
i 

 

 

 

UNVEILING THE LOCAL-TO-GLOBAL PROPERTY FUNCTIONS OF 

TRANSIENT AND ACTIVE SOFT MATTER: FROM DYNAMIC GELS TO FIRE 

ANTS 

by 

ROBERT JAMES WAGNER 

B.S., Union College, 2013 

 

 

 

A thesis submitted to the 

 Faculty of the Graduate School of the  

University of Colorado in partial fulfillment 

of the requirement for the degree of 

Doctor of Philosophy 

Program of Material Science & Engineering 

2022 

 
 Committee Members: 

Franck Vernerey 

Francois Barthelat 

Nikolaus Correll 

Loren Hough 

Rong Long 

  

 



ii 

 

Wagner, Robert James (Ph.D., Material Science & Engineering) 

Unveiling the Local-To-Global Property Functions of Transient and Active Soft 

 Matter: From Dynamic Gels to Fire Ants 

Thesis directed by Associate Professor Franck J. Vernerey 

  

   “Dynamic networks” contain bonds that may disconnect and reattach 

reversibly, imbuing them with nonlinear, viscoelastic mechanical response. Their 

mechanical response is further complicated when they are comprised of active 

constituents that can independently do mechanical work as in the case of “active 

networks”. Even dynamic and active networks composed of seemingly simple 

constituents may display complex emergent mechanics. Indeed, active networks may 

even spontaneously morph, locomote, and perturb their surroundings in a way that 

seemingly violates the first and second laws of thermodynamics if viewed at the 

material scale (i.e., not accounting for local energy storage and the entropic increases 

associated with local energy conversion processes). Given the rich mechanical 

behaviors such systems may demonstrate, engineers aiming to create synthetic 

versions of dynamic and active networks – whether they be dyanmic gels used as 

tissue engineering scaffolds or swarms of modular robots tasked with completing 

collective functions – seek to understand how the local, physical interactions in these 

systems beget their globaly emergent responses. In an effort to predictively design 

these networks, or inversely understand their structure-property functions, 

engineers often employ multiscale models ranging from continuum approaches (e.g., 

statistical mechanics) to high fidelity discrete methods (e.g., molecular dynamics). 

However, hierarchical network structures and transient bonds can introduce steep 

property gradients and non-affine deformation that render continuum approaches ill-

suited for modeling dynamic networks. Furthermore, effective thermodynamic 

violations imparted by activity render constitutive modeling particulary difficult for 
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active networks. While high resolution discrete approaches circumvent these issues, 

they often suffer from high computational cost that makes it difficult to properly map 

microscale tuning parameters to the emergent macroscale mechanical responses. 

Therefore, researchers have turned to a tertiary class of discrete, mesoscale network 

models that coarse-grain constituents to reduce computational expense, but sustain 

information about networks’ microstructures.   

 In this dissertation, I introduce one such novel, discrete network model and 

exhibit its general applicability to both dynamic and active networks. In Chapter II 

of this dissertation, I introduce the discrete model and compare its mechanical stress 

predictions for star-shaped dynamic polymer networks (undergoing creep and stress 

relaxation) to those of a state-of-the-art continuum approach, Transient Network 

Theory (TNT). In Chapter III, I utilize the model to append TNT and introduce a 

coupled and physically motivated rule of mixture for dynamic networks containing 

multiple bond types in series that dissociate at different timescales. In Chapter IV, I 

exhibit the model’s use for applied science by using it to accurately predict the 

topological and mechanical properties of tetra- and octa-poly(ethylene glycol) gels. 

Finally, in Chapters V and VI I utilize the model to elucidate a set of local interaction 

rules between fire ants (S. Invicta) that may reproduce the emergent treadmilling 

and protrusion growth dynamics observed experimentally in their collectively 

aggregated rafts. While proper application of the introduced model to any given 

system is always contingent on due consideration and capture of the underlying, first-

order physics, this body of work demonstrates the robustness and generality of this 

illuminating and much needed mesoscale framework. 
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CHAPTER I 

 

 

INTRODUCTION 

 

 “Transient networks” contain bonds that may disconnect and reattach 

reversibly, imbuing them with viscoelasticity, enhanced mechanical toughness, and 

the ability to self-heal [1]–[3]. The complexity of transient networks is compounded 

when their elemental units convert locally stored energy into mechanical work. Such 

is the case of “active networks”, which may spontaneously morph, locomote, or apply 

stresses to their environment [4], [5]. Even when composed of relatively simple agents 

correlated through elementary physics or heuristic rules, active materials often 

display complex emergent functions, as seen in the phase separation of self-propelled 

colloids [6], [7], collective migration of epithelial cells [8]–[10], or – as explored here – 

spontaneous land-bridge formation by fire ants (S. Invicta) [11], [12]. For both 

transient and active networks, predicting how the underlying physics or interactions 

modulate global response is paramount for engineers developing synthetic instances 

of these materials. For example, mapping the local input parameters of a transient 

gel to its emergent mechanical properties may aid the predictive design of gels with 

targeted moduli for applications in tissue engineering [13]–[16]. Likewise, the means 

to rapidly explore heuristic interactions between agents in a swarm may empower 

engineers to forecast the emergent formations of swarming robots before design and 

fabrication [17]–[20]. As such, efficient methods for mapping local-to-global property 

functions in these networks are widely sought after by researchers across a range of 

disciplines.  

 While experimental methods of investigation constitute irrefutable 

representation of these networks, they require tightly controlled conditions to probe 

the independent effects of single design parameters [21]–[23], and are limited in their 
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ability to illuminate certain local feature such as micro- and nanoscale topology, or 

magnitudes of effective forces between “socially” interacting agents [24], [25]. 

Furthermore, large sample sizes are required for systems displaying high variance 

(as is often the case in biology) or rarely occurring probabilistic features [11], [26], 

[27]. Consequently, researchers often supplement experimental results with multi-

scale modeling approaches [28]–[30] including continuum techniques that treat 

networks as smooth, homogenous materials [31]–[37], and discrete methods that 

model networks as assemblies of distinct particles [38]–[42]. Continuum approaches 

are favored for their low computational cost but invoke limiting assumptions, restrict 

exploration of stochastic effects, and reveal little of the detailed microstructure in a 

network. In contrast, high fidelity approaches such as molecular dynamics [43]–[45] 

provide detailed microstructural information, but typically suffer from high 

computational cost that limits the length and time scales of investigation.  

 Towards addressing these issues, we here introduce a mesoscale modelling 

framework that maintains the network-scale fidelity of high resolution approaches 

yet reduces computational cost through statistical coarse graining of the elemental 

building blocks in transient or dynamic networks (e.g., polymeric chains or individual 

ants, respectively) [3]. In Chapter II, we introduce the model and utilize its 

permittance of micromechanical investigation to elucidate limitations of a state-of-

the-art continuum approach, Transient Network Theory (TNT) [1], [3]. In Chapter 

III, we then leverage the discrete network model to append TNT for incorporation of 

features such as topologically dependent stable bond relaxation in hybrid transient 

networks containing multiple bond types in series [13], [46]–[48], thereby 

demonstrating the model’s ability to motivate physically meaningful amendments to 

continuum theory. Complimenting Chapter II’s and Chapter III’s focuses on 

informing continuum theory, Chapter IV then illustrate’s the discrete network 

model’s ability to predict the mechanical responses of a physical material when the 
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appropriate physics are incorporated: that of tetra- and octa-poly(ethylene glycol) 

based gels [49]. Finally, Chapters V and VI exhibit the discrete model’s ability to be 

retrofit for the study of active systems. In Chapter V, we experimentally introduce 

and explore the dynamics of aggregated rafts comprised entirely of red imported fire 

ants (S. Invicta). Specifically, we introduce the recyclic mechanism of “treadmilling” 

that allows these rafts to undergo unyielding morphogenesis, including the growth of 

tether-like land bridges comprised entirely of ants [11]. In Chapter VI, we 

subsequently retrofit the discrete framework with mechanisms such as active 

contraction and stochastic, agent-based decision-making algorithms, to mimic ant 

rafts, thus allowing us to elucidate a set of local interaction rules that can reproduce 

the observed emergent morphogenesis [12].  
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CHAPTER II 

 

 

A NETWORK MODEL OF TRANSIENT POLYMERS: EXPLORING THE 

MICROMECHANICS OF NONLINEAR VISCOELASTICITY 

 

The object of this chapter is to provide the reader a general view of the proposed 

disctrete numerical network model, of which iterations will be used throuought the 

remainder of this work. We first reiterate the definition and significance of dynamic 

networks. We then briefly overview the transient network theory (TNT) [1] for 

Gaussian dynamic networks before describing the simplest iteration of the novel 

discrete approach. Finally, we utilize this model to explore the limitations of a 

reduced form of TNT. 

 

2.1 Introduction 

 

Dynamic networks, defined by arrangements of filaments or chains inter-linked by 

reversible bonds, are omnipresent in both natural and synthetic materials. These 

materials range from thermally transient microemulsions [50] or molecular motor-

driven microtubule networks [51], to interlinked clusters of insects such as fire ants 

[52], [53] or honeybees [54] at the macroscopic level. Reversible bonds in these 

networks tend to dissociate from stressed configurations and re-associate into 

relatively stress-free states, conferring dynamic networks with remarkable 

viscoelastic properties, including the ability to stress relax [33] crack propagation [2], 

and self-heal [55] at timescales governed by the underlying bond kinetics [1]. Relating 

the local chain properties and topologies of such networks to their global mechanical 

response is highly sought after by researchers aiming to elucidate the origins of 

biophysical phenomena [56], as well as those interested in the predictive design of 

meta-materials with suitably tough mechanical properties, the ability to self-repair 

[57], or the ability to facilitate active transport [58].  
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Towards this aim, many methods of modelling dynamic networks have been 

developed, including both microscale methods such as molecular dynamics (MD) or 

dissipative particle dynamics (DPD) simulations, and macroscale statistical 

mechanics approaches [29]. While the former methods simulate every elementary 

unit in a system (e.g., atom, molecule or Kuhn segment) to predict the microstructural 

evolution with high precision [59], they are computationally expensive. As such, 

modelling statistically representative volume elements (RVEs) - material unit cells 

that capture the full range of structural microphases - is often impractical when using 

these methods for amorphous materials. In contrast, continuum scale approaches 

such as the continuum model introduced by Hui, et al. (2012) [35] or transient 

network theory (TNT) [1] manage to make a connection between bond kinetics and 

the emerging material response while requiring few computational resources. 

However, they usually rely on smoothing assumptions that restrict researchers from 

exploring the role of local heterogeneities or microstructural features. While 

statistical and computational approaches have been developed to relate damage to 

the macroscopic material response [60], [61], these models often remain bound to 

coarse-graining assumptions such as, isotropy,  affine deformation and - commonly - 

idealized chains or bond dynamics. Isotropy is reasonably assumed for some, but not 

all, dynamic networks [2], whereas the affine assumption is typically violated at the 

network scale and slightly over-predicts stress [62], [63]. Furthermore, assumptions 

of idealized chain force-extension models and constant bond dynamics are typically 

violated at intermediate to high chain stretches [64]–[66]. 

 

To address these shortcomings, researchers have developed a number of multiscale 

models residing between the elemental length scale of MD simulations and material 

length scale of continuum approaches, which we will here refer to as the “mesoscale”.1  

 
1 While researchers of condensed matter physics often define the \say{mesoscale} as residing distinctly between the 

nanometer (i.e., atomistic or molecular) and micrometer length scales [29], our interest in exploring a wide breadth of 

dynamic networks - including macroscopic systems - prompts us to use this term in reference to any length scale at 

which constituents are coarse-grained as single members. 
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Rather than simulate the elemental units of a network, mesoscale models generally 

coarse-grain entire chains and prescribe their mechanical properties through 

statistical representations such as the ideal Gaussian model [67]. In doing so, these 

models avert high computational cost while still permitting investigation of the 

detailed microstructural changes that occur during network evolution [29]. Mesoscale 

models have been extensively used to study the effects of non-affine deformation in 

permanent networks [68]–[70], revealing that the affine assumption limits 

continuum models' abilities to predict the mechanics of networks near the percolation 

threshold [71]. By extension, this also limits continuum models in cases where 

damage occurs during deformation [2], [61]. In contrast, mesoscale models easily 

permit probablistic rupture of bonds through models such as Eyring's [65] or Bell's 

[72] theory, while inherently tracking the topological evolution of the network. Such 

mesoscale methods may be applied directly to entire networks [73], [74] or 

incorporated into "quasicontinuum" models [30], [75], [76] in which regions of high 

micro-structural interest (e.g., those undergoing plastic deformation or damage) are 

examined mesoscopically, while elements of lower interest (i.e., homogenous regions) 

are captured through statistical continuum models. Through both methods, 

researchers have employed mesoscale models in the examination of permanent 

damage, mechanical toughness, and loading rate-dependence, to determine how these 

features are affected by chain properties and concentrations [74]–[77]. A natural 

extension of such work is to then apply mesoscale modeling in the exploration of 

dynamic networks in which the dissociation of bonds is reversible. Indeed, 

researchers in the biophysics community have examined active dynamic systems 

such as actin-myosin or cytoskeletal networks using mesoscale modeling approaches 

[56], [66]. However, inclusion of activity in these systems obfuscates the isolated 

effects of traits such as topology, chain properties, and bond kinetics, which 

researchers of thermally driven dynamic networks (e.g., vitrimers [46], [78]) are most 

immediately concerned with. In the study of inactive polymers with reversible bonds, 

other researchers have employed the more traditional methods of MD-Monte Carlo 

simulations to directly study [79] or develop specific statistical approaches in the 
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study of features such as self-healing and adhesion of dynamic polymers [80]. 

However, these methods are inhibited by the same computational costs and 

inaccessibility to larger time and length scales discussed earlier. Ergo, there remains 

much to be learned through the development and application of a general mesoscale 

framework for networks with reversible bonds. 

 

 

Figure 2.1. Introduction to dyamic networks. (A) A single sample constituent with three possible 

attachments is shown. Per the legend, grey nodes represent permanent crosslinks, blue nodes 

represent reversibly bonded pairs, red nodes represent detached reversible bonds and black curves 

represent chains. (B-C) A sample network (B) before and (C) after a series of attachment and 

detachment events (denoted by 𝑘𝑎 and 𝑘𝑑, respectively) is depicted. The scale bar represents 

approximately 1 휁 where 휁 is the the characteristic spacing between permanent crosslinks in the 

network. 

 

Moving in this direction, we here introduce a discrete, mesoscopic, network model 

with dynamically cross-linking connections that may represent a broad scope of of 

systems ranging from vitrimers [81] to gel networks [48]. Our main contribution is at 

two levels. First, we introduce the mesoscale model, which captures the time-

dependent mechanical responses of networks with dynamic connections, and allows 

us to relate them directly to networks' topological evolution. This model incorporates 

not only probabilistic bond detachment, but also reattachment events, thus 

broadening the scope of networks that may be explored from permanent networks 

(with or without damage), to those that may flow and self-heal. In the first iteration 
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of this model, we focus on networks of flexible chains permanently cross-linked to one 

another at one end in a star-like configuration and containing reversible binding sites 

at their free ends, which we will refer to as “stickers” (Fig. 2.1). As the first 

application of this model and second contribution of this work, we compare the 

predictions of this approach to those of the existing continuum TNT [1], thereby 

allowing us to explore the limitations of the statistical approach directly as they relate 

to the underlying network properties and loading conditions. In the remainder of this 

manuscript, we briefly describe the TNT for dynamic networks of Gaussian chains, 

introduce the discrete model, and then explore the mechanical responses predicted 

by each of these methods. 

 

2.2 Transient Network Theory for Gaussian networks 

 

The TNT begins with the statistical treatment of networks comprised of randomly 

oriented flexible chains connected by reversible bonds with intrinsic association and 

dissociation rates, 𝑘𝑎 and 𝑘𝑑, respectively. The elastic energy of these networks 

derives from the entropic elasticity of their connected chains, which is expressed in 

terms of their end-to-end vectors 𝒓. For a population of Gaussian chains, the most 

probable end-to-end distance or “reference state” is expressed by the product √𝑁𝑏, 

where 𝑁 and 𝑏 are the number and length of Kuhn segments in a chain, respectively 

[64]. For convenience, the physical state of a chain is taken as the stretch vector 𝝀 =

𝒓/(√𝑁𝑏), such that 𝝀 is a unit vector when chains are in their reference state. To 

provide a statistical description of the network, one then introduces the distribution 

function 𝜙(𝝀, 𝑡) that characterizes the number density of chains found in 

configuration 𝝀. Since this distribution describes the physical state of the full 

population, it can be used to calculate important macroscopic quantities such as the 

elastic energy, stress, or viscous relaxation [1], [33], [53].  

 

Let us now consider a small network volume, subjected to an overall deformation 

history, characterized by the time-dependent deformation gradient tensor 𝑭(𝑡). At a 
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given time, this function can be used to evaluate the velocity gradient tensor through 

the relation 𝑳 = �̇�𝑭−1 where the superimposed dot represents the material time 

derivative. From this knowledge, it is possible to construct an evolution equation for 

the distribution function over time if a relationship is postulated between global 

deformation 𝑳 and local chain deformation �̇�. The simplest and most common 

assumption is given by the instantaneously affine approximation [33] that reads �̇� =

𝑳𝝀. In this case, it can be shown that the material time derivative of the distribution 

takes the form of the Fokker-Planck equation [1]: 

�̇� = −𝑳: (
𝜕𝜙

𝜕𝝀
⊗ 𝝀) − 𝜙𝑇𝑟(𝑳) + 𝑘𝑎𝑐𝑑𝑝0 − 𝑘𝑑𝜙,    (2.1) 

where 𝑐𝑑 is the concentration of detached chains and 𝑝0(𝝀) describes the probability 

density function at which chains reattach to the network.  The function 𝑝0(𝝀) is 

usually taken as an anisotropic, multivariate Gaussian with variance √𝑁𝑏 to express 

the fact that chains reconnect into a relaxed conformation. In this work, we 

concentrate on incompressible networks, characterized by 𝑑𝑒𝑡(𝑭) = 1, or 

alternatively, 𝑇𝑟(𝑳) = 0. This therefore implies that the second term on the right-

hand side of Eqn. (2.1) vanishes in the remainder of this manuscript. Given the 

evolution of the chain distribution (𝜙) through Eqn. (2.1), and assuming the force-

extension (𝑓 − 𝜆) response of a single chain is known, the stress in the network can 

be directly evaluated through the virial formula as [1]: 

𝝈 = ‖𝜙𝒇 ⊗ 𝝀‖ + 𝜋𝑰.        (2.2) 

We here concentrate on a reduced form of the TNT [1], where the chain distribution 

is described by its covariance matrix 𝝁 =
3

𝑐
‖𝜙(𝝀)𝝀 ⊗ 𝝀‖, also known as the 

conformation tensor. Focusing on the case where the rates of chain dissociation 𝑘𝑑 

and association 𝑘𝑎 are constants and independent of deformation, then the 

concentration of attached (and therefore detached) chains quickly reaches a steady 

state that is not affected by the loading history. This steady state concentration given 

by: 

𝑐 =
𝑘𝑎

𝑘𝑎+𝑘𝑑
𝑐𝑡,         (2.3) 
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where 𝑐𝑡 is the total chain density. Furthermore, the Fokker-Planck equation can be 

replaced by its reduced form, that describes the evolution of the conformation tensor 

as follows [1]: 

𝝁 = 𝑳𝝁 + 𝝁𝑳𝑇 − 𝑘𝑑(𝝁 − 𝑰).       (2.4) 

If the network is initially stress-free, this equation is complemented by the initial 

condition 𝝁 = 𝑰, where 𝑰 is the identity tensor. It can be shown that a general solution 

of this equation is [1]: 

𝝁(𝑡) = 𝑭𝑭𝑇𝑒−𝑘𝑑𝑡 + 𝑘𝑑𝑭 (∫ (𝑭𝜏
−1𝑭𝜏

−𝑇)𝑒−𝑘𝑑(𝑡−𝜏)𝑑𝜏
𝒕

𝟎
) 𝑭𝑇   (2.5) 

where the deformation gradient 𝑭𝜏 = 𝑭(𝜏). Although many flexible chains exhibit a 

severe, non-linear strain-stiffening response when deformed near their contour 

lengths, for simplicity, we here assume that the force-extension relation is that of a 

linear Gaussian chain taking the form 𝒇 = 3𝑘𝑇𝝀 where 𝑘𝑇 is the thermal energy. In 

this case, the stress simplifies to [1]: 

𝝈 = 𝑐𝑘𝑇𝝁 + 𝜋𝑰        (2.6) 

Combining this equation with the general solution for the conformation tensor (Eqn. 

(2.5)) leads to the prediction of the stress tensor for an arbitrary deformation history 

𝑭(𝑡). The TNT has been amply used to understand the molecular origin of the 

viscoelastic response by transient networks [1], [33], [53], [82]–[85]. It however hinges 

on a number of assumptions that could affect the validity and accuracy of its 

prediction in certain conditions. Among those assumptions are (a) the affinity of the 

chain deformation, (b) the assumption of constant association and dissociation 

kinetics, and (c) the linear force-extension response of the flexible chains. To explore 

these limitations, we here construct a discrete, transient network model that does not 

rely on these restrictions. 

 

2.3 Discrete model of transient networks 

 

The topology of transient networks can be very diverse. Without compromising 

generality, we here present a model that consist of a network of star-shaped units 
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whose branches may reversibly bind with one another, in line with the depiction of 

Fig. 2.1. As a discrete model that represents the end-to-end vector of every chain, 

this framework inherently captures the non-affine response of the network as it 

undergoes conformational changes during deformation. Similarly, given bond 

dynamics, the framework also captures non-affine changes due to network 

reconfiguration. Furthermore, the bond dissociation rate of attached chains is 

prescribed a statistical dependence on force through Eyring's theory [65], while the 

association rate of detached chains is governed by their proximity to neighboring open 

chains and their timescale of tethered Rouse diffusion [80], thus rendering the 

assumption of constant kinetic rates unnecessary. Finally, the chains are assigned a 

nonlinear force-extension relationship through the Padé approximation of Langevin 

chains [86], capturing the enthalpic stiffening of chains from the stretching of intra-

constituent bonds as they near full extension (as opposed to just entropic stiffness 

from unfolding) [87]. In the remainder of this section, we detail the prescribed force-

distance relationships (both the attraction of mutually bonded nodes due to chain 

forces and repulsion of neighboring nodes due to volume exclusion), bond kinetics 

(both detachment and attachment), and integration of single chains into a network. 

 

2.3.1 Elastic and repulsive interactions in a transient network 

 

Networks' constitutive properties are intrinsically tied to the constitutive properties 

of their elemental building blocks. Therefore, due consideration must be given to the 

assignment of a force-extension relationship, 𝑓(𝜆), for jointly connected chains in the 

model. In many networks of flexible chains, a nonlinear stiffening occurs when 

members are stretched close to some finite contour length. To prescribe a finite 

contour length, we employ the Padé approximate for Langevin chains [86] for which 

the corresponding free energy is: 

𝒰𝑐(𝜆) = 𝑘𝑇 [
𝜆2

2
− 𝑁 𝑙𝑜𝑔(𝑁 − 𝜆2)].      (2.7) 
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Notably, the force in a Langevin chain diverges in the limit 𝜆 → √𝑁 (i.e., 𝑟 → 𝐿), 

enforcing that 𝑓 → ∞ when the chains are stretched to their full contour length (Fig. 

2.2.A). This nonlinear divergence at high chain stretch is common to polymeric 

chains. In fully extended polymer chains, the conformational degrees of freedom are 

minimized and the stiffness of the chains is no longer entropically driven, rather it is 

governed by the much stiffer stretching of covalent bonds between monomers [88].  

 

 
Figure 2.2. Pairwise forces on crosslinks. (A) The entropic tensile force of an attached chain is 

plotted with respect to extension, 𝜆 = 𝑟/(√𝑁𝑏). Both the Gaussian (dashed black line) and Langevin 

(solid black curve) chain models are displayed. The nominal spacing between nearest neighboring 

permanent crosslinks, 𝑙𝑐, and the chain contour length, 𝜆 = √𝑁 are denoted for reference. (B) The 

repulsive force between neighboring units due to volume exclusion is plotted with respect to separation 

distance, 𝑑. Again, 𝑙𝑐 is marked for reference. The length scale above which repulsion goes to zero, 𝑅, 

is also denoted. 

 

This model relies on the freely-jointed assumption that there is no energetic penalty 

for changing the angle between adjacent chain segments (i.e., bending). Employing 

freely-jointed chains simplifies our network model by eliminating moments on our 

permanent crosslinks, instead ensuring that the force from a chain always occurs 

pairwise and in-line with the centers of mass of the nodes to which it is connected. It 

also permits us to assume a circumferentially symmetrical radial distribution for 

unattached chains such that the stickers are equally likely to occupy any azimuth 

about their tethered node. However, with no energetic penalty for bending the chains 

have no finite rest length and are always in tension, which - in the absence of any 

repulsive potential - will cause traction-free networks to converge to a single point. 
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To mitigate this non-physical effect, we introduce soft volume exclusion between 

permanent crosslinks through a generic inverse repulsion potential of the form [89]: 

𝒰𝑅(𝑑) = {
𝐸 [𝛾 (

𝑑

𝑅
) + (

𝑅

𝑑
)

𝛾
] , 𝑖𝑓 𝑑 < 𝑅

0,                                 𝑖𝑓 𝑑 ≥ 𝑅
,     (2.8) 

where 𝐸 is a characteristic energy scale, 𝑅 is the effective particle radius, 𝛾 is a scaling 

parameter that defines how soft the particle is (where setting 𝛾 lower decreases the 

particle stiffness), and 𝑑 is the pairwise separation distance between neighboring 

nodes' centers of mass. From Eq. (2.8), we may derive the repulsive force according to 

𝜕𝒰𝑅/𝜕𝑑, which gives 𝑓𝑅 = 𝛾𝐸(1/𝑅 − 𝑅𝛾/𝑑(𝛾 + 1)) when 𝑑 < 𝑅 while 𝑓𝑅(𝑑) = 0 

otherwise. Thus, the total force acting between an adjacent set of bonded nodes 

becomes the sum of the tensile chain force and repulsive volume exclusion force. 

Ultimately, 𝐸 and 𝑅 are set such that the net force between a bonded pair becomes 

zero at a distance of 𝑅 = 2𝑙𝑐, which ensured that the networks always hosted some 

effective pressure from volume exclusion, and which led to negligible stress in 

equilibrated networks regardless of chain concentration (see Section 2.3.4). 

Additionally, 𝛾 is set to 2 in order to achieve a very soft pairwise repulsion. We set 

the contour length of an attached chain to 𝑁𝑏 = 3.5 units of length, and assume 

monodispersity, which enforces that chains remain close to the linear regime of the 

tensile force when connected to nearest neighbors. Note that while the Langevin 

contribution to the pairwise force between nodes exists only if said nodes are mutually 

bonded, volume exclusion force is maintained between all nodes within the radial 

separation distance 𝑑 ≤ 𝑅, hence the distinction between center of mass separation 

distance “𝑑” and chain end-to-end distance “𝑟”.  

 

2.3.2 Force-dependent bond dissociation 

 

At the constitutive level, the process of detachment is governed by the competition 

between the binding energy, 𝛥𝐺, of reversible bonds and the force-dependent free 

energy, 𝛹(𝑓), stored in the bonds' chains. If the free energy in the chain exceeds this 

binding energy (𝛹(𝑓) > 𝛥𝐺), then the bond will detach while if the energy barrier is 
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not eclipsed the bond will remain attached. As such, bond detachment is an 

inherently force-dependent phenomenon. In many of the systems modeled, such as 

polymeric networks, the force produced in a chain contains a random diffusion-

governed, entropic contribution. Therefore, the detachment process will appear 

probablistic at the mesoscale and so we employ an average rate to describe random 

dissociation events.  

 

 
Figure 2.3. Attached bond lifetime statistics.  (A) Rate of unbinding as a function of chain stretch 

is plotted for three different values of bond force sensitivity, 𝑓0. The vertical dashed lines represent the 

stretches at which 𝑓 = 𝑓0 (or 𝑘𝑑 = 𝑒) for each value of 𝑓0. (B) Statistics of the bond lifetime of an 

attached chain when 𝑓0 = 2𝑘𝑇/𝑏, are plotted for three different values end-to-end distance, 𝑟: 𝑟 = 𝑙𝑐 

(cyan), 𝑟 = 2𝑙𝑐 (black), and 𝑟 = 3𝑙𝑐 (red), where 𝑙𝑐 is nominal spacing between nearest neighboring 

permanent cross links. 

 

One commonly employed statistical model for force-dependent detachment in both 

mesoscale [56] and continuum approaches [2] is Eyring's theory, which describes the 

average bond detachment rate 𝑘𝑑 (or average inverse bond lifetime, 𝑘𝑑 = 1/𝜏𝑏) 

according to: 

𝑘𝑑 = 𝑘𝑑
0 𝑒𝑥𝑝 (

𝑓𝑥𝑑

𝑘𝑇
),        (2.9) 

where 𝑘𝑑
0 is the force-free detachment rate and 𝑥𝑑 is the detachment activation length 

scale that characterizes the force-sensitivity through 𝑓0 = 𝑘𝑇/𝑥𝑑 [65]. The effects of 

force sensitivity are displayed in Fig. 2.3.A. When 𝑓0 is on the order of 20𝑘𝑇/𝑏, there 

is very little extension-dependence of 𝑘𝑑 until 𝜆 → √𝑁. In contrast, when 𝑓0 is on the 

order of 0.2𝑘𝑇/𝑏, 𝑘𝑑 is more than tenfold greater than 𝑘𝑑
0 at the initial separation 
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distance between nearest neighbors, 𝑙𝑐. As 𝑓0 will greatly impact the connectivity and 

therefore stiffness of the networks in this model, further investigation into its effects 

may be considered in future work. However, here 𝑓0 is held at 2𝑘𝑇/𝑏, which produces 

an intermediate force-dependent effect on 𝑘𝑑 wherein 𝑓 reaches 𝑓0 at 𝑟 ≈ 2.5𝑙𝑐. 

Regardless of 𝑓0, under no applied load (𝑓 = 0), the stress-free rate of detachment due 

to random fluctuation is given by $𝑘𝑑
0$. From Eqn. (2.9) we see that as force increases, 

the detachment rate increases exponentially. Referencing the force-extension 

relationship of attached chains (Fig. 2.2.A) we see that the detachment rate diverges 

and the bond lifetime goes to zero in the extensile limit 𝑟 → 𝐿 (or 𝜆 → √𝑁). It should 

be noted that Eqn. (2.9) is also synonymous with the Bell model originally employed 

to predict slip bond detachment kinetics between cells [72], thus generalizing its 

application beyond the systems Eyring originally studied.  

 

To gauge the effects of this coarse-grained detachment algorithm on a single chain, 

we conduct a simple benchmark problem. Two chains whose reversible binding sites 

are initially attached, have their permanently cross-linked ends held apart at some 

constant chain length, 𝑟. The nominal detachment rate, 𝑘𝑑, in this chain is then 

computed through Eqn. (2.9). From a numerical view point, the detachment kinetics 

of a detached chain can be seen as a stochastic process, where each event is considered 

independent. It can therefore be considered as a Poisson process with average rate 

𝑘𝑑. The differential probability 𝑃𝑑 for an attachment event to occur during a time 

interval 𝑡 and 𝑡 + 𝑑𝑡 therefore follows the relation: 

𝑑𝑃𝑑 = 𝑘𝑑𝑒−𝑘𝑑𝑡𝑑𝑡.        (2.10) 

Discretizing 𝑡 by some small numerical timestep, 𝛥𝑡, and accounting for the 

memorylessness of the exponential function, we may rewrite this relationship such 

that the probability of detachment at any given timestep in the model is taken as: 

𝑃𝑑 = 1 − 𝑒−𝑘𝑑𝛥𝑡.        (2.11) 

Time is stepped in increments of 𝛥𝑡, and a random number, 𝑎, in the range 𝑎 ∈ [0,1] 

is checked against 𝑃𝑑. If, 𝑎 ≤ 𝑃𝑑, the bond is detached, the bond lifetime is recorded, 

and the simulation stops. This process is repeated for 20,000 observations over three 



16 

 

separate values of 𝑟 (𝑟 = 𝑙𝑐, 𝑟 = 2𝑙𝑐, and 𝑟 = 3𝑙𝑐). The resulting probability mass 

functions of bond lifetime are presented in Fig. 2.3.B, which agree with the 

continuous distributions predicted by Eqn. (2.10). As 𝑟 increases, the tail of the 

histogram shortens and the peak of the distribution increases indicating a shorter 

average bond lifetime for highly stretched chains, as expected from Eqn. (2.9). In 

contrast, decreasing 𝑟 elongates the tail of the distribution and reduces the peak 

value, indicating that shorter chains have longer average bond lifetimes. 

 

2.3.3 Kinetics of bond association 

 

Let us now concentrate on estimating the lifetime of a dangling bond, that is attached 

to a fixed node as shown in Fig. 2.4.A. While other researchers have successfully 

employed Bell's theorem for the reattachment of bonds that fasten together "hidden 

lengths" or phantom loops [90], this approach requires that the reversible bonds 

reside along the lengths of the polymers and that the chains remain intact, albeit 

elongated, after bond rupture. However, bond breakage in the networks examined 

here results in complete chain scission and the formation of two dangling chains, 

which are tethered only at one end to their permanent cross-links. Under such 

conditions, assuming negligible long-range potential between the free stickers and 

that the bond transition length scale is very small (such that bonds reform when two 

free stickers effectively come into contact), then bond association kinetics depend 

primarily on the diffusion of detached stickers. When detached, a dangling flexible 

chain explores the space surrounding the central node through a sub-diffusive Rouse 

process. Following Stukalin, et al. (2013) [80], and assuming sufficiently flexible, 

ergodic chains, we designate 𝜏0 as the time it takes for this bond to move through the 

molecular distance 𝑏. This time depends on both temperature and the friction 

coefficient between the dangling chain and its surrounding medium. Following the 

Rouse diffusion model, the mean square displacement ⟨𝛥𝑟2(𝑡)⟩ of the dangling bond 

around its anchoring node increases as a square-root of time following: 

⟨𝑟2(𝑡)⟩ = 𝑏2√𝑡/𝜏0 ,        (2.12) 
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for 𝜏0 < 𝑡 < 𝜏𝑅, where 𝜏𝑅 is the Rouse time of the dangling chain given by 𝜏𝑅 = 𝜏0𝑁2. 

Let us now estimate the three-dimensional volume 𝑉 explored by the bond over time 

(Fig. 2.4.A). This volume may be estimated by the mean square displacement as 

𝑉(𝑡) = ⟨𝛥𝑟2(𝑡)⟩3/2, which, combined with Eqn. (2.12) yields the relation: 

𝑉(𝑡) = 𝑏3(𝑡/𝜏0)3/4.        (2.13) 

To obtain a scaling law for the average lifetime of a free dangling chain, we postulate 

that a binding event occurs when the exploration volume 𝑉(𝑡) is equal to the volumes 

at which two dangling chains, attached to nodes separated by a distance 𝑑, intersect 

(i.e., 𝑉 ≈ 𝑑3). Applying this to Eqn. (2.13) gives the average life time of a free dangling 

chain as 𝜏 ≈ 𝜏0(𝑑/𝑏)4. In other words, the average rate of association 𝑘𝑎 = 1/𝜏 scales 

nonlinearly with the distance between two nodes according to the power law: 

𝑘𝑎 ≈
1

𝜏0
(

𝑏

𝑑
)

4
,         (2.14) 

where 𝑘𝑎 = 0 if 𝑑 > 𝑁𝑏. Note that this scaling law based on the work of Stukalin, et 

al. (2013) [80], yields a rough estimation of the lifetime of a dangling chain and may 

be improved in a number of ways. For instance, the recombination of two dangling 

chains that belong to the same node is not considered here, but is expected to decrease 

the lifetime of these free chains. While this work ignores such effects for clarity, they 

may be included in ulterior versions of the model. 

 

As with the detachment kinetics, the recombination kinetics of two dangling chains 

may be viewed as a stochastic process, where each event is independent, thereby 

being treated as a Poisson process with average rate 𝑘𝑎. Thus, the differential 

probability 𝑃𝑎 of an attachment event occurring during the time interval 𝑡 and 𝑡 + 𝑑𝑡 

follows the relation: 

𝑑𝑃𝑎 = 𝑘𝑎𝑒−𝑘𝑎𝑡𝑑𝑡,        (2.15) 

where 𝑘𝑎 is a function of both time and chain separation through Eqn. (2.14). 

Therefore, to gauge the effects of this coarse-grained attachment process on a single 

chain, we conduct another simple benchmark problem. As with the detachment 

process, we discretize 𝑡, giving the attachment probability within a discrete timestep 
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as 𝑃𝑎 = 1 − 𝑒−𝑘𝑎𝛥𝑡. Two detached tethers separated by a fixed distances of 𝑑 = 𝑙𝑐, 𝑑 =

2𝑙𝑐, and 𝑑 = 3𝑙𝑐 are allowed to bond and their unbound lifetime is recorded. The 

resulting probability mass functions from 20,000 detached lifetime observations each, 

are presented in Fig. 2.4.A, which agree with the continuous distributions predicted 

by Eqn. (2.15). As 𝑑 decreases, the tail of the histogram shortens significantly and 

the peak of the distribution increases indicating a shorter average unbound lifetime 

between nodes in close proximity, as expected from Eqn. (2.14). In contrast, 

increasing 𝑑 lengthens the tail of the distribution and decreases the peak value, 

indicating an increased average unbound lifetime, with very few attachment events 

occurring at any given lifetime when 𝑑 = 3𝑙𝑐 in the observed time interval. 

 

 
Figure 2.4. Detached bond lifetime statistics. (A) Statistics of the free sticker lifetime are plotted 

for three different values separation distance, 𝑑:𝑑 = 𝑙𝑐 (cyan), 𝑑 = 2𝑙𝑐 (black), and 𝑑 = 3𝑙𝑐 (red), where 

𝑙𝑐 is nominal spacing between nearest neighboring permanent cross links. (B) 𝑘𝑎/(𝑘𝑎 + 𝑘𝑑) is plotted 

with respect to separation distance, 𝑑, for three different values of the diffusion sticker timescale, 𝜏0, 

which predicts the fraction of chains that will be attached at a given value of 𝑑 (𝑓0 is held at 2𝑘𝑇/𝑏). 

 

The combined effects of 𝑘𝑎(𝑑, 𝑡) and 𝑘𝑑(𝑟) are illustrated in Fig. 2.4.B by plotting the 

ratio 𝑘𝑎/(𝑘𝑎 + 𝑘𝑑) with respect to node separation distance 𝑑 (which is synonymous 

with 𝑟 for bonded nodes). This ratio predicts the steady state fraction of chains that 

will be attached at a given end-to-end distance. It remains close to one for small 

separations at which 𝑘𝑑 will diminish (Fig. 2.3.B) and $k_a$ will increase (Fig. 

2.4.A). Similarly, it approaches zero in the limit 𝑟 → 𝑁𝑏. To also highlight the effect 
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of the sticker diffusion timescale, Fig. 2.4.B displays 𝑘𝑎/(𝑘𝑎 + 𝑘𝑑)  for three values of 

𝜏0: 𝜏0 = 10−6𝛥𝑡, 𝜏0 = 10−7𝛥𝑡, and 𝜏0 = 10−8𝛥𝑡. When 𝜏0 is increased (i.e., when it takes 

longer for the sticker to travel a distance 𝑏), the fraction of attached chains at a given 

distance generally decreases, as expected given the corresponding reduction in 𝑘𝑎 

through Eqn. (2.14). Specifically, when 𝜏0 = 10−8𝛥𝑡, the fraction of attached chains 

remains close to one until 𝑑 > 2𝑙𝑐, while when 𝜏0 = 10−6𝛥𝑡, the fraction of attached 

chains only remains close to one when 𝑑 < 𝑙𝑐.  As with 𝑓0, 𝜏0 greatly impacts the 

connectivity and therefore mechanical properties of the networks. In the scope of this 

work, 𝜏0 is set to 10−7𝛥𝑡, such that the predicted fraction of attached chains 

transitions from one to zero within the approximate node separation range of this 

model (𝑙𝑐 < 𝑑 < 4𝑙𝑐) (see Fig. 2.4.B). 

 

2.3.4 Network model and algorithm 

 

To explore the mechanical response of transient networks, we here concentrate on 

two-dimensional, plane stress RVEs with periodic boundary conditions (Fig 2.5). The 

details of applied periodic boundary conditions are provided in the Supplementary 

Information. For simplicity, these RVEs are initially square domains 𝛺0 that contain 

star-shaped units (with 𝑛 dangling chains) whose centers (nodes) act as permanent 

cross-link sites (Fig. 2.1). The free ends of the dangling chains each possess a sticker 

that can reversibly connect to the dangling chains of neighboring units as discussed 

above. While many branched dynamic networks include reversible binding sites along 

the intermediate length of their structural chains [74], [91], [92], we here focus on 

star-shaped units because it allows us to begin by comparing TNT to the relatively 

simple case of a monodisperse network with a comparatively homogeneous cross-link 

distribution. We next describe the numerical approach used to explore the mechanical 

behavior of these transient networks. 

 

Network generation. To generate the networks, 𝒩 nodes are initially positioned 

within the domain 𝛺0 at Cartesian coordinates 𝑿𝛼 (𝛼 ∈ [1, 𝒩]). For computational 
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efficiency, the number of nodes included in the RVEs is set to 𝒩 = 225, such that 

minimum domain width at full deformation remains larger than the contour length 

of a single chain, thus ensuring that a chain cannot simultaneously span opposite 

boundaries of the RVE. Increasing the domain size further induces no change in 

global network stress (see Appendix A.I for details). To ensure a uniform node 

distribution, node placement follows a 2D Poisson's point process originating at the 

domain's center ([0,0]). The initial network configuration is then achieved by 

randomly linking chains according to the kinetics of bond association and dissociation 

described in the previous sections. The chain concentration 𝑐𝑡 is tuned in this process 

through the number 𝑛 of dangling chains assigned to each node. For simplicity, we 

posit here that two chains branching from the same node cannot form a connection. 

To enforce periodicity of the network, nodes across opposite domain boundaries are 

also allowed to connect and disconnect, as if neighboring one another. Note that in 

this coarse-grained approach, the dangling chains and stickers themselves are not 

explicitly modeled when detached. Rather, when a connection forms between cross-

link 𝛼 and its neighbor 𝛽, a chain of length 𝑁𝑏 and end-to-end vector 𝒓𝛼𝛽 = 𝒙𝛽 − 𝒙𝛼 is 

regarded with some resultant pairwise force, 𝒇𝛼𝛽, acting on cross-link 𝛼 due to 𝛽. In 

the simulations, we therefore only visually represent the chains when they form 

connections between nodes. 

 

Prior to applying any deformation, the initiated networks are dynamically 

equilibrated until they reach steady state. Here steady state is defined by 

equilibration of the network stress (Fig. 2.5), defined later in the subsection  

Network deformation and stress calculation. It should be noted that other 

benchmarks for steady state, such as the average number of connections 𝑍 per node 

or mean orientation of the chain end-to-end distribution, consistently stabilized 

before network stress. 
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Figure 2.5. Discrete network homogenization. (A) Snapshots of networks with 𝑛 = 10 (top row), 

𝑛 = 4 (middle row) and 𝑛 = 2 (bottom row) are shown at initiation (left column) and at the end of a 90 

second dynamic equilibration process (right column). Red dots represent permanent crosslink sites 

and black lines represent connected chains. Grey lines represent the periodically replicated chains. 

Note that permanent crosslinks are reduced in size for visual clarity when plotted. (B) The four 

components of in-plane virial stress are plotted with respect to time. 

 

Applying deformation. In this work, a global, but periodic network deformation is 

applied over time by imposing a macroscopic deformation gradient 𝑭(𝑡). For this, the 

initially square window is deformed by updating the coordinates of its corners via the 

mapping 

𝑥𝑗(𝑡) = 𝐹𝑖𝑗(𝑡)𝑋𝑖,        (2.16) 

Where 𝑥𝑗 and 𝑋𝑖 are the component of the corner points of the domain in their current 

and initial configuration, while 𝐹𝑖𝑗 are the components of the applied deformation 

gradient. For the purposes of this work, no shear components of 𝑭 are applied, such 

that the window always remain orthogonal. The distortion of the window affects the 

distance between periodic pairs of nodes on opposite boundaries, thus triggering 

traction forces at the domain bounds. The deformation gradient 𝑭(𝑡) is stepped in 

time increments of 𝛥𝑡, which is set such that 𝑘𝑑
−1, 𝑘𝑎

−1, and the inverse of the applied 
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strain rate 휀̇−1 are all at least two orders of magnitude higher than 𝛥𝑡 and a maximum 

average of one stress free detachment event would occur for every one hundred 

tethers within a discrete time step (see Appendix A.1 for details). This ensures that 

the network configuration due to bond dynamics and conformation due to non-affine 

deformation modes are updated with ample frequency as deformation is applied. 

 

Network deformation and stress calculation. After the deformation is stepped, 

the unbalanced traction forces at the boundaries trigger the motion of nodes in the 

network until they reach their next equilibrium state. Force equilibration is achieved 

using a forward Euler, steepest descent algorithm [93]. Thus, the position of node 𝛼 

at iteration 𝑘, 𝒙𝑘
𝛼, is updated according to:  

𝒙𝑘+1
𝛼 = 𝒙𝑘

𝛼 + 휂−1𝒇𝑘
𝛼,        (2.17) 

where 𝒇𝛼 = ∑ 𝒇𝛼𝛽
𝛽  is the unbalanced force acting on node 𝛼, and 휂 is simply a 

numerical overdamping coefficient set such that the residual force converges towards 

zero. Note that 𝒇𝛼 is inclusive of the tensile chain forces, as well as the repulsive 

volume exclusion forces. No random force due to Brownian noise is included in the 

scope of this work as the size of the units considered are such that isotropic noise will 

have a negligible net effect on diffusion. In contrast, the size of the tethered stickers 

is not large enough to mitigate Brownian noise, and therefore thermal noise is lumped 

into the kinetic rates of bond dynamics.  

 

Iteration of Eqn. (2.17) proceeds until the unbalanced forces nearly vanish for all 

nodes. To reduce the computational cost without a significant reduction in accuracy, 

the threshold for the maximum and mean residual unbalanced forces are set to less 

than 5% and 2.5% of 𝑘𝑇/𝑥𝑑, respectively. We note here that force equilibration is 

assumed to occur significantly faster than the timescale of bond kinetics or applied 

deformation, such that neither bond dynamics nor applied deformation are updated 

during this procedure. At the end of each equilibration step, the stretched state of 

chains along with pairwise volume exclusion interactions culminate in some average 

true stress, 𝝈, which is computed using the virial formulation given by: 
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𝜎𝑖𝑗 =
1

2𝑉
∑ ∑ 𝑟𝑖

𝛼𝛽
⊗ 𝑓𝑗

𝛼𝛽
𝛽

𝒩
𝛼 ,       (2.18) 

where 𝑉 is the domain volume [94]. We here exclude the inertial term of the virial 

stress commonly seen in atomistic or molecular scale discrete models, (due to the 

overdamped assumption which invokes that the nodes' inertia are negligible) and 

instead use the virial formulation inherent to the continuum model (Eqn. (2.2)). 

 

Bond dynamics. After force equilibration, bond dynamics are enabled following the 

algorithms for attachment and detachment described earlier. Note that the networks 

examined are non-associative, in that the number of attached chains need not be 

conserved (i.e., bond exchange reactions are not prerequisite for dynamics to occur). 

The algorithm repeats the three steps described above (applying deformation, 

equilibrating network force, and updating network configuration due to bond 

dynamics) until the network has undergone the full prescribed deformation history. 

 

2.4 Results 

 

Here we report the predicted statistical and mechanical responses of discretely 

modeled transient networks, and compare them to those predicted by the TNT. Two 

main mechanical signatures are explored: (a) the rate-dependence of the network 

response and (b) the dynamics of its stress-relaxation. To achieve this, RVEs 

containing 𝒩 = 225 permanent cross-links are deformed per the load history 

described as follows and plotted in Fig. 2.6.A:  

 

• In the first stage, a uniaxial stretch is applied at constant true strain rate 휀̇ up 

to a stretch of 100% (Fig. 2.6.A-D.0-2). Deformation is applied in the Cartesian 

basis {𝒆1, 𝒆2} (Fig. 2.6.D) through the deformation gradient 𝑭 = 𝑑𝑖𝑎𝑔(𝐹11, 𝐹22). 

The constant strain rate is achieved through the relation 𝐹22 = 𝑒𝑥𝑝(휀̇𝑡) and 

incompressible deformation is enforced through the condition 𝐹11 = 1/𝐹22 (i.e., 

𝑑𝑒𝑡𝑭 = 1).  
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• In the second stage, a relaxation regime ensues in which the stretch is held 

constant until equilibrium is achieved (Fig. 2.6.A-D.2-4).  

 

In the loading regime, the solution of the TNT given by Eqn. (2.5) can be estimated 

numerically over time. In the relaxation regime, the deformation gradient remains 

constant and the solution Eqn. (2.5) takes the simple form: 

𝜇(𝑡 − 𝑡0) = 𝝁0𝒆−𝑘𝑑(𝑡−𝑡0), 𝑡 ≥ 𝑡0,      (2.19) 

where 𝑡0 is the final loading time (i.e., when relaxation begins) and 𝝁0 = 𝝁(𝑡0) is the 

conformation tensor at 𝑡0. Eqn. (2.19) predicts that the stress decays exponentially to 

zero with a decay rate of 𝑘𝑑 (Fig. 2.6.B.2-4). The TNT also provides a general 

representation of the chain statistics during network deformation. Since only axial 

stretches are applied here, the conformation tensor remains diagonal with 

components 𝝁 = 𝑑𝑖𝑎𝑔(𝜇1, 𝜇2). As discussed in Vernerey, et al. (2017) [1], this tensor 

can be represented by an ellipse with semi-axes 𝜇1 and 𝜇2 in the directions 𝒆1 and 𝒆2, 

respectively. This ellipse represents the normalized mean-square stretch of the 

chains in different orientations (Fig. 2.6.C). To produce statistically representative 

results from the discrete model, each of these conditions is imposed onto an ensemble 

of fifty different networks from which the average stress responses and chain 

distributions are measured. These results are illustrated  in Fig. 2.6 for a reference 

network, with a chain concentration of 𝑐 ≈ 15휁−2 (or average connectivity 𝑍 ≈ 8.4), 

deforming at a strain rate 휀̇ = 𝑘𝑑
0. Good agreement with the continuum prediction is 

obtained when the dissociation rate used in the TNT matches the average bond 

dissociation rate, �̅�𝑑, measured from numerical results (�̅�𝑑 ≈ 6.5𝑘𝑑
0). Here, �̅�𝑑 is taken 

as the total number of detachment events in the network per time step, normalized 

by the total number of attached chains at the beginning of said time step. 

Significantly, the observation that �̅�𝑑 ≠ 𝑘𝑑
0 is a consequence of force-dependent 

detachment through Eqn. (2.9). In the remainder of this work, the applied strain rate 

is normalized by the rate �̅�𝑑, thus introducing the non-dimensional Weissenberg 

number 𝑊 = 휀̇/�̅�𝑑.  
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Figure 2.6. Intrinsic viscosity of network model. (A) True strain in the direction of extension, 

휀22 = 𝑙𝑛 𝐹22, is plotted with respect to simulation time. Loading is applied at a constant true strain rate 

until the network is stretched by 100% (i.e., until time 𝑡 = 𝑙𝑛(2) /휀̇), after which the network is held in 

its deformed state until the stress fully relaxed. (B) The normal component of virial stress in the 

vertical direction is plotted with respect to time when 𝑊 ≈ 1/6 and 𝑐 ≈ 15휁−2. The stress response 

shown is the ensemble average of 50 numerical experiments. Standard error, plotted as a shaded area 

around the curve, constitutes less than 5% of the mean. The stress response computed from (5) is 

plotted as a dotted curve. (C) The ensemble joint distributions of 𝒓𝛼𝛽 from ten numerical experiments 

are displayed as 2D histograms. 𝒓, as predicted by 𝒓 = 𝝁𝒓0, is plotted as red ellipses for initial end-to-

end lengths of |𝒓| = [0.5,1,1.5]. (D) Snapshots of one numerical network during deformation are 

displayed for reference. (C-D)  The designations 1-4 represent the network (1) at a stretch of 1.5, (2) at 

a stretch of 2 when loading is initially halted, (3) at time 𝑡 = 𝑘𝑑
−1 into stress relaxation, and (4) time 

𝑡 = 4𝑘𝑑
−1 into stress relaxation. 

 

Both the stress response in time, 𝝈(𝑡) (Fig. 2.6.B) and the distribution functions of 

connected chains' end-to-end vectors, (Fig. 2.6.C) are reasonably well-predicted by 

Eqn. (2.6) for the conditions given (𝑊 ≈ 1/6 and 𝑍 ≈ 8.4). Generally, during loading, 
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chains are stretched in the direction of applied tension as indicated by the elongation 

of the joint distribution functions in Fig. 2.6.C.1-2, resulting in the generation of 

tensile stress in the loading direction (Fig. 2.6.B.1-2). Once loading is ceased (Fig. 

