
Development and Evaluation of a Topology Optimization

Framework for District Thermal Energy Systems to Lower

Life Cycle Cost and Carbon Emissions

by

Amy Elizabeth Allen

B.S., University of Illinois, 2012

M.S., Stanford University, 2014

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Civil, Environmental, and Architectural Engineering

2021

Committee Members:

Gregor Henze, Kyri Baker, Co-Chairs

Moncef Krarti

Gregory Pavlak

Wangda Zuo



Allen, Amy Elizabeth (Ph.D., Architectural Engineering)

Development and Evaluation of a Topology Optimization Framework for District Thermal Energy

Systems to Lower Life Cycle Cost and Carbon Emissions

Thesis directed by Prof. Gregor Henze and Asst. Prof. Kyri Baker

It is accepted that the most cost-effective approach to decarbonizing energy systems will

involve widespread electrification of combustion processes, including space heating. So-called “fifth-

generation” district thermal energy systems, which operate at near-ambient temperatures, have the

potential to provide significant reductions in source energy use intensity in appropriate applications,

as well as facilitating beneficial electrification of heating, and the integration of renewable and waste

heat sources. However, obstacles remain to the adoption of such systems, including a large “search

space” of potential network configurations. This research addresses that obstacle through the

development of a framework for network topology optimization of district thermal energy systems.

The topology optimization framework seeks to address the question, for a given set of buildings

with known locations and loads, “What is the optimal subset of buildings, if any, to connect to a

district thermal energy system, and by what network should they be connected, to minimize life

cycle cost?”

Though the topology optimization framework is extensible to district thermal energy systems

in general, the problem is particularly interesting and relevant in the context of fifth-generation (or

“advanced”) systems. To motivate the focus on fifth-generation district thermal energy systems,

this research also evaluates the potential for reduction in source energy-use intensity from the use

of low-exergy building level HVAC systems, which would be compatible with a district thermal

energy system operating at near-ambient temperatures. The topology optimization problem is

addressed in two parts: the selection of the best subset of buildings (if any) to connect to a district

thermal energy system, and the selection of the network by which to connect them. The particle

swarm optimization (PSO) algorithm is applied to the first part of the problem, and a heuristic



iii

–the use of the minimal spanning tree, a concept leveraged from graph theory, which connects the

given buildings and plant with a network having the least possible total edge length–is applied to

the second part of the problem. This research validates those two approaches for use in network

topology optimization in the context of fifth-generation systems. This research also demonstrates

the value of network topology optimization through the application of the developed framework to

a case study.
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Chapter 1

Introduction, motivation, and organization

1.1 Motivation

Cities and the urban districts that compose them have been recognized by the UN Envi-

ronment Programme and other international bodies as ideal laboratories for strategies to reduce

carbon emissions. Sources of emissions linked to cities already account for seventy-five percent

of carbon emissions globally [1]. The United Nations Environment Programme designated “safe,

resilient, and sustainable cities” as one of its 2030 Development Goals, which are focused on human

development and protection of the environment [1]. Specifically, “eco-districts”, which include a

focus on building energy efficiency, in addition to renewable energy, public transportation, and

sustainable land use, in a localized area, have been recognized as a successful strategy in European

cities that have achieved significant reductions in carbon emissions [2]. Advanced district thermal

energy systems have the potential to achieve deep energy savings by leveraging the density and

diversity of loads in urban districts. “Conventional” district thermal energy systems, in which a sin-

gle centralized source or a few sources supply thermal energy to connected loads, generally rely on

radial networks, or a ring configuration, if redundancy of supply is essential [3]. Advanced systems,

which use water at near-ambient temperatures, enabling connected loads to serve as “prosumers”,

motivate the consideration of a wider array of network configurations. This larger solution space

of potential system configurations, as well as the high infrastructure cost, hinders the adoption

of advanced district thermal energy systems. The work of [4] states that expansion of the use

of advanced district thermal energy systems in the context of increased penetration of renewable
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electricity generation will require “advanced energy system analysis tools of coherent systems.”

The work presented in this dissertation seeks to address these barriers to adoption by devel-

oping a topology optimization framework for district thermal energy systems. For a given urban

district, the framework can answer the questions, “Which subset of buildings, if any, are most ad-

vantageous to connect to a district thermal energy system, and by what network topology should

they be connected, in order to minimize life cycle cost?” As part of this work, the framework

has been applied to several relevant case studies to characterize the nature of the buildings that

are most advantageous to connect to such a network, and the factors that influence the optimal

topologies for connecting them.

