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SUMMARY
Intracellular vesicle fusion is catalyzed by soluble N-ethylmaleimide-sensitive factor attachment protein re-
ceptors (SNAREs). Vesicle-anchored v-SNAREs pair with target membrane-associated t-SNAREs to form
trans-SNARE complexes, releasing free energy to drive membrane fusion. However, trans-SNARE com-
plexes are unable to assemble efficiently unless activated by Sec1/Munc18 (SM) proteins. Here, we
demonstrate that SNAREs become fully active when the v-SNARE is split into two fragments, eliminating
the requirement of SM protein activation. Mechanistically, v-SNARE splitting accelerates the zippering of
trans-SNARE complexes, mimicking the stimulatory function of SM proteins. Thus, SNAREs possess the
full potential to drive efficient membrane fusion but are suppressed by a conformational constraint. This
constraint is removed by SM protein activation or v-SNARE splitting. We suggest that ancestral SNAREs
originally evolved to be fully active in the absence of SM proteins. Later, a conformational constraint co-
evolved with SM proteins to achieve the vesicle fusion specificity demanded by complex endomembrane
systems.
INTRODUCTION

Cargo transport between membrane-bound organelles requires

the fusion of cargo-carrying vesicles with target membranes.

Vesicle fusion is catalyzed by a class of membrane-bound pro-

teins known as soluble N-ethylmaleimide-sensitive factor

attachment protein receptors (SNAREs) (Rizo and S€udhof,

2012; S€udhof and Rothman, 2009). The vesicle fusion reaction

is initiated when vesicle-anchored SNAREs (v-SNAREs) pair

with target membrane-associated SNAREs (t-SNAREs) to form

trans-SNARE complexes between the two membrane bilayers

(Chapman, 2008; Ellena et al., 2009; Reese et al., 2005; Söllner

et al., 1993; Weber et al., 1998). A fully assembled SNARE com-

plex consists of a parallel, four-helix, coiled-coil bundle held

together by 15 hydrophobic layers of interacting side chains

(numbered �7 to �1 and +1 to +8), and a hydrophilic 0 layer

(Stein et al., 2009; Sutton et al., 1998). One helix of the bundle

is contributed by the v-SNARE, whereas three helices are from

t-SNAREs (Stein et al., 2009; Sutton et al., 1998; Wickner, 2010).

The SNARE bundle assembles in distinct stages in the mem-

brane fusion reaction. The N-terminal domains (NTDs, �7 to

�1 layers) of SNAREs pair first, restructuring the t-SNAREs

and setting the stage for the subsequent zippering of the C-ter-

minal domains (CTDs, +1 to +8 layers) (Li et al., 2014; Zhang

et al., 2016). Free energy released by CTD zippering is used to
C
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overcome the energy barrier of membrane merging (Gao et al.,

2012; Li et al., 2014; Pobbati et al., 2006). Despite powering

the membrane fusion reaction, trans-SNARE complexes are un-

able to assemble efficiently unless activated by Sec1/Munc18

(SM) proteins (Baker et al., 2015; Jiao et al., 2018; Kasula

et al., 2016; Ma et al., 2013; Shen et al., 2007). Soluble factors

of 60–70 kDa, SM proteins recognize their cognate pairs of v-

and t-SNAREs and promote their assembly into energy-

releasing trans-SNARE complexes (Dulubova et al., 2007; Garcia

et al., 1994; Hata et al., 1993; Lobingier et al., 2014; Ma et al.,

2015; Novick and Schekman, 1979; Pevsner et al., 1994).

In this work, we unexpectedly discovered that SNAREs

become fully active when the v-SNARE is split into two frag-

ments, eliminating the requirement of SM protein activation. Split

SNARE-driven fusion is kinetically similar to the SM protein-acti-

vated fusion reaction and is highly sensitive to point mutations

that abolish vesicle fusion in vivo. We observed that v-SNARE

splitting accelerates the zippering of trans-SNARE complexes,

mimicking the stimulatory function of SM proteins. However,

split SNARE-driven fusion lacks the specificity observed in SM

protein-activated fusion reactions. These data demonstrate

that SNAREs possess the full potential to drive efficient mem-

brane fusion but are suppressed by a conformational constraint.