2.6.A-D.2-4), the joint distribution begins to revert to an isotropic state (Fig. 2.6.C.3) 

and the stress relaxes (Fig. 2.6.B.3). Eventually, the network reverts fully to the 

stress-free, isotropic state associated with 𝝁0 = 𝑰. 

 

It is however worthwhile to note that some deviation occurs during both the loading 

and stress relaxation phases. In the the stress predicted by the discrete model is 

initially slightly greater than that predicted by Eqn. (2.6), likely due to the divergence 

of force associated with Langevin chains, which is not captured by the idealized 

continuum model. Yet, despite this initially higher stiffness, we see that the peak 

stresses at the time when loading is ceased (Fig. 2.6.B.2) roughly coincide between 

the discrete and continuum models. This is because a region of roughly steady state 

stress (i.e., creep) is predicted by the discrete model in later loading stages. This 

stress plateau is not observed in the continuum model whose modulus always 

remains finite in the deformation range depicted. Notable discrepancies also exist 

during the stress relaxation regime, where the initial reduction in stress occurs faster 

for the discrete model than it does for the continuum model, indicating that the stress 

of the former does not decay exponentially. Both the creep response and non-

exponential stress-relaxation of the discrete model may be attributed to three main 

mechanisms not captured by the continuum model: (a) non-affine microstructural 

deformation, (b) nonlinear chain response, and (c) force-dependence of the bond 

dissociation rate 𝑘𝑑. While the observed differences are mild given the low loading 

rate (𝑊 < 0.5) and high connectivity (𝑍 ≫ 2) presented in Fig. 2.6, we now explore 

the conditions under which the continuum model fails to capture the network 

mechanics predicted by the discrete model. 
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2.4.1 Effects of strain rate  

 

To better understand the limitations of the TNT with regards to strain rate, we first 

sweep 𝑊 ∈ [1/8,1/4,1/2,1,2], while holding the total chain concentration 𝑐𝑡 constant 

(therefore holding a fixed connectivity 𝑍 ≈ 8.4). The global mechanical stress 

responses of networks loaded at various strain rates are displayed during 

deformation and relaxation in Fig. 2.7.A and 2.7.B,respectively. To elucidate the 

underlying micro-mechanical phenomenon that drives deviation in global stress 

between the continuum and discrete model predictions, the constant and stretch-

dependent detachment rates (𝑘𝑑),s of a single chain in the continuum and discrete 

models, respectively, are plotted with respect to 𝑟 in Fig. 2.7.E. The percent deviation 

between the values of 𝑘𝑑 from each model are also plotted with respect to 𝑟 in Fig. 

2.7.E, to show that 𝑘𝑑 of highly stretched chains deviates significantly between the 

models. The maximum values of 𝑘𝑑 at four different times corresponding to (1) 

partway through loading, (2) at peak loading, (3) partway through stress relaxation, 

and (4) near complete stress relaxation are denoted for the lowest (blue) and highest 

(red) strain rates, respectively.   

 

Nonlinear Langevin chains stiffen the network response during initial 

loading.  It is well-known that the affine assumption leads to over-prediction of true 

stress; however the results depicted in Fig. 2.7.A show that during the initial loading, 

the stress predicted by the TNT is consistently underestimated across all strain rates. 

This is not observed for discrete networks of Gaussian springs (see Appendix A.2, 

Fig. A.2.A). It is therefore attributed to the use of Langevin chains in the discrete 

model, whose force, as modeled through the Padé approximation [86], not only 

exceeds that of ideal chains at any stretch (albeit, minutely below 𝜆 = 𝑙𝑐/(√𝑁𝑏)), but 

also undergoes divergence as chains are stretched to their contour lengths (Fig. 

2.2.A). As such for fixed values of 𝑁, 𝑏, 𝑐𝑡, the Langevin chain model always produces 

networks with higher predicted stiffness than those comprised of linear chains and 

the effect is exacerbated at high stretches. Therefore, the continuum model should 
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always under-predict the network stress, regardless of the loading history. Yet, the 

stress responses during the relaxation regime in Fig. 2.7.B indicate that this is not 

the case. 

 

Network connectivity is conserved despite force and separation-dependent 

bond dynamics. Given force-dependent detachment through Eqn. (2.9), we find that 

there exists an increase in the mean detachment rate, �̅�𝑑, during deformation. This 

is exemplified in Fig. 2.7.E (for the case of 𝑊 ≈ 1/2) by the slight increase of the 

mean  during times of loading (designated by the blue tags labeled “1” and “2”), versus 

times of relaxation (denoted by the blue tags labeled “3” and “4”). The increase in 

mean detachment rate during deformation is negligible for low strain rates (e.g., 𝑊 ≈

1/8), but as high as 15% for high strain rates (i.e., 𝑊 ≈ 2) immediately highlighting 

a limit of the constant 𝑘𝑑 assumption when applied to networks undergoing fast 

loading. Even more pronounced is the impact of high loading rate on the maximum 

value of 𝑘𝑑 for a single bond. In the case of 𝑊 ≈ 1/2, some bonds became stretched 

enough to undergo a forty-fold increase in 𝑘𝑑 over the mean effective value used to fit 

the continuum model, which occurred during peak loading (designated by the red tag 

labeled “2”). Later we examine how local increase in 𝑘𝑑 impacts the networks' stress 

response during loading and relaxation; but first we note that escalation of 𝑘𝑑 drives 

a corresponding increase in the mean attachment rate, �̅�𝑎, which is taken as the total 

number of attachment events in the network per time step, normalized by the total 

number of detached chains at the beginning of said time step. The increase in �̅�𝑎 is 

attributed to an increase in the number of attachment opportunities that occur at 

high strain rates due to both the higher detachment rate of chains and the mutual 

introduction of yet unattached tethers into each other's fields of reach. Despite this 

rise in bond reaction rates, the average connectivity �̅� of the network remains 

constant. This suggests that �̅�𝑑 and �̅�𝑎 increase proportionally such that the steady 

state concentration predicted by Eqn. (2.3) remains valid for all deformation rates 

observed. Nevertheless, the increased bond kinetics act as a softening mechanism 

whose effects, as discussed below, are most pronounced at higher strain rates.  
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Figure 2.7. Effects of loadin grate. (A) Normal stresses from creep experiments are plotted with 

respect to engineering strain, 𝜖 = 𝐹22 − 1, for 𝑊 ≈ 1/8 (cyan), 𝑊 ≈ 1/4  (teal), 𝑊 ≈ 1/2 (grey), 𝑊 ≈ 1 

(maroon), and 𝑊 ≈ 2 (red). (B) Normal stresses from relaxation experiments are plotted with respect 

to time for three different initial values of stress. All results from the discrete model are plotted as 

continuous curves with standard error represented by the shaded region, and results from TNT are 

plotted as dotted curves. (C-D) The corresponding networks at times 1 (left) and 2 (right) are depicted 

when (C) 𝑊 ≈ 1/8 and (D) 𝑊 ≈ 2 to highlight the effect of strain rate on chains' stretches and 

orientations. (E) Top: Bond dissociation rate, 𝑘𝑑 is plotted with respect to 𝑟 for Erying's theory 

employed in the discrete model (continuous black curve) and the constant 𝑘𝑑 assumption used in the 

continuum model (dotted black line). Bottom: the percent deviation between the continuum and 

discrete model dissociation rates is plotted with respect to 𝑟. Where the percent deviation transitions 

from negative to positive is labeled 𝑟𝑐𝑟𝑖𝑡, as chains with 𝑟 > 𝑟𝑐𝑟𝑖𝑡 will undergo faster dissociation than 

predicted by the continuum model. The four values denoted in blue represent the average values of 𝑟 

for times (1-4) when 𝑊 ≈ 1/8. Similarly, the four values denoted in red represent the maximum values 

of 𝑟 for times (1-4) when 𝑊 ≈ 2. 

 

Force-dependent bond detachment entails non-exponential stress 

relaxation. The most obvious effect of force-dependent detachment is the non-

exponential decay of stress which occurs during relaxation as observed in Fig. 2.7.B. 

More specifically,  once loading is ceased, the discrete network stress initially decays 

faster than the continuum model predicts and the degree of disagreement is greater 

for larger stresses (as in the case of higher loading rates). To understand this 
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response, we examined the percentage of chains whose end-to-end distances 𝑟, 

exceeds the value at which the local detachment rate equals that of the value fitted 

to the TNT, 𝑟𝑐𝑟𝑖𝑡 (Fig. 2.7.E). As expected, Fig. 2.8.A-B demonstrate that this 

percentage is generally higher during loading (at times “1” and “2”) than during 

relaxation (at times “3” and “4”), and this effect is more pronounced for higher strain 

rates. This increased percentage of highly stretched chains explains the non-

exponential decay of stress in the direction of applied loading for a few reasons. 

Firstly, the non-linearity of Eqn. (2.9) ensures that the bond dissociation rates of 

chains stretched beyond 𝑟𝑐𝑟𝑖𝑡 are orders of magnitude higher than those of bonds in 

the regime 𝑟<𝑟𝑐𝑟𝑖𝑡. Thus, the bonds detaching more frequently are those which are 

highly stretched, which - given any monotonically increasing force-extension 

relationship - are also those carrying the most tensile load and thus 

disproportionately contributing to the global stress response. Secondly, this effect is 

exacerbated by the use Langevin chains, which ensures that not only are the highly 

stretch chains contributing disproportionately to the stress, but they do so non-

linearly due to the divergent chain force in the limit 𝜆 → √𝑁. Finally, as illustrated 

through the joint distribution functions of 𝒓 (Fig. 2.8.C), the majority of chains 

stretched past a distance of 𝑟𝑐𝑟𝑖𝑡 are oriented with their larger component in the 

direction of global stretch (𝒆2); therefore, as these chains detach, they will principally 

reduce the reported stress component 𝜎22. While these effects are most noticeable 

during stress-relaxation, closer examination also reveals that they impact the stress 

response observed during loading as well. 

 

Force-dependent bond dynamics begets steady-state creep regardless of 

strain rate. Under the assumption of a constant dissociation rate 𝑘𝑑, the TNT 

predicts that a network subjected to a constant true strain rate (characterized by 𝑊) 

will experience a steady-state treu tensile stress of the form: 

𝜎 = 𝑐𝑘𝑇
𝑊

(1+𝑊)(1−2𝑊)
,        (2.20) 
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which notably diverges when 𝑊 ≥ 0.5. This result can readily be obtained by setting 

the term on the left-hand side of Eqn. (2.4) to zero. In other words, when 𝑊 ≥ 0.5, the 

rate of energy dissipation due to chain detachment is overtaken by the rate of elastic 

storage due to deformation, such that the elastic energy increases infinitely with 

time. However, as displayed by Fig. 2.8.D, discrete networks isochorically stretched 

to 250% of their original length do not exhibit such a singularity. Instead, the discrete 

model predicts that steady state creep is reached for strain rates up to 𝑊 = 1. This 

observation is attributed to the stretch-dependency of 𝑘𝑑. Indeed for networks that 

are stretched slowly (𝑊 ≈ 0.1) the percentage of chains exceeding 𝑟𝑐𝑟𝑖𝑡 remains close 

to 1% (Fig. 2.8.A-B, cyan curve) throughout deformation while for networks that are 

stretched quickly (𝑊 ≈ 1), the percentage of chains exceeding 𝑟𝑐𝑟𝑖𝑡 can reach close to 

15% (Fig. 2.8.A-B, maroon curve). The faster dissociation rate of these highly 

stretched chains mitigates storage of elastic energy such that a finite steady state 

stress is always observed. We note that steady state could not be reached for networks 

stretched at high rates without introducing exceedingly large Lagrangian 

deformation of the unit cell and so 𝑊 is limited to the regime 𝑊 ≤ 1 with the given 

deformation approach. It is however expected that a steady creep will be obtained for 

any value of 𝑊 based on the above analysis. Worth noting, is that at times the 

networks are observed to undergo a drop in stress rather than achieving steady state. 

Such cases occur when voids nucleate in regions of initially lower chain concentration, 

as exemplified by Fig. 2.8.E.  

 

Here, we  define a void as a gap in the network's cross-link distribution whose 

characteristic height and width are both too large to permit locally sustained 

percolation. This occurs when the rate of attachment across said gap is an order of 

magnitude less than the corresponding rate of detachment (i.e., 𝑘𝑎/(𝑘𝑎 + 𝑘𝑑  ) <̃ 10%), 

which - referencing Fig. 2.4.B - corresponds to a node separation of roughly 3𝑙𝑐. 

Therefore, although voids will not assume perfectly circular geometries, we loosely 

classify voids as vacant regions whose areas, 𝐴𝑣, satisfy the normalized condition 𝐴𝑣
∗ =

𝐴𝑣/[𝜋(3𝑙𝑐/2)2] ≥ 1. Given this definition, transient voids appear to occur at every 
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strain rate despite incompressible loading conditions. However, preliminary results 

suggests that voids constitute a greater average areal fraction, �̅�, of the networks 

when high strain rates are applied (e.g., �̅� ≈ 1.3 ± 0.5% when 𝑊 ≈ 0.125, whereas �̅� ≈

2.5 ± 0.5% when 𝑊 ≈ 1). This increase in �̅� emerges from a concurrent increase in the 

maximum number of voids observed existing simultaneously (𝑛𝑣), average void area 

(�̅�𝑣
∗ ) and average void lifetime (�̅�𝑣). Specifically, 𝑛𝑣 = 3 versus 1, 𝐴𝑣

∗ = 1.67 ± 0.20 

versus 1.36 ± 0.1, and �̅�𝑣
∗ = �̅� × 𝑘𝑑

0 = 0.105 ± 0.050 versus 0.047 ± 0.016 for 𝑊 ≈ 1 

versus 𝑊 ≈ 0.125, respectively. Such defects are hypothesized as the cause of 

mechanical failure in associative networks such as vitrimers [95]. Indeed a decline in 

stress (as opposed to steady-state creep) is observed in cases where large voids 

develop. Thus, to ensure that force-dependent bond detachment alone, and not 

softening due to void nucleation, is responsible for the average observed induction of 

creep, cases in which voids formed are excluded in the computation of steady state 

stress reported in Fig. 2.8.D. Furthermore, additional factors such as the goodness 

of solvent may significantly impact the onset of damage and consequently the global 

stress response in real materials such as gels [96]. Therefore, these factors should be 

considered on a material-specific basis for in-depth studies of damage. Nevertheless, 

these preliminary results generally suggests that damage in rate dependent transient 

networks is exacerbated by increased loading rate. Additionally, the emergence of 

voids represents a consequence of mesoscopic heterogeneity that influences global 

mechanical response, yet which the continuum model cannot predict: weakening due 

to nucleation of defects that are too large to heal on the timescale of individual bond 

exchanges. As such, further investigations of damage in transient networks may be 

conducted via this model in forthcoming work.  
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Figure 2.8. Micromechanical origins of mismatch with TNT. (A-B) The percentage of chains 

stretched above 𝑟𝑐𝑟𝑖𝑡 during (A) creep and (B) stress relaxation is plotted with respect to engineering 

strain and time, respectively. Results from three values of true 𝑊: 𝑊 = 1/8 (cyan), 𝑊 = 1/4 (teal), 𝑊 =
1/2 (grey), 𝑊 = 1 (maroon), and 𝑊 = 2 (red) - are shown. (C) The ensemble joint distributions of 𝒓 from 

ten numerical experiments are displayed as 2D histograms for 𝑊 = 2. 𝒓, as predicted by 𝒓 = 𝝁𝒓0, is 

plotted as red ellipses for initial end-to-end lengths of |𝒓0| = [0.5,1,1.5]. 𝑟𝑐𝑟𝑖𝑡 is plotted as a red dashed 

circle to visually illustrate the fraction of chains that are above or below the threshold, as well as their 

orientation. (D) Steady state stress is plotted with respect to 𝑊 for the numerical model as discrete 

data, and the continuum theory as a continuous black curve. The vertical dotted line at 𝑊 = 0.5 

denotes where the steady state stress predicted by the continuum model diverges. (E) A network 

deforming at a rate of 𝑊 = 0.85 is depicted at three different strains and highlights a region where the 

local void nucleation occurs.   
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2.4.2 Effects of chain concentration 

 

Having observed the effects of strain rate on the network response, we now turn to 

explore the effects of chain concentration at low strain rates. For this, we sweep the 

number of tethers per node, 𝑛 ∈ [2,4,10], which produces measured chain 

concentrations  of 𝑐 ≈ 15휁−2 (𝑍 ≈ 8.4), 𝑐 ≈ 6.5휁−2 (𝑍 ≈ 3.6), and 𝑐 ≈ 3.3휁−2 (𝑍 ≈ 1.8), 

respectively, while deforming the domain at a relatively low strain rate of 𝑊 ≈ 1/6.  

 

Low chain concentration leads to over-predicted network stress by the 

continuum approach. We confirm that at high concentrations the continuum model 

predicts the stress response of the discrete model fairly well throughout the 

deformation history, barring the discrepancies discussed in Section 2.4.1. However, 

at lower concentrations, when 𝑐 ≤ 6.5휁−2 (𝑍 ≈ 3.8), the TNT overestimates the stress 

response  (Fig. 2.9.A). Observing the probability joint distribution functions of 𝒓 (Fig. 

2.9.B-C), it is clear that at low concentrations, chains tend to occupy the shorter (i.e., 

lower energy) configurations available to them more readily. Therefore, it is 

unsurprising that the networks stress is reduced for domains with fewer chains. That 

chains occupy these lower energy states to begin with is driven by the distance-

dependent rates of 𝑘𝑎 and 𝑘𝑑 discussed in Section 2.3, which ensure that higher 

fractions of chains will occupy lower end-to-end distance configurations (Fig. 2.4.B). 

Yet, another possible softening effect is that units in networks with lower connectivity 

have higher conformational degrees of freedom and may deform non-affinely, as 

needed, to a lower energy state than that predicted by TNT (which assumes 

instantaneously affine chain evolution  �̇� = 𝑳𝒓).   
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Figure 2.9. Effects o network coordination. (A) The stress response for the full loading history of 

Fig. 2.6.A is plotted with respect to time for 𝑍 ≈ 1.8 (cyan), 𝑍 ≈ 3.6 (grey), and 𝑍 ≈ 8.4 (red), 

respectively. Solid curves with shaded regions represent discrete data with standard error, while 

dotted curves represent the stress response predicted by TNT. The inset depictions of the networks at 

each time visually illustrate how 𝑛 influences the network topology through chain concentration. 

Insets on the left always depict networks for which 𝑛 = 2, while insets on the right depict networks 

with 𝑛 = 10. (B-C) The ensemble joint distributions of 𝒓 from ten numerical experiments are displayed 

as 2D histograms for (B) 𝑛 = 2 and (C) 𝑛 = 10. 𝒓, as predicted by 𝒓 = 𝝁𝒓0, is plotted as red ellipses for 

initial end-to-end lengths of |𝒓0| = [0.5,1,1.5]. 

 

Both bond kinetics and conformational changes contribute to non-affine 

deformation within a finite time interval. As discussed above, the continuum 

model relies on the instantaneously affine assumption that the rate change of a 

chain's end-to-end vector evolves according to �̇� = 𝑳𝒓 where 𝑳 is the globally applied 

velocity gradient. To approximately test this in the discrete model, we quantified the 

extent of non-affine network deformation according to: 

𝛿𝑢∗ = ⟨
‖𝛿𝒖‖

‖𝒖𝑎𝑓𝑓‖
⟩,        (2.21) 
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where ⟨⟩ denotes taking the ensemble average over all 𝑁𝛼𝛽 chains that remain 

attached during the time interval from 𝑡 to 𝑡 + 𝜏, 𝛿𝒖 = 𝒓𝛼𝛽(𝑡 + 𝜏) − 𝒓𝑎𝑓𝑓
𝛼𝛽 (𝑡 + 𝜏), and 

𝒖𝑎𝑓𝑓 = 𝒓𝑎𝑓𝑓
𝛼𝛽 (𝑡 + 𝜏) − 𝒓𝛼𝛽(𝑡) [97]. Here, 𝒓𝛼𝛽 and 𝒓𝑎𝑓𝑓

𝛼𝛽
 represent the actual and affinely 

predicted chain end-to-end vectors, respectively, at time 𝑡 + 𝜏. The latter, 𝒓𝑎𝑓𝑓
𝛼𝛽

, is 

calculated according to: 

𝒓𝑎𝑓𝑓
𝛼𝛽 (𝑡 + 𝜏) = 𝑭𝜏𝒓𝛼𝛽(𝑡),       (2.22) 

where 𝑭𝜏 is the globally applied deformation gradient from time 𝑡 to 𝑡 + 𝜏. By 

definition, 𝛿𝑢∗ = 0 when the network deformation is affine and 𝛿𝑢∗ → 0  in the limit 

𝜏 → 0.  

 

In this framework, network connectivity is modulated through the total number of 

tethers as opposed to by changing the bonds' attachment or detachment rates. As 

such, a network with more tethers will have more total bond reactions per unit 

volume within a given time interval and undergo a greater degree of configurational 

change. Therefore, to isolate the degree of non-affine deformation due to 

conformational effects (e.g., floppy modes [68]), as opposed to network restructuring, 

we normalize 𝛿𝑢∗ by the total number of network tethers 𝒩𝑛, which scales 

proportionately to the density of bond reactions. Indeed, observing Fig. 2.10, we see 

that non-affine deformation due to conformational change increases in time, but is 

negligible in the limit 𝜏 → 0, which is consistent with the instantaneously affine 

assumption. We also see that non-affine deformation is amplified for networks with 

lower connectivities. Since non-affine deformation modes allow networks to reduce 

their free energy (thus softening their mechanical responses) [63], [68], this is the 

likely explanation for the underestimation of network stress by the continuum model 

at low chain concentrations. In the remainder of this work, we examine a modification 

to the continuum approach (through the phantom network theory [68], [98]) that is 

meant to correct for non-affine softening effects. 
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Figure 2.10. Micromechanical study of non-affine deformation. 𝛿𝒖∗/(𝒩𝑛) is plotted with 

respect to time interval, 𝜏, for networks in which �̅� ≈ 1.8 (solid cyan), �̅� ≈ 3.7 (dashed teal), �̅� ≈ 5.4 

(dotted-dashed grey), �̅� ≈ 7.0 (dashed maroon), and �̅� ≈ 8.4 (solid red). 

 

Correction to network stiffness through phantom network theory leads to 

under-prediction of the network stress by the continuum approach. Through 

the conventional TNT, a network's shear modulus is taken as 𝐺 = 𝑐𝑘𝑇. However, to 

adjust for non-affine effects the phantom network theory poses a correction to the 

instantaneous shear modulus as follows [68]: 

𝐺 = (1 −
2

𝑍
) 𝑐𝑘𝑇,        (2.23) 

for 𝑍 ≥ 2 and 𝐺 = 0 for 𝑍 < 2. The shear modulus of discrete networks is estimated 

according to the relation 𝐺 = 2𝐸(1 + 𝜈), where 𝐸 is the Young's modulus, and 𝜈 is the 

Poisson's ratio (𝜈 = 0.5, given enforced incompressibility). For each network 

connectivity, 𝐸 is taken as the initial tangent modulus of the stress-strain response 

(𝐸 ≈ 𝜕𝜎/𝜕휀), based on the assumption that dissipative effects of networks near their 

stress-free configurations and over short timescales are neglibible. This assumption 

is valid given that the networks begin at roughly stress-free states and the time 

interval over which 𝐸 is measured (∼ 𝛥𝑡) is much smaller than the timescale of bond 

dynamics (�̅�𝑑
−1). Indeed, examining Fig. 2.11.A we see that this correction introduces 

good agreement between the shear modulus predicted by the TNT and discrete 

models. Nevertheless, as displayed in Fig. 2.11.B, applying this correction to the TNT 

leads to the ubiquitous under-prediction of network stress by the continuum approach 
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due to use of Langevin chains in the discrete model. Furthermore, a finite modulus 

remains measurable for discrete networks even below the percolation threshold of 

𝑍 = 2.  

 

 
Figure 2.11. Phantom chain theory and chain conformation. (A) network stiffness, 𝐺, is plotted 

with respect to 𝑍 for the numerical model as discrete data, and the continuum theory as a continuous 

black curve for the unadjusted model (𝐺 = 𝑐𝑘𝑇) and a dashed black curve for the adjusted model (𝐺 =
(1 − 2/𝑍)𝑐𝑘𝑇). The region shaded in red represents the non-percolated regime in which the adjusted 

TNT predicts no finite modulus. (B) The stress response predicted by the discrete model (continuous 

curves with shaded regions to represent standard error) and TNT (dashed curves) corrected through 

Eqn. (2.23), are plotted with respect to time. (C-D) The normal components of 𝒈 in direction (C) 𝒆1and 

(D) 𝒆2 are plotted with respect to time. (B-D) Results from networks with average connectivities of 𝑍 ≈
1.8 (cyan), 𝑍 ≈ 3.6 (grey), and 𝑍 ≈ 8.4 (red) are provided.  

 

A small tensile stress can exist below the percolation threshold. The 

correction from the phantom network theory dictates that no network stress will exist 

for networks below the percolation threshold of 𝑍 = 2. However, as displayed in Fig. 

2.11.A, the discrete model indicates that a finite tensile stress remains present even 

when 𝑍 < 1 (or 𝑛 = 1). In such cases the measured stress cannot be the result of 

percolation, rather it is due to the alignment of disconnected chains. To better 

understand this effect, we revisit the computation of virial stress through Eqn. (2.18). 

Recalling that pairwise volume exclusion forces occur between all neighboring units, 

we recognize that this produces a roughly isotropic contribution to the stress. As such, 

any preferential alignment of the chains, which can only carry tension, culminates in 

a finite normal stress that is not balanced by the isotropic volume exclusion. To 
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quantitatively gauge chain alignment, we computed the ensemble average metric 

tensor of 𝒓, 𝒈, defined as: 

𝑔𝑖𝑗 =
1

𝑉𝑐𝑡
∑ ∑ 𝑟𝑖

𝛼𝛽
⊗ 𝑟𝑗

𝛼𝛽
𝛽

𝒩
𝛼 .       (2.24) 

The diagonal components of 𝒈 indicate the degree to which chains are aligned with 

the components of the orthonormal basis {𝒆1, 𝒆2}, where 𝑔11 > 𝑔22 indicates that 

chains are more aligned with 𝒆1 than 𝒆𝟐, and 𝑔11 ≈ 𝑔22 indicates no preferential 

alignment. Examining 𝑔11 and 𝑔22 in Fig. 2.11.C-D, it is clear that even when the 

networks are below the percolation threshold (𝑍 < 2), the chains align with the 

direction of applied extension (i.e., 𝑔22 increases during loading, while 𝑔11 decreases). 

Chain alignment is the origin of measurable stress for networks below the percolation 

threshold in this model, and is perhaps comparable to the stress evolution which 

occurs in dilute solutions of dumbbell-like polymers (e.g., dimers or finitely-extensible 

nonlinear elastic polymers) or viscoelastic fluids undergoing shear flows [99], [100]. 

However, unlike these dilute systems, the discrete model is representing compactly 

confined nodes. Furthermore, the current iteration does not capture the solute-

solvent interactions which are often critical to the hydrodynamic effects of such 

systems [99], [101]. Therefore, while commenting on the effects observed below the 

percolation threshold, here we primarily focused on the findings of these models in 

the regime 𝑍 > 2.  

 

2.5 Summary and concluding remarks 

 

Ultimately, we have introduced a coarse-grained, discrete numerical model that 

allows us to directly investigate topological changes in transient networks without 

the high computational cost stemming from modeling the elemental constituents. To 

better represent the set of networks that can be examined through this model, we 

incorporated nonlinear Langevin chains [86], probabilistic slip-bond detachment 

through Eyring's [65] or Bell's [72] model, and probabilistic bond reattachment based 

on Rouse diffusion of tethered chains [80], thereby capturing the energetic penalty 
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associated with highly stretched networks. Despite these features, we find that the 

idealized TNT approach [1], which assumes linear chains and constant bond 

dynamics, provides excellent agreement with the numerical model when low strain 

rates are applied and network connectivity is high. Therefore, this discrete method 

may be feasibly incorporated into a quasicontinuum [75]–[77] framework in which 

regions exhibiting low stretch and heterogeneity are efficiently modeled through the 

TNT [60], while regions of high local stretch, such as those near crack tips or other 

stress concentrations, are modeled through the newly introduced approach. While 

quasicontinuum models have recently been developed for irregular networked 

materials undergoing rate-dependent, permanent damage [76], [77], to our 

knowledge no framework has been developed for fully dynamic, self-healing 

networks. Yet, as recently discussed by Ghareeb and Elbanna (2021) [77], 

quasicontinuum modeling also lends itself to comparable investigation in such 

materials. This model constitutes one possible discrete modelling component of such 

an approach for networks with fully reversible bond dissociation. 

 

Whether a quasicontinuum or purely discrete framework is used, our results suggests 

that network discretization remains crucial in regions of high stretch for a couple of 

reasons. First, the finite length of true entropic chains (here captured using the 

Langevin chain model) consistently serves to stiffen the network and its effects 

become significant when the rate of deformation exceeds that of relaxation. Second, 

we find that force-dependent bond dynamics induce steady state creep in the discrete 

model, at high strain rates for which elastic behavior is predicted by the TNT. This 

same force-dependent bond detachment also induces non-exponential stress decay. 

Indeed, the numerical approach appears to capture two key features that the 

continuum model does not: variability of bond kinetics and heterogenization of 

network topology. Despite variability in the detachment rate, the discrete model 

predicts conservation of overall mean network connectivity, indicating that the 

networks, while not enforceably or locally associative, behave macroscopically as 

such. One might expect that conservation of connectivity precludes the loss of 
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mechanical strength; yet, the discrete model also predicts the occasional nucleation 

of voids whose dimensions are too large for chains to reattach across. The formation 

of such voids induces loss of mechanical strength and it is believed that void 

nucleation likely precedes the onset of fracture or “damage” in dynamic networks 

despite the reversibility of their bonds [95].  

 

2.5.1 Limitations of the discrete model. 

 

A number of simplifications exist in the current numerical framework that limit the 

generality of this approach. Firstly, we assume monosdispersity in chain lengths; 

however, given polydispersity's effects on network mechanics [87], it may be included 

in future work. Regarding the force-extension of single chains, we include no 

enthalpic bending contribution and the cross-links are modeled as freely attached pin 

joints [68], limiting this current iteration of the model to networks of flexible chains. 

Since no energetic penalty is incurred for bending, chains can attach with equi-

probability in any direction. Therefore, to mitigate directional biases in attachment 

between nearest neighbors and facilitate homogenization of network topology, 

neighboring units are not permitted to attach more than once. However, this 

simplification is not intrinsically gotten from the underlying physics. Finally, the 

effects of solvent-solute interactions are neglected, which suspends considerations 

such as depletion [102] or drag forces [101] from the current framework. Although 

these limitations do not impact the findings of this work, they must be addressed for 

the study of specific considerations in future work.  

 

For the extension of this model to damage and self-healing, several limitations must 

be addressed. Firstly, here network incompressiblity is  enforced through the 

condition 𝑑𝑒𝑡𝑭 = 1 rather than being an outcome of the underlying physical 

interaction potentials between nodes. In future work, compressible uniaxial tension 

with traction free bounds may be conducted on networks whose Poisson's ratio is 

dictated by their inter-unit potentials. Given some attractive regime (e.g., that of 
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Lennard-Jones potentials [103]), these interactive potentials will introduce an 

effective surface tension that governs compressibility (or the lack thereof). Secondly, 

irreversible damage of chains that are overly stretched is omitted from the current 

framework, but is needed for the prospective study of permanent damage [73], [74], 

[104], which can impact the number of available chains for reattachment. Lastly, the 

positions of individual stickers are not tracked in the current framework. Although 

this does not impact detachment kinetics, it may influence the timescale and bias the 

direction of reattachment once hetereogeneities in the distribution of nodes (i.e., 

through damage) develop. Tracking the diffusion-driven positions of free stickers in 

a manner that more directly reflects the work of Stukalin, et al. (2013) [80] would 

mitigate these concerns and also eliminate the need for restrictive simplifications 

such as the prohibition of double connections between neighboring nodes. 

 

Future work. In future work, we aim to explore a number of additional 

considerations that restrict the application of continuum theory, including the effects 

of compressible deformation and its influence on phenomena such as void nucleation 

(or cavitation), and void coalescence [2], [105]. Cavitation, especially in regions of 

highly localized stress (e.g., ahead of crack tips) [106], has been observed as the cause 

of mechanical failure of soft materials loaded under not only hydrostatic, but also 

uniaxial tension [107]. Yet, much remains uncertain about when cavities form, how 

they grow (or coalesce), and how this leads to mechanical failure. More importantly, 

it remains unclear how the evolution of damage phenomena relates to the underlying 

chain properties of networks. Availability of experimental data for such 

considerations remains sparse [107]. However, in forthcoming work the discrete 

model introduced here will allow us to explore these features through controlled, in 

silico experimentation. Specifically, this model will permit direct observation of the 

damage zone near a crack tip, wherein both damage and viscoelastic deformation 

contribute to energy dissipation and failure onset. Such detailed exploration could 

elucidate the size of the damage zone and nature of the dissipative mechanisms, 

thereby revealing the intrinsic fracture toughness of the network. 
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CHAPTER III 

 

 

MICROSCALE, COMPUTATIONAL INVESTIGATION OF DYNAMIC POLYMERS 

WITH MULTIPLE TIMESCALES INFORMS TNT 

 

This chapter serves to exhibit one useful function of the discrete network model: its 

ability to inform physically motivated appendages to TNT. In this case, discrete 

networks containing multiple bond types with distinct kinetic dissociation rates 

attached in series are investigated, revealing that a standard rule of mixture is 

insufficient to describe the coupled stress response occurring in such networks. 

Microstructural investigation of the discrete network model predictions motivates the 

inclusion of a single parameter, 𝜉, that characterizes the extent to which more stable 

bond types in the network relax due to the faster bonds’ dynamic reconfiguration. 

Finally, treating 𝜉 as a fitting parameter, the updated TNT is used to reproduce the 

stress relaxation response of gels containing multiple reversible bond types [13] and 

to infer micromechanical phenomena within this material.  

 

3.1 Introduction 

 

Networked polymeric materials containing multiple bond types have become 

increasingly investigated for their exemplary combinations of mechanical strength 

and toughness [47], [73], [108], [109]. For example, many state-of-the-art polymers 

contain both relatively stable covalent bonds and dynamic physical bonds (e.g., 

metallo-ligand interactions, ionic bonds, hydrogen bonding, etc.) in series [13], [21], 

[22], [46], [48], [110]. In such networks, the stable bonds (SBs) often form a scaffold 

that supports the dynamic bonds (DBs) interstitially throughout the material.  Under 

these conditions, the SBs may preserve suitably high moduli, while incorporation of 

the sacrificial or reversible DBs introduces tunable viscoelasticity [13], [111]–[115] 

and even the ability to self-heal [55], [110], [116].  
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In designing such materials, researchers often employ physically motivated 

constitutive modeling techniques through which the properties of individual bonds 

(e.g., polymer force-extension, bond exchange rates, etc.) may be used to predict the 

globally emergent responses of the networks [1], [85], [117], [118]. However, real-time 

experimental characterization of the microstructure in such materials remains 

exceedingly challenging and is relatively limited to techniques such as small angle 

neutron scattering [119], or inference using diffusion and rheology data [120]. 

Therefore, gauging the degree of phenomenology in such models or interpreting their 

parameters is somewhat difficult, thus limiting the confidence in extrapolations made 

about microstructure via these approaches.  

 

 

Figure 3.1 Hybrid network schematic. A schematic of a dynamic network including both stable 

(blue-to-grey) and dynamic (red-to-grey) bonds is displayed before (left) and after (right) a set of 

dissociation and attachment events. 

 

To address this limitation, many researchers have resorted to network-scale 

modeling techniques for the exploration of polymeric microstructure [3], [73], [74], 

[121], [122]. We here employ one such recently developed model [3] to investigate the 

percolation threshold of SBs in 2D networks containing interstitial DBs (Fig. 3.1). 

Through this model, we examine the mechanical stress response of networks 

containing different fractions of stable and DBs, and then relate the clustering and 

geometric percolation of SBs to the emergence of a long-term elastic modulus. We find 

that under some topological conditions, a long-term modulus may emerge without SB 

percolation due to the jamming of clustered SBs. Inversely, under some conditions, a 
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portion of SBs that are fully percolated may relax non-affinely due to the 

reconfiguration of neighboring DBs. Equipped with this information we establish a 

coupled rule of mixture (ROM) for hybrid networks using transient network theory 

(TNT) [1]. This rule introduces just one additional parameter, 𝜉 ∈ [0,1], that defines 

the degree to which SBs can relax. 

 

3.2 Discrete network model. 

 

The network model used here was introduced by Wagner, et al. (2021) [3] and 

simulates discrete networks in 2D, periodic volume elements (VEs) to which 

deformations may be applied. For detailed modeling methods, see the Supporting 

Information (SI) Section I. The networks are comprised of 𝒩 = 400, four- (𝑧 = 4) or 

eight-armed (𝑧 = 8), star-shaped macromers whose central junctions represent 

permanent crosslinks or “nodes”. Either stable or dynamic telechelic bonds may form 

between neighboring nodes, the latter of which are assigned some constant 

dissociation kinetic rate, 𝑘𝑑. The association kinetic rate, 𝑘𝑎, is determined via a 

scaling law introduced in Wagner, et al. (2021) [3]. For simplicity, attached chains 

are treated as ideal entropic springs that impart pairwise tensile forces on the nodes 

to which they are attached.  These tensile forces are balanced by repulsive forces 

deriving from volume exclusion interactions between neighboring nodes or polymer 

chains. Nodes’ positions are iteratively updated to equilibrate unbalanced forces 

originating from bond reactions or applied loading at every timestep. After 

equilibration, the network stress is computed through the virial formation according 

to: 

𝝈 =
1

2𝑉
∑ ∑ 𝒓𝛼𝛽 ⊗ 𝒇𝛼𝛽

𝛽
𝒩
𝛼 ,        (3.1) 

where 𝑉 is the VE volume, 𝒓𝛼𝛽 is the end-to-end vector between node 𝛼 and its 

attached neighbor 𝛽, and 𝒇𝛼𝛽 denotes the pairwise tensile and repulsive force between 

said nodes. 
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Parameters used in this study were preserved from Wagner, et al. (2021) [3] unless 

specified otherwise in Appendix B.6 However, here distinct fractions of stable and 

DBs (𝑓 and 1 − 𝑓, respectively) were introduced randomly and uniformly throughout 

the networks. All networks were deformed under incompressible uniaxial tension via 

a constant velocity gradient, 𝑳 = 𝑑𝑖𝑎𝑔(−휀̇, 휀̇) to a stretch of 𝜆 = 2, where 휀̇ is the 

applied strain rate. Strain rate was set such that even DBs behaved elastically during 

loading (i.e., 휀̇/𝑘𝑑 ≫ 1). Once 𝜆 = 2, networks were held in the deformed state to 

permit stress relaxation for four relaxation timescales (i.e., 𝑡∗ = 𝑡𝑘𝑑 = 4 where 𝑡 is 

time), which corresponds to relaxation within 2% of the steady state value predicted 

by exponential decay.  

 

3.3 Review of TNT.  

 

While this discrete model permits direct observation of microscale statistics in 

networks, its relatively high computational expense motivates the development of 

equally suitable continuum approaches, such as TNT. TNT predicts the Cauchy stress 

of a dynamic network comprised entirely of linear entropic springs as [1], [3]: 

𝝈 = 𝑐𝑘𝑏𝑇𝝁 + 𝜋𝑰         (3.2) 

where 𝑐 is the attached chain concentration, 𝑘𝑏 is the Boltzmann constant, 𝑇 is the 

ambient temperature, 𝜋𝑰 is the isotropic pressure enforcing incompressibility, and 𝜇 

is the conformation tensor that defines the instantaneous principal components and 

magnitudes of mean chain stretch. The conformation tensor evolves according to [1], 

[3]:  

�̇� = 𝑳𝝁 + 𝝁𝑳𝑇 − 𝑘𝑑(𝝁 − 𝑰).        (3.3) 

Eqns. (3.2) and (3.3) return the Neo-Hookean model when 𝑘𝑑 = 0 (i.e., SBs):  

𝝈 = 𝑐𝑘𝑏𝑇𝒃 + 𝜋𝑰,         (3.4) 

where 𝒃 = 𝑭𝑭𝑇 is the left Cauchy-Green tensor and 𝑭 = 𝜕𝒙/𝜕𝑿 is the deformation 

gradient that maps material points’ reference spatial coordinates, 𝑿, to current 

coordinates, 𝑥 (see Fig. B.1 for loading history).  
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3.4 Standard rule of mixture. 

 

In modeling networks containing both stable and DBs, we postulate a general ROM 

whereby stable and DBs introduce elastic and dissipative components of stress (𝜎𝑒 

and 𝜎𝑑), respectively, and the total stress is given by:  

𝝈 = 𝑘𝑏𝑇(𝑐𝑠𝒃 + 𝑐𝑑𝝁) + 𝜋𝑰,        (3.5) 

where 𝑐𝑠 and 𝑐𝑑 are the attached fraction of stable and DBs, respectively, and we 

have substituted Eqns. (3.2) and (3.4) for the two components of stress. We may 

further write that 𝑐𝑠 = 𝑝𝑠𝑓𝑐 and 𝑐𝑑 = 𝑝𝑑(1 − 𝑓)𝑐 where 𝑐 is the total chain 

concentration, and 𝑝𝑠 and 𝑝𝑑 are the respective probabilities that a given SB or DB 

are attached. Note that while 𝑝𝑠 requires some a priori knowledge about the 

conversion ratio of activated SBs in a polymer, 𝑝𝑑 may be estimated by the ratio 

𝑘𝑎/(𝑘𝑎 + 𝑘𝑑) [1]. Substituting these definitions into Eqn. (3.5), solving for 𝜋, and 

dividing by the peak stress (see Appendix B.2.a-b for details) gives the normalized 

stress in the principal direction of loading as: 

𝜎∗ = 𝑃−1[𝑝𝑠𝑓 + 𝑝𝑑(1 − 𝑓)𝑒−𝑘𝑑𝑡],       (3.6) 

where 𝑝𝑠𝑓 is the combined probability that a bond is both stable and attached, 

𝑝𝑑(1 − 𝑓) is the probability that a bond is dynamic and attached, and 𝑃 = 𝑝𝑠𝑓 +

𝑝𝑑(1 − 𝑓). 

 

Ensemble averaged (𝑛 = 10) stress relaxation results from the discrete model, as well 

as those predicted by Eqn. (3.6) are presented in Fig. 3.2.A for a bond functionality 

of 𝑧 = 4, 𝑘𝑑 = 1 (in arbitrary units of inverse time), and multiple values of 𝑓𝑠. Notably, 

𝑝𝑠 and 𝑝𝑑 ≈ 𝑘𝑎/(𝑘𝑎 + 𝑘𝑑) were both found to be upwards of 0.9 for the parameters 

used. See Fig. B.2 for the measured values of 𝑘𝑎 and 𝑘𝑑, as well as Fig. B.3 for 𝑃𝑠 =

𝑝𝑠𝑓, 𝑃𝑑 = 𝑝𝑑(1 − 𝑓 ), and 𝑃 in the extended parameter space. While Eqn. (3.6) 

provides good agreement with in silico predictions for purely dynamic networks when 

𝑃𝑠 = 0 (𝑓 = 0) or permanent networks when 𝑃𝑠 → 1 (𝑓 = 1), it significantly 

overpredicts the long-term stress at intermediate values of 𝑓 (hybrid networks). To 
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elucidate the origins of this disagreement, we utilize the discrete model to examine 

the isolated SB and DB network topologies.   

 

 

Figure 3.2. Fitting the general ROM.  (A) Normalized stress, 𝜎∗, is plotted with respect to 

normalized time, 𝑡∗, for the ensemble average of 𝑛 = 10 discrete network simulations (solid curves with 

shaded regions representing standard error, S.E.) and as predicted by Eqn. (9) (dotted curves) when 

𝑘𝑑
∗ = 1. (B) Absolute errors between the models’ 𝜎∗ are plotted with respect to 𝑡∗. (A-B) Results are 

shown for 𝑓 = 0% (red),  𝑓 = 20% (𝑚𝑎𝑟𝑜𝑜𝑛),  𝑓 = 50% (grey), 𝑓 = 80% (𝑡𝑒𝑎𝑙),  and 𝑓 = 100% (cyan).  

 

We first investigate the independent probabilities that the dynamic and SBs form 

independently percolated networks [68] (𝑋𝑠 and 𝑋𝑑, respectively). Fig. 3.3.A-C 

display undeformed networks with 𝑓 = 0.2, 0.5 and 0.8 when 𝑧 = 4, while Fig. 3.3.D-

F display networks at the same stable bond fractions when 𝑧 = 8. For all parameters 

investigated, the overall networks form percolated domains, however when 𝑓 < 0.2, 

the SBs rarely, if ever, formed continuous networks (i.e., 𝑋𝑠 ∼ 0) (Fig. 3G-H). Instead, 

the SBs formed clustered regions suspended in a matrix of DBs (Fig. 3A,D). Likewise, 

at high 𝑓 (𝑓 > 0.6 for 𝑧 = 4 and 𝑓 > 0.8 for 𝑧 = 8), the SB networks was always 

continuous, but the DBs failed to percolate and instead formed clusters in a stable 

matrix. The probability that the DBs percolate also decreases as the fraction 𝑘𝑎/(𝑘𝑎 +

𝑘𝑑) decreases (Fig. S2-S4). Notably, regardless of network degree, there exists 

transition regions at intermediate values of 𝑓 wherein both SBs and DBs can 

independently percolate (i.e., 𝑋𝑠 and 𝑋𝑑 > 0) and form an interpenetrating and 
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mutually bonded mesh, although this region is far more prominent for networks with 

higher functionality (where 𝑋𝑠 ≈ 𝑋𝑑 ≈ 1 from 𝑓 ∼ 0.4 − 0.5).  

 

 

Figure 3.3. Network percolation with respect to SB fraction and crosslink functionality. (A-

C) Sample discrete networks with 𝑧 = 4 when (A) 𝑓 = 20%, (B) 𝑓 = 50%, and (C) 𝑓 = 80%, illustrate 

the clustering of (A) SBs and (C) DBs (see circled regions). (B) Paths highlighted by red and blue 

shading illustrate how given certain inputs, both dynamic and SBs, respectively, can form percolated 

load paths. (D-F) Comparable schematics to (A-C) for 𝑧 = 8 reveal comparable clustering formations. 

(G) The probability that the stable (cyan) and dynamic (red) bonds independently form geometrically 

percolated networks (𝑋𝑠 and 𝑋𝑑) are plotted with respect to 𝑓 for (G) 𝑧 = 4 and (H) 𝑧 = 8. (G-H) The 

regions shaded grey demark transition zones wherein simultaneous percolation of both bond types is 

possible (𝑋 > 0). 

 

One might expect that when the SBs percolate, they will store stress purely 

elastically, and that Eqn. (3.6) will provide good agreement with the predicted 

discrete network stress. Yet we see from Fig. 2A that when 𝑓 = 0.8 (𝑋𝑠 = 1 for 𝑓 ≥ 0.8, 

Fig. 3.3.G-H) the long-term stress is overpredicted by the ROM, Eqn. (3.6) (e.g., Fig. 

3A, 𝑓 = 0.8), suggesting that the SBs undergo some degree of relaxation. Since no 

relaxation is observed when 𝑓 = 1, it must stem from DB reconfiguration. 

Furthermore, one might also expect that whenever the SBs do not percolate, the 
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clusters they form have sufficient conformational degrees of freedom to relax 

completely such that no long-term stress persists. Yet the discrete network predicts 

that non-negligible long-term stress exists when 𝑓 = 0.2 (Fig. 3.3.A), implicating that 

the SBs clusters are conformationally jammed by the surrounding DB matrix. Both 

phenomena indicate coupling between the stable and dynamic components of network 

stress, motivating amendment of the decoupled ROM. 

 

3.4 Coupled rule of mixture. 

 

To amend the ROM, Eqn. (3.6), we posit that some fraction, 𝜉, of SBs can relax at rate 

𝑘𝑑 due to reconfiguration of adjacent DBs, whereas the fraction 1 − 𝜉 cannot relax 

because they are bound within a network of SBs, jammed by steric interactions, or 

some combination of both. Incorporating 𝜉 into Eqn. (3.5), gives a coupled ROM for 

hybrid networks: 

𝝈 = 𝑐𝑘𝑏𝑇[𝑃𝑠𝜉𝒃 + 𝑃𝑠(1 − 𝜉)𝝁 + 𝑃𝑑𝝁] + 𝜋𝑰     (3.7) 

where we use 𝑃𝑠 = 𝑝𝑠𝑓 and 𝑃𝑑 = 𝑝𝑑(1 − 𝑓) for brevity. Solving for 𝜋, and normalizing 

as before (see Appendix B.2.c) gives the normalized stress in the principal loading 

direction as: 

𝜎∗ = 𝑃−1[(1 − 𝜉)𝑃𝑠 + 𝜉𝑃𝑠𝑒−𝑘𝑑𝑡 + 𝑃𝑑𝑒−𝑘𝑑𝑡].     (3.8) 

When 𝜉 = 1, all the SBs relax completely, and the stress response is effectively 

dynamic whereas when 𝜉 = 0, none of the SBs relax and Eqn. (3.8) returns the 

decoupled ROM. The stresses predicted by the discrete model and Eqn. (3.8) are in 

excellent agreement for all 𝑓 when 𝜉 is treated as a fitting parameter (Fig. 3.4.A). 

Significantly, the isolated stress contributions from the SBs (Fig. 3.4.B) and DBs 

(Fig. 3.4.C) also agree between models.  
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Figure 3.4. Fitting the coupled ROM. (A) Normalized stress, 𝜎∗, is plotted with respect to 

normalized time, 𝑡∗, for the ensemble average of 𝑛 = 10 discrete simulations (solid curves with shaded 

S.E.) and as predicted by Eqn. (11) (dotted curves) when 𝑘𝑑 = 1. Stress is decoupled into the 

contribution from (B) SBs, 𝜎𝑠
∗, and (C) DBs, 𝜎𝑑

∗. Error between models is consistently < 5% at all values 

of 𝑡∗ and 𝑓𝑠. 

 

3.5 On the mechanisms of SB relaxation 

 

Fig. 3.4.C confirms that the DB stress from both models decays exponentially to near-

zero stress at a rate of 𝑘𝑑, indicating that only the SB stress response is significantly 

affected by coupling. This justifies the way in which the coupled stress (term two of 

Eqn. (3.8)) depends only on the SB concentration. Furthermore, it supports the 

presumption that faster relaxation timescales in networks with multiple bond types 

dominate relaxation response [115]. That SB stress predictions agree between 

models, confirms that 𝜉 characterizes the degree to which SBs conform non-affinely 

into lower energy states at a rate of 𝑘𝑑 (Fig. 3.4.B). However, it is not immediately 

clear whether 𝜉 defines a fraction of the SBs that relax entirely, the degree to which 

all SBs relax, or some combination of both. To elucidate the meaning of 𝜉, we leverage 

topological information from the discrete network model.  

 

Fig. 3.5.A-B illustrate the probability mass functions (PMFs) of SBs’ and DBs’ end-

to-end stretches, 𝝀 = 𝒓/(√𝑁𝑏), in the principal direction of loading at the start and 
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end of stress relaxation (𝑓 = 0.5). The insets display the 2D PMFs of chain stretch, as 

well as isolated network snapshots at the start and end of relaxation. As evidenced 

by the axisymmetric 2D PMF of Fig. 3.5.B (𝑡∗ = 4), the DBs reconfigure to an 

isotropic state, whereas the elongated shape and negligible reduction in variance of 

the 2D and 1D PMFs, respectively, in Fig. 3.5.A confirm that SB relaxation is only 

partial. To quantify the modes of SB relaxation, as well as their distribution amongst 

the chain population, Fig. 3.5.C presents the distributions of single-chain relaxation 

strains, 𝝐𝑟, in the principal directions of the orthonormal basis {𝒆1, 𝒆2}, as well as the 

change in end-to-end norms, ‖𝝐𝑟‖. Most SBs relax to lower energy states (see 

predominantly negative values of ‖𝜖𝑟‖), however some chains elongate, indicating 

that thermal fluctuations stochastically move a minority of SBs to temporarily higher 

energy states. Nevertheless, most SBs shorten in the direction of principal stretch, 

𝑒2, during loading (i.e., the PMF of 𝜖22
𝑟  is skewed right). In contrast, SBs undergo 

roughly equiprobable shortening or lengthening in direction 𝑒1 (i.e., the PMF of 𝜖11
𝑟  

nearly uniform). Positive 𝜖11
𝑟  can occur due to chain lengthening but is confirmed to 

occur predominantly due to chain reorientation.   