1.2 Introduction

Several concepts from graph theory are useful in characterizing the “search space” of potential

thermal network configurations for a given set of buildings. In the mathematical context, a “graph”

is a set of nodes (vertices) and edges (pairs of nodes) connecting them. A “connected graph” is a

graph in which there exists at least one path between every pair of nodes [5]. A “spanning tree” is

type of connected graph in which there exists exactly one path between each pair of nodes, and the

“minimal spanning tree” is the spanning tree that connects a given set of nodes with the least total

edge length [5]. In this work, thermal networks are represented as connected graphs. The number

of potential network configurations for a district thermal energy system is equal to the product of

the number of ways a subset of buildings of a given cardinality can be selected, and the number of

connected graphs associated with that subset, summed over the number of buildings in the district.

Figure 1.1 illustrates a notional comparison of common types of networks in the context

of district thermal energy systems. The radial networks that are often used in older generations

of district thermal energy systems constitute spanning trees. However, the consideration of the

connectivity between loads, in addition to connectivity between loads and a central plant, is more

relevant in the context of advanced systems, in which individual loads can serve as “prosumers”

and offset the requirement for thermal energy provision by centralized sources. “Conventional”
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district thermal energy systems are generally designed for uni-directional mass flow. Restricting

the “search space” further to only minimal spanning tree networks significantly reduces the number

of potential solutions. Growth in the size of the search space for the network topology optimization

problem for district thermal energy systems when all connected graphs are considered, and for

minimal spanning tree networks only, is shown in Figure 1.2.

Figure 1.1: Schematic illustration of different types of thermal networks, courtesy of [3].

1.2.1 Advanced district thermal energy systems

In this work, the term “advanced” district thermal energy systems will be used to encom-

pass fifth generation district heating and cooling systems, ambient loops, and other moderate-

temperature district networks. The evolution of district thermal energy systems over their 140

years of existence has often been characterized in terms of generations (with most authors recog-

nizing either four or five generations), with the defining feature being a progression from steam to

hot water for heating, and to more moderate temperatures of water for both heating and cooling

[4]. The diagram in Figure 1.3 illustrates this evolution conceptually. Note that different authors

provide different characterizations of particular generations of district thermal energy systems. In

this dissertation, consistency with the terms used by the original authors will be maintained.

The topology optimization framework is most relevant in the context of so-called “fifth gen-

eration district heating and cooling (5GDHC) systems.” Per the work of [7], a 5GDHC system is
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Figure 1.2: Comparison of topology optimization problem search space for all connected graphs vs.
minimal spanning trees only, presented also in [6].

distinguished from earlier generations of district thermal energy systems by its use of water (or

brine) as a working fluid, and the presence of water-source heat pumps at connected buildings,

which use the network as a heat source or sink. The authors of [7] performed a survey of operating

5GDHC systems, and found that most had network temperatures in the range of 15-25◦C. The

moderate network temperatures require the use of water-source heat pumps to further temper the

water to meet the thermal loads of connected buildings.

The work presented in this dissertation has focused on 5GDHC systems, in a two-pipe con-

figuration with bi-directional mass flow and bi-directional thermal flow. In systems of this nature,

each connected building is equipped with an energy transfer station (ETS), consisting of a water-

source heat pump, heat exchanger, and a distribution pump. The heat pump in the ETS tempers

the water further as required. Buildings are connected in parallel to the thermal network. Based

on the building’s load, the distribution pump draws water from either the system’s “cool pipe” or

“warm pipe.” 5GDHC systems are conducive to the integration of waste heat sources, and of the
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Figure 1.3: Conceptual diagram illustrating the evolution of district energy systems, courtesy of
[4].
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ability of individual buildings to serve as “prosumers”, adding or rejecting heat from the network in

a manner that can offset the heating or heat rejection required from centralized supply equipment,

if the network topology is designed appropriately. Figure 1.4 shows a schematic illustration of a

5GDHC system with bi-directional thermal and mass flow. In Figure 1.4, ṁ represents mass flow

and q̇ represents heat flow.

Numerous studies have investigated various aspects of advanced district thermal energy sys-

tems, including comparisons of these systems to distributed HVAC systems, and optimization of

system parameters. The work of [4] identified factors that allow advanced systems to save energy

and reduce carbon emissions relative to conventional district thermal energy systems. Moderate wa-

ter temperatures facilitate the integration of waste heat sources (including through combined heat

and power), and renewable heat sources, such as solar thermal and geothermal. Reduced supply

temperatures in heating facilitate the use of heat pumps and condensing boilers, and warmer sup-

ply temperatures in cooling increase the potential for water-side economizing, reducing the energy

intensity of the primary equipment. The use of electric heat pumps in place of natural gas-fired

boilers is compatible with decarbonization of source energy. Moderate water temperatures also

reduce heat losses and gains in the distribution system [4].