The constraint can be removed by binding to a cognate SM pro-

tein or by splitting the v-SNARE.
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Figure 1. Split SNAREs Drive Efficient Mem-

brane Fusion without Requiring Activation

by a SM Protein

(A) Backbone view of the synaptic SNARE complex

with individual layers of the SNARE motifs indi-

cated (PDB: 1SFC).

(B) Diagrams illustrating two types of split v-

SNAREs. In one split v-SNARE, the NTD and CTD

of the v-SNARE VAMP2 were detached and

anchored to the same liposomes. The NTD was

connected to the transmembrane domain of

VAMP2 through a TolA helix unrelated to SNAREs.

In another split v-SNARE (marked with an asterisk),

the CTD of VAMP2 is anchored to liposomes,

whereas the NTDwas added as a soluble fragment.

(C) Liposomes harboring WT or split VAMP2

(shown in B) were directed to fuse with liposomes

containing WT t-SNAREs (syntaxin-1 and SNAP-

25). The kinetics of the fusion reactions was

measured using a fluorescence resonance energy

transfer (FRET)-based lipid-mixing assay.

(D) Initial lipid-mixing rates of the fusion reactions

shown in (C). Data are presented asmean ± SD (n =

3). The p values were calculated using Student’s t

test. ***p < 0.001.
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RESULTS AND DISCUSSION

The energy released by the SNARE complex is comparable to

that from other membrane fusion proteins such as viral fusion

proteins (Jiao et al., 2015). However, viral fusion proteins are

self-sufficient engines that do not require activation by other pro-

teins (Earp et al., 2005; Harrison, 2008). Thus, we posit that

SNAREs are energetically competent in drivingmembrane fusion

but are kinetically impeded by an inherent constraint that could

be experimentally removed. To test this possibility, we engi-

neered SNARE variants and examined whether they could drive

efficient membrane fusion without requiring activation by a SM

protein. A SNARE variant we engineered was a split v-SNARE,

in which VAMP2/synaptobrevin, a v-SNARE involved in synaptic

exocytosis, was severed at the zero layer. The detached NTD

and CTD fragments were reconstituted into the same liposomes

(Figures 1A and 1B). Although the NTD and CTD fragments were

previously characterized in biochemical studies (Li et al., 2014;

Melia et al., 2002; Yu et al., 2018), it was unclear whether they

are capable of driving biologically relevant membrane fusion
2 Cell Reports 34, 108611, January 12, 2021
when detached and how their activities

are linked to SM proteins.

In the absence of a SM protein, wild-

type (WT) SNAREs zippered inefficiently,

driving a near-background level of lipo-

some fusion (Figures 1C and 1D; Shen

et al., 2007; Yu et al., 2015, 2018). Strik-

ingly, split VAMP2 paired with WT t-

SNAREs (syntaxin-1 and SNAP-25) and

drove a highly efficient liposome fusion re-

action (Figures 1C and 1D). Split SNARE-

driven fusion was more than an order of

magnitude faster than the WT SNARE-
mediated fusion reaction (Figures 1C and 1D) and was kinetically

similar to the SM protein-activated fusion reaction (Figures 2A

and 2B). Omission of either NTD or CTD abolished split

SNARE-driven liposome fusion (Figures 1C and 1D), consistent

with the requirement of both domains in vesicle fusion (Gao

et al., 2012; Li et al., 2014; Yu et al., 2018). We tested another

split v-SNARE pair, in which the CTD of VAMP2 was anchored

to liposomes yet the NTD was added as a soluble fragment (Fig-

ure 1B). We observed that this split VAMP2 also drove an effi-

cient level of liposome fusion when paired with t-SNAREs (Fig-

ures 1C and 1D). These results demonstrate that when the

NTD and CTD of the v-SNARE are physically detached, SNAREs

are capable of driving efficient liposome fusion without requiring

activation by a SM protein.