 

3.6 Interpreting the relaxation parameter, 𝝃 

 

The finite variances of the PMFs in Fig. 3.5.C indicate that most SBs relaxed, but to 

a variable degree. Therefore, while 𝜉 generally characterizes the extent of SB 

relaxation, it likely cannot be mapped to a single, physical value. Rather, it lumps 

the effects of SB shortening and reorientation into some effective value. However, 

over the range of 𝑘𝑑 ∈ {0.1,1,10} and 𝑓 ∈ [0,1] for 𝑧 = 4, we find that 𝜉 reliably evolves 

according to: 

𝜉 ∼ 1 − √휂2 + 𝑓2(1 − 휂2),        (3.9) 

where 휂 is the fraction of SBs that are immobilized even at very low SB fractions (𝑓 →

0) (Fig. 3.5.D). Note that Eqn. (3.9) returns linear scaling (𝜉 ∼ 𝑓) when no SBs become 

jammed (i.e., 휂 = 0) and satisfies the condition that no SBs can relax for permanent 

networks (i.e., 𝜉(𝑓 = 1) = 0). Generally, Fig. 3.5.H depicts the fraction of jammed SBs 
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and reveals that as the fraction of SBs increases, the degree to which said bonds may 

relax decreases, implying that percolation of SBs is a contributor to SB 

immobilization. Indeed, networks with higher coordination exhibit lesser degrees of 

SB relaxation at low 𝑓 (as indicated by higher values of 휂 in Fig. B.5) supporting this 

notion. However, although networks in which chain length is doubled are well 

represented by Eqn. (3.8) (Fig. B.6) and exhibit improved percolation of SBs at low 𝑓 

(Fig. B.7), they do not exhibit a significant increase in 휂 (Fig. B.8) suggesting a 

limited effect of SB percolation on immobilization. Another factor influencing 

connectivity is the reaction rates. Fig. 3.5.D reveals that networks with higher 𝑘𝑑 

generally appear to have fewer SBs immobilized in the limit 𝑓 → 0 (휂 = 0.52 for 𝑘𝑑 =

0.1 whereas 휂 = 0.22 for 𝑘𝑑 = 10). Since all networks were allowed to relax for the 

same normalized time (𝑡/𝑘𝑑 = 4), one might expect identical relaxation behavior 

regardless of 𝑘𝑑. However, the parameters governing 𝑘𝑎 are preserved across 

simulations so that the emergent steady state fraction of attached DBs (𝑝𝑑 ≈ 𝑘𝑎/(𝑘𝑎 +

𝑘𝑑)), decreases as 𝑘𝑑 increases. This indicates that 휂 is correlated with 𝑝𝑑 and 

suggests that networks in which 𝑘𝑎 ≫ 𝑘𝑑 mitigate conformational change of SBs to a 

greater extent. 

 

Another factor that undoubtedly influences SB relaxation is material density. As seen 

in studies of granular media, networks with exclusively repulsive interactions 

between members jam at high packing fractions or pressures [123], [124]. However, 

we have here tuned the network model’s density and pairwise repulsive potential 

such that – without tensile chains – the crosslinks exists below the jamming 

transition [125].  This reveals that without sufficient network connectivity (e.g., for 

networks particularly short chains, Fig. B.6), the hybrid ROM cannot accurately 

predict SB relaxation, as relaxation becomes dominated by floppy modes of 

deformation at much shorter timescales. Nevertheless, the hybrid ROM is applicable 

to sufficiently percolated networks (here, 𝑧 >̃ 3.8) even without significant steric 

interactions, as in the case of swollen gels whose polymer packing is on the order of 

0.01-0.1 [49].    
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Figure 3.5. Micromechanical chain relaxation. (A-B) Topological relaxation data. The joint PMFs 

of SB end-to-end stretch, 𝜆, at (A) 𝑡∗ = 0 and (B) 𝑡∗ = 4. (C-D) The joint PMFs of DB 𝜆 at (C) 𝑡∗ = 0 and 

(D) 𝑡∗ = 4. (E-F) The PMFs of (E) stable and (F) DB stretch in the principal direction of loading, 𝜆2, at 

𝑡∗ = 0 (teal, maroon) and 𝑡∗ = 4 (cyan, red). Insets display the visually isolated stable and DB networks 

at both times. (G) The PMFs of 𝜖22
𝑟 = (𝑟2 − 𝑟2

0)/𝑟2
0 (blue), 𝜖11

𝑟 = (𝑟1 − 𝑟1
0)/𝑟1

0 (green), and ‖𝝐𝑟‖ =
(|𝒓| − |𝒓0|)/|𝒓0| (black) are presented where 𝑟0 and 𝑟 are the end-to-end lengths of SBs at time 𝑡∗ = 0 

and 𝑡∗ = 4, respectively. (H) Fitted values of the immobilization factor, 1 − 𝜉, are plotted with respect 

to 𝑓 for three different values of 𝑘𝑑. Discrete circles represent the results of the network model, while 

dashed curves represent fitted functions per Eqn. (3.8) where 휂 = 0.52 for 𝑘𝑑 = 0.1 (magenta, 𝑅2 =
0.94), 휂 = 0.46 for 𝑘𝑑 = 0.1 (grey, 𝑅2 = 0.96), and 휂 = 0.22 for 𝑘𝑑 = 10 (magenta, 𝑅2 = 0.99). 

 

3.7 Applying the coupled rule of mixture 

 

To validate the hybrid ROM against experimental data, while demonstrating its 

applicability to materials with negligible steric jamming, we apply it to the stress 

relaxation data for a hydrazone covalently adaptable hydrogel, as reported by 

Richardson, et al. (2019) [13] (Fig. 3.6.A). Here, rather than there being SBs and 

DBs, there exists “slower” benzyl-hydrazone bonds (aHz) and “faster” alkyl- 

hydrazone (aHz) bonds with kinetic dissociation rates of 𝑘𝑠 and 𝑘𝑑, respectively. Thus, 

we may rewrite Eqn. (3.8) (see Appendix B.4 for details) to estimate normalized shear 

stress as: 
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𝜏∗ = 𝑃−1[𝜉𝑃𝑏𝑒−𝑘𝑠𝑡 + 𝑃𝑏(1 − 𝜉)𝑒−𝑘𝑑𝑡 + 𝑃𝑎𝑒−𝑘𝑑𝑡].     (3.10) 

where 𝑃𝑏 = 𝑓𝑝𝑏 and 𝑃𝑎 = (𝑓 − 1)𝑝𝑎; 𝑓 is the fraction of bHz; and 𝑝𝑏 and 𝑝𝑎 are the 

attached fractions of bHz and aHz, respectively (𝑝𝑏 = 𝑝𝑎 ∼ 0.9 assuming much faster 

attachment than detachment kinetics). Here we postulate that the hybrid stress (the 

second term from Eqn. (3.10)) relaxes at the faster of the two kinetic rates, 𝑘𝑑.  

 

As indicated by Richardson, et al. (2019) [13], and as evidenced by non-exponential 

relaxation curves when 𝑓 = 0 and 𝑓 = 1 (red and cyan data in Fig. 6A, respectively), 

both bHz and aHz bonds exhibit shear-sensitive slip bond behavior. To capture this 

effect, dissociation kinetic constants are updated according to a modified Erying’s 

theorem [65], [72]: 

𝑘𝑖 = 𝑘𝑖
0 𝑒𝑥𝑝 (

𝜏∗

𝜏𝑖
∗),         (3.11) 

where 𝑖 ∈ {𝑎, 𝑏} denotes either aHz or bHz; 𝑘𝑎
0 and 𝑘𝑏

0 are the stress-free kinetic 

dissociation rates of aHz and bHz, respectively; and 𝜏𝑎
∗  and 𝜏𝑏

∗  are these bonds’ 

respective sensitivities to bulk shear stress (where 𝜏𝑖
∗ → ∞ implies no sensitivity). 

Through Eqns. (3.10) and (3.11), stress relaxation responses were computed in 

discretized time using a forward Euler approach. First, the experimental stress 

response of the purely aHz (𝑓 = 0) network was fitted, while treating 𝑘𝑎
0 and 𝜏𝑎

∗  as 

fitting parameters, revealing that 𝑘𝑑
0 ∼ 0.5 hrs-1, which is in reasonable agreement 

with the aHz relaxation rate estimated by Richardson, et al. (2019) of ∼ 0.6 − 1.2 hrs-

1, and 𝜏𝑎
∗ ∼ 0.9 (for 𝑓 = 0). Similarly, the experimental stress for the purely bHz (𝑓 =

1) network was fitted to find that 𝑘𝑠
0 ∼ 8 × 10−7 hr-1, and 𝜏𝑏

∗ ∼ 0.08 (for 𝑓 = 1) 

indicating that bHz are relatively stable but are also highly sensitive to force. Using 

the fitted values of 𝑘𝑑
0 and 𝑘𝑠

0, the stress responses of the hybrid networks were then 

fitted while treating 𝜉, 𝜏𝑎
∗  and 𝜏𝑏

∗  as fitting parameters. Results are reported in Fig. 

3.6.A-C.  
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Figure 3.6. Experimental validation. (A) The force-sensitive coupled ROM (solid curve) is fit to the 

experimental stress relaxation data (circles) for hydrazone covalently adaptable network with 𝑓 ∈
{0,10,20,30,40,70,100}% bHz. 𝑓 = 0 is represented by red and 𝑓 = 1 is represented by cyan. 𝑅2 > 0.99 

for all values of 𝑓. (B) The fitted jamming parameter, 𝜉, (black circles) is plotted with respect to 𝑓. The 

dotted curve represents the scaling relation 𝜉 ∼ 𝑓. (C) The fitted sensitivity parameters for aHz, 𝜏𝑎
∗ , 

and bHz, 𝜏𝑏
∗, are plotted with respect to 𝑓. 

 

Eqn. (3.10) is consistently able to predict the stress response of the gels (Fig. 3.6.A, 

𝑅2 > 0.99 for all values of 𝑓). Furthermore, Fig. 3.6.B reveals that there is a direct 

correlation between 𝜉 and 𝑓 (i.e., that 휂 ∼ 0 from Eqn. (3.9)), indicating that very few 

of the SBs remain jammed in the limit of 𝑓 → 0. This supports the notion that, without 

significant steric interactions between crosslinks (as in the case of a swollen gel), 

unpercolated SBs undergo negligible immobilization. Besides revealing information 

about jamming, the inclusion of force sensitivities in Eqn. (3.11) allows for inference 

about load sharing in the networks. The shear threshold of bHz decreases as 𝑓 

increases, and plateaus at 𝜏𝑏
∗ ∼ 0.1, predicting that higher fractions of bHz beget 

greater sensitivity of said bonds to the overall network stress (Fig. 3.6.C). One 

possible explanation for this is that with greater fractions of bHz, the relative fraction 

of stress carried by these bonds becomes higher and so their effective stress 

sensitivity is increased. Likewise, the shear threshold of aHz increases monotonically 
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with respect to bHz fraction (note that 𝜏𝑎
∗  was capped at 100 for plotting purposes), 

suggesting that in networks with predominantly bHz, the detachment kinetics of aHz 

become less stress-sensitive for the same reason. While isolated investigation of in-

network chain kinetics and verification of stress-sensitivity is difficult to accomplish 

experimentally, we may simulate hydrazone covalently adaptable networks 

containing aHz and bHz using the discrete network model in future work.  

 

3.8 Conclusion 

 

Here we have utilized the discrete network model to explore coupled stress response 

of hybrid networks containing SBs and DBs (or multiple DB types). In doing so, we 

discovered that at low SB concentrations (below percolation) a long-term modulus 

subsists due to conformational immobilization of said bonds. Additionally, we 

discovered that even when the fraction of SBs is above the percolation threshold, SBs 

may undergo stress relaxation due to non-affine, conformational changes induced by 

DB reconfiguration. Together, these effects motivated the introduction of a novel 

fitting parameter, 𝜉, that characterizes the extent of SB relaxation and correlates 

with the attached SB fraction. Incorporating this parameter into TNT, we then 

developed a coupled rule of mixing for hybrid dynamic networks. 

 

While 𝜉 characterizes some mean approximation of the extent to which SBs relax, 

treating it as a fitting parameter does not elucidate any detailed distribution of bond 

relaxation. Furthermore, although we found that 𝜉 reliably scales with 𝑓 according to 

Eqn. (3.9) for both the network model and the gels of Richardson, et al. (2019), it likely 

depends on several factors not explored directly in the scope of this work. For 

example, as expected from studies of granular matter, SBs in denser networks with 

higher degrees of steric interactions (e.g., the network model) appear to be more 

susceptible to jamming than those in dilute networks (e.g., the gels of Richardson, et 

al. (2019)). Additionally, while not explored here, highly entangled networks likely 

experience a greater degree of SB jamming than their less entangled counterparts. 
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Finally, the degree of jamming is likely strain, strain rate, and damage-dependent 

[126]. While these features were not examined through this iteration of the numerical 

framework their incorporation is compatible with the coupled ROM through TNT, 

and they may be explored in future work.  

 

Nevertheless, this model has here proved applicable to not only discretely modeled 

networks containing stable and DBs in series, but also physical gel networks 

comprised of two bond types with distinct relaxation timescales. Furthermore, this 

approach is demonstrably compatible with features such as stress-dependent bond 

dynamics and has here been used to infer microstructural traits that are difficult to 

characterize experimentally (i.e., degree of jamming shear stress sensitivity). 

Ultimately, the simplicity and robustness of this approach may render it useful in the 

predictive design of a diverse set of hybrid networks including elastomers or gels with 

charge interacctions [114], [127], [128], vitrimers [13], and metallopolymers [22], 

[110].   
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CHAPTER IV 

 

 

A MESOSCALE MODEL FOR THE MICROMECHANICAL STUDY OF GELS 

 

This chapter is tasked with exemplifying the applicability of the discrete network 

model to physical materials. Here, stable poly(ethylene glycol) (PEG) based gels are 

chosen as a first model material due to their relatively ideal network structure with 

minimum chain entanglement, low polydispersity, and the reduced significance of 

steric interactions between adjacent crosslinks in these materials (since their 

polymer packing fraction is less than the order of 10%). Nonetheless, in the absence 

of existing pairwise potentials between crosslinks in gels with various solvent 

qualities (i.e., effective repulsion or depletion forces between polymer segments), we 

here first introduce a novel scaling law that defines the local polymer concentration 

as a function of the current gel toplogy. We then utilize this concentration to define 

local osmotic pressure gradients through Flory-Huggin’s [129] theory from which 

effective mixing forces are computed and used to update discretely modeled crosslink 

positions. Implementing this model such that all input parameters mirror 

experimentalists’ controls, we then demonstrate its ability to reproduce mixing or 

phase separation, the topological defect trends in PEG gels, the swelling mechanics 

of Flory-Rehner [130] theory, and the experimentally measured mechanical response 

of a 10kDa tetra-PEG gel. Finally, we utilize the model to predict and explain trends 

in the failure response of gels over a wide parameters space. 

 

4.1 Introduction 

 

Gels generally consists of a skeletal network of high molecular weight polymer chains 

interpenetrated by low molecular weight solvent. This two-state composition imparts 
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gels with complex mechanical response that depends on the topological evolution of 

the skeleton, transport properties of the solvent, and the interactions between them. 

The entropic stiffness of the polymer network and time-dependent transport of fluid 

impart gels with elastic and poroelastic responses, respectively, while non-affine 

network deformation, entanglements, and the intrinsic viscosity of the solvent 

introduce various sources of viscous dissipation. Furthermore, inclusion of sacrificial 

bonds [73], [74], [90], [91]; bonds that break and reform without damage [112], [131]; 

or irreversible chain rupture [121] induce topological evolution in gels that may 

improve toughness [48], [132], and introduce stress relaxation or self-healing [133]. 

These mechanical traits render gels especially suitable candidates in applications 

such as tissue engineering wherein they are often used as cell scaffolds [13]. In such 

applications, gels’ moduli and stress relaxation rates influence stem cell 

differentiation and in-growth of new tissue [15], [16], [134]. Thus, this exemplifies a 

case in which understanding the mechanical properties of a gel as a function of its 

fabrication parameters would greatly aid researchers. Indeed, modeling techniques 

that accurately predict the microstructural evolution and globally emergent 

mechanical properties of gels are highly sought after. However, the hierarchical 

structure of gels renders it difficult to formulate computationally tenable, non-

phenomenological models that track topological changes in gels across length scales.  

 

Gels are inherently multiscale materials, whose pertinent constituents (i.e., solvent 

particles and mers) are on the atomistic scale, yet whose characteristic chain and pore 

sizes are on the scale of nanometers [119] (Fig. 4.1). Furthermore, defects on the 

order of 101 to 103 𝑛𝑚 may exist in the network, which grow due to local stress 

concentrations. Understanding the emergence, evolution, and propagation of these 

defects, as well as their cause, is imperative to understanding the failure and strength 



61 

 

 

of gels [135], [136]. These pore sizes and defects suffuse gels with intrinsic property 

gradients and heterogeneity at the network scale. The size of these features limits 

the resolution with which continuum approaches may be applied since such models 

typically invoke smoothing assumptions and require homogenous materials.  

 

 
Figure 4.1. Hierarchical length scales of gels. A gel at (A) the macroscale (>∼ 10−4 𝑚) is depicted 

with schematic illustrations of its topological structure at (B-E) diminishing length scales. (A) At the 

macroscale, smoothing assumptions permit application of continuum approaches, but these methods 

prohibit detailed study of damage or the influence of defects. (B-C) The discrete methods introduced 

here represent gel structures at intermediate length scales or the “mesoscale” by coarse-graining 

polymer chains as nonlinear mechanical springs. In modeling individual polymer chains, mesoscale 

approaches are equipped to capture the mechanical effects of topological defects and damaged regions, 

with reduced computational expense. (D-E) The most detailed models track constituents (either atoms, 

molecules, or Kuhn segments) utilizing discrete MD approaches. However, capturing defects on the 

order of 101 𝑛𝑚 to 10−1 𝜇𝑚, or conducting large ensembles of repeated in silico experiments becomes 

computationally untenable using these fine-grained approaches. The gel topology shown is meant to 

loosely represent a tetra-PEG hydrogel whose mesh size is on the order of 10−8 𝑚 and which has 4 

functional arms per macromer. 

 

However, the length scale of these features also ensures that within a representative 

element on the order of cubic micrometers, 109 − 1012 constituents would need to be 

modeled in fine-grained approaches, thus also limiting the efficacy of methods such 

as molecular dynamics (MD) [137]. As such, many MD studies focus on the interaction 

of just one or a few macromers [138]–[140]. Even employing coarse-graining practices 

to MD, such as those of [141] (e.g., the use of Kuhn segments for bead-spring chains 
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and smoothing of the solvent), such approaches require large computational time and 

resources. Therefore, a tertiary class of explicit, mesoscopic models are needed to 

bridge the microstructural-to-global mechanical property response of gels. Such 

approaches may capture the length scale of heterogeneities and local topological 

traits while leveraging statistical representations of features such as individual 

entropic chains or mixing effects.   

 

Towards this aim, researchers such as [121] have used mesoscale models to study the 

mechanics of gels. Indeed, these researchers and much of the existing literature have 

focused on perhaps the most idealized polymeric networks observed in gels to date – 

those of tetra-polyethylene glycol (PEG) based gels. In fact, such gels are under strong 

consideration in bioengineering applications for their biocompatibility and the ease 

with which their mechanical properties may be tuned. These networks are formed 

through the gelation of star-shaped macromers with functional arms that bind to one 

another telechelically (i.e., at their terminal ends), and achieve high conversion rates 

[137], with relatively few defects [142] and high homogeneity [119], [143]. The 

relative homogeneity of these networks has allowed researchers such as [121] to 

initiate modelled gels as ideal diamond lattices from which bonds are stochastically 

and retroactively removed, while still accurately predicting their mechanical 

response. However, this phenomenological gelation approach is empirically 

motivated, and the correct topologies are set according to experimental results rather 

than emerging because of the underlying physics. As such, these idealized approaches 

are ill-suited to capture the local microstructures of gels with transient bonds, 

dangling chains, or post-chain-rupture landscapes. In reality, the local positions of 

dangling chains and the distribution of crosslinks in a gel are heavily dependent on 

local solute-solvent interactions and resulting osmotic pressure gradients [130], 
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[139], [144], [145]. Furthermore, existing mesoscopic approaches are limited in 

predicting the initial topologies of gels as a function of macromer functionality 

(governing the number of potential crosslinking interactions), as-prepared solution 

concentration [137], [142], molecular weight, or solvent quality. Yet these are the 

types of parameters which experimentalists may control during gel fabrication.  

 

To address these limitations, we here adapt a recently developed mesoscale numerical 

framework [3], to the case of PEG-based gels. The current work is novel two 

significant ways. Firstly, it considers the effects of osmotic pressure on global swelling 

of traction boundaries. While previous works enforced volumetric deformation 

through the empirically motivated displacement of network boundaries [121], [146], 

we here compute the degree of swelling based on the competition between global 

osmotic pressure (as predicted via Flory-Huggins theory) and the hydrostatic 

component of polymer network stress. Secondly, we introduce a scaling law to 

estimate the local polymer concentration as a function of the average mesh size, and 

spatial crosslink distribution. Previous works have employed more general methods 

of homogenization such as "explosion-contraction" Monte Carlo (MC) algorithms with 

Lennard-Jones potentials between nodes [146]. However, the distribution of polymer 

in a gel depends significantly on solute-solvent interactions [138]–[140], [145], [147]. 

Therefore, we introduce a physically motivated method in which the spatial 

arrangement of macromers is governed by solute-concentration dependent gradients 

in osmotic pressure that introduce effective mixing forces. Thus, this model considers 

first-order physics that enable the ab initio simulation of gel networks, thereby 

requiring less a priori knowledge of gel microstructure over previous approaches and 

instead enabling predictive design of gels with certain topologies. To support ab initio 

predictive design, input parameters to this model correspond directly to typical 
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control parameters during gel fabrication – namely, macromer molecular weight 

(𝑀𝑤), solvent type (whose effects are coarsely captured through the Flory-Huggins 

mixing parameter, 𝜒), normalized pre-gelation polymer concentration (𝜙∗), and 

macromer functionality (𝑓) [119], [137], [142], [143], [148].  

 

The remainder of this work is structured as follows. In Section 4.2, we briefly 

overview the continuum mechanics approach commonly used to model global swelling 

mechanics of gels. This introduces readers to the significant concepts of osmotic 

pressure (governed by the free energy of mixing between polymer and solvent) and 

network stress (governed by strain energy of the polymer network). We then examine 

these features’ counterparts at the network scale. In Section 4.3, we introduce the 

novel scaling law that relates local osmotic pressure gradients to microstructural 

crosslink distribution, and the single-chain force extension relation that drives global 

network stress. We also describe the numerical implementation of not only these 

features, but also the macro-scale theory discussed in Section 4.2. In Section 4.4, we 

demonstrate that this model accurately predicts topological and mechanical 

characteristics of sol-gels (i.e., polymer suspensions turned to gels) during mixing, 

gelation, equilibrium swelling, and elastic deformations under plane stress boundary 

conditions. Finally, Section 4.5 concludes by exploring the effects of network topology 

on damage onset in permanent gels. 

 

4.2 Flory-Rehner theory for global equilibrium of gels 

 

Polymeric gels are comprised of networks of high molecular weight chains crosslinked 

to one another. When these networks are submersed into a low molecular weight 

solvent there is an entropic increase associated with the interstitial penetration of 
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liquid into the polymeric network. Additionally, in cases where there is energetic 

favorability between solvent-polymer interactions (as opposed to interpolymer or 

solvent-solvent interactions), there is also an enthalpic contribution to mixing. 

Together, these contributions lead to some effective osmotic pressure that induces 

transport of solvent into the network, inducing swelling. In this work, we consider 

the effects of osmotic pressure on not only the global mechanics (i.e., equilibrium 

swelling and traction boundary positions), but also local topology (i.e., the spatial 

distribution of crosslinks). In this section, we briefly outline the Flory-Rehner 

continuum mechanics theory used to predict the global swelling mechanics of gels 

[130].  

  

The Flory-Rehner approach treats gels as a two-state solution in which the polymer 

network represents solute, while the interstitial fluid that causes swelling represents 

solvent (Fig. 4.2). Through this approach the Helmholtz free energy of the mixture is 

taken as the sum of the elastic strain energy (𝜓𝑒𝑙) stored in the polymeric chains, and 

the free energy of mixing (𝜓𝑚𝑖𝑥) between solute and solvent as: 

𝜓 = 𝜓𝑒𝑙(𝑭) + 𝜓𝑚𝑖𝑥(𝜙).                 (4.1) 

Here, 𝑭 = 𝜕𝒙/𝜕𝑿 is the elastic deformation gradient (where 𝑿 and 𝒙 represent the 

reference and current crosslink positions of the network, respectively, as depicted in 

Fig. 4.2), and 𝜙 = 𝑉𝑝/𝑉 is the volume fraction of polymer (where 𝑉𝑝 is the total volume 

of the polymer in the network and 𝑉 is the total volume enveloped by the gel).  

 

At mechanical equilibrium in the absence of body forces, the Cauchy stress state (𝝈) 

of the gel must obey the differential equation: 

𝜵 ⋅ 𝝈 = 0          (4.2) 
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where 𝜵 is the differential operator in the current configuration, and 𝝈 = 𝝈𝑒𝑙 + 𝝈𝑚𝑖𝑥 

may be decomposed into its elastic network (𝝈𝑒𝑙) and mixing (𝝈𝑚𝑖𝑥) components. It 

can be shown that the forms of these stresses arise from the minimization of the free 

energy and may therefore be directly derived from Eqn. (4.1). The Cauchy stress is 

thus expressed as: 

𝝈𝑒𝑙 = 2𝐽−1𝑩 ⋅
𝜕𝜓𝑒𝑙

𝜕𝑩
,        (4.3) 

where 𝑩 = 𝑭𝑭𝑇 is the left Cauchy-Green or finger deformation tensor, and 𝐽 = 𝑑𝑒𝑡(𝑭) 

denotes the relative change of volume of the gel (i.e., 𝐽 = 𝑉/𝑉0 given a reference 

volume of 𝑉0). The mixing stress emerges as an isotropic pressure (i.e., osmotic 

pressure) of the form: 

𝝈𝑚𝑖𝑥 = 𝜋𝑰 .         (4.4) 

To compute 𝜋 we consider that the solute consists of long chains of 𝑁 bonded mers or 

Kuhn segments. The mixing entropy of a Kuhn segment may be written as 𝑁−1𝜙 𝑙𝑛 𝜙 

and 𝜓𝑚𝑖𝑥 is given by [149]: 

𝜓𝑚𝑖𝑥 =
𝑘𝑏𝑇

𝑣
[

𝜙

𝑁
𝑙𝑛 𝜙 + (1 − 𝜙) 𝑙𝑛(1 − 𝜙) + 𝜒𝜙(1 − 𝜙)].   (4.5) 

where 𝑘𝑏 is the Boltzmann constant, 𝑇 is the ambient temperature, 𝑣 is the volume 

of a Kuhn segment, and 𝜒 is the Flory-Huggins solubility parameter (𝜒 = 0.5 for theta 

solvent in which polymers behave ideally as freely jointed chains, and 𝜒 ≤ 0.5 

indicates that mixing will occur). Through Eqn. (4.5), we may compute the amount of 

mixing work needed to expand or contract the gel by some incremental amount 𝑑𝑉 

as: 

𝜋𝑑𝑉 = −𝑑(𝑉𝜓𝑚𝑖𝑥),        (4.6) 

where osmotic pressure, 𝜋, constitutes the pressure needed to maintain a given 

volume. Differentiating the right-hand side of Eqn. (4.6) with respect to 𝑉 gives 𝜋 as: 

𝜋 =
𝑘𝑏𝑇

𝑣
[

𝜙

𝑁
− 𝑙𝑛(1 − 𝜙) − 𝜙 − 𝜒𝜙2].     (4.7) 
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For detailed derivations of Eqns. (4.5) to (4.7), readers are encouraged to read Soft 

Matter Physics by Masao Doi [149]. From Eqn. (4.7), we see that osmotic pressure is 

zero when 𝜙 = 0, and pressure increases monotonically with respect to 𝜙 for good 

solvent in which mixing is favored (𝜒 ≤ 0.5). This drives solvent from regions of lower-

to-higher solute concentration.  

 

 
Figure 4.2. Deformation of a gel. An arbitrary gel network is illustrated in its reference (left) and 

current (right) configurations after undergoing some compressible deformation 𝑭. Polymer chains are 

depicted as black curves, while solvent is represented by the blue background and blue circles. The 

position of an arbitrary crosslink is illustrated in its reference (𝑿) and current (𝒙) positions with respect 

to the orthonormal basis. 

 

Eqn. (4.7) will prove useful in tracking the local osmotic pressure of the network 

model as described in Section 3.1. However, to consider the effects of osmotic pressure 

on global swelling, let us instead express Eqn. (4.7) in terms of the volumetric change, 

𝐽, of the overall gel as measured with respect to its dry state. Assuming the amount 

of polymer in the gel is conserved and that all volumetric change is driven by flux of 

solvent, then 𝐽 = 𝜙0/𝜙 where 𝜙0 is the polymer volume fraction of the dry network. 

Substituting this into Eqn. (4.7) gives: 

𝜋 =
𝑘𝑏𝑇

𝑣
[

1

𝐽𝑁
− 𝑙𝑛 (1 −

1

𝐽
) −

1

𝐽
−

𝜒

𝐽2].      (4.8) 
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Note that the first term in Eqn. (4.8) drops out with the assumption that 𝑁 → ∞, as 

appropriate for the case of gels containing large polymer networks. Eqns. (4.2), (4.3), 

and (4.8) collectively define the global equilibrium condition of a gel. While Flory-

Rehner theory provides the governing equilibrium equations for a gel at the macro-

scale, it neglects any local evolutions of spatial crosslink distribution. In the following 

sections we demonstrate how the concepts of local osmotic pressure gradients and 

single-chain elastic strain energy may be leveraged to update topology in the discrete 

network model. 

 

4.3 The network model 

 

The numerical framework adopted here was introduced by [3]. The chronological 

stages modeled by this framework are meant to mimic the ab initio processes of gel 

fabrication and mechanical experimentation as illustrated in Fig. 4.3. First, 

representative volume elements (RVEs) are initiated as square domains with periodic 

boundary conditions, centered at the Cartesian origin. The sizes of RVEs were set 

based on the convergence of stress response for increasingly large domains (see 

Appendix C.I). Star-shaped macromers or “nodes” are then seeded at coordinates 𝒙𝛼 

using a Poisson’s point process where the index 𝛼 denotes the node number (𝛼 ∈

[1, 𝒩]) (Fig. 4.3.A). Once initially seeded, the positions of nodes are equilibrated as 

governed by osmotic mixing forces (Fig. 4.3.B). Nodes may remain unattached to 

model polymer suspensions, or their chains may be telechelically bonded to one 

another to mimic gelation (Fig. 4.3.C). The RVEs are then prescribed some 

combination of traction and displacement boundaries to mimic experimental 

conditions such as equilibrium swelling (Fig. 4.3.D) and applied deformations (Fig. 

4.3.E). In this section, we detail the effective mixing forces that act on macromers in 
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star-shaped polymer suspensions or crosslinks in gel networks. We then review the 

chain attachment algorithm used to mimic gelation and describe the entropic chain 

forces that act on nodes in the crosslinked networks. Next, we describe how nodes’ 

positions are iteratively equilibrated and network stress is computed at each discrete 

deformation or network reconfiguration step. Finally, we overview the various 

boundary conditions used over the course of this work and list the input parameters 

associated with the network model. 

 
Figure 4.3. Chronological steps of numerical model. (A) An RVE is seeded with macromers (or 

“nodes”) whose centers are depicted as circles. (B) The macromers are positionally equilibrated by 

effective osmotic mixing forces. (C) The macromers are bonded to form a gelated network. (D) The 

network expands, decreasing the osmotic pressure, until the condition of Eqn. (2) is met. (E) 

Deformation is applied to the boundaries of the RVE. The heat map represents normalized, local 

osmotic pressure. Dangling chains are not explicitly modeled and are therefore not shown in figures 

throughout this work. 

 

4.3.1 Local effects of osmotic pressure 

 

We begin by examining the local effective mixing forces, as these are relevant for both 

the initial polymer suspensions and post-gelation networks. In this subsection we 

introduce the novel scaling law used to estimate spatial solute concentration 
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gradients, which in turn govern effective pressure-gradient mixing forces. We then 

detail the numerical methods used to compute said forces. 

 

Local scaling of solute concentration and effective mixing forces. In many 

polymeric materials such as dry elastomers [150], [151] volume exclusion (i.e., 

repulsive contact potentials) will dominate the effective macromer or crosslink 

distributions. However, in this work and in the broader context of gels, polymer 

packing fractions are generally on the order of 0.01 to 0.1, such that the separation 

distances between macromers or crosslinks are significantly larger than the size of a 

mer (∼ 𝑏) or length scale of volume exclusion interactions. As such, network topology 

of gels or radial distribution of polymer in suspensions [139], [152] is instead governed 

by the effective mixing forces (𝒇𝜋) introduced by gradients in osmotic pressure [153]. 

Osmotic pressure, as described by Eqn. (4.7), depends on both the local solute 

concentration (through 𝜙) and favorability of solute-solvent interactions 

(characterized by 𝜒). At the mesoscale, 𝜙 evolves locally as a function of the positions, 

𝑥𝛼, of macromers or crosslinks (i.e., “nodes”). While scaling laws such as that 

introduced by [145] or [154], [155] have been developed to predict the concentration 

gradient surrounding star-shaped polymers in solvent of varying quality, discrete 

numerical investigation of these relationships has called their ability to predict local 

swelling into question [156]. A great deal of research has been conducted through 

Monte Carlo and molecular dynamics simulations on the effective interactions 

between star shaped polymers, as well [138]–[140], [147], [152], [156], [156]. These 

include the study of both dilute and concentrated systems. Nevertheless, few (if any) 

such studies have been conducted in the context of percolated gels comprised of star-

shaped polymers, despite the fact that tetra-PEG macromers in solution have 

verifiably different concentration gradients than those in a percolated network [119], 
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[143]. Indeed most of the literature on the structure of such gels is empirically-gotten 

[142], [143], [148], [157], [158], and appropriate scaling laws for solute concentration 

gradients are, to our knowledge, not available in existing works. Therefore, for our 

purposes we begin by introducing a simple scaling law for solute concentration 

specific to the case of star-shaped crosslinkers in the low functionality regime (here, 

𝑓 ∈ [3,10]).  

 

Consider an arbitrary, 2D network such as that depicted in Fig. 4.4.A, which has an 

average nearest crosslink-to-crosslink separation or “mesh size” 𝜉̅, and in which each 

crosslink has a functionality of 𝑓; each arm has 𝑁 Kuhn segments; and each Kuhn 

segment has a length of 𝑏 and width of 𝑤. Let us first examine the solute 

concentration function due to a single node at position, 𝒙𝛼, as we move radially 

outwards from its center to some position 𝒓. Here we temporarily treat 𝑥𝛼 as our 

reference position and we denote the solute concentration function due to this isolated 

node as 𝜑𝛼(𝒓). To estimate 𝜑𝛼(𝒓), we envision an infinitesimal ring of width 𝛿𝑟, at 

distance 𝑟 = |𝒓| from 𝒙𝛼, as illustrated in Fig. 4.4.B-C. In 2D, the local polymer 

packing fraction within this ring is defined as the area of polymer residing within it 

(𝛿𝐴) divided by the total ring area (2𝜋𝑟𝛿𝒓): 

𝜑𝛼(𝒓) =
𝛿𝐴

2𝜋|𝒓|𝛿𝑟
.        (4.9) 

The area of polymer inside the ring may be written as: 

𝛿𝐴 = (𝑓𝑏𝑤)𝛿𝑁,        (4.10) 

where 𝑏𝑤 represents the area of a single mer and 𝛿𝑁 represents the number of mers 

inside the ring belonging to a single chain (so that 𝑓𝛿𝑁 represents the contribution 

from all chains). For simplicity, we posit that a polymer chain remains evenly coiled 

and distributed in the space between the crosslinks it spans (Fig. 4.4.B). We also 

coarsely impose that it is equiprobable to find polymer at any azimuthal position 
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around the crosslink (i.e., radial symmetry). Under these conditions, 𝛿𝑁 scales 

proportionately with the number of Kuhn segments per chain (𝑁), and the ring 

thickness (𝛿𝑟), and is inversely related to the average mesh size (𝜉̅): 

𝛿𝑁 ∼ 𝑁𝜉̅−1𝛿𝑟.        (4.11) 

This notion assumes that at low functionality, steric interactions between adjacent 

chains are minimal so that the chains may coil freely. Combining Eqns. (4.9), (4.10) 

and (4.11) gives the estimated solute area at distance 𝑟 in 2D as:  

𝛿𝐴 ∼ 𝑓𝑁𝑏𝑤𝜉̅−1𝛿𝑟.        (4.12) 

Substituting Eqn. (4.12) into (4.9) provides that the local solute fraction scales with 

|𝒓| according to:  

𝜑𝛼(𝒓) ∼ {
1,                        |𝒓| <

𝑓𝑁𝑏𝑤

2𝜋
𝜉̅−1

𝑓𝑁𝑏𝑤

2𝜋|𝒓|
𝜉̅−1 ,         

𝑓𝑁𝑏𝑤

2𝜋
𝜉̅−1 < |𝒓|

,     (4.13) 

with the added condition that 𝜑𝛼(𝒓) cannot exceed unity. To compute 𝜉̅, we consider 

that many of the chains are fully attached to the network so that their end-to-end 

separation is governed by the average mesh size of the system. Meanwhile, the 

average length of dangling chains depends instead on their tethered diffusion in the 

solvent. Taking 𝑐 and 1 − 𝑐 as the relative fractions of attached and dangling chains, 

respectively, then we may estimate the mean mesh size as the sum of weighted 

contributions from each population: 

𝜉̅ ≈ 𝑐𝜉�̅� + (1 − 𝑐)𝜉�̅�,        (4.14) 

where 𝜉�̅� and 𝜉�̅� are the average measured end-to-end distance of an attached and 

dangling chain, respectively (Fig. 4.4.B). While the average end-to-end length of 

attached chains, 𝜉�̅�, may be measured explicitly, we impose that dangling chains 

behave ideally (since we are primarily concerned with gels in good solvent) and 

therefore have a mean end-to-end length of 𝜉�̅� = √𝑁𝑏. 
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Figure 4.4. Solute concentration scaling in a gel. (A) An RVE containing an arbitrary network is 

displayed. (B) A close-up schematic of an arbitrary crosslink from (A) is shown. A differential ring of 

width 𝛿𝑟 is enclosed by dashed lines. A dangling chain is depicted and posited to have an approximate 

end-to-end length of 𝜉𝑑 ≈ √𝑁𝑏. An attached chain is also depicted and posited to have an approximate 

end-to-end length, 𝜉𝑎, that is the same as the network’s average attached chain length. (C) A 

differential ring at radial distance |𝑟| with respect to the local reference frame (i.e., crosslink position) 

is displayed. (D) The same differential ring from (C) is displayed, with the material point 𝒙 = 𝒙𝛼 + 𝒓 

denoted in the global reference frame. (B-D) The segments of polymer chain residing within the 

differential ring are shaded cyan. 

 

Eqn. (4.13) provides 𝜑𝛼(𝒓) as a function of radial distance with respect to the 

reference position 𝒙𝛼 (Fig. 4.4.C). However, with respect to the global reference 

frame, we instead write: 

𝜑𝛼(𝒙) ∼ {
1,                             |𝒙 − 𝒙𝛼| <

𝑓𝑁𝑏𝑤

2𝜋
𝜉̅−1

𝑓𝑁𝑏𝑤

2𝜋|𝒙−𝒙𝛼|
𝜉̅−1 ,         

𝑓𝑁𝑏𝑤

2𝜋
𝜉̅−1 < |𝒙 − 𝒙𝛼|

,    (4.15) 

where 𝒙 = 𝒙𝛼 + 𝒓 (Fig. 4.4.D). In a system of 𝒩 macromers, the overall solute 

concentration function may then be taken as the sum of 𝜑𝛼(𝒙) for 𝛼 ∈ [1, 𝒩] as: 

𝜙(𝒙) = 𝛷−1 ∑ 𝜑𝛼(𝒙)𝒩
𝛼=1 .       (4.16) 

where 𝛷 = ∫ 𝜙(𝒙)𝑑𝑉
𝑉

/(𝑉𝐽𝜙0) is a normalization scalar that enforces conservation of 

mass (i.e., that the average value of 𝜙(𝒙) equals the globally computed solute fraction, 

𝐽𝜙0).  

 

Given 𝜙(𝒙) the spatial osmotic pressure function, 𝜋(𝒙), may be computed directly 

using Eqn. (4.7). To compute the effective force, 𝒇𝜋(𝒙), imposed by local gradients in 

𝜋(𝒙), we invoke that the amount of work, 𝒇 ⋅ 𝑑𝒙, needed to move a solute particle by 

a displacement of 𝑑𝑥 must be equal and opposite to the consequential change in the 



74 

 

 

local free energy of mixing, −𝑉𝑑𝜋 [149], [159]. Thus, we may write the pressure 

gradient force relation as: 

𝒇𝜋 ⋅ 𝑑𝒙 = −𝑉𝑑𝜋,        (4.17) 

where 𝑉 is the approximate volume of solvent displaced by the movement of a 

macromer (𝑉 ≈ 𝑓𝑁𝑏𝑤2). Solving Eqn. (4.16) for 𝒇𝜋 gives the local driving force of 

solute due to mixing as: 

𝒇𝜋(𝒙) = −
𝑁

2
𝑓𝑏𝑤2𝜵𝜋(𝒙).       (4.18) 

where 𝜵𝜋 denotes 𝑑𝜋/𝑑𝒙, or the spatial pressure gradient in the current 

configuration. Although the scaling relation of Eqn. (4.15) is presented for 2D 

networks, an analogous relation may be derived to apply this method to 3D networks. 

Eqns. (4.16) and (4.18) remain applicable, regardless of dimensionality (i.e., whether 

spatial vectors are one, two, or three dimensional). 

 

Numerical implementation of mixing force. As discussed in the previous section, 

osmotic mixing forces depend on local gradients in osmotic pressure, which in turn 

depend on the local solute concentration, 𝜙(𝒙). To approximate a differentiable 

landscape of osmotic pressure within the numerical framework, 𝜙(𝒙) is computed on 

a discretized, Eulerian grid, whose node positions are defined by the vector set 𝒙𝑞. 

This Eulerian grid and the numerical methods described in this subsection are 

illustrated schematically through Fig. 4.5 for a simple 1D, two-node system. The 

solute packing fraction at each 𝑞𝑡ℎ query point on the Eulerian grid as a function of 

its distance from each 𝛼𝑡ℎ node in the domain, 𝜑(𝒙𝑞𝛼), is calculated using Eqn. (4.15) 

(Fig. 4.5.A-B). Note that here, 𝒙𝛼𝑞 = |𝒙𝑞 − 𝒙𝛼| is the distance between node 𝛼 and 

query point 𝑞  and is synonymous with |𝒙 − 𝒙𝛼| in continuous space from Eqn. (4.15). 

The solute concentration functions due to each crosslink, 𝜑(𝒙𝛼𝑞), are then summed 

over all nodes per Eqn. (4.16) to get the overall solute concentration function on the 
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Eulerian grid, 𝜙(𝒙𝑞) = 𝛷−1 ∑ 𝜑(𝒙𝛼𝑞)𝒩
𝛼=1 . To compute 𝛷 in the numerical framework, 

the overall solute concentration is taken as 𝜙0𝐽 = 𝐴𝑝/𝐴𝑅𝑉𝐸, where 𝐴𝑝 = 𝒩𝑓𝑁𝑏𝑤 is the 

total solute area in the RVE and 𝐴𝑅𝑉𝐸 is the total RVE area. The solute concentration 

function, 𝜙(𝒙𝑞), is then used to compute the osmotic pressure function 𝜋(𝒙𝑞) on the 

Eulerian grid through Eqn. (4.7) (Fig. 4.5.C). Given 𝜋(𝒙𝑞), the spatial gradient in 

pressure is linearly interpolated at position 𝒙𝑞 using a central difference 

approximation: 

𝜵𝜋(𝒙𝑞) ≈
𝜋(𝒙𝑞+1)−𝜋(𝒙𝑞−1)

2𝛥𝑥
,       (4.19) 

where 𝛥𝑥 ∼ 𝜉̅ × 10−1 is the grid spacing, which is set less than an order of magnitude 

smaller than the network’s mesh size to approximate smooth crosslink motion. 

Finally, 𝜵𝜋(𝒙𝑞) is substituted into Eqn. (4.18) to compute the effective mixing force 

function, 𝒇𝜋(𝒙𝑞), which is then linearly interpolated at the positions of the crosslinks 

in the network (Fig. 4.5.E).  

 

 
Figure 4.5. Numerical implementation of effective mixing forces in 1D. (A) A two-node (𝛼 ∈
[1,2]) system is displayed in 1D along spatial dimension 𝒙. The nodes are depicted as blue circles with 

blue chains connecting them, and the underlying Eulerian grid is depicted as red exes. (B) The local 

solute concentration function due each node, 𝜑(𝒙𝑞𝛼), is estimated using Eqn. (4.15) and illustrated at 

the positions of the Eulerian query points, 𝒙𝑞. (C) The combined local solute concentration function, 

𝜙(𝒙𝑞) = ∑ 𝜑(𝒙𝛼𝑞)2
𝛼=1  is computed and then used to calculate 𝜋(𝒙𝑞) through Eqn. (4.7), which is 

displayed at the positions 𝒙𝑞. (D) The effective mixing forces, 𝒇𝜋(𝒙𝑞), are computed through Eqns. 

(4.17) and (4.18) and then interpolated at the positions of the nodes to get 𝒇𝜋(𝒙𝛼), which is illustrated 

as black vectors at positions 𝒙𝛼. The sizes of the arrows indicate the relative magnitudes of effective 

forces. (B-C) The functions 𝜑(𝒙𝑞𝛼) and 𝜋(𝒙𝑞) are smoothly interpolated between query points for 

illustrative purposes, although actual interpolation takes place between (C) and (D). 
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Figure 4.6. Outcomes of numerical implementation in 2D. (A) An equilibrated numerical gel 

network is displayed. (B) The estimated polymer packing fraction function (𝜙(𝒙𝑞)) is displayed at the 

query points (𝒙𝑞) of the Eulerian grid. (C) The corresponding local osmotic pressure function (𝜋(𝒙𝑞)) is 

displayed. (D) The pressure gradient force (𝒇𝜋(𝒙𝛼)) is computed and interpolated at the positions of 

crosslinks (black arrows). The heat map of 𝜋(𝒙𝑞) from (C) remains faintly displayed in (D) to visually 

illustrate how forces follow the local osmotic pressure gradient. A close-up of osmotic pressure forces 

around a cluster of nodes is also depicted for clarity. (B-D) The heat maps of 𝜙(𝒙𝑞) and 𝜋(𝒙𝑞)  are 

interpolated between query positions for illustrative purposes. 

 

Fig. 4.6 illustrates the outcome of this numerical implementation via snapshots of 

the network model. Figs. 4.6.A and 4.6.C-D are 2D analogues to the 1D schematics 

of Figs. 4.5.A and 4.5.C-D, respectively. Again, while the framework adapted here is 

2D, this method could also be incorporated into 3D frameworks. Fig. 4.6.D displays 

a close-up view of the effective mixing forces at the crosslink positions, 𝒇𝜋(𝒙𝛼), around 

a higher density cluster, thus demonstrating how this method drives crosslinks away 

from regions of higher solute concentration for good solvent (here 𝜒 = 0.5), thus 

fulfilling the role of an effective pairwise repulsion between neighboring crosslinks. 
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Significantly, 𝒇𝜋(𝒙) induces homogenization of simulated macromers in good solvent 

(𝜒 ≤ 0.5) prior to gelation. In homogenizing the solution before nodes are attached to 

one another, mixing forces mitigate any boundary effects introduced by the way in 

which nodes are seeded into the periodic RVE. In effect, through 𝒇𝜋(𝒙𝛼), the model 

mimics the mixed conditions of solutions prior to crosslinker polymerization. 

 

4.3.2 Gelation and entropic chain forces  

 

Once macromers are seeded and initial homogenization due to effective mixing forces 

is completed, the system may be gelated without biased formation of defects near the 

RVE’s boundaries. This is achieved using the Rouse diffusion-based chain attachment 

introduced by [3]. Within a given timestep, the probability of attachment between 

two chains belonging to neighboring nodes is defined according to the Poisson’s 

process: 

𝑑𝑃𝑎 = 𝑘𝑎𝑒−𝑘𝑎𝑡𝑑𝑡,        (4.20) 

where 𝑘𝑎 is the rate of attachment. Given that the chains are tethered to their 

permanent crosslinks, we define 𝑘𝑎 according to a scaling law based on Rouse 

diffusion to define 𝑘𝑎 as [3]: 

𝑘𝑎 =
1

𝜏0
(

𝑏

𝑑
)

4
.         (4.21) 

where 𝑑 is the distance between neighboring nodes and 𝜏0 is the time it takes a chain’s 

tip to diffuse the length of one of a Kuhn segment, 𝑏. For simplicity, nodes are not 

allowed to attach to themselves. However, nodes may attach to each other more than 

once to capture the double, triple and quadruple-link defects observed by [137] and 

[157] and discussed in Section 4.4.2. Attachment events are checked iteratively until 

the network achieves greater than 95% connectivity.  
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Note that the introduction of bonded chains mandates computation of single-chain 

forces derived from the entropic penalty of polymer extension. The strain energy 

function of entropic chains is suitably modeled using the Padé approximation [160] of 

Langevin chains given by [3]:  

𝜓𝑐 = 𝑘𝑏𝑇 [
𝜆2

2
− 𝑁 𝑙𝑜𝑔(𝑁 − 𝜆2)],      (4.22) 

where 𝜆 is the chain stretch given by 𝜆 = 𝑟/√𝑁𝑏 and 𝑟 is the chain’s end-to-end length. 

This yields a force-stretch relation of the form: 

𝑓 =
3𝑘𝑏𝑇

√𝑁𝑏
𝜆 (

𝜆2−3𝑁

𝜆2−𝑁
).        (4.23) 

As in the case of polymers [161] the force in this model diverges for chains extended 

near their full contour lengths (or 𝜆 → √𝑁), thus also capturing the enthalpic effects 

of bond stretching [162].2 Chain forces always act in tension and remain aligned with 

their chains’ end-to-end vectors, 𝒓.  

 

4.3.3 Force equilibration and stress formulation 

 

Since macromers or crosslinks are seeded stochastically, they do not begin at 

equilibrium. Additionally, processes such as bond attachments, equilibrium swelling, 

applied deformation, and bond rupture also drive the crosslinks out of equilibrium. 

However, equilibrium is assumed throughout this work based on the assumptions 

that solvent may move freely into or out of the networks as needed to maintain 

thermodynamic equilibrium, and any loading rates are applied significantly slower 

than the rate of solvent transport. Therefore, nodes are iteratively equilibrated to 

their lowest energy state at every network reconfiguration or deformation step (i.e., 

 
2 Where indicated, Gaussian (i.e., ideal or linear) chains are used in lieu of Langevin chains. The force-extension of 

a Gaussian chain is given by 𝑓 = 3𝑘𝑏𝑇𝜆/(√𝑁𝑏) and does not diverge in the limit 𝜆 → √𝑁.  
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“timestep”). This is done  using the overdamped method detailed in [3], which updates 

the positions of the nodes from iteration 𝑘 to 𝑘 + 1 according to:  

𝒙𝑘+1
𝛼 = 𝒙𝑘

𝛼 + 𝜈−1𝒇𝑘
𝛼.        (4.24) 

Here, 𝜈 is a numerical overdamping coefficient and 𝒇𝛼 is the net force acting on node 

𝛼 given by: 

𝒇𝛼 = ∑ 𝒇𝛼𝛽
𝛽 + 𝒇𝜋.        (4.25) 

where ∑ 𝒇𝛼𝛽
𝛽  is the sum of node 𝛼’s pairwise interaction forces with its neighboring 

nodes, 𝛽, and 𝒇𝜋 is the osmotic pressure-dependent force of mixing detailed in Section 

4.3.1. Since osmotic pressure-dependent forces, 𝒇𝜋, depend on the local solute 

concentration and osmotic pressure, these scalar fields are also iteratively updated 

throughout equilibration. Pairwise interaction forces, 𝒇𝛼𝛽, consists of the tensile 

forces carried by attached polymer chains described in Section 4.3.2. For simplicity, 

monomer interactions between crossing chains (e.g., volume exclusion, entanglement, 

etc.) are here omitted and do not affect the forces of Eqn. (4.25). Again, this is because 

effective osmotic pressure forces (as opposed to short-range monomer interactions) 

are taken as the first-order phenomenon affecting polymer distribution in gels [145]. 

This treatment is justified by the relatively ideal network structure and minimized 

entanglement in low polydispersity (i.e., low molecular weight variance) PEG-based 

gels [121], [143]; the dilution of swollen gels in good solvent (which reduces the 

frequency of short-range monomer interactions); and the finding that the effects of 

intra-chain monomer volume exclusion diminish for longer polymer chains [163]. 

