants A, B, C, D, n, m, and i in Equation (1.11) are calculated using a non-

linear least-squares fit to the experimental data. The empirical model presented by [63] is the only

useful model for fine-wires in the transition regime that the author is aware of. However, the way

in which the calibration parameters were calculated did not require that the model be a continuous

function of Kn. Data were grouped into three different Kn regimes. The parameters of Equation

1.11 were then determined for each group of data. The predicted values of Nu for various Re over

the full reported applicable range of Kn is shown in Figure 1.3. Values for the respective slope of

Nu with respect to Re are shown in Figure 1.4. For each plot, lines of constant Re are only drawn

where the conditions lie within the model boundaries given by the authors. The figures show that

the models given in [63] may be useful for some limited engineering applications, but they do not

represent a continuous description of fine-wire heat transfer for Kn values through the transition

regime.

Relatively few numerical simulation investigations of fine-wire energy transfer have been con-

ducted [7, 10, 18, 28, 30, 34, 38, 64]. The work of [18] is probably the first numerical simulation

study of fine-wire instruments. The simulated velocity field was solved separately from the tempera-

ture field, making their results appropriate for low wire temperatures (cold-wires). Good agreement

is seen with previous experimental data. Other numerical studies of fine-wires in the continuum

regime show good agreement with experimental values [7, 30, 34]. Few numerical simulation studies
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have considered rarefaction effects.

A numerical study of fine-wire instruments from slip-flow to near free-molecular flow was

conducted by [65]. That study used an inner and outer solution approach. The region near the

wall was treated using the linearized Bhatnager-Gross-Krook model equation. Flow far from the

cylinder is modeled with the Oseen-Stokes equations. That study does not provide a thorough

examination of wire energy transfer, and it only considers cases where T∞ = Tw.

Figure 1.3: Power loss models of [63] for various Re values over the full range of applicable Kn
values.

Figure 1.4: Derivative of power loss models from [63] for various Re values over the full range of
applicable Kn values.
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The vorticity transport and energy equations are solved numerically for laminar flow past a

micro-cylinder in [38]. Velocity slip and temperature jump boundary conditions are used at the

cylinder surface. Power loss dependence on Kn is explored for Kn values up 0.05. It is reported that

results are within 10% of empirically derived models. They discuss the implication of rarefaction on

fine-wire temperature sensors. It is shown that up to a 100% error in measured temperature may

occur if temperature jump effects are not considered for the highest Kn and Re case investigated.

In [10], the direct simulation Monte Carlo (DSMC) method is used to explore cylinder energy

transfer for Kn = 0.02 and 0.2. Cylinder Re ranged from 0.6 to 24. Rough agreement with previously

published data is demonstrated. That study most closely resembles the numerical work presented

here. Even though only a limited number of conditions were investigated, it serves to support the

validity of the current work.

In [64], slip-flow boundary conditions are derived and implemented into the ANYSYS Fluent

finite-volume computational fluid dynamics (CFD) solver. The study is limited to low wire temper-

atures relative to the free stream (Tw −T∞ ≈ 1 ◦C) to avoid implementing temperature-dependent

fluid properties. At Kn < 0.1, simulation results show good agreement with experimental data

and with several published Nu models. Numerical results diverge significantly from experiment for

Kn > 0.1. This deviation from experimental data is caused by the inaccuracy of first-order slip

boundary conditions when applied in the transition regime.

1.4 Knowledge Gaps

The relevant literature for the current project can be divided into two groups: studies that

experimentally investigate fine-wire power loss near the conditions of interest, and numerical in-

vestigations of heated fine-wires. An overview of the literature in the former group is presented

in Table 1.1. Also shown, for reference, is the present work. Three different studies reviewed here

present data within the range of interest [6, 16, 63]. General energy transfer relations are only

proposed in [6] and [63], and only that of [63] is practically useful.

The later group of literature, numerical investigations of fine-wires, is summarized in Table
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1.2. Most of the studies to date have used CFD methods, limiting their possible region of appli-

cability to the continuum and slip-flow regimes. The only known DSMC study of cylinder heat

transfer near the flow regime of interest is [10]. A very limited set of conditions were explored in

that study. Rough agreement with some experimental data is demonstrated, which further supports

the feasibility of the current proposed work. Methods and models used in that study are similar

to those of the current work, though the higher flow speeds investigated mitigate the finite domain

effects that are important for the current flow regime of interest (Chapter 5).

To summarize, currently available fine-wire literature is lacking in two areas:

(1) A thorough understanding of transition regime fine-wire power loss

(2) Numerical simulation of heated cylinders in low-speed, transition regime flows

Table 1.1: Summary of key previous fine-wire power loss studies.

Study Re Kn

King 1914 [32] 0.055→ 55 < 0.01
Cole and Roshko 1954 [14] 0.01→ 10 0.008→ 0.26
Collis and Williams 1959 [15] 0.02→ 140 < 0.03
Baldwin et al. 1960 [6] 10−2 → 105 4.0× 10−6 → 37
Aihara et al. 1967 [2] 3× 10−3 → 2× 10−1 < 0.03
Andrews et al. 1972 [5] 0.015→ 20 0.003→ 0.12
Davis and Davies 1972 [16] 0→ 5.12 0.01→ 10
Xie et al. 2017 [63] 10−3 → 20 1.0× 10−3 → 3
Current Work 0→ 0.2 0.3→ 30

Table 1.2: Table summarizing previous simulation studies of low-speed flow over heated cylinders.
No value for Kn is provided for studies that do not consider rarefaction.

Study Re Kn Method

Dennis et al. 1968 [18] 0.01→ 40 CFD
Karniadakis 1988 [30] 20→ 200 CFD
Lange et al. 1998 [34] 10−4 → 200 CFD
Bharti et al. 2006 [7] 10→ 45 CFD
Maghsoudi et al. 2013 [38] 10→ 40 0→ 0.05 CFD with Slip BCs
Çelenligil 2016 [10] 0.626→ 24.63 0.02 & 0.2 DSMC
Xie et al. 2018 [64] 10−3 → 20 0.01→ 0.1 CFD with Slip BCs
Current Work 0→ 0.2 0.2→ 30 DSMC
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The first knowledge gap is critical for the HYFLITS campaign. The current work represents

the most thorough numerical study of low-speed heated cylinders to-date, satisfying the second

knowledge gap. Presented results and analyses help satisfy the first.

1.5 Current Work

The current work seeks to answer the following two research questions which arise from the

need for measurements of stratospheric turbulence.

(1) Can current empirical models for transition regime wire power loss be accurately used for

analyzing data from fine-wires in the stratosphere?

(2) How does power loss depend on free stream velocity for fine-wires from the transition regime

to the free-molecular flow regime?

To answer these questions, a thorough investigation of power loss from fine-wires in transition

regime flows has been conducted. This document presents results from that numerical study. The

new information provided by this work has direct implications for the processing and analyzing of

data that has been collected by the HYFLITS research campaign using balloon-borne fine-wires.

Scientific and engineering contributions of the current work include:

(1) Development of an implicit target mass flow boundary condition for low-speed DSMC

(Chapter 4)

(2) Evaluation of simulation accuracy for predicting fine-wire power loss in low-speed rarefied

flows (Chapter 5)

(3) Verification of an empirical power loss model for fine-wires in the transition regime (Chap-

ter 6)

(4) Characterization of fine-wire power loss from the transition to free-molecular flow regimes

(Chapter 6)
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(5) Empirical model for fine-wire temperature jump from the transition to free-molecular flow

regimes (Chapter 7)



Chapter 2

Simulation Methods for Low-Speed Rarefied Flows

2.1 Overview

The previous chapter motivated the need for investigations of low-speed rarefied flows. Nu-

merical simulations of these flows allow for the characterization of many details that are difficult

or impossible to study experimentally. This chapter presents an overview of currently available

simulation methods for low-speed rarefied flows. For each of the methods below, the current state-

of-the-art is discussed, results from key studies are presented, and the future potential of each

method is opined by the author.

All rarefied flow simulation methodologies seek to find or approximate solutions to the Boltz-

mann equation which, for a simple dilute gas, can be written as

∂(nf)

∂t
+ c · ∂(nf)

∂r
+ F · ∂(nf)

∂c
=

∫ ∞
−∞

∫ 4π

0
n2 (f∗f∗1 − ff1) crσ dΩ dc1 (2.1)

where f is the velocity distribution function, n is the number density, c is the velocity vector, r

is the position vector, F is the force vector per unit mass, and the right hand side is the collision

integral. The Boltzmann equation is a model of the number density of a particular molecular species

in six-dimensional phase space, which consists of both physical space and velocity space. The first

term represents the time rate of change of the number density in the particular volume of phase

space. The second term represents the convection of particles into or out of the particular volume

of physical space due to the local velocity c. The third term represents the movement of particles

into and out of the particular volume of velocity space due to the acceleration of the gas by some
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body force. The term on the right hand side is known as the collision operator and represents

the rate of change of particles in the particular velocity space element caused by intermolecular

collisions. A thorough mathematical derivation of the collision operator can be found elsewhere [8].

2.2 Simulation Methods

2.2.1 Moment Methods

One approach to the simulation of rarefied gas flows is to derive macroscopic transport equa-

tions for this flow regime [56]. These equations are derived by taking moments of the Boltzmann

equation. The seminal work for moment based methods is [24]. In that work, a governing set of 13

moment equations were derived and are known as Grad’s 13 moment equations. Some implementa-

tions of the method of moments have been shown to be accurate up to Kn values of ∼ 1 [26]. This

is only a slight improvement over CFD with slip boundary conditions which consistently reports

accurate results for Kn values up to 0.1. Moment based methods are appealing because of their

computational efficiency relative to particle based or direct simulation methods. Current work

requires fine-wire simulations for Kn values up to 4, exceeding the range of applicable Kn for the

current state of moment based methods.

2.2.2 Direct Boltzmann Solver

Another approach to simulating rarefied flows is to numerically solve the Boltzmann equa-

tion over discretized phase space [22, 29, 46, 62]. These methods are similar, in principle, to

Navier-Stokes CFD for continuum flow, but velocity space, in addition to physical space, must be

discretized. Additional mathematical and numerical challenges arise from the fact that Equation

2.1 is an integro-differential equation, rather than simply a differential equation as in the case of the

Navier-Stokes equations. Recent studies have proposed discretizing velocity space using spectral

methods to efficiently compute the collision term of the Boltzmann equation, while time and space

are discretized in manners similar to classical CFD methods: Runge-Kutta for time and either
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Finite-Volume, Finite-Difference, or Finite-Element for space [22, 29, 46]. Recent implementations

have shown very good agreement with DSMC [29]. As these methods are based on solving partial

differential equations, they can be more computationally efficient than DSMC. This is especially

true for low-speed flows where the velocity space can be well-predicted and has a relatively small

range. The computational cost of direct solvers grows significantly as the range of velocities in a

given simulation becomes large, as is the case with high-speed flows over bodies. Some of these

methods have been developed, but only primitive versions exist and significant development is

required before they can be generally applied.

2.2.3 Lattice Boltzmann Method

The lattice Boltzmann (LB) method is derived from a Hermite polynomial expansion of the

Boltzmann equation [33]. In essence, the method models the minimal amount of molecular physics

in order that averaged macroscopic properties obey desired macroscopic conservation equations.

This method is computationally efficient relative to DSMC, but challenges arise when applying it

to higher Kn flows. Until recently, the LB method has not been able to capture Kn layers for

transition regime flows because of inadequate boundary conditions [27, 67]. Improvements have

been made, but recent models have not been thoroughly validated or implemented into readily

available codes [35, 37].

2.2.4 Discrete Velocity Methods

Discrete velocity methods (DVM) are similar to DSMC in that numerical particles are tracked

and collided in a stochastic manner. However, instead of allowing for arbitrary particle velocities,

only a discrete number of velocities are simulated [41, 42, 66]. As an example, a recently proposed

method called quasi-particle simulation (QuiPS) is currently under development at The University

of Texas at Austin [13, 43, 48]. The numerical particles simulated may have only a discrete number

of velocities, but they have variable mass. During a collision, mass is transferred between particles

that have different velocities. The primary motivation for development of QuiPS (and other DVM
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codes) is the reduction of statistical scatter and the accurate modeling of trace particles [45].

Discrete velocity methods have shown reduced statistical scatter and computational cost relative

to DSMC.

2.2.5 Direct Simulation Monte Carlo Method

The DSMC method, pioneered by Graeme Bird, simulates dilute gases by tracking a finite

number of representative gas particles within a domain [8]. Particles are moved according to

their individual velocity and a time-step ∆t. Particles are collided with each other stochastically.

These movement and collision steps are repeated for each time-step of a simulation until some

specified time has been reached. The DSMC method has been widely used over the last few

decades for applications ranging from the simulation hypersonic reentry vehicles to channel flow

through microelectromechanical systems. The method is theoretically applicable for Kn values

ranging from the continuum to the free-molecular regimes. Computational cost, however, scales

inversely with Kn number, making most continuum and many slip-flow simulations impossible with

current computational resources. Particular challenges also arise when using DSMC for low-speed

flows. These include statistical scatter and boundary conditions. Statistical scatter arises from the

fact that DSMC stochastically simulates particles which travel at the thermal speed of a gas. As

average velocity decreases, the signal (average flow velocity) to noise (thermal speed of particles)

ratio decreases. An easy and popular solution to the problem of statistical scatter is to increase the

density of simulated particles. This, however, increases the computational cost accordingly. The

treatment of boundaries in low-speed DSMC is also challenging relative to high speed simulations.

In the high speed case, inlet conditions are accurately modeled as equilibrium boundaries while the

outlet can be simply treated as a vacuum because speeds are high enough that the flux of particles

into the domain through the outlet can be entirely ignored. For low-speed flows, the flux of particles

from all sides of the domain must be considered. Equilibrium boundaries are still appropriate where

conditions are confidently known, but at boundaries where conditions are not known a priori, the

flux of particles into the domain must be determined implicitly from the DSMC solution as it
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progresses through time. These implicit boundary methods are sensitive to the statistical scatter

of collision cell data. Despite these challenges, DSMC is the most popular simulation method for

transition regime flows at all flow speeds because of widely available simulation codes, thoroughly

validated models, and physical accuracy across a wide range of conditions.

2.2.6 Information Preserving DSMC

The velocity of a particle in a particular volume of fluid can be thought of as containing two

different components, the bulk speed of the surrounding particles and the thermal speed of that

individual molecule. The statistical distribution of the thermal speed of molecules in a volume is a

function of the thermal temperature of that volume of fluid. For a volume that is in equilibrium,

that functional relationship is given by the Maxwell-Boltzmann distribution. Several studies have

presented information preserving DSMC (IP-DSMC) methods for reducing the statistical scatter

of low-speed simulations [9, 20, 54, 58, 59]. These methods seek to reduce the statistical scatter

by preserving information about the macroscopic flow variables such as velocity, temperature, and

density. The basic idea for IP-DSMC lies in the decomposition of flow properties into macroscopic

flow properties and random thermal properties. Individual particles are tracked and moved in

the same manner as is done in traditional DSMC. Macroscopic flow properties are stored at the

particle and/or cell level and are updated according to some conservation law such as the Euler

Equations. The treatment of energy flux at walls and between collision cells is non-trivial [58, 59].

While IP-DSMC has been shown to effectively reduce statistical scatter and efficiency of low-speed

DSMC simulations, the method is not widely used and no implementation of the method is readily

available.

