
Research Article Vol. 29, No. 3 / 1 February 2021 / Optics Express 4058

Observation of the rotational Doppler shift with
spatially incoherent light

ALEXANDER Q. ANDERSON,1,* ELIZABETH F. STRONG,2

BRENDAN M. HEFFERNAN,3 MARK E. SIEMENS,4 GREGORY B.
RIEKER,2 AND JULIET T. GOPINATH1,3

1Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado
80309, USA
2Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA
3Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
4Department of Physics and Astronomy, University of Denver, Denver, Colorado 80308, USA
*alexander.q.anderson@colorado.edu

Abstract: The rotational Doppler shift (RDS) is typically measured by illuminating a rotating
target with a laser prepared in a simple, known orbital angular momentum (OAM) superposition.
We establish theoretically and experimentally that detecting the rotational Doppler shift does not
require the incident light to have a well-defined OAM spectrum but instead requires well-defined
correlations within the OAM spectrum. We demonstrate measurement of the rotational Doppler
shift using spatially incoherent light.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The familiar optical linear Doppler shift is the frequency shift of light arising from relative
motion between a source and an observer, effecting a change in the linear momentum of the
light. Similarly, the rotational Doppler shift (RDS) describes the frequency shift arising from a
relative rotation transverse to the light beam and is proportional to the change in orbital angular
momentum of the light [1,2]. Orbital angular momentum (OAM) in light is characterized by
helical wavefronts, described by phase eiℓφ, where ℓ is the topological charge and ϕ is the
azimuthal angle [3]. For a change of ∆ℓℏ in the OAM of light scattered from a target rotating
with angular frequency of Ω, the magnitude of the rotational Doppler shift [2,4] is

∆ω = ∆ℓΩ (1)

RDS measurements are generally performed with a coherent beam composed of either one
OAM mode or a “petal beam” superposition of two conjugate OAM modes (±ℓ). This beam
is directed onto the rotating target and a photodetector measures the beat frequency intensity
modulations of the reflected light [5–7]. A single OAM mode (Fig. 1(A)) is prepared for
heterodyne RDS measurements, in which the scattered illumination beam is interfered with a
reference mode. Alternatively, a petal beam of azimuthal fringes (Fig. 1(B)) can be used to
measure the RDS without a separate reference beam [5–7].

The RDS has been investigated for measuring instrument vibrations [8], vorticity in fluid flows
[9,10], angular velocity and acceleration of remote objects [11–15], and the OAM spectrum of
an uncharacterized beam [16]. Typically, all of these applications use a narrow linewidth laser, in
part due to the simpler conversion into OAM modes for single wavelength beams [17]. Recently,
however, Lavery et al. demonstrated that the rotational Doppler shift is independent of optical
frequency and can observed using a supercontinuum white-light source [18]. This result shows
that the RDS arises even in temporally incoherent light; however, this experiment and other
previous demonstrations of the RDS used spatially coherent laser light.
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Fig. 1. Illustrations of various beams with well-defined OAM superpositions (color is phase
and brightness is intensity). (A) A pure OAM mode of ℓ = 3. (B) A petal beam with equal
superpositions of ℓ = 3 and ℓ =−3 modes. (C) A “flat” petal beam, composed a complex
superposition of OAM modes with consecutive modes separated by ∆ℓ = 6. (D, E) Example
instantaneous OAM decompositions of incoherent “petal” fields at time t = T0 (D) and
T0 + dt (E).

We show that a spatially incoherent light field (as exemplified in Fig. 1(D)–(E)) can be used to
measure rotation rates with the rotational Doppler shift. The ability to measure the RDS from
spatially incoherent light presents new rotation sensing applications, including optically-sectioned
rotation measurements and passive sensing of rotating astronomical sources [19]. Regardless of
the phase profile or even the spatial coherence of the illumination, the measured rotation signal
in such an experiment can still be explained as a frequency shift arising from the same rotational
Doppler effect.

2. Intensity and frequency perspectives on the origin of the RDS

To understand the origin of the rotational Doppler shift, consider a single scatterer rotating about
the axis of a spatially coherent incident beam composed of a single OAM mode. The incident
electric field is described with an azimuthally varying phase, as

E(r, ϕ) = E0(r)ei[ωt−ℓφ] (2)

where r is the radial coordinate, ω is the angular optical frequency, and E0(r) is a function
characterizing the radial form of the electric field. Note that we need not specify the particular
radial form of the electric field because the RDS is independent of the incident beam’s radial
distribution, as seen in Eq. (1). A target rotating about the axis of the beam with a constant
angular frequency Ω has an angular position ϕ(t) = ϕ0 +Ωt. Because the particle moves along a
continuous phase gradient in the light, the phase advances at a rate ℓΩ faster (or slower, for ℓ and
Ω in opposite directions) than the incident field’s optical frequency [20]. Thus, the observed
electric field has a shifted frequency as seen in Eq. (3).