 

Eqns. (4.24) and (4.25) are iterated until the mean and maximum unbalanced forces 

on the nodes move below 0.05 pN and 0.1 pN, respectively. These residual thresholds 

constitute roughly 0.2 and 0.4% of the force carried by a linear chain stretched to its 

full contour length, and thus sufficiently approximate the minimum energy state for 
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the purposes of this work. Once equilibration is completed after each timestep, the 

entropic chain forces, 𝒇𝛼𝛽, may be used to compute the instantaneous network stress 

through the virial formulation according to: 

𝝈𝑝 =
1

2𝑉
∑ ∑ 𝒓𝛼𝛽 ⊗ 𝒇𝛼𝛽

𝛽
𝒩
𝛼 ,       (4.26) 

where 𝑉 is the RVE volume3, and 𝒓𝛼𝛽 = 𝒙𝛼 − 𝒙𝛽 is the end-to-end vector between node 

𝛼 and its bonded neighbor 𝛽 [3]. Note that 𝝈𝑝 through Eqn. (4.26) gives only the 

polymer network stress, which is counteracted by osmotic pressure 𝜋 such that the 

overall material stress 𝝈 in the equilibrated swollen state is given by 𝝈𝑝 + 𝜋𝑰 = 0 

when 𝑭 = 𝑰.  

 

4.3.4 Equilibrium swelling and applied deformations  

 

Once the networks are fully gelated, deformation is typically applied in two stages. 

First the gel network is permitted to swell isotropically and unconstrainedly from its 

initial arbitrary size to its equilibrated state (Fig. 4.7.A). At this stage all four of the 

RVE’s periodic edges are traction boundaries. In the second stage we apply mixed 

boundary conditions to the RVE to enforce a prescribed uniaxial tensile deformation 

of the gel (Fig. 4.7.B). In both stages, stepping of the traction-free boundaries is 

conducted to satisfy the Flory-Rehner, global equilibrium condition from Eqn. (4.2). 

While only the central RVE is depicted in images throughout this work, all RVEs are 

2D periodic. Both displacement and traction boundaries are updated by stepping the 

position of the RVE edges, however the former are stepped to enforce some prescribed 

strain, while the latter are stepped to achieve some prescribed stress on the boundary.   

 

 
3 Since the RVE is 2D, its volume is taken as 𝑉 = ℓ1ℓ2휁 where 휁 represents the thickness of the domain. Thickness 

is treated as a fitting parameter when comparing 𝝈 between 3D experimental results and the 2D model predictions. 
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During initial swelling, the dimensions of the RVE boundaries are updated iteratively 

according to: 

ℓ1
𝑘+1 = ℓ1

𝑘 + 𝜈−1[ℓ2
𝑘(𝜋 − 𝜎ℎ)],      (4.27) 

ℓ2
𝑘+1 = ℓ2

𝑘 + 𝜈−1[ℓ1
𝑘(𝜋 − 𝜎ℎ)],      (4.28) 

where ℓ1
𝑘 and ℓ2

𝑘 represent the length of the horizontal and vertical traction 

boundaries at iteration 𝑘, respectively, and 𝜈 is again some numerical overdamping 

coefficient. Eqns. (4.27) and (4.28) ensure that if the osmotic pressure exceeds the 

hydrostatic network stress (𝜋 > 𝜎ℎ), then the domain increases in size and swelling 

continues. These equations are iterated until the residual difference between 𝜋 and 

𝜎ℎ is below 0.004 𝑘𝑃𝑎, which constitutes less than 1% of the overall hydrostatic 

network stress typically observed and provides ample convergence in the swollen 

equilibrium state.  

 

 
Figure 4.7. Applied boundary conditions. (A-B) Stage I: A sample numerical gel network, which 

begins at (A) time 𝑡0 with the dry, square dimensions ℓ1
0 = ℓ2

0, is depicted undergoing initial, 

unconstrained equilibrium swelling. (B-C) Stage II: From the (B) swollen state at time 𝑡1, the network 

is then (C) stretched in the vertical direction at a constant strain rate of 𝐿22. During this applied 

deformation, the RVE width is governed by the balance between 𝜎11 and 𝜋. (D) A sample loading 

history (𝜆 with respect to time) is depicted with 𝑡0, 𝑡1 and 𝑡2 corresponding to the times of (A), (B), and 

(C), respectively. Dotted lines denote periodic boundaries. 
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Both Eqns. (4.27) and (4.28) are carried out during stage one of deformation (i.e., 

isotropic swelling). However, during the second stage of deformation, displacement of 

the vertical boundary is governed by the condition that: 

ℓ2(𝑡) = ℓ2
𝑠𝑤 𝑒𝑥𝑝(𝐿22𝑡),       (4.29) 

where ℓ2
𝑠𝑤 is the height of the RVE after isotropic equilibrium swelling is completed, 

𝐿22 is the constant applied strain rate and 𝑡 denotes time. During this stage, the Flory-

Rehner condition (i.e., a traction-free condition) is maintained for the horizontal 

boundaries through the traction-free equilibrium condition that 𝜎11 + 𝜋 = 0. 

Therefore, the horizontal boundary is iteratively stepped via a displacement condition 

that is analogous to Eqn. (4.28), given by: 

ℓ1
𝑘+1 = ℓ1

𝑘 + 𝜈−1[ℓ2
𝑘(𝜋 − 𝜎11)].      (4.30) 

Again, the physicality of this boundary condition is contingent on the unhindered 

influx of solvent into the gel, as needed, and is therefore based on the assumption 

that the loading rate, 𝐿22, is significantly smaller than the rate of solvent diffusion. 

After every step of boundary deformation during either stage, the network’s crosslink 

positions are iteratively equilibrated using Eqns. (4.24) and (4.25).  

 

4.3.5 Free parameters 

 

Despite gels’ complexity, this model requires the input of just four free parameters, 

as listed in Table 4.1. These parameters are the functionality (𝑓), macromer 

molecular weight (𝑀𝑤), solute-solvent interaction parameter (𝜒), and as-prepared 

solute concentration (𝑐∗). Solute concentration is taken as the solute volume fraction 

(𝜙) normalized by the overlap volume fraction (𝜙𝑜𝑙) at which the star-shaped 

macromers’ radii of gyration inter-penetrate one another. Note that the number of 

nodes is held constant across simulations such that 𝜙∗ is mediated by the initial size 
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of the RVE during gelation. Both 𝑀𝑤 and 𝑓 are coupled with the chain length (𝐿) of a 

single arm. Therefore, 𝑓 and 𝑀𝑤 are often paired, as indicated throughout the text, to 

fix 𝐿 as 𝑓 is swept.  

 

Table 4.1. Primary model parameters 

Parameter Value, Range Units 

Functionality, 𝑓 [3,10] 𝑁𝐴 

Molecular Weight, 𝑀𝑤 [10,200] 𝑘𝐷𝑎 

Mixing Parameter, 𝜒 0.5 NA 

As-prepared Solute Fraction, 𝑐∗ ∼ 2 NA 

 

For details on domain length scale and concentration calibration, see Appendix C.II. 

There are no relevant timescales included in this work since deformations are 

presumed to occur at a rate much slower than the diffusion rate of solvent and no 

rate-dependent bond detachments are included. However these timescales can and 

will be included in future works through the swelling kinetics theory of [164], force-

dependent bond detachment rates [65], [72], and/or diffusion-dependent re-

attachment rates [3], [165]. Nonetheless, without any pertinent timescale, the 

deformation rate, 𝐿22, is arbitrary and the more important consideration is how many 

steps in which the deformation is carried out. To achieve adequate sampling 

frequency, and properly isolate the effects of discrete bond rupture events, the 

deformation was applied in approximately 550 steps per simulation. 

 

4.4 Gel topology and elastic response 

 

The networks examined in this work are modeled after PEG-based gels for which 

there exists an abundance of experimental data, and which display exceptional 
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spatial homogenization and high yield (> 90% chain connectivity) [158]. Macromer 

functionality is specified throughout this section, but is most commonly set to 𝑓 = 4 

due to the large number of experimental studies on tetra-PEG4 gels [142], [143], [158], 

[166], [167]. Unless specified otherwise, gels undergoing deformations are treated as 

if suspended in a solvent bath at thermodynamic equilibrium with the ambient 

environment. Additionally, all applied deformation rates are considered slower than 

the rate of solvent diffusion through the network such that rate-dependent solvent 

transport effects may be ignored. Together, these assumptions allow us to invoke that 

solvent moves into and out of the gel as needed to maintain equilibrium.  

 

4.4.1 Homogenization and phase separation of polymer suspensions 

 

Here we demonstrate the model’s ability to predict homogenization or phase 

separation of polymer suspensions without the explicit inclusion of any repulsive or 

attractive pairwise potentials between nodes. A novelty of this approach is that it 

does not take homogenization of macromer’s for granted before or after gelation, as 

in the case of other comparable approaches. Instead, the distribution of macromers is 

governed by the physics of solute-solvent interactions characterized by 𝜒. Fig. 4.8.A-

B displays suspensions in which the centers of tetra-functional macromers are 

depicted. Two suspensions (for 𝜒 = 0.5 and 𝜒 = 2, respectively) are displayed as 

initiated (Fig. 4.8.A-B, left) and after they have achieved the prescribed equilibrium 

criteria (Fig. 4.8.A-B, right). To demonstrate that the local osmotic pressure, and not 

the initial macromer distribution is what causes phase separation, all networks are 

 
4 Gels constituting a specific molecular weight and functionality are referenced using the convention 

“<𝑀𝑤> k <Greek numerical prefix>-PEG”. For example, a gel comprised of 4-arm macromers with 

𝑀𝑤 = 10 𝑘𝐷𝑎 is referred to as a 10k tetra-PEG gel throughout the text.  
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initiated with relatively high homogeneity using a pairwise Poisson’s point process. 

Again, neither attractive nor repulsive pairwise potentials are included.  

 
 

To characterize macromer distribution, we investigate the radial distribution 

function (RDF), 𝑔(𝑟), which quantifies the probability of finding two macromers at a 

given end-to-end distance. Peaks in 𝑔(𝑟) indicate correlation length scales (i.e., that 

there is a higher probability of finding two particles at a given pairwise separation 

distance). In contrast, values of 𝑔(𝑟) near or below unity indicates that particles are 

less correlated with one another and more correlated with empty space at a given 

length scale. When 𝜒 = 0.5 (Fig. 4.8.A) mixing and homogenization occur whereby 

the macromers evenly distribute and 𝑔(𝑟) appears periodic (Fig. 4.8.C), indicating a 

degree of long-range order like that observed in concentrated colloidal and star-

polymer suspensions [168], [169]. Despite only accounting for solute-solvent 

interactions (as opposed to volume exclusion effects), such homogenization is 

consistent with the statistical mechanics predictions of [170], the MC studies of [171], 

or the higher fidelity MD results of [45] and [172] for suspensions in good solvent. 

However, when 𝜒 = 2.0 this method predicts unstable phase separation that cannot 

be modeled using only volume exclusion interactions (Fig. 4.8.B). Indeed, setting 𝜒 >

0.5 effectively introduces depletion forces between solute particles. While it is 

tempting to phenomenologically introduce such forces via attractive regimes in 

effective pairwise potentials, it is well demonstrated that such forces vary locally with 

solute concentration [138], [152], [173], [174] and should therefore not be treated 

monolithically across a spatial domain. This method avoids such treatment and 

constitutes a more physically motivated method in which any effective depletion 

forces automatically evolve with local topological gradients.  
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Figure 4.8. Phase separation of polymer suspensions. (A-B) The evolution of macromer 

suspensions (10k tetra-PEG macromer) is displayed. The initial solutions (left) were forced into a 

relatively homogenous state using a Poisson’s point process such that the more equilibrated systems 

(right) could evolve as governed solely by the local gradient in osmotic pressure. Evolutions are 

depicted for solvent qualities of (A) 𝜒 = 0.5 (theta solvent), and (B) 𝜒 = 2, resulting in full 

homogenization and phase separation, respectively. (C) The corresponding RDFs are displayed for 

both solvent qualities with 𝜒 as indicated in the legend. 

 

While we have neglected the effects of volume exclusion interactions, Brownian 

diffusion, or entanglements between interpenetrating macromers, in the future these 

features could be easily combined with the methods introduced here. This would 

enable detailed studies of polymer suspensions in applications such as colloidal 

photonic crystals [175], [176]. However, in the remainder of this work – unless 

specified otherwise – we focus on sol-gels in theta solvent (𝜒 ≈ 0.5) based on 

experimental evidence that for tetra-PEG gels in the molecular weight range 𝑀𝑤 ∈

[5,40] 𝑘𝐷𝑎, the effective mixing parameter is within the tight range of 𝜒 ∈ [0.46,0.49] 

[119]. For such sol-gels, homogenization prior to gelation is reasonably assumed. 
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4.4.2 Gelation and as-prepared network topology 

 

Here we demonstrate the model’s ab initio reproduction of 10k tetra-PEG gel 

topologies based on as-prepared conditions. Initial gelation was carried out via the 

implementation outlined in Section 4.3.2 for networks swept across a range of as-

prepared polymer concentrations (Fig. 9A,C), here characterized by 𝜙∗ = 𝜙/𝜙𝑜𝑙, 

where 𝜙𝑜𝑙 is the 2D overlap concentration of macromers estimated by 𝜙𝑜𝑙 =

𝑓𝑁𝑏𝑤/(2𝜋𝑅𝑔
2) , and 𝑅𝑔 ∼ 𝑁𝑓1/2𝑏2 is a star-shaped macromer’s radius of gyration (see 

Appendix C.II for details). Bond attachment events were allowed to take place until 

the fraction of attached chains reached 0.95, tantamount to a high conversion during 

gelation as seen in experimental studies on tetra-PEG networks [158]. Fig. 4.9.B-C 

depicts the fraction of chains comprising single links and double links with respect to 

concentration. Here a “single link” is defined as a connection between crosslinks that 

share only one chain, while a “double link” or “triple link” (fraction not shown in Fig. 

4.9.C) indicates that the pair shares two or three chains, respectively. Such defects 

are critical in the accurate prediction of network mechanics and failure [177]. 

Therefore, accurate replication of initial experimental gel topologies is crucial. 

 

The trends in defect prevalence with respect to as-prepared concentrations strongly 

agree between the model and experiments. Higher as-prepared concentrations 

consistently result in networks with higher fractions of single links and fewer defects 

(e.g., double or triple links). While at a given as-prepared concentration the predicted 

fraction of single links is slightly higher (and the fraction of attached double links is 

lower) for the in silico experiments (Fig. 4.9.C) than for experimental results (Fig. 

4.9.B) [137], [178], this mismatch occurs primarily at higher concentrations and may 

be decreased by adjusting the timescale of Kuhn segment diffusion, 𝜏0 through Eqn. 
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(4.21). Additionally, the 2D overlap concentration estimated for simulations, is not 

synonymous with the rheologically extrapolated 3D overlap concentration cited by 

[137], thereby rendering direct quantitative comparison between the horizontal axes 

of Fig. 4.9.B,C uncertain. Ultimately, for the eventual purposes of predictive design, 

it is the relative trends in emergent topologies and mechanical properties that will 

guide fabrication parameters. Notably, at low concentrations a crossover region 

occurs for both simulations and experiments in which the fraction of double links 

becomes statistically consistent with that of single links, each representing between 

40-50% of the overall population. However, for simulated gels prepared at 𝜙∗ ≤ 0.5, 

no networks formed (i.e., gelation was not observed), which is not consistent with the 

observations of [137]. As such, this iteration of the framework is limited to the study 

of sol-gels prepared at relatively high initial concentrations (𝜙∗ > 0.5). In future work 

this limitation may be overcome by introducing Brownian diffusion of entire 

macromers to emulate intervention mixing, however here we focus on the case of gels 

fabricated at 𝜙∗ ∼ 1.5 (as depicted in the rightmost schematic from Fig. 4.9.A).  

 

For simulated gels prepared at 𝜙∗ ∼ 1.5 the mean end-to-end length of an attached 

chain is ⟨𝑟〉 = 12.1 ± 0.1 𝑛𝑚, or 28% of the overall contour length (Fig. 4.9.D). Of note 

is that ⟨𝑟⟩ changes little at lower concentrations (⟨𝑟⟩ = 13.6 ± 0.1 𝑛𝑚 for 𝜙∗ ∼ 0.8 and 

⟨𝑟⟩ = 12.9 ± 0.1 𝑛𝑚 for 𝜙∗ ∼ 0.5) (Fig. 4.9.D) despite an obvious increase in effective 

mesh size as visually seen in Fig. 4.9.A. This suggests that at lower concentrations, 

chains still relax to approximately the same lengths, but that crosslinks are generally 

more clustered (as indicated by the higher degree of double link defects from Fig. 

4.9.C-B), which is what enables a larger pore structure. Unlike the distributions of 

attached chain length, the RDF of crosslinks, 𝑔(𝑟), elucidates information about 

clustering (Fig. 4.9.E). As expected, the RDFs universally indicate that the gels are 
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amorphous, with high structural noise and no long-range order (Fig. 4.9.E). However, 

at all three concentrations observed, there exists a length scale (∼ 10 𝑛𝑚 for 𝜙∗ ∼ 1.5, 

∼ 15 𝑛𝑚 for 𝜙∗ ∼ 0.8, and ∼ 20 − 25 𝑛𝑚 for 𝜙∗ ∼ 0.5) below which the positions of 

crosslinks are highly correlated. This is consistent with the findings of [143] and 

indicates the presence of clusters whose characteristic sizes are on the same order as 

these correlation lengths, suggesting that lower as-prepared concentrations beget 

larger clusters. Clustering is further characterized with respect to 𝜙∗ by the average 

clustering coefficient, ⟨𝐶⟩ = 𝒩−1 ∑ 𝐶𝛼𝛼  where 𝐶𝛼 = 2𝑇𝛼/[𝑘𝛼(𝑘𝛼 − 1)], 𝑘𝛼 is the number 

of uniquely attached neighbors to crosslink 𝛼, 𝑇𝛼 is the number of shared chains 

between said neighbors, and 𝑘𝛼(𝑘𝛼 − 1)/2 constitutes the number of possible shared 

connections between said neighbors [179]. ⟨𝐶⟩ characterizes the extent to which 

attached neighbors of crosslinks are attached to one another thereby quantifying the 

degree of clustering. Fig. 4.9.F demonstrates that ⟨𝐶⟩ decreases as the as-prepared 

network concentration increases, supporting the interpretation that lower density 

networks exhibit greater clustering. Clusters are visible in Fig. 4.9.A as the high 

osmotic pressure regions for 𝜙∗ ∼ 1.5 or the regions of high crosslink density for 𝜙∗ ∼

0.8 and 𝜙∗ ∼ 0.5. 

 

As an aside, below the length scale of 1.3 𝑛𝑚 (for 𝜙∗ ∼ 1.5), 𝑔(𝑟) diverges suggesting 

that overlap of crosslinks occurs at the length scale of a Kuhn segment, which is a 

consequence of omitting any hard bodied repulsive potentials between nodes. While 

effective soft repulsion is introduced through the gradient in osmotic pressure, these 

forces are evidently overcome by the entropic tension of chains in some instances. 

Regardless, omitting hard body exclusion improves the numerical stability of the 

framework and only influences the displacement of crosslinks for gels by on the order 
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of 1% of the contour length of a chain. Therefore, it has negligible effect on emergent 

network mechanics as revealed in the following sections. 

 

 
Figure 4.9. Validation of the model’s predicted ab initio topologies. (A) Sample networks 

gelated from low (left) to high (right) as-prepared concentration are depicted. The rightmost sample 

represents the network topology used for in silico experimentation throughout this work. All scale bars 

represent the contour length of a single chain (44 𝑛𝑚). The color bar indicates the local osmotic 

pressure, 𝜋 ∈ [0,10] 𝑘𝑃𝑎. (B) The experimentally measured fractions of single links (black squares), 

double links (red circles), and triple links (blue triangles) are plotted with respect to the normalized 

as-prepared concentration depicted for a 10k tetra-PEG gel. Adapted with permission from [137]. 

Copyright 2011 American Chemical Society. (C) The fraction of single links (black squares) and double 

links (red circles) is plotted with respect to the normalized as-prepared concentration for the ensemble 

average of ten simulated 10k tetra-PEG gel samples. The normalization concentration, 𝜙𝑜𝑙 was taken 

as the 2D overlap concentration based on the estimated radius of gyration in theta solvent. Error bars 

represent standard error (S.E.) of the mean. The inset in (C) graphically depicts the definition of single 

(top), double (center), and triple (bottom) links between two crosslinks. (D) The probability distribution 

function (PDF) of attached chains’ end-to-end lengths is shown for 𝜙∗ = 0.48 (red), 𝜙∗ = 0.79 (blue), and 

𝜙∗ = 1.58 (black) corresponding to the snapshots depicted in (A) from left to right, respectively. The 

mean lengths ⟨𝑟⟩ are denoted by the vertical dotted lines of the same respective colors. (E) The RDFs 

of crosslink positions, 𝑔(𝑟), from the model are shown for 𝜙∗ = 0.48 (red), 𝜙∗ = 0.79 (blue), and 𝜙∗ =
1.58 (black). (F) Mean clustering coefficient, ⟨𝐶⟩, is plotted with respect to 𝜙∗.  
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4.4.3 Equilibrium swelling mechanics of gels 

 

Having ensured that the initial topological features for the case of 10k tetra-PEG gels 

match available experimental data, we next examine the equilibrium swelling of 

percolated gels to ensure that their initial swelling behavior matches that predicted 

by the Flory-Rehner theory discussed in Section 4.2. For the purposes of this section, 

we use Gaussian (i.e., linear) chains and omit deterministic fracture of bonds. This 

allows us to use the relatively simple elastic strain energy density function of a 

compressible Neo-Hookean material given by: 

𝜓𝑒𝑙 =
𝜇

2
(𝐼1̅ − 2) +

𝜅

2
(𝐽 − 1)2,      (4.31) 

where 𝜇 is the shear modulus, 𝜅 is the bulk modulus, 𝐽 is the Jacobian (𝐽 = 𝑑𝑒𝑡 𝑭 =

𝜆1𝜆2), and 𝐼1̅ = (𝜆1
2 + 𝜆2

2)/𝜆1𝜆2 is the first invariant of the isochoric component of the 

left stretch tensor (𝐼1̅ = 𝑡𝑟 �̅� = 𝑡𝑟 [𝐽−1𝑭𝑭𝑇] for symmetric deformation gradients). The 

maximum number of attachments per crosslink is relatively low (𝑓 = 4), so we set 𝜇 =

(1 − 2/𝑓)𝑐𝑘𝑏𝑇 in accordance with phantom chain theory for networks with low 

connectivity [3], [68]. Here 𝑐 is the network’s attached chain concentration [3], [180], 

which evolves from the dry chain concentration (𝑐0) as the network undergoes 

volumetric deformation according to 𝑐 = 𝐽−1𝑐0. For reasons examined in Appendix 

C.III, we also posit that the bulk modulus, 𝜅, evolves as 𝜅 = 3𝜇/2 in 2D. To be 

consistent with the analysis of osmotic pressure, the reference state for 𝐽 is taken as 

that of the dry polymer network.  

 

Invoking the definition of Cauchy stress through Eqn. (4.3), simplifying, and writing 

stress in terms of the principal stretch components gives: 

𝝈 =
2

𝐽
{[

𝜆1/𝜆2 0
0 𝜆2/𝜆1

] −
𝜆1

2+𝜆2
2

2𝜆1𝜆2
[𝑰]} +

𝜅0

𝐽
(𝜆1𝜆2 − 1)[𝑰].   (4.32) 
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where 𝜅0 =
3

2
(1 − 2/𝑓)𝑐0𝑘𝑏𝑇 is the dry state bulk modulus. For the case of 

unconstrained (and therefore isotropic) swelling (𝜆1 = 𝜆2 = 𝜆), Eqn. (4.32) reduces 

simply to 𝝈 = 𝜎ℎ𝑰 where: 

𝜎ℎ =
𝜅0

𝐽
(𝐽 − 1),        (4.33) 

which represents the hydrostatic component of network stress, 𝜎ℎ = 𝑡𝑟(𝝈)/3, and is 

plotted in Fig. 4.10.A (black curve). Examining Fig. 10A, we see that 𝜎ℎ increases 

monotonically with respect to 𝐽, and approaches a value of 𝜅0 in the limit 𝐽 → ∞. 

Notably, the form of 𝜎ℎ presented through Eqn. (4.32) is synonymous with that of the 

phenomenological, modified Ogden free energy functional introduced for rubberlike 

solids [181], [182]. This free energy formulation gives the hydrostatic stress as: 

𝜎ℎ =
𝜅

𝐽𝛽
(1 − 𝐽−𝛽),        (4.34) 

where 𝜅 is considered an invariant bulk modulus (i.e., is not a function of material 

density) and 𝛽 is a material parameter governing the linearity of the system. Eqn. 

(4.33) and Eqn. (4.34) are identical when 𝛽 = −1. The invariance between 𝜎ℎ and 𝐽 

for each of these formulations at high volumetric strains is perhaps intuitive if stress 

is contextualized as the free energy density of the elastic network. The free energy 

stored in the system increases proportionately to the stretch of the chains in each 

dimension (∝ 𝜆1𝜆2 = 𝐽), however the material density also decreases proportionately 

to volume (∝ 𝐽−1), such that these two effects cancel one another. Indeed, the 

analytical virial formulation of network stress predicts complete invariance of 𝜎ℎ with 

respect to 𝐽 such that: 

𝜎𝑣𝑖𝑟
ℎ = 𝜅0,         (4.35) 

for networks whose only pairwise interactions are linear and tensile, even at low 

volumetric strains (Appendix C.III). Therefore, as illustrated in Fig. 4.10.A, there is 

a notable discrepancy between 𝜎𝑣𝑖𝑟
ℎ  and 𝜎ℎ at low values of 𝐽 (e.g., approximately 40% 

difference when 𝐽 ≈ 3). Despite this, we find that numerically predicted values of 𝜎ℎ 
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are in good agreement with Eqn. (4.35) for all values of 𝐽. This is likely due to the 

omission of volume exclusion interactions in the numerical model. At low volumetric 

strains, the hydrostatic stress response of a true material most likely increases more 

rapidly with respect to 𝐽 due to the alleviation of repulsive forces between neighboring 

constituents as the material density declines. A reduction in repulsive forces 

corresponds to a reduction of pressure (not to be confused with “osmotic pressure”) at 

the continuum scale. In turn, this drop in pressure amounts to an increase in 

hydrostatic stress as entropic chain forces become the dominant phenomenon. Thus, 

the modified Ogden model likely remains an accurate phenomenological predictor of 

materials’ true stress responses and mismatch here derives from our deliberate choice 

to neglect volume exclusion interactions for simplification. Volume exclusion 

interactions may be easily included in future iterations of this model concerned with 

materials at higher densities. 

 

 
Figure 4.10. Validation of the model’s predicted swelling mechanics. (A) Osmotic pressure, 𝜋, 

is plotted as colored curves with respect to 𝐽 for 𝜒 = 0.5 (red), 𝜒 = −2 (grey), and 𝜒 = −8 (cyan). The 

hydrostatic component of network stress, 𝜎ℎ, is also depicted for the modified Ogden model (black 

curve) in which 𝜅 ∝ 𝐽−1 [182] and based on the virial formulation (dotted black curve). Where the 

colored curves and black curve intersect represents the equilibrium swell state per Flory-Rehner 

theory. (B) The continuous set of equilibrium swelling ratios from (A) are plotted with respect to 𝜒 ∈
[−8,0.5]. Discrete equilibrium swelling ratios (averaged over ten networks of linear springs with a 

functionality of 𝑓 = 8) are plotted as red exes for the set 𝜒 ∈ {−8, −4, −2, −1, −0.5,0,0.5}. S.E. of the mean 

constitutes less than 0.5% (or less than the marker size).  
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To assess the effect of osmotic pressure on gel swelling, the mixing parameter was 

numerically swept over the arbitrary set, 𝜒 ∈ {−8, −4, −2, −1, −0.5,0,0.5}, where 𝜒 < 0 

indicates that there is an effective repulsive potential between solute particles when 

placed in solvent [149]. Fig. 4.10.B depicts the swelling ratios 𝐽 with respect to the 

mixing parameter 𝜒, as predicted by Flory-Rehner theory (using the modified Ogden 

strain energy) and the discrete model (red scatterplot). The continuous curve in Fig. 

4.10.B may be graphically interpreted as the horizontal coordinates at which the 𝜒-

dependent osmotic pressure curves intersect the hydrostatic stress curve in Fig. 

4.10.A. Regardless of whether the virial formulation or modified Ogden model is used 

to predict 𝜎ℎ, the numerical model predicts equilibrium swelling characteristics in 

good agreement with Flory-Rehner theory, even at low volumetric strains. This is 

because relatively large discrepancies in the equilibrium stress value (i.e., vertical 

axis intersection of curves in Fig. 4.10.A) amount to relatively small changes in 𝐽 at 

low strains Given the accurate prediction of swelling mechanics demonstrated here, 

in future studies, this model feature may be utilized in conjunction with force-

sensitive bond dissociation to predict and avoid fabrication parameters that result in 

reverse gelation.  

 

4.4.4 Elastic response of a gel undergoing external load 

 

While this model predicts swelling ratios in agreement with the predictions of Flory-

Rehnner theory for networks of ideal chains, it is also important to validate its 

prediction of mechanical response against nonlinear experimental results. We here 

demonstrate that the model’s prediction of stress-stretch response (𝜎 − 𝜆) is in 

agreement with the experimental results presented by [183] for 20k tetra-PEG gels 

undergoing uniaxial extension (Fig. 4.11). 20k tetra-functional networks comprised 
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of Langevin chains were generated per the methods of Section 3, however equilibrium 

swelling was not conducted. Instead, after percolation (i.e., continuous network 

formation), the initial RVE domain size was adjusted until the initial mean attached 

chain length ⟨𝑟⟩ was within 5% of the initial chain length (𝑟0 = 7.1 𝑛𝑚) reported 

experimentally, thereby ensuring that 𝜆 is reported with respect to the same 

reference state for both numerical and experimental results. To match experimental 

loading conditions, incompressible uniaxial tension was applied through the 

deformation gradient 𝑭 = 𝑑𝑖𝑎𝑔(𝜆−1, 𝜆). To fit the model’s 2D predicted stress-stretch 

behavior against 3D experimental results, we invoke plane stress boundary 

conditions (i.e., stress-free boundaries on the faces whose norms are out-of-plane), for 

which a tertiary dimension (i.e., the RVE thickness, 휁) is needed to meaningfully 

compute the virial stress.  

 

 
Figure 4.11. Validation of the model’s predicted stress response. (A) The principal component 

of nominal network stress in the direction of uniaxial extension is plotted with respect to stretch for 

20k tetra-PEG gels. The experimental results (red dashes) of Sakai, et al. (2010), are plotted against 

model predictions for networks of Gaussian (dotted black) and Langevin (solid black) chains. The 

shaded regions for numerical results denote S.E. of the mean. The inset displays the force (pN) versus 

extension (nm) relationships for the Gaussian and Langevin chains (𝐿 = 88 𝑛𝑚) of the model, as well 

as the inversely derived experimental force-extension reported by Sakai, et al. (2010) (𝐿 = 76 𝑛𝑚). (B) 

Root mean square error (RMSE) is plotted with respect to stretch. (A-B) Share a horizontal axis. (C) 

Snapshots of a numerical network at stretches of 𝜆 = 1 and 𝜆 = 1.45 are depicted for reference. 
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As illustrated in Fig. 4.11.A, the results of our model agree reasonably well with the 

experimental results when said thickness is set to 휁 = 7.4 𝑛𝑚, which approximately 

coincides with the initial mean chain end-to-end length of ⟨𝑟⟩ ≈ 7.5 𝑛𝑚, suggesting 

that the numerical RVE represents one layer of crosslinks. To emphasize the 

importance of finite chain extensibility, Fig. 4.11 includes predicted results using 

both linear (Gaussian) and nonlinear (Langevin) chains. We see that for linear 

networks the model quickly deviates from the experimental stress-stretch behavior 

reported, whereas low error (RMSE<1.5 kPa) is achieved when Langevin chains are 

used in the regime 𝜆 ≤ 5 (Fig. 4.11.B). Error reaches up to RMSE≈ 6 kPa or ∼6-10% 

of the overall network stress for 𝜆 > 5. However, this is attributed to earlier 

divergence of the force-extension relation (occurring when 𝑟 → 𝐿) reported by [183], 

than that used in the model. The single chain force-extension relations of both works 

are displayed in the inset of Fig. 4.11.A. Note that for the number of macromers 

modeled (𝒩 = 625) the domain width became smaller than that of a single chain’s 

contour length above 𝜆 = 7, hence the upper limit of stretch reported. 

 

4.5. Damage and the role of heterogeneities 

 

Given the accurate predictions of network topology, swelling mechanics, and stress 

response for 10k and 20k tetra-PEG gels thus far, the remainder of this work is 

devoted to using the model to extrapolate predicted mechanical properties of gels 

across a range of functionalities and molecular weights (or chain contour lengths). It 

is well documented that the damage of polymeric materials, including gels is sensitive 

to defects and thus topology [33], [74], [184], [185]. Therefore, in Section 4.5.1, we 

examine the predicted mechanical properties and failure mechanics of four network 

types (representing two functionalities and two chain lengths). We then quantify 
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topological properties and visually inspect the network configurations to explain the 

observed trends. In Section 4.5.2, we conduct a larger parameter sweep and introduce 

a set of structure-property function plots that aid in understanding the role of 

topology on mechanical failure. 

 

4.5.1 Mechanical and topological properties of ab initio tetra-PEG gels  

 

Fig. 4.12 presents the predicted stress-stretch response and mechanical properties of 

tetra-PEG gels with the combinations of 𝑀𝑤 (or 𝐿) and 𝑓 indicated in Table 4.2. 

Damage was introduced using the deterministic failure criteria used by [121], 

whereby scission occurs for chains whose end-to-end lengths reach 95% of their 

contour lengths. Although enthalpic bond stretching becomes a significant effect 

influencing the failure of polymer chains at high strains [126], it demonstrably 

increases the stiffness of PEG chains in water by multiple orders of magnitude [162], 

[186]. As such, the exact stretch at which carbon-carbon binding energy is exceeded 

(i.e., rupture occurs) will reside near 𝜆 → √𝑁, hence the use of this coarse failure 

criteria for our purposes. As one would expect, from Fig. 4.12.A we see that 

increasing the contour lengths of chains resulted in softer networks (i.e., lower 

Young’s moduli, 𝐸, Fig. 4.12.B) that therefore reach larger equilibrium swelling 

ratios (𝐽𝑒𝑞, Fig. 4.12.C) and higher deformations prior to yield (Fig. 4.12.D) and 

failure (Fig. 4.12.E). Perhaps unexpectedly, these networks absorbed less energy 

prior to fully fracturing (i.e., exhibited lower toughness, 𝑈𝑡, taken as 𝑈𝑡 = ∫ 𝜎(휀)𝑑휀 in 

the limits 휀𝑒𝑞 to 휀𝑡) (Fig. 4.12.F). However, this is partially realized by the fact that 

longer chains store less mechanical energy at a given stretch, thus reducing the strain 

energy density of the overall network. Furthermore, here 휀 was measured from the 

swollen equilibrium state, as opposed to the dry state or ideal chain end-to-end length 
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(⟨𝑟⟩ = 𝑏√𝑁). Since the networks made from longer chains begin at a higher swelling 

ratios, their chains begin at higher effective stretches. Visually, this is illustrated by 

both the inset depictions of the initial networks in Fig. 4.12.A, which are all depicted 

at the same length scale, as well as the close-up snapshots of these same networks 

from Fig. 4.12.G-J, whose scale bars all represent 50 nm. Despite significant 

differences in initial chains stretch in the equilibrated swollen states, the lower limit 

used to compute 𝑈𝑡 was always taken as 휀𝑒𝑞 = √𝐽𝑠𝑤 − 1. This lower limit choice also 

explains why the networks with chains that are roughly four times longer (177 nm 

versus 44 nm) are not four times as extensible (Fig. 4.12.E). 

 

Also as expected, increasing the functionality of networks with the same length 

chains stiffened them (i.e., increased 𝐸), thereby decreasing 𝐽𝑒𝑞 and increasing yield 

stresses (𝜎𝑦) (Fig. 4.12.A). This is because introducing a higher crosslink density to 

the network ensures that more chains may effectively carry load in parallel. However, 

less intuitively, as seen from Fig. 4.12.D-F, increasing functionality also resulted in 

a decrease of the strain at peak force (휀𝑦, taken as the average strain at which stress 

peaks), fracture strain (휀𝑡), and therefore toughness (𝑈𝑡) of the networks, indicating 

more brittle behavior. To explain this behavior from a micromechanical perspective, 

we must understand how the chains in these respective networks are oriented and 

stretched prior to and during deformation. 
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Figure 4.12. Mechanical predictions of gels with different functionalities and chain lengths. 

(A) The ensemble averaged principal component of Cauchy network stress in the direction of uniaxial 

extension from ten simulations (𝑛 = 10) is plotted with respect to stretch measured from the 

equilibrated swollen state. This relation is shown for four types of tetra-PEG gels with varying chain 

contour lengths 𝐿 and functionalities 𝑓 as indicated by the legend. The inset snapshots depict sample 

networks for each combination of 𝐿 and 𝑓, all at the same length scale to emphasize the different 

degrees of initial chain stretch, which results from different dry macromer densities (based on 

functionality) and initial swelling ratios. The average (B) tangent modulus ⟨𝐸⟩, (C) equilibrium swell 

ratio ⟨𝐽𝑒𝑞⟩, (D) strain at peak force ⟨휀𝑦⟩, (E) failure strain ⟨휀𝑡⟩, and (F) toughness ⟨𝑈𝑡⟩ are displayed for 

each chain contour length and functionality. Colors correspond to the legend from (A).  (G-J) Close-up 

views of the snapshots from (A) are depicted for the networks with (G) 𝐿 = 44 𝑛𝑚 and 𝑓 = 4; (H) 𝐿 =
44 𝑛𝑚 and 𝑓 = 8; (I) 𝐿 = 177 𝑛𝑚 and 𝑓 = 4; and (J) 𝐿 = 177 𝑛𝑚 and 𝑓 = 8. All shaded regions or error 

bars represent S.E. of the mean. All scale bars represent 50 nm. Heat maps represent osmotic pressure. 
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Table 4.2. Macromer inputs for the networks of Fig. 4.12. 

Network No. 
Molecular Weight, 𝑀𝑤 

(kDa) 
Chain Contour Length5, 𝐿 

(nm) 
Functionality, 𝑓 

1 (Blue) 10 44 4 

2 (Teal) 20 44 8 

3 (Maroon) 40 177 4 

4 (Red) 80 177 8 

 

Figs. 4.13.A and 4.13.C depict the joint probability distribution functions of the 

normalized chain end-to-end lengths 𝑟∗ = 𝑟/𝐿 for 10k tetra- and octa-PEG gels, 

respectively. Examining Fig. 4.13.A-E, it is immediately apparent that a greater 

fraction of the chains in the octa-PEG network exists at higher values of 𝑟∗, even prior 

to deformation. Plotting the average value of 𝑟∗ in the principal direction of extension, 

⟨𝑟2
∗⟩, against 𝜆 for each network (Fig. 4.13.F) confirms that the mean end-to-end 

length of chains in the octa-PEG gel is almost universally higher in the stretch regime 

1 < 𝜆 < 1.8 than those in the tetra-PEG gel. Indeed, ⟨𝑟2
∗⟩ is only lower for the octa-

PEG network in this range of 𝜆 after the gel fully fractures (𝜆 > 1.83). Visually 

investigating the networks at their initial state immediately elucidates an obvious 

cause of this. Fig. 4.14.A and 4.14.B, illustrates samples of simulated 10k tetra-PEG 

and 20k octa-PEG gels, respectively, at various uniaxial stretches up to full fracture.  

 
5 Note that while 𝑀𝑤 serves as the primary control variable influencing chain length in both 

experiments and this numerical framework, we are here interested in isolating the effects of chain 

length on mechanical response. As such, in this section we investigate four values of 𝑀𝑤 that result in 

just two values of 𝐿 for the given functionalities.  
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Figure 4.13. Chain distribution functions of gels with 𝑳 = 𝟒𝟒 𝒏𝒎 and different 

functionalities. (A) The joint PDF of 𝑟∗ is shown for the ensemble of ten (𝑛 = 10) 10k tetra-PEG gels 

at 𝜆 = 1 (left), the measured yield stretch 𝜆 = 2.00 (center), and the measured failure stretch 𝜆 = 2.16 

(right). (B) Snapshots of a sample 10k tetra-PEG network at the stretches from (A) are depicted. The 

network depicted did not reach absolute failure by the average failure stretch of 𝜆 = 2.16.  (C) The joint 

PDF of 𝑟∗ is shown for the ensemble of ten 20k octa-PEG gels at 𝜆 = 1 (left), the measured yield stretch 

𝜆 = 1.75 (center), and the measured failure stretch 𝜆 = 1.83 (right). (D) Snapshots of a sample 20k octa-

PEG network at the stretches from (C) are depicted. The network depicted did not reach absolute 

failure by the average failure stretch of 𝜆 = 1.83.  (A-D) The extensile direction, 𝑒2 is oriented 

horizontally. Scale bars in (B) and (D) represent 𝐿 = 44 𝑛𝑚. Dashed black circles in (A) and (C) indicate 

the chain contour length, while dashed red circles represent the deterministic scission length for 

chains. (E) The radial PDFs of 𝑟∗ are shown for the 10k tetra- and 20k octa-PEG gels as grey and red 

histograms, respectively. For direct comparison, these histograms are depicted at 𝜆 = 0 (left), 𝜆 = 1.5 

(center), and 𝜆 = 2.0. Note that the chains in these two networks have the same contour length. (F) 

The average component of normalized chain end-to-end length in the principal direction of extension 

is plotted with respect to stretch. End-to-end lengths are normalized as 𝑟∗ = 𝑟/𝐿 such that 𝑟∗ ≥ 0.95 

prompts chain scission. 

 

Each network was generated from the same number of macromers (𝒩 = 400), and we 

know from Fig. 4.12.C that the 10k tetra-PEG network has swelled more from its 

initial dry state to the references state shown. Despite this, the scale bar (which 

represents 𝐿) is 38% larger for the 10k tetra-PEG gel (Fig. 4.14.A) than it is for the 

20k octa-PEG gel (Fig. 4.14.B). This is because the 20k octa-PEG gel occupies more 

space per macromer in its dry state than the 10k tetra-PEG gel, simply because it 

has a greater number of chains, a notion made visually apparent by the macromer 
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illustrations in Fig. 4.14. Were the topological features of these networks (such as 

coordination number and variance of the end-to-end length) equal, then this 

difference in swelled dimensions would immediately imply that the chains in the 20k 

octa-PEG gel begin at a 38% greater stretch prior to deformation, closely reflecting 

the average 39.8% greater extensibility of the 10k tetra-PEG gels.  

 

 
Figure 4.14. Fracture of gels with of gels with 𝑳 = 𝟒𝟒 𝒏𝒎 and different functionalities. (A) A 

schematic of a tetra-functional macromer is depicted, alongside snapshots of a simulated 10k tetra-

PEG gel as it undergoes uniaxial extension. (B) A schematic of an octa-functional macromer is 

depicted, alongside snapshots of a simulated 20k octa-PEG gel as it undergoes uniaxial extension. The 

macromer schematics are depicted at the same scale, whereas the sizes of the gel snapshots are 

indicated by their respective scale bars, each representing 𝐿. Red crosses in the gel snapshots demark 

which chains rupture before the next displayed snapshot. The rightmost snapshots depict the osmotic 

pressure landscapes of the domains at initial fracture.  

 

However, the topological properties in these two gels are not the same, with the 20k 

octa-PEG gel appearing more homogenized (Fig. 4.15A-B). This is reflected in the 

radial distribution functions (RDFs) at 𝜆 = 1 displayed in Fig. 4.15.C, which reveal 

that the 10k tetra-PEG gel displays just one correlation length scale around 𝑑∗ = 0.15 

followed by an inversely correlated region from 𝑑∗ ≈ 0.3 to 𝑑∗ ≈ 1 (i.e., 𝑔(0.3 ≤ 𝑑∗ ≤

1) < 1). The single correlation peak indicates that crosslinks in the lower 
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functionality network are relatively clustered in regions wherein the most common 

pairwise separation is approximately 15% of 𝐿. The inversely correlated regime 

indicates that clusters are separated by vacant regions with a characteristic size on 

the order of 𝐿. This is visually supported by the network depicted in Fig. 4.15.A. In 

contrast, the RDF of the 20k octa-PEG gel displays two correlation length scales (i.e., 

peaks) around 𝑑∗ = 0.29 and 0.65, indicative of more ordered crosslink distribution 

below 𝑑∗ = 1 and greater homogeneity of the higher functionality gel. One clear, 

inversely correlated region exists for the 10k tetra-PEG gel in the approximate range 

0.4 < 𝑑∗ < 0.6, indicating a smaller characteristic size of vacant regions, which is 

visually illustrated by Fig. 4.15.B. While one might assume that this results in 

greater resistance to damage, it merely promotes the nucleation of more numerous, 

but smaller voids as bond scissions begin. This is somewhat reflected by the red 

crosses in the network snapshots Fig. 4.14, which demark the bonds that rupture in 

each subsequent frame. We see that the first discrete rupture events occur in wholly 

separate regions of the 20k octa-PEG gel (see 𝜆 = 1.62 or 1.67), whereas the first 

rupture events of the 10k tetra-PEG gel (see 𝜆 = 1.88) are localized to one region that 

already exhibited low chain density.  

 

To gain a quantitative understanding of damage onset, we utilize image analysis to 

measure and plot the RDF of void centroids, as well as the average number of voids 

and void area with respect to stretch for the gels with 𝐿 = 44 𝑛𝑚 (Fig. 4.16). To 

remove noise and filter out pores occurring in highly clustered regions, we define 

“voids” simply as pores in the network whose areal size is greater than 𝐴𝑣 = 0.25𝜋𝜌2 

where 𝜌 = 0.15 is the shortest correlation peak length scale measured from Fig. 

4.15.C. The RDFs of Fig. 4.16.A reveal that void positions are not correlated in either 

network above a lengths scale of 𝑑∗ ∼ 0.5. However, the voids in the tetra-functional 
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network are demonstrably more clustered with some small correlation existing 

around 𝑑∗ ∼ 0.3 and a non-negligible population of voids within less than  𝑑∗ ∼ 0.2 of 

one another. This supports the greater homogeneity of the octa-functional gels and is 

made visually clear by the black and white network depictions in Fig. 4.16.B both 

without (left) and with (right) filtration of small pores. Examining the statistics of 

voids during deformation, Fig. 4.16.C-D indicate that the average number of voids 

per crosslink ⟨𝑁𝑣
∗⟩ and average void area ⟨𝐴𝑣

∗ ⟩ (normalized as 𝐴𝑣
∗ = 𝐴𝑣/0.25𝜋𝐿2, where 

0.25𝜋𝐿2 is the maximum envelope of a single macromer) are both consistently higher 

for the tetra-PEG gel than the octa-PEG gel, which is perhaps trivial. Of note though 

is that the first observed instances of rupture events (denoted by the vertical dotted 

lines in Fig. 4.16.C-D) are closely followed by steep declines and spikes in ⟨𝑁𝑣
∗⟩ and 

⟨𝐴𝑣
∗ ⟩, respectively, quantifying the rapid void coalescence illustrated through Fig. 

4.14. Note that subsequent drops in ⟨𝐴𝑣
∗ ⟩ are due to elastic energy in the network 

causing local retraction around highly damaged regions, thus restoring a smaller 

average pore size. However, it must be noted that without inclusion of a fluid 

transport timescale, the rate of this elastic retraction is likely misrepresented by this 

iteration of the model, as reflected by the high disparity in osmotic pore pressure 

between the fractured and intact network domains (see the rightmost panels of Fig. 

4.14). Poroelastically slowed retraction around damage zones may mitigate the onset 

of stress risers that result from heightened strain of one or a few intact chains, thus 

perhaps also delaying the rate of crack propagation in true gels. In future iterations 

of this approach, we will incorporate poroelasticity via a fluid transport timescale and 

investigate this likelihood. Nonetheless, this iteration of the model is still revealing 

regarding damage initiation as it relates to the ab initio inputs.    
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Figure 4.15. RDFs of gel’s crosslinks with 𝑳 = 𝟒𝟒 𝒏𝒎 and different functionalities. (A-B) 

Samples of a (A) 10k tetra-PEG and (B) 20k octa-PEG networks are shown at 𝜆 = 1 for visual reference. 

Scale bars represent 𝐿 = 44 𝑛𝑚. (C) The RDFs of ensembles of ten (𝑛 = 10) 10k tetra-PEG (black) and 

ten 20k octa-PEG (red) gels’ crosslinks are displayed. The distance between crosslinks is normalized 

as 𝑑∗ = 𝑑/𝐿. Dotted lines denote correlation length scales or peaks in 𝑔(𝑟).  

 

 

No statistically significant difference was measured between the average rate at 

which voids initiate (𝜕⟨𝑁𝑣
∗⟩/𝜕𝜆), nor the rate at which their average area increases 

(𝜕⟨𝐴𝑣
∗ ⟩/𝜕𝜆) prior to damage onset (𝜆 < 1.5). Nevertheless, it is clear from this analysis 

that the higher functionality leads to a more homogenous domain with fewer and 

smaller voids. Thus, while the lower failure strains of higher functionality networks 

are attributed primarily to the higher initial stretch of the chains therein, it is also 

likely that brittle behavior is exacerbated by a higher degree of load sharing and 

homogeneity between chains as they approach their failure criteria (here, 𝑟∗ → 0.95, 

but governed by bond dissociation energy in true polymer chains [65]) This 

culminates in greater homogeneity of the subsequent failure domains and rapid void 

coalescence. This analysis holds true in comparing the 40k tetra-PEG gels to 80k octa-

PEG gels (both of which have 𝐿 = 177 nm), as well (see Appendix D for extended data). 
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Figure 4.16. Void characteristics of gels with 𝑳 = 𝟒𝟒 𝒏𝒎 and different functionalities. (A) The 

RDFs of ensembles of ten (𝑛 = 10) 10k tetra-PEG (black) and ten 20k octa-PEG (red) gels’ void 

centroids are displayed at 𝜆 = 1. The distance between void centroids is normalized as 𝑑𝑣
∗ = 𝑑𝑣/𝐿. (B)  

Black-white snapshots of sample networks are displayed. The left column displays the black-white 

network configurations of a 10k tetra-PEG gel (top) and 20k octa-PEG gel (bottom) prior to 

deformation. The right column displays the same respective networks with pores below the prescribed 

threshold filtered out (to reduce noise). (C) The average number of voids per macromer is plotted with 

respect to stretch. (D) The average void area (normalized as 𝐴𝑣
∗ = 𝐴𝑣/𝜋𝐿2) is plotted with respect to 

stretch. (C-D) Shaded regions represent S.E. of the mean. The vertical dotted lines denote the 

approximate stretches at which bond rupture events were first detected through Fig. 5.14 (𝜆 ≈ 1.85 – 

black, 𝜆 ≈ 1.6 – red). 

 

4.5.2 Predictive mapping as functions of 𝑴𝒘 and 𝒇 

 

Having postulated micromechanical causes of observed trends in emergent 

properties, we here conduct a broader parameter sweep to predict high order 

mechanical trends in PEG-based gels. Fig. 4.17 plots mean values of Young’s 
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modulus (𝐸), yield stress (𝜎𝑦), swell ratio at initial equilibrium (𝐽), yield strain (휀𝑦), 

failure strain (휀𝑡), and toughness (𝑈𝑡) with respect to 𝑓 ∈ [3,10], for five different 

molecular weights (𝑀𝑤 ∈ {10,20,30,40,50} kDa). While PEG-based copolymers with 

𝑓 ∈ {2,4,8} are perhaps most typical, we include uncommon functionalities to 

highlight the mechanical trends and with the recognition that intermediate effective 

functionalities are attainable contingent on network composition [187]. We exclude 

systems in which 𝑓 = 2 as these are below the percolation threshold. Note that we no 

longer set 𝑀𝑤 to fix the chain length based on functionality, as we are now interested 

in examining the effects of typical control parameters used by experimentalists. 

 

The mechanical trends are in general agreement with existing literature [119], [188], 

[189]. Greater 𝑀𝑤 typically decreases the elastic modulus (Fig. 4.17.A) and yield 

stress (Fig. 4.17.B) of the networks due to the increased length and decreased 

stiffness of the chains (thereby increasing the equilibrium swelling ratio – Fig. 

4.17.C). In contrast, greater 𝑀𝑤 increases the yield (Fig. 4.17.D) and failure strains 

(Fig. 4.17.E) of networks due to the increased extensibility of the underlying chains. 

It appears that the decreases in moduli robustly outpace the increases in 

extensibilities and result in an overall decrease in dissipated energy upon failure (i.e., 

toughness) with respect to 𝑀𝑤 (Fig. 4.17.F). Regarding network connectivity, greater 

𝑓 generally increases modulus (Fig. 4.17.A) and yield stress (Fig. 4.17.B) thereby 

decreasing equilibrium swelling ratio (Fig. 4.17.C), due to the increased stiffness 

associated with higher chain concentrations. Given increased network homogeneity 

and initial chain stretch at (as discussed in Section 4.5.1), greater 𝑓 also generally 

decreases the yield and failure strains (Fig. 4.17.C-D). Interestingly, the toughness 

(Fig. 4.17.F) appears to either decrease or increase with respect to 𝑓 depending on 

𝑀𝑤. Specifically, the toughness of networks generated using 𝑀𝑤 = 10 𝑘𝐷𝑎 increases 
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as 𝑓 decreases, whereas toughness appears positively correlated with 𝑓 for all other 

values of 𝑀𝑤 investigated. Notably, the toughness of gels with intermediate 

functionalities (5 ≤ 𝑓 ≤ 8) and low molecular weights (𝑀𝑤 ≤ 30 𝑘𝐷𝑎) does not vary 

significantly with respect to 𝑓 given the number of samples (𝑛 = 10) observed. Despite 

the significance of functionality’s impact on mechanics, existing experimental 

literature examining its specific effects on star-polymer-initiated networks’ 

mechanical properties was not identified in the context of PEG gels (unless significant 

compositional changes were involved as in the studies of Schultz, et al. 2008 [187]). 