2.3 Summary and Conclusions

Many different methods have been developed for the simulation of rarefied flows. In theory,

a Direct Boltzmann Solver would seem to be the best candidate for simulating flow over a heated

fine-wire. The computational cost of Direct Boltzmann solvers decrease with the simulated velocity
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because velocity space subsequently reduces in size. This is the opposite trend of DSMC where

statistical scatter at low-speeds requires more simulated particles and, therefore, higher computa-

tional cost. Unfortunately, no known Direct Boltzmann Solvers are readily available or are capable

of simulating the flow of interest. Despite the challenges of applying DSMC to low-speed flows,

it is the most widely available and most popular method for simulating the transition regime at

all flow conditions. The method is well validated and physically accurate. For these reasons, the

DSMC method serves as the primary modeling tool for the current work, although future studies

should consider using some of the other methods discussed as they increase in maturity and general

applicability. Chapter 3 presents the details of the DSMC simulations performed for this study.



Chapter 3

Numerical Simulation Methodology

3.1 Overview

The current study utilizes the DSMC method and kinetic theory for free-molecular flow

to simulate fine-wires in rarefied flows. Ideal gas behavior is assumed for all simulations and

experimental data discussed in this work. The DSMC method is used for simulating the transition

and free-molecular regimes. Theory for free-molecular flow is used to validate DSMC results at

high values of Kn. Details about each of these methods are discussed in this chapter.

3.2 Direct Simulation Monte Carlo

Simulations of the current work were run with the open source DSMC code SPARTA de-

veloped by Sandia National Laboratory (Stochastic PArallel Rarefied-gas Time-accurate Analyzer,

http://sparta.sandia.gov) [47]. This code is continually updated and well documented. It represents

the current state-of-the-art for computationally efficient DSMC software. Simulations using this

code were run on the RMACC Summit supercomputer and utilized as many as 660 total processors.

3.2.1 Simulation Domain Construction

Figure 3.1 shows a schematic of the DSMC domain used in the current study. The reflective

wall serves as a symmetry plane. Some results were produced with a domain that included the

entire wire and did not have a symmetry plane. For all simulations, Linlet = Ltop. Various values

of Loutlet were used.

http://sparta.sandia.gov
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Collision cells are uniformly spaced in the x (streaming) and y directions of the computational

domain. Collision cell width and height (∆Lc) are set to less than half of the mean free path (∆Lc ≈

λ/2.1). Simulation time-steps were set so that a particle traveling at the free stream temperature

thermal speed (v) travels less than half a collision cell width in one time-step (∆t = 0.4 ∆Lc/v).

Average particle thermal speed was calculated as

v =

√
8RgasT∞

π
. (3.1)

The ratio of real to simulated particles (fnum) was calculated by

fnum =
n∆Vc
Nppc

(3.2)

where n is the gas number density, ∆Vc is the collision cell volume, and Nppc is the desired number

of particles per cell. Most simulations are setup with Nppc = 100, though some earlier simulations

used Nppc = 10. Negligible difference is observed between the average results of these two different

particle counts, but the higher simulated particle density significantly reduces the statistical scatter

of results [51].

Figure 3.1: Schematic of the DSMC simulation domain used for the current study.
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The variable soft-sphere model is used to model particle collisions. The corresponding equa-

tion for mean free path, as derived from kinetic theory in [8], is given by

λ =

[
√

2πd2refn

(
Tref
T

)ω−1/2]−1
(3.3)

where dref is the reference collision diameter for the gas, n is the number density, Tref is the

reference temperature corresponding to dref , and ω is the temperature exponent for viscosity. The

viscosity of a variable soft-sphere gas is given in [8] as

µ =
5(αs + 1)(αs + 2)

√
πmkB(4kB/m)(ν)Tω

16αsΓ(4− ν)(σT,ref )(c2νr,ref )
(3.4)

where m is the molecular mass, kB is the Boltzmann constant, σT,ref = πd2ref is the reference

condition collision cross section, ν = ω − 1/2, αs is the angular scattering parameter, Γ() is the

gamma function, and cr,ref is the mean relative speed of particles at reference conditions and is

given by

cr,ref =
2√
π

√
4kBTref

m
. (3.5)

The thermal conductivity k is then given in terms of viscosity and the specific gas constant by

k =
15

4
µRgas

(
4

15

1

γ − 1
+

3

5

)
(3.6)

where Rgas is the specific gas constant, γ is the ratio of specific heats, and the term in parentheses

is a form of Eucken’s correction for polyatomic gases [19]. The above equations for λ, µ, and k

along with the ideal gas law are used for calculating fluid properties for simulated gases.

Internal rotational energy is modeled while vibrational energy is ignored. SPARTA uses the

no time counter algorithm for selecting collision partners. The Larsen-Borgnakke model is used

with a constant rotational relaxation number to model the exchange of rotational and translational

energy during collisions. Table 3.1 provides the parameters for collision models for various gas

species used in this study.



24

Table 3.1: Parameters for the variable soft-sphere collision model and the Larsen-Borgnakke model
used in the current work. dref is the collision diameter, ω is the temperature exponent for viscosity,
Tref is the reference temperature, αs is the angular scattering parameter, ζrot is the number of
rotational degrees of freedom, and Zrot is the rotational relaxation number.

Gas Species dref × 1010, m ω Tref , K αs ζrot 1/Zrot

Nitrogen, N2 4.07 0.74 273.15 1.6 2 0.2
Oxygen, O2 3.96 0.77 273.15 1.4 2 0.2

Argon, Ar 4.11 0.81 273.15 1.4 0 0

3.2.2 Statistical Scatter

As discussed in the previous chapter, low-speed DSMC simulations suffer from large statistical

scatter because the method stochastically models particle thermal velocities which are typically

∼ 300 m/s. Mean flow velocities of interest to the current study are < 10 m/s, resulting a very low

signal to noise ratio. For simulations in this work, statistical scatter has been addressed by simply

taking large sample sizes at steady state conditions. This method has proven sufficient for hotwire

simulations where the signal to noise ratio is relatively high because of the high energy transfer

between the surface and the gas. Cold-wire simulations, however, have a very low wire power loss

which dramatically reduces the signal to noise ratio. Figures 3.2 and 3.3 show the typical evolution

of the rate of energy transfer for hotwire (Tw − T∞ = 100◦C) and cold-wire (Tw − T∞ = 4◦C)

simulations, respectively. Both simulations are run with free stream temperature and pressure

equal to that at 25 km altitude and a free stream velocity of U∞ = 2 m/s [1]. Simulation domain

size and boundary conditions are also identical. Significantly higher scatter is observed for the

cold-wire simulations.

One method for reducing statistical scatter is to run an ensemble of simulation instances,

each with a unique random number seed. Running ensembles of DSMC simulations is most useful

when unsteady, time-accurate data is of interest because each simulation of the ensemble provides

statistically independent data at each time-step. For the current work, statistical scatter was

reduced by increasing simulated particle density and by ensuring a sufficient amount of steady

state data was obtained for each simulation.
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The relatively high computational cost of the scatter reducing methods used in the current

work has pushed the limits of available computational resources because computational cost scales

with the number of simulated particles. Additionally, simulation run-times are limited on the

available supercomputer resource (RMACC Summit). Because of these limitations, most of the

data presented here is for hotwires where the simulation scatter is reasonable. Some cold-wire data

is shown, but uncertainty of results makes it difficult to draw strong conclusions from the data.

Figure 3.2: Typical time dependent results of wire power loss for a hotwire (Tw − T∞ = 100 ◦C)
DSMC simulation. The solid orange line shows the average of the steady state data (§3.2.4)
and ±1σ.

Figure 3.3: Typical time dependent results of wire power loss for cold-wire (Tw−T∞ = 4 ◦C) DSMC
simulation. The solid orange line shows the average of the steady state data (§3.2.4) and ±1σ.
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3.2.3 Simulated Particle Density

In addition to statistical scatter of simulation results, low signal to noise ratio in DSMC

simulations may result in insufficiently modeling the particle thermal velocity distribution, leading

to erroneous results [60]. Typical recommendations for the number of simulated particles per-

collision-cell in DSMC simulations is ≈ 10. This recommendation is largely based on supersonic

and hypersonic simulations where the Maxwellian distribution is narrow relative to the free stream

velocity. The relatively slim thermal velocity distribution can be easily captured with Nppc ≈ 10.

At low velocities, however, the Maxwellian thermal velocity distribution is very wide relative to

the free stream velocity. It can be expected that a higher density of simulated particles will be

required to sufficiently reproduce the Maxwellian distribution for low-speed flows. Dependence of

wire energy transfer on the number of simulated particles was investigated by running simulations

with varying values of Nppc. Results are shown in Figure 3.4. Free stream velocity and temperature

are 3 m/s and 300 K, respectively. Wire temperature and accommodation coefficient are 373.15

K and 0.85, respectively. Wire Knf is 0.65. A weak dependence on Nppc is observed. Mean wire

energy transfer is within 1% for all values of Nppc tested. All mean values are within ±1σ of the

statistical scatter for the Nppc = 50 case.

Figure 3.4: Dependence of hotwire Nusselt number on the number of simulated particles per-cell.
Uncertainty bars indicate ±1σ of the steady state DSMC data.
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Other DSMC studies of subsonic flows have used Nppc values ranging from 10 to 100 [10, 25,

39, 53, 57, 58, 60]. These studies typically use collision cell sizes that are approximately equal to

the mean free path. Simulations performed for this work use collision cell sizes that are less than

half of the mean free path. This results in about 40 simulated particles per square mean free path

for the case where Nppc = 10 (current simulations are two-dimensional) which is a similar simulated

particle density to many previous studies. Simulated particle densities of Nppc = 10 and 100 were

used for results presented in the current work. Based on the results shown in Figure 3.4, minimal

error for simulations with Nppc = 10 is expected. A value of Nppc = 100 has been used for many

simulations to further reduce statistical scatter.

3.2.4 Determination of Steady State

In light of the statistical scatter of DSMC results, and to clarify the meaning of the data

presented, a detailed description of the averaging and sampling procedures is warranted. During

a DSMC simulation, numerical particles are moved throughout the domain and collide with one

another in a stochastic manner. During the course of a simulation, SPARTA allows for data to be

continually averaged and dumped every N time-steps. The data of primary interest to the current

study is the energy transfer between the wire surface and the gas. Each data point of the time

series shown in Figures 3.2 and 3.3 represents the average rate of energy transfer from the surface

for the previous N time-steps. Lower values of N (higher sampling frequency) will result in more

scatter in the output data than if a larger value of N is used (lower sampling frequency). For larger

values of N , larger data sets are averaged for each output data point which effectively filters out

the high-frequency, random fluctuations in the wire heat transfer rate. Fluctuations are filtered out

more with increasing N . Preliminary simulations were run with a sampling frequency of N = 1,000

to establish a clear understanding of the time-variation of the heat transfer rate. Results presented

here are from simulations that were run with N = 5,000, 10,000, or 20,000. Small sampling

frequencies (large N) are desired to reduce the time spent writing results during the simulation,

reduce the memory required to store the output data, and reduce the post-processing time.
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Running simulations for longer times would allow for larger values of N to be used, leading

to reduced statistical scatter. However, the frequency of output data must be high enough that the

beginning of steady state can be confidently identified. Additionally, enough data must be dumped

during steady state in order that meaningful statistical analysis of the results can be performed.

A simple algorithm has been developed to determine the section of steady state data from

the time-history data like that shown in Figures 3.2 and 3.3. The algorithm follows the process

enumerated below.

(1) Select entire time series of power loss data (t, Nuf ) as initial window of data

(2) Normalize the time t in the window of data to have a range between 0 and 1:

t∗ =
t− tmin

tmax − tmin
, 0 ≤ t∗ ≤ 1 (3.7)

(3) Calculate the average Nuf in the data window (Nuf )

(4) Express Nuf values as a percent change from the window average:

Nu∗f = 100×
Nuf −Nuf

Nuf

(5) Perform a linear regression analysis of the normalized data (t∗, Nu∗f )

(6) Compare the slope of the linear fit dNu∗f/dt
∗ to the tolerance value of 1:

(a) If dNu∗f/dt
∗ ≥ 1: remove first data point (where t∗ = 0) from the current window of

data and repeat steps 2–6

(b) If dNu∗f/dt
∗ < 1: current window is the estimated steady state section of data and

the process ends

After the algorithm is completed, plots like those shown in Figures 3.2 and 3.3 are produced

and visually inspected to check that the algorithm chose a reasonable set of steady state data.

Effectively, the algorithm selects a set of data where a fitted line through that data does not

predict more than 1% deviation from the data mean.
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The DSMC data presented herein is given as a point with uncertainty bounds. These represent

the average of the steady state period and one standard deviation of the steady state data (±1σ).

The uncertainty bounds are omitted when they are smaller or very close in size to the plot marker

itself, or when they introduce unnecessary clutter that obscures the objective of a particular figure.

3.2.5 Allocation of Computational Resources

With the wide range of Kn values and various velocities simulated, the computational cost of

different simulations performed for the current work varies widely. A procedure was developed to

ensure that an appropriate amount of computational resources was used for each simulation. This

procedure begins with estimating the amount of time it will take for a simulation to reach steady

state. A typical estimation for steady state time in high speed flows is some multiple of the body

flow time which is equal to body length divided by the mean flow speed. For the current simulations

of heated fine-wires, estimating steady state using the wire diameter and the bulk flow speed results

in a large under-prediction of the time to steady state. This is due to the fact that steady state is

dependent on the entire domain reaching a steady state temperature. It was found that an effective,

though somewhat conservative, approximation for steady state is to use the domain length and the

mean flow speed to calculate the flow time as

tflow =
Linlet + Loutlet

U∞
. (3.8)

The number of time-steps to run a simulation for was then calculated using the time-step ∆t for

that simulation.

Most DSMC simulations were run on the RMACC Summit supercomputer at CU Boulder [4].

The computational cost of the present simulations on that computer was characterized by running

a number of simulations of various size and with various numbers of processors. The average wall-

clock time per time-step was calculated for each simulation. This was found to be primarily a

function of the number of simulated particles per processor. These data are shown in Figure 3.5.

Using the estimated number of simulated particles, the estimated number of steps to steady
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Figure 3.5: Computational cost of the present fine-wire simulations shown in terms of the wall-clock
time to run a single time-step vs. the number of simulated particles per processor. Data shown are
from simulations run on the RMACC Summit supercomputer.

state, and the data shown in Figure 3.5, computational resources were efficiently allocated for each

simulation run. This systematic process allowed for hundreds of simulations to be run on the

Summit computer with minimal overhead.