The emerging nature of 5GDHC systems, particularly in configurations with bi-directional

mass flow, means that there remains a need for refinement to operational practices. Analysis of

existing systems consisting of two-pipe networks by [8] and others has identified pump cavitation,

caused by large pressure drops across loads, along with pressure control instabilities. The work of [9]

investigated these problems through a simulation study, and concluded that they are a “fundamental

property” of thermal energy systems with bi-directional mass flow and variable-speed pumping.

The lack of time scale separation between the responses of compressor speed, pump speed,

and valves lead to pressure control instabilities in the system, which can subsequently cause flows

to drop below minimum levels at the heat pumps, which can damage the equipment. The work of

[9] evaluated an approach of controlling centralized pumps to achieve a zero pressure differential

between the warm and cool pipes, and determined that this control approach was also likely to lead
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Figure 1.4: Schematic illustration of 5GDHC system with bi-directional thermal and mass flow.
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to instabilities in practice. An alternative configuration that addresses the pressure control insta-

bilities uses bypasses lines with dedicated pumps at each load and the central plant [9]. However,

this configuration has a higher initial cost, and higher cost and complexity associated with future

extensions, due to the need to potentially replace pumps on other bypass lines as additional loads

are added. The work of [10] evaluated a potential solution to the pump cavitation problem, by dy-

namically changing the point in the network at which the expansion vessel is connected. However,

shifting the location of the expansion vessel does not address the pressure control instabilities. A

modeling analysis by [11] suggests that, at least in a network with a single “prosumer”, appropriate

pump control can mitigate pressure instabilities resulting from bi-directional flow. Their study

leveraged data from an operating district heating system to develop detailed models to evaluate

the effects of the integration of a waste heat source on pressure and temperature levels throughout

the system. The waste heat source was co-located with a building that was served by the network

for space heating. Their work found that use of variable-speed primary pumps, controlled to a

pressure differential at the farthest substation, mitigated problems with pressure balance resulting

from the injection of waste heat into the system.

As an alternative to two-pipe systems with bi-directional mass flow, [8] and [9] recommend

one-pipe uni-directional systems, with each load connected in series. In this configuration, the inlet

and outlet of each ETS is kept small, and thus the pressure drop across each load is minimal. Single-

pipe uni-directional systems offer reduced complexity in operation, and reduced initial costs and

reduced cost and complexity associated with expansion, but also result in greater exergy destruction,

which may be significant when large waste heat sources are present. While uni-directional and

bi-directional systems differ in their operating principles, it is expected that a similar approach

to topology optimization can be applied to advanced district thermal energy systems generally.

Both system types facilitate bi-directional thermal flow, and motivate consideration of topology

optimization.

Past studies have also sought to characterize the conditions under which district energy

systems are preferable to independent, building-level HVAC systems. The work of [12] determined
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a metric based on minimum load diversity for characterizing when bi-directional 5GDHC systems

under a given set of conditions would use less energy than the aggregation of individual building-

level systems. Their study found that bi-directional 5GDHC systems were favorable relative to

distributed systems if there were at least 1 unit of cooling energy per 5.7 units of simultaneous

heating energy required, or vice versa. The work of [13] also identified “complementary energy use

and local production patterns” (when distributed renewable thermal energy sources are considered)

as a requirement for advanced district thermal energy systems to be cost-effective, specifically in the

context of retrofits of conventional systems. The authors of [13] propose the concept of a “smart

dual thermal network” as a retrofit of an existing district heating system to add the provision

of cooling, and increase energy efficiency and the potential for use of renewable thermal energy.

They define “smart dual thermal networks” as district thermal energy systems tied to a combined

heat and power plant that circulate hot water and incorporate bi-directional thermal and mass

flow, coupled with building-level absorption chillers and distributed solar thermal collectors. They

performed a simulation study comparing the performance of the “smart dual thermal network”

and two intermediate variations with a reference case in two climate zones. The intermediate

variations consisted of “smart thermal networks” (incorporating bi-directional heat exchange, but

not cooling) and “dual thermal networks” (performing heating and cooling but with uni-directional

flow only). The authors of [13] found that, relative to a reference case district heating system with

uni-directional flow, no solar thermal collectors, and compression-based cooling at the building

level, the “smart dual thermal networks” resulted in significant (29%) operational cost savings in

the climate of Madrid, Spain. They note that the use of distributed solar thermal collectors can

increase the “aggregated demand flexibility” and ease a transition from other types of primary

heating equipment to combined heat and power.