Eobserved = E0ei[ωt−ℓ(φ0+Ωt)] = E0ei[(ω−ℓΩ)t−ℓφ0] (3)
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In order to observe this frequency shift, the scattered light must interfere with a reference
beam so that a beat frequency may be measured. Note that this requires careful alignment if a
single-valued frequency shift is desired [21].

Illuminating the rotating target with a petal beam composed of conjugate OAM modes, forming
azimuthal fringes (Fig. 1(B)), eliminates this alignment step and generates an RDS signal that
can be explained equivalently either as an amplitude modulation or as a frequency shift. In
the time domain interpretation, a particle rotating about the beam’s axis traverses the high and
low intensity interference fringes of the petal beam, resulting in an intensity modulation of the
scattered light at the detector. Alternatively, this signal may be explained in the frequency domain
via the same frequency shift mechanism as the single OAM beam illumination case, applied to
each of the two incident ±ℓ OAM modes [4,6]. When these two component modes are scattered
into any common detection mode, they each experience a different frequency shift proportional
to their respective changes in OAM, resulting in a beat frequency of 2ℓΩ for any mode at the
detector.

Most generally, the measured RDS signal is a function of both the OAM modes of the
illumination and of the surface characteristics of the rotating target. It is common to represent the
spatial distribution of the amplitude and phase of a rotating target as the sum of its topological
charges (TCs),

∑︁
n

An(r)einφeiΩt, which corresponds well to the form of the illumination beam

composed of a sum of OAM modes,
∑︁
m

Bm(r)e−iωteimφ, where n (m) represent the nth- (mth-)

order harmonic, and An(r) (Bm(r)) represent the complex amplitude of the TC [16]. The light
scattered from the target may be described as in Eq. (4), where s is the TC of the scattered light:

E =
∑︂

s

∑︂
m

As−m(r)Bm(r)e−iωteisφei(s−m)Ωt (4)

An individual scattered mode may be selected with a filter if desired. Ignoring the radial
functions for simplicity and measuring the power within a single scattered mode yields

Is =
∑︂
m

|BmAs−m |
2 + 2

∑︂
p≤q

|BpAs−pBqAs−q | cos((p − q)Ωt + ϕp,q) (5)

where ϕp,q is the phase of the amplitude term [16]. For a typical measurement using an incident
petal beam composed of ±ℓ OAM modes, a single-valued beat frequency may be observed,
regardless of whether the rotating target is patterned with a particular set of TCs or if it is
randomly structured [4,6,18]; the only requirement of the target is that it contains at least 2
topological charges with a difference of 2ℓ.

This more complete RDS model allows the analysis of more complicated cases, such as petal
beams composed of a complex superposition of many OAM modes rather than just ±ℓ. Such a
petal beam may have the same lobed intensity distribution with a different phase structure (for
example, compare the petal beams of Fig. 1(B) and 1(C)); however, the same RDS beat frequency
can be observed as in the standard ±ℓ petal illumination case. In this situation, the amplitude
modulation model remains an intuitive explanation of the RDS beat, but the frequency shift
model requires more consideration: Just as the superposition of several OAM modes interfere to
generate a petal beam resulting in a single spatial angular frequency as seen in Fig. 1(C), the beat
frequencies between each pair of frequency-shifted modes in the scattered spectrum will sum to
a single-valued frequency shift by the rotational Doppler effect. Provided the beam is spatially
coherent, a petal beam with any arbitrary phase profile may still be decomposed into a specific
superposition of OAM modes, which will result in the same expected RDS signal of 2ℓΩ as
expected of a ±ℓ petal beam.

The above analysis assumes that the light is spatially coherent, since an incoherent beam cannot
be decomposed into a complex time-independent, superposition of OAM modes (Fig. 1(D)–(E)).
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In the incoherent case, a rotating target experiences the same intensity modulation as it traverses
a petal beam, and therefore generates the same signal as the coherent situation. However, the
straightforward analysis presented above does not directly answer whether this signal’s origin is
still due to frequency shifts from the RDS. We demonstrate here that even in the case of a fully
incoherent petal field without specific OAM modes, the RDS signal is still observed and fully
explained by rotational Doppler effect frequency shifts of the instantaneous OAM modes of the
incoherent illumination.