3.3 Kinetic Theory for Free-Molecular Flow

At sufficiently high values of Kn, particle collisions can be ignored entirely. This regime

is referred to as free-molecular or collisionless flow. Relatively simple and exact relations can be

written for aerodynamic forces and energy transfer in this regime for a wide variety of flows. In [11],

the rate of energy transfer dQ̇ from a flat surface of area dA to the surrounding gas in free-molecular

flow is given by

dQ̇ = −αρ∞RT∞

√
RT∞
2π

([
S2 +

γ

γ − 1
− γ + 1

2(γ − 1)
T ∗
]{

e−(S sin θ)2

+
√
π(S sin θ)[1 + erf(S sin θ)]

}
− 1

2
e−(S sin θ)2

)
dA (3.9)

where α is the surface accommodation coefficient, γ is the ratio of specific heats, θ is the angle of

surface element dA with respect to the streaming velocity U , T ∗ = Tw/T∞, and S is the molecular

speed ratio, S = U/
√

2RT∞. A quick dimensional analysis of Equation 3.9 shows that there are 4
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fundamental units (mass, length, temperature, and time) and 7 independent dimensional quantities

(Q̇, ρ∞, R, T∞, Tw, U , and A) which means that the expression can be written with 7 − 4 = 3

dimensionless parameters. These parameters are in addition to α and γ which are also dimensionless

problem-dependent parameters on which Equation 3.9 depends. Two obvious parameters to choose

include the molecular speed ratio S and the temperature ratio T ∗ = Tw/T∞. The third parameter

can be defined as

Q̇∗ =
Q̇

Asρcp(Tw − T∞)
√

2RT∞
=

h

ρcpu′m
(3.10)

where As is the energy transfer surface area, u′m =
√

2RT∞ is the most probable molecular speed,

and cp is the specific heat at constant pressure. This dimensionless expression for the rate of energy

transfer represents the ratio of the total energy flux to the surface to the average molecular energy

flux of the gas. This parameter is similar to the Stanton Number but uses the most probable

molecular speed u′m as the velocity scale in the denominator, rather than the bulk flow speed U .

This gives Q̇∗ the advantage of being well-defined for all flow velocities, whereas Stanton Number

is ill-defined when bulk flow speed is zero. Rearranging, and using the relation R = cp(γ− 1)/γ for

an ideal gas, Equation 3.9 can be written in terms of S, T ∗, and Q̇∗ as

dQ̇∗ = − α√
4π

γ − 1

γ

1

T ∗ − 1
f (S, T ∗, θ)

dA

As
(3.11)

where f (S, T ∗, θ) is equal to the quantity in parenthesis in Equation 3.9. The differential dA/As

is specific to the geometry of interest. For the case of a two-dimensional circular cylinder, As = πd

and dA = (d/2)dθ for 0 ≥ θ > 2π. This gives dA/As = dθ/2π. This expression can then be used

to calculate the free-molecular heat transfer for circular cylinders by numerically integrating for

0 ≥ θ > 2π. Previous authors have taken the time to derive (quasi-) analytical solutions for the

case of a circular cylinder. However, these solutions include modified Bessel functions, solutions

for which can only be estimated numerically anyway. The author has therefore chosen to forgo the

burden of deriving an explicit solution (that can still only be estimated numerically) in favor of
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numerically integrating Equation 3.11. This integration is given by

Q̇∗ = − α√
4π

γ − 1

γ

1

T ∗ − 1

N−1∑
i=0

f

(
S, T ∗, i

2π

N

)
∆θ

2π
(3.12)

where N is the number of differential surface elements and ∆θ = 2π/N . For all calculations

performed herein, N = 2,000 surface elements were used.

Since most fine-wire energy transfer data is presented in terms of Nu and Re, it is useful to

put the solution for free-molecular flow in terms of these parameters. Nu can be written in terms

of Q̇∗ as

Nu =
ρcpu

′
md

k
Q̇∗. (3.13)

This can be written in terms of other dimensionless parameters as

Nu =
RePr

S
Q̇∗ (3.14)

where Pr = cpµ/k is Prandtl number. Note that all fluid properties for free-molecular calculations

are evaluated at the free stream temperature T∞ since it is only undisturbed free stream particles

which collide with the wire surface. The quantities S and Re can be approximately related by

Re =

√
πγ

2

M

Kn
=
√
π
S

Kn
(3.15)

where M is Mach number. The above relationship between Re, M, and Kn relies on a definition

of mean free path λ based on a hard-sphere molecular model. The relation does not strictly hold

when a different model for mean free path is used. Because of this nuance, free-molecular heat

transfer results for the present study were calculated first in terms of Q̇∗ using Equation 3.12, and

then converted to Nu using either Equation 3.13 or 3.14. Reynolds number was calculated directly

from known gas properties.

Expressing free-molecular heat transfer in terms of Nu and Re introduces the coefficients

of thermal conductivity k and viscosity µ. Both of these phenomena, conductivity and viscosity,

are due to intermolecular collisions which do not exist in free-molecular flows. This suggests that,

while it can be done, the use of Nu and Re to describe heat transfer in the free-molecular regime



33

is not the most physically appropriate approach. This is further demonstrated when reconsidering

the above dimensional analysis. When expressing heat transfer in terms of Nu and Re, k and µ

are introduced into the parameter space. These two quantities are related by Equation 3.6, so this

changes the dimensional analysis so that now there are 8 independent dimensional quantities and

still only 4 fundamental units, leading to the need for 8 − 4 = 4 dimensionless parameters. This

suggests that the classical method of discussing heat transfer in terms of Nu and Re may not be

the most physically appropriate dimensionless grouping for rarefied flows. Despite this observation,

results of the current work will still be expressed in terms of Nu and Re because this is the classical

approach and the current fine-wire analysis methodology for the HYFLITS campaign assumes this

form (See Appendix A). Additionally, even with the unnecessarily expanded parameter space, the

free-molecular solution for Nu is still readily calculated if all fluid properties are known.



Chapter 4

Boundary Conditions for Low-Speed DSMC

4.1 Overview

Low-speed DSMC simulations require that a flux of particles enter the domain from the

outlet. This is different from high speed simulations where, generally speaking, flow speeds at the

domain outlet are sufficiently large such that it can be accurately assumed that no particles enter

the domain from the outlet. This is due to the fact that supersonic flows are hyperbolic, while

subsonic flows are elliptic. This means, in particular, that outflow boundary conditions influence

the overall flow field more as flow speed decreases. This chapter discusses boundary conditions for

subsonic DSMC simulations and the implementation of a new boundary condition for DSMC.

4.2 Equilibrium Boundary Conditions

Equilibrium, or open, boundary conditions create a flux of particles into the domain according

to the Maxwell-Boltzmann velocity distribution function for an equilibrium gas. Several different

methods have been developed for implementing this method. The simplest method, and the one

that is implemented in the SPARTA code, is to simply use the equation for number flux Ṅ through

a plane of an equilibrium gas which is given in [8] as

Ṅ =
β

2n
√
π

[
exp(−S2 cos2 θ) + S

√
π cos θ {1 + erf(S cos θ)}

]
(4.1)

where n is number density, θ is the angle of the plane relative to the bulk flow speed U , and S is the

molecular speed ratio (S = Uβ = U√
2RT

). For the equilibrium flux method, Equation 4.1 is used
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to calculate the number of particles to be introduced into the domain each time-step. Thermal

velocity components are then assigned to those particles by sampling from the Maxwell-Boltzmann

velocity distribution function for the temperature specified. It has been shown that this method of

implementing equilibrium boundary conditions can introduce slight non-equilibrium effects because

of the fact that it uses a fixed number flux at each time-step [61]. In reality, the number flux itself

should follow a Poisson distribution. The surface flux method described above generates the correct

average number flux, but not the correct distribution of number flux over time.

Another method of implementing equilibrium boundary conditions is with a so-called volume

boundary condition. With this approach, particles are generated each time-step in some volume

that sits immediately adjacent to the simulation domain. The particles are randomly located in

this volume and given a velocity by sampling from the equilibrium distribution function. Particles

in this volume are then moved in the same manner as normal DSMC particles. Only particles

that enter the simulation domain are retained and tracked normally, all other particles are deleted.

The volume boundary condition method produces the correct distribution of number flux into the

domain, unlike the surface flux method. While the volume boundary method has been shown to be

more accurate, the equilibrium surface flux method is used in the current work for all equilibrium,

or open, boundaries because the volume method is not implemented in the SPARTA DSMC code.

It is expected that the error introduced by using this method are negligible relative to other sources

of uncertainty including the statistical scatter of DSMC results and the domain size bias that will

be discussed in Chapter 5.

4.3 Piston Boundary Condition

The piston boundary condition was presented in [8] as a way to simulate a standing shock

wave. This condition treats the outlet as a reflective moving wall. The only user input for this

condition is the speed of the boundary. Because the wall is moving, particles actually collide with it

some distance downstream of the domain. After they are reflected and moved back in the direction

of the domain, particles which make it back inside the domain boundaries are retained and tracked
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as normal, particles which do not make it back inside the domain are discarded. The result of this

condition is an average particle speed at the boundary equal to the specified velocity at the wall.

Thermal temperature at the boundary is not specified.

A piston boundary condition at the domain outlet was used for many simulations early in

this work, including those used to produce data for [51]. Data produced with this outlet condition

compared reasonably well with experimental data from [63]. However, the boundary condition is

physically unreasonable as flow velocities approach zero. In fact, the SPARTA code does not allow

a velocity of zero to be set for a piston boundary condition. The reason for this is that as velocity

goes to zero, the boundary simply acts like a reflective wall. This means that it is effectively

simulating two wires right next to each other, which is unrealistic and will introduce some error.

4.4 Implicit Boundary Conditions

One class of boundary conditions that have been used for subsonic DSMC are known as

implicit boundary conditions [36, 44]. The principle behind these boundary conditions are to

specify the static pressure at a boundary and determine the flux of particles into the domain that

will achieve that specified pressure. These implicit boundary conditions can be thought of as

applying a set of governing equations to ghost cells that exist immediately outside of the domain.

Each collision cell on a boundary will have an accompanying ghost cell immediately outside of the

boundary. The fluid properties of a ghost cell are determined by extrapolating from the properties

of the adjacent DSMC cell. This extrapolation is performed using the one dimensional method

of characteristics which is essentially a solution technique for the steady, one dimensional Euler

equations. The equations governing the ghost cell properties are

ρe = ρj +
Pe − Pj

(aj)2
(4.2)

ue = uj +
Pj − Pe
ρjaj

(4.3)

ve = vj (4.4)

where ρ is density, P is pressure, a is sound speed, u is velocity normal to the boundary, and v is
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velocity parallel to the boundary. Subscript e indicates properties at the exit, or the properties of

the ghost cells immediately adjacent to the DSMC domain. Subscript j indicates properties of the

DSMC cell. The ghost cell temperature Te can then be determined using the ideal gas law

Te =
Pe
nekB

=
mPe
ρekB

(4.5)

where n is number density, m is molecular weight of the gas, and kB is the Boltzmann constant.

The assumptions made for this boundary condition are that the flow is locally adiabatic, inviscid,

and close to a perfect gas. Typically, Equations 4.2 - 4.5 are applied to each boundary collision

cell/ghost cell pair every time-step of the DSMC simulation. The properties of the ghost cells are

then used to generate a flux of particles into the domain using one of the equilibrium flux methods

described in §4.2. Thus the flux of particles into each boundary collision cell could be unique.

One of the challenges that occurs when applying the above boundary condition is the low

signal to noise ratio that can occur for low-speed DSMC simulations. This can cause instantaneous

collision cell property values to vary widely. When the scatter occurs in a boundary cell from

which ghost cell data is calculated, the problem is magnified because it then causes an unrealistic

flux of particles into the domain. To mitigate the influence of statistical scatter, time averaging

was implemented into the subsonic boundary condition in the SPARTA DSMC code. For the

averaging scheme, collision cell data is averaged over some specified number of time-steps Nt. At

the end of each averaging period, Equations 4.2-4.5 are applied to update the ghost cell values.

Ghost cell values remain constant during the next averaging period. It should be noted that this

averaging scheme makes this boundary condition even more limited to steady state flows because

the averaging will damp changes with time.

Simulations of a hotwire were carried out using the implicit boundary condition method

with time averaging. The outlet pressure was set equal to the inlet pressure. The averaging and

update interval was Nt = 200. Results for the temperature and horizontal velocity fields are are

shown in Figures 4.1 and 4.2, respectively. Significant back-flow into the domain from the outlet

is observed. To see if this was caused by scatter, additional simulations were run with Nt = 2,000,
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but the steady state results were the same, indicating that statistical scatter is not the cause of the

erroneous back-flow. The following section addresses this back-flow issue.

Figure 4.1: Temperature field for implicit boundary condition with time averaging collision cell
data over 200 time-steps and updating ghost cell values at the same frequency. Temperature color
scale is in K.

Figure 4.2: Horizontal velocity field for implicit boundary condition with time averaging collision
cell data over 200 time-steps and updating ghost cell values at the same frequency. Velocity color
scale is in m/s.
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4.5 Target Mass Flow Rate

Implicit methods were primarily derived for use with pressure driven flows such as channel

flow. For those simulations, the pressures at the inlet and outlet are known a priori, and so can

be specified with confidence because they are a defining feature of the flow field. The simulation

of a fine-wire is not such a case. Some unknown amount of pressure loss will occur from the inlet

to the outlet because of the presence of the cylinder. This means that specifying the inlet pressure

as being equal to the outlet pressure leads to an outlet pressure that is too high. Too high of

an outlet pressure leads to a reversed pressure gradient at the boundary that forces gas into the

domain from the outlet. It is therefore hypothesized that small errors in the specified outlet pressure

cause the back-flow problem seen above. This hypothesis can be supported by considering the one

dimensional and steady momentum equation for inviscid flow which can be written as

0 = −1

ρ

∂P

∂x
− u∂u

∂x
. (4.6)

Rearranging to solve for ∂u/∂x gives

∂u

∂x
= − 1

ρu

∂P

∂x
. (4.7)

This equation shows that as density and velocity (momentum) decrease, velocity becomes increas-

ingly sensitive to changes in pressure. Considering changes in u and P over some arbitrary distance,

one can write

δu = − 1

ρu
δP. (4.8)

This equation was evaluated using a value of u = 3 m/s and values of ρ corresponding to various

altitudes. Results are shown in Figure 4.3. It is shown that changes in pressure less than 1 Pa

can result in very significant changes in flow velocity for the low momentum flows of interest. This

supports the hypothesis presented above which stated that small errors in the specified boundary

pressure lead to significant acceleration or deceleration of the flow at the boundary. To address

this issue for some applications, an iterative method for adjusting pressure at a boundary will now

be presented.
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Figure 4.3: Sensitivity of changes in velocity to changes in pressure for various altitudes according
to Equation 4.8.

Any iterative scheme for adjusting pressure must have some target that the iteration algo-

rithm is attempting to reach. For many different steady state flow fields, the total mass flow rate

through the system is known. This is particularly true for confined systems such as channel flows.

It is therefore reasonable to specify a desired mass flow rate at a boundary. A relationship between

mass flow rate and the specified boundary condition can be derived from Equation 4.8. Mass flow

rate can be written in terms of velocity and density as

ṁ = ρuA (4.9)

where A is surface area of the boundary which is normal to u. Using Equation 4.9, Equation 4.8

can be written as

δṁ

ρA
= −A

ṁ
δP. (4.10)

Rearranging gives

δP = − ṁ

ρA2
δṁ. (4.11)

As should be expected, this says that increasing pressure at the boundary (δP > 0) causes a

decrease in mass flow out of the boundary (δṁ < 0) because of the introduced back pressure.

Conversely, a decrease in pressure results in an increase in mass flow rate.
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Defining δ as the difference between the value at the current time-step (current iteration)

and the next time-step (next iteration) gives

δP = Pi − Pi+1 (4.12)

δṁ = ṁi − ṁt (4.13)

Plugging these into Equation 4.11 and solving for Pi+1 gives

Pi+1 = Pi + ω
ṁi

ρiA2
(ṁi − ṁt) (4.14)

where the values for ρ and ṁ in Equation 4.11 have been taken to be those at the current time-

step (ρi and ṁi, respectively), and a damping parameter ω has been added to artificially reduce

the change in pressure between iterations. This can be used to prevent divergence. The values

of ρi and ṁi can either be taken from the ghost cells, or the DSMC collision cells. The current

implementation takes these values from the ghost cells. This means that pressure will be adjusted

until the mass flow rate of the ghost cells matches the specified value.