1.2.2 Topology optimization

The authors of [14] state that “topology optimization gives answers to the fundamental

engineering question: how to place material within a prescribed design domain in order to obtain
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the best structural performance?” More generally, topology optimization can be extended to any

engineering design problem that involves making choices among multiple potential configurations,

wherein all potential configurations satisfy basic functional requirements of the design but can be

distinguished by their performance in other domains. Topology optimization has been applied to

a variety of different design spaces, including structural elements, and design and distribution of

electrical conductors in circuits.

In general terms, the cost function by which the optimum is determined in a topology opti-

mization problem is expressed as a function of the material distribution, and could reflect material

costs, compliance (in a structural context, inversely related to stiffness), parasitic resistance in

an electrical circuit, or other parameters. The specific constraints of the topology optimization

problem are domain-specific and can include limitations on physical size of a component, or re-

quirements for connectivity of components in an electrical circuit. However, there are structures of

these constraints that are common to topology optimization problems across different domains.

Solution approaches to topology optimization problems often discretize the volume into a

large number of small volumes (known as a mesh), which increases the number of optimization

variables. In structural applications, the finite element method is often applied to evaluate the

objective function. One challenge in solving topology optimization problems is that the solutions

can be mesh-dependent, or sensitive to the particular choice of discretization, which is not desirable.

Additionally, discretization makes the problem computationally intensive to solve, and the large

number of variables is often intractable with general nonlinear programming algorithms [15]. Early

work in the realm of topology optimization applied to electrical conductors was performed by

[16]. They applied topology optimization to the design of an electrically small conformal antenna,

using the far-field radiated power at a single frequency as the objective function, with a volume

constraint. The authors of [16] applied a discretization to the spatial domain of the antenna, and

applied a threshold to evaluate intermediate values of the material’s density and assign the presence

or absence of material.

This binary nature of the optimization variable (representing the presence or absence of mate-
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rial at a given point in space) makes the topology optimization problem non-convex, and challenging

to solve. This difficulty can be addressed by replacing the binary variable with a continuous one,

and adding a regularization term to the objective function to penalize intermediate values of the

variable. One method for doing this is known as Solid Isotropic Material with Penalization (SIMP).

Approaches like SIMP require a constraint on the overall volume of the component. Adopting a

continuous variable allows for the use of gradient-based methods [17]. A challenge of approaches

like SIMP is determining a value for the penalty term that has the intended effect. The work of [18]

solved a topology optimization problem for design of a Hall effect thruster using the SIMP method

for problem formulation and a branch-and-bound algorithm. In their formulation, the optimiza-

tion variable was the distribution of ferromagnetic material. The authors of [18] used an interval

branch-and-bound algorithm.

Topology optimization problems have also been solved with discrete mathematical program-

ming methods on the dual space, such as by [17] for a structural application, in which compliance

was minimized. Since compliance cannot be expressed explicitly in terms of the design variables,

an approximation was used. The work of [17] imposed upper-bound constraints on the volume and

perimeter. (The constraint on perimeter is intended to provide quality control of the solution.)

They found dual methods to be well-suited to topology optimization problems because of the re-

duction in dimensionality provided. In this formulation of the problem, the binary variables are the

only source of non-convexity. Due to the non-convex nature of the problem, there is not a guarantee

of a zero duality gap; that is, there is not a guarantee that the solution of the dual problem will

be the global optimum of the original (primal) problem. The authors of [17] bounded the duality

gap for problems with a small number of constraints and a large number of optimization variables

(characteristic attributes of topology optimization problems, when discretized) as being about 10−5

percent of the objective function. The bound on the duality gap means that the solution achieved

by this method is sufficiently close to the global optimum.
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1.2.3 Optimization of district energy systems

Topology optimization problems involving networks are distinct from topology optimization

problems in the structural context. In network problems, the objective functions generally have

more complex dependencies on the network than compliance or other structural properties do

on material distribution. Among network problems, advanced district thermal energy systems

rely on a more complex physical model than domestic water distribution networks, due to the

relevance of thermal losses, and conventional district thermal energy systems, due to the presence

of bi-directional thermal flow (even if mass flow is uni-directional). The more complex nature of

the advanced district thermal energy system, compared with other types of engineering networks,

affects the selection of an optimization approach. Some past work has addressed multiple aspects of

thermal network operation by dividing an optimization problem into sub-problems. Optimization

problems involving district thermal energy systems often involve non-convex objective functions,

which past studies have addressed with genetic algorithms.