Next, we sought to determine the molecular mechanism by

which v-SNARE splitting accelerates membrane fusion. The ki-

netics of split SNARE-driven fusion was comparable to that of

SM protein-activated fusion reaction, in which the cognate SM

protein Munc18-1 was added to WT SNAREs (Figures 2A–2C).

Addition of Munc18-1 to the split SNARE-driven fusion reaction
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Figure 2. Split SNARE-Driven Membrane

Fusion Mimics the SM Protein-Activated

Fusion Reaction

(A) Liposomes harboring WT or split VAMP2 (de-

picted in Figure 1B, right) were directed to fuse with

liposomes containingWT t-SNAREs (syntaxin-1 and

SNAP-25) in the absence or presence of 5 mM

Munc18-1. The kinetics of the fusion reactions was

measured using a FRET-based lipid-mixing assay.

In this work, Munc18-1 was added at the same

molar concentration (5 mM) as SNAREs to reflect

their 1:1 binding stoichiometry (Dulubova et al.,

2007; Shen et al., 2007; Yu et al., 2013). Higher

concentrations of Munc18-1 did not further increase

the rate of the liposome fusion reaction driven by

WT SNAREs (Figure S1).

(B) Initial lipid-mixing rates of the fusion reactions

shown in (A).

(C) Dose dependence of Munc18-1 in liposome

fusion reactions mediated by WT or split VAMP2.

Liposomes harboring WT or split VAMP2 (depicted

in Figure 1B, right) were directed to fuse with lipo-

somes containing WT t-SNAREs (syntaxin-1 and

SNAP-25) in the absence or presence of Munc18-1

at the indicated concentrations. The kinetics of the

fusion reactions wasmeasured using a FRET-based

lipid-mixing assay.

(D) Liposomes harboring WT or split VAMP2 (de-

picted in Figure 1B, right) were incubated with WT t-

SNARE liposomes containing syntaxin-1 and

SNAP-25 at 4�C to assemble trans-SNARE com-

plexes between membrane bilayers. Relative

amounts of assembled trans-SNARE complexes

are presented as percentages of maximum rhoda-

mine fluorescence.

In (B)–(D), data are presented as mean ± SD (n = 3).

The p values were calculated using Student’s t test.

n.s., p > 0.05. ***p < 0.001. See also Figure S1.

Report
ll

OPEN ACCESS
did not further increase the fusion rate (Figures 2A–2C), suggest-

ing that SM protein and v-SNARE splitting promote membrane

fusion through a similar mechanism. In a liposome coflotation

assay, VAMP2 CTD bound to t-SNAREs and the interaction re-

mained intact in the presence of VAMP2 NTD (Figure S1).

Thus, the CTD of split VAMP2 interacts with the t-SNARE CTD,

its native binding partner (Sutton et al., 1998), rather than recog-

nizing t-SNAREs through a different binding mode. In a trans-

SNARE assembly assay, which monitors the zippering of both

NTDs and CTDs (Yu et al., 2019), WT SNAREs assembled ineffi-

ciently betweenmembrane bilayers but were strongly stimulated

by Munc18-1 (Figure 2D). v-SNARE splitting accelerated trans-

SNARE assembly similarly, because Munc18-1 and the assem-

bly reaction was not enhanced by Munc18-1 (Figure 2D). These

data agree with the liposome fusion results (Figures 2A and 2B)
C

and indicate that v-SNARE splitting per-

mits efficient membrane fusion by aug-

menting trans-SNARE zippering, similar

to the stimulatory function of SM proteins.

Altogether, these findings suggest that

split SNARE-driven fusion mimics the SM

protein-activated fusion reaction.
The SM protein-activated fusion reaction is highly sensitive

to point mutations in the CTD layers of the v-SNARE, because

these mutations reduce energy output and zippering cooper-

ativity of SNAREs (Jiao et al., 2018; Walter et al., 2010; Yu

et al., 2015, 2018). By contrast, a nonbiological SNARE zip-

pering pathway (e.g., the basal fusion without a SM protein)

is insensitive to these layer mutations (Yu et al., 2015, 2018).