Equation 4.14 has been used in continuum CFD applications (e.g. STAR-CCM+), but the

current work is the first known use of it in a DSMC code. This pressure correction method has been

implemented into the implicit boundary condition method in the SPARTA DSMC code and was

applied to the same flow field as that used above to evaluate the implicit method. Figures 4.4 and

4.5 show the change in boundary pressure and mass flow rate over time, respectively. It is shown

that the iterative method successfully changes pressure to a steady state value which provides the

correct mass flow rate, within some amount of statistical scatter, through the ghost cells at the

boundary.

For the results shown, the temperature was specified at the outlet, so only velocity was

calculated by the implicit boundary condition. When left unspecified, the temperature deviated

significantly from expected values. The reason for this behavior is not yet known and will be the

subject of future investigation. Additionally, in order to apply the mass flow correction, the top

boundary was made a reflective wall. If this were not done, net flow into or out of the domain
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Figure 4.4: Outlet pressure over time for the iterative target mass flow rate boundary condition.
The orange line indicates the nominal ambient pressure.

Figure 4.5: Outlet mass flow rate over time for the iterative target mass flow rate boundary
condition. The orange line indicates the target mass flow rate which is equal to the mass flow rate
into the system.

through the top boundary makes it impossible to specify a priori what the mass flow rate through

the outlet should be. Unfortunately, the reflective boundary condition adds an additional source

of error in that the simulation is modeling an infinite array of heated wires, rather than a single

wire. This leads the temperature of the gas between the wires to be higher than it would if only

a single wire were being simulated. This is shown in Figure 4.6 where the temperature contours

appear to elongate in the vertical direction. Additionally, Figure 4.7 shows that the constriction of
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flow between the wires causes a region of higher velocity at the top of the domain, a feature of the

flow field that would not occur if only a single wire were present.

Simulations using the target mass flow outlet, standard implicit outlet, and equilibrium outlet

were run to compare the performance of these different boundary conditions. The simulation using

equilibrium boundaries used the same condition on all sides of the domain while both the other

simulations used a reflective boundary condition on the top side of the domain. Figure 4.8 show

Figure 4.6: Temperature field for implicit boundary condition with time averaging and target mass
flow rate. Temperature color scale is in K.

Figure 4.7: Horizontal velocity field for implicit boundary condition with time averaging and target
mass flow rate. Velocity color scale is in m/s.



44

the stagnation line velocity for the three different simulations. Results for both implicit methods

show a decrease in velocity between the inlet and the outlet, while the equilibrium boundary

condition does not. These data suggest there is some finite amount of drag from the wire that

the equilibrium boundary condition might not simulate properly. The standard implicit method

with a fixed pressure at the outlet has a lower flow speed throughout the entire domain than the

equilibrium boundary condition case. This is consistent with the reasoning above that suggested

an incorrect pressure specified at the outlet could create an unrealistic back-pressure.

It was calculated that the mass flow rate through the fixed pressure simulation was lower

than the expected value based on the set free stream properties. The target mass flow condition

has a generally higher velocity than the equilibrium boundary case and is everywhere higher than

the fixed pressure case. Although the data from Figure 4.5 shows that the target mass flow rate

boundary condition resulted in the correct mass flow rate through the ghost cells, it was calculated

from collision cell data that the mass flow rate through the domain was higher than the desired

value. This discrepancy between the ghost cell and adjacent collision cell values is not unreasonable

for DSMC simulations because boundary conditions do not force a particular solution as they do in

CFD. They only provide a particular flux of particles which then influences the particles inside the

domain. It is expected that improved results could be achieved if collision cell data, rather than

ghost cell data, were used in Equation 4.14 to adjust the specified pressure at the boundary.

These initial results serve as a proof of concept for the mass flow rate pressure correction

boundary condition. Further refinement is needed before it can be more generally applied. For the

purposes of the current work, it was concluded that the improvements gained by such a boundary

condition would be minimal relative to other uncertainties (e.g. statistical scatter) and biases (e.g.

domain size bias, Chapter 5) in the simulations, so further refinement of this boundary condition

has not been pursued.
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Figure 4.8: Comparison of stagnation line velocity for different outlet boundary conditions.

4.6 Summary and Conclusions

Various boundary conditions for low-speed DSMC simulations were presented and discussed.

A target mass flow rate implicit boundary condition is presented and applied to DSMC simulations

for the first time. Initial results show that the condition can be effective for limited applications and

that further refinement is needed before general use. For the purposes of simulating flow around

heated fine-wires, it is concluded that the most appropriate boundary condition for the domain

outlet, and all other sides of the domain, is an equilibrium boundary condition. This produces

the most realistic flow field around the wire, and most closely reflects the physical situation of the

real system. The equilibrium boundary condition implemented in the SPARTA DSMC code is the

surface flux method. Results presented in the remainder of this document will use either the piston

outlet with an elongated domain (Loutlet = 3Linlet), or an equilibrium outlet. Minimal differences

between these different conditions are observed.



Chapter 5

Influence of Domain Size On Simulated Fine-Wire Heat Transfer

5.1 Overview

In low-speed, nearly incompressible flows, disturbances propagate across very large distances.

When simulating a body in an unconfined flow field, this means that domain boundaries must be

positioned very far away from the body of interest in order that the solution at the body is no

longer a function of their distance away from the body. This domain size issue is less important for

internal flows where the boundaries serve as a defining feature of the flow, or for periodic systems

where boundary locations are again fixed based on the physical dimensions of the system.

A primary goal of the current study is to investigate the heat transfer from unconfined heated

cylinders in low-speed flows. The heat transfer in these low-density and low-speed flows is very

small. This makes slight biases introduced by the presence of the domain significant. Figure 5.1

illustrates the challenge at hand. The data shown are for 3 m/s flow of 300 K air (80% N2,

20% O2) over a 373.15 K cylinder. These data were produced with a full domain (no symmetry

line), elongated downstream section (Loutlet = 3Linlet = 3L). The outlet used a piston boundary

condition. Results are normalized by the simulated Nuf value when L/d = 10. It is observed that

a domain large enough to fully converge results has not been achieved for any of the conditions

simulated.

The data in Figure 5.1 show that results are a weaker function of domain size for higher values

of Kn. This is due to the fact that intermolecular collisions become increasingly less important

at larger values of Kn. Fundamentally, small domain sizes introduce error in the present DSMC
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Figure 5.1: Heat transfer as a function of domain size for 3 m/s flow at 4 different Kn values.

simulations because an insufficient number of collisions are simulated between the wire and the

free stream. As Kn values increase into the free-molecular regime, intermolecular collisions can be

completely ignored and results will become independent of domain size.

A change in domain size influence is also observed for different flow speeds. This is shown in

Figure 5.2 where Kn = 0.38. Higher flow speeds converge at smaller domain sizes than lower speeds.

Simulated wire heat transfer is a function of the simulated temperature field around the wire. The

two primary factors that influence the temperature field are convective forcing from the free stream

flow and the location of the domain boundary where temperature is effectively fixed. For large flow

speeds, convective forcing is the dominant factor and the location of the boundary has a minimal

influence on the temperature field. Conversely, for low flow speeds, convective forcing is weak and

the boundary location can be dominant. Unfortunately, the flows of interest to the current study

are below about 8 m/s where significant domain size effects are observed.

This domain convergence problem cannot simply be addressed by enlarging the domain be-

cause the simulations quickly become impractical or even impossible with current computational

resources. Using the computational cost data from Figure 3.5 and the steady state estimation of

Equation 3.8, the necessary number of processors to run a simulation to steady state in 12 hours

is shown in Figure 5.3 for different values of Kn. These data assume 100 particles per cell. Fewer
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processors could be used if less particles were simulated. However, this would introduce statistical

scatter which would need to be mitigated by increasing simulation time. Current super computer

resources (RMACC Summit) limit simulations to 24 hour run times. It is shown that the estimated

number of processors quickly exceeds the capacity of the RMACC Summit super computer, shown

in the dashed black line.

It is clear that the domain size influence on results is significant and that available computa-

Figure 5.2: Heat transfer as a function of domain size for various flow velocities and Kn = 0.38.

Figure 5.3: Approximate number of processors required for a simulation to reach steady state in
12 hours for various wire Kn values and domain sizes. Flow speed considered is 3 m/s. The black
dashed line shows the total number of processors available on the RMACC Summit supercomputer.
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tional resources prevent the simulation of the very large domains needed. The remaining sections of

this chapter discuss different approaches to address this domain size problem that were considered

and attempted.

5.2 Domain Convergence Method

One approach considered for addressing the bias introduced by the domain boundary is

to run simulations with various domain sizes and then fit a curve to that data which could be

used to predict what the simulated value would be for a sufficiently large domain. Based on the

data above, significant extrapolation may be necessary for lower values of Kn. Because of this

significant extrapolation, it is desired that the form of the fitting equation be grounded in some

physical description of the system, rather than arbitrary curve fits whose limiting behavior may

have no physical justification or meaning.

The simulation domain can be approximately modeled by two concentric circular cylinders.

The temperature of the inner cylinder is equal to that of the wire, and the temperature of the

outer cylinder is equal to that of the free stream. For continuum gas at zero velocity with constant

thermal conductivity and a cylinder of unit length, the governing equation for the heat transfer

between these two surfaces is given by Fourier’s law as

Q̇ = −kA(r)
dT

dr
(5.1)

where r is the radius from center of the cylinders, Q̇ is the rate of heat transfer in W, and A(r) is

the heat transfer surface area at radius r. Rearranging and substituting A(r) = 2πr gives

− dT =
Q̇

2πrk
dr. (5.2)

Integrating from the inner to the outer cylinder yields

−
∫ To

Ti

dT =

∫ ro

ri

Q̇

2πrk
dr (5.3)

Ti − To =
Q̇

2πk
(ln ro − ln ri) (5.4)

Ti − To =
Q̇

2πk
ln

(
ro
ri

)
(5.5)
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where To, Ti and ro, ri are the temperature and radius of the outer and inner cylinders, respectively.

Solving for Q̇ and expressing in terms of simulation domain size L = ro and wire diameter d = 2ri

gives

Q̇ = 2πk
Ti − To

ln (ro/ri)
= 2πk

Ti − To
ln (2L/d)

. (5.6)

Solving in terms of Nu gives

Nu =
Q̇

πk(Ti − To)
=

2

ln (2L/d)
. (5.7)

Interestingly, this theory predicts that Nu→ 0 as L/d → ∞. This is in agreement with theory

presented in [14] in which a relation for Nu was derived from Oseen’s flow theory (Equation 1.8).

The reason for this limit in each of these theories is that, according to the continuum model for

a fluid at rest, energy transfer only occurs in the presence of a temperature gradient according

to Fourier’s Law of heat conduction. As the distance between the inner and outer cylinders (or

the wire and domain boundary) gets very large, the temperature gradient at the inner cylinder

approaches zero. In any case, Equation 5.7 at least provides a functional form for the expected

trend between heat transfer and domain size for the current problem in which it is hypothesized

that heat transfer to the cylinder is being dominated by conduction between the wire and domain

boundary rather than convective forcing. Inspired by this solution, a good candidate for a fitting

function is

Nu = A+
B

ln(C · L/d)
(5.8)

where A, B, and C are fitting parameters calculated using a non-linear least squares algorithm

applied to data from simulations with various L/d values. This equation allows a non-zero limit,

A, as L/d → ∞. To illustrate the fitting process, the best-fit lines calculated for the Kn = 0.38

data in Figure 5.2 are shown in Figure 5.4. The form of the model appears to accurately represent

the behavior of the data.

The value for the fit parameter A represents the predicted value for Nu at an infinitely large

domain. This asymptotic value of Nu is compared with the original DSMC data and experimental

data from [63] in Figure 5.5. From this data it appears that the convergence approach worked well
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for the values of Ref > 0.075. However, it appears to dramatically under-predict heat transfer for

the lower velocity cases. The reason for this apparent dramatic shift in performance is due to the

lower speed simulations being completely dominated by the presence of the boundary. This shows

that a particular domain size needs to be reached before any noticeable influence of the free stream

velocity is observed. Prior to that domain size, the simulation box behaves very similar to the

concentric cylinder model from which the fit was derived, which results in a very low value of A.

This is because an infinitely large system in which only conduction is present will have zero heat

transfer according to the continuum model [14].

Results of applying the method to a range of conditions is shown in Figure 5.6. All Kn

conditions used the same domain sizes to apply the method (L/d = 10, 25, 50, 75, and 100).

Again, reasonable corrections to the data are observed for higher Re cases, but at lower velocities,

the method appears to dramatically over-correct the data. It is interesting to note that the corrected

data for the lower velocity cases actually appears to collapse onto a single curve. This may be

evidence of the fact that these simulations are all dominated by the same physical phenomena,

that being the domain size since that is constant across all simulations. It should be noted that

the parameter A was restricted to only positive values since negative heat transfer for the present

conditions is unrealistic. This also prevented divergence of the non-linear solver for some cases.

Figure 5.4: Heat transfer data from Figure 5.2 with a non-linear least squares fit of Equation 5.8.
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The shortcomings of the method are primarily due to the fact that heat transfer results from

simulations with too small of a domain size are entirely dominated by the presence of the domain.

The bulk flow has very little influence on the heat transfer. The method only appears to work when

simulation domains are large enough to where the convective forcing begins to dominate over the

influence of the boundary. This can be seen in Figure 5.7 for data from the Knf = 0.65 case. In this

view, the dependence of Nuf on L/d is very linear for the lower velocity cases. Deviations from that

trend only occur for the higher velocity cases where convection effects dominate at lower domain

sizes. Extrapolating from the data that is almost entirely dominated by conduction between the

boundary and the wire results in a large under prediction of heat transfer because conduction will,

in fact, become very small for such large domain sizes.

From the above results and discussion for the domain size method, it can be concluded that

the approach could work for a limited number of scenarios, but can only be trusted for moderate

corrections to simulation results. The method still requires data from simulations with domains that

are large enough to where convective forcing begins to dominate over the influence of the boundary.

No general methods for predicting how large that is for different conditions is yet established. Given

this minimum domain size for the method to work, it is difficult to say how much the approach

Figure 5.5: Comparison of DSMC results (solid line), domain convergence prediction (dashed line),
and experimental data (black x’s) for Knf = 0.38.
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Figure 5.6: Results of applying the domain convergence method to DSMC data collected for various
Knf values. Dashed lines show the prediction from the domain convergence method with the fit
uncertainty.

could reduce the overall computational cost relative to simply running simulations of a sufficient

size. Given these shortcomings, no generally applicable domain convergence method has been

established. It should be noted that other forms of fitting equations were explored, but the one

given in Equation 5.8 has provided the best and most reasonable results to-date. Determining a

more appropriate fitting function could be the topic of future study and may help to produce a

reliable domain convergence methodology.

5.3 Effect of Domain Length

Given the finite flow speeds, it could be reasoned that better results could be obtained if the

downstream boundary is positioned further from the wire than the rest of the boundaries. This

was tested for a domain with an equilibrium outlet boundary condition and results are shown in

Figure 5.8. For the orange triangle data set, the distance of the outlet from the wire is increased

while the inlet and top boundaries remain a fixed distance from the wire (Linlet = Ltop = 100 · d).