Numerous studies have addressed optimization of different aspects of district energy systems.

This section will focus on work that addresses thermal energy, alone or in addition to electricity.

Studies involving optimization of district energy systems differ in the representation of building

loads, the nature of the objective functions, the optimization variables, and the optimization ap-

proaches. Past studies have addressed both design and operational optimization problems. The

work discussed in this section treats building loads as deterministic. Past studies have addressed

aspects of the network topologies, supply temperatures, and pipe diameters as the optimization

variables, and life cycle costs, carbon emissions, and operating costs as the objective functions.

Among studies using economic costs as the objective function, planning studies tend to use life

cycle cost, and operational optimization studies, operating costs. Past studies also differ in the

degree of realism reflected in the constraints.

Unit commitment problems for district heating systems have been addressed by [19], [20],

and [21]. The work of [19] performed optimization for load allocation among multiple heating
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plants in a district heating system to minimize operating cost. They treated network topology

as an input and performed optimization over the supply and return temperatures and mass flow

rate at each plant. The authors of [19] applied their model to a test case with a radial topology.

They applied genetic algorithms to this problem, with a non-convex, and non-smooth, objective

function. They used a quasi-steady state physical model, based on known building loads [19]. The

work of [20] sought to minimize hourly operating costs for a combined heat and power district

heating system, with natural gas and fuel oil boilers. The optimization variables included the order

in which equipment was dispatched. They sought to maintain realistic constraints on operating

conditions and realistic performance characteristics for steam boilers and gas turbines. The authors

of [20] formulated the problem on a multi-period (multi-day) basis, accounting for start-up and

shut-down costs for equipment. They formulated the problem using a mixed-integer nonlinear

programming (MINLP) approach and compared the results from applying branch-and-bound, and

genetic algorithms. Branch-and-bound was applied to a more tightly constrained version of the

problem that did not consider continuity of operations for equipment. A focus of their work was on

reduced computational time, to allow this optimization approach to be implemented for scheduling

daily operations at real plants.

The work of [22] developed a framework for optimization of fourth generation district heating

systems, sub-dividing the problem into unit commitment and economic dispatch. The unit commit-

ment problem is discrete, with binary variables corresponding to the operating status of each unit.

The authors of [22] formulated the unit commitment problem as a mixed integer quadratically con-

strained programming problem. They transformed the continuous economic dispatch problem into

a non-linear programming problem through a discretization. The authors formulated the economic

dispatch problem with minimization of the supply temperature as the objective function, but the

approach is generalizable to other objectives. In the work of [22], the unit commitment problem is

solved first, and the status of each unit at each timestep is then used as an input for the economic

dispatch problem. In the sample cases to which [22] applied this method, individual building loads

were aggregated to reduce the complexity of the network.
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The work of [23] sought to optimize the supply temperature of an advanced district heating

and cooling network to minimize energy consumption. They formulated the problem for a two-pipe

system, with a fixed temperature differential between the two pipes. They used a simplex method

(Nelder-Mead) to solve the optimization problem. Their study found energy savings on the order

of 15% from implementing the optimal supply temperature in an example network, in comparison

to allowing the temperatures to float freely between 12 ◦C and 20 ◦C. They found that the effect of

implementing seasonal resets of the supply temperature was negligible. The authors implemented

an agent-based control approach to maintain the loop temperature setpoint. They found that bi-

directional near-ambient temperature networks saved energy relative to uni-directional networks in

the two locations they analyzed.

The work of [24] and [25] addressed topology optimization for district thermal energy net-

works. The authors of [24] solved an optimization problem to minimize life cycle cost for the net-

work topology (including location of the central plant) and pipe diameters for a low-temperature

(55◦C supply/ 25◦C return) district heating network. They formulated a mixed-integer non-linear

programming problem. The life cycle cost included costs associated with piping and pumping

infrastructure, heat losses, pumping energy, maintenance, and a carbon tax. In the topology

optimization problem, the optimization variables were the elements of the adjacency matrix rep-

resenting the connectivity of the thermal network. The network topology was constrained to be a

tree, and a connected graph, with twin pipes (supply and return pipes encased in the same con-

duit). Additionally, it was required that each building be connected to the district thermal energy

network. The flow in each pipe was constrained to be uni-directional. The authors of [24] applied

genetic algorithms to solve the optimization problem. Building loads were represented with an

annual peak load, and a multiplier for each of eight periods dividing the year. The authors of