Here, we tested four layer mutations in VAMP2 CTD known

to abolish synaptic exocytosis in the cell (Figure 3A; Walter

et al., 2010; Yu et al., 2015, 2018). We observed that split

SNARE-driven fusion was abrogated when any of the layer

mutations was introduced (Figures 3B and 3C), similar to the

effects of the mutations on SM protein-activated fusion

in vitro and vesicle fusion in vivo (Figure 3D). These data sug-

gest that split SNARE-driven fusion proceeds through the
ell Reports 34, 108611, January 12, 2021 3
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Figure 3. Split SNARE-Driven Fusion Is Highly Sensitive to Layer Mutations that Impair Vesicle Fusion In Vivo

(A) Sequence of VAMP2 CTDs with layer residues numbered and highlighted.

(B) Liposomes harboring split VAMP2 (shown in Figure 1B, right, with or without layer mutations) were directed to fuse with liposomes containing WT t-SNAREs

(syntaxin-1 and SNAP-25). The kinetics of the fusion reactions was measured using a FRET-based lipid-mixing assay.

(C) Initial lipid-mixing rates of the fusion reactions shown in (B). Data are presented as mean ± SD (n = 3). The point mutation data are compared with the no

mutation data. The p values were calculated using Student’s t test. ***p < 0.001.

(D) Correlation of the effects of VAMP2 layer mutations on split SNARE-driven liposome fusion, SNARE-SM-mediated liposome fusion, and in vivo vesicle fusion.

In vivo data are based on published genetic studies (Walter et al., 2010; Yu et al., 2015). +++++, WT levels of in vitro liposome fusion or in vivo vesicle fusion; +,

<20% of WT levels of fusion.
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same route as the biologically relevant SM protein-activated

fusion reaction.

Intracellular vesicle fusion is exquisitely specific such that a

vesicle only fuses with its destined organelle (Jahn and Scheller,

2006; S€udhof and Rothman, 2009). However, SNAREs alone are

insufficient to achieve fusion specificity, because they possess

similar hydrophobic layers (Brandhorst et al., 2006; Shen et al.,

2007). SM proteins play a key role in determining vesicle fusion

specificity by selectively recognizing and activating cognate

SNARE pairs. VAMP8, a v-SNARE involved in endosomal/lyso-

somal vesicle fusion (Jahn and Scheller, 2006), exhibits no

sequence similarity to VAMP2 except layer residues (Figure 4A).

VAMP8 was able to pair with synaptic exocytic t-SNAREs and

drove a minimal level of liposome fusion (Figures 4B and 4C).

However, this noncognate SNARE pair was not activated by

Munc18-1 (Figures 4B and 4C). A VAMP2-VAMP8 chimera, in

which the NTD of VAMP2 was substituted with that of VAMP8,
4 Cell Reports 34, 108611, January 12, 2021
fully supported Munc18-1 activation (Figure S2), suggesting

that the CTD of the v-SNARE plays a key role in determining

the specificity of SM protein activation. Split VAMP8, by

contrast, drove a highly efficient level of liposome fusion when

paired with synaptic exocytic t-SNAREs (without Munc18-1),

comparable to the kinetics of split VAMP2-mediated fusion (Fig-

ures 4B and 4C). These data suggest that split SNARE-driven

fusion lacks the specificity of SM protein-activated fusion reac-

tions, consistent with the nonselective nature of SNARE pairing.

Finally, we characterized v-SNARE splitting in another vesicle

fusion pathway: the exocytosis of the glucose transporter

GLUT4 in adipocytes and muscles. When reconstituted into pro-

teoliposomes, GLUT4 exocytic SNAREs—syntaxin-4, SNAP-23,

and VAMP2—drove a minimal level of liposome fusion (Fig-

ure S3). However, splitting the v-SNARE strongly accelerated

the fusion kinetics (Figure S3). The split SNARE-driven fusion

was diminished when any of the four CTD layer mutations was
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Figure 4. Split SNARE-Driven Fusion Lacks Compartmental Specificity

(A) Alignment of SNARE motifs of VAMP2 and VAMP8 with layer residues highlighted and numbered.