Nevertheless, further investigation is justified, and functionality will be central to 

the scope of forthcoming studies in which we probe the mechanical properties of both 

tetra and octa-functional macromers comprising a covalently adaptable gel [13]. 

 

While the overall trends observed here are largely in agreement with those observed 

by experimentalists, the limitations of extrapolated predictions are perhaps 

highlighted by the outlier case in which 𝑀𝑤 = 10 𝑘𝐷𝑎 and 𝑓 = 10. A precipitous drop 

in modulus, yield stress, and therefore toughness is observed for networks with these 

inputs. We see from Eqn. (4.15) that the solute concentration (with respect to radial 

distance from a crosslink) scales proportionately to the functionality and inversely 

with the mesh size in the model (𝜙(𝑟) ∼ 𝑓/𝜉̅). As such, through Eqn. (4.18), high 

effective osmotic repulsive forces occur between macromers with these properties 

despite their short chain lengths (of 35 𝑛𝑚). Hence, during gelation, a high fraction 

of defects emerges as – at the as-prepared concentration – each macromer is more 

likely to double or triple link to a few nearest neighbors rather than bond equi-

azimuthally with its surroundings. This yields gel topologies with high defect 

fractions as depicted in the inset of Fig. 4.17.C. These defects soften the networks’ 

mechanical responses [137]. In truth, adequate mixing during gelation is generally 
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facilitated in experiments by Brownian diffusion and stirring intervention [158], 

neither of which were modeled here. Therefore, future application of this method for 

the predictive design of experimental systems should commence with multiple model 

calibration experiments, preferably at the extreme ends of the relevant parameter 

space.  

 

 
Figure 4.17. Mechanical predictions for extended parameter sweep. Mean (A) Young’s 

modulus, (B) yield stress, (C) equilibrium swell ratio, (D) yield strain, (E) failure strain, and (F) 

toughness are plotted with respect to functionality for 𝑀𝑤 = 10 𝑘𝐷𝑎 (blue circles), 𝑀𝑤 = 20 𝑘𝐷𝑎 (teal 

triangles), 𝑀𝑤 = 30 𝑘𝐷𝑎 (grey squares), 𝑀𝑤 = 40 𝑘𝐷𝑎 (sideways maroon triangles), and 𝑀𝑤 = 50 𝑘𝐷𝑎 

(red diamonds). Ten (𝑛 = 10) samples of each network type were modeled. Error bars represent S.E. of 

the mean. The inset of (C) displays the anomalous topology of a gel with 𝑀𝑤 = 10 𝑘𝐷𝑎 and 𝑓 = 10, as 

discussed in the main body text. 

 

4.6. Concluding remarks 

 

In this work we have introduced a theoretical and computational framework for 

modeling the spatial distribution of macromers in sol-gels, based on the nm-scale 
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solute-concentration landscape and its effect on the local osmotic pressure gradient 

as dictated by Flory-Huggins mixing theory. The method constitutes a more 

physically motivated approach than the phenomenological, effective pairwise 

potentials often employed at the network scale to capture inter-polymer repulsion 

and depletion interactions. While the methods introduced here may be incorporated 

into 3D models, for simplicity, we initially incorporated them into a 2D, discrete 

numerical framework adopted from our previous work [3]. Indeed, both topological 

and mechanical properties may be affected by network dimensionality. For example, 

both network connectivity and degree of non-affine deformation tend to be larger in 

3D networks [68], and so in future efforts we will apply these methods to 3D domains. 

Nevertheless, we here demonstrated this initial framework’s prediction of mixing and 

phase separation as a function of the Flory mixing parameter, 𝜒, thereby exhibiting 

its potential for use modeling polymer suspensions. As the primary focus of this work, 

we then demonstrated this framework’s accurate ab initio prediction of the 

topological and mechanical properties of tetra-PEG gels as functions of their as-

prepared polymer concentration, molecular weight, and functionality. Finally, we 

utilized the framework to extrapolate predicted mechanical properties of gels, further 

exploring the effects of molecular weight and functionality.  

 

We found that increasing molecular weight generally decreased the moduli, yield 

stresses and toughness of gels. In contrast, it reliably increased their equilibrium 

swelling ratio, and their extensibility with respect to the swollen reference state. As 

expected, increasing the functionality of crosslinks also increased stiffness of the 

emergent gels; however, less intuitively increased functionality (given the same chain 

length and as-prepared concentration) decreased mechanical toughness and failure 

strains (as measured from the swollen state). We found that this was due primarily 
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to higher initial stretch of the polymer chains for gels with higher chain 

concentration, emphasizing that the effects of initial swelling must be accounted for 

when designing the mechanical properties of gels. This greater initial swelling 

imposes residual stresses that result directly from increased functionality. This 

finding is consistent with that of [74] who reported that increasing crosslink density 

in mesoscopically modeled polymer networks reduced overall network extensibility 

due to higher pre-stressing of the chains. However, the approach introduced here is 

novel in its ability to explain such phenomena as governed by the ab initio sample 

preparation conditions that experimentalist can control. Nonetheless, there are two 

major advantages introduced through mesoscopic frameworks such as these. Firstly, 

they allow for the direct, detailed observation of local topological traits in a way that 

is unattainable through existing experimental characterization techniques or 

continuum models. Secondly, they do so while mitigating much of the computational 

cost associated with modeling every polymer chain explicitly. Therefore, these 

methods are inherently more scalable than conventional coarse-grained MD models. 

Moving forward, the ab initio approach of this model may be used both to inversely 

investigate the micromechanical origins of globally emergent mechanical properties 

(as was done here) or supplement experimental studies by facilitating predictive 

design of gels with desired mechanical traits, based on controllable inputs. 

Nonetheless, this iteration of the model may be improved upon in several ways.  

 

Features such as polydispersity, variability in the local mixing parameter, rate-

dependent effects of solvent transport, and inclusion of reversible bonds are all 

compatible with this model and may be incorporated in future iterations. For 

example, the current model assumes a constant Flory parameter despite the 

demonstrable effects of both temperature and solute concentration on this statistical 
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value [138], [139], [152], [173], [174], [190], [191]. While treating 𝜒 as a constant did 

not affect agreement between the model’s predicted mechanical properties and those 

of experimental results for gels in theta solvent, solute-solvent interactions may play 

a more potent effect on the damage mechanics of gels in poor solvent or containing 

local pockets of effectively poor solvent quality. In such systems, we hypothesize that 

clustering of polymer chains may reduce their conformational degrees of freedom, 

thereby increasing their stored free energy and reducing the effective crosslink 

separation or network stretch at which chains begin to rupture. In gels with dynamic 

bonds, poor solvent may also increase the effective bond dissociation rate per [65]. In 

future work, we may incorporate these physics via another layer of the Eulerian mesh 

that tracks 𝜒 as a function of solute concentration. However, this addition is 

contingent on a priori knowledge of the 𝜒 − 𝜙 relationship, which likely requires 

further molecular-scale investigation.  

 

Another pertinent effect to consider is dissipation due to entanglement. 

Entanglements are ubiquitously hypothesized to play a part in the viscoelastic 

response of gels, particularly gels with high polydispersity (e.g., poly(acrylamide)) or 

chain length [192]. Researchers such as [193] have previously introduced coarse-

grained models in which entanglements are captured as slip links through which the 

passage of polymer depends on the entropic tension and density gradients of the 

chains on either side. Notably, this introduces sliding friction and dissipation that 

likely depend on the modes of entanglement. Yet, it remains unclear how to quantify 

the types and relative fractions of said modes experimentally. Therefore – inspired 

by [193] – in future work we will incorporate slip links into an iteration of this 

framework to instead model slide-ring gels whose crosslink characteristics (e.g., 

density and distribution) may be tuned and characterized empirically [194], or 
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inferred via continuum approaches [195]. More immediately, this iteration of the 

model will be improved by accounting for rate-dependent poroelastic effects and 

dynamic bonds. The former will be introduced and mediated by mesh-size-dependent 

transport of solvent through Darcy’s law and incorporation of viscous drag [196]–

[198]. This will allow for investigation of dynamic loading rates and time-dependent 

swelling inhomogeneity. Rate-dependence is also highly influenced by inclusion of 

reversible bonds, which imbue networks with viscous response and the ability to 

relax. In forthcoming work we incorporate reversible, telechelic bonds to investigate 

and predictively tune the properties of covalently adaptable networks that have 

potential applications as extracellular scaffolds in osteochondral tissue engineering 

[13], [199], [200]. For gels containing such reversible bonds, any a priori knowledge 

about initial topology quickly loses significance as the networks reconfigure, 

particularly during applied loading. Therefore, methods that relate local crosslink 

distribution to underlying first-order physics are of great importance [201], [202].  

  



114 

 

 

CHAPTER V 

 

 

TREADMILLING AND PROTRUSION GROWTH IN FIRE ANT RAFTS 

 

Moving away from purely numerical studies limited to thermally driven systems, this 

chapter is purposed with introducing the reader to an active system in which the 

constituents store chemical energy and convert it to mechanical work. The system in 

question is the rafts formed by the workers of red imported fire ants (Solenopsis 

invicta). Here we illustrate how this active system comprised entirely of ants morphs 

ceaselessly over hour timescales throught the process of treadmilling. We then 

illustrate and quantify how treadmilling enable the ants to form long, tether-like 

protrusions that they sometimes use as land bridges for the escape of flooded 

environments. Finally, we adapt a statistical model of self-propelled particles in 

confinement, along with a physically motivated edge growth rule to explain factors 

that lead to the runaway growth of the observed protrusions. However, in doing so, 

we emphasize the inherent need for discrete approaches (e.g., the network model 

developed in Chapter I) when exporing the emergent behaviors in systems driven by 

activity and subject to discrete size effects such as these ant rafts. 

 

5.1 Introduction 

 

Collective emergent behavior is a remarkable and omnipresent feature of living 

systems that often results in functions like motility of aggregations, self-healing of 

tissues, and morphing of swarms [4], [5], [203]. Cooperatively behaving living systems 

are of interest to a wide variety of researchers ranging from biologists [204] and 

physicists [205] to engineers [206] and roboticists [17], because they elucidate the 

local-to-global relationship in complex ecologies or physical systems, and may inspire 
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a broad class of functional metamaterials that adapt their mechanical properties or 

autonomously self-assemble. One category of organisms, favorably studied for their 

macroscopic size and ease of observation, is insect aggregations [207], [208], including 

those of the red imported fire ant (Solenopsis invicta). Fire ants condense into 

buoyant rafts comprised of worker ant bodies when their habitats are flooded. These 

cohesive swarms are crosslinked by reversible ant-to-ant bonds [209]–[211] which 

may dissociate from highly stressed states and re-associate into lower energy 

configurations without sustaining damage. In the last 10 years, researchers have 

begun to investigate the mechanical properties of these aggregated swarms, which 

demonstrate nonlinear viscoelastic responses due to the reversibility of their inter-

ant bonds [208], [212], [213]. However, another remarkable feature of fire ants that 

contributes to their complex response is activity [214], [215].  

 

 
Figure 5.1. Networked fire ant rafts form dynamic structures. (A) The floating, structural 

network of ant rafts is crosslinked by ant-to-ant bonds. The scale bar represents 1 ℓ or one average ant 

body length. (B) Fire ants in nature form rafts that, under various boundary conditions, create tether-

like protrusions and bridges. (C-D) A top view of an experimental raft anchored to an acrylic rod is 

depicted at the (C) start and (D) end of a roughly 60 𝑚𝑖𝑛 duration to illustrate the cyclical protrusion 

growth that occurs over hour timescales. Scale bars represent 20 ℓ. 
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Individual ants convert chemical energy into mechanical work, including both 

locomotion and – as with many active systems [216], [217] – active contraction. This 

activity endows unperturbed fire ants with the ability to dynamically change their 

raft shapes [218] and even form complex, 3D structures such as towers nucleated 

about substrates [219]. While the behavior and flow of 3D ant towers has been 

examined [42], [219], questions remain regarding the long-term dynamics of roughly 

2D rafts. Mlot, et al. (2011) reported that upon being placed into the water as roughly 

3D spheroids, ant rafts spread out rapidly. Confirming these observations and those 

of Adams, et al. (2011) we see that ant rafts consists of a bounded network of 

interconnected structural ants that floats on the water (Fig. 5.1.A). On top of this 

network, a dispersed state of free ants walks freely. Mlot, et al. studied initial raft 

expansion over short timescales (up to 200 𝑠) experimentally [210], and intermediate 

timescales (up to 103 𝑠) numerically [218] and reported that free ants walk on the 

surface of the structural raft until they encounter the edge at which point they either 

bank off said edge, pause, or deposit into the structural layer. This deposition of free 

ants into the structural network drives outwards raft expansion [210], [218]. 

However, here we observe over longer timescales (> 103 𝑠) that ant rafts under 

specific boundary conditions undergo cyclical and sustained dynamic shape changes 

including the formation of 2D tether-like instabilities that protrude from the rafts’ 

edges (Fig. 5.1.B). These protrusions have, to our knowledge, neither been 

documented nor explained in existing literature. Edge deposition, alone, cannot 

explain the initiation, growth, and complete reclamation of protrusions observed 

(Fig. 5.1.C-D). Without any cyclic mechanism(s) of turnover or dynamic properties in 

the structural network itself, one would expect the shape of the raft to become static 

once the population of free ants is exhausted. That this is not the case implies either 
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the population of free ants is replenished, the structural network morphs, or some 

combination of both. 

 

Indeed, here we report that the structural networks of ant rafts anchored to vertical 

rods contract in a process that counteracts edge deposition-driven expansion. 

Furthermore, this contraction occurs simultaneously with the exiting of some ants 

from the structural layer, which replenishes the population of free ants. These 

competing mechanisms balance rafts into a pseudo-steady state of torus-like 

treadmilling that vaguely resembles the phenomena observed in cytoskeletal systems 

of actin filaments [220]. As in the case of cytoskeletal systems [221], this treadmilling 

leads to the cyclical turnover of constituents that facilitates sustained shape change, 

which in ant rafts includes cycles of unstable protrusion growth. In the remainder of 

this work, we detail our experimental and data-processing methods. We then report 

on the dynamic properties of both free and structural ants, including the rates of 

transition between these respective states. Finally, we examine the local properties 

of self-propelled free ants on protrusions to reveal that directed motion occurs in these 

strongly confined regions. Employing a model for strongly confined self-propelled 

particles (SPPs), we interpret that both density gradients along the rafts’ edges and 

confinement-induced directed motion of ants on protrusions likely contribute to the 

runaway growth of instabilities. 

 

5.2 Methods 

5.2.1 Experimental design 

 

To conduct experiments, we collected anywhere from 3 to 10 𝑔 of worker ants (or 

roughly 3,000 to 10,000 ants) and placed them into a container of water where they 
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enveloped and nucleated to a stationary acrylic rod protruding vertically from the 

waterline. Both ∅6 𝑚𝑚 and  ∅16 𝑚𝑚 rods were tested with and without talcum 

powder coating to prohibit climbing. The degree to which rods protruded from the 

water’s surface was varied from < 1 to 15 𝑐𝑚. Treadmilling and instabilities were 

observed under all boundary conditions over the span of several hours until many of 

the free ants became inactive and clustered near the rod. In the scope of this work, 

sampling was performed sufficiently far from the rod so that inactive free ants were 

not characterized since they did not contribute to raft dynamics. Additionally, 

sampling was only conducted while enough ants remained active to sustain relatively 

steady raft dynamics. To mitigate potential temperature effects on activity, air 

temperature in the room was maintained between 20° and 24° C. The water 

temperature was monitored and remained between 17.9° and 19.0° C. Cameras were 

positioned above the rafts to capture footage. Time-lapse footage, captured 

throughout the entirety of select experiments, was used to characterize structural 

ants and raft dynamics. Real-time footage, captured every 10 minutes throughout the 

duration of the experiments (to ensure representative temporal sampling), was used 

to characterize free ants. Reference length scales were placed horizontally in the 

frame, at the water line. Footage was imported into and processed using ImageJ 

[222]–[224]. Data post-processing was achieved using MATLAB 2019b [225].  

 

5.2.2 Planar density 

 

Planar density of the structural ants comprising the floating layer of the raft (𝜌𝑟) was 

estimated by counting the number of structural ants residing within regions of known 

area. Planar density of free ants that walk on top of the raft was difficult to measure 

due to heterogeneity and clustering. The mean packing fraction of free ants (�̅�) was 
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estimated according to �̅� = (𝑁𝑡𝑜𝑡 − 𝐴𝜌𝑟)/𝐴𝜌𝑟, where 𝑁𝑡𝑜𝑡 is the total number of ants, 

𝐴 is the total raft area, and 𝐴𝜌𝑟 is the number of structural ants given that 𝜌𝑟 is 

conserved (Fig. D.1). �̅� varied greatly due to the accumulation of inactive free ants 

near the rod at long timescales. However, it is freely active ants which contribute to 

raft dynamics. Therefore, the local packing fraction, 𝜙, was also estimated by 

manually counting the number free ants in images of regions far from the rods, with 

sufficient visual contrast. Free ants were distinguished from structural ants by 

toggling between these images and their adjacent frames to identify which ants were 

active. 

 

5.2.3 Free ant trajectories 

 

Free ants were image-tracked using ImageJ’s manual image tracking plugin. To 

prevent selection bias, footage was partitioned into regions of interest wherein the 

petiole of every free ant that entered the region was tracked frame-to-frame. Free ant 

position data, 𝒙𝑖(𝑡), were used to compute velocities (𝒗), mean speed (𝑣0) (Fig. D.2), 

mean square displacement (⟨𝑥2⟩) (Fig. D.3.E-F), and the local normalized order 

parameter (|𝜑|) (Fig. 5.2.F) according to: 

𝒗𝑖 = [𝒙𝑖(𝑡 + 𝛥𝑡) − 𝒙𝑖(𝑡)]/𝛥𝑡,      (5.1) 

𝑣0 = ⟨|𝒗𝑖|⟩𝑁,         (5.2) 

⟨𝑥2⟩ = ⟨|𝒙𝑖(𝑡 + 𝜏) − 𝒙𝑖(𝑡)|2⟩𝑁,       (5.3) 

and, 

|𝜑|  = |⟨𝒗𝑖(𝑡)⟩𝑁/⟨|𝒗𝑖(𝑡)|⟩𝑁|,       (5.4) 

respectively. Here the index 𝑖 denotes a single ant, 𝛥𝑡 is the time between frames, 𝜏 

is a time interval that can span multiple frames, and ⟨⟩𝑁 denotes ensemble-averaging 

over all 𝑁 ants. |𝜑| was measured in successively smaller domains of square 
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dimension 𝐿 to determine the length scale over which order occurred (|𝜑| = 1 and 

|𝜑| → 0 for aligned and random motion, respectively [226]). Regions containing only 

one ant (where 𝜑 = 1 by default) were excluded. Persistence length (𝑙𝑝), defined as 

the travel distance (𝑙𝑐) at which correlation in an ant’s trajectory is lost with itself, 

was also estimated according to [227]: 

⟨�̂�𝑖,0 ⋅ �̂�𝑖,𝜏⟩
𝑁𝜏

= 𝑒𝑥𝑝 [−𝑙𝑐/𝑙𝑝],      (5.5) 

where �̂�𝑖,𝜏 = 𝒗𝑖,𝜏/|𝒗𝑖,𝜏| is the direction of the 𝑖𝑡ℎ ant’s travel at time 𝜏, and ⟨⟩𝑁𝜏
 denotes 

ensemble averaging over all 𝑁𝜏 observations. For ideal trajectories of fixed step size 

and turning angle, ⟨�̂�𝑖,0 ⋅ �̂�𝑖,𝜏⟩
𝑁𝜏

 decays exponentially with respect to 𝑙𝑐 [227], hence 

the form of Eqn. (5.5). Although free ants do not walk ideally, a least-squares 

regression fit to Eqn. (5.5) provides a rough estimate of 𝑙𝑝 useful for our purposes (see 

Fig. D.3.B for extended data of ⟨�̂�𝑖,0 ⋅ �̂�𝑖,𝜏⟩
𝑁𝜏

). Edge-encountering ants were excluded 

from sampling. 

 

5.2.4 Structural contraction 

 

We observed that the structural network contracts visibly, with structural ants 

appearing to flow inwards towards the stationary rod, when viewed in time-lapsed 

footage at 240-900x speed. To quantify the contractile strain rate of the structural 

layer, we identified sets of structural ants originally located at the rafts’ outermost 

edge such that the perimeter was traced with a spatial resolution of roughly 2 to 5 ℓ. 

These ants were image-tracked as they flowed inwards due to contraction (Fig. 5.3.A-

B). The area circumscribed by these ants (𝐴𝑟, outlined red in Fig. 5.2.A-C and D.4.A-

C) decayed exponentially in time (𝑡) according to: 

𝐴𝑟 = 𝐴𝑟
0𝑒−2𝜀̇̇𝑡,          (5.6) 
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where 𝐴𝑟
0 represents the initial reference area and 휀̇ is the linear strain rate assuming 

isotropic contraction. 휀̇ was estimated from the coefficient of the exponential least-

squares fit to (5.6). To verify isotropic contraction, 휀̇ was also estimated radially with 

respect to the anchoring rod as the coefficient of the linear least-squares fit to �̇�(𝑅) 

(i.e., 휀̇ = 𝑑�̇�/𝑑𝑅), where 𝑅 and �̇� are the structural ants’ distances from the rod and 

speeds towards it, respectively. �̇� was computed as 𝒗 ⋅ �̂� where 𝒗 was calculated via 

(5.2) or collected via particle image velocimetry (PIV), and �̂� is the unit vector directed 

towards the anchoring rod. PIV was conducted via PIVlab [228], [229] on a continuous 

region of interest on the largest experimental raft over a 13-minute duration (Fig. 

5.3.D). Noise due to movement of dispersed free ants on top of the structural layer 

was easily filtered out since free ants travel on the order of 1 ℓ 𝑠−1, while structural 

contraction occurs at the order of 0.01 ℓ 𝑠−1. Note that the free ant noise was also 

utilized to qualitatively illustrate the positions and clustering of free ants (Fig. D.5). 

See Fig. D.6 for extended 휀̇ data (휀̇ > 0 represents contraction). 

 

5.2.4 Structural exit and edge deposition rates 

 

To quantify raft dynamics, we leveraged image-tracked data of structural ants. Given 

roughly conserved 𝜌𝑟 the rate of structural ant exits into the free layer is: 

𝛿 = −2𝜌𝑟휀̇,          (5.7) 

where 𝛿 is measured as the number exit events per minute per unit raft area. 

Through (5.7), 𝛿 is measured in the bulk of the structural network. Since free ants 

primarily bind to the structural layer at the rafts’ perimeter, this measure occurs 

independently of the effects of edge deposition.   
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We calculated the edge deposition rate per unit perimeter length (𝛾) using the newly 

deposited growth area (𝐴𝑔, shaded cyan in Fig. 5.2.A-C and D.4.A-C), taken as 𝐴𝑔 ≈

𝐴 − 𝐴𝑟. Although ants may exit the structural layer in the growth zone, this was not 

observed to occur frequently at the perimeter amongst the ants that had recently 

transitioned, and so this estimate of 𝐴𝑔 is relatively unaffected by 𝛿 if the image-

tracked structural ants that define 𝐴𝑟 are periodically updated (so that 𝐴𝑔 ≪ 𝐴). The 

areal growth rate was calculated via �̇�𝑔 = [𝐴𝑔(𝑡) − 𝐴𝑔(𝑡 − 𝛥𝑡)]/𝛥𝑡. Given constant 𝜌𝑟, 

𝛾 is: 

𝛾 = �̇�𝑔𝜌𝑟/𝑃,          (5.8) 

where 𝑃 is the updated raft perimeter. See Fig D.4.D-F for extended 𝛼 and 𝛿 data, 

where 𝛼 = 𝛾𝑃/𝐴 is the edge deposition rate per unit raft area. Note that if 𝐴 is 

normalized by average area of one structural ant (𝜌𝑟
−1), then 𝛼 and 𝛿 may be thought 

of as the areal expansion and decay rates, respectively. 

 

5.2.5 Instabilities 

 

Instability growth rates (𝑉) and widths (𝑊) were measured using ImageJ. Since the 

structural networks perpetually contract (including within protrusions) a pair of 

reference structural ants near the tip, but on opposite flanks of each protrusion were 

image-tracked (Fig. D.7). The distance between the mean position of these reference 

ants and the protrusion tip (𝐿) was used to calculate 𝑉 = [𝐿(𝑡 + 𝛥𝑡) − 𝐿(𝑡)]/𝛥𝑡. Note 

that local contraction was an order of magnitude smaller than tip growth (𝐿휀̇ ≪ 𝑉) 

while 𝐿 ∼ 10 ℓ. 𝑊 was approximated via 𝑊 ≈ 𝐴𝑝/𝐿𝑐 where 𝐴𝑝 and 𝐿𝑐 are the total 

protrusion area and length, respectively.  
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5.3 Results 

5.3.1 Treadmilling 

 

Planar density of the structural network was roughly conserved throughout 

experiments at 𝜌𝑟 = 0.304 ± 0.018 𝑎𝑛𝑡𝑠 𝑚𝑚−2, which is consistent with the value of 

0.34 ± 0.02 𝑎𝑛𝑡𝑠 𝑚𝑚−2 reported by Mlot et al. (2011) [210]. The mean free ant packing 

fraction, �̅�, as estimated by areal image analysis, was anywhere between 0.56 and 

2.6 free ants per structural ant depending on the time of measurement and 

experiment. Indeed, �̅� could exceed unity indicating that ants in the free layer(s) were 

more numerous than those in the structural layer, consistent with the findings of 

Mlot, et al. (2011). However, here this was due to local clustering of inactive ants near 

or on the anchoring rod. These inactive ants did not contribute to the raft dynamics 

reported here and even when �̅� exceeded one, raft dynamics were still observed (Fig. 

D.1.C). Manual measurements confirmed that free ants in regions far from the rod 

remained relatively dispersed with an average density of 𝜌𝑠 = 0.072 ±

0.006 𝑎𝑛𝑡𝑠 𝑚𝑚−2, and a local free ant packing fraction of 𝜙 ≈ 0.240 free ants per 

structural ant. This estimate of 𝜙 demonstrates that far from the anchoring rod, free 

ants may exist in a dispersed state, however even within these regions free ant 

density is heterogeneous, as ants form transient clusters analogous to those arising 

in self-propelled colloidal suspensions when 𝜙 ∼ 0.3 [6]. Regardless of density 

heterogeneities, we measured that free ants deposit into the edges at an average rate 

of 𝛼 ≈ 0.02 deposition events 𝑚𝑖𝑛−1 per structural ant (or 𝛾 ≈ 0.29 deposition 

events 𝑚𝑖𝑛−1 per unit body length of perimeter). If the raft expanded unchecked this 

would correspond to areal raft growth on the order of 𝛼 ≈ 2% 𝑚𝑖𝑛−1 until the number 

of free ants was depleted, and a static raft area was reached. Therefore, this 

mechanism alone explains neither instability formation, nor the dynamic 
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treadmilling that recycles these formations over the span of hours. To better 

understand the full scope of what drives these features, we first examine the 

transport of free ants.  

 

 
Figure 5.2. Trajectory analysis of non-edge-encountering surface ants. (A-C) An ant raft is 

depicted at the (A) start, (B) middle, and (C) end of a 54-minute duration. The red outline demarks 

ants that were originally in the edge of the raft at the start of the timespan and the region shaded in 

cyan highlights newly deposited area. Scale bars represent 20 ℓ. (D) The probability distribution of 𝑙𝑝 

measured for 105 distinct free ants that traveled a distance of at least 5 ℓ is displayed, with the solid 

and dotted vertical red lines representing the mean value and standard error, respectively (𝑙𝑝 = 17.3 ±

2.7 ℓ). The inset displays the end-to-end trajectories of 38 free ants image-tracked over a duration of 

roughly 30 seconds to visually illustrate isotropic movement. The start of each trajectory has been 

centered at the origin for visual clarity and the scale bar represents 10 ℓ. (E) Mean ⟨𝑥2⟩ of all samples 

is plotted with respect to the time interval of measurement (𝜏) for free ant trajectories tracked at least 

10 𝑠. The red curve represents the least-squares regression fit of the form ⟨𝑥2⟩ = 4𝐷𝜏𝜉. (F) |𝜑| is plotted 

with respect to the rectilinear domain size (𝐿) in which it was measured for seven samples of ants over 

four experimental rafts. The dotted lines denote the length scales at which |𝜑| ≥ 0.75. (E-F) Error bars 

represent standard error. (G) The moving average of 𝑐(𝜎, 𝜏) is plotted with respect to separation 

distance for 𝜏 = 0 𝑠 (cyan), 𝜏 = 1 𝑠 (grey), and 𝜏 = 10 𝑠 (red). The moving average window was set to 1 ℓ 

to reduce noise for transparency.  

 

Previous studies modeled free ants as Brownian particles that deposit into the 

structural layer with constant probability upon every edge encounter, leading to 

isotropic raft expansion [218]. In actuality, the motion of freely active ants is not 
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ambiently driven, rather free ants are SPPs that actively locomote. Therefore, we 

characterize their trajectories in the context of Active Brownian Particles. First, we 

confirm that free ants that do not encounter the raft edges walk isotropically [210] 

(Fig. 5.2.D) with 𝑙𝑝 on the order of ∼ 20 ℓ and 𝑣0 = 0.59 ± 0.01 ℓ 𝑠−1, suggesting a 

correlation time (𝜏𝑟 = 𝑙𝑝/𝑣0) on the order of ∼ 34 𝑠 [230]. Although our approximation 

of 𝑙𝑝 affirms that free ants can sustain self-correlated trajectories over the order of 

10 ℓ, our methods of estimating 𝑙𝑝 are extrapolatory and assume that self-correlation 

decays exponentially. To better characterize ants’ trajectories, we also examine mean 

square displacement, ⟨𝑥2⟩. We find that surface ants have an average measured 

diffusion coefficient (�̅�) in the range of 0.01 ℓ2 𝑠−1 to 0.16 ℓ2 𝑠−1 (0.1 × 10−6 to 

1.3 × 10−6 𝑚2 𝑠−1) depending on the experiment and sample, placing the order of free 

ants’ diffusivity near that of gaseous particles. Significantly, the ants do not diffuse 

randomly as previously modeled [210], [218]. Instead, they diffuse anomalously 

according to a power law ⟨𝑥2⟩ = 4𝐷𝜏𝜉, where the average scaling coefficient is 𝜉̅ ≈

1.48, indicating super-diffusive behavior (𝜉 > 1) [231] (Fig. 5.2.E). Worth noting 

though is that �̅� appears to vary in both time and space for a given trajectory (hence 

the wide range reported here) and ants undergo interstitial periods of super and sub-

diffusive behavior (𝜉 < 1) (see Fig. D.3.C), comparable to those which occur in the 

“run-and-tumble” motion of swimming bacteria [232] and plankton [233], or the Lévy 

walks of foraging spider monkeys [234]. Such anomalous diffusion is common 

amongst motile organisms whose trajectories are influenced by both internal 

decisions and external stimuli. In fire ants sub-diffusive zones are likely caused by 

factors such as clustering due to volume exclusion between ants (i.e., the inability of 

two ants to occupy the same space) [230]. Regardless, the prevailing behavior is that 

of super-diffusivity [235], [236]. Super-diffusivity is not inherent to SPPs, rather it is 

generally indicative of field or current-induced drift [236]–[238]. In this case it is 
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plausible that local fluxes of synchronously moving ants emerge over some length 

scale due to ant-to-ant (i.e., local) or ant-to-raft edge (i.e., confinement) interactions 

providing early evidence that ants exhibit some degree of directed motion.  

 

To evaluate the degree and length scale over which order in ant trajectories exists, 

we examine |𝜑| within successively smaller square domains of length 𝐿 (Fig. 5.2.F). 

Across seven different sets of free ants, |𝜑| scales linearly with respect to 𝐿−1. Between 

these samples, the length scale over which strongly ordered trajectories emerge (|𝜑| ≥

0.75) ranges from roughly 𝐿 ≤ 1.5 to 2.4 ℓ.  While some degree of synchronized motion 

exists within domains on the order of one to two ant body lengths, it is evident that 

free ants on the bulk of rafts generally movie isotropically above the length scale of a 

single ant. To further identify whether there exists any trajectory correlation between 

two neighboring free ants (designated by indices 𝑖 and 𝑗), and whether this correlation 

persists in time, we also examine the pair-wise directional correlation between their 

velocities (separated by time span 𝜏), according to: 

𝑐(𝜎, 𝜏) = ⟨�̂�𝒊(𝑡) ⋅ �̂�𝒋(𝑡 + 𝜏)⟩,       (5.9) 

where 𝑐 → 1 indicates strong correlation (Fig. 5.2.G), 𝑐 ≈ 0 suggests no correlation, 

and 𝑐 < 0 indicates negative correlation or that the ants are walking in opposite 

directions. Here, 𝒗𝒊(𝑡) and 𝒗𝒋(𝑡 + 𝜏), are the velocities (𝒗 = 𝜕𝒙/𝜕𝑡) of ant 𝑖 (at time 𝑡) 

and ant 𝑗 (at time 𝑡 + 𝜏), respectively, and 𝜎 is their ant-to-ant separation distance 

defined by 𝜎 = |𝒙𝒊(𝑡) − 𝒙𝒋(𝑡 + 𝜏)|. Delay in directional correlation is commonly used to 

identify leaders and followers in systems with established pairwise alignment 

interactions, but here 𝑐(𝜎, 𝜏) is used to identify the length and time scales above which 

ants lose mutual alignment of motion [203]. Examining the spatial moving average 

of 𝑐(𝜎, 𝜏) (over a window of 1 ℓ to reduce noise), there appears to be no significant 

correlation above a length scale of ∼ 1 ℓ, regardless of 𝜏. Also, for timespans of 𝜏 ≥ 1 𝑠, 
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there appears to be no correlation in direction of ants. Therefore, the only 

spatiotemporal separation for which any directional correlation occurs is 𝜎 < 0.75 ℓ 

and  𝜏 < 1 𝑠, suggesting that correlated movement only occurs between ants in (or 

nearly in) contact, and even then, it is weak with (𝑐 < 0.5). The lack of correlation for 

𝜎 > 1 ℓ, despite ants’ relatively long 𝑙𝑝, suggests that ants, experience no significant 

pairwise alignment interactions. Despite the lack of evidence for alignment 

interactions, we see later in this work (through measurement of 𝑐(𝜎, 𝜏) for free ants 

on protrusions) how directional motion occurs in highly confined regions (wherein the 

dimensions of the raft are smaller than the free ants’ persistence lengths), likely 

contributing to the runaway growth of protrusions; however, first we examine the 

remaining scope of mechanisms that contribute to the treadmilling dynamics which 

permit sustainable shape evolution. Simply reexamining Fig. 5.2.A-C, it is 

immediately clear that the area circumscribed by the set of ants outlined in red 

depreciates in time, indicating that some contractile mechanism occurs within these 

systems.  

 

Although ant rafts’ structural networks may appear to be amorphous solids at first 

glance, examination of time-lapsed footage reveals that these networks flow visibly. 

Specifically, the structural network robustly contracts throughout the bulk at rate 휀̇. 

Given the fixed rod in the experimental setup, this causes visible raft contraction 

towards said rod in time. 휀̇ ≈ 1.75 % 𝑚𝑖𝑛−1 (𝑅2 = 1.00) as estimated from the areal 

decay rate through (5.7) (Fig. 5.3.C). The radial contractile strain rate was calculated 

as 휀̇ = 1.82 ± 0.03 % 𝑚𝑖𝑛−1 from manually image-tracked data (Fig. 5.3.A-B,E), and 

휀̇ = 1.75 ± 0.01 % 𝑚𝑖𝑛−1 (𝑅2 = 0.97) from PIV-gotten data (Fig. 5.3.D-E). The former 

value is within 2 % of 휀̇ coarsely estimated through (5.6), while the latter value agrees 

with it, which suggests that the circumferential component of contraction must also 
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be on the order of 1.8 % 𝑚𝑖𝑛−1 and that there is no significant directional bias in 

contraction. Notably, measured values of 휀̇ correspond to maximum contractile speeds 

on the order of just 0.01 ℓ 𝑠−1, while free ants on top of the structural layer walk with 

speeds on the order of 1 ℓ 𝑠−1. Therefore, structural contraction has negligible effect 

on the previously reported trajectories of free ants.  

 

 
Figure 5.3. Quantifying structural retraction. (A-B) A top view of an experimental raft is 

illustrated at the (A) start and (B) end of a roughly 8 min duration. The perimeter is traced every 15 

minutes and outlined by numbered, colored contours (1 represents the oldest set of ants and 6 

represents the newest). The scale bars represent 20 ℓ. (C) The square root of the ratio 𝐴/𝐴0 is plotted 

with respect to time and used to estimate 휀̇ according to (𝐴/𝐴0)0.5 = 𝑒−�̇�̇𝑡. The data from each of six 

separately tracked sets of ants are shown, with the vertical dotted lines denoting the time at which 

image tracking began. 휀̇ is estimated to be 1.7 to 1.8 % 𝑚𝑖𝑛−1 (𝑅2 = 1.00) for all six data sets, indicating 

that strain rate is roughly conserved in time. (D) The velocity field obtained from PIV is shown within 

the region of interest. To eliminate noise due to raft spin, only the radial component of the velocity 

(i.e., that vectored towards the anchor point of the raft denoted by a red dot) is shown. The field 

depicted is averaged over the full analysis duration (roughly 13 min) to reduce temporal noise. The 

scale bar represents 10 ℓ. (E) �̇� from manual image tracking (circles in a cyan-to-red color gradient) 

and PIV (black squares) is plotted with respect to 𝑅. Data from manual tracking represents the 

contractile speed of every ant sampled (i.e., the full image tracked edge). Data from PIV is presented 

from every point measured in the region of interest. 

 

There exists no significant correlation between 휀̇ and distance from the rod, 𝑅 (Fig. 

D.6.A-C) implying that 휀̇ is constant throughout the bulk. That contraction is both 
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spatially constant and roughly isotropic indicates that the primary mechanism of 

contraction originates within the bulk structural network as opposed to entirely at a 

specific interface (e.g., the junction between the raft and the rod). Interestingly, 

despite contraction structural density, 𝜌𝑟 was roughly conserved throughout 

experiments, mandating that there exists a flux of ants out of the structural layer. 

Upon closer examination, we indeed observed instances of ants bound to the raft 

network exiting and becoming part of the free layer. We quantified the exit rate, 𝛿, 

through (5.7) to find that across experiments, ants unparked at a rate of 𝛿 ≈ 2 −

3% 𝑚𝑖𝑛−1, counteracting and nearly balancing the global expansion rate 𝛼 ≈

2 % 𝑚𝑖𝑛−1 measured earlier. 

 

 
Figure 5.4. Treadmilling of fire ant rafts. Contraction of the structural layer (at rate 휀̇) perpetually 

pulls ants in the structural network (blue) inwards given the anchored boundary condition. Structural 

ants exit from the network at a rate of 𝛿 in the bulk and become part of the free layer of ants (red). 

Free ants walk directly on top of the structural network until they encounter the perimeter of the raft. 

Edge-encountering ants either bank off the edge of the raft or deposit into the structural network at 

its perimeter at a rate of 𝛼. Note that free ants (denoted by the red layer) have been vertically offset 

from the structural ants (of the blue layer) purely for visual clarity, but these two layers maintain 

direct contact in ant rafts.   

 

Global raft expansion (due to edge-deposition of free ants into the structural layer) 

and structural contraction (concurrent with bulk dislocation of structural ants into 

the free layer) define the global treadmilling illustrated schematically in Fig. 5.4. 

This treadmilling sustains ant rafts’ ability to change their shape by recycling the 
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populations of both structural and free ants, thus also permitting the recurring 

formation (i.e., initiation, growth, and complete retraction) of instabilities. However, 

the detailed causes of unstable protrusion growth remain unclear. To unveil these 

mechanisms, we revisit the properties of freely active ants. 

 

5.3.2 Instabilities 

 

Before examining the contributing factors to protrusion formation, we first quantified 

their characteristic growth rates and widths. Protrusions grow at an average rate of 

⟨𝑉⟩ = 0.74 ± 0.05 ℓ 𝑚𝑖𝑛−1 with an average width of ⟨𝑊⟩ = 5.85 ± 0.06 ℓ (Fig. 5.5.A-B) 

suggesting that the areal tip growth rate per unit edge length is on the order of 

⟨𝑉⟩⟨𝑊⟩ =  4.33 ± 0.08 ℓ2 𝑚𝑖𝑛−1 (or 11 𝑎𝑛𝑡𝑠 𝑚𝑖𝑛−1) given that 𝜌𝑟 ≈ 0.3 𝑎𝑛𝑡𝑠 𝑚𝑚−2. 

Normalizing this value by the approximate width of the leading tip (taken as ⟨𝑊⟩) we 

see that the average tip growth rate is roughly 𝛾𝑡𝑖𝑝 ≈ 1.9  𝑚𝑖𝑛−1 ℓ−1 , which is an order 

of magnitude higher than that of the overall raft (𝛾 ≈ 0.29 𝑚𝑖𝑛−1 ℓ−1). This 

disproportionate growth rate could either be due to a higher flux of free ants to the 

tips of protrusions, a higher probability of free ant deposition into the structural 

network at these locations, or both. Whether the probability of edge deposition varies 

by location is difficult to measure directly for two reasons. Firstly, defining the length 

scale over which an ant detects the edge is not easily quantified, and so precisely 

recognizing edge encounters is exceedingly difficult. Secondly, edge accumulation 

effects [239] induce clustering of free ants near the edges (see Fig. 5.5.H and Fig. 

D.5) to the extent that they become visually indistinguishable from one another in 

these regions and image-tracking is implausible. However, characterization of free 

ants on the bulk of protrusions far from their tips proved feasible. 
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Figure 5.5. Characterizing protrusion growth and directional motion. (A) The distribution of 

326 observations of 𝑊. (B) The distribution of 406 frame-to-frame observations of 𝑉. (A-B) 

Observations were taken over 13 distinct sample protrusions. ⟨𝑊⟩ and ⟨𝑉⟩ are represented by vertical 

lines with the dotted lines representing standard error. (C) The moving average of 𝑐(𝜎, 𝜏) is plotted 

with respect to separation distance for 𝜏 = 0 𝑠 (cyan), 𝜏 = 1 𝑠 (grey), and 𝜏 = 10 𝑠 (red). The moving 

average window was set to 1 ℓ to reduce noise for transparency. (D-E) All ant trajectories within 

domains (D) on and (E) off a protrusion were manually image tracked. Ants moving left and right were 

overlaid with red and cyan dots, respectively, to emphasize any net flux during this time span. The 

principal directions (eigenvectors) of 𝑔𝑣 are shown as arrows labeled 𝑔1 and 𝑔2, respectively. (F-G) 2D 

velocity probability (𝑝) distributions of free ants tracked in domains (F) on and (G) off a protrusion are 

displayed. (H-I) Visually isolated free ants (red) (H) on and (I) off a protrusion illustrate the degree 

and location of clustering.  All scale bars represent 10 ℓ.   

 

We discovered that free ants on protrusions display a high degree of directed motion 

as characterized by 𝑐(𝜎, 𝜏) from (3.1) (Fig 5.5.C). In fact, on protrusions, ants 

separated by more than 10 ℓ exhibit statistically the same directional correlation (𝑐 ∼

0.1 − 0.2) as ants within the contact length scale. The mean value of 𝑐(𝜎, 𝜏) across all 

𝜎 when 𝜏 = 0 𝑠 is 0.170 ± 0.003, which suggests that the ants are walking on average 
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with a nominal separation angle of roughly 80𝑜. While this may seem like a large 

angular difference, it suggests that ants are walking on average within the same 

quadrant of directional orientation, indicating a net flux of ants in some direction. To 

confirm and identify the direction of flux we examine a multitude of measures for free 

ants on a protrusion whose longitudinal axis is aligned with the first principal 

direction of analysis, 𝒆𝟏. Firstly, we examine the metric tensor of ant velocity defined 

by 𝒈𝒗 = ⟨�̂� ⊗ �̂�⟩𝑁 where �̂� represents the direction of motion of a single ant, ⊗ denotes 

the tensor product, and the operator ⟨⟩𝑁 denotes averaging over the sample size, 𝑁. 

This tensor is represented by a symmetric, positive definite matrix, whose principal 

directions, here denoted 𝒈𝟏 and 𝒈𝟐, indicate the directions in which ant traffic is a 

maximum and minimum (Fig. 5D). Thus, isotropic traffic is represented by the 

principal matrix 𝒈𝒗 = 𝑑𝑖𝑎𝑔(0.5,0.5), while strongly directional traffic will be 

represented by eigenvalues with distinct values.  Examining 𝒈𝒗 in the reference 

coordinate axes {𝒆𝟏, 𝒆𝟐}, indeed we find that 𝑔11
𝑣 = 0.66 while 𝑔22

𝑣 = 0.34, indicating 

that the ants are traveling faster in the direction 𝒆𝟏 (which aligns with the 

longitudinal axis of the protrusion) than the direction 𝒆𝟐. We also find that 𝑔12
𝑣 =

𝑔21
𝑣 = 0.01, suggesting that the longitudinal axis is close to free ants’ principally 

fastest direction (with the principal components of 𝒈𝒗 displayed in Fig. 5D to 

illustrate alignment). For further visual transparency, both the 2D velocity 

distribution and isolated traffic of surface ants are presented in Fig. 5.5.F and Fig 

5.5.H, respectively. Examining the 2D velocity distribution, the maximum 

longitudinal component exceeds that of the transverse component. Observing Fig 

5.5.H, the ants on the protrusion generally move longitudinally, with little transverse 

motion. For comparison, the metric tensor, velocity distribution and visually isolated 

free ant traffic far from the raft edge are depicted in Fig. 5.5.E, Fig. 5.5.G and Fig. 
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5.5.I, respectively and reaffirm that free ants in weak confinement move randomly 

(𝑔11
𝑣 ≈ 𝑔22

𝑣 ≈ 0.5). 

 

Although 𝒈𝒗 indicates that free ants move primarily in-line with protrusions, it 

reveals nothing about the sense of this movement. To identify the direction of this 

bias, we examine the 2D velocity distribution (Fig. 5.5.F) and observe a slightly 

higher probability of ants moving towards the tip than the base at speeds up to 1 ℓ 𝑠−1 

(i.e., the distribution is skewed slightly left). To emphasize this flux illustratively, 

Fig. 5.5.D includes red and cyan points wherever an ant was recorded moving left 

(�̂�1 < 0) or right (�̂�1 > 0), respectively. Both the velocity distribution and binary plot 

from Fig. 5.5.D indicate that within the recorded timeframe, more ants moved from 

the base-to-tip of the protrusion. We hypothesize that both local tip clustering (Fig. 

5.5.H) and directional motion (Fig. 5.5.C, 5.5.D and 5.5.F) of free ants on protrusions 

contribute to their unstable growth. To interpret experimental observations we 

employ a simple model for SPPs under strong confinement, introduced by Fily, et al. 

(2014) [240]. This model prescribes that the SPPs move with some overdamped 

velocity and a rotational diffusion rate synonymous with 𝑣0 and 𝜏𝑟
−1, respectively. 

“Strong confinement” mandates that 𝑙𝑝 of SPPs must be larger than their confining 

dimensions, which is satisfied by fact that the mean persistence length of free ants is 

roughly three times greater than the average width of protrusions (𝑙𝑝 ∼ 20 ℓ > ⟨𝑊⟩ ∼

6 ℓ) [240], [241], and roughly 83% of measured ants have persistence lengths greater 

than ⟨𝑊⟩ (Fig. 5.2.D). In purely convex domains the model predicts that SPPs glide 

along their confining boundaries and accumulate at regions of high local curvature 

[240], [241].  
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We implement Fily’s model into a numerical framework in which half of an elliptically 

shaped protrusion (with a minor-axis of 2.5 ℓ and major-axis of 5 ℓ) is initiated. 

According to Fily’s model, given the entirely convex domain and assuming a 

quasistatic state, the local density of free ants per unit edge length may be estimated 

by 𝜌𝑠 = 𝜅/2𝜋, where 𝜅 = 𝜕𝜓/𝜕𝑠  is the local edge curvature, 𝜓 is the orientation of the 

local edge normal (�̂�), and 𝑠 denotes curvature space along the boundary [240], [241] 

(Fig. 5.6.A). We impose that the local rate of directional edge deposition, 𝜸(𝑠), scales 

linearly with the local free ant density 𝜌𝑠, according to: 

𝜸 = (𝑎
𝜌𝑠

𝜌0
+ 𝛾0) �̂�         (5.10) 

where 𝑎/𝜌0 defines the deposition rate’s sensitivity to 𝜌𝑠, 𝜌0 is a sensitivity parameter 

(in units of ℓ−1), 𝑎 = 𝑣0/ℓ2 is a normalization constant (in units of 𝑚𝑖𝑛−1 ℓ−1), 𝛾0 is the 

nominal global deposition rate (also in units of 𝑚𝑖𝑛−1 ℓ−1), and �̂� is the direction of 

edge deposition. Increasing 𝜌0 decreases the effects of 𝜌𝑠 on 𝜸, and increasing 𝛾0 

increases the overall edge deposition rate. We posit that �̂� has components aligned 

with both �̂� and some directional bias (�̂�) such that (5.10) becomes:: 

𝜸 = [
𝑣0

ℓ2 (
𝜌𝑠

𝜌0
) + 𝛾0] 

�̂�+𝛽�̂�

|�̂�+𝛽�̂�|
,        (5.11) 

where 𝜸 is computed in units of deposition events per minute per unit edge length 

(𝑚𝑖𝑛−1 ℓ−1). 𝛽 is a weighting parameter that determines the extent of directional bias 

in edge deposition. Without bias (𝛽 = 0) deposition occurs normal to the edge, while 

high bias (𝛽 ≫ 0) skews this deposition in the direction of �̂�. Inclusion of �̂� was 

initially motivated by the observed directional motion of free ants on protrusions and 

was set accordingly (flux of free ants occurs from base-to-tip such that �̂� = [0,1]). 𝛾0 

was set to 0.29 𝑚𝑖𝑛−1 ℓ−1 based on experiments. Reasonable comparison with areal 

experimental growth rates was coarsely achieved when 𝜌0 = 0.9 ℓ−1 (see Table D.1 

for a summary of parameter values). The boundary mesh was stepped in time 

according to 𝜸 = 𝜌𝑟𝑑𝒙/𝑑𝑡 using the forward Euler method. Note that since the 
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observed speed of free ants (𝑣0 ∼ 1 ℓ 𝑠−1) is two orders greater than that of protrusion 

growth (⟨𝑉⟩ ∼ 0.02 ℓ 𝑠−1), we posit that the steady state assumption employed by Fily, 

et al. (2014) remains viable.  

 

 
Figure 5.6. Numerical model results. (A) A schematic illustrates an arbitrary, convex boundary, 

𝜕𝛺. 𝜓, 𝑠, �̂� and �̂� are all denoted at an arbitrary point along 𝜕𝛺 to convey sign convention. (B-D) The 

numerical mesh is displayed from 𝑡 = 0 𝑠 (innermost curves) to 480 𝑠 (outermost curves) in 120 𝑠 

intervals for the cases of (B) 𝛽 = 0, (C) 𝛽 = 1, and (D) 𝛽 = 10. The color scale represents 𝜌𝑠 (ℓ−1). The 

scale bar represents 5 ℓ.  

 

In the absence of biased edge deposition (Fig. 5.6.B, 𝛽 = 0) this model does not 

produce the type of protrusion growth observed for fire ants, instead predicting 

exaggerated outwards growth with relatively diminished tip growth (�̇� < 0.5 ℓ 𝑚𝑖𝑛−1) 

and edge curvature (𝜅 < 0.5 ℓ−1). This suggests that tip-clustering alone does not fully 

explain the runaway protrusion growth observed experimentally. We found that as 

bias increases, �̇� and 𝜅 also increase with reasonable comparison to experiments 

occurring at 𝛽 = 1 (�̇� ∼ 1 ℓ 𝑚𝑖𝑛−1 and 𝜅 ∼ 1 ℓ−1) (Fig. 5.6.C). As bias is increased 

further (e.g., Fig 5.6.D, 𝛽 = 10), 𝜅 eventually exceeds 1 ℓ−1 implying that the tip is 

less than two ants wide, which was never observed experimentally, indicating an 

upper limit to any biasing effects. While �̂� was initially inspired by directional 

motion, this model cannot specifically affirm directional motion as a first order cause 
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of runaway growth. Rather, it simply reveals that a bias in edge deposition, whatever 

its cause, significantly improves agreement.  