[25] sought to optimize the topology configuration, pipe diameter, and operating parameters of a

district heating network for minimal life cycle cost. Included in the life cycle cost were costs associ-

ated with infrastructure (primary plant equipment and piping) and energy use (for heat generation

and distribution). Piping costs included material costs and trenching, and supply and return pipes



15

were not constrained to lie in the same trench. Operating parameters included supply and re-

turn temperatures for the network, and mass flow rates. Both parallel and series connections of

buildings to the district network were considered, as well as the absence of a connection from a

given building to the network. The primary application for series connections were buildings with

lower temperature supply requirements. They formulated the problem in three sub-problems as a

mixed-integer non-linear program, a mixed integer linear program, and a non-linear program. The

authors of [25] performed analysis for steady-state conditions only. They considered several sample

configurations of building locations and loads, and concluded that the optimal topology was highly

context dependent, and not generalizable.

The work of [26] performed network topology optimization for a district heating and cooling

system. The authors formulated the objective function as a life cycle cost based on the capital

cost of piping and trenching and a limited set of operating costs (related to pumping energy, peak

pumping power, and unwanted heat losses and gains through the network). Their study treated

building loads and energy consumption by primary equipment as boundary conditions. The authors

approached the optimization problem with mixed-integer linear programming. The authors applied

their approach to several prototypical districts, and identified limited reductions in life cycle cost

(of 0.5% to 1.3%) relative to that of networks designed to minimize capital cost only. However, the

internal rate of return associated with the incremental capital investment required by the life cycle

cost optimal network relative to the first-cost optimal network was as high as 15%, significantly

higher than current borrowing rates for infrastructure. The authors of [26] identified an extension of

their problem, in which the connection status of buildings would also be treated as an optimization

variable, as an area in which further work was needed.

The work of [27] considered multi-objective optimization (for life cycle costs and carbon

emissions) for district-level heating and electrical energy systems. The authors of [27] divided the

optimization problem into sub-problems: selection of heating systems for each building (which

could be tied to a district system, or independent), design of primary equipment (with energy stor-

age included in the scope) and selection of efficiency measures at the building level, and operation
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of primary equipment and energy storage units. They used detailed building load models, formu-

lated with RC networks. The authors considered various topology configurations, but not meshed

networks. Their solution process was iterative among the sub-problems and used Pareto fronts to

evaluate the solutions. The authors of [27] initially applied heuristics to the first sub-problem, and

evolutionary algorithms to the second sub-problem. They did not consider bi-directional flow of

heat at the building level in this analysis. Instead of assigning weighting factors to the two ob-

jectives, in evaluating chromosomes in the evolutionary algorithms, [27] applied a non-dominated

sorting-based algorithm. They applied constraints to the mutations to ensure validity of the result-

ing solutions. The work of [28] also performed multi-objective optimization, for life cycle cost and

carbon emissions, for a district energy system. They sought to optimize the sizing and dispatch of

primary equipment for a district energy system, comparing the results of the analysis performed

separately for district heating and cooling systems, and for case in which the heating and cooling

systems were coupled through the use of an absorption chiller. The authors found that the coupling

of district heating and cooling systems resulted in the ability to achieve lower carbon emissions for

a given life cycle cost. The authors of [28] formulated the optimization problem as a linear pro-

gram, and used the epsilon-constrained method to construct a Pareto front. They represented the

performance of the primary equipment considered with simplified models, calculating the associ-

ated carbon emissions based on a flat ratio of the heating or cooling load delivered by the unit of

equipment.

1.2.4 Optimization of networks in other domains

Optimization problems have been also been studied extensively in the context of engineering

networks other than district thermal energy systems. The work of [29] performed joint optimization

of a water and power system, for minimal operational cost. The optimization variables included

nodal voltages and power (active and reactive), mass flow rates, pressures (including pressure drops

through valves), and pump speeds. The network considered included water storage tanks. Though

valve positions were actuated through the optimization process, the network and loads (required
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flow rates) were an input to the analysis. The water and power networks considered were coupled by

the water distribution pumps. The authors of [29] formulated an MINLP and applied feasible point

pursuit successive convex approximation, which provides stronger convergence claims than genetic

algorithms. This approach involves reformulation of non-convex constraints as equivalent non-

convex quadratic constraints. The authors implemented this approach in a distributed fashion,

with a smaller optimization problem (consisting only of the variables associated with the given

network) being solved for each network at each iteration. Information is then exchanged between

the two networks regarding only the common variables.