(B) Liposomes harboring the indicated v-SNAREs were directed to fuse with liposomes containing WT exocytic t-SNAREs (syntaxin-1 and SNAP-25) with or

without 5 mM Munc18-1. The kinetics of the fusion reactions was measured by a FRET-based lipid-mixing assay.

(C) Initial lipid-mixing rates of the fusion reactions shown in (B). Data are presented asmean ± SD (n = 3). The p values were calculated using Student’s t test. n.s.,

p > 0.05. ***p < 0.001.

(D) Model illustrating the activation of the SNARE vesicle fusionmachinery by a SMprotein in a biological setting or by v-SNARE splitting in an engineered system.

The CTDs of WT SNAREs are unable to zipper efficiently because of the presence of a conformational constraint. The SM protein uses its SLP to restructure t-

SNARE CTDs, enabling the latter to properly zipper with the v-SNARE CTD. When the v-SNARE is split, the freed CTD is able to optimally zipper with t-SNARE

CTDs, achieving the same effect as SM protein binding to t-SNAREs.

See also Figures S2–S4.
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introduced (Figure S3). These results are consistent with the data

of synaptic exocytic SNAREs and suggest that SNARE activation

by v-SNARE splitting represents a conserved feature of SNARE

proteins.

The split v-SNAREs we engineered offer key insights into the

molecular mechanisms of SNAREs and SM proteins in vesicle

fusion. Our findings demonstrate that SNAREs possess the

full membrane fusion potential but are suppressed by an

intrinsic conformational constraint (Figure 4D). The conforma-

tional constraint is created by the relative spatial organization

of the v- and t-SNAREs, rather than by either of them alone,

and is expected to require the presence of apposed membrane

bilayers. We posit that the conformational constraint precludes

optimal pairing of SNARE CTDs, resulting in incomplete CTD

zippering and a concordant decrease in available energy to

overcome the kinetic barrier for fusion (Figure 4D). When the

v-SNARE is split, its freed CTD is able to align properly with

t-SNARE CTDs to achieve full zippering (Figure 4D). In the
cell, the conformational constraint is removed by a cognate

SM protein that uses its SNARE-like peptide (SLP) to restruc-

ture t-SNARE CTDs (Yu et al., 2018), enabling the latter to

zipper properly with the v-SNARE CTD (Figure 4D). This mech-

anism is distinct from v-SNARE splitting but achieves the same

effect of relieving the conformational constraint. Overall, the

role of the SM protein is to unleash the inherent fusion-driving

potential of SNAREs, without directly contributing to the ener-

getics of the membrane fusion reaction. The conformational

constraint cannot be removed by simply inserting flexible resi-

dues between NTD and CTD of the v-SNARE (Figure S4), sug-

gesting that SM proteins induce a large spatial rearrangement

of SNAREs. The conformational constraint may also arise

from off-pathway SNARE assemblies such as the 2:1 t-SNARE

complex (containing an extra copy of syntaxin) and the anti-

parallel trans-SNARE complex. We postulate that v-SNARE

splitting diverts SNAREs from these nonfusogenic misas-

sembled structures by altering the energetic landscape of
Cell Reports 34, 108611, January 12, 2021 5
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SNARE interactions, mimicking the roles of SM proteins in

guiding SNARE assembly (Baker et al., 2015; Jiao et al.,

2018; Lai et al., 2017; Ma et al., 2015; Wang et al., 2019; Zhang

et al., 2016). Further research will be needed to define the pre-

cise nature of the conformational constraint of SNAREs. We

suggest that a powerful approach to address the question is

single-molecule biophysical measurements using membrane-

anchored proteins (Ma et al., 2017).