3. Theoretical analysis

We now assume a completely spatially incoherent field, such that the correlations in the fields
at two locations −→r1 and −→r2 approximates a delta function, as described by the mutual coherence
function,

G(
−→r1 ,−→r2 , τ) = ⟨U(

−→r1 , t)U∗(
−→r2 , t)⟩ =

λ̄

π
δ(−→r1 ,−→r2)G(τ), (6)

where λ̄ is the mean wavelength and G(τ) is the temporal coherence function for a time delay of
τ [22]

G(τ) = ⟨U∗(t)U(t − τ)⟩. (7)

It has previously been shown that the RDS can be observed with white light [18], so no
assumptions of temporal coherence are required. While a spatially incoherent field cannot be
represented as a static superposition of modes, the field at time t0 can be decomposed into an
instantaneous superposition of modes in any complete basis. In this case, we represent the time
varying field in polar coordinates as f (r, ϕ, t). A field expressed in Cartesian coordinates may be
Fourier transformed to represent the field in a basis of plane waves. Because in polar coordinates,
the angular variable ϕ is periodic, the field is instead transformed by a Fourier series [23], which
allows any arbitrary field to be decomposed into a time-dependent superposition of OAM modes.

f (r, ϕ, t) =
∑︂∞

ℓ=−∞
fℓ(r, t)eiℓφ (8a)

fℓ(r, t) =
1

2π
∫

2π
0 f (r, ϕ, t)e−iℓφdϕ (8b)

As previously noted, the radial functions for fℓ(r, t) do not need to be specified, as a full
decomposition into specific radial functions is not necessary for this analysis. In general, the
OAM spectra will be extremely broad for spatially incoherent light.

Imposing a petal pattern on an incoherent field modifies the field’s instantaneous OAM
spectrum. A similar effect has been previously demonstrated by Franke-Arnold et al., who
showed that passing a beam through an angular aperture introduces OAM to the beam, (however,
the mean value of the introduced OAM distribution is zero) [24]. In this work, the field is
transmitted through an amplitude mask with a spatial transmission m(r, ϕ) matching that of the
intensity distribution of a standard ±ℓ petal beam:

m(r, ϕ) = cos2(ℓϕ)m(r) (9)

where m(r) is function describing the radial extent of the petals. Just like the electric field, this
mask may also be decomposed into its topological charges (TCs) with the same Fourier series
notation. When decomposed, the petal mask is seen to contain three TC components:

m(r, ϕ) =
∑︂∞

n=−∞
mn(r)einφ =

1
4

m(r)e−i2ℓφ +
1
2

m(r)ei0 +
1
4

m(r)ei2ℓφ (10)

The electric field following the mask, f ′(r⃗, t), is found by multiplying the mask m(r⃗) by
the incident field f (r⃗, t). If both the field and the mask are first decomposed into their OAM
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components, the result is the discrete convolution of the two series [23].

f ′(r⃗, t) = f (r⃗, t)m(r⃗) =
∑︂∞

k=−∞
f ′k (r, t)e

ikφ (11a)

f ′k (r, t) = fk ∗ mk =
∑︂∞

n=−∞
fk−n(r, t)mn(r) (11b)

f ′k (r, t) =
(︃
1
4

fk−2ℓ(r, t) +
1
2

fk(r, t) +
1
4

fk+2ℓ(r, t)
)︃

m(r) (11c)

This convolution creates three copies of the instantaneous OAM spectrum of the incoherent
light, up-shifting one copy in OAM by +2ℓ and down-shifting one copy by −2ℓ, as seen in
Eq. (11c) and illustrated in Fig. 2(A)–(B). Although the OAM spectrum is still time-varying and
remains broad, the petal mask generates correlations between OAM modes separated by 2ℓ. In
other words, for an optical field with a lobed intensity of N petals, the electric field must contain
correlations between all pairs of OAM states that satisfy the condition of ∆ℓ =N [25].