The authors of [30] solved a joint design and optimization problem for a domestic water

network within a high-rise residential building. The objective was to minimize the sum of first costs

of the pipes and pumps, and the energy costs for the pump operation. The authors solved for the

optimal piping layout, optimal diameter of each pipe, optimal pump placement, and optimal pump

operating speed. The authors formulated the problem as an MINLP and applied a branch-and-

bound approach. The relaxation used involved a linearization of the pump model. The physical

model was formulated for steady-state conditions. The sub-problems in the branch-and-bound

algorithm involved sub-trees of the network. This was used to create a lower bound on the value

of the objective function, since any tree containing the given sub-tree would have a greater value

of the objective function. The authors of [30] also considered an additional case with constraints

regarding resiliency, characterized in terms of the maximum number of pumps that could fail while

still supplying a given fraction of the demand.

1.3 Novelty of contribution

The key factors that distinguish this contribution from past work are its consideration of both

the network topology selection and the choice of buildings to connect to the network, its analysis of

bi-directional thermal and mass flow, and its consideration of a variety of potential topologies, with

refined modeling of building load profiles and the thermal and hydronic operation of the network.

The past work that is most relevant to this proposed contribution is that of [24], [27], [25], and
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[26]. The combination of characteristics discussed in this section distinguishes this work from that

of those authors.

The work of [24] and of [26] imposed a constraint that every building in the considered district

be connected to the district energy network. The work of [25] did not constrain all buildings to

be connected to the same primary thermal network, and considered the possibility of “isolated”

supply equipment. However, [25] performed analysis for design conditions only. The work presented

in this dissertation leveraged hourly building load profiles, and analyzed the performance of the

hydronic network at one-hour time intervals. Bi-directional thermal flow and bi-directional mass

flow influence the choice of optimal topology, and make the physical model more complex, and

were not addressed by any of the four most relevant examples of past work. The work of [24],

[25], and [27] considered networks supplying district heating only. The work of [26] considered

a district energy system supplying heating and cooling, but with no coupling between the two

systems. Additionally, the work of [27] and [24] considered only parallel connections of buildings to

the thermal network. The work of [25] considered the possibility of series connections of buildings

to the network. The work of [27] did not consider meshed networks, and [24] considered only tree

networks. The work of [25] considered a wide range of topologies, but under design conditions

only. The work of [26] also considered a wide range of network topologies, but treated the energy

consumption of primary equipment and the thermal loads of connected buildings as boundary

conditions. The work presented in this dissertation considered all potential network topologies, and

accounted for the potential effects of variation in network supply temperatures on the HVAC energy

use of connected buildings, and primary equipment. The consideration of additional topologies,

and nuanced modeling of building loads, adds complexity to the problem, and enhances the value

of the ultimate result.

The four most relevant pieces of past work analyzed networks supplying district heating

only, or district heating and cooling systems of the third generation. The work presented in this

dissertation introduces more complexity by analyzing an advanced district thermal energy system.

Ambient loops and low-temperature district heating networks create more interesting opportunities
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for optimization, by introducing more potential topologies, and the potential for bi-directional

thermal and mass flow. The presented topology optimization framework is novel because it considers

both the questions of which subset of buildings to connect (a need highlighted by [26]) and how

they should be connected, is flexible to a variety of potential topologies, and considers bi-directional

thermal and mass flow. The presented contribution has extended the work of [3] and [31] by

leveraging tools developed by those authors (specifically the 5GDHCtat and ROM Framework, to

be discussed in Chapter 2) to create a topology optimization framework for district thermal energy

systems.

1.4 Objective

This research focused on developing a topology optimization framework to address the ques-

tion, “For a given set of buildings, with known locations and loads, what is the optimal subset, if

any, to connect to a district thermal energy system, and by what network should they be connected,

to minimize life cycle cost?” The approaches implemented in the framework–particle swarm opti-

mization and the minimal spanning tree heuristic–were validated in the context of this problem for

5GDHC systems. The framework was applied to a case study to quantify the potential benefits of

network topology optimization for district thermal energy systems operating at near-ambient tem-

peratures. While the topology optimization problem is of greatest relevance to 5GDHC systems,

the framework is generally extensible to other types of district thermal energy systems.

1.5 Related tools

The topology optimization framework is introduced in the context of related modeling tools,

including the URBANopt Advanced Analytics Platform and the OpenStudio Analysis Framework.

URBANopt (Urban Renewable Building And Neighborhood optimization) is an analysis platform

developed by the National Renewable Energy Laboratory (NREL) for modeling of thermal and elec-

trical energy systems at the building and district level [32]. NREL has developed URBANopt as a

software development kit (SDK), on top of which NREL’s partners have built user interfaces. UR-
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BANopt leverages existing modeling tools (EnergyPlus, Spawn of EnergyPlus, and OpenStudio) to

model building-level thermal loads and energy use. The URBANopt District Energy Systems (DES)

workflow permits users to programmatically generate models of district thermal energy systems in

Modelica to evaluate energy consumption at the district level [33]. The topology optimization

framework is being integrated with the URBANopt-DES modules.