 

5.4 Discussion and concluding remarks 

 

Our experimental results reveal that dynamic shape and area changes of fire ant 

rafts are sustained by competing mechanisms of structural contraction and outwards 

expansion, which together define global treadmilling. The structural network’s 

planar density is conserved (despite contraction and any consequential areal change) 

due to a flux of structural ants into the freely active surface layer. Counteracting this 

flux is the deposition of free ants primarily into the edge of the structural layer, 

driving outwards expansion. That the rate of contraction slightly exceeds the rate of 

expansion is reflected in the eventual shrinking of overall raft areas observed after 

several hours due to accumulation of free, yet inactive ants near the anchoring rod, 

which slowed edge deposition. Perhaps this less active state relates to the activity 

cycles observed in confined, 3D aggregations of fire ants [214], [215]. Ant raft 

evolution over longer timescales and in the context of activity may be worth 

examining in future work. Additionally, further consideration is warranted regarding 

the effects of boundary conditions on the treadmilling and instabilities observed. It 

remains unclear, what influences, if any, the vertical rod and the height it protrudes 

above the water have on either of these behaviors, and a systematic sweep of this 

height must be conducted in order to attribute any causal relationships with raft 

dynamics. Furthermore, variables that may influence behavior, such as season, the 

locations of ant collection, and the time of day were not considered in the scope of this 

study. As such, a control study may be conducted in future work to evaluate the 

robustness of raft dynamics under various conditions. However, here we simply 
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report the ant properties, treadmilling dynamics, and instability characteristics as 

observed under the boundary conditions specified.  

 

Similar looking finger-like instabilities (e.g., Rayleigh-Taylor [242], Kelvin-

Helmholtz, Saffman-Taylor [243], etc.) are regularly observed at fluid interfaces, due 

to local property gradients (e.g., fluid density, viscosity, etc.). Although these 

phenomena look like fire ant protrusions, ant aggregations are distinct in several 

ways. Firstly, they exist as a multistate system whose outwards expansion is driven 

by transport of a dispersed surface layer of free ants, as opposed to diffusion of 

particles through a homogenous bulk. Secondly, the dispersed layer is comprised of 

SPPs as opposed to thermally diffusing constituents. Finally, the size of individual 

fire ants is comparable to the size of the instabilities they form, rendering the system 

far from the continuum limit and introducing potential discrete size effects. Given 

the first two considerations, this system is perhaps better compared to other systems 

of active particles in confinement. It is well-demonstrated that SPPs in strong 

confinement accumulate in regions of local convex edge curvature [230], [239], [241] 

and sometimes phase transition into directed motion depending on the confining 

geometry [244]. The persistence length of ant trajectories was estimated to be on the 

order of 20 ℓ. This likely explains why free ants far from protrusions, where the 

confining dimensions are on the order of 20 to 50 ℓ, display roughly isotropic behavior, 

while ants on protrusions (where 𝑊 ∼ 6 ℓ) exhibit directional motion (Fig. 5.5.C-E) 

and significant tip clustering (Fig. 5.5.H). It is for this reason that we adopted the 

model for SPPs under strong confinement introduced by Fily, et al. (2014) [241]. 

 

This model provides a conceptual picture of the instabilities driving protrusion 

initiation and growth. Citing both the model and experiments, we see that 
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imperfections in ant rafts’ edges (i.e., regions of higher edge curvature) generally host 

higher densities or clusters of free ants (Fig. D.5.A-F) [241]. We posit that this drives 

an increase in the local edge deposition rate, which then strengthens the locally high 

curvature, introducing a positive feedback loop. Perhaps compounding this effect are 

factors such as the directional motion of free ants on protrusions most likely caused 

by the relatively small width of these features as compared to the trajectory 

persistence length of free ants (Fig. 5.5.C-E). Observing experiments (Fig. D.5.C-F) 

we see that directional motion promotes additional tip clustering, thus indirectly also 

encouraging tip growth. While local clustering appears to accentuate growth 

wherever local edge symmetry is broken, it does not explain the elongated shape of 

some protrusions. We see from the model that if there exists a bias in the direction of 

edge deposition (Fig. 5.6.C-D, 𝛽 > 0), then the tip growth rates and curvatures of 

experimental protrusions are reasonably-well replicated. One potential cause for this 

bias is some first order effect from the directional motion of free ants. Indeed, where 

directional motion was measured experimentally (Fig. 5.5.H), the direction of 

instability growth appears in-line with said motion. Examining the model, local 

directional motion may also result from boundary evolution (i.e., local changes in the 

boundary’s normal orientation, 𝜓) as growth occurs. In this case, the local orientation 

of SPPs, 휃, do not necessarily align normal to the edge. According to Fily’s model, this 

introduces a local glide speed along the boundary that depends on the difference 

between the ant’s orientation and that of the local boundary norm according to, �̇� =

𝑣0 𝑐𝑜𝑠(휃 − 𝜓). Assuming negligible change in 휃 since the persistence lengths of ants 

are relatively large, then this glide speed coincides with the direction of tip growth 

for the given boundary conditions (see Fig. D.8) and provides one possible 

explanation for the bias in directional tip growth observed. Besides bulk directional 

motion seen in experiments and local directional gliding predicted by the model, we 
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also observed cases of protrusion initiation in regions of low boundary curvature that 

seemingly occurred when many ants approach the local edge simultaneously (Fig. 

D.5.G-H). In these cases, spontaneous directional motion appears to antecede locally 

strong confinement and wall accumulation, suggesting that directional motion may 

sometimes be the original cause of asymmetric growth. Similar systems of SPPs in 

confinement display tether-like growths attributed to local cooperative effects. For 

example, Vutukuri, et al. (2020) revealed that Janus particles inside 3D lipid vesicles 

initiate protrusions when multiple Janus particles undergo spontaneous synchronous 

motion and applying a cooperative local force on the vesicle wall [245]. Remarkably, 

these growths emerge in the absence of centralization or external gradients. Whether 

this is also the case in fire ants remains to be seen, as other potential causes of biased 

edge deposition, such as environmental cues or local pheromone signals (analogous 

to chemotactic agents [205]) have not been ruled out.  

 

While the model employed here helps interpret possible first and second order effects 

driving instabilities, it still possesses limitations in the context of fire ants. For 

example, it assumes a dilute system without local interactions. This presupposes that 

jamming does not occur and SPPs in strong confinement congregate entirely at the 

boundaries. Furthermore, this model assumes that density gradients reach a 

quasistatic state. However, this is not the case for fire ants, which exist at packing 

fractions anywhere between ∼ 0.2 and 0.8 free ants per structural ant, with local 

concentrations evolving ceaselessly. At these concentrations, ants appear to cluster 

and jam at certain locations, reflecting the phases that evolve in systems of SPPs with 

volume exclusion interactions [230]. Furthermore, this model steps the boundary 

continuously to preserve smooth functions in curvature space (𝜓, 𝜅 and 𝜕𝜅/𝜕𝑠) despite 

the acknowledged potential for discrete size effects in real ants. Finally, it coarse 
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grains directional deposition bias through �̂� and cannot elucidate its underlying 

cause(s). This motivates future work in which we will employ discrete, agent-based 

modelling to better understand the physics of this biological system, while also 

providing swarm roboticists and engineers with distilled, ant-inspired rules that may 

achieve complex functional tasks. 
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CHAPTER VI 

 

 

 COMPUTATIONAL EXPLORATION OF TREADMILLING AND 

PROTRUSION GROWTH OBSERVED IN FIRE ANT RAFTS  

 

In this penultimum chapter, we retrofit an iteration of the discrete network model to 

include the active features – monostructural raft layer contraction and outwards 

surface growth – that define ant raft treadmilling. Through this model, we unveil a 

set of stochastically occurring mechanisms that may explain the spontaneous 

emergence of protrusion growth for a treadmilling system such as the ant rafts, 

despite the omission of any long-range interactions, external gradients, or centralized 

control in the system. In doing so, we demonstrate the discrete network approach’s 

ability to elucidate possible origins of emergent functions and collective behaviors in 

active systems.  

 

6.1 Introduction 

 

Cooperative living systems can achieve a wide range of complex functional tasks well 

beyond the capabilities of the individuals that comprise them. Perhaps chief amongst 

such organisms are social insects, which can operate collectively with other members 

of their colonies to more efficiently construct nests [246], [247], thermoregulate [248], 

[249], and forage for food [250], [251]. Another fascinating example of cooperative 

behavior by social insects is the formation of rafts by fire ants (Solenopsis invicta) 

[210], [211]. During floods, fire ants condense into buoyant rafts made entirely of 

worker ant bodies, thereby keeping their colonies unified and bolstering chances of 

survival [210], [211]. Recently, we discovered and reported that rafts can maintain 
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the ability to explore, even in flooded environments, through cooperative 

morphogenesis [11].  

 

 
Figure 6.1. Treadmilling review. (A-C) A top view of the same experimental raft is illustrated at 

the (A) start, (B) middle, and (C) end of a roughly 106 min duration. To visually illustrate treadmilling, 

a set of structural ants at the perimeter is selected every 22 minutes. These ants are then image-

tracked as they flow inwards due to network contraction and the geometry defined by these ants is 

traced by a distinctly colored and numbered outline. The set of ants labeled “2” in (B), for example, 

corresponds to the same set of ants labeled “2” in (A), but roughly 53 min later.  The label “1” represents 

the oldest set of ants while “6” represents the newest. The shrinking of these contours indicates 

retraction of the raft structure, while the existence of new layers indicates outwards expansion. 

Periods of raft expansion and coinciding protrusion emergence (A,C) were interrupted by interstitial 

spans of decreased activity and less eccentric morphologies (B). All scale bars represent 10 ℓ where 

ℓ = 2.93 ± 0.60 mm is the approximate average body length of 1 ant. (D) A schematic visually 

illustrates the four concurrent mechanisms of treadmilling: (1) structural raft contraction at a global 

rate 휀̇, (2) transition of structural ants to freely active ants in the bulk at a nominal rate 𝛿, (3) transport 

of the free ants on top of the raft with a mean persistence length 𝑙𝑝, and (4) binding of free ants back 

into the structural network at the edges of the raft at nominal rate 𝛼. The schematic is taken from 

Wagner, et al. (2021). The freely active layer is offset from the structural layer for illustrative purposes 

only, as it resides directly on top of the structural network in real ant rafts. Furthermore, note that 

the freely active layer, while shaded continuously, is comprised of dispersed ants while the structural 

layer is relatively homogeneous and condensed.  
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In our previous work [11], we observed ant rafts containing on the order of 3,000-

10,000 worker ants. When introduced to water in which a vertical rod stemmed from 

the surface, these ants formed dynamic raft structures comprised of a floating layer 

of structural ants on top of which a layer of freely active ants walked [11]. While the 

structural network constituted a single, condensed layer of ants with roughly 

conserved planar density, the freely active layer was dispersed, heterogenous and 

transient on the timescale of seconds. Under these conditions, these rafts display the 

ability to sprout tether-like protrusions that emerge and recede perpetually over the 

span of hours [11]. The sustained emergence of these growths relies on treadmilling 

dynamics in which the structural network comprising the raft continually contracts, 

while freely active ants on the surface of the raft deposit into the structural network’s 

edges and drive outwards expansion (Fig. 6.1). The population of free ants that fuels 

outwards expansion is continually replenished by unbinding or “exit” of structural 

ants from the bulk of the raft and their subsequent transition into the freely active 

layer. We note that although the presence and dimensions of the anchoring rod may 

impact the behavior of fire ants in experiments, we here focus on how the 

experimentally measured, local behavior (e.g., trajectory properties, local 

interactions, etc.) of ants drives the treadmilling and formation of dynamic 

protrusions observed.  

 

In some cases, the ants utilized protrusions as floating bridges to reach the edge of 

and collectively escape their containers, demonstrating that they serve an adaptive 

advantage. Comparable cellular systems, such as cytoskeletal walls [252]–[254] and 

cellular aggregates [8], [255], display protrusion growth that, as in the case of fire ant 

rafts, facilitates motility and collective migration. While these cellular systems are 

understood to utilize chemotaxis [256], durotaxis [257] or other gradient-driven 
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mechanisms [258] to initiate migration, it is not entirely clear whether such external 

stimuli are necessary to drive protrusion growth in fire ant rafts. This raises the 

question; do fire ants deliberately work to create these protrusions or do these 

features emerge spontaneously in the absence of targeted signals or external 

gradients? Indeed, spontaneous behaviors such as flocking of plant-animal worms 

[259] or ordered motion of California blackworms [260] have been demonstrated in 

other condensed biological systems. However, the specific circumstances and 

adaptive advantages, under which these behaviors occur, differ greatly from the 

exploratory or escape function displayed by floating fire ant rafts.  

 

Spontaneous ordering is also well-documented in non-living active matter systems 

and indicates that no agent-intent is necessary to spur comparable formations [6], 

[241], [261]. Perhaps most similarly, Janus particles entrapped by lipid membranes 

have been shown to generate remarkably analogous geometries to these ant rafts due 

solely to stochastic, synchronous motion [245]. This occurs when a few neighboring 

Janus particles simultaneously apply force to the boundary that causes an acute 

increase in local edge curvature and runaway tether growth. Along these lines, in our 

previous work we treated freely active fire ants as decentralized self-propelled 

particles in confinement. We demonstrated that the trajectory persistence length of 

freely active ants is greater than the dimensions of the rafts they walk on. Under 

these “strongly confined” conditions, it is known that self-propelled particles cluster 

near the convex edges of their containment geometries [240], [241]. Employing a 

coarse-grained continuum model of ants on protrusions based on the work of Fily, et 

al. (2014) [241], we postulated a mechanism through which local breaks in convex 

symmetry at the rafts’ edges may induce a runaway feedback loop whereby the locally 

higher curvature causes clustering of free ants, and the higher concentration of free 
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ants causes a higher local edge deposition rate. Yet, we also demonstrated that a 

higher concentration of free ants alone does not lead to the elongated morphologies 

observed in the experimental system and there must exists some mechanism that 

biases the direction in which ants bind into the structural network [11]. While the 

hypothesized source of this bias is a first or second-order effect of the directional 

motion of free ants on protrusions [11], its true origins remain unclear and whether 

such protrusion may form in ant rafts due solely to local interaction rules alone is 

uncertain. However, further exploration through the continuum model is limited by 

smoothing assumptions that prohibit the investigation of phenomena such as 

individual ant behavior, heterogeneities, and discrete size effects. Additionally, 

exploration of this bias through experimentation is limited by factors such as small 

sample sizes (since protrusions must be allowed to occur spontaneously without 

interference), difficulty in image-tracking the position of free ants, and the inability 

to measure variables such as ant self-propulsion force. For these reasons, a discrete 

modeling approach such as that taken by Vutukuri, et al. (2020) [245] or other 

researchers in the study of ant species [262]–[267] is warranted.  

 

We here develop and employ a 2D, ant-inspired, agent-based, numerical model in 

which the behavior of every single ant in the structural and freely active layer is 

discretely captured. In matching the statistical behavior of agents to ants in both 

layers, we use this model to demonstrate that a set of local interaction rules predicts 

the emergence of spontaneous protrusion growth in the absence of any long-range 

communication or external gradients. These rules confirm that biased motion of free 

agents occurs on protrusions given the condition of strong confinement and local 

alignment interactions, and this directional motion facilitates the runaway growth of 

said protrusions, as hypothesized previously [11]. Furthermore, we use this model to 
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investigate another unexplored phenomenon: oscillatory phase changes in fire ant 

rafts between highly eccentric periods of outwards expansion accompanied by 

protrusion growth, and recessive periods in which the rafts assume more rounded or 

elliptical shapes (Fig. 6.1.A-C). Comparable cyclical changes in the mechanical 

properties of 3D aggregations of fire ants have been documented and attributed to 

shifts in the activity level of the overall population [214], [215]. We find here that 

morphological phases of ant rafts may similarly be modulated through the activity 

level of freely active ants on their surface as characterized by a dimensionless activity 

parameter 𝒜. This parameter represents the competition between ants’ self-

propulsion force, and their effective repulsion from the raft edge due to their dislike 

of water. In the remainder of this work, we introduce the model and confirm that it 

replicates the treadmilling dynamics observed experimentally. We then demonstrate 

that it predicts the spontaneous formation and runaway growth of protrusions, 

despite initially circular raft geometries. Finally, we explore how modulating activity 

induces phase transitions between periods of outwards, exploratory growth, and 

contractile withdrawal, as seen in experiments. 

 

6.2 Results 

6.2.1 Modeling ant rafts 

 

Here we overview the discrete numerical model used in this work to contextualize the 

results presented. Detailed derivations and implementation methods are provided, 

as needed, in Appendix E. We see in our previous work that treadmilling of ant rafts 

is driven by four concurring mechanisms: (1) perpetual contraction of the floating, 

structural ant network, (2) exit of structural ants out of the network into the freely 

active layer, (3) self-propulsion of the free ants on top of the raft, and (4) deposition 
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of free ants into the structural layer at the raft’s edges (Fig. 6.1.D) [11]. To capture 

these mechanisms, the model represents ants as discrete agents whose motions are 

confined to a lattice of water nodes. To represent the two-state nature of ant rafts, 

the model consists of a population of structural agents representing the raft’s 

structural network, on top of which a population of freely active agents moves 

dispersedly. These respective populations are denoted by the colors cyan and red 

throughout this text unless specified otherwise. The positions of structural agents 

and water nodes are updated in continuous space to capture the mechanism of 

structural network contraction. However, the movement of free agents is constrained 

to the lattice defined by the structural agents, thus naturally ensuring that free 

agents can only occupy the spatial domain of the raft. An illustrative schematic of two 

hypothetical free ants in continuous space is depicted in Fig. 6.2.A, while the 

corresponding conception of free agents in the lattice-based model is shown in Fig. 

6.2.B. Although the respective states of structural and free ants may consist of 

multiple layers distributed in the z-axis (depending on the time of inspection) [11], 

[210], we here choose to model each as a single layer of agents based on the 

experimental observation that during phases of protrusion growth, the structural 

network generally spread into a monolayer (with a planar density of 0.304 𝑎𝑛𝑡𝑠 𝑚𝑚−1) 

and the freely active layer was – on average – dispersed with a mean packing fraction 

of approximately 0.24 free ants per structural ant [11]. Fig. 6.2.C-E depicts snapshots 

of a simulated raft in which the monolayered structural network is represented by 

cyan lattice sites, and the dispersed active layer on top is depicted by red free agents. 

While these two states behave independently in the model, agents transition between 

them according to a set of ant-inspired rules.  
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6.2.2 Modeling structural agents. 

 

Based on experimental evidence we find that raft contraction is relatively constant 

in time [11]. In contrast the deposition of free ants that drives outwards raft 

expansion varies significantly over hours, with some free ants clustering near the rod 

in an inactive state. Therefore, in the scope of this work, our primary aim is to explore 

the local, free agent behavior that drives phase changes in these systems. Naturally, 

the model must still replicate the global treadmilling dynamics that are prerequisite 

to sustained shape change and for which global contraction is an essential 

mechanism. We found previously that the structural layer contracts uniformly 

throughout the network and that its density is roughly conserved even over long time 

frames [11]. To capture this uniform global contraction without introducing 

mechanisms that would require long-range cooperation, we introduce spatially 

continuous pairwise contraction between neighboring structural agents at a constant 

strain rate of �̇� [% 𝑚𝑖𝑛−1]. It remains unclear if structural ants contract towards all 

of their nearest neighbors or if they only contract to fill in voids originating at sites 

where ants recently exited the structural layer. Regardless, that global contraction is 

observed mandates that there exists microstructural contraction at some length 

scale, which we here enforce between all pairwise nearest neighbors for simplicity. 

This ensures that the mechanisms driving global contraction could feasibly be 

achieved by agents working through exclusively local interactions. Setting �̇� to 1.2 

times the globally measured contractile strain rate (휀̇) led to good agreement between 

experiments and simulations (Fig. 6.3.A-C) [11] (see Appendix E.2 for details). The 

fact that �̇� does not equal 휀̇ generally indicates that the local rate of contraction 

between nearest neighbors is higher than the emergent global rate, which is expected 

in a network due to non-affine effects [268].  
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To avoid hindering contraction, volume exclusion between structural agents is not 

enforced. However, unconstrained network contraction would lead to a ceaseless 

increase in structural ant concentration, which was not observed experimentally [11]. 

To ensure conserved planar network density structural agents are unbound and 

converted to freely active agents wherever their local quantity per unit area (i.e., their 

density) exceeds a prescribed threshold. This allows for robust exit of structural ants 

throughout the bulk, as observed in experiments [11]. To match experiments, this 

threshold was set to 1 agent per 휁2, where 휁2 is the area occupied by one experimental, 

structural ant (휁 = 𝜌𝑟
−0.5 = 1.81 ± 0.30 mm, where 𝜌𝑟 is the planar structural network 

density). Consequently, a numerical rate of structural unbinding, 𝛿 ∼ 2 % 𝑚𝑖𝑛−1, 

naturally emerged and matched experimental estimates (Fig. 6.3.F) [11], suggesting 

that 2 % of structural agents convert to freely active agents every minute. Thus, 

through this pairwise contraction, both global network contraction and flux of ants 

from the structural network to the freely active layer were achieved. Note that the 

structural agents provide a continuously updated lattice on which the freely active 

agents move, such that structural layer contraction also induces contraction of the 

free layer. However, active agents walk at speeds two orders of magnitude greater 

than that of the structural contraction such that the effect of contraction is negligible 

on free agents.  

 

6.2.3 Modeling freely active agents. 

 

While global contraction and bulk structural unbinding are essential in replenishing 

the population of freely active ants, it is ultimately the deposition of these free ants 

into the edge of the structural network that governs global shape evolution. This 
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deposition is largely dependent on the distribution of free ants at the edge, and 

therefore the transport of free ants on the surface of the raft. To model surface traffic, 

we begin with the qualitative observations that free ants are self-propelled agents 

whose trajectories under weak confinement are isotropic but correlated below the 

length scale of one ant body length (1 ℓ), indicating some degree of local alignment 

interactions [11]. To capture this local alignment, the phenomenological Vicsek model 

[261] is used to predict the preferred direction of motion of self-propelled agents as 

they traverse the structural lattice. Through this model, the preferred angle of motion 

of free agent 𝑖 at time 𝑡 + 𝛥𝑡 is updated according to [269]: 

휃𝑖(𝑡 + 𝛥𝑡) = ⟨휃𝑗(𝑡)⟩
𝑖

+ 𝜉𝑖(𝑡),       (6.1) 

where ⟨휃𝑗(𝑡)⟩
𝑖
 is the average orientation, 휃, of all neighboring freely active agents 

(including agent 𝑖) at time 𝑡. Neighboring agents are denoted by the index 𝑗 and 

defined as free agents residing within some detection distance, 𝑅, of agent 𝑖. Note that 

raft agents exert no influence on active force since they reside beneath the plane of 

active agents and move at considerably slower speeds. The scalar value 𝜉𝑖 induces a 

random change in agents’ directions within the uniformly distributed range [−𝜋휂, 𝜋휂], 

thus coarsely capturing decision-based noise in ants’ trajectories. Here 휂 ∈ [0,1] is the 

noise parameter introduced by Vicsek, et al. (1995) [261] (Fig. 6.2.A), whereby if 휂 =

0 there is no noise and if 휂 = 1 the movement of agents is completely random. The 

Vicsek model is a minimalist model for active particle motion that may capture a full 

spectrum of phases from fully isotropic motion (at low densities or high noise) to 

completely uniform movement (at high densities or low noise), and which depends on 

just three parameters: particle density, the radius of influence (𝑅) and noise (휂) [261]. 

Therefore, it is favored for its versatility, simplicity and is applied here given the 

experimental evidence that there exists mutual interactions between free ants, albeit 

only at the contact length scale [11]. Although this model is commonly used to capture 
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collective motion driven by non-local interactions between self-propelled particles, it 

is not exclusive to collision-avoiding particles, and we here set 𝑅 such that only 

neighbors in contact may directly influence one another. In this lattice-based 

framework, 휂 and 𝑅 are taken as 0.2 and 0.9 ℓ, respectively, in order to replicate the 

experimentally measured persistence length, 𝑙𝑝, of free ant trajectories far from rafts’ 

edges [261] (see the Appendix E.3 for details).   

 

At every timestep, Eqn. (6.1) is used to define the preferred direction of motion for 

each free agent. However, since free agents are constrained to the lattice of structural 

agents, Eqn. (6.1) is not used to step their positions continuously. Instead, each agent 

is assigned (at most) 18 movement degrees of freedom (DOF) that may consist of 

either structural agents or water nodes, but which must exist within some distance 

𝑅𝐷𝑂𝐹 of agent 𝑖 (see Appendix E.3 for selection of 𝑅𝐷𝑂𝐹). Note that 𝑅𝐷𝑂𝐹 naturally 

constrains the maximum speed of free agents to 𝑣𝑚𝑎𝑥 = 𝑅𝐷𝑂𝐹/𝛥𝑡, and defines some 

mean distance, ⟨𝑑⟩, between agent 𝑖 and its neighboring DOF. Indeed, this permits 

that the time step be set to according to 𝛥𝑡 ≈ ⟨𝑑⟩/𝑣0, where 𝑣0 is the experimentally 

measured mean free ant speed, thereby calibrating the timescale of this model. Once 

휃𝑖 is computed, agent 𝑖 is then stepped to the position of the “eligible” DOF whose 

relative orientation most closely matches 휃𝑖 (see Appendix E.3 for details). Eligibility 

is defined by a set of ant-inspired criteria. Firstly, structural DOF are ineligible if 

they are already occupied by a free agent. This mimics volume exclusion interactions 

between free ants (i.e., that two ants cannot occupy the same space) and naturally 

enforces that the freely active agents occupy a monolayer and remain relatively 

dispersed as in experiments [11]. Secondly, eligible DOF must exist within the 

confines of some turning limit (±𝜋/2 𝑟𝑎𝑑𝑖𝑎𝑛𝑠) with respect to 휃𝑖. This turning limit 

was included due to the observation that it takes free ants greater than 𝛥𝑡 to turn 
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more than approximately 𝜋/2 radians, thereby limiting the turning rate of agents 

using an approach similar to that of Couzin and Franks (2003) in their investigation 

of army ants (Eciton burchelli) [267]. Finally, if the preferred DOF is a water node 

then an additional rule of edge deposition must be satisfied to allow movement, as 

discussed in the following section. If a free agent has no eligible movement DOF, it 

pauses before re-evaluating its preferred direction of motion according to the 

algorithm described in Appendix E.3. 

 

6.2.4 The rule of edge deposition. 

 

To properly model edge deposition, we again begin with experimental observations. 

Active ants appear to “encounter” the raft’s edge when they walk directly towards it 

and contact the water. These ants avoid binding into the raft’s edge (which requires 

moving into the water) unless pressured by neighboring active ants and adequately 

surrounded by structural ants upon deposition into the network. Together, these 

observations indicate competition between some effective active force 𝑭𝑖
𝑎 due to a free 

ant’s self-propulsion combined with that of its nearest neighbors, and some effective 

edge repulsion force 𝑭𝑖
𝛤 that occurs at the perimeter of the raft. Here, 𝑭𝑖

𝛤 is not a 

physical force, but rather an embodiment of ants' motivation to stay on dry substrates 

and is akin to the "social forces" employed by Helbing and Molnár (1995). Whether or 

not it is due to free ants' affinity to the raft, aversion to water, or both is not 

immediately clear or relevant. Nevertheless, there is a clear observational tendency 

for individual ants to avoid moving into the water under their own volition.  
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Figure 6.2. Agent-based model schematic. (A) Two free ants of interest (red) are schematically 

illustrated on a structural section of raft (shaded cyan) in continuous space. Other free ants are shaded 

grey. The direction of motion (�̂�𝑖 = [𝑐𝑜𝑠 휃𝑖 , 𝑠𝑖𝑛 휃𝑖]) of the ant far from the edge of the raft (left) is 

predicted entirely by the Vicsek model. In contrast, whether the ant encountering the edge of the raft 

(right) moves into the water, depends not only on �̂�𝑖, but also on the competition between active force 

𝑭𝑖
𝑎 and the effective edge repulsion force 𝑭𝑖

𝛤.6 Each of these forces is governed by the motion of free 

ants and relative position of water within detection distance 𝑅 of the ants. (B) A corresponding 

schematic envisions how these continuous scenarios are coarse-grained into the lattice-based 

framework of the numerical model. The motion of the free agents of interest (red) remains governed 

by the direction of travel (white arrows) of neighboring free agents, and effective pairwise repulsion 

(black arrows) from neighboring water nodes within distance 𝑅. However, free agent movement is 

updated by stepping the free agents to the adjacent structural agents (cyan) or water nodes (white) 

whose relative direction most closely matches the preferred direction, 휃𝑖. Nodes are displayed in a 

hexagonal, close-packed lattice for illustrative purposes only, but are initially offset in both directions 

of the horizontal plane by some amount in the range [−1/6,1/6] 휁 and are further randomized by 

stochastic structural unbinding events as the simulation progresses. (C-E) The shape evolution of a 

simulated raft over a duration of 20 min (of virtual time), illustrates the implementation of the lattice-

 
6 In the remainder of this work the indices,  (as depicted in Fig. 6.2.A) and  denote the agent of interest and its 

influencing neighbors, respectively, rather indicating vector values. Vectors are instead denoted by bold text. Where 

indicated, index  is replaced by , , or  to specify neighboring free (surface) agents, structural (raft) agents, or water 

nodes, respectively. Combined indices (e.g., “”) are used to denote pairwise values or values from  to , rather than 

second order tensors. 
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based conceptualization from (B) into the numerical model. Shape change is governed by the transition 

of free agents (red) into the structural network (cyan) at the raft’s edge. The raft depicted was initiated 

as a circle and all scale bars represent 10 ℓ. (F-G) Agents encountering water in regions of (F) high 

and (G) low edge curvature are depicted. These respective agents experience high and low values of 𝑭𝛤 

due to the pairwise contributions of repulsion force from detected water nodes (black arrows). The 

agent in (F) has no freely active neighbors such that the only contribution to its value of 𝑭𝑎 is its own 

self-propulsion force (white arrow), whereas the agent in (G) has many freely active neighbors moving 

in similar directions towards the water such that it has a high value of  𝑭𝑎 oriented off the raft. (F-G) 

Insets display the vectorial sums that define the effective forces 𝑭𝑎 (red) and 𝑭𝛤 (blue) for the respective 

agent configurations, thus illustrating how the agent in (G) is more likely to edge-deposit based on 

Eqn. (6.2). 

 

To mimic these experimental observations, we define an edge encounter as occurring 

when a free agents’ preferred movement DOF is a water node. We then compute 𝑭𝑖
𝑎 

and 𝑭𝑖
𝛤, and simply define an edge deposition event as occurring when the magnitude 

of active force driving the agent off the raft is greater than the magnitude of effective 

edge force repelling it from the water, in the direction of agent motion (�̂�𝑖 =

[𝑐𝑜𝑠 휃𝑖 , 𝑠𝑖𝑛 휃𝑖]). Mathematically, this is given by: 

(𝑭𝑖
𝑎 + 𝑭𝑖

𝛤) ⋅ �̂�𝑖 > 0.         (6.2) 

To compute 𝑭𝑖
𝑎 we coarsely assume that self-propulsion forces are fully transmitted 

between in-contact free agents such that: 

𝑭𝑖
𝑎 = 𝑁𝑓𝑎𝝋𝑖

𝜎,          (6.3) 

where 𝑓𝑎 is the magnitude of a single agent’s self-propulsion force and 𝑁 is the 

number of neighboring free agents (𝜎 ∈ [1, 𝑁], inclusive of 𝑖) residing within the 

contact radius 𝑅. Here, 𝝋𝑖
𝜎  is the local order vector in free agent motion defined by 

𝝋𝑖
𝜎 = 𝑁−1 ∑ �̂�𝜎

𝑁
𝜎  where �̂�𝜎 is the direction of motion (�̂�𝜎 = [𝑐𝑜𝑠 휃𝜎 , 𝑠𝑖𝑛 휃𝜎]) of 

neighboring free agent 𝜎. The local order vector is 𝟏 when all local free agents are 

moving in the same direction, and approaches 𝟎 when the local movement is 

completely disordered [226]. Therefore, 𝑭𝑖
𝑎 scales with the degree of local 

synchronization (or cooperation) between free agent motion through 𝝋𝑖
𝑎, and is bound 

by the number of locally detected neighbors, 𝑁. 
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Figure 6.3. Comparing treadmilling dynamics. (A-B) The gradient of contractile speed, �̇�, towards 

the anchor point of the rafts (red dot) is illustrated via heat maps within defined regions of interest 

(ROIs) for both (A) an experimental and (B) simulated raft. �̇� was computed as the component of speed 

moving towards the stationary reference frame (i.e., the acrylic rod) and was measured for every point 

within these 2D ROIs, then averaged over durations exceeding 13 minutes. Scale bars represent 10 ℓ. 

(C) �̇� is plotted with respect to distance from the anchor point, 𝑟, for both the experiment (discrete red 

squares) and simulation (solid black curve). The slopes of the least-squares regression lines are taken 

as the average contractile strain rate 휀̇. The experimental strain rate (휀̇ = 1.63 ± 0.01 % 𝑚𝑖𝑛−1,  𝑅2 =
0.96) agrees with the numerical value (휀̇ = 1.62 % 𝑚𝑖𝑛−1, 𝑅2 = 0.99). (D-E) The growth zones of both (D) 

an experimental and (E) simulated raft after roughly 50 min are shaded in cyan. Scale bars represent 

15 ℓ. The bound ants that occupied the perimeter of the raft at reference time, 𝑡0 = 0, are outlined in 

red and were traced through time. (F) The time-evolution of the edge binding rate, 𝛼, and bulk 

unbinding rate, 𝛿, as a percentage per unit raft area are shown for two sets of experiments (squares 

for 𝛼 and triangles for 𝛿; red and black for two different experiments) along with the averaged results 

of 12 simulations (continuous black curves). Note that the initial drops in both 𝛼 and 𝛿 for the 

simulation data occur since the raft was not initiated at steady state, whereas experimental data was 

only sampled at pseudo-steady state. (A,C,D,F) Experimental results are courtesy of Wagner, et al. 

(2021). All simulated rafts were initiated as circles and shape was allowed to evolve stochastically. 

 

To compute 𝑭𝛤 we consider that there exists some effective pairwise repulsive force, 

𝒇𝑖𝜔
𝛤 , acting on agent 𝑖 due to each of its 𝑁 adjacent water neighbors (𝜔 ∈ [1, 𝑁]) within 

distance 𝑅. Treating this force as the negative gradient in potential energy between 

the positions of node 𝜔 and agent 𝑖 (i.e., 𝒇𝑖𝜔
𝛤 = −𝛻𝒓𝑈),  assuming the simplest case of 

a linear energy gradient between these sites, and recognizing that detection distance 

𝑅 is the contact length scale (i.e., 𝑅/ℓ ∼ 1) then we may take the magnitude of 𝒇𝑖𝜔
𝛤  as 

a constant, 𝑓𝛤 (see Appendix E.3 for details). Assuming a linear superposition of the 
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pairwise forces then the net repulsive force on 𝑖 may be computed as the sum of 

discrete contributions [270] from all 𝑁 water neighbors as: 

𝑭𝑖
𝛤 = −𝑁𝑓𝛤𝝋𝑖

𝜔,         (6.4) 

where 𝝋𝑖
𝜔 is a local order vector (𝜑𝑖

𝜔 ∈ [0,1]) indicating the relative position of water 

nodes with respect to 𝑖. Mathematically, 𝝋𝑖
𝜔 = 𝑁−1 ∑ �̂�𝑖𝜔

𝑁
𝜔  where �̂�𝑖𝜔 = (𝑿𝜔 −

𝑿𝑖)/|𝑿𝜔 − 𝑿𝑖| is the direction vector from the position of 𝑖 (𝑿𝑖) to the position of 𝜔 (𝑿𝜔), 

which points towards the average location of detected water nodes. The magnitude of 

𝝋𝑖
𝜔 increases as the relative orientation of these water nodes becomes more tightly 

grouped with respect to 𝑖 (e.g., if all detected water nodes are approximately in-line 

with and on one side of 𝑖, then 𝝋𝑖
𝜔 → 𝟏). As a result, 𝑭𝑖

𝛤 scales proportionately to the 

amount of water detected through 𝑁 and acts approximately in the direction normal 

to (and inwards from) the raft's boundary through −𝝋𝑖
𝜔.  

 

Substituting Eqns. (6.3) and (6.4) into (6.2) provides a normalized condition for edge 

deposition: 
𝑓𝑎

𝑓𝛤 (
𝑁𝜎𝜑𝜎

𝑁𝜔𝜑𝜔) > 1 ⇔ 𝐷𝑒𝑝𝑜𝑠𝑖𝑡,        (6.5) 

where 𝜑𝜎 = 𝝋𝑖
𝜎 ⋅ �̂�𝑖, 𝜑𝜔 = 𝝋𝑖

𝜔 ⋅ �̂�𝑖, and we have distinctly labeled the number of 

neighboring free agents and water nodes as 𝑁𝜎 and 𝑁𝜔, respectively. Scalars 𝑁𝜎𝜑𝜎 

and 𝑁𝜔𝜑𝜔 are numerically measured values that characterize the respective 

magnitudes of the active and repulsive forces in the direction of motion, and which 

depend only on the local configuration of the discrete system as illustrated through 

examples in Fig. 6.2.F-G. Therefore, the only parameter introduced through this edge 

deposition rule is the dimensionless ratio 𝒜 = 𝑓𝑎/𝑓𝛤, which characterizes the 

competition between a free agent’s self-propulsion force and its effective repulsion 

from water. As such, 𝒜 is the parameter that mediates global expansion and shape 

change of the rafts. Supposing that an ant’s aversion to water is relatively consistent 
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(i.e., that 𝑓𝛤 is constant), then 𝒜 is representative of the active force or “activity” of 

free ants, where high activity is synonymous with high 𝑓𝑎. Increasing 𝒜 results in an 

increase in the left-hand side of Eqn. (6.5), thereby escalating the overall edge 

deposition rate per free agent. With the edge deposition rule implemented, a mean 

expansion (or edge binding) rate of 𝛼 ∼ 2 % 𝑚𝑖𝑛−1 naturally emerged for the overall 

rafts and automatically matched the experimentally measured values once pseudo-

steady state treadmilling occurred (𝛼 ≈ 𝛿) (Fig. 6.3.D-F). This rate may be 

interpreted as the percentage of structural agents that are newly added to the 

network’s edge each minute.  

 

6.2.5 Protrusions emerge spontaneously.  

 

To model experiments, we ran simulations with 2,250 agents for up to 4.5 hours of 

simulation time, letting the rafts reach quasi-steady state treadmilling (defined by 

𝛼 ≈ 𝛿). To roughly mimic the dense, spheroidal shapes of the experimental ant 

aggregations when initially placed into water and to assure that protrusions form 

stochastically, all simulated rafts were originated as circles with a free agent packing 

fraction of 𝜙 = 1 freely active agent per structural agent (Fig. 6.5). To provide a still 

reference frame and mimic the anchored boundary conditions of experimental rafts, 

a permanent structural agent was located at the center of the domain and fixed in 

place. With both the pairwise contraction rate (�̇� = 1.9 % 𝑚𝑖𝑛−1) and Vicsek model 

parameters (𝑅 = 0.9 ℓ and 휂 = 0.2) independently calibrated to match experimental 

treadmilling and free ant trajectories, respectively, ant activity (𝒜) remained the only 

free parameter driving freely active agent behavior and global shape evolution.  
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Despite the initially circular shape of each raft, when 𝒜 was on the order of 1.25 to 

1.47 the model consistently predicted the unstable growth of protrusions. For the 

purposes of this work, we define a protrusion as any elongated region of structural 

network branching from the raft whose width is less than half of the mean ant 

persistence length (0.5 × 𝑙𝑝 ≈ 10 ℓ), and whose length is greater than or equal to its 

width (i.e., aspect ratio ≥ 1). In contrast, bulk sections of raft are defined as 

continuous regions of structural network whose dimensions exceed 𝑙𝑝 in all directions, 

and which exists at least a distance of 2 ℓ from the raft’s boundary to account for the 

correlated trajectory length scale of free ants (∼ 1 ℓ). To determine if the predicted 

protrusions had the same characteristic length scale and dynamics as experimental 

protrusions, we measured their average widths, 𝑊, and growth rates, 𝑉, over time. 

The widths of simulated protrusions ranged from roughly 2 to 9 ℓ, with a mean value 

of 5.95 ± 0.05 ℓ that agrees with the experimental value of 5.85 ± 0.06 ℓ (Fig. 6.4.A) 

[11]. Similarly, the tip-growth rates of the model-predicted protrusions ranged from 

roughly -1 to 3 ℓ 𝑚𝑖𝑛−1, with a mean value of 0.46 ± 0.02 ℓ 𝑚𝑖𝑛−1 (Fig. 6.4.B). While 

not exactly matching the experimental mean of 0.74 ± 0.05 ℓ 𝑚𝑖𝑛−1 [11], these growth 

rates are on the same order and are adjustable through 𝒜. The model also allowed us 

to easily quantify the distinct behaviors of freely active agents, enabling us to confirm 

the factors leading to spontaneous protrusion initiation and runaway growth.  

 

We confirmed that protrusion initiation is driven by stochastic nucleation of transient 

ant clusters, which occurred frequently near the rafts’ convex edges, and are 

primarily attributed to wall-accumulation effects [239]–[241], [269], [271]–[273]. 

These clusters often caused concentrated edge-deposition of freely active ants 

resulting in local regions of high edge curvature that served as proto-protrusions. 

Following this, the model predicted directional flow of freely active ants along 



159 

 

 

protrusions’ lengths consistent with what was observed previously in experiments 

and which is largely attributed to the strong confinement of particles in these regions 

wherein their persistence lengths exceed that of the protrusions’ confining widths 

[11], [240], [241]. While similar clustering is predicted by the continuum model 

previously adapted and modified [11] from Fily et al. (2014), several limitations exists 

for said model, such that the causes of clustering and directional motion in the case 

of ant rafts are likely better captured by this discrete approach. First, the continuum 

approach requires a smoothly differentiable raft boundary and predicts that particles 

will “slide” directly along the edge of confinement until they reach a local minimum 

in the convex radius of curvature or hit a concave region of edge curvature (at which 

point they will “jump” tangentially across the domain and back to the opposite 

boundary) [240].  

 

This smoothing prohibits the study of edge defects whose sizes are on the order of 

single ants (e.g., vacancies or small protuberances of just a few ants), as the 

continuum model would predict that these defects simply interrupt sliding along the 

edge. However, in this coarse-grained lattice model, the raft’s edge defects naturally 

occur at the length scale of an agent. These defects sometimes interrupted free agent 

motion along the edge given the movement and edge deposition rules implemented 

here, causing agents to pause temporarily and then reorient. Despite these defects, 

the discrete model still predicted directional alignment (Fig. 6.4.C-F) and tip 

clustering (Fig. 6.4.K-L) on protrusions, exemplifying robustness in these features, 

as seen in physical experiments [11]. One possible explanation is that, on protrusions, 

agents jammed at edge defect sites, were influenced, and frequently realigned with 

the motion of uninterrupted agents nearby on the bulk such that directional motion 

resumed. Thus, the effects of volume exclusion, alignment interactions, and bulk 
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movement – none of which could be examined through the continuum approach – 

propagated the effects of strong confinement inwards (away from the rafts’ edges) and 

facilitated directional motion. 

 

Visually, directional motion on a protrusion is represented in Fig. 6.4.C-F wherein 

the trajectories of free ants or agents are depicted in regions of interest both on 

protrusions (Fig. 6.4.C and 6.4.E) and bulk sections far from the rafts’ edges (Fig. 

6.4.D and 6.4.F). The direction of motion is represented by a spectrum of colors per 

the color wheel in Fig. 6.4.E, which is oriented such that leftwards movement is 

depicted by shades of orange. For both experiments and the model, a bias in 

directional travel is clearly illustrated on protrusions from their bases to their tips, 

as indicated by the prevailing orange hues of trajectories (here entailing leftwards 

motion). In contrast, on the bulk it is more difficult to assign a single predominant 

hue, indicative of more isotropic movement. However, clusters of synchronous motion 

still appear to occur in all regions of interest on the order of 1 ℓ (consistent with the 

findings of Wagner, et al. (2021)), making an objective visual analysis difficult. To 

instead quantify differences in directional motion, we compared the normalized 

velocity order parameter of free ants and agents (members) on protrusions, defined 

by 𝜑 = ⟨𝒗(𝑡)⟩𝑁/⟨|𝒗(𝑡)|⟩𝑁 where 𝒗 is the velocity of a particle and ⟨⟩𝑁 denotes taking 

the ensemble average over all 𝑁 members [226]. This parameter is zero when motion 

is completely isotropic but approaches 1 when movement is perfectly unidirectional. 

We found that in both experiments and simulations, 𝜑 was on average higher for 

freely active members on protrusions than on the bulk of the raft. For the 

experimental raft depicted in Fig. 6.4.C-D, 𝜑 = 0.65 ± 0.02 on the protrusion versus 

𝜑 = 0.57 ± 0.02 on the bulk [11]. Similarly, for the simulated raft depicted in Fig. 

6.4.E-F, 𝜑 = 0.64 ± 0.12 on the protrusion versus 𝜑 = 0.33 ± 0.06 on the bulk. In both 
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cases, comparably sized domains were used to compute 𝜑 and the relatively larger 

values of 𝜑 on protrusions confirms that the confinement of protrusions induces 

higher directional motion than that observed on the bulk. However, 𝜑 does not 

indicate the orientation or sense of said directional motion.  

 

To further examine in which orientation freely active members preferentially 

traveled, we also investigated their velocity distributions on and off protrusions, from 

both experiments (Fig. 6.4.G-H) [11] and an ensemble of 11 in silico protrusions (Fig. 

6.4.I-J). The elongation of velocity distributions along the length of protrusions 

confirms that traffic moves primarily along these structures’ longitudinal axes, 

whereas the velocity distributions on the bulk (Fig. 6.4.H and 6.4.J) appear uniform, 

indicating isotropic motion, thus supporting the interpretations of Fig. 6.4.C-F. 

Furthermore, the biased sense of motion is also exemplified by the velocity 

distributions on protrusions, which are slightly skewed left for both experiments (Fig. 

6.4.G) and simulations (Fig. 6.4.I), implying motion from the bases-to-tips of 

protrusions. When directional traffic occurred towards the tips of protrusions, it 

induced jamming of freely active agents at their ends (Fig. 6.4.K-L) and high 

magnitudes of 𝑭𝑎, similar to the locally high pressures exerted by confined Active 

Brownian Particles on highly convex regions of confinement curvature [241], [274]. 

This locally high active force accentuated edge binding and tip growth. Ultimately, 

runaway protrusions result from a positive feedback loop wherein cluster formations 

initiate protrusions that in turn promote directional traffic, spurring further tip 

clustering and growth. Indefinite growth of protrusions is checked by both the 

perpetual raft contraction and finite population of freely active agents, such that 

within an appropriately large domain the protrusions did not reach the simulation’s 

boundaries. 
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Figure 6.4. Comparing protrusion dynamics. (A-B) Probability mass functions are shown for (A) 

the average protrusion widths, 𝑊, and (B) growths rates, 𝑉of more than 400 experimental observations 

(grey) and numerical observations (light red) each. Here, 𝑅 = 0.9 ℓ, 휂 = 0.2 and 𝒜 ∈ [1.25,1.47].  (C-D) 

The direction of motion of free ants on experimental sections of (C) a protrusion and (D) the bulk of a 

raft are visually illustrated with the color of a free agent representing its direction of travel during one 

frame-to-frame observation. (E-F) The same visual analysis is made for sections of (E) a protrusion 

and (F) the bulk of a simulated raft, where the direction of travel is measured between one timestep. 

(C-F) Colors are assigned according to orientation based on the color wheel depicted in (E). (G-J) 2D 

velocity distributions are shown, courtesy of Wagner, et al. (2021). (G-H) correspond to (C-D), 

respectively, while (I-J) are the ensembled results from 11 in silico protrusions and on the order of 

100,000 discrete velocity observations, each. A simulated protrusion at the start (K) and end (L) of a 

roughly 21 min duration exhibits how directional motion on protrusions culminates in clustering of 

freely active agents (black circles) at the tip and rapid, anisotropic growth. (A-B,C-D,G-H) 

Experimental results are courtesy of Wagner, et al. (2021). Scale bars in (C,E,K,L) represent 10 ℓ. All 

simulated rafts were initiated as circles such that the in silico protrusion growths depicted (and from 

which data were collected) occurred stochastically. 
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6.2.6 Activity level modulates shape. 

 

Having confirmed that local-level agent interactions can lead to spontaneous 

instabilities, we then sought to understand the local behavioral changes that could 

lead to long-term variation in experimentally observed raft shapes by exploring the 

effects of 𝒜 over the range of 0.81 to 3.23. Results are summarized in Fig 6.5 and 

Fig. 6.6.A where we visually present the effects of activity on the raft configurations 

during and after 1.5 hours of simulated time, respectively. From Fig. 6.5, we see that 

no protrusions emerged when 𝒜 = 1.08, whereas protrusions emerged within the first 

30 𝑚𝑖𝑛 and 2 𝑚𝑖𝑛 when 𝒜 = 1.80 and 2.31,  respectively. Similarly, while there are 

numerous protrusions stemming from the rafts in Fig. 6.6.A when 𝒜 ≥ 1.47, there 

were no distinct protrusions on the rafts when 𝒜 ≤ 1.16, based on the definition 

provided earlier (i.e., width ≤ 10 ℓ and length ≥ width). This is illustrated in Fig. 

6.6.B by samples of the local edge curvature, each of which displays roughly the 

smallest geometric edge feature of its respective raft. Generally, these results indicate 

that higher 𝒜 promotes higher edge deposition rates that induced more frequent 

protrusion growth and more eccentric global shapes.  

 

To quantitatively characterize global shape, we introduce a dimensionless parameter 

called surface excess defined by 𝑆 = 𝐶/(2√𝐴𝜋), where 𝐶 and 𝐴 are a raft’s perimeter 

length and area, respectively. 𝑆 = 1 for a circle and increases with a shape’s 

eccentricity, thus higher 𝑆 indicates the presence of more numerous or more 

elongated protrusions. Maximum surface excess and mean surface packing fractions 

of model results are presented in Fig. 6.6.C. Maximum (as opposed to mean) surface 

excess is presented to transparently indicate the peak degree of eccentricity achieved 

by the raft and exclude the inherently low surface excess of the initially circular rafts. 
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Moving from left to right in Fig. 6.6.C there is a continuous phase transition in the 

activity range of 𝒜 = 0.95 to 2.02 indicated by the smooth curve of surface excess from 

low (𝑆 ≈ 1.2) to high (𝑆 ≈ 2.8). Likewise, there is a smooth transition of free active 

agent packing fraction from high (𝜙 ≈ 1 implying almost no edge binding, 

whatsoever) to low (𝜙 ≈ 0.06, indicating relatively high edge binding rates) as 𝒜 

increases. These phases are analogous to those observed in Fig. 6.1.A and Fig. 6.1.B, 

respectively. 

 

 
Figure 6.5. Dynamic effects of activity level. Snapshots of modelled rafts at different simulation 

times (𝑡) and activity levels (𝒜) are depicted to illustrate the effect of 𝒜 on raft development. The raft 

on the far left depicts the initial conditions which were the same for each simulation throughout this 

work (a circular raft with 𝜙 = 1). On the right each row depicts a single raft as it evolves in time 

(moving from left to right along the horizontal axis). For all simulations shown, 휂 = 0.2 and 𝑅 = 0.9 ℓ. 

Structural agents are depicted in cyan, while dispersed free agents are depicted in red.  The scale bar 

in the top right is universal to all snapshots and represents 14 ℓ.  

 

Besides dictating the global presence of protrusions, 𝒜 also impacts the local shape 

of these tethers. Specifically, higher 𝒜 diminishes the characteristic widths and tip 

radii of growths as illustrated in Fig. 6.6.B. To quantify this, the mean protrusion tip 

radius, ⟨𝑅𝜅⟩, (or convex edge radius for rafts in which no protrusions emerged) is 

plotted with respect to 𝒜 in Fig. 6.6.D.  Examining Fig. 6.6.D, 𝒜 ≤ 0.95 
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distinguishes a region in which ⟨𝑅𝜅⟩ ≈ 10 ℓ, which is approximately the same as the 

initial raft radius and is exemplary of the lack of growth at low activities. However, 

for 𝒜 > 0.95, ⟨𝑅𝜅⟩ decreases monotonically, indicating that regions of lower convex 

edge radius (or higher curvature, 𝜅 ≡ 𝑅𝜅
−1) begin to emerge as activity is increased. 

However, Fig. 6.6.D confirms that when 𝐴 ≤ 1.16, the edge radii of growths were 

typically greater than 5 ℓ, suggestive of widths greater than 10 ℓ and mandating that 

growths such as those depicted in Fig. 6.6.B for 𝒜 ≤ 1.16 are not classifiable as 

protrusions given our prescribed definition. In the region defined by 𝒜 > 1.16, ⟨𝑅𝜅⟩ 

appears to approach and eventually reach the limit ⟨𝑅𝜅⟩ → 0.5 ℓ, which represents a 

protrusion tip whose width is just one agent (∼ 1 ℓ) and is therefore the limit in this 

discrete system.   

 

Mlot, et al. (2011) estimated the capillary length of ant rafts on the order of 10 ℓ. 