The blue square data set shows results from a half-square domain where the inlet, top, and outlet

are equidistant from the wire (Linlet = Ltop = Loutlet). No discernible change in wire heat transfer

occurs when only the down stream boundary location is changed, while significant change occurs
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Figure 5.7: Log-log plot of heat transfer as a function of domain size for Knf = 0.65.

for the case where all boundaries are moved further from the wire. These data indicate elongated

domains do not improve results for the low-speed flows of interest. This also provides evidence that

the simulations which used an elongated domain with a piston outlet are likely minimally biased

by the slight errors that the piston condition may introduce (§4.3).

Figure 5.8: Heat transfer data for DSMC simulations with various domain sizes. The blue square
data set shows heat transfer results for a half square domain where the inlet top and bottom are
equidistant from the wire. The orange triangle data set shows results for a domain where the inlet
and top are 100 diameters from the wire center and only the outlet boundary position is changed.
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5.4 Improving Computational Efficiency for Large Domains

For continuum CFD simulations, it is common to refine the computational grid where gradi-

ents are high or near surfaces. Areas of the flow that have small gradients or are far from surfaces

can have larger computational cells. This can greatly improve the efficiency of continuum CFD

simulations because the computational cost scales with number of grid elements. The same benefit

does not exist for current DSMC methods. Computational cost for a DSMC simulation scales

primarily with the number of simulated particles as was shown in Chapter 3. The ratio of real gas

molecules to simulated molecules is dictated by the parameter fnum which is specified as a single

value for each simulation. For the case of a heated wire, density increases to the free stream value

as distance from the wire increases. This means that a higher density of simulated particles is

required in the far field of the simulation than near the wire even though gradients far from the

wire are very small. This is independent of the exact collision cell grid.

DSMC simulations are discretized spatially by collision cells. Collision cells are used to sort

particles to be collided with one another. One key physical requirement of DSMC simulations is

that the size of collision cells must be less than the mean free path of particles. Mean free path

scales inversely with density. Again, considering the flows of interest here, this would result in a

finer collision cell grid far from the wire despite the fact that gradients in that region will be small.

In light of the above discussion, refining the collision cell grid for the current simulations would

not reduce computational cost as domain size increases. It does, however, highlight a potential

area of future development for the DSMC method. A DSMC simulation involves three different

discretizations that include the discretization of time with a time-step (∆t), space with collision

cells (∆Lc), and number of particles with fnum. Adaptive methods exist for both the time-step and

collision cell sizes. These methods have helped to greatly improve the efficiency of many DSMC

simulations. However, no method currently exists to dynamically refine fnum or to have variable

values of fnum within a given simulation. The discussion above provides an argument for the

development of such a feature. In the far field of the simulation, the density of the gas is high but
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the gradients are low. In this region of the flow, it would be reasonable to significantly increase

the value of fnum (decrease the number of simulated particles). Near the wire, a higher density

of simulated particles (lower fnum) would be required to accurately capture gradients in the flow

and provide a sufficient number of surface collisions for calculating heat transfer. A variable fnum

scheme for DSMC would be similar to the Discrete Velocity Methods discussed in Chapter 2 where

particle mass can change during a collision. As DVM codes increase in availability and maturity,

they may prove to be a better simulation method for the current problem than conventional DSMC.

5.5 Summary and Conclusions

Data presented in this chapter show that the influence of domain size on simulated wire heat

transfer is significant up to very large domain sizes. Constructing DSMC domains that are large

enough to not influence results is computationally impractical or impossible for simulations where

the wire Kn value is less than about 3. A domain convergence method was presented as a means to

potentially correct results for the bias introduced by the finite domain size. The method appears

effective for simulations with larger values of Re when only small corrections to wire heat transfer

results are expected. However, it can predict very unreasonable values if insufficient simulation

data is provided to the fitting algorithm. Ultimately, the method is not currently robust enough

for general implementation. In light of the data presented in this chapter, it is clear that DSMC

should not be used to directly generate fine-wire models of Nu as a function of Re for conditions

in the middle transition regime because the domain size bias is a strong function of simulated flow

speed.

However, DSMC is still useful at examining trends with Kn and can still be used, within

a reasonable degree of accuracy, for exploring the parameter space of fine-wires that are difficult

to do experimentally. Additionally, experiments of very high Kn flows are difficult because of the

decreasing signal to noise ratio. DSMC, however, becomes more feasible with increasing Kn, though

the problem of statistical scatter is still present. Given these complementary features of DSMC

and experimental data, the two means of collecting data should be used together to paint a picture
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of heat transfer through the entire transition regime. Despite the known bias introduced by finite

domain sizes, the remainder of this report presents simulation results exploring various aspects of

the fine-wire parameter space. The effect of domain size bias on those results is discussed in light

of the data presented in this chapter.



Chapter 6

Fine-Wire Heat Transfer in Rarefied Flows

6.1 Overview

This chapter presents results from DSMC simulations of heated fine-wires in rarefied flows.

Given the shortcomings of the current simulation methodology, as discussed in Chapter 5, the goal

of the simulations herein is not to develop heat transfer models directly. Simulations are instead

used to explore the parameter space of these fine-wires and to develop some physical insight into

their behavior in the transition regime.

The work of Xie et al. 2017 is cited frequently throughout this chapter [63]. The data and

empirical models presented in that work represent the most recent and thorough treatment of

fine-wire heat transfer in the transition regime. They present empirical models derived from their

data which are currently being used for processing turbulence measurements for the HYFLITS

campaign. Verifying those models and understanding their limitations is of immediate engineering

and scientific interest.

6.1.1 Initial Verification of Simulation Results

Figure 6.1 shows simulation results for heat transfer across a wide range of Knf values

along with experimental data and free-molecular theory [63]. These data are for a flow speed of

about 5 m/s. At low Knf values, good agreement with experiment is observed. As Knf increases,

DSMC data begins to agree very well with free-molecular theory. These data show that, despite

the biases caused by the finite domain size, the present simulations can still provide realistic results
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Figure 6.1: DSMC Simulation results compared with experimental data from [63] and free-molecular
theory through the transition regime.

and trends through the transition regime. This data also supports the claim made in the previous

chapter that DSMC will become increasingly accurate at higher Kn values and can therefore be

trusted to accurately predict when free-molecular theory becomes sufficiently accurate.

6.2 Sensitivity to Reynolds Number

Figure 6.2 shows a comparison of DSMC simulation results to the empirical model for Nuf

presented in [63]. Generally good agreement is observed. Simulated heat transfer shows a lower

sensitivity to velocity than the empirical model. This can be attributed to the bias due to finite

domain size which increases with decreasing Ref as was discussed in Chapter 5. Difference between

simulation data and the empirical model is shown in Figure 6.3. Decreasing simulation bias with

increasing Ref is clearly observed. Despite that known bias, however, simulations predict a lower

Nuf value at high Ref for the Knf = 1.12 case. This discrepancy is relatively small and could

be due to any number of minor differences between the simulation and experiment including the

surface accommodation coefficient α or the wire temperature. Another possible cause is the piston

outlet condition used for the simulation data shown. As was discussed in Chapter 4, this condition

is expected to result in an unrealistic temperature field around the wire. That bias will tend to
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Figure 6.2: Comparison of DSMC heat transfer data (markers and solid lines) with the empirical
model presented in [63] (dashed lines) for various Knf values. Uncertainty bars indicate ±1σ of
the steady state DSMC data.

Figure 6.3: Difference between DSMC heat transfer data and the empirical model presented in [63]
for various Knf values. Uncertainty bars indicate ±1σ of the steady state DSMC data.

increase the temperature on the downstream side of the wire which would subsequently decrease the

power loss from the wire to the fluid. Given the model and simulation uncertainties, it is difficult to

draw any decisive conclusions about this difference between the simulations and empirical model.
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Figure 6.4: Simulation data for Nuf as a function of Ref for various Kn values. Empirical model
from [5] and free-molecular theory are shown.

6.2.1 Velocity Dependence from Continuum to Free-Molecular

Figure 6.4 shows DSMC results for Nuf as a function of Ref for various Knf values. Included

in the plot is the empirical model for slip-flow from [5] and free-molecular theory. It is seen that these

two cases have entirely different behaviors. The model from [5] shows Nuf as an increasing function

of Ref . This is also true for the models presented in [63] and all known models in continuum and

slip-flows. The free-molecular solution, however, is a decreasing function of Re and the maximum

value of Nu occurs at Re = 0.

The free-molecular result can be reasoned by considering the molecular model of fluids. Gas

particles impact a surface and then are emitted from that surface. A particle’s state before and

after that interaction may or may not be correlated depending on the type of collision that occurs.

Energy transfer with the surface occurs when a particle has a different energy before and after it

collides with the surface. In a free-molecular flow, intermolecular collisions do not occur. This

means that every particle hitting the wire is from the free stream and will, statistically speaking,

share the same thermal properties of the free stream. For a wire with an elevated temperature

relative to the free stream, this means that the maximum positive energy difference between the

state of particles being emitted from the wire and the state of particles impacting the wire occurs
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when the velocity is zero. As flow speed increases, the kinetic energy of particles hitting the surface

increases, decreasing the energy difference between emitted particles and impacting particles. This

results in Nu decreasing with increasing Re. At a certain flow speed, or Re value, free stream

particles will have a greater energy than particles emitted from the surface causing the flow of

energy to reverse and instead go from the fluid to the surface. For the case shown in Figure 6.4,

this occurs at a Ref value of about 0.44 for free-molecular flow (although it cannot be seen because

the y axis is log scale).

The same phenomena also occurs in the continuum. At sufficiently high flow speeds the net

energy transfer will be from the fluid to the wire, rather than the reverse. The point at which

this occurs is a function of the temperature difference for both free-molecular and continuum flows.

This means that a maximum Nuf occurs at some finite value of Ref in a continuum flow. The data

here shows that the value for Ref at which a maximum heat transfer occurs must drop from some

finite value to zero as Kn increases through the transition regime.

A key practical implication from the results of Figure 6.4 is that the value of ∂Nuf/∂Ref at

low values of Ref moves from a positive value in the continuum and slip-flow regimes to a negative

value in the free-molecular regime. This means the sensitivity of wire heat transfer to flow speed

is very small for low-Ref values through the transition regime. This can make hotwire flow speed

or turbulence measurements very difficult and impossible at the point where ∂Nuf/∂Ref = 0.

This comparison with free-molecular theory also explains why simulated heat transfer shows no

discernible sensitivity to flow velocity for higher Kn values. It was first reasoned that this was due

to the domain size bias, and that still may be true to a certain extent. However, according to the

above discussion, there is a physical justification for an insensitivity of heat transfer with velocity

for high Kn flows.

6.3 Sensitivity to Gas Composition

The experiments of [63] were performed using diatomic nitrogen, N2. Previous authors have

shown that fine-wire heat transfer models can be applied to various gases with little error [5].
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Simulations were run to explore the dependence of heat transfer on gas composition for the current

conditions. Three different gases were simulated including 100% N2, 100% Ar, and a mixture of 80%

N2 and 20% O2 to simulate atmospheric air. Results are compared with empirical models from [63]

in Figure 6.5. The difference between empirical models and simulation data is shown in Figure 6.6.

Minimal difference between simulations of N2 and air are observed, while a significant difference

is observed for the simulations of Ar. The former point is important because it helps to validate

the use of the model from [63] for analyzing atmospheric turbulence measurements currently being

made. The results shown also reveal that the empirical models should not be extrapolated above

the specified range for Knf (Knf < 3). Even being slightly outside of this range results in very

large discrepancies as is shown by the Knf = 3.15 data for N2 and air.

The significant shift observed for the simulations of Ar shows that some dimension of the

parameter space has not been sufficiently taken into account in the empirical model. To further

validate the Ar results, Figure 6.7 shows simulation data for both Ar and N2 as Knf values are

increased into the free-molecular regime. Each data set shows a smooth transition to the free-

molecular solution, which is notably different for the two mixtures. This highlights that analysis

of free-molecular theory is useful for understanding the important dimensions of the fine-wire pa-

rameter space in the transition regime. It is reasonable to conclude from the data shown that the

models from [63] should not be applied to gas mixtures that are significantly different than pure N2.

6.4 Sensitivity to Accommodation Coefficient

Thermal accommodation coefficient, αth, quantifies the efficiency of energy transfer between

a gas and a surface. A typical definition for αth is

αth =
qi − qr
qi − qw

(6.1)

where qi is the incident energy flux, qr is the energy flux of particles reflected off the surface, and qw is

the energy flux away from the surface if all reflected particles are emitted from the surface according

to the Maxwellian equilibrium distribution at the wall temperature (0 ≤ αth ≤ 1). Experimental
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Figure 6.5: Simulated values of Nuf as a function of Ref for simulations of N2 (dashed lines), Ar
(dotted lines), and a mixture of 80% N2 and 20% O2 (solid lines). Empirical models from [63] are
also shown for reference.

Figure 6.6: Difference between simulated values of Nuf and the empirical model from [63]. Data
is from simulations of N2 (dashed lines), Ar (dotted lines), and a mixture of 80% N2 and 20% O2

(solid lines). Data for Knf values of 0.55 (green circles), 1.1 (orange triangles), and 3.15 (blue
squares) are also shown.

determination of αth can be quite difficult because it depends on many factors including the gas

mixture, surface material, surface temperature, pressure, and surface manufacturing details [3, 5, 12,

23]. Manufacturing inconsistencies and surface impurities can significantly change αth, especially

for micro-surfaces whose surface flaws have a length scale similar in magnitude to the surface itself.

Many authors have noted that αth becomes an increasingly important parameter for fine-wires as
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Figure 6.7: DSMC data for Nuf as a function of Knf for zero velocity Ar (blue x’s) and N2 (orange
circles). Free-molecular solutions for each mixture are also shown with the dashed blue line and
the solid orange line showing the solutions for Ar and N2, respectively.

Kn values increase [5, 6].

While it is very difficult to experimentally measure and control the accommodation coefficient

of fine-wires, a specific value for αth can be modeled simply in the DSMC method by considering a

mix of specular and diffuse reflections at the wire surface. During a specular reflection, the normal

velocity of an impacting particle is reversed and internal energy modes remain unchanged. Particle

energy before and after the surface reflection is equal, so no energy transfer occurs. During a

diffuse reflection, a particle that impacts a surface is assumed to be absorbed, then re-emitted from

the surface in a random direction with a speed and internal energy according to the Maxwellian

equilibrium distribution at the surface temperature. The fraction of diffusely reflected particles

is specified for a simulation by the parameter α. A specific value for αth is modeled by setting

α = αth. If α = 1, all particles are diffusely reflected and qr = qw. If α = 0, all particles are

specularly reflected and qr = qi. The net energy exchange between the surface and the gas is zero

for a fully specular surface.

Because of the uncertainty in experimentally measured values for αth, DSMC simulations

were used to investigate the sensitivity of wire heat transfer to variations in α. Simulations were

performed with different values of α. Figure 6.8 shows the dependence of Nuf on α for four different
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Figure 6.8: Dependence of wire power loss on surface accommodation coefficient at different values
of wire Knudsen number. Data shown correspond to U∞ = 3 m/s. The free-molecular solution for
Kn = 15 is also shown.