Fig. 2. (A) Schematic representation of the instantaneous OAM spectrum of an incoherent,
unpatterned, field. (An incoherent OAM spectrum would be quite broad but is shown as
above to illustrate the RDS). (B) OAM spectrum of the incoherent field following a static
petal mask (inset, ℓ =±5). The initial spectrum of (A) is copied and shifted by −2ℓ, 0, and
2ℓ. (C) OAM shifted and frequency shifted spectrum after scattering from a rotating target.
In this case, the rotating target’s reflectivity had the same topological charges as the incident
illumination, so there are only 3 discrete frequency-shifted spectra.

To measure a target’s rotation, the incoherent petal field is imaged onto a rotating target with a
spatially-varying reflectivity, and this target is imaged onto a photodetector. Like the incident
field and the petal mask, the rotating target may also be decomposed into a complex superposition
of TCs, with a time-dependent phase on each TC due to the rotation of the target. The reflectivity
of the target may of course be designed as various different structures, including simulating one
or multiple random particles [5,7]; however, the strongest signals arise from targets patterned
with the same TCs as the incident illumination, as this maximizes the overlap integral between
the target and the illumination [12]. Only the TCs common to both the target and the illumination
mask contribute to the RDS signal; all other topological charges contribute only to DC and shot
noise. One of the simplest targets to analyze is one with sinusoidal variation in the reflectivity
which matches the angular structure of the incident petal field of Eq. (10). Such a reflectivity
pattern, as described by Eq. (12), has the same three components as the petal mask, but with the
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addition of a time and OAM dependent phase, as shown in Eq. (12).

RT (ϕ, t) = cos2(ℓ(ϕ +Ωt)) =
1
4

e−i2ℓΩte−i2ℓφ +
1
2

ei0 +
1
4

ei2ℓΩtei2ℓφ (12)

The application of this rotating mask again results in convolving its TC components with the
incident OAM spectrum. In this convolution, the incident OAM spectrum is not only shifted
in OAM, but also shifted in frequency proportionally to the change in OAM and the angular
frequency Ω, as described by the rotational Doppler effect.

The RDS signal can be measured by imaging the rotating target onto a square-law photodetector,
which integrates over the entire image. Because OAM modes are orthogonal and thus dissimilar
modes cannot beat, the total signal, h(t), is the sum of the intensity signals hk(t) from each
individual OAM mode at the detector, gk(t).

h(t) =
∑︂∞

k=−∞
hk(t) (13a)

hk(t) = ∫
R
0 |gk(r, t)|2 dr (13b)

gk(r, t) = (RT (t))k ∗ f ′k (r, t) (13c)

hk(t) =
∑︂2

q=−2

∑︂2

n=−2
(Aq,n + Bq,n cos(∆ℓΩt)+Cq,n cos(2∆ℓΩt)) ∫R

0 m(r)fk+q∆ℓ(r, t)f ∗k+n∆ℓ(r, t)dr
(13d)

The A, B, and C coefficients of Eq. (13d) are constants determined by the convolution of the
illumination mask m(ϕ) and the target’s reflectivity RT (ϕ). When light originating in a common
OAM mode within the incoherent spectrum [Fig. 2(A)] is shifted into a superposition of OAM
modes by the stationary illumination mask [Fig. 2(B)], a rotating target shifts the incident light in
this superposition proportionally in both OAM and frequency [Fig. 2(C)], such that light scattered
into each common mode may generate beat frequencies. In Fig. 2(C), the beat frequencies
generated are seen as the separation between the red-shifted, unshifted (black), and blue-shifted
spectra. Therefore, as shown in Eq. (13d), a beat frequency in the kth OAM mode, hk(t), is in
phase with the beat in all other OAM modes, regardless of the instantaneous modal superposition
of the initial incoherent field. while Eq. (13d) and Fig. 2(c) assume the rotating target has a lobed
reflectivity with only three TC components, a target with more TCs, such as an azimuthal square
wave target, would result in a similar behavior, but with additional shifted copies of the spectrum
and the associated additional harmonics of the primary 2ℓΩ beat frequency.

This analysis outlines the model by which the signal from an incoherent petal field may be
interpreted as a frequency shift due to the rotational Doppler shift acting on each instantaneous
mode. Additionally, this model and the associated experiment demonstrate that the RDS does
not require preparation of the incident beam in a specific OAM superposition, but rather only
requires known correlations within the instantaneous OAM spectrum, provided that the rotating
target contains TCs matching those correlations.