However, from these results we see that raft edge curvature is dependent on activity, 

and therefore relatable to the length scale, 𝐿 = ℓ/𝒜. When 𝒜 is low (𝐿 is high), we 

see smoother raft geometries (higher capillary length) with lower surface excess and 

edge curvature. In contrast, when 𝒜 is increased, 𝐿 diminishes permitting the 

emergence of more, but narrower, protrusions. In essence, higher free agent activity 

reduces effective surface tension of the overall rafts, warranting a comparison of 𝒜 

to temperature [275] in non-active materials whose surface tensions generally 

diminish as temperature increases [276]. Worth noting is that when 𝒜 is sufficiently 

large, the rate and azimuthal homogeneity of edge binding are high enough that 

expansion appears to approach an isotropic state. This is reflected by the reduction 

in the number and size of protrusions displayed by the raft in Fig. 6.6.A when 𝒜 =

3.23. It is likely that as 𝒜 increases, the propulsion force of a single agent 𝑓𝑎 

eventually becomes sufficient to cause edge binding anywhere along the raft’s edge, 



166 

 

 

reducing the relative significance of local raft geometry and cooperative force 𝑭𝒂. 

Significantly, this suggests that there is, in fact, an optimal surface activity level for 

inducing an exploratory phase in systems that obey this model, which occurs when 

1.16 < 𝒜 < 3.23. 

 

To demonstrate how 𝒜 may alter the phases of protrusion growth and non-growth, 

we modulated 𝒜 within a given model experiment to a value above (𝒜 = 1.6) and 

below (𝒜 = 1.1) the phase transition threshold (see Fig. 6.6.E-K). Indeed, this 

effectively toggled the raft between exploratory phases of high surface excess (e.g., 

Fig. 6.6.H and 6.6.J) and low surface excess wherein no protrusions were present 

(e.g., Fig. 6.6.I), comparable to what was observed in experiments when free ants 

ceased activity. Worth noting is that the second phase of experimental protrusion 

growth (Fig. 6.6.G) did not reach the same magnitude of surface excess as the initial 

phase (Fig. 6.6.E), suggesting that either the activity level did not fully recover to its 

original state or not enough time was spent in this more active state to resume 𝑆 ≈ 2. 

Consequently, surface excess of the second simulated phase of protrusion growth 

(Fig. 6.6.J), exceeds that of the experimental surface excess. It is reasonable to 

assume that 𝒜 evolves roughly continuously for a real ant raft of thousands of 

individuals, however 𝒜 in the model was modulated via a binary step function, thus 

likely contributing to the abrupt resumption of high 𝑆. Regardless, activity level’s 

effect on raft shape is made clear. 
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Figure 6.6. Ant activity phases. (A) Snapshots of initially circular, simulated rafts are shown after 

1.5 hours of simulation time. Here, 휂 = 0.2, 𝑅 = 0.9 ℓ and 𝒜 ∈ [0.81,3.23]. (B) Snapshots of protrusions, 

each representing the minimum observed radius of tip curvature from its raft at final simulation time, 

are depicted for each of the respective values of 𝒜. The black line cropping each snapshot at its bottom 

is an open border to the remainder of the raft. The values of 𝒜 yielding each morphology for (A-B) are 

denoted beneath each snapshot in (B). (C) Mean freely active agent packing fraction, ⟨𝜙⟩, (blue) and 

maximum surface excess, 𝑆𝑚𝑎𝑥, (red) are plotted with respect to 𝒜, and averaged over 5 simulations 

at each value of 𝒜, with error bars presenting standard error of the mean. Horizontal dotted lines in 

(C) represent the experimentally measured values of 𝜙 = 0.24 and 𝑆𝑚𝑎𝑥 ≈ 1.8. The bounds of the 

parameter space that matches experiments are marked where these respective lines intersect the 

numerical data (see “Exp. Match Zone” between 𝒜 = 1.25 and 1.47). There exists a zone between 

roughly 𝒜 = 1.0 and 2.0 of continuous phase transition between rafts with minimal-to-no growth 

whatsoever (𝜙 ≈ 1 and 𝑆 ∼ 1.2) at low activity levels and frequent protrusion growth (low 𝜙 and 𝑆 > 2) 

at high activity levels. (D) Mean protrusion tip radius (𝑅𝜅) is plotted with respect to 𝒜. Anywhere from 

four (in the case of no growth) to forty-one observations were ensemble averaged depending on 

protrusion frequency. Where no protrusions were available (𝒜 ≤ 1.16) the mean convex edge radius is 

reported instead. The top dotted line represents the initial raft diameter of 10 ℓ, while the bottom 

dotted line represents the limit of 𝑅𝜅 → 0.5 ℓ, corresponding to the radius of one agent. (C-D) share a 

horizontal axis. (E-G) Three chronological snapshots of an experimental ant raft exhibiting different 

phases of protrusion growth are compared to (H-J) three chronological snapshots of a simulated raft 

when 𝒜 was modulated between 1.1 and 1.6. (K) The time evolution of surface excess as measured 

from one experiment (red circles) and ensemble averaged over 28 numerical simulations (black curve 

with a negligible shaded region representing standard error of the mean) are displayed. Note that the 

simulations start close to 𝑆 = 1 given the initially circular raft shape. Time, 𝑡∗, is normalized by the 

experiment duration for a more direct comparison. Structural agents are depicted in cyan, while 

dispersed free agents are depicted in red. All scale bars represent 10 ℓ. All simulated rafts displayed 

were initiated as circles such that protrusions emerged stochastically. 
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6.3 Discussion 

 

Our results indicate that fire ant rafts may exhibit spontaneous protrusion growth in 

the absence of external gradients or long-range interactions. While cueing factors 

such as pheromones have not been ruled out and should be tested for in future 

experimental studies, this model generally poses local mechanisms through which 

fire ants may achieve treadmilling and protrusion growth without centralized control 

or purposeful intent. Nevertheless, protrusions may sometimes serve the adaptive 

purpose of helping fire ants escape flooded environments, perhaps illustrating an 

example in which spontaneous cooperative behavior benefits a collective organism. 

Through the model, we find that the global shape of these rafts and their display of 

protrusions is highly dependent on the activity parameter 𝒜, which characterizes the 

competition between an ant’s self-propulsion and its aversion to water. Supposing 

free ants’ aversion to water does not vary significantly, then 𝒜 may be interpreted as 

the normalized force with which free ants self-propel. Inversely, if self-propulsion 

force is conserved, then increased 𝒜 may be thought of as a reduced inhibition to 

structural edge deposition by ants. In either case, the model suggests that a 

behavioral change by solely the freely active ants may significantly impact the size 

and shape of ant rafts observed. Tennenbaum and Fernandez-Nieves (2020) 

demonstrated that temporal activity cycles in fire ants on the order of hours also 

impact the rheological properties of 3D aggregations. Based on our model, we suspect 

that this same oscillation of ant behavior between inactive and active states is 

responsible for the morphological variation in ant rafts. Indeed, in our previous work, 

we experimentally observed that the clustering of inactive, yet free ants near the 

centers of their rafts preceded the overall reduction in raft area and reduction in 
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surface excess [11]. During this time, the contraction of the structural layer remained 

relatively constant. 

 

This model also offers an explanation regarding the directional bias in edge 

deposition that our previous work indicated is necessary for the evolution of elongated 

protrusions [11]. We see that strong confinement of active agents on protrusions 

promotes their directional motion towards the protrusions’ tips, whereas active agent 

motion is isotropic on the rafts’ bulk sections. Since we enforce that freely active 

agents deposit into the water in a direction that is correlated with their movement 

and that of their nearest neighbors (as determined by the local active force, 𝑭𝑎), this 

directional motion then promotes local edge growth that is aligned with the 

longitudinal axis of the protrusions. Through this rule, the shapes and growth rates 

of model-predicted protrusions are in good agreement with those of experiments, 

thereby supporting the hypothesis that confinement-induced directional motion is a 

contributing second-order cause of runaway protrusion growth in ant rafts. 

Ultimately, these results do not nullify the potential influence of biological stimuli 

(e.g., morphogens or pheromones), rather they support the notion that physics-driven 

mechanisms may aid or provided a redundant pathway for emergent protrusion 

growth in ant rafts.  

 

While this discrete model helps interpret potential causes of protrusion growth in ant 

rafts, there exists several limitations that could influence the accurate representation 

of free ants by free agent trajectories and therefore global raft evolution. First, free 

agent movement is restricted to a lattice defined by structural agents and water 

nodes, which simplifies the model in several ways. For example, it alleviates the need 

to interpolate a continuous raft boundary, and free agents’ encounters with the water 
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are discretely defined as instances when their preferred movement DOF is a water 

node. It also renders interpolation of the energy landscape unnecessary at the 

location of free agents (when computing 𝑭𝛤) since each free agent is already located 

on a structural agent. Additionally, it permits easy mimicry of volume exclusion 

between neighboring free agents, by prohibiting two free agents from occupying the 

same structural site. Finally, it eliminates the need for explicit constrains on agents’ 

speeds (e.g., frictional forces or inertia) since the agents can move, at most, a distance 

of 𝑅𝐷𝑂𝐹 within a given timestep. However, this lattice naturally introduces a degree 

of error between the continuously predicted direction of motion from Eqn. (6.1) and 

the actual direction of discrete movement. This could potentially influence the global 

raft evolution since it impacts the direction of structural deposition for agents at the 

raft’s edge. Another discrepancy that could potentially influence the predicted raft 

evolution is that we opt to treat the ants as particles whose orientational DOF is in-

line with their direction of motion. Coupling the translational DOF with the 

rotational DOF significantly reduces model complexity, yet it effectively surmises 

that the timescale of alignment is considerably smaller than a discrete timestep. To 

preserve finite alignment and turning times, we instead restricted the maximum 

turning angle of an agent within a given step and introduced a pause time in the 

event that an agent is limited to movements outside this angular range. Additionally, 

we assume radial symmetry or that that the agents have an aspect ratio of one. In 

reality, fire ants have an aspect ratio on the order of 3:1 [277], [278] and it is well-

documented that aspect ratios can introduce alignment effects in self-propelled 

particles [279]. Indeed, in our previous work [11], we saw evidence of non-negligible 

ant-to-ant interactions that caused short-range correlation between the motion of 

nearest neighbors. However, to capture local alignment we opted to employ the 

relatively simple and phenomenological Vicsek model rather than explicitly modeling 
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an aspect ratio and repulsive interactions. A final limitation that may impact free 

agent trajectories is that agents were not allowed to walk over one another despite 

such behavior being regularly observed in freely active ants. This may have 

exaggerated the effects of volume exclusion between ants and consequently 

exacerbated any local alignment in velocity by limiting free agents’ local movement 

degrees of freedom.  

 

Despite these limitations and their potential effects on free agent trajectories, we 

found that the model sufficiently approximated continuous space when 18 DOF were 

given to each free agent and the lattice was stochastically updated due to unbinding 

events and contraction. This is demonstrated by the isotropic distribution of the agent 

velocities in Fig. 6.4.J and a general lack in any preferential direction for protrusion 

growths throughout this work. Furthermore, the mean persistence length of free 

agents’ trajectories (on the bulk of the modeled rafts), as well as the degree of 

directional motion (on both bulk sections of the rafts and protrusions) (Fig. 6.4.E-F) 

were both reasonably matched to experiments. However, one ant trajectory feature 

that remained uncaptured by the model is the frequent jamming of free ants far from 

the edges of the rafts, as indicated by the peak of the velocity distribution at 𝒗 ≈

[0,0] ℓ 𝑠−1 in Fig. 6.4.H. While free agents in the model were prompted to move at 

every timestep unless they had no unoccupied DOF, free ants were regularly observed 

stopping to clean themselves or interact with other ants, regardless of whether their 

movement was inhibited by obstacles. This discrepancy also appears in the velocity 

distributions of free ants (Fig. 6.4.G) versus agents (Fig. 6.4.I) on protrusions, with 

simulated free agents generally displaying a much more homogenous distribution of 

velocities. It is likely that this heightened motility of free agents exaggerates their 

diffusivity over their ant counterparts; however, the instantaneous distributions of 
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free members – which more directly influence raft evolution – were in good agreement 

between experiments and simulations.  

 

Another limitation of this model is that it does not currently accommodate inclusion 

of local cues or external gradients. Such stimuli could enhance the degree of order in 

the system and if they were introduced by the fire ants themselves (e.g., pheromone 

trails [262]–[265], [267]; memory over second timescales and centimeter length scales; 

or collective memory through propagated short range social interactions [280]) they 

would effectively serve as long-range interaction potentials. Indeed, a precursory 

study reveals high sensitivity to the pairwise influence length scale 𝑅, which if set 

slightly higher (𝑅 = 1.23 ℓ) leads to the prediction of longer, more ordered protrusion 

growth at low activities (𝒜 = 0.81), as depicted in the top right corner of Fig. E.6.A 

(see Appendix E.5.c for details). Moreover, the emergent structural network 

contraction and unbinding events were simply reproduced here via a homogenized, 

phenomenological model. Yet the underlying behavioral rules, mechanisms, and the 

sequence in which they occur are likely far more complex for raft contraction and will 

be investigated in future work. For both states of ants, there is likely more than one 

set of rules that results in treadmilling and protrusion growth. Here we have merely 

investigated a distilled set of local interactions which reproduced the observed raft 

evolutions, thereby reducing the number of variable considerations and isolating the 

effects of local ant activity level on global shape. Nevertheless, phenomena such as 

local pheromones or external temperature gradients, could be easily included in 

future iterations for the study of not only fire ants but also other constituents. 

Therefore, although this numerical implementation was inspired by fire ant rafts, we 

also expect that in future work it may be adapted or inspiration for the in silico 

investigation of other biological or synthetic systems driven by transport and binding 



173 

 

 

reactions. Additionally, this model permits the investigation of emergent phenomena 

and global characteristics outside the biologically observed parametric space, as 

occurred here for the purposes of fitting 𝑅 and 휂 (see Fig. E.5 and E.6), and then 

investigating the effects of 𝒜 (see Fig. 6.6 and Fig. E.7). Thus, this model may permit 

extrapolation of properties and potentially serve as a source of inspiration for the 

predictive design of engineered systems such as active gels or swarm robotics.  
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CHAPTER VII 

 

 

SUMMARY AND FUTURE WORK 

 

In this thesis, we introduced a discrete network modeling framework intended for the 

micromechanical study of dynamic polymers. We then utilized this model to update 

TNT via a coupled rule of mixture, applicable to dynamic networks containing 

multiple bond types with different dissociation timescales in series. To exhibit the 

applicability of this model in predictive mechanics, we then used it to reproduce the 

mechanical response of stable gels. Finally, we retrofit the model with active 

contraction and an agent-based modeling approach to reproduce and understand the 

origins of treadmilling and protrusion growth as experimentally observed in the rafts 

of fire ants. Together, these works demonstrate the broad applicability of this 

modelling approach while motivating its necessity for bridging the gap between local 

physical interactions and globally emergent mechanical responses in dynamic and 

active networks. 

 

While the existing iteration of the modeling framework is written in MATLAB 2019b, 

in future work, the methodologies introduced here may be incorporated into an open-

source, highly parallelized framework such as LAMMPS (written in a compiled 

language such as C++). Doing so would greatly improve the spatiotemporal scales 

that may be modeled through these methods, thus permitting broader investigation 

of materials with higher degrees of hierarchical microstructure and heterogeneity 

such as poly(acrylamide) gels. This may also facilitate this model’s direct use in the 

predictive design of tetra-PEG based gels containing multiple telechelic bond types 

in series [13]. Such gels are prospects as mesenchymal stem cell scaffolds for 

osteochondral tissue engineering. However, the synthesis of gels with desired 
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mechanical properties (e.g., shear modulus) may be expedited by narrowing the 

parametric space explored by experimentalists through predictive use of the model. 

Additionally, other micromechanical physics may be implemented into this 

framework to broaden its applicability. With regards to polymeric systems, we next 

aim to develop ways to statistically represent and incorporate the effects of 

entanglement into the model at the mesoscale, which may allow for direct 

investigation of systems such as polymer melts. Pertaining to active networks, we 

next aim to leverage the iteration of the model applied to fire ants to study the 

formation of stress fibers and intrinsic mechanosensitivity emerging from the 

incorporation of catch bond mechanics and active contraction. Doing so may elucidate 

mechanistic origins of material reconstitution by living sytems and eventually inspire 

comparably designed mechanisms in synthetic, self-optimizing, structural materials. 
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APPENDICES 

 

Appendix A. Supporting information for Chapter II 

 

A.1 Boundary conditions 

 

A.1.a A Lagrangian RVE Permits Controlled Deformation 

 

To initially generate the extended periodic domain, the positions of the nodes, 𝒙𝛼 (𝛼 ∈

[1, 𝒩]) are replicated across every boundary according to: 

𝒙𝑇 = 𝒙𝛼 + [+
𝜕𝑥

𝜕𝑦
, +ℎ] ,

𝒙𝐵 = 𝒙𝛼 + [−
𝜕𝑥

𝜕𝑦
, −ℎ] ,

𝒙𝑅 = 𝒙𝛼 + [+𝑤, +
𝜕𝑦

𝜕𝑥
] ,

𝒙𝑅 = 𝒙𝛼 + [−𝑤, −
𝜕𝑦

𝜕𝑥
] ,

𝒙𝑇𝑅 = 𝒙𝛼 + [+𝑤 +
𝜕𝑥

𝜕𝑦
, +ℎ +

𝜕𝑦

𝜕𝑥
] ,

𝒙𝑇𝐿 = 𝒙𝛼 + [−𝑤 +
𝜕𝑥

𝜕𝑦
, +ℎ −

𝜕𝑦

𝜕𝑥
] ,

𝒙𝐵𝑅 = 𝒙𝛼 + [+𝑤 −
𝜕𝑥

𝜕𝑦
, −ℎ +

𝜕𝑦

𝜕𝑥
] ,

𝒙𝐵𝐿 = 𝒙𝛼 + [−𝑤 −
𝜕𝑥

𝜕𝑦
, −ℎ −

𝜕𝑦

𝜕𝑥
] ,

       (A.1) 

where superscripts 𝑇, 𝐵, 𝐿, and 𝑅  denote nodes replicated to the top, bottom, left, and 

right of the domain, respectively. By extension, double-lettered superscripts 

represent the corners (e.g., 𝑇𝑅 denotes the top right corner). 𝜕𝑥/𝜕𝑦 and 𝜕𝑦/𝜕𝑥 

represent the the relative change of 𝑥 at the domain bounds as a function of 𝑦, and 

change of 𝑦 as a function of 𝑥, respectively. Note that for computational efficiency, 

only the nearest nodes to each boundary, defined as those less than roughly the length 

of a single chain (𝑁𝑏) away, are replicated across their respective opposite bounds. 
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A.1.b Eularian Conditions Prohibit Diffusion Beyond Domain Limits 

 

To ensure that tracked nodes do not diffuse out of the simulation limits, a Eularian 

condition is enforced whereby any particle that exits the bounds of 𝛺 is re-positioned 

into the domain according to: 

𝒙𝛼 ∈ 𝜕𝛺𝑇 = 𝒙𝛼 − [
𝜕𝑥

𝜕𝑦
, ℎ] ,

𝒙𝛼 ∈ 𝜕𝛺𝐵 = 𝒙𝛼 + [
𝜕𝑥

𝜕𝑦
, ℎ] ,

𝒙𝛼 ∈ 𝜕𝛺𝑅 = 𝒙𝛼 − [𝑤,
𝜕𝑦

𝜕𝑥
] ,

𝒙𝛼 ∈ 𝜕𝛺𝐿 = 𝒙𝛼 + [𝑤,
𝜕𝑦

𝜕𝑥
] ,

        (A.2) 

where 𝒙𝛼 ∈ 𝛺 denotes that node 𝛼 has moved into the 𝑇, 𝐵, 𝐿, and 𝑅 periodic 

boundaries of the domain, 𝛺, respectively. Once nodes are repositioned in 𝛺, they are 

replicated at each time step according to the conditions of Appendix A.I.a. 

 

A.2 Domain size convergence 

 

In order to select an appropriate initial square domain size (for which ℎ = 𝑤), the 

networks' global stress responses is examined. The smallest domain dimension (i.e., 

𝑤 at full deformation) must be larger than the contour length of a single chain (𝑁𝑏 =

3.5 휁). To enforce this, the minimum domain size considered in this work contains 

𝒩 = 225 nodes, which corresponded to initial domain dimensions of 11.25 × 11.25 휁 

and final dimensions of 5.625 × 22.5 휁 (after 100% incompressible, uniaxial network 

stretch is applied), which satisfies the condition 𝑤 > 𝑁𝑏. The ensemble averaged 

stress response of 10 trial networks, containing 𝒩 = 225, 𝒩 = 400, and 𝒩 = 625 

nodes (which correspond to roughly 15, 20 and 25 nodes per edge, respectively) is 

displayed in Fig. A.1. Notably, there is no significant change in the measured stress 

response as the domain size is increased from 225 nodes to 625 nodes, and so the 

domain size was set to 𝒩 = 225 for computational efficiency. 
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Fig. A.1. Domain size convergence. (A) The four components of virial stress, ensemble averaged 

over 10 distinct trials (each), are plotted for increasing domain sizes, 𝒩 = 225 nodes (blue), 𝒩 = 400 

nodes (grey), and 𝒩 = 625 nodes (red). (B) Networks at 𝜖 ≈ 1 are plotted from left to right for 𝒩 = 225 

nodes, 𝒩 = 400 nodes, and 𝒩 = 625 nodes, respectively. Scale bars under each snapshot represent the 

contour length of a single chain, 𝑁𝑏 (or 3.5 휁).   

 

A.3 Time step convergence 

 

In order to select an appropriate time step size, 𝛥𝑡, the networks' stress responses, 

mean bond kinetic rates, and degree of homogenization were considered. The time 

step was initially set such that it was two orders of magnitude lower than the inverse 

of the stress-free bond detachment rate, 𝑘𝑑
0−1

= 100 s, or the highest strain rate 

investigated,휀̇−1 = 50 s. As such, the largest time step considered was 𝛥𝑡 = 0.5 s. As 

depicted in Fig. A.2, decreasing 𝛥𝑡 over 𝛥𝑡 = [0.5,0.1,0.05,0.01] s, did not influence the 

measured stress response of the networks (Fig. A.2.A). Nor did it impact the average 

measured bond kinetic rates and - by extension - the average coordination number of 

the network (Fig. A.2.B). In the scope of this work, 𝛥𝑡 was conservatively set to 0.1% 

of the highest inverse strain rate or 𝛥𝑡 =  0.05 s, which is well below the convergence 

threshold while also allowing for relatively low computational time. 
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Fig. A.2. Time step convergence. (A) The four components of virial stress are plotted for decreasing 

timesteps, 𝛥𝑡 = 0.5 s (blue), 𝛥𝑡 = 0.1 s, 𝛥𝑡 = 0.05 s, and 𝛥𝑡 = 0.01 s (red). (B) The attachment (top) and 

detachment (center) rates are plotted with respect to time for the four respective time steps, along 

with the resulting average coordination number (bottom). (C) Networks at 𝜖 ≈ 0.9 are plotted from left 

to right for 𝛥𝑡 = 0.5 s, 𝛥𝑡 = 0.1 s, 𝛥𝑡 = 0.05 s, and 𝛥𝑡 = 0.01 s, respectively.  

 

 

A.4 Stress response of a network with Gaussian springs 

 

As a benchmark comparison between the discrete framework and continuum 

approach, networks of Gaussian springs were modeled and deformed according to the 

load history of Fig. 1.6.A in the manuscript. Force-dependent detachment through 

Eyring's model was maintained in order to ensure that the networks achieved initial 

steady state and observed detailed balance. The normal stress response (ensemble 

averaged for fifty networks, each) during loading and relaxation is depicted in Fig. 
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A.3.A and A.3.B, respectively, for five different strain rates. As expected, the stress 

predicted by the discrete and continuum models are in good agreement during loading 

when Guassian chains are used in both frameworks. However, since force-dependent 

bond dynamics were maintained, a non-exponential decay in stress is still observed 

during relaxation.   

 

 
Fig. A.3. Model validation against TNT. (A) Normal stresses from creep experiments are plotted 

with respect to engineering strain, 𝜖 = 𝐹22 − 1, for 𝑊 ≈ 1/8 (cyan), 𝑊 ≈ 1/4 (teal), 𝑊 ≈ 1/2 (grey), 𝑊 ≈
1 (maroon), and 𝑊 ≈ 2 (red). (B) Normal stresses from relaxation experiments are plotted with respect 

to time for three different initial values of stress. All results from the discrete model are plotted as 

continuous curves with standard error represented by the shaded region, and results from TNT are 

plotted as dotted curves.   
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Appendix B. Supporting information for Chapter III 

 

B.1 The discrete network model 

B.1.a Domain description, network initiation, and applied boundary 

conditions 

 

The number of nodes, 𝒩 = 400, comprising each simulated network in this study was 

set based on the domain size convergence findings of Wagner, et al. (2021). First, a 

2D volume element (VE) was defined with its center at Cartesian coordinates 𝑿 =

[0,0] and square dimensions 𝐿 = (𝒩/𝜌)0.5. Here, 𝜌 is a tuning parameter with units 

of [length]-2 used to modulate the domain density until a roughly zero stress state 

occurred once steady state bond dynamics were reached. This occurred when tensile 

entropic chain forces were approximately equilibrated with repulsive volume 

exclusion forces, both of which depend on the nominal node spacing. Nodes were 

initially seeded into the VE using a Poisson point process. To impart the networks 

with both stable and dynamic bonds, each node was then designated as one of three 

types: (i) a universal crosslinker, (ii) a stable bond crosslinker, or (iii) a dynamic bond 

crosslinker. This was done to mimic the composition of networks such as the 

hydrogels investigated by Richardson, et al. (2018), thereby reproducing a physically 

possible means by which such networks may be synthesized. Universal crosslinkers 

were permitted to bond with either stable or dynamic crosslinkers. However, stable 

crosslinkers were not permitted bond to dynamic crosslinkers, and no intraspecies 

bonding was permitted amongst any of the three node types. The fraction of universal 

crosslinkers was maintained at 50%. However, the fraction of crosslinker types 

comprising the remaining 50% of nodes was swept over the range of 0 to 100% stable 

crosslinker.  

 

Once the nodes were initially positioned and designated, they were permitted to bond 

with and detach from one another telechellically via the bond kinetics described 
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below. To reach steady state bond kinetics, bond reactions were allowed to occur for 

100 timesteps (without applying any deformation to the VE bounds) until a steady 

state coordination number and end-to-end chain distribution were reached. To ensure 

ample temporal resolution, the discretized timestep, 𝛥𝑡, was set at least two orders of 

magnitude smaller than the bond dissociation timescale, 𝑘𝑑
−1. After every 

reconfiguration step, the networks were equilibrated per the description below.  Note 

that the timescale of the network model is in arbitrary units of time such that 𝑘𝑑is 

simply normalized by the median value investigated throughout the manuscript. 

 

B.1.b Bond kinetics 

 

Bond association is captured through the scaling law introduced in Wagner, et al. 

(2021)[3], giving the attachment rate as: 

𝑘𝑎 = 𝜏𝑎
−1 (

𝑏

𝑑
)

4
,         (B.1) 

where 𝑏 is the length of a single Kuhn segment, 𝜏𝑎 is the time it takes a Kuhn segment 

to diffuse a distance of 𝑏, and 𝑑 is the pairwise separation distance between 

neighboring nodes within cutoff distance 𝑑 < 𝑙𝑐. Here, 𝑙𝑐 = 𝑁𝑏 where 𝑁 is the number 

and of Kuhn segments in an attached chain so that 𝑙𝑐 is its contour length. Both bond 

association and dissociation are treated as memoryless processes such that the 

probability of a reaction event occurring at time 𝑡 follows[3]: 

𝑑𝑃 = 𝑘𝑒−𝑘𝑡𝑑𝑡,         (B.2) 

where 𝑘 represents either the rate of bond association, 𝑘𝑎, or dissociation, 𝑘𝑑. 

 

B.1.c Pairwise forces 

 

The ideal entropic force in a chain is given by[3]: 

𝒇𝑡 = 3𝑘𝑏𝑇
𝜆

√𝑁𝑏

𝒓

|𝒓|
 ,          (B.3) 
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where 𝑘𝑏 is the Boltzmann constant, 𝑇 is the ambient temperature, 𝜆 = |𝒓|/√𝑁𝑏 is the 

chain stretch, and 𝒓 is the end-to-end vector of a chain. Volume exclusion forces are 

captured via a phenomenological inverse potential for soft particles that yields a 

force-distance relation of[3]: 

𝒇𝑟 =
𝒅

|𝒅|
{

−𝛾𝐸 (
1

𝑅
−

𝑅𝛾

𝑑𝛾+1) , 𝑑 < 𝑅

0,                              𝑑 ≥ 𝑅
,       (B.4) 

where 𝐸 defines the force scale, 𝛾 = 2 is a scaling coefficient that modulates particle 

stiffness, 𝒅 is the end-to-end separation vector between nodes, and 𝑅 = 𝑁𝑏 is the 

cutoff distance.  

 

B.1.d Force equilibration 

 

Pairwise interactions are used to compute the unbalanced force on each node, denoted 

by 𝛼, as 𝒇𝛼 = ∑ 𝒇𝛼𝛽
𝛽 . Here, 𝑓𝛼𝛽 represents a single pairwise force, either 𝒇𝑡 or 𝒇𝑟, 

between node 𝛼 and its 𝛽𝑡ℎ neighbor. Unbalanced forces are used to iteratively 

equilibrate each node’s position after every VE deformation or network 

reconfiguration step (i.e., “timestep”). The position of node 𝛼 is updated from iteration 

𝑘 to 𝑘 + 1 according to: 

𝒙𝒌+1
𝛼 = 𝒙𝑘

𝛼 + 휂−1𝒇𝛼,         (B.5) 

where 휂 is a numerical overdamping coefficient set to ensure stable convergence.  

 

B.1.e Boundary conditions and loading history 

 

The VEs were 2D periodic such that incremental changes to their four corners 

stretched or compressed the chains that transcended the four boundaries. 

Accordingly, incompressible deformations were applied to the four corners defining 

the VE via a symmetrical velocity gradient of the form, 𝑳 = [𝑊, −𝑊; −𝑊, 𝑊], where 

𝑊 = 휀̇/𝑘𝑑 is a normalized strain rate known as the Weissenberg number and 휀̇ is the 

true strain rate. At high values of 𝑊, the deformation rate is far greater than the 
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intrinsic bond dissociation rate such that even dynamic networks behave elastically. 

To ensure that bond dynamics were negligible during loading and approximate a step 

function for stress relaxation, we here set 𝑊 = 100. The networks were deformed 

until they reached a principal stretch of 𝜆 = 2 (and normal stretch of 1/2), after which 

stress relaxation was allowed to occur for 𝑡∗ ≈ 4 (where 𝑡∗ = 𝑡𝑘𝑑). The loading history 

is depicted in Fig. B.1 as the true strain with respect to normalized time. 

 

 

Figure B.1. Applied loading history: True strain, 𝑙𝑛 𝜆, is plotted with respect to normalized time, 

𝑡∗ = 𝑡𝑘𝑑. The inset displays 𝑙𝑛 𝜆 versus 𝑡∗ (with a significantly dilated time axis) to illustrate the 

definition of 𝑊 = 𝑙𝑛(𝜆) /𝑡∗.  
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B.1.f Parametric space 

Detailed parametric values and sweeping ranges are provided in Tables B.1 and B.2, 

respectively. 

 
Table B.1. Detailed parametric definitions and values.  

Parameter Definition Swept Values Reason for Value 

𝒩 Nodes per domain 400 

Set to ensure convergence of stress 

response with respect to increasing 

domain size per Wagner, et al. (2021) 

휁 
Normalization length 

scale 
√𝒩 

Set such that each node occupies on order 

of 1-unit length2 

𝐿∗ 
Initial square domain 

dimensions 
휁𝜌−0.5 

Set such that each node occupies on order 

of 1-unit length2 

𝜌∗ 
Scaling coefficient to 

adjust domain density 
1.78 

Set to equilibrate entropic tensile forces 

with volume exclusion in initial networks. 

𝜏𝛼 
Kuhn segment diffusion 

timescale 
1 × 10−9 

Preserved from Wagner, et al. (2021) 

𝑘𝑏𝑇 
Normalized thermal 

energy scale 
5 × 10−2 

𝑁 Kuhn segments per chain 700 

𝑏∗ Normalized Kuhn length 5 × 10−3 

𝐸 

Force scaling coefficient 

to adjust repulsion 

magnitude 

1.25 

𝛾 
Scaling coefficient to 

adjust repulsion stiffness 
2 

𝑅∗ 
Normalized volume 

exclusion cutoff distance 
𝑁𝑏∗ 

휂∗ 
Normalized numerical 

damping viscosity 
1.5 × 10−4 

𝛥𝑡∗ Discretized time 𝛥𝑡∗ < 0.01 ⋅ 𝑘𝑑
−1 

Set to ensure ample temporal resolution 

during reconfiguration 

 

Table B.2. Detailed sweeping ranges of free parameters. 

Parameter Definition Swept Values 

𝑓 Fraction of stable bonds. {0,10, … 90,100}% 

𝑘𝑑 Normalized detachment rate {0.01,0.1,1,10,100} 

𝑧 Functionality (i.e., no. of potential bonds per crosslink) {4,8} 
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B.2 Transient network theory derivations 

B.2.a Initial loading and stress normalization 

 

Recall that the simple rule of mixture gives: 

𝝈 = 𝑘𝑏𝑇(𝑐𝑠𝒃 + 𝑐𝑑𝝁) + 𝜋𝑰,         (B.6) 

where, again, 𝑐𝑠 = 𝑐𝑃𝑠 and 𝑐𝑑 = 𝑐𝑃𝑑. We aim to normalize this stress by the peak 

stress, which occurs at the time of loading cessation. Recalling that 𝝁 evolves 

according to (B.6): 

�̇� = 𝑳𝝁 + 𝝁𝑳𝑇 − 𝑘𝑑(𝝁 − 𝑰).        (B.7) 

and given 𝑊 ≫ 1 (i.e., that 휀̇ ≫ 𝑘𝑑), the rightmost term in (B.7) approach zero during 

loading, leaving: 

�̇� = 𝑳𝝁 + 𝝁𝑳𝑇,         (B.8) 

where 𝑳 = �̇�𝑭−1, �̇� = 𝜕𝑭/𝜕𝑡, and 𝑭 = 𝑑𝑖𝑎𝑔(𝜆−1, 𝜆). For uniaxial extension occurring in 

the second principal direction, we are concerned with the evolution of 𝜇22, which 

evolves according to: 

𝜕𝜇22

𝜕𝑡
= 2𝜇22𝜆−1 𝜕𝜆

𝜕𝑡
.         (B.9) 

Integrating both sides with the condition 𝜇22(𝜆 = 1) = 1 gives: 

𝜇22 = 𝜆2 = 𝑏22         (B.10) 

for fast loading. Thus, substituting (B.10) into (B.6) for the stress component in the 

principal direction of stretch provides: 

𝜎22
𝑚𝑎𝑥 = 𝑐𝑘𝑏𝑇[𝑝𝑠𝑓 + 𝑝𝑑(1 − 𝑓)]𝜆2 + 𝜋.       (B.11) 

Similar analysis in the direction normal to stretch gives: 

𝜎11
𝑚𝑎𝑥 = 𝑐𝑘𝑏𝑇[𝑝𝑠𝑓 + 𝑝𝑑(1 − 𝑓)]𝜆−2 + 𝜋,       (B.12) 

with the added traction-free boundary condition that 𝜎11 = 0. Solving for 𝜋 in (B.12) 

and substituting into (B.11) gives: 

𝜎22
𝑚𝑎𝑥 = 𝑐𝑘𝑏𝑇[𝑝𝑠𝑓 + 𝑝𝑑(1 − 𝑓)] (𝜆2 −

1

𝜆2).      (B.13) 
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B.2.b Stress relaxation 

 

To begin stress relaxation, the strain rate is removed (i.e., 𝑳 = 𝟎) such that (B.7) 

becomes: 

�̇� = −𝑘𝑑(𝝁 − 𝑰).         (B.15) 

Taking the time at which stress relaxation begins as the reference time, 𝑡 = 0, and 

solving (S15) for the principal components of 𝝁 gives: 

𝜇11 = (𝜇11
0 + 1)𝑒−𝑘𝑑𝑡 − 1,         (B.16) 

and: 

𝜇22 = (𝜇22
0 + 1)𝑒−𝑘𝑑𝑡 − 1,        (B.17) 

where, from (B.10), 𝜇11
0 = 𝜆−2 and 𝜇22

0 = 𝜆2 since 𝑊 ≫ 1 during initial loading. 

Substituting (B.16) and (B.17) into (B.6) gives the principal components of each 

principal component of stress as: 

𝜎11 = 𝑐𝑘𝑏𝑇{𝑝𝑠𝑓𝜆−2 + 𝑝𝑑(1 − 𝑓)[(𝜆−2 + 1)𝑒−𝑘𝑑𝑡 − 1]} + 𝜋,   (B.18) 

and: 

𝜎22 = 𝑐𝑘𝑏𝑇{𝑝𝑠𝑓𝜆2 + 𝑝𝑑(1 − 𝑓)[(𝜆2 + 1)𝑒−𝑘𝑑𝑡 − 1]} + 𝜋.    (B.19) 

Applying the traction-free boundary condition (i.e., 𝜎11 = 0), solving for 𝜋, and 

substituting 𝜋 into (S19) gives the principal component of stress in the extensile 

direction as: 

𝜎22 = 𝑐𝑘𝑏𝑇 (𝜆2 −
1

𝜆2) {𝑝𝑠𝑓 + 𝑝𝑑(1 − 𝑓)𝑒−𝑘𝑑𝑡}.     (B.20) 

Finally, normalizing (B.20) by (B.13) provides the normalize tensile stress as: 

𝜎∗ = [𝑝𝑠𝑓 + 𝑝𝑑(1 − 𝑓)𝑒−𝑘𝑑𝑡][𝑝𝑠𝑓 + 𝑝𝑑(1 − 𝑓)]−1.    (B.21) 

 

B.2.c Incorporating the relaxation factor 

 

Supposing that some fraction of stable bonds, 1 − 𝜉, are sufficiently jammed by 

surrounding crosslinks or bonded into a stable bond scaffold such that they affinely 

follow the global deformation gradient, 𝑭, without relaxation, while the remaining 
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fraction, 𝜉, can relax into lower energy conformations due to the reconfiguration of 

the surrounding network, then we may rewrite Eqn. (B.6) as:   

𝝈 = 𝑐𝑘𝑏𝑇[𝑝𝑠𝑓(1 − 𝜉)𝒃 + 𝑝𝑠𝑓𝜉𝝁 + 𝑝𝑑(1 − 𝑓)𝝁] + 𝜋𝑰.     (B.22) 

As a simple first assumption, we have invoked that the rate of stable bond relaxation 

due to reconformation is synonymous with that of bond dissociation of neighboring 

dynamic bonds (i.e., 𝑘𝑑) through 𝝁. Thus, during elastic loading, 𝝁 → 𝒃 and (B.22) 

reverts to (B.13). As before, the condition that 𝜎11 = 0, along with the definitions of 𝝁 

from (B.16) and (B.17) are used to solve for 𝜋, which then allows that component of 

stress in the extensile direction be written: 

𝜎22 = 𝑐𝑘𝑏𝑇 (𝜆2 −
1

𝜆2) [𝑝𝑠𝑓(1 − 𝜉) + 𝑝𝑠𝑓𝜉𝑒−𝑘𝑑𝑡 + 𝑝𝑑(1 − 𝑓)𝑒−𝑘𝑑𝑡].  (B.23) 

Once again normalizing (B.23) by (B.13) gives the normalized tensile stress as:  

𝜎∗ = [𝑝𝑠𝑓(1 − 𝜉) + 𝑝𝑠𝑓𝜉𝑒−𝑘𝑑𝑡 + 𝑝𝑑(1 − 𝑓)𝑒−𝑘𝑑𝑡][𝑝𝑠𝑓 + 𝑝𝑑(1 − 𝑓)]−1.  (B.24) 

  

B.2.D Hybrid networks with two dissociation timescales 

 

Supposing that a hybrid network is comprised of two different types of dynamic bonds 

with two distinct dissociation timescales, 𝑘𝑠
−1 and 𝑘𝑑

−1, such that that the former types 

of bonds detach significantly slower than the latter (i.e., 𝑘𝑑
−1 ≪ 𝑘𝑠

−1). Then Eqn. (2.22) 

may be rewritten as:    

𝝈 = 𝑐𝑘𝑏𝑇[𝑝𝑠𝑓(1 − 𝜉)𝝁𝑠 + 𝑝𝑠𝑓𝜉𝝁𝑑 + 𝑝𝑑(1 − 𝑓)𝝁𝑑] + 𝜋𝑰.    (B.25) 

where 𝝁𝑑 and 𝝁𝑠 and are the conformation tensors of the chains containing more and 

less dynamic bonds, respectively. These conformation tensors evolve according to 

�̇�𝑠 = −𝑘𝑠(𝝁𝑠 − 𝑰) and �̇�𝑑 = −𝑘𝑑(𝝁𝑑 − 𝑰). In Eqn. (B.25), we have assumed that the 

coupled stress term relaxes at the faster dissociation rate of the more dynamic bonds 

(i.e., at a rate 𝑘𝑑) since the dissociation of the relatively more stable bonds is 

considerably slower (i.e., 𝑘𝑠 ≪ 𝑘𝑑). 

 

Here we apply simple shear conditions to approximate the parallel plate rheometry 

conducted by Richardson, et al. (2019) for which: 
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𝑭 = [
1 𝛾 0
0 1 0
0 0 1

],         (B.26) 

and: 

𝑳 = [
0 �̇� 0
0 0 0
0 0 0

],         (B.27) 

where 𝛾 is the peak shear strain and �̇� is the shear rate. Again, during loading (�̇� ≫

𝑘𝑑 and �̇� ≫ 𝑘𝑠), 𝝁𝒔 → 𝒃 and 𝝁𝒅 → 𝒃, giving (B.25) as: 

𝝈 = 𝑐𝑘𝑏𝑇[𝑝𝑠𝑓 + 𝑝𝑑(1 − 𝑓)]𝒃 + 𝜋𝑰.       (B.28) 

Solving for 𝒃 = 𝑭𝑭𝑇 and substituting into (B.28) gives the peak shear stress as: 

𝜏 = 𝑐𝑘𝑏𝑇[𝑝𝑠𝑓 + 𝑝𝑑(1 − 𝑓)]𝛾.       (B.29) 

During stress relaxation (i.e., 𝑳 = 𝟎), given relatively small shear strain (𝛾 ∼ 0.1) then 

the principal orientation of chain stretch remains relatively unaffected, and we may 

uphold the general relation (B.15) for both dynamic bond types (i.e., the shear 

components may be written 𝜇𝑠 ≈ 𝑒𝑥𝑝(−𝑘𝑠𝑡) and 𝜇𝑑 ≈ 𝑒𝑥𝑝(−𝑘𝑑𝑡)). Therefore, the shear 

component of stress from (B.25) may be written as follows during stress relaxation: 

𝜏 = 𝑐𝑘𝑏𝑇[𝑝𝑠𝑓(1 − 𝜉)𝑒−𝑘𝑠𝑡 + 𝑝𝑠𝑓𝜉𝑒−𝑘𝑑𝑡 + 𝑝𝑑(1 − 𝑓)𝑒−𝑘𝑑𝑡]𝛾.   (B.30) 

Normalizing (B.30) by the peak shear stress from (B.29) gives: 

𝜏∗ = [𝑝𝑠𝑓(1 − 𝜉)𝑒−𝑘𝑠𝑡 + 𝑝𝑠𝑓𝜉𝑒−𝑘𝑑𝑡 + 𝑝𝑑(1 − 𝑓)𝑒−𝑘𝑑𝑡][𝑝𝑠𝑓 + 𝑝𝑑(1 − 𝑓)]−1. (B.33) 

 

B.3 Extended network model results 

 

B.3.a Bond dynamics, percolation, & the relaxation factor 

 

Fig. B.2 depicts the average measured bond dynamics over 𝑛 = 10 trials for networks 

with varied values of 𝑓 and 𝑘𝑑. As expected, measured values of 𝑘𝑑 closely match the 

input values and are independent of 𝑓 (Fig. B.2.A-B). In contrast, 𝑘𝑎 is directly 

correlated with 𝑘𝑑 and inversely correlated with 𝑓 (Fig. B.2.C-D). This is because 

dissociated bonds may only attach to neighboring bonds within a radial distance of 
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the maximum chain length. Therefore, any factor that influences the number of 

detached bonds within reach of each other influences 𝑘𝑎. Specifically, as 𝑘𝑑 increases, 

so too does the number of attachment opportunities at a given time, and therefore 𝑘𝑎 

increases proportionately to 𝑘𝑑. These two effects are an artifact of a prescribed 

polymer diffusion timescale, 𝜏0, (and therefore bond association timescale) that is 

significantly lower than the bond dissociation timescale (i.e., 𝑘𝑑 ≪ 𝑘𝑎). This is 

reflected in 𝑘𝑎/(𝑘𝑎 + 𝑘𝑑), which indicates the steady state probability that a given 

dynamic bond is attached (Fig. B.2.E-F). While 𝑘𝑎/(𝑘𝑎 + 𝑘𝑑) remains close to unity 

and appears relatively independent of 𝑘𝑑 when 𝑘𝑑 ∼ 0.01 to 1, it eventually decreases 

when the dissociation rate is high (e.g., 𝑘𝑑 ∼ 10 to 100). This suggests that the 

intrinsic association rate, 𝑘𝑎, is somewhere on the order of 10 and that when 𝑘𝑑 >̃ 10, 

attachment events are no longer dictated primarily by bonding opportunities but 

rather 𝜏0.  

 

Regarding the effects of stable bond fraction on bond dynamics, increasing 𝑓 reduces 

the number of dynamic bonding opportunities and therefore decreases the effective 

𝑘𝑎 (Fig. B.2.C-D). Since 𝑘𝑎 is lower for higher values of 𝑓, 𝑘𝑎/(𝑘𝑎 + 𝑘𝑑) is as well (Fig. 

B.2.E-F), which influences the probability of dynamic bond percolation as discussed 

below. Interestingly, coordination has negligible influence on the measured bond 

dynamics. However, this independence is likely contingent on the allowance of 

redundant bonds between neighboring nodes, which ensures that 𝑘𝑎 is more 

influenced by the number and distribution of nodes (as they govern bonding 

opportunities) than the total number of bonds. The relative independence of 𝑘𝑎 and 

𝑘𝑑 is also reflected by the highly similar plots of attached bond probabilities, 𝑃𝑠 =

𝑝𝑠𝑓, 𝑃𝑑 = 𝑝𝑑(1 − 𝑓), and 𝑃 = 𝑃𝑠 + 𝑃𝑑 in Fig. B.3. However, 𝑃𝑑 (and therefore 𝑃) is 

slightly smaller (i.e., there are more dangling dynamic chains) at high 𝑘𝑑 (𝑘𝑑 = 10 or 
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100) and higher coordination (𝑧 = 8), which suggests that attachment opportunities 

are saturated at the higher coordination number.  

 

 
Figure B.2. Bond dynamics as measured from discrete model. (A-B) Average dynamic bond 

dissociation rate, 𝑘𝑑, is plotted with respect to the stable bond fraction, 𝑓, and input value of 

detachment rate, 𝑘𝑑, when coordination is (A) 𝑧 = 4 and (B) 𝑧 = 8. (C-D) Average dynamic bond 

association rate, 𝑘𝑎, is plotted with respect to 𝑓 and 𝑘𝑑 for (C) 𝑧 = 4 and (D) 𝑧 = 8. (E-F) Steady state 

attached dynamic bond fraction, 𝑘𝑎/(𝑘𝑎 + 𝑘𝑑), is plotted with respect to 𝑓 and 𝑘𝑑 for (E) 𝑧 = 4 and (F) 

𝑧 = 8. 

 

Fig. B.4 depicts the average probabilities (over 𝑛 = 10 trials each) that the 

independent bond types form percolated networks when 𝑓 and 𝑘𝑑 are swept. Fig. 

B.4.A-B confirms that the probability of stable bond percolation is not dependent on 

𝑘𝑑. Going from 𝑧 = 4 to 𝑧 = 8, the stable bond percolation threshold (i.e., lowest 

fraction of bonds at which the networks may percolate) shifted to lower relative 
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fractions of stable bonds, from approximately 𝑓 ∼ 0.3 to 𝑓 ∼ 0.2. Meanwhile, Fig. 

B.4C-D confirms that dynamic bond percolation is highly dependent on 𝑘𝑑, with 

higher values of 𝑘𝑑 universally decreasing the probability that the dynamic bonds 

form a percolated network. Going from 𝑧 = 4 to 𝑧 = 8 the percolation threshold 

undergoes a shift from 1 − 𝑓 ∼ 0.3 to 1 − 𝑓 ∼ 0.2. This directly mirrors the shift 

observed for the stable bond percolation threshold. 

 

 
Figure B.3. Bond attachment probabilities from discrete model. (A-B) The average probability 

that a bond is stable and attached, 𝑃𝑠 = 𝑓𝑝𝑠, is plotted with respect to the stable bond fraction, 𝑓, and 

input value of detachment rate, 𝑘𝑑, when maximum coordination is (A) 𝑧 = 4 and (B) 𝑧 = 8. (C-D) The 

average probability that a bond is dynamic, 𝑃2 = (1 − 𝑓)𝑝2, and attached is plotted with respect to 𝑓 

and 𝑘𝑑 for (C) 𝑧 = 4 and (D) 𝑧 = 8. (E-F) The probability that a given bond is attached, 𝑃 = 𝑃𝑠 + 𝑃𝑑, is 

plotted with respect to 𝑓 and 𝑘𝑑 for (E) 𝑧 = 4 and (F) 𝑧 = 8. 

 

Fig. B.5 depicts the average (𝑛 = 10) fitted values of 1 − 𝜉, which represents the 

extent to which stable bonds are unable to relax, when 𝑓 and 𝑘𝑑 are swept. The scaling 

law given by:  

𝜉 ∼ 1 − √휂2 + 𝑓2(1 − 휂2),        (B.34) 
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is fitted to each discrete data set, where 휂 represents the fraction of stable bonds that 

remain unable to relax in the limit 𝑓 → 0. Generally, 휂 decreases as the dissociation 

rate increases, intuitively suggesting that higher bond dynamic beget lower fractions 

of jammed stable bonds when 𝑓 ∼ 0.1. Notably, 𝜉 is not well predicted by (B.34) when 

𝑧 = 8, which is attributed to the fact that dynamic bonds in these networks saturate 

the bond attachment opportunities such that there exists a greater degree of detached 

stable bonds than in the networks with 𝑧 = 4. Consequently, this reduces the effective 

fraction of attached stable bonds that are jammed at higher SB concentrations (Fig. 

B.5.B) below the asymptotic limit, 1 − 𝜉 = 𝑓 (휂 → 0). 

 

 
Figure B.4. Decoupled network percolation probabilities. (A-B) The average probability that 

the stable bonds independently form a percolated network, 𝑋𝑠, is plotted with respect to stable bond 

fraction, 𝑓, and input value of detachment rate, 𝑘𝑑, when maximum coordination is (A) 𝑧 = 4 and (B) 

𝑧 = 8. (C-D) The average probability that the dynamic bonds independently form a percolated network, 

𝑋𝑑, is plotted with respect to 𝑓 and 𝑘𝑑 for (C) 𝑧 = 4 and (D) 𝑧 = 8.  
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Figure  B.5. Effect of network coordination on stable bond relaxation. (A-B) The stable bond 

immobilization fraction, 1 − 𝜉, is plotted with respect to 𝑓 for the ensemble average of 𝑛 = 10 networks 

with (A) 𝑧 = 4 and (B) 𝑧 = 8.  

 

B.3.b Effects of chain length 

 

A topologically influential parameter hypothesized to influence stable bond 

relaxation is the length of the chains. As such, chains with normalized lengths of 𝐿∗ =

0.5 and 𝐿∗ = 2 (where 𝐿∗ is the contour length of a chain, 𝑁𝑏, normalized by the contour 

length of chains investigated earlier in this work) were used to generate and test the 

stress relaxation of in silico networks. Networks were generated and mechanically 

tested using the same procedure as earlier experiments (wherein 𝐿∗ = 1). The coupled 

ROM was subsequently fit to the data treating 𝜉 as a fitting parameter. Stress 

relaxation results for shorter and longer chains are depicted in Fig. B.6.A and B.6.B, 

respectively. While the coupled ROM can predict the stress relaxation of the networks 

of longer chains without significant error, it is unable to do so for the networks of 

shorter chains at early stages of the relaxation process at which the discretely 

modeled networks relax significantly faster than the coupled ROM predicts through 

𝑘𝑑.  
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Figure B.6. Fitting the coupled ROM to networks with variable chain length. (A) Normalized 

stress, 𝜎∗, is plotted with respect to normalized time, 𝑡∗, for the ensemble average of 𝑛 = 10 discrete 

simulations (solid curves with shaded S.E.) and as predicted by Eqn. (11) (dotted curves) when 𝑘𝑑 = 1 

and chain length is doubled (𝐿∗ = 2). (C-D) Absolute errors between the models’ 𝜎∗ are plotted with 

respect to 𝑡∗ for (C) 𝐿∗ = 0.5 and (D) 𝐿∗ = 2 (where 𝐿∗ is the chain contour length normalized by the 

original chain length investigated). 