Knf cases. Results shown correspond to U∞ = 3 m/s, though this same data was also produced

for U∞ = 1, 8, 15, and 20 m/s. Similar trends are observed at other velocities. Only one case

is presented for brevity. The simulated mixture is air (80% N2 and 20% O2) at various pressures

(P = 105, 300, 600, and 1000 Pa). Free stream and wire temperatures are T∞ = 300 K and Tw =

373 K. Wire diameter is d = 20 µm. An elongated domain was used where (Linlet, Ltop, Loulet)/d =

(100, 100, 300). A piston condition was assigned at the outlet.

The data shown for each value of Knf are quite linear for α > 0.25. It is known that all

of these curves, however, must pass through the origin where all reflections are specular (Nuf =

0 when α = 0). This means that the gradient (∂Nuf/∂α) must be very high and non-linear as α

approaches zero. Details of the behavior near α = 0 are not of particular interest to the current

study because realistic values of αth for hotwires in air are greater than 0.5, where the data appears

linear. The model for free-molecular flow is also shown. As can be seen in Equation 3.9, the rate

of heat transfer is directly proportional to α in free-molecular flow.

DSMC data presented in most of this work uses α = 0.85, an estimate for both tungsten and

platinum wires in N2 or O2 [3]. Using the data shown in Figure 6.8 (and that same data for other

velocity cases), the derivative of Nuf with respect to α at α = 0.85 can be estimated using a simple
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Figure 6.9: Derivative of Nuf with respect to α evaluated from DSMC data at α = 0.85. Black
line is calculated from free-molecular theory for Kn = 15.

Figure 6.10: Derivative of Nuf with respect to α evaluated from DSMC data at α = 0.85 normalized
by the respective value of Nuf . The result from free-molecular theory is given by the solid black
line.

finite difference. The calculated value for ∂Nuf/∂α is shown as a function of Ref for different Knf

values in Figure 6.9. The same data are shown in Figure 6.10 normalized by the respective value

of Nuf . These data represent the percent uncertainty in Nuf caused by some uncertainty in α.

A shift in the dependence of ∂Nuf/∂α on Ref occurs as Kn values increase through the tran-

sition regime and into the free-molecular regime. Simulation results show that increased sensitivity

to α is observed with increasing Ref and Knf . The opposite trend with Ref is observed in the
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free-molecular case. Free-molecular theory predicts that sensitivity to α decreases with increasing

Ref and actually reverses sign at sufficiently high Ref . The point at which ∂Nuf/∂α = 0 identically

aligns with where the rate of heat transfer is zero. At higher values of Re, the direction of heat

transfer reverses so that energy is instead transferred from the fluid to the wire. The negative sign

for ∂Nuf/∂α after this point means that smaller values of α lead to less negative values of Nuf .

The normalized data in Figure 6.10 reveals that although the absolute sensitivity decreases

with higher Kn values, the relative sensitivity increases. This is consistent with the reasoning and

data of previous researchers who have noted that the importance of knowing αth increases in the

rarefied flow regimes [5, 6]. The free-molecular solution is also shown in Figure 6.10. This solution is

readily derived by considering that the free-molecular solution for Nu is directly proportional to α,

Nu = αf(Pr,Re, T ∗, γ). (6.2)

The derivative of Equation 6.2 is then

∂Nu

∂α
= f(Re,Pr, T ∗, γ). (6.3)

Normalizing by the respective value of Nu then gives

1

Nu

∂Nu

∂α
=

1

α
. (6.4)

This value is constant with respect to Re, which justifies the results for the Knf = 3.74 case where

the data also appears constant with respect to Ref . The dependency on Ref observed in the lower

Knf cases could be due to the domain size bias. It is known from the results presented in Chapter

5 that current DSMC simulations over-predict Nuf at lower values of Ref . If, however, simulations

predict ∂Nuf/∂α more accurately than ∂Nuf/∂Ref , then normalizing by the biased data would

explain the positive slope seen for high Kn cases in Figure 6.10.

The data above provide approximate values that can be used for subsequent sensitivity anal-

yses of fine-wires operating in the transition regime. For example, if a finewire has a surface

accommodation coefficient of α = 0.85 ± 0.1, this data shows that the subsequent uncertainty in
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Nuf ranges from about 3.6% to 7.5% for Kn values from 0.39 to 3.74. The free-molecular limit

provides a maximum estimate for the sensitivity of Nu with α. This maximum limit, for a given

value of α is 100× δα/α. For the example just mentioned, this value is ≈ 12%.

6.5 Sensitivity to Temperature

The free stream and wire temperatures for the experiments of [63] were 300 K and 373.15 K,

respectively. At altitudes of interest for the HYFLITS research campaign, the ambient tempera-

tures range from about 216 K to 232 K according to the standard atmosphere model [1]. Wire

temperatures are controlled to be about 30-40 K above the ambient. This large difference in tem-

peratures warrants a particular investigation. DSMC simulations at various pressures were run

with a free stream temperature of 225 K and wire temperature of 260 K. These data are compared

with other simulation data where Tw = 373.15 K and T∞ = 300 K and the empirical models from

[63] in Figures 6.11 and 6.12. The latter figure shows the difference between simulation results and

the empirical model.

For all data that lies within the stated model bounds (Knf < 3), the difference is less than

20%. It does, however, appear that the lower temperature cases generally have a higher difference

for a given value of Ref . This difference is still within the expected simulation biases, though, so

definitive conclusions cannot be drawn. Considering the limit of free-molecular flow, the Nusselt

number becomes a function of temperature through the term T ∗ = Tw/T∞. The value of T ∗ for

the experiments of [63] is 1.24 and for the HYFLITS measurements is about 1.16. Figure 6.13

compares the two different temperature cases across a wide range of Knf values for a flow velocity

of 3 m/s. Also shown is the empirical model from [63] and free-molecular theory. Only one line

is drawn for each model because the difference between model predictions for the two different

temperature cases is less than the line width. The small difference in the value of T ∗ for the two

cases results in a small difference in the solution at the free-molecular limit. This provides further

evidence that the models from [63] can be used to analyze turbulence measurements despite the

different temperature situation in the HYFLITS fine-wire measurement system.
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Figure 6.11: Simulated Nuf as a function of Ref for wires at various temperatures and Knf values.
Solid lines show the respective empirical models from [63].

Figure 6.12: Difference between simulated heat transfer rate and empirical models from [63] for
simulations of various wire temperatures.

6.6 Heat Transfer From Transition to Free-Molecular Regimes

Simulation results in Figure 6.13 show a smooth transition from the empirical model of [63]

for Kn < 2 to free-molecular theory for Kn > 5. Percent difference between simulation results and

each of these models is given in Figure 6.14. This view further illustrates the range of applicability

for each model. A difference of less than 10% between simulation results and the empirical model

is observed for Knf < 2. Much of this is attributable to the finite domain size error in the
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Figure 6.13: Comparison between simulation results, the empirical model from [63], and free-
molecular theory. Dotted lines indicate an extrapolation of the respective model.

simulations. However, the model and simulation results significantly diverge for Kn values above

2 with differences greater than 40% by a Kn value of 3. Large differences at Kn values above 3

were observed in results above. It was originally stated in [63] that the empirical model could be

applied to Kn values up to 3. However, the present results suggest that the applicable range may

only extend up to a Kn value of about 2. Simulation results show increasingly better agreement

with free-molecular theory as Kn increases. For Kn ≥ 3, the difference between simulation results

and free-molecular theory is less than the difference with the empirical model from [63].

These results have direct implications for fine-wire measurements of turbulence in the strato-

sphere. Shown in Figure 6.14 are dashed vertical lines that indicate the respective altitude for the

given value of Kn for a 5 µm wire with Tw − T∞ = 35 K according to the 1976 U.S. Standard

Atmosphere Model [1]. This approximately models the conditions of balloon-borne fine-wires of

the HYFLITS campaign. This shows that the empirical models from [63] are appropriate for data

collected below about 35 km. Above that altitude, significant errors may be introduced by using

the model from [63]. In the processing of data, the value of Knf based on measured temperature

and pressure should be checked. To ensure that empirical models introduce an error that is less

than about 20% (Appendix A), data collected where Knf > 2.5 should be discarded until a more
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Figure 6.14: Difference between simulated Nu and the empirical model from [63] (red) and free-
molecular theory (black). Square markers show results where Tw = 260 K and T∞ = 225 K. Circle
markers show results where Tw = 373 K and T∞ = 300 K. Dashed vertical lines and labels indicate
the respective altitude for a 5 µm wire with Tw − T∞ = 35 K [1].

appropriate empirical model is developed for these values of Knf .

As discussed in §6.2.1, the shift to free-molecular conditions results in a sign change of

∂Nuf/∂Ref . Present results suggest that this sign change could occur at an altitude between 40

and 50 km for the HYFLITS system based on the fact that simulations begin to agree very well

with free-molecular theory in this region. Further simulations and analyses are necessary to more

accurately identify where ∂Nuf/∂Ref = 0.

6.7 Conclusions

Extensive simulation data exploring the parameter space of fine-wires in the transition regime

was presented in this chapter. Initial verification of simulation results is given in Section 6.1.1.

Several important conclusions can be drawn from the data presented.

Given the known simulation error discussed in Chapter 5, results shown in Section 6.2 for

the velocity dependence of power loss verifies empirical models from [63] for the values of Knf and

Ref explored.

An investigation of the velocity dependence of heat transfer rate from continuum to free-
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molecular conditions was conducted in Section 6.2.1. It is observed that ∂Nuf/∂Ref changes from

a positive value in the continuum regime to a negative value in the free-molecular regime for low-Re

conditions. This means that ∂Nuf/∂Ref = 0 at low-Re values somewhere in the transition regime.

Fine-wires cannot be used to measure changes in flow speed at the point where ∂Nuf/∂Ref = 0.

Based on subsequent results presented in Section 6.6, it is predicted that ∂Nuf/∂Ref = 0 at an

altitude between 40 and 50 km for the HYFLITS measurement system. Further investigation is

necessary to more precisely identify where ∂Nuf/∂Ref = 0 for the conditions of interest.

Simulations of various gas compositions reveal that differences in heat transfer rate for fine-

wires in N2 and air (80% N2, 20% O2) are negligible over the Ref and Knf ranges of interest to

the HYFLITS campaign. This verifies the use of empirical models, which are derived from exper-

imental data for N2, for measurements made in atmospheric air. However, significant differences

are observed between results for N2 and Ar. The observed differences are supported by the fact

that free-molecular solutions for these two gases are similarly different.

An investigation of power loss dependence on the surface accommodation coefficient α is

presented in Section 6.4. Results show that the relative sensitivity of heat transfer rate to α

increases with Knf and reaches a maximum at the free-molecular limit. Free-molecular theory

shows that for the particular case of α = 0.85± 0.1 (which is representative of real fine-wires), the

maximum uncertainty in Nu is about 12%.

Simulations with wire and free stream temperatures matching both experiments from [63]

and the HYFLITS measurement system were performed. No significant differences in wire power

loss between these two different temperature situations are observed. This result is supported by

that fact that the two temperature situations have similar solutions at the free-molecular limit.

This further verifies the use of empirical models from [63] for the HYFLITS system.

Finally, differences between simulation results and the empirical model from [63] and free-

molecular theory are explored over a wide range of Knf in Section 6.6. The empirical model diverges

from simulation results significantly for Knf values above 2 which corresponds to altitudes above

about 35 km for the HYFLITS measurement system. The difference between simulation data and
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free-molecular theory is less than 20% for Knf values above 4 or altitudes above about 40 km. New

power loss models are needed for measurements collected where Knf is greater than about 2.5 and

until free-molecular theory is deemed sufficiently accurate.



Chapter 7

Fine-Wire Temperature Jump in Rarefied Flows

7.1 Overview

The phenomena of temperature jump in rarefied flows is well known. Temperature jump

refers to the difference in temperature between a surface and the gas immediately adjacent to

that surface. Wall boundary conditions for continuum CFD generally assume this difference is

zero. However, as Kn values increase for a given flow, a temperature jump occurs and the normal

continuum assumption becomes invalid. As should be expected, simulation results of the current

study reveal a significant temperature difference between the wire and the adjacent gas for moderate

Kn values. Several studies have accounted for temperature jump using a first order approximation of

temperature jump at the wire surface [5, 15, 31]. These results have proven valuable for the slip-flow

regime, but accuracy degrades as Kn increases into the transition regime. No known studies have

thoroughly investigated temperature jump around fine-wires in the transition regime. The reason

for this lack in the literature is due to the difficulty or inability to measure this temperature jump

experimentally, and the relative lack of numerical simulation studies of fine-wires in this regime.

Results presented illustrate that the classical approach to nondimensionalizing power loss in the

continuum regime is not appropriate for the transition and free-molecular regimes. A discussion of

results for hotwire heat transfer in light of this temperature jump is presented in the final section.

Temperature jump is the temperature of the gas immediately adjacent to the wire. For

subsonic flow with no chemical reactions, the temperature of the fluid surrounding the wire can be

expected to lie in the range of T∞ ≥ T ≥ Tw. A reasonable dimensionless representation of the
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temperature jump surrounding the wire is then

T ∗j =
Tj − T∞
Tw − T∞

. (7.1)

For the present DSMC simulations, temperature data is output on a per-collision cell basis.

Practically speaking, many different definitions of temperature jump could be used. For the current

work, temperature jump has been defined as the average temperature of all collision cells whose

center lies within one mean free path of the surface. The mean free path for this purpose is

calculated based on the free stream conditions. This definition ensures that data from several

collision cells will be included because collision cells are sized to be less than 1/2 the mean free

path in width and height. Figure 7.1 illustrates the algorithm used for identifying collision cells

from which temperature jump is calculated. A minimum radius is required in the algorithm to

ensure that cells which are entirely or mostly contained within the wire are not included in the

calculation of Tj . After the cells near the wire are identified with this algorithm, the average and

standard deviation of thermal temperature of the cells is calculated. Steady state data is calculated

as the average Tj for all steady state output data. The uncertainty of the steady state data is taken

as the quadrature sum of the average standard deviations from all data sets and the standard

deviation of the time-varying Tj data. All temperature jump data presented herein is presented as

a point representing this time average and uncertainty bars representing that quadrature summed

uncertainty.

7.1.1 Influence of Domain Size on Simulated Temperature Jump

A study of the impact of domain size on results for temperature jump was conducted. Results

for T ∗j as a function of domain size are shown in Figure 7.2 for various Kn values. A positive

relationship between domain size and temperature jump is observed for all data sets over the range

of domain sizes used. The relationship is relatively weak, however. Dependence on domain size

increases with decreasing values of Kn. Values of T ∗j for the largest three domain sizes lie within

each other’s uncertainty bounds for each case. Results presented in subsequent sections are from
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simulations where L/d = 100.

7.2 Empirical Model for Transition Regime Temperature Jump

As discussed above, it should be expected for the flows of interest to the current work that

values of T ∗j should lie between 0 and 1. As Kn → 0, it should be expected that T ∗j → 1. This is

the standard assumption made when analyzing most hotwire data to-date. As Kn →∞, it should

be expected that T ∗j → 0. This is reasonable because as Kn gets very large, a vanishing number

of particles collide with the surface. Those particles which do collide with the surface travel a

relatively far distance away from the wire before colliding with other particles. Therefore, particles

reflecting off the surface have a negligible impact on the average temperature of gas particles near

the surface. In the transition regime between these two limits, the value of T ∗j must decrease with

increasing Kn.

Figure 7.1: Schematic illustrating the method for calculating temperature jump from DSMC data.
The outer and inner boundaries define the region where DSMC data is selected. λ is the mean free
path calculated at free stream conditions. Hashed cells indicate those chosen for calculating the
temperature jump in the given example.
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Figure 7.2: Temperature jump results for simulations with various domain sizes. The legend
indicates the free stream value of Kn for each set of data.