4. Experimental results

As a demonstration of the RDS with incoherent light, we designed an experiment which uses an
incoherent “petal” field to measure the rotation of a patterned target. Since the experiment does
not have a requirement on the temporal coherence G(τ), the incoherent field may be generated by
a temporally incoherent, extended source such as an incandescent lamp. This incoherent field
cannot be properly shaped and propagated as a petal beam using a hologram. Instead, a lobed
intensity pattern of N petals (matching a petal beam of±N/2 OAM modes) is formed using a
projector (Epson EMP83) and the image of that petal pattern is relayed to a reflective rotating
target (Fig. 3). The target is a diffuse reflector masked such that its reflectivity has Ntarget-fold
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rotational symmetry and is rotated at an angular frequency of Ω. The light reflected from this
target is then imaged onto a large area photodetector (Thorlabs Det36a) and the power spectral
density (PSD) of the resulting time-dependent signal is calculated (Fig. 4(A)–(B)). Because
the projector produces stationary noise with distinct low frequency peaks, we measured the
background PSD to use as a filter, multiplying the signal PSD by the inverse of the background
PSD; this also sets the noise floor to 0 dB.

Fig. 3. Schematic of incoherent rotational Doppler shift measurement. A projector generates
an incoherent image of a “petalled” field with azimuthal fringes (inset). This field is imaged
onto a spinning target. The reflectivity of the target is patterned with a specified N-fold
rotational symmetry to match the periodicity of the incident petal field. The reflected light is
imaged onto a photodetector.

Fig. 4. (A, B) Measured power spectral densities, normalized such that the noise floor is at
0 dB. Both use the same 8 petal illumination incident on targets with angular periodicities
of (A) Ntarget = 8 and (B) Ntarget = 12. The expected RDS is marked at 2061rad Hz;
the other peaks are due to electronic noise associated with the projector. (C) Observed
RDS beat frequency plotted against the target’s rotation frequency, for 8, 12, and 14 petal
illumination, each measured with a target of matching periodicity. Error bars are smaller
than markers—less than 1 rad Hz. Solid lines represent theoretical RDS frequency of ∆ℓΩ.

Experimental measurements clearly show the expected rotational Doppler shift in the power
spectral density at the expected frequency [Fig. 4(A)]. The observed RDS frequency follows
the expected linear trend of NΩ [Fig. 4(C)]. When the rotational symmetry of the target’s
reflectivity matches that of the illumination, a strong RDS peak is observed in the PSD at NΩ
[Fig. 4(A)]. When the target’s reflectivity does not contain the same N-fold rotational symmetry
as the illumination, no RDS signal is expected, as explained in the previous section. Such
a measurement is shown in Fig. 4(B), with illumination of N= 8 incident on a target with a
rotational symmetry of Ntarget = 12; while a small peak is observed, it has 29 dB less power than
in the matched case, and we attribute it to an imperfect target mask.

Just as in RDS measurements using coherent laser illumination [4,6,18], the measured RDS
peak is seen to scale as NΩ (Fig. 4(C)). Despite the incoherent OAM spectrum of the illumination,
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a single-valued frequency shift may be measured, as in similar measurements with coherent
petal illumination [4,6,18]. The petal mask generates time-independent correlations between
all pairs of OAM states that satisfy the condition of ∆ℓ =N, and the TCs on the target of 0
and±Ntarget measure the presence of these correlations. Since the only correlation present in
both the illumination and the target is ∆ℓ = N, this is the only RDS harmonic observed.

In contrast to previous RDS measurements, we observe a rotation-dependent frequency shift
even when the incident field is incoherent and is not prepared in any particular superposition
of OAM modes. Additionally, while the RDS frequency shift arises from the phase gradient
associated with the OAM modes, the spatial incoherence of this field dictates that the phase
at each location in the field varies on a timescale much faster than the detector’s integration
time. Despite this fundamental difference, we show that the measurements in this experiment are
consistent with a frequency shift due to the rotational Doppler effect. This demonstrates that the
RDS does not require the incident field to be prepared with any particular OAM modes.

We have shown that spatially incoherent illumination generates an observable rotational
Doppler shift. An RDS signal arises provided that the illumination has well-defined correlations
within its OAM spectrum; such OAM correlations are intrinsic to any field with a petal intensity
pattern. The spatially incoherent fields analyzed in this discussion must be imaged to the target
because unlike coherent Laguerre Gaussian beams, these fields lose their petal structure upon
propagation. This means that targets outside the depth of focus of the system return no signal.
In applications requiring longitudinal resolution, this may prove advantageous by providing
optically sectioned rotation measurements.
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