 

The likely cause of this discrepancy is revealed by examining the degree of percolation 

in these short chain networks (Fig. B.7.A). Fig B.7.A indicates that even when 𝑓 =

1, the stable bonds in the domain do not form percolated networks with 100% 

probability. As such, it is likely that stable bonds in short chain networks experience 

less entropic penalty (i.e., reduced conformational degrees of freedom) due to network 

structure, and are instead only constrained by steric interactions. The short timescale 

of relaxation that exists even for entirely stable bond networks likely results from 

floppy modes of cluster re-conformation and indicates that these networks are not 

sufficiently equilibrated during loading. Here, this is a numerical artifact and 

indicates that for short chain networks in which steric interactions dominate network 

topology, a lower residual force criterion is needed during equilibration. 

Alternatively, in systems with low connectivity loaded at rates exceeding the rate of 

floppy relaxation, another stress term governed by a shorter relaxation timescale may 

be necessary to include in the coupled ROM. Without this term, the coupled ROM 

should be applied only to percolated networks. 
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Figure B.7. Effect of chain length on bond percolation. (A-B) The probability that the stable 

(cyan) and dynamic (red) bonds independently form geometrically percolated networks (𝑋𝑠 and 𝑋𝑑) are 

plotted with respect to 𝑓 for (A) 𝐿∗ = 0.5 and (B) 𝐿∗ = 2 when 𝑧 = 4 and 𝑘𝑑 = 1. (G-H) The regions shaded 

grey demark transition zones wherein simultaneous percolation of both bond types is possible (𝑋 > 0). 
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Appendix C. Supporting information for Chapter IV 

 

C.1 Domain size convergence study  

 

To determine an appropriate RVE size, 10 kDa tetra-functional networks of 𝒩 ∈

{100,225,400,625,900} nodes were generated, swelled, and uniaxially extended in 

direction 𝒆2 through the chronological processes described in Section 4.3. These 

networks correspond to approximately 10, 15, 20, 35, and 30 nodes per RVE edge, 

respectively. Strain was introduced at a constant strain rate (with traction free side 

boundaries) to a maximum stretch of 𝜆 = 4. Ten in silico experiments were conducted 

for each domain size and the ensemble averaged stress-stretch relations are depicted 

in Fig. C.1. It is clear from Fig. C.1 that, while networks containing 𝒩 = 100 or 225 

nodes behaved more softly, no significant difference in mechanical response occurs 

between RVEs containing 𝒩 ∈ {400,625,900}. Therefore, all studies in this work are 

carried out with 𝒩 = 400 nodes. In addition, we ensure that the domain size always 

exceeds 𝐿 by a factor greater than two so that single chains cannot span opposing 

periodic boundaries of the RVE. 

 

 

Figure C.1. Domain size convergence of stress-stretch. The stress responses of RVEs containing 

𝒩 ∈ {100,225,400,625,900} nodes are displayed for networks stretched to 𝜆 = 4. The inset displays the 

stress-stretch response of the region outlined by the dashed box (𝜆 ∈ [3.8,4] and 𝜎 ∈ [75,100] 𝑘𝑃𝑎) to 

emphasize overlap for the cases of 𝒩 ∈ {400,625,900}.  
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C.2 Length scale and as-prepared concentration calibration  

 

Given the nearly monodisperse nature of star-shaped PEG macromers [281], [282] 

one may compute the effective molar mass per arm as 𝑀𝑤/𝑓. Given ethylene oxide’s 

molar mass (𝑀𝑒𝑔 = 44.05 𝑘𝑔 𝑚𝑜𝑙−1), then the number of mers in an arm is 𝑁𝑎𝑟𝑚 =

𝑀𝑒𝑔𝑓/𝑀𝑤. We take the length of a single PEG mer as 3.9 Å and treat each Kuhn 

segment as two mers [283] so that 𝑁 = 𝑁𝑎𝑟𝑚/2 and 𝑏 = 7.8 Å. In the numerical 

framework, we set the normalized length scale as 𝐿 = 𝑁𝑏 = 1. As such, conversion 

between SI units and the numerical frameworks length scale is given by the 

conversion: 

1 =
𝑀𝑒𝑔

𝑀𝑤
𝑓𝑏.          (C.1) 

The as-prepared polymer fraction is computed as the total polymer volume (or area 

in 2D), 𝐴𝑠𝑡𝑎𝑟, divided by the RVE size, 𝐴𝑅𝑉𝐸: 

𝜙 =
𝐴𝑠𝑡𝑎𝑟

𝐴𝑅𝑉𝐸
.          (C.2) 

This as-prepared concentration is normalized by the overlap volume fraction, which 

is taken as: 

𝜙𝑜𝑙 =
𝐴𝑠𝑡𝑎𝑟

𝜋𝑅𝑔
2 ,          (C.3) 

where 𝑅𝑔 is the radius of gyration for a single star-shaped macromer is estimated 

using [147]: 

𝑅𝑔
2 ∼ 𝑁𝑓1/2𝑏2,         (C.4) 

for low functionality star-polymers in theta solvent. Combining (C.2-C.4), one may 

write the normalized, as-prepared solute volume fraction as: 

𝜙∗ =
𝜋𝑁𝑓1/2𝑏2

𝐴𝑅𝑉𝐸
.          (C.5) 

Ergo, 𝜙∗ is controlled in the framework by tuning 𝐴𝑅𝑉𝐸. 
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C.3 The extensile bulk modulus of a gel’s polymer network 

 

A critical consideration in fitting the analytical model to our numerical results is what 

form the bulk modulus of the polymer network, 𝜅, takes and whether it evolves with 

the swelling ratio, 𝐽. Note that this is here defined as the extensile bulk modulus of 

solely the polymer network and does not constitute the overall bulk modulus of the 

gel, thus 𝜅 in this section is decoupled from the osmotic pressure of mixing. 

Furthermore, volume exclusion effects on 𝜅 are not considered, as these primarily 

matter for gels at high polymer concentrations or those undergoing compressive 

loading [284]. Fundamentally, the bulk modulus of a freely swelling gel’s polymer 

network may be defined as its resistance to volumetric change through 𝜅 = 𝜕𝜎ℎ/𝜕𝑉. 

Since PEG-based gels (with 𝑀𝑤 > 10 𝑘𝐷𝑎) in theta solvent generally have polymer 

volume fractions on the order of 𝜙 ∼ 0.01 − 0.1 [137], [142], [143], and entanglements 

have been shown to play little part in the swelling dynamics of these relatively 

homogenous gels [121], [143], we may neglect the effects of steric interactions 

between chains and crosslinks during swelling. Furthermore, assuming steady state 

swelling and that the gel is submersed in a sufficiently large solvent bath at 

thermodynamic equilibrium with its surroundings, then mixing (and therefore 

swelling) is not limited by solvent availability or transport and is therefore only 

resisted by the elastic tension of the polymer chains. As such, 𝜅 during swelling may 

be interpreted as entirely dependent on the elastic network properties.  

 

The first component of the virial stress is synonymous with Cauchy stress for non-

inertial networks and given by Eqn. (4.26). For linear springs, 𝒇 = 𝐾𝒓, and 𝐾 is the 

stiffness of a single chain, 𝐾 = 3𝑘𝑏𝑇/𝑟0
2, 𝑉 is the material volume (𝑉 = 𝑉0𝐽), and 𝑉0 =

𝒩/𝑐0 where 𝒩 is the number of chains that exists in the domain (∈ 𝛺), 𝑐0 is the dry 

concentration of chains, and 𝑟0 = √𝑁𝑏 is initial mean end-to-end separation for ideal 

chains (i.e., in theta solvent). As such, Eqn. (4.26) may be rewritten as: 

𝜎𝑣 =
𝑐0

2𝒩𝐽
(

3𝑘𝑏𝑇

𝑁𝑏2 ) ∑ 𝒓 ⊗ 𝒓𝛺 ,        (C.6) 
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Substituting the definition of 𝒓 as a function of chain stretch 𝝀 (𝒓 = 𝑟0𝝀 = 𝝀√𝑁𝑏) into 

(C.6) gives: 

𝜎𝑣 =
3𝑘𝑏𝑇𝑐0

2𝒩𝐽
∑ 𝝀 ⊗ 𝝀𝛺 .        (C.7) 

From (C.7), the hydrostatic component of stress may be written in 2D as: 

𝜎ℎ =
3𝑘𝑏𝑇𝑐0

4𝒩𝐽
𝑡𝑟(∑ 𝝀 ⊗ 𝝀𝛺 ),        (C.8) 

where for the case of isotropic swelling under the affine assumption: 

𝑡𝑟(∑ 𝝀 ⊗ 𝝀𝒩 ) = 𝒩(𝜆1𝜆1 + 𝜆2𝜆2) = 2𝒩𝜆2 = 2𝒩𝐽,    (C.9) 

Substituting this definition into (C.8), gives: 

𝜎ℎ =
3

2
𝑘𝑏𝑇𝑐0.          (C.10) 

Thus, 𝜅 = 𝜕𝜎ℎ/𝜕𝐽 = 0, at least at high volumetric strains for which the invoked 

assumptions apply (i.e., no polymer-polymer volume exclusion interactions). 

 

 

Figure C.2. Chain distribution functions of gels with 𝑳 = 𝟏𝟕𝟕 𝒏𝒎 and different 

functionalities. (A) The joint PDF of 𝑟∗ is shown for the ensemble of ten 40k tetra-PEG gels at 𝜆 = 1 

(left), the measured yield stretch 𝜆 = 2.80 (center), and the measured failure stretch 𝜆 = 3.25 (right). 

(B) The joint PDF of 𝑟∗ is shown for the ensemble of ten 80k octa-PEG gels at 𝜆 = 1 (left), the measured 

yield stretch 𝜆 = 2.36 (center), and the measured failure stretch 𝜆 = 2.52 (right). (A-B) The extensile 

direction, 𝑒2, is oriented horizontally. Dashed black circles indicate the chain contour length, while 

dashed red circles represent the deterministic scission length for chains. (C) The radial PDFs of 𝑟∗ are 

shown for the 10k tetra- and 20k octa-PEG gels as black and red histograms, respectively. For direct 

comparison, these histograms are depicted at 𝜆 = 0 (left), 𝜆 = 1.5 (center), and 𝜆 = 2.0. Again, the 

chains in these two networks have the same contour length. (D) The average component of normalized 

chain end-to-end length in the principal direction of extension is plotted with respect to stretch. End-

to-end lengths are normalized as 𝑟∗ = 𝑟/𝐿 such that 𝑟∗ ≥ 0.95 is not permitted. 
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C.4 Extended 40k tetra- and 80k octa-PEG gel data  

 

To demonstrate that the trends discussed in Section 4.5.1 (with regards to short-

armed tetra- and octa-functional networks) also apply the networks with longer 

chain lengths, we provide analogous figures to Fig. 4.13, 4.14 and 4.16.  

 

 

Figure C.3. Fracture of gels with of gels with 𝑳 = 𝟏𝟕𝟕 𝒏𝒎 and different functionalities. (A) A 

schematic of a tetra-functional macromer is depicted, alongside snapshots of a simulated 40k tetra-

PEG gel as it undergoes uniaxial extension. (B) A schematic of an octa-functional macromer is 

depicted, alongside snapshots of a simulated 80k octa-PEG gel as it undergoes uniaxial extension. The 

sizes of the gel snapshots are indicated by their respective scale bars, each representing 𝐿. Red crosses 

in the gel snapshots demark which chains rupture before the next displayed snapshot.  
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Figure C.4. Void characteristics of gels with 𝑳 = 𝟏𝟕𝟕 𝒏𝒎 and different functionalities. (A) The 

RDFs of ensembles of ten 40k tetra-PEG (black) and ten 80k octa-PEG (red) gels’ void centroids are 

displayed at 𝜆 = 1. Unlike for the short-armed networks, there is no detectable correlation scale for 

voids the octa-functional networks. The distance between void centroids is normalized as 𝑑𝑣
∗ = 𝑑𝑣/𝐿. 

(B) The average number of voids per macromer is plotted with respect to stretch. (C) The average void 

area (normalized as 𝐴𝑣
∗ = 𝐴𝑣/𝜋𝐿2) is plotted with respect to stretch. (B-C) Shaded regions represent 

S.E. of the mean. The vertical dotted lines denote the approximate stretches at which bond rupture 

events became significant (𝜆 ≈ 2.85 – black, 𝜆 ≈ 2.25 – red). 
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Appendix D. Supporting information for Chapter V 

 

Fig. D.1. Estimating surface packing fraction. (A-C) Snapshots of an experimental raft are shown 

100 𝑚𝑖𝑛 apart to illustrate the long-term decrease in raft area, as well as the packing of surface ants 

near the anchoring rod at long timescales. (A-C) correspond to the data shown as red in plots (D-G). 

The scale bar represents approximately 20 ℓ for each image. (D-E) The number of structural and free 

ants are displayed as filled and open discrete data, respectively. The data for each of the two 

experiments has been separated into plots (D) and (E) for visual clarity. Notably, 𝜙 exceeds one for 

much of the experiments displayed, which – for a homogenous distribution of free ants – would lead to 

complete coverage of the structural layer by free ants everywhere; however, as illustrated by the inset 

in (C) in which the structural network and the water underneath remain clearly visible, the local free 

ant packing fraction far from the rod remained low and the free ants remained relatively dispersed. 

(F-G) The total raft area and corresponding mean surface packing fraction of ants, �̅�, are plotted, 

respectively, against time for two different experimental rafts (blue and red data, respectively). 

Notably, the surface packing fraction for both experiments increases in time as surface ants move 

towards the anchoring rod and become less active over the span of roughly 4 ℎ𝑜𝑢𝑟𝑠. In these regions, 

free ant packing fraction could locally reach and exceed 𝜙 = 1, suggesting that more than two layers 

existed in these concentrated regions. 
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Fig. D.2. Extended ant speed data: (A) A sample snapshot of an ant raft overlaid with manually 

image tracked trajectories (scale bar represents 5 ℓ). (B) The probability density function of surface 

ant speed is shown for a sample size of 𝑛 = 19,970 discrete frame-to-frame observations for 477 distinct 

ants. The mean ant speed over all observations, 𝑣0 = 0.60 ± 0.01 ℓ 𝑠−1, is indicated by a dotted line. 

The width of the bins depicted are greater than the estimated imaging error of approximately 0.07 ℓ 𝑠−1 

as determined by the pixel width (∼ 0.008 ℓ) per frame duration (𝛥𝑡 = 0.25 𝑠), times the approximate 

number of pixels per an ant’s petiole (∼ 2 𝑝𝑖𝑥𝑒𝑙𝑠), the anatomical body part tracked in each ant. 

 

 

 

 
Fig. D.3. Extended trajectory analysis data. (A) The trajectory space of 433 ants image tracked in 

seven sample sets on the bulk (i.e., without edge-encounters) of four separate ant rafts is displayed 

with each color shade representing a different ant. (B) 𝐶(𝑙𝑐) is plotted for all ants tracked in (A). The 

decay in correlation for any given ant may be approximated according to 𝐶 = 𝑒−𝑙𝑐/𝑙𝑝, however this 

method assumes ideal trajectories of constant step size and turning angle, so is only used to 

approximate the order of ant persistence length and generally not a precise value. (C) 𝑥2 is plotted 

with respect to 𝜏 for the full set of ants tracked in (A). Anomalous diffusion is apparent from the non-

linearity of these data sets. Ants sometimes alternate between phases of super and sub-diffusive 

behavior as illustrated by the increase and plateauing of the tangent slopes within different regimes. 

The data in (B-C) are plotted continuously purely for illustrative purposes.  
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Fig. D.4. Extended treadmilling dynamics data. (A-C) Snapshots of 3 experiments of varying sizes 

from time-lapse footage are shown. The red contour represents structural ants who were originally at 

the raft perimeter at reference time, 𝑡0, and flowed inwards in time. This contour circumscribes the 

area 𝐴𝑟. The region shaded in cyan represents the growth zone, 𝐴𝑔 of newly deposited structural ants 

into the edge of the raft network since the initial time of tracking the structural ants. Note that both 

the red and cyan demarcations highlight structural ants. While free ants may walk within the region 

shaded in cyan, it is structural ants that provide raft scaffold and define the newly deposited growth 

zone, 𝐴𝑔. (D-F) The structural edge deposition (𝛼 as circles) and structural exit (𝛿 as triangles) rates 

per unit raft area are plotted with respect to time in units of events per 휁2 per 𝑚𝑖𝑛 where 휁 = 𝜌𝑟
−0.5 is 

the length scale that one square structural ant occupies. Presented in these units, 𝛼 and 𝛿 may be 

thought of the as the instantaneous areal expansion and reduction rates of the raft, respectively, and 

if the two values are approximately equal then raft area will be loosely conserved. Gaps in the data of 

(F) correspond to time spans during which portions of the raft exited the visible frame and from which 

data could not be accurately taken. 
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Fig. D.5. Isolated free ant traffic. These images denote the isolated positions of free ants in orange 

or red. (A-B) The initiation of two adjacent protrusions is displayed in a region of locally higher convex 

edge curvature. (C-D) The growth of a relatively young, and highly tapered protrusion is depicted. (E-

F) Tip clustering and runaway growth of a more mature protrusions is displayed. (G-H) The initiation 

of a protrusion is depicted in a region of a raft with a relatively low initial edge curvature, indicating 

that while stronger confinement due to convex edge curvature may facilitate asymmetric growth, there 

are other factors that can lead to breaks in symmetry. All scale bars represent 5 ℓ. 
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Fig. D.6. Extended structural contraction data: (A-C) The full set of observations of 휀̇ is plotted 

with respect to 𝑅 for the largest to smallest raft experiments  (A-C, respectively). There exists no 

significant correlation between 휀̇ and distance to the rod (𝑅2 = 0.08, 0.17, and 0.00 for A-C, respectively) 

indicating that the strain rate is spatially constant. (D) Given the high degree of noise in (E), moving 

averages of the ensemble data from all three experiments are plotted revealing that 휀̇ may decrease 

wherever 𝑅 < 10 ℓ. Circles, squares and triangles represent data sets from the largest to smallest 

experiments conducted, respectively. Different colors denote different sample sets of image-tracked 

structural ants across all experiments. (E) The moving averages of all 휀̇ data for each of three 

experiments is plotted with respect to 𝑅, revealing that the decrease in 휀̇ wherever 𝑅 < 10 ℓ is due 

subsists within a given experiment. This is likely due to clustering of free, but inactive ants near the 

rod (see Fig. D.1.A-C). This may inhibit the local structural exit rate that permits or drives 

contraction. Accordingly, 휀̇ was reported for distances > 10 ℓ from the rod within the scope of this work. 

(F) 휀̇ is plotted with respect to normalized time, 𝑡∗ = 𝑡/𝑡𝑚𝑎𝑥 for each of three experiments revealing no 

discernable trends in time. (D-E) Red circles, cyan squares and magenta triangles represent the 

largest, intermediate, and smallest experiments, respectively. In (E) and (F), red circles represent 

experiment 1 from (A), cyan squares represent experiment 2 from (B) and magenta triangles represent 

experiment 3 from (C). 
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Fig. D.7. Protrusion growth measurement sample: (A-B) A binary image, in which white 

represents the raft and black represents water, is shown at the (A) start and (B) end of a 480 𝑠 duration 

to depict the growth of a protrusion. This may be loosely compared to the growth in the model depicted 

in Fig. 5.6.B-D. The protrusion’s relative length 𝐿 (red arrow) was measured from a set of reference 

ants image tracked in time (dotted cyan line) to the approximate tip of the growth. The frame-to-frame 

growth rate was taken as 𝑉 = [𝐿(𝑡 + 𝛥𝑡) − 𝐿(𝑡)]/𝛥𝑡 where 𝛥𝑡 is the time between frames. (C) The order 

of magnitude of 𝑉 could also be approximated using the regression coefficient of the linear regression 

fit (red line) to the plot of 𝐿 against time, 𝑡 (black circles). Here, 𝑉 ≈ 1 ℓ 𝑚𝑖𝑛−1 (𝑅2 = 0.93). 

 

 

Fig. D.8. Schematic of Local Growth-induced Gliding: A schematic of a protrusion mesh that has 

undergone a step of growth illustrates how if the local orientation of SPPs (휃) does not change, the 

updated orientation of the local norms (𝜓) will induce a biased gliding of particles along the edges 

according to �̇� = 𝑣0 𝑐𝑜𝑠(휃 − 𝜓). For the given boundary shape and evolution, �̇� will generally move from 

base-to-tip of the protrusion (from regions of lower to higher change in curvature due to 𝜸) and may 

explain one possible source of bias in the direction of edge deposition. �̇�  is denoted by arrows with a 

color gradient whose hue of orange increases with the relative magnitude of �̇�, however this gradient 

is not to scale and is for illustrative purposes only. 
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Table D.1. Numerical Model Parameter Space. 
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Appendix E. Supporting information for Chapter VI 

 

Here we provide further details on the numerical implementation of the model, 

including the algorithmic design and detailed derivations (as necessary), as well as a 

summary of the model’s parameters, the method by which they were calibrated and 

extended parameter sweeps of 휂, 𝑅 and 𝒜. Finally, methods for computing surface 

excess and edge curvature are described. 

 

E.1 General description 

E.1.a Domain description 

 

The numerical framework is carried out using MATLAB R2019b. It is a 2D planar, 

discrete model comprised of distinct nodes defined by some unique index number, 𝑖 ∈

[1, ∞), and unique Cartesian coordinates, 𝑿𝑖 = [𝑥𝑖 , 𝑦𝑖]. We locate the nodes inside of a 

square domain whose center is at position [0,0]. The nodes are initially positioned in 

a close-packed hexagonal lattice with unit length spacing between nearest neighbors. 

Each node position is then offset by some random amount in the range [−1/6,1/6] 휁 

in both directions. At initial time, 𝑡 = 0, each node is classified as either a structural 

agent (shown as cyan circles in Fig. E.1), or water node (shown as black dots in Fig. 

E.1). Structural agents represent structural ants, whereas water nodes represent 

vacant locations into which free agents may eventually park during edge deposition. 

To mimic initial experimental conditions, the initial shape of all simulated rafts is a 

circle with center [0,0] and some prescribed radius (Fig. 6.5). Every node within this 

circular boundary is initially defined as a structural agent. This ensures that any 

protrusions predicted by the model emerge due to spontaneous symmetry breaking 

as opposed to through user-enforced asymmetries. Freely active agents are 
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introduced to represent freely active ants (shown as red circles in Fig. E.1). The 

initial surface packing fraction is set to 1 free agent per structural agent, although 

the packing fraction naturally decreases in time as free agents bind into the 

structural network and a steady state flux of agents to and from each layer is reached. 

To simulate the movement of free ants on top of the raft, we require that free agents 

only occupy sites already designated as raft nodes. Additionally, to simplify the 

model, we enforce volume exclusion between freely active agents so that two free 

agents cannot occupy the same structural raft site simultaneously. 

 

 
Fig. E.1. Domain depiction. A snapshot of the discrete numerical domain is shown with water nodes 

plotted as black dots, condensed structural agents plotted as cyan circles, and dispersed freely active 

agents plotted as red circles. 

 

E.1.b Length scales  

 

Two length scales are referenced in this work. The first is that of the mean ant body 

length, taken as 1 ℓ =  2.93 𝑚𝑚. Results are generally presented in this length scale 

for ease of comprehension and comparison to experimental results. However, the 

numerical model is normalized by a second length scale defined as 1 휁 = 1.81 𝑚𝑚. 1 휁2 

is defined as the area a single ant in the structural raft network occupies (i.e., 1 휁 =
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𝜌𝑟
−0.5, where 𝜌𝑟 = 0.304 𝑎𝑛𝑡𝑠 𝑚𝑚−2 is the planar density of structural ants). This 

normalization enforces that the density of structural agents is maintained at 1 node 

per unit area (휁2), and the nominal separation between nodes is on the order of 1 unit 

length (휁). 

 

E.1.c Time scale 

 

We normalize the timescale by taking the average distance a freely active agent 

travels in one iteration, ⟨𝑑⟩, divided by the average experimentally measured free 

ant speed, 𝑣0 (i.e., 𝛥𝑡 = ⟨𝑑⟩/𝑣0).  

 

 
Fig. E.2. Algorithmic chronology of structural agents and water nodes. A flow chart details 

the algorithmic order in which positions of structural agents and water nodes are updated. The point 

at which unbinding events occur is also displayed. 

 

E.2 Simulating the structural network  

 

The algorithmic chronology used to step the positions of structural agents, implement 

unbinding events, and update the close-packed positions of water nodes is 
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summarized in Fig. E.2. In the remainder of this section these processes are 

described in greater detail.  

 

E.2.a Structural network contraction 

 

Given the experimentally measured contraction rate 휀̇, we apply a pairwise strain 

rate, �̇�, between connected neighbors within the raft. We do so by updating the 

pairwise separation vector, 𝒅𝑖𝑗, between all structural agents and their adjacent 

neighbors residing within some prescribed radius, 𝑅𝑟, about the node of interest. We 

conservatively set to 𝑅𝑟 1.5 ℓ to capture the bridging of raft voids that often occurs 

between structural ants. 𝑅𝑟 = 1.5 ℓ corresponds to roughly 4.5 mm or half the body 

length of some of the largest fire ants. To implement raft contraction, we update 𝒅𝑖𝑗 

at time 𝑡 + 𝛥𝑡 according to the forward Euler, exponential decay function: 

𝒅𝑖𝑗(𝑡 + 𝛥𝑡) = 𝒅𝑖𝑗(𝑡) 𝑒𝑥𝑝[−�̇�𝛥𝑡].       (E.1) 

Taking 𝒅𝑖𝑗(𝑡 + 𝛥𝑡) as the targeted equilibrium separation at time, 𝑡 + 𝛥𝑡, we then 

employ an overdamped approach to iteratively step the position of the nodes. The 

updated pairwise separation vector between neighbors 𝑖 and 𝑗 at iteration 𝑘 is denoted 

by 𝒅𝑖𝑗
𝑘 = 𝑿𝑖

𝑘 − 𝑿𝑗
𝑘, where 𝒅𝑖𝑗

1 = 𝒅𝑖𝑗(𝑡) represents the initial separation at the start of 

the timestep. The iterative change in position is then given by: 

𝛥𝒅𝑖𝑗
𝑘+1 = 𝒅𝑖𝑗

𝑘 − 𝒅𝑖𝑗(𝑡 + 𝛥𝑡).        (E.2) 

The position of each structural agent is then updated according to: 

𝑿𝑖
𝑘+1 = 𝑿𝑖

𝑘 + 𝜈−1 ∑ 𝛥𝒅𝑖𝑗
𝑘+1

𝑗 ,        (E.3) 

where 𝜈 ∈ [1, ∞) is simply a pseudo-viscosity or over-damping scalar used for 

computational stability and ∑ 𝛥𝑑𝑖𝑗
𝑘+1

𝑗  is the net displacement due to all pairwise 

neighbors. The over-damping scalar was set such that residual displacements 

through ∑ 𝛥𝑑𝑖𝑗
𝑘+1

𝑗  converged towards zero. Given the updated coordinates  𝑿𝑖
𝑘, we then 
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re-calculate 𝒅𝑖𝑗
𝑘  for each neighbor, and iterate Eqns (E.2) and (E.3) until the residuals 

dip below some prescribed threshold. Here we define the residuals and their 

thresholds as 𝑚𝑎𝑥[𝛥𝒅𝑖𝑗
𝑘+1] ≤ 5 × 10−5 휁 and 𝑚𝑒𝑎𝑛[𝛥𝒅𝑖𝑗

𝑘+1] ≤ 1 × 10−5 휁. 

 

E.2.b Close-packing water nodes 

 

Since the rafts’ structural networks contract in time, we need to ensure that water 

nodes remain closely packed to their perimeters so that binding events of freely active 

agents remain possible at the edge. To do this, we apply a radial linear velocity 

gradient to all water nodes that moves them towards the center of the domain, [0,0], 

at the rate of �̇�, according to 𝛥𝒅𝑖(𝑡 + 𝛥𝑡) =  𝒅𝑖(𝑡){1 − 𝑒𝑥𝑝[−�̇�𝛥𝑡]}, where 𝒅𝑖 is the 

separation vector of each water node with respect to [0,0]. To evenly space water 

nodes from each other, as well as the rafts’ edges, we introduce Gaussian, pair-wise 

repulsive forces, 𝑭𝑖𝑗
𝑟 , between water nodes and their nearest structural agent or water 

node neighbors of the form: 

𝑭𝑖𝑗
𝑟 = 𝜅

�̂�𝑖𝑗

𝜎√2𝜋
𝑒𝑥𝑝 [−

(𝑑𝑖𝑗−𝜇)
2

2𝜎2 ],       (E.4) 

where 𝜎 is the standard deviation of the curve, 𝜇 = 0 휁 is the mean, and 𝜅 is a scaling 

factor in units of pseudo-force. We use these values to step the positions of water 

nodes according to: 

𝑿𝑖(𝑡 + 𝛥𝑡) = 𝑿𝑖(𝑡) +
𝛥𝑡

𝜈
∑ 𝑭𝑖𝑗

𝑟
𝑗 ,      (E.5) 

where 𝜈 ∈ [1, ∞) is simply another pseudo-viscosity for computational stability, and 

∑ 𝑭𝑖𝑗
𝑟

𝑗  is the net repulsive force due to all pairwise neighbors. Again, the pseudo-

viscosity was set such that residual forces through ∑ 𝑭𝑖𝑗
𝑟

𝑗  converged towards zero. We 

found that 𝜎 = 0.5 휁 and 𝜅/𝜈 = 0.02 provided a stable computational domain in which 

water nodes remained close-packed in an evenly distributed point field (as displayed 

in Fig. E.1), thus offering ample water DOF, for freely active agents on the edge of 
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the raft to deposit into. Note that the repulsive interactions between water nodes and 

their raft neighbors were one-way such that the structural agents could displace 

water nodes, but water nodes could not displace structural agents. This was done 

because the close packing of water nodes is a numerical method implemented to 

homogenize the domain (rather than any physical phenomena) and should not 

influence the position of structural agents in the model.  

 

E.2.c Unbinding to maintain structural density 

 

Recall that we normalize the domain's unit length by 휁 such that the domain's 

nominal density, 𝜌𝑑, is approximately 1 𝑛𝑜𝑑𝑒 휁−2. Since we observed that structural 

network density remains roughly constant, we enforce unbinding events in 

simulations when the domain density exceeds 1 𝑛𝑜𝑑𝑒 휁−2. To ensure that nodes are 

removed from the densest locations with precision, we subdivide the domain into a 

square grid whose unit cell lengths, 𝐿𝑔, are ≥ 1휁. The number of permissible nodes, 

𝑁𝑝, within each grid cell becomes 𝑁𝑝 = 𝜌𝑑𝐿𝑔
2 . For our purposes, we found that 𝐿𝑔 = 2휁 

and 𝑁𝑝 = 4 nodes provided sufficient regional discretion to maintain a homogeneous 

domain (as seen in Fig. E.1). 

 

After contraction but prior to the stepping of free agents, we conduct a count of the 

number of nodes occupying each grid site and if it exceeds 𝑁𝑝, we initiate a node 

deletion event. To introduce further specificity in which nodes to remove we calculate 

the pair-wise distance, 𝑑𝑖𝑗, between each node in the pertinent grid space. If both 

nodes 𝑖 and 𝑗 belonging to the smallest value of 𝑑𝑖𝑗 occupy the grid space, one of the 

two is randomly selected for deletion. In the case that the removed node is a water 

node, we simply delete it. Stochastic deletion is counteracted by the enforced close-

packing described in the previous section and together these practices ensure that 
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the density of water nodes is equivalent to that of the structural raft. New water 

nodes are seeded at the edge of the domain as needed to conserve their population. 

However, if the removed node is occupied by a structural agent, we convert it to a free 

agent positioned at the coordinates of the nearest empty structural node. This 

introduces unbinding of structural agents into the freely active layer wherever the 

local network density is high, consistent with what was observed experimentally [11]. 

By counting the number of unbinding events, 𝑁𝑢, at each time step and normalizing 

by the total number of structural ants, 𝑁𝑟, we can calculate the unbinding rate 

according to 𝛿 = 𝑁𝑢/(𝑁𝑟𝛥𝑡) .  

 

 
Fig. E.3. Algorithmic chronology of freely active agents. A flow chart details the algorithm by 

which movement is determined for each freely active agent, in each time step. 

 

E.3 Simulating the freely active ants 

 

The algorithmic chronology used for determining movement of freely active agent 𝑖 is 

summarized in Fig. E.3. As illustrated in Fig. E.3, the movement of free agents is 

updated after the contraction and unbinding outlined in Fig. E.2. In the remainder 

of this subsection, we detail the rules by which free agent motion is stepped, and then 
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derive Eqn. (E.1) for the effective pairwise edge repulsion felt by an agent due to a 

water node.  

 

E.3.a Stepping free agent movement 

 

Mirroring the methods of Couzin and Franks (2003) [267] or Baumgartner and Ryan 

(2020) [266], we assign each free agent a preferred angle of movement, 휃𝑖, (as 

measured from the positive horizontal axis) prior to stepping its position. Here, this 

is achieved through the Vicsek model (Eqn. (6.1)) to capture experimentally observed 

local alignment effects [11]. Note that the directions of motion of free agents are 

dependent on those of the previous time step. Therefore, to initiate the movement of 

free agents at the start of the simulation (or whenever a structural agent transitions 

to a free agent) we assign each agent a random, instantaneous orientation, 휃𝑖 ∈ [0,2𝜋] 

radians.  

 

With the preferred angle of motion predicted, we assign every agent in the domain 18 

DOF, which – in an equidistant hexagonal lattice– corresponds to two layers of 

nearest neighbors (here spanning 2 휁). We opted to provide each node with 18 DOF 

based on three considerations: (1) the experimental observation that free ants 

frequently walk over one another, effectively passing 2 휁 in one unit time; (2) the 

experimental observation that freely active ants may walk over voids in the raft of 

comparable dimensions to their own body length, effectively passing greater than 1 휁 

in one unit time; and (3) the realization that modeling free agents with 18 rotational 

DOF is roughly a threefold improvement in approximating the continuous space real 

ants occupy, over the 6 DOF offered by looking at only one layer of immediate node 

neighbors spanning 1 휁. The 18 DOF for each node are assigned in rank-order by 
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distance to neighboring nodes. To be a DOF, the neighboring node must reside within 

the distance, 𝑅𝐷𝑂𝐹 ∈ (0,2.5] 휁, of the node of interest. To consistently achieve 18 DOF 

despite noise in the node distribution, the upper bound of this range was set 1.25 × 

greater than the distance needed to reach 18 nearest neighbors in a close-packed 

hexagonal lattice.  

 

With the pool of DOF defined, we then calculate the relative angle, 𝜗𝑖𝑗, of each 𝑗𝑡ℎ 

DOF with respect to the position of node 𝑖 as measured with respect to the positive 

horizontal axis according to:  

𝜗𝑖𝑗 = {
𝑎𝑡𝑎𝑛2(𝑿𝑗 − 𝑿𝑖),                    𝑦𝑗 ≥ 𝑦𝑖

2𝜋 + 𝑎𝑡𝑎𝑛2(𝑿𝑗 − 𝑿𝑖),       𝑦𝑗 < 𝑦𝑖

,      (E.6) 

where 𝑿𝑗 is the position of each DOF, 𝑿𝑖 is position of the freely active agent, and 𝑦𝑖 

denotes the y-axis component of 𝑿𝑖. We then calculate the absolute difference between 

휃𝑖 and 𝜗𝑗: 

𝛥휃𝑖𝑗 = {
|𝜗𝑖𝑗 − 휃𝑖|,                |𝜗𝑗𝑗 − 휃𝑖| < 𝜋

2𝜋 − |𝜗𝑖𝑗 − 휃𝑖|,      |𝜗𝑖𝑗 − 휃𝑖| ≥ 𝜋
,      (E.7) 

and take the minimum value to indicate which neighboring raft or water node the 

freely active agent would preferentially move to. The pool of DOF are then rank-

ordered from smallest to largest 𝛥휃𝑖𝑗 and sequentially checked for eligibility of 

movement. All eligible DOF must reside within the turning limit 𝜗𝑗 ∈ [−𝜋/2, 𝜋/2] as 

discussed earlier. Structural DOF are only eligible if they are unoccupied by other 

free agents. Water DOF are eligible only if the edge deposition condition (Eqn. (6.5)) 

is satisfied. The free agent is stepped to the first DOF in the rank-ordered pool that 

proves eligible. In the case that no DOF are eligible, the agent pauses according to 

the following section. To eliminate bias and ensure randomization, the order in which 

the free agents’ motions are updated is randomly determined at every timestep. 

 



238 

 

 

E.3.b Pausing surface traffic 

 

While updating the positions of a freely active agent, we run into cases where the pool 

of potential movement DOF is exhausted, and movement is interrupted. This occurs 

when all the DOF within the turning limit (𝜗𝑖𝑗 ∈ [−𝜋/2, 𝜋/2]) are either occupied 

structural agents, or water nodes that do not satisfy the edge deposition condition 

(Eqn. (6.5)). We generally observe that real ants whose trajectories are interrupted 

tend to pause and stationarily explore the environment in front of them for 

approximately 1 to 10 𝑠 before turning around (i.e., turning greater than 𝜋/2 𝑟𝑎𝑑𝑖𝑎𝑛𝑠) 

to explore elsewhere. Therefore, in cases where no DOF meet the set of eligibility 

criteria and the free agent’s motion is interrupted, the agent is paused for some 

random time, 𝑡𝑝, in the range of [2,4]𝛥𝑡. After this time has elapsed, the free agent’s 

orientation is randomly redefined according to the process used at particle initiation 

and the agent is permitted to resume motion in an uncorrelated direction. This 

mechanism generates traffic jams in confined regions, such as areas with higher local 

free agent densities and those confined by the rafts' edges (e.g., the tips of 

protrusions). Yet this also ensures that these traffic jams (or clusters) are not 

permanent features in the simulations. Instead, they dissipate at time scales 

correlating to both 𝑡𝑝 and the cluster or traffic jam size, thus ensuring that clusters 

occur as they do in experiments. 

 

E.3.c Effective repulsion at the edge 

 

A freely active agent is defined as encountering the edge of the raft when its preferred 

DOF is a water node. This is tantamount to it encountering the water head-on, and 

amounts to an initial perception cone [263], [267] of roughly ±15° given the 18 
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movement DOF in this framework. However, once a water node is detected as the 

preferred movement DOF, the full 360° environment within detection radius 𝑅 is 

considered. This treatment serves to capture two experimentally observed tendencies 

of free ants: (1) that free ants moving tangent to but directly near the raft’s perimeter 

seem unperturbed by the water’s presence to their left or right, and (2) free ants 

whose movement is halted by encountering water head-on tend to reach out and probe 

their environment each direction before making a movement decision. In any case, 

the local change in substrate at the edge of the raft results in some effective edge 

repulsion for those free agents which detect it. To model this edge force, we define 

some energetic potential at the site of every structural agent (𝑈𝜌), and a another at 

the site of every water node (𝑈𝜔). These potentials will map the energy landscape 

whose local gradient (−𝛻𝒓𝑈) represents the edge repulsion force 𝑭𝛤.   

 

To gauge this landscape, we first consider the 1D pairwise energy gradient between 

a freely active agent at node 𝑖 and its 𝑗𝑡ℎ detected neighbor (reference Fig. E.4). 

Applying the simplest assumption that the gradient between each pairwise set of 

nodes evolves linearly, then the magnitude of the local pairwise force occurring on a 

free agent at node 𝑖 because of node 𝑗 is given as 𝑓𝑖𝑗 = −𝛥𝑈𝑖𝑗/𝑟𝑖𝑗 where 𝛥𝑈𝑖𝑗 is the step 

in energy from nodes 𝑖 to 𝑗 and 𝑟𝑖𝑗 is the distance between their centers. We make the 

distinction between structural and water neighbors by replacing the index 𝑗 with 𝜌 

and 𝜔 to represent structural and water nodes, respectively, such that two separate 

types of forces emerge: forces due to adjacent water nodes, 𝑓𝑖𝜔 = −𝛥𝑈𝑖𝜔/𝑟𝑖𝜔, and forces 

due to adjacent structural nodes, 𝑓𝑖𝜌 = −𝛥𝑈𝑖𝜌/𝑟𝑖𝜌. Note that a freely active agent 

always occupies a structural site, such that the local energy is 𝑈𝜌. Therefore, 𝛥𝑈𝑖𝜔 =

𝑈𝜔 − 𝑈𝜌, which we denote as 𝛤 throughout this work (Fig. E.4.A). This also means 

that 𝛥𝑈𝑖𝜌 = 𝑈𝜌 − 𝑈𝜌 = 0 and no effective force emerges due to neighboring structural 
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sites (Fig. E.4.B). In 2D, we consider that a freely active agent detects all neighboring 

nodes within detection distance 𝑅 so that the effective edge repulsion experienced is 

approximately equal to the sum of all pairwise contributions from nearby water 

nodes, or: 

𝑭𝑖
𝜞 = −𝛻𝒓𝑈 ≈ −𝛤 ∑ 𝑟𝑖𝜔

−1�̂�𝑖𝜔𝜔 ,       (E.8) 

where �̂�𝑖𝜔 is the direction of the pairwise separation vector 𝒓𝑖𝜔. In the numerical 

framework, wherein 𝑅 is on the order of the contact length scale (i.e., 𝑅/ℓ ∼ 1, as 

determined experimentally [11]) we recognize that the separation distances, are all 

given by 𝑟𝑖𝜔 ≈ 𝑅. Thus, we may take 𝛤/𝑟𝑖𝜔 as a constant, 𝑓𝛤 = 𝛤/𝑅 and rewrite Eqn 

E.8 as: 

𝑭𝑖
𝜞 = −𝑓𝛤 ∑ �̂�𝑖𝜔𝜔 .         (E.9) 

 

 
Fig. E.4. Pairwise repulsive force. (A) The origins of the pairwise repulsive force acting at the 

position of structural node i due to the proximity of water node ω is illustrated in 1D. The force is taken 

as the gradient in energy landscape from 𝜔 to 𝑖. (B) Similarly, the lack of any pairwise repulsive force 

acting at the positions between structural node i and structural node ρ is visually illustrated by the 

lack of a gradient in the local energy. 

 

E.4 Model parameters 

 

A summary of experimental and numerical values used throughout this work is 

provided in Table E.1. Experimental values of Table E.1 were taken from Wagner, 

et al. (2021).  
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Table E.1. Commonly referenced values. 

 

A summary of the model’s free parameters is provided in Table E.2. The structural 

agent model contains just one free parameter, the contraction rate between nearest 

neighbors (�̇�). However, this value was fixed to reproduce the global contraction rate, 

휀̇, of experimentally observed rafts [11]. The freely active agent model has three free 

parameters: (1) the radius of mutual influence between an agent and its nearest 

neighbors (𝑅); (2) activity (𝒜); and (3) the noise parameter (휂). However, 𝑅 and 휂 were 

fixed to match the walking characteristics of experimental ants (See the Appendix 

E.5 section, below).  
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Table E.2. Free parameters of model. 

 

 

E.5 Model calibration  

E.5.a Pairwise strain  

 

The numerical contractile strain rate was controlled using the parameter, �̇�, 

employed according to Eqn. (E.1). We calibrated �̇� by matching the global contractile 

strain and numerical exit rates (휀̇ and 𝛿, respectively) to those of the experiments. 

Global decay was measured experimentally using particle image velocimetry on a 

rectilinear region of interest over a duration of 13 minutes and calculating the radial 

component of contractile speed, �̇�, towards the still reference frame (i.e., the 

stationary acrylic rod). A linear gradient in �̇� was found with respect to distance away 

from the stationary acrylic rod, 𝑟, suggesting a spatially constant 휀̇ [11] (Fig. 6.3.A,C). 

For a given experiment, 휀̇ was also found to be roughly constant in time, and isotropic 

[11]. The combination of spatially constant 휀̇ and isotropic contraction indicates that 

the mechanism of contraction occurs locally and homogenously throughout the bulk 

of the raft, rather than at a specific location such as the interface between the raft 

and the rod [11], hence the use of a locally applied pairwise contractile strain rate 

between neighboring structural agents. For the numerical results, 휀̇ was also 
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computed as the gradient in contractile speed towards the stationary raft point with 

respect to distance from said point (Fig. E.3.B,C). We found that 휀̇ matched between 

the model and experiments when �̇� was set to 1.2 × the desired global strain rate, 

likely due to affine effects within the network structure [268]. Note that the results 

presented in Fig. E.3.C of both experimental and simulated raft contraction 

represent the full data of 2D regions of interest but are projected onto one dimension 

(which is radial distance from the still reference point, 𝑟). 

 

E.5.b Vicsek model parameters  

 

The effects of altering 𝑅 and 휂 are illustrated through the phase table in Fig. E.5, 

wherein the surface traffic of freely active agents’ in 2D domains with periodic 

boundary conditions is depicted at various values of these parameters. Note that to 

correctly mimic the conditions of the lattice model used in the raft framework, the 

agents are here also restricted to motion on a lattice, whose positions are set in a 

hexagonal close-packed configuration and then randomly offset by some amount ∈

[−1/6,1/6] 휁 in each direction, as described above in Appendix E.1. Agent motion is 

also restricted to 18 DOF at every timestep and governed by the rules described in 

Appendix E.3. Moving from left to right, we see that the effect of decreasing 휂 (or 

decreasing the rotational noise, 𝜉𝑖 in Eqn. (6.1)) is to induce collective motion and 

directional flow. Likewise, moving from top to bottom, we see that increasing 𝑅 (or 

increasing the range over which freely active agents are influenced by their 

neighbors) has a similar effect. 
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Fig. E.5. Vicsek model phase diagrams. Snapshots of the surface traffic of freely active agents in 

the numerical model are illustrated at a packing fraction of 𝜙 = 0.24. The (A) full traffic, as well 

as (B) streamlines of just 10% of modeled agents composited from 10 time steps, are shown to illustrate 

the presence of clustering and directional motion, respectively. From top to bottom R is swept over the 

range 𝑅 ∈ [0.62,2.47] ℓ and from left to right, η is swept over the range 휂 =  [1.00,0] in increments of 

0.25. The regional range that roughly matches experiments is outlined in red for each table. Although 

the agents’ motions are confined to a lattice of nodes, the lattice is not depicted here for visual clarity. 

 

From our previous work [11], we are aware that 𝑅 is on the order of 1 ℓ, which gives 

us an estimation of the initial length-scale for the numerical value. Additionally, we 

found that the free ant trajectory persistence length, 𝑙𝑝, on the bulk of the raft is 

roughly 15 − 20 ℓ. Employing the method used in Wagner, et al. (2021), we also 

calculate 𝑙𝑝 for of simulated freely active agents in the parameter space given from 

Fig. E.5, yielding the heat map illustrated in Fig. E.6. Matching 𝑅 and 𝑙𝑝 to the 

approximate experimental values of 0.9 ℓ and 15 ℓ, respectively, we find that 휂 ≈ 0.2. 
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Fig. E.6. Persistence length phase diagram. An interpolated, 2D heat map illustrates 

how 𝑙𝑝 evolves over the parameter space defined by 𝑅 ∈ [0.62,2.47] ℓ and 휂 ∈ [0,1] in the numerical 

model. The point that matches the experimental data is plotted as a white dot. 

 

E.5.c Extended parameter sweep 

 

With 휂 set to 0.2, 𝒜 was swept over the range [0.81,3.24]. The results presented in 

this manuscript were produced by fixing 𝑅 at 0.9 ℓ to mimic experimental systems 

and examine the effects of local interactions only. However, 𝑅 was supplementarily 

swept over the range of [0.62,1.23] ℓ to elucidate its effects on overall raft shape. Note 

that 𝑅 ∈ [0.62,1.23] ℓ corresponds to 𝑅 ∈ [0.5,2] 휁 and 𝒜 ∈ [3.24,0.81] corresponds to 

𝐿 ∈ [2,0.5] 휁, hence the respective choices for 𝑅 and 𝒜 in this work. The extended 

phase table and heat maps of free agent packing fraction, 𝜙, and peak surface excess, 

𝑆𝑚𝑎𝑥, are depicted in Fig. E.7.A, E.7.C and E.7.D, respectively. Fig. E.7.B depicts 

the combinations of 𝑅 and 𝒜 that result in matching of 𝑆𝑚𝑎𝑥 (red curve) and 𝜙 (black 

curve) to those values from the experiments. While the two curves never intersect in 

the parameter space, this may be attributed to several factors including error in the 
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numerical measurement of surface excess and isotropic detection of neighboring 

agents within detection radius 𝑅.  

 

 
Fig. E.7. Persistence length phase diagram. (A) A phase table depicts the morphology of simulated 

rafts for different values of 𝑅 and 𝒜 after approximately 1 hour of simulated time. (B) Interpolated 

curves with respect to 𝑅 and 𝒜 depict the phase space in which the maximum surface excess 𝑆𝑚𝑎𝑥 (red) 

and packing fraction 𝜙 (black) matched those of the experiments (~1.8 and ~0.24, respectively) to 

within 0.25%. (C) A heat map of 𝜙 with respect to R and 𝒜 is shown with the white curve 

corresponding to the black curve from (B). (D) A heat map of Smax is shown with respect to R and 𝒜 

with the white curve corresponding to the red curve from (B). 
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E.6 Measuring surface excess:  

 

Recall that surface excess is calculated according to the relation 𝑆 = 𝐶/(2√𝜋𝐴), where 

𝐶 is the raft’s perimeter length and 𝐴 is the raft’s area. The way in which 𝐶 is 

measured may significantly impact the estimated value of 𝑆 due to the fractal nature 

of ant rafts’ edges. Specifically, if the contour length is measured with resolution 

better than the length scale of the constituents’ size, then 𝐶 captures the surface 

roughness of the raft edge and is overestimated in accordance with the coastline 

paradox [285]. As such, a manual method of measuring 𝐶 by tracing the perimeter of 

the raft in each frame using ImageJ [222], [224], [286] was preferred, as it allowed 

user discretion in capturing edge defects. This method was used for the experimental 

dotted line presented in Fig. 6.6.C, which coarsely estimates the maximum 

experimental surface excess on the order of 1.8. 

 

Surface excess of numerical results was estimated by taking 𝐶 as the number of 

structural agents on the perimeter and 𝐴 as the total number of structural agents. 

This estimation of 𝐴 is acceptable since the domain density is maintained at 

1 𝑛𝑜𝑑𝑒 휁−2, meaning each structural agent occupies a space of 1 square unit length. 

Similarly, this estimation of 𝐶 relies on the fact that the nominal spacing between 

nodes is ∼ 1 휁, such that adjacent structural agents in the perimeter may be assumed 

approximately 1 unit length apart. Perimeter structural agents were defined as 

agents with neighboring water nodes that reside within the threshold distance of 

nearest neighbors (i.e., are ≤ 1 ℓ or ≤ 1.6 휁 away). This method was used for 

expediency as it could be automated during simulation post-processing for the 

ensemble average presented in Fig. 6.6.C. However, the assumption of unit spacing 

(1 휁) between adjacent edge agents may introduce error in the calculation of 𝐶.  
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To directly compare surface excess between experimental and model results, as done 

in Fig. 6.6.K, an alternative and controlled method was used. Both experimental and 

numerical videos of the raft evolution were imported into ImageJ and converted to 

binary images with the raft black and the background white. All black pixels that 

were not part of the raft were removed such that the raft was the only object in the 

image. Each image was then eroded twelve times to reduce surface roughness at the 

length scale of individual ants or agents, and then dilated twelve times to revert the 

rafts back to their original size. The image was then analyzed to measure 𝐴 and 𝐶 

and calculate surface excess. Using this method for both the experimental and 

numerical results permits a more direct comparison between the two image sources. 

 

It should be noted that regardless of the method employed, the fractal nature of ant 

rafts’ “coasts” ensures that surface excess is strongly impacted by the resolution with 

which 𝐶 is measured [11]. While surface excess quantifies shape to some extent, it is 

here used to interpret qualitative and relative changes in global raft shape rather 

than draw absolute or quantitative conclusions. 

 

E.7 Measuring tip radii 

 

To measure the radii of curvature of in silico rafts’ convex edges, the final frames of 

simulated rafts (for 𝒜 ∈ [0.81,3.23]) were uploaded into ImageJ [222], [224], [286]. 

Convex regions of edge curvature were visually identified, and the positions of each 

structural agent in the local vicinity were tracked using ImageJ’s “point tool”. Convex 

regions were mathematically delineated from their adjacent concave regions by 

inflection points in the local curvature with a moving average interval of (1 ℓ). Data 
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outside the nearest inflection points was cropped. A circle was then fit to the 

remaining convex point data using the Pratt method [287], [288]. The radius of this 

circle was taken as the local radius of curvature, 𝑅𝜅. If only one or two points 

remained within the dataset after cropping between inflection points (in which case 

the Pratt method would not work), then these regions were confirmed to contain just 

one or two agents and the corresponding radius was set to 0.5 ℓ or 1 ℓ, respectively. 

Once computed for every observation, the mean of all observations (⟨𝑅𝜅⟩) and 

standard error of the mean were calculated and reported in Fig. 6.6.D. 