A model has been developed for T ∗j from DSMC data. The model equation is given by

T ∗j =
1

2
erfc

(
A+B × ln

(
Knjf
α

))
(7.2)

where erfc() is the complementary error function, A and B are calibration constants, α is the

surface accommodation coefficient, and Knjf is the value for Kn calculated using the jump film

temperature, Tjf = 0.5(Tj +T∞). For purposes of calculating the calibration parameters A and B,

the model can be rearranged as

erfc−1
(
2T ∗j

)
= A+B × ln

(
Knjf
α

)
. (7.3)

In this form, the values of A and B can be found using linear least squares optimization applied to

data for T ∗j . DSMC simulation data has been used to calculate these parameters. The simulation

data used had a flow velocity of 3 m/s, α = 0.7, 0.85, and 1, Tw = 373.15, T∞ = 300, and the

simulated gas is N2. The data and model with optimal parameters are shown in Figure 7.3. The

calculated parameter values for the model are A = 0.111 and B = 0.461. The model appears to

very accurately represent the variation of temperature jump with Kn. For all data points, the

model is within the uncertainty of the DSMC data.

This temperature jump model is defined based on the value for Kn calculated from the film



79

Figure 7.3: DSMC temperature jump data from simulations run with various values of P and α.
The black line is the best fit complementary error function model shown in Equation 7.2.

temperature predicted by the model. This means that a strict use of the model requires an iterative

procedure. One example for such a procedure is described below.

(1) Calculate the value for Kn based on λ∞

(2) Use Equation 7.2 to calculate T ∗j for the current Kn value

(3) Calculate the film temperature by

Tjf = T∞ +
T ∗j
2

(Tw − T∞) (7.4)

(4) Calculate the value for Kn based on λjf = λ(Tjf )

(5) Repeat steps 2 - 4 until convergence

For many engineering applications, it would probably be sufficient to simply use the Kn

value calculated from the film or free stream temperature mean free path. Since mean free path is

a function of temperature, the accuracy of this approach will depended on the magnitude of the

temperature difference between the wire and the free stream, with larger temperature differences

leading to more potential error.
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Figure 7.4: DSMC temperature jump data from simulations run with various values of P and U .
The black line is the model shown in Figure 7.3.

The above model was compared with a number of other simulation results in order to explore

its general applicability. Figure 7.4 compares the model (black line) with simulations run with

velocities ranging from 0 to 8 m/s and α = 0.85. All other simulation parameters were the same

as those for the data from which the model was derived. Excellent agreement is observed, with the

model predicting within the uncertainty of each DSMC data point. It should be noted that this

model is not expected to apply at significantly higher velocities. In supersonic flow, for example,

temperatures around the wire will be higher than the free stream because of the shock wave that

would form upstream of the wire.

Dependence of temperature jump on wire temperature was also explored. Figure 7.5 shows

simulation results for wire temperatures of 335 K (green squares) and 301 K (blue x) with α = 0.85

and a velocity of 3 m/s. Very good agreement is observed. The very low wire temperature case

has significant uncertainty because of the low signal to noise ratio of the DSMC simulation. It can

be concluded, at the very least, that the low wire temperature data does not contradict the model.

Practically speaking, the above temperature jump model would likely never be needed for cases

with a very low overheat because fluid properties in such a flow field are effectively constant.

Lastly, dependence of temperature jump on the gas species was explored. Figure 7.6 shows
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Figure 7.5: DSMC temperature jump data from simulations run with various values of P and Tw.
Data for Tw − T∞ values of 73.15 K (green squares) and 1 K (blue x) are shown. The black line is
the model shown in Figure 7.3.

Figure 7.6: DSMC temperature jump data from simulations of Argon. Uncertainty bars indicate
±1σ of the steady state DSMC data. The wire overheat is Tw − T∞ = 73.15 K. The black line is
the model shown in Figure 7.3.

results from simulations of Argon with α = 0.85 and a velocity of 3 m/s. Once again, the model

predicts the temperature jump to within the uncertainty of the DSMC data. This observation is

interesting in light of the observation made above that the wire heat transfer rate from simulations

of Argon and N2 is significantly different. The current data suggests that temperature jump is a

more universal feature of the flow than power loss.
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7.2.1 Temperature Jump Model Limitations

The domain convergence study presented above shows a weak dependence of T ∗j on domain

size for lower values of Kn, but that data suggests that the model may under predict temperature

jump in the middle part of the transition regime where Knjf ∼ 1.

For Kn values simulated here, temperature jump around the wire is uniform, which makes

it appropriate to characterize Tj with a single value. For lower Kn cases or for higher flow speeds,

it should be expected that the upstream and downstream portions of the wire may experience

different values of temperature jump because of the significantly different temperature gradients

that would occur in those regions [10]. Because of this, it is only recommended that the model

be used for the transition regime range considered (Knjf/α ≥ 0.3), and for flow speeds near those

simulated here (U < 10 m/s). Application of this model outside of that range may be appropriate

but further validation is required.

The dependence of T ∗j on accommodation coefficient was successfully taken into account by

dividing the value of Knjf by α. Simulations here only included α = 0.7, 0.85, and 1.0. This range

covers measured values of α for many engineering surfaces. Error may be introduced if this model

is applied for values of α lower than 0.7. However, the model does predict the logical trend that

as α → 0, T ∗j → 0 for all values Kn. Further testing is required to determine if the model can be

accurately applied to lower values of α.

7.3 Discussion of Temperature Jump Results

Temperature jump is important in the analysis of fine-wires for at least two notable reasons.

The first is that typical heat transfer models evaluate gas properties at the so-called film temper-

ature of the gas which is equal to the arithmetic mean of the wire and free stream temperatures.

This has been shown to effectively collapse much of the experimental data that exists for fine-wire

heat transfer in flows of various gases at various wire temperatures. However, the phenomena of

temperature jump in the transition regime suggests that nondimensionalizing heat transfer by film
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temperature properties is not appropriate. This can also be reasoned by considering the extreme

case of free-molecular flow. In free-molecular flow, the only gas molecules impacting the wire are

those of the free stream. Particles which reflect off the surface do not influence the free stream

particles because free-molecular flow is defined by the lack of collisions. It is therefore reasonable

that only free stream fluid properties need to be considered in nondimensionalizing free-molecular

fine-wire heat transfer. The temperature jump model presented can smoothly bridge the continuum

and free-molecular cases. Through the transition regime, the model smoothly transitions the prop-

erty evaluation temperature (Tjf ) from the traditional film temperature in the continuum regime

(Tjf = Tf ) to the free stream temperature in the free-molecular regime (Tjf = T∞).

As an example of this application, data from Figure 6.14 was recalculated using fluid proper-

ties evaluated at the jump film temperature Tjf rather than the film temperature as was originally

done. The procedure outlined in Section 7.2 was used to iteratively calculate Tjf for each data

point. Recalculated data is shown with filled markers in Figure 7.7. Note that only differences with

free-molecular theory were recalculated. Differences with the empirical model from [63] were not

adjusted because the model is based on evaluating properties at the film temperature. Modifying

that model would require reprocessing their experimental data using the present temperature jump

model.

By using the temperature jump model, simulation results are shifted such that the difference

with the free-molecular solution is now less than 10% for Knjf > 4 and less than 5% for Knjf > 9.

This new analysis lowers the altitude at which free-molecular theory could be sufficiently accu-

rate for processing fine-wire data, and it further supports the previously stated prediction that

∂Nu/∂Re = 0 at some altitude between 40 and 50 km for the HYFLITS system.

Data where Tw − T∞ = 35 K (squares) is shifted less than data where Tw − T∞ = 73 K

(circles). Data is also shifted less at lower values of Kn. Both of these observations are due to the

fact that, for a given fluid with temperature dependent properties, the magnitude of the impact of

using this model scales with the difference between Tf and the model predicted value of Tjf . This

difference is small for lower values of Tw − T∞ and at lower values of Kn. Based on the results
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in Figure 7.7, it is expected that using the temperature jump model for the HYFLITS fine-wire

system will have a negligible impact on results because Tw−T∞ ≈ 35 K for the hotwire instrument,

and most measurements to-date have been collected at altitudes below 35 km.

The temperature jump model could be applied to the other results presented in this work

as most of the data has been presented in terms of properties evaluated at the film temperature

(indicated by the subscript f). Based on the discussion here, it is expected that results for higher

Tw − T∞ values and higher Kn values may be appreciably modified. Reanalyzing the present data

and quantifying the impact of using the temperature jump model is an area of future work.

The second reason that temperature jump is important for fine-wires is that it highlights

important differences between the molecular model of gases, and the continuum model. In the

continuum, energy transfer through a fluid is modeled by thermal conductivity and Fourier’s Law.

As T ∗j → 0, the temperature gradient must also go to zero. Additionally, thermal conductivity,

which is fundamentally due to intermolecular collisions, also must go to zero in the free-molecular

limit. According to the continuum model, both of these limiting behaviors suggest that heat transfer

goes to zero as the Kn value increases to the collisionless flow regime. This, however, is not the

case. Heat transfer between the wire and gas becomes independent of the thermal conductivity

Figure 7.7: Same as Figure 6.14 with the addition of filled markers that show data normalized by
fluid properties calculated at the jump film temperature according to the model shown in Figure
7.3.
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in the free-molecular regime as can be seen in the respective solution for heat transfer shown

in Equation 3.9. The temperature jump data and the discussion here further supports the idea

presented in Chapter 3 that Nu is not the most physically relevant expression for heat transfer in

rarefied flows. Fully developing a more physically appropriate set of dimensionless parameters for

fine-wire heat transfer in rarefied flows can be a topic for future study.

7.4 Summary and Conclusions

Temperature jump data for heated fine-wires through the transition regime were presented

and discussed in this chapter. An empirical model for temperature jump was derived from simula-

tions of N2 in a 3 m/s flow. The model was validated for various flow velocities, surface accommo-

dation coefficients, wire temperatures, and gas compositions. Significant temperature jump at the

wire surface means that evaluating fluid properties at the film temperature is not appropriate for

fine-wires in the transition regime. The presented empirical model can be used to calculate a jump

film temperature which is appropriate for calculating fluid properties. Data from Section 6.6 in the

previous chapter is reanalyzed using the temperature jump model. Results are shifted such that

the difference with free-molecular theory is less than 10% for Kn values above 4 or altitudes above

40 km for the HYFLITS system. The importance of using the temperature jump model scales with

the values for Kn and Tw − T∞. For most data collected on the HYFLITS campaign, Kn < 2 and

Tw − T∞ ≈ 35 K. For these conditions, negligible error is introduced if the temperature jump at

the wire surface is ignored.



Chapter 8

Conclusions and Future Work

This work presents the results of a numerical simulation study of heated fine-wires in low-

speed, rarefied flows. Motivation comes from the need for measurements of stratospheric turbulence.

From this motivation, the following two research questions arise.

(1) Can current empirical models for transition regime wire power loss be accurately used for

analyzing data from fine-wires in the stratosphere?

(2) How does power loss depend on free stream velocity for fine-wires from the transition regime

to the free-molecular flow regime?

With regard to the first question, it was found that the empirical model from [63] can be

accurately used up to an altitude of about 35 km or a fine-wire Knudsen value of about 2. Free-

molecular flow theory can be accurately used above an altitude of about 45 km or a fine-wire

Knudsen value of about 10. With regard to the second question, it was found that, at low flow

velocities, the derivative of convective power loss with respect to flow velocity is positive in the

continuum regime, negative in the free-molecular regime, and, therefor, must be zero somewhere in

the transition regime. Thermal anemometry cannot be used to measure velocity fluctuations where

wire power loss is independent of flow velocity. It is expected that this occurs at some altitude

between 40 and 50 km for the HYFLITS measurement system.

Scientific and engineering contributions of the current work include:
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(1) Development of an implicit target mass flow boundary condition for low-speed DSMC

(Chapter 4)

(2) Evaluation of simulation accuracy for predicting fine-wire power loss in low-speed rarefied

flows (Chapter 5)

(3) Verification of an empirical power loss model for fine-wires in the transition regime (Chap-

ter 6)

(4) Characterization of fine-wire power loss from the transition to free-molecular flow regimes

(Chapter 6)

(5) Empirical model for fine-wire temperature jump from the transition to free-molecular

regimes (Chapter 7)

8.1 Summary of Results

A review of numerical methodologies for simulating transition regime flow is presented. Di-

rect Boltzmann Solvers appear most suited for simulating low-speed transition regime simulations,

however, there is no available simulation software and much development is needed before a code

could be applied to general problems. As discrete velocity methods become available and mature,

their reduced statistical scatter and computational cost relative to DSMC may make them more

appropriate than DSMC for the flows of interest here. The DSMC method remains the most accu-

rate, generally applicable, and available method for transition regime simulations. Therefore, the

DSMC method serves as the primary simulation tool for this work.

The DSMC method is well suited for simulations of high-speed flows, but particular care

must be taken in the choice of boundary conditions for low-speed DSMC simulations. Analysis

and discussion of boundary conditions for low-speed DSMC simulations is included. A target mass

flow rate boundary condition for low-speed DSMC is presented. Preliminary results using the

new condition show good performance, but further tuning and characterization of the condition is
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required before it can be generally applied.

Results for wire heat transfer from DSMC simulations are shown to be strongly dependent

on the computational domain size. Convergence of results is not achieved even for domain sizes

that push the limits of an available supercomputer resource. The dependence of simulated fine-

wire heat transfer is characterized with respect to simulated Reynolds and Knudsen numbers.

Stronger dependence is observed for simulations of high Knudsen number and low Reynolds number

flows. A domain convergence extrapolation method to correct results for the domain size effect

is discussed, though results show that the method can produce unrealistic corrections at lower

simulated velocities.

A thorough investigation of the fine-wire parameter space is conducted. In particular, the

sensitivity of heat transfer to flow speed, surface accommodation coefficient, gas composition, and

temperatures is explored. From the results presented, it can be concluded that currently available

empirical power loss models can be accurately used to process turbulence data collected for the

HYFLITS campaign at altitudes up to about 35 km. Results for Kn values corresponding to higher

altitudes diverge significantly from empirical models. It is also observed that, for low-Re values, the

value of ∂Nu/∂Re is positive in the continuum regime, negative in the free-molecular flow regime,

and, therefore, must be zero somewhere in transition regime. Thermal anemometry cannot be used

to measure turbulence where ∂Nu/∂Re = 0. Based on a comparison of simulation results with

free-molecular theory, it is predicted that this point occurs at some altitude between 40 and 50 km

for the HYFLITS fine-wire measurement system.

Finally, the temperature jump around fine-wires through the transition regime is investigated.

As could be expected, the data show that temperature jump increases through the transition regime.

This suggests that classical heat transfer models based on evaluating fluid properties at the film

temperature are not appropriate and may introduce significant errors for fine-wires with a high

temperature loading. An empirical model for temperature jump derived from simulation data

is presented and analyzed. Applicability of the model over a range of wire temperatures, gas

compositions, surface accommodation coefficients, and flow velocities is demonstrated. This model
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can be used to calculate fluid properties at the appropriate temperature throughout the transition

regime.

8.2 Future Work

Several areas for future work flow from the current study for both low-speed transition regime

simulations and the characterization of fine-wire power loss in the transition regime.