Split SNAREs are not known to regulate vesicle fusion in extant

eukaryotes. However, SNAREs’ possession of a full membrane

fusion potential raises the intriguing possibility that SNAREs orig-

inally evolved to be fully active without requiring activation by SM

proteins. The ancestral v-SNARE might exhibit a split form

similar to the one described in this work. Indeed, there is no

physiochemical obstacle to anchor detached v-SNARE NTD

and CTD to the same vesicles. Alternatively, the ancestral

SNAREs might display another configuration free of a conforma-

tional constraint. Despite lacking pairing specificity, these

constitutively active SNAREswere adequate inmediating vesicle

fusion in a primordial endomembrane system (EMS), requiring no

specificity in vesicle fusion (Klinger et al., 2016; Zaremba-Niedz-

wiedzka et al., 2017). For a complex EMS, however, it became

critical to ensure compartmental specificity of vesicle fusion,

which could not be achieved by SNAREs alone (Dacks and Field,

2007; Schlacht et al., 2014). The specificity issue was solved

when a conformational constraint of SNAREs coevolved with

SM proteins. As a result, SNAREs could not drive efficient fusion

unless a cognate SNARE pair is recognized by a SM protein to

remove the conformational constraint. Noncognate v- and t-

SNARE can form initial interactions but are unable to progress

to drive efficient fusion because of a lack of a cognate SMprotein

to relieve the constraint.
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pTW34 (Weber et al., 2000) N/A
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pET-syntaxin-4 Yu et al., 2013 N/A

pET-SNAP-23 Yu et al., 2013 N/A

pET-SUMO-VAMP8 Yu et al., 2019 Cat # 135553 in Addgene
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Microbial Strains
All the recombinant proteins in this study were expressed in E. Coli BL21 [B F- ompT hsdS(rB

– mB
–) dcm+ Tetr gal l(DE3) endA Hte] at

37�C in a shaker incubator set at 220 rpm.

METHOD DETAILS

Protein Expression and Purification
Recombinant full-length (FL) v- and t-SNAREs were expressed in E. coli and purified using nickel affinity chromatography (Yu et al.,

2019). The synaptic exocytic t-SNARE complex was composed of untagged rat syntaxin-1 and mouse SNAP-25 with an N-terminal

His6 tag (plasmid TW34) (Weber et al., 2000). The GLUT4 exocytic t-SNARE complex was composed of untagged rat syntaxin-4 and

mouse SNAP-23 with an N-terminal His6 tag. Recombinant mouse VAMP2 and VAMP8 proteins had no tags left after the His6-SUMO

moiety was removed by proteolytic digestion (Shen et al., 2010; Yu et al., 2019). Recombinant untagged Munc18-1 was produced in

E. coli using a procedure we previously established (Shen et al., 2007, 2015; Yu et al., 2013, 2015). The soluble fragments – VAMP2

NTD (residues 28-55) and VAMP8 NTD (residues 9-36) – were expressed and purified in the same way as Munc18-1. Membrane-

bound fragments including VAMP2 CTD (residues 60-116), VAMP8 CTD (residues 41-101), and VAMP2-NTD-TolA (residues 60-84

of FL VAMP2 were replaced by a fragment from the bacterial TolA protein) were expressed and purified in a similar way as WT

VAMP2. The sequence of the TolA helix is: GGSSIDAVMVDSGAVVEQYKRMQSQ. VAMP2 layer mutants were generated by site-

directed mutagenesis and purified as their corresponding wild-type (WT) proteins.

Proteoliposome Preparation
All lipids used in this work were acquired from Avanti Polar Lipids. To prepare t-SNARE liposomes, 1-palmitoyl-2-oleoyl-sn-glycero-

3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoserine (POPS) and cholesterol were mixed in a molar ratio of 60:20:10:10. To prepare v-SNARE liposomes, POPC,

POPE, POPS, cholesterol, (N-(7-nitro-2,1,3-benzoxadiazole-4-yl)-1,2-dipalmitoyl phosphatidylethanolamine (NBD-DPPE), and N-

(Lissamine rhodamine B sulfonyl)-1,2-dipalmitoyl phosphatidylethanolamine (rhodamine-DPPE) were mixed at a molar ratio of

60:17:10:10:1.5:1.5. SNARE proteoliposomes were generated by detergent dilution and isolated on a Nycodenz density gradient

flotation (Shen et al., 2010). Detergent was removed by overnight dialysis of the samples in Novagen dialysis tubes against the recon-

stitution buffer (25 mM HEPES [pH 7.4], 100 mM KCl, 10% glycerol, and 1 mM DTT). The protein: lipid ratio was 1:200 for v-SNARE

liposomes and 1:500 for t-SNARE liposomes. Membrane-anchored SNARE fragments were reconstituted at the same density as FL

v-SNAREs.

Liposome Fusion Assay
A standard liposome fusion reaction contained 5 mM t-SNAREs and 1.5 mM v-SNARE. NBD- and rhodamine-labeled v-SNARE lipo-

somes were directed to fuse with unlabeled t-SNARE liposomes in the presence or absence of the indicated concentrations of

Munc18-1. The macromolecular crowding agent Ficoll 70 (100 mg/mL) was included in all liposome fusion reactions to mimic the

crowded cellular environment (Yu et al., 2015). In split v-SNARE fusion assays using membrane-anchored NTD, VAMP2-NTD-

TolA and VAMP2CTDwere reconstituted together into liposomes. These liposomesweremixedwith t-SNARE liposomes and loaded

into a pre-warmed 96-well microplate to initiate fusion. In split v-SNARE fusion assays using soluble NTD, t-SNARE liposomes were

first incubated with 5 mM soluble VAMP2 NTD peptide at 37�C for 30 min. Subsequently, the samples were mixed with VAMP2 CTD

liposomes and loaded into a pre-warmed 96-well microplate to initiate fusion. All fusion reactions were conducted at 37�C. NBD fluo-

rescence (excitation: 460 nm; emission: 538 nm) was measured every 2 min in a BioTek Synergy HT microplate reader. At the end of

the reaction, 10 mL of 10% CHAPSO was added to each sample to obtain the values of maximum fluorescence. Fusion data were

presented as the percentage of maximum fluorescence change. The initial fusion rate was calculated based on the average fusion

rate within the first 10 min of a liposome fusion reaction. Full accounting of statistical significance was included for each dataset

based on at least three independent experiments.

Liposome Co-flotation Assay
The cytosolic domains of t-SNAREs (syntaxin-1 and SNAP-25) were incubated with protein-free (PF) or VAMP2CTD liposomes in the

absence or presence of soluble VAMP2NTD at 4�Cwith gentle agitation. After 1 h, an equal volume (150 mL) of 80%Nycodenz (w/v) in

the reconstitution buffer was added and the mixture was transferred to 5 mm by 41 mm centrifuge tubes. The samples were overlaid

with 200 mL each of 35% and 30%Nycodenz, and then with 20 mL reconstitution buffer on the top. The gradients were centrifuged for

4 h at 52,000 rpm in a Beckman SW55 rotor. Liposome samples were collected from the 0/30% Nycodenz interface (23 20 mL) and

analyzed by SDS-PAGE.
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Trans-SNARE Assembly Assay
WT t-SNARE liposomes containing syntaxin-1 and SNAP-25 were mixed with WT or split VAMP2 liposomes. After incubation at 4�C
in the absence or presence of 5 mMMunc18-1, 20 mMVAMP2 CD (residues 1-95) was added to dissociate partially assembled trans-

SNARE complexes in which CTDs had not fully zippered. Fully assembled trans-SNARE complexes, by contrast, were resistant to

VAMP2 CD treatment. The t-SNARE liposomes and bound v-SNARE liposomes were pulled down using nickel Sepharose beads

through binding to the His6 tag on SNAP-25. After washing three times with the reconstitution buffer, CHAPS was added to a final

concentration of 1% to solubilize bead-bound liposomes. After centrifugation, rhodamine fluorescence in the supernatant was

measured in a BioTek Synergy HT microplate reader. In a negative control reaction, v-SNARE liposomes were replaced with PF li-

posomes, allowing us to calculate background fluorescence. After subtraction of background fluorescence, the obtained rhodamine

fluorescence reflected the relative amounts of assembled trans-SNARE complexes. The data were presented as percentage of total

rhodamine fluorescence of input v-SNARE liposomes. All reactions were performed in the presence of 100 mg/mL Ficoll 70.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was calculated for each data point based on at least three independent experiments. Data were analyzed us-

ing the KaleidaGraph 3.6 software (Synergy) and are presented as means ± standard deviation.
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