The DSMC simulation method is robust in its physical accuracy and general applicability,

but the method is computationally expensive for low-speed aerodynamic flows. Alternative meth-

ods for simulating the transition regime have been developed, but models and codes still need

significant development. In particular, Direct Boltzmann Solvers appear best suited for simulating

transition regime fine-wires in low-speed flows, but no general-use codes are available, and most

implementations can only be applied to Cartesian computational grids.

In the HYFLITS measurement system, cold-wires are operated with a very low overheat

value (Tw − T∞ ≈ 1 K) to measure fluctuations in free stream temperature. The heat transfer

signals when operating in this cold-wire mode are relatively small, and some have questioned if

any measurable change in heat transfer occurs at all. The simulation methodology presented here

could be used to investigate the dependence of heat transfer on free stream temperature changes

for low temperature wires. Cold-wire simulations, however, are different in several important ways

from the hotwire simulations presented. The first challenge to be addressed is that the signal to

noise ratio for DSMC simulations of cold-wires is very low. This results in significant uncertainty in

simulation data. Much larger simulated particle densities or longer steady state sampling periods

will be needed to reduce statistical scatter to a reasonable level. It is difficult to say how the

domain size dependence of results will be different from the present hotwire simulations. On the

one hand, the difference in temperature between the wire and free stream boundaries is much

smaller, so it stands to reason that smaller domains would be needed. On the other hand, the

energy transfer from the surface to the gas is also much smaller, so the small expected bias from

the finite domain size could still be large relative to the wire heat transfer. Domain size studies
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similar to those presented here would therefore be needed for cold-wire simulations. The need for

cold-wire simulations provides further motivation for developing a Direct Boltzmann Solver which

is deterministic and so does not have statistical noise. In fact, cold-wire simulations are more

suited for such a solver than hotwire simulations because the velocity space is relatively small, and

variation of gas properties with temperature can be ignored.

Initial results for the target mass flow boundary condition serve as a proof of concept that

the method can work to achieve a desired mass flow rate. However, modifications need to be made

in order to improve results. In particular, the method should be adjusted such that mass flow

rate through the boundary DSMC collision cells is used to calculate the pressure correction, rather

than the ghost cell mass flow rate. Additional tuning of the method is also needed to allow for the

implicit calculation of temperature at the boundary.

Analysis of the influence of domain size on simulation results highlights several potential

avenues for future work. Further refinement of the domain convergence method to account for

finite domain size bias could lead to a generally applicable methodology. Computational cost of very

large DSMC simulation domains could be reduced by the development of variable simulated particle

density simulations (variable fnum). Further development of coupled CFD/DSMC simulation codes

could also enable the simulation of domains large enough to eliminate the influence of domain size.

It was observed in the current work that, for low-Re values, the value of ∂Nu/∂Re is zero

somewhere in transition regime. Thermal anemometry cannot be used to measure turbulence where

∂Nu/∂Re = 0. It is therefore important to accurately characterize where this occurs with respect

to Reynolds number and Knudsen number so that fine-wire measurement systems can be designed

to avoid these conditions.

Temperature jump data presented show that film temperature fluid properties are not ap-

propriate for nondimensionalizing fine-wire data in the transition regime. Since most of the data

presented in this work was normalized using film temperature fluid properties, reanalyzing results

using the temperature jump model may adjust some of the data presented. Future studies should

explore how the presented temperature jump model should be used and quantify when it is neces-
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sary.

Finally, no generalized or continuous models of fine-wire heat transfer through the transition

regime have been developed. The model presented in [63] is useful for limited engineering applica-

tions, but is discontinuous across different Kn regimes and significantly diverges from simulation

data for Kn values above about 2. The data and analyses presented here lay the ground work for

developing a complete model of fine-wire heat transfer in the transition regime for low-speed flows.

The known biases of the present DSMC simulations prevent its use to directly develop models of

heat transfer with respect to flow velocity for flows in the middle transition regime. However, be-

cause accuracy increases with Knudsen number, simulations can be used to accurately predict the

approach to free-molecular conditions and the point where free-molecular theory can be applied.

Slip and transition regime experimental data could be used along with DSMC and free-molecular

theory to develop a coherent and continuous model for transition regime fine-wire heat transfer.
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Appendix A

HYFLITS Fine-Wire Methodology

Investigators for the HYFLITS balloon campaign have derived a methodology for fine-wires

to self-calibrate in flight. This self-calibration procedure does not entirely obviate the need for

empirical power loss relations, but it does eliminate the need to experimentally calibrate every

individual fine-wire instrument, a common practice among experimental researchers. The following

methodology is not an essential element of the present work, but it provides background that

highlights the motivation and implications of the current work.

A.1 Fine-Wire Model for Measuring Turbulent Fluctuations

The power balance of a fine-wire can be written as

Q̇gen = Q̇c + Q̇h + cṪw (A.1)

where c is the heat capacity of the wire and radiation has been ignored. The last term represents

the change in energy stored in the wire. This is included for the present methodology because the

temperature (resistance) control of the fine-wire circuit is weak. This makes the time-variation of

wire temperature non-negligible. Simple linear models are assumed for both Q̇c and Q̇h and are

given by

Q̇c = Hc(Tw − T∞) (A.2)

Q̇h = Hh(Tw − T∞) (A.3)
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where the coefficients Hc and Hh are the thermal conductance due to end-conduction and due to

convection, respectively. By defining the total wire conductance as

H = Hc +Hh (A.4)

the wire power balance can be written as

Q̇gen = H(Tw − T∞) + cṪw. (A.5)

Considering finite changes due to turbulent fluctuations yields

∆Q̇gen = ∆H(Tw − T∞) +H∆Tw −H∆T∞ + c∆Ṫw. (A.6)

Rearranging gives

∆H(Tw − T∞)−H∆T∞ = ∆Q̇gen −H∆Tw − c∆Ṫw (A.7)

where all terms on the right hand side can be related to measured wire resistance. The value for

H is periodically estimated in-flight using a chopping procedure. The value for ∆H is dependent

on turbulent fluctuations of velocity, ∆T∞ represents turbulent fluctuations of temperature, and

(Tw −T∞) can be calculated from measurements. Using this model, measured fluctuations in wire

resistance are used to calculate values for ∆H and ∆T∞. The temperature structure parameter

can be calculated directly from the measurements of ∆T∞. ∆H must first be related to turbulent

velocity fluctuations ∆v before turbulent dissipation rate can be estimated. The following section

derives the relationship between ∆H and ∆v.

A.2 Calculation of Velocity Fluctuations

The relationship between measured fluctuations in thermal conductance ∆H and fluctuations

in velocity ∆v will now be derived. Ultimately, a model is needed for ∂H/∂U to convert ∆H to

∆v by

∆v =

(
∂H

∂U

)−1
∆H (A.8)
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Note that the inverse of the derivative is shown rather than the inverse derivative simply because

models relating wire power loss to flow velocity are typically in a form where the rate of energy

transfer is expressed as a function of velocity. Empirical models for convective power loss from

a circular cylinder are typically expressed analytically in terms of Reynolds (Re = ρUd/µ) and

Knudsen (Kn = λ/d) number as

Nu = f(Re,Kn). (A.9)

where Nu is a dimensionless expression for wire power loss and is given by

Nu =
hd

k
=

Q̇h
πkLw(Tw − Ta)

. (A.10)

Using Equations A.3 and A.10, convective thermal conductance can be written as

Hh = (πkLw)Nu. (A.11)

The derivative of Hh with respect to Nu is

∂Hh

∂Nu
= πkLw. (A.12)

An expression for ∂Nu/∂Re is derived from empirical relations for wire power loss. The derivative

of Re with respect to velocity is

∂Re

∂U
=
ρd

µ
. (A.13)

Given the above relations, the dependence of convective thermal conductance on changes in free

stream velocity can be written as

∂Hh

∂U
=
∂Hh

∂Nu

∂Nu

∂Re

∂Re

∂U
. (A.14)

Total thermal conductance and its derivative with respect to velocity are given by

H = Hh +Hc (A.15)

∂H

∂U
=
∂Hh

∂U
+
∂Hc

∂U
. (A.16)
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It is reasoned that end-conduction not a strong function of free stream velocity, and that because

the prongs are large relative to the wire, the time rate of change of end-conduction will be slow.

With these assumptions, the derivative of Hc can be ignored and the result is

∂H

∂U
=
∂Hh

∂U
. (A.17)

This and the above equations lead to a relationship between ∆H and ∆v that is given by

∆v =

[
∂Hh

∂Nu

∂Nu

∂Re

∂Re

∂U

]−1
∆H (A.18)

∆v =

[
(πkLw)

∂Nu

∂Re

∣∣∣∣
Re

(
ρd

µ

)]−1
∆H. (A.19)

Further consolidation of that expression gives

∆v =
µ

πkLwρd

(
∂Nu

∂Re

∣∣∣∣
Re

)−1
∆H. (A.20)

This equation relates turbulent fluctuations to measured or known quantities. Flow parameters

µ, k, and ρ are calculated at the wire film temperature and the ambient pressure. An analytical

model for wire temperature as a function of axial position is used to estimate the correct wire and

film temperatures. The ideal gas law is used to calculate ρ, Sutherland’s law is used to calculate

µ, and the model from [1] is used to calculate k. Wire diameter d and length Lw are estimated

from measurements of wire resistance and properties of platinum. The derivative of the power loss

model ∂Nu/∂Re is calculated at the average wire Reynolds number. Average Reynolds number

Re is calculated from the average velocity across the wire U and fluid properties described above.

The value for U is calculated from filtered GPS data and a model for flow blockage due to the wire

prongs. It is assumed that prong blockage does not damp turbulent fluctuations of velocity, but

only the mean flow velocity across the wire.

The measured values of ∆v are then used to calculate turbulent dissipation rate using the

procedure outlined in the following section.
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A.3 Estimation of Turbulence Dissipation Rate

The following lays out the procedure for calculating turbulence dissipation rate ε. First,

a Fast-Fourier-Transform (FFT) is applied to a section of time-varying ∆v data. For N sam-

ples of data (∆v1, ∆v2,...∆vn,...,∆vN ) that correspond to N equally spaced points in time (t1,

t2,...tn,...,tN ), the FFT of the signal can be written as

Fv(k) =
2

N

N∑
n=1

∆vnexp [−2iπ(k − 1)(n− 1)/N ] , 1 ≤ k ≤ N. (A.21)

Note that Fv is a vector of length N . The 2/N term normalizes the FFT so that sinusoidal

components up to Nyquist frequency have the correct amplitude. The power spectral density

(PSD) of velocity is then obtained by

Sv(f) =
ts
2

(Fv �F ∗v ) (A.22)

where ts is the length of the sampling interval in seconds, F ∗v is the complex conjugate of Fv, and

� indicates element-by-element multiplication. The units of Sv are (m/s)2/Hz. The frequencies

corresponding to the elements of Fv and Sv are

f(k) =
k

ts
, 1 ≤ k ≤ N. (A.23)

However, the highest possible frequency with meaningful information (Nyquist frequency), is 1
2N/ts.

Higher frequency data is prone to aliasing and should be discarded.

A model for the turbulence PSD in the inertial subrange is used to estimate dissipation rate

from the measured PSD, Sv(f). A model for the inertial subrange of the velocity PSD in terms of

the turbulent dissipation is given in [21] as

Sv(f) = x0f
−5/3 (A.24)

where

x0 = 0.146169U
2/3
∞ ε2/3. (A.25)
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In Equation A.25, U∞ is the average velocity of the wire during the measurement interval. The

value for U∞ comes from filtered GPS data. It should be noted that because this is a model for

ambient turbulence, the mean velocity is not affected by prong blockage. This is unlike the mean

velocity over the wire that was used above for evaluating the derivative of the power loss model.

This turbulence model is then fit to the measured PSD where the fitting parameter is ε. The best

fit value for ε is calculated by rearranging the model to solve for ε,

ε(f)2/3 =

(
1

0.146169U
2/3
∞

)
Sv(f)� f5/3. (A.26)

Equation A.26 gives ε as a function of frequency f . A single, best-fit value for ε can be calculated

by taking a simple average

ε2/3 =

(
1

0.146169U
2/3
∞

)
S∗v(f) (A.27)

where S∗v(f) = Sv(f) � f5/3 represents the signal PSD normalized by frequency raised to the

−5/3 power. Also, the dependence of ε on f has been dropped because this now represents an

average value that is independent of frequency. The relationship between some error in ∆v and the

subsequent error in ε is derived below.

A.4 Turbulent Dissipation Rate Sensitivity Analysis

Consider that the measured velocity fluctuations ∆v′ differ from the true velocity fluctuations

by some factor ξ such that

∆v′ = ξ∆v. (A.28)

Here ξ represents error or uncertainty in ∆v′. With this consideration, the procedure laid out above

can be applied to ∆v′ to determine how ξ carries through to the calculated value for ε.

First, an FFT of the signal is calculated. The FFT is a linear operator which means one can



103

write

F (∆v′) = F (ξ∆v) (A.29)

Fv′ = ξF (∆v) (A.30)

Fv′ = ξFv (A.31)

where Fv′ is the FFT of the signal containing error and Fv is the true FFT. The calculation of

the signal PSD then follows in a similar fashion as

Fv′ �F ∗v′ = F (ξ∆v)�F ∗(ξ∆v) (A.32)

Sv′ = ξ2Fv �F ∗v (A.33)

Sv′ = ξ2Sv (A.34)

where, again, Sv′ is the PSD of the signal containing error and Sv is the true PSD. Applying

Equation A.27 to Sv′ for calculating the best-fit value of ε gives

(ε′)2/3 =

(
1

0.146169U2/3

)
S∗v′(f) (A.35)

(ε′)2/3 =

(
1

0.146169U2/3

)
ξ2S∗v(f) (A.36)

(ε′)2/3 = ξ2ε2/3 (A.37)

ε′ = ξ3ε (A.38)

So a given error in ∆v represented by ξ carried through to ε results in ε′ which is a factor of the

original by the cube of the error in velocity fluctuations. This result is reasonable when considering

that the power of a flow is proportional to the cube of velocity, and ε is the dissipation rate of

the kinetic energy (i.e. dissipation power) of turbulent velocity fluctuations. Since values for ε are

typically reported in terms of log10(ε), it is useful to write Equation A.38 as

log10(ξ
3) = log10

(
ε′

ε

)
(A.39)

3 log10(ξ) = log10(ε
′)− log10(ε). (A.40)
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The term ξ is related to a percent error of ∆v by

%Error = 100× ∆v′ −∆v

∆v
(A.41)

%Error = 100× ξ∆v −∆v

∆v
(A.42)

%Error = 100× (ξ − 1). (A.43)

Using Equations A.40 and A.43, Figure A.1 shows the relationship between errors in measured

∆v and calculated ε. Based on input from meteorologists who model atmospheric turbulence,

measures of log10(ε) that have an accuracy of +/- 0.5 or less would be useful for comparison with

models. The dashed lines in the figure show these limiting reference lines. This range of acceptable

accuracy in ε corresponds to a ∆v error range of about −31% to +46% (0.69 < ξ < 1.46).

Figure A.1: Relationship between error in measured velocity fluctuations ∆v and error in calculated
turbulent dissipation rate ε. The black dashed line is a reference for no error. Red dashed lines
represent ± 1/2 decade error in ε.

Given this constraint on ∆v, the model for calculating ∆v from measurements given in

Equation A.20 can then be used to calculate subsequent uncertainty requirements for particular

measured and model quantities such as flow properties, ∆H, and the power model derivative

∂Nu/∂Re.
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