The OpenStudio Analysis Framework (OSAF) is a platform for performing programmatic

building energy analysis at scale, including optimization and parametric analysis [34]. The OSAF

can be accessed through an application programming interface (API). Implementations of algo-

rithms from the OSAF can be leveraged for integration of the topology optimization framework

with URBANopt-DES.

1.6 Organization

This dissertation comprises several papers which describe the key elements of the underlying

work, and additional chapters that further document the motivation and approach, and intersections

between the developed topology optimization framework and relevant modeling tools.

Chapter 2 - Methods discusses in more detail the research questions that underlie this

dissertation and the approach used to address each of them.

Chapter 3 - Evaluation of low-exergy HVAC systems and motivation for topology

optimization presents a study comparing the energy performance of an fifth-generation district

thermal energy system with that of a third-generation system in the context of a prototypical

urban district, and the initial validation of the minimal spanning tree heuristic for the network

topology optimization problem. The study investigates in depth the factors contributing to the

reduced source energy use intensity of a fifth-generation district thermal energy system, relative to

an earlier generation system.

Chapter 4 - Evaluation of the minimal spanning tree heuristic for the topology

optimization problem presents two studies in which further validation of the minimal spanning

tree heuristic is performed, in the context of prototypical urban districts. An exhaustive search is
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performed for a prototypical district, in which all possible network configuration scenarios (more

than 30,000) are evaluated, and it is confirmed that the minimal spanning tree network consistently

minimizes life cycle cost relative to other networks connecting a given subset of buildings.

Chapter 5 - Validation of particle swarm optimization for the network topology

optimization problem presents results validating the effectiveness of the particle swarm opti-

mization algorithm as implemented in the topology optimization framework and a comparison of

different approaches for incorporating constraints into the problem.

Chapter 6 - Development of the topology optimization framework provides a more

detailed discussion of the implementation of the topology optimization framework in Python and

the inputs needed to configure the analysis. This chapter also presents how the framework will be

integrated with NREL’s URBANopt platform and OpenStudio Analysis Framework.

Chapter 7 - Demonstration of the topology optimization framework presents results

from the application of the topology optimization framework to a larger prototypical urban district

(consisting of seven buildings). The potential benefits of a fifth-generation district thermal energy

system in that context are quantified, and the barriers to their adoption are discussed.

Chapter 8 - Conclusion and future work presents conclusions regarding the potential

benefits of topology optimization and how it can address barriers to adoption of fifth generation

district thermal energy systems, as well as areas for further development of the framework.



Chapter 2

Methods

The research questions that underlie this dissertation were addressed through five main steps:

evaluation of the energy performance of low-exergy HVAC systems, evaluation of the minimal

spanning tree heuristic, evaluation of particle swarm optimization, development of the topology

optimization framework, and demonstration of the framework with a case study. The first step

motivates the focus on advanced district thermal energy systems, and the relevance of the net-

work topology optimization problem. The second and third steps were required to select the ap-

proaches to be implemented in the topology optimization framework. The fourth step constituted

the construction of the framework itself, which is a desired outcome of the work. The fifth step

demonstrates the value and relevance of the topology optimization framework. In the following

subsections, the motivation for performing each of these steps, and the approach for doing so, is

discussed.

2.1 Evaluation of the energy performance of low-exergy HVAC systems

As part of this work, the energy performance of low-exergy HVAC systems, at the building and

district levels, was evaluated, and compared with that of “conventional” hydronic HVAC systems,

operating at high temperatures in heating and low temperatures in cooling.
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2.1.1 Problem description and approach

The work presented in this dissertation is motivated by the need to reduce carbon emissions

associated with conditioning buildings. As such, it was necessary to evaluate the energy perfor-

mance of the HVAC systems that are the focus of the topology optimization framework developed

and define the conditions to which they are well-suited. This was done through energy simulation

of a prototypical urban district.

To compare the energy performance of “conventional” and “low-exergy” HVAC systems,

a prototypical district of residential buildings was constructed using the multi-family residential

building model in EnergyPlus format from the US DOE Prototype Buildings [35]. The Prototype

Buildings are intended to represent the characteristics of common commercial and multi-family

housing buildings in the US. The source energy consumption was compared for two versions of the

district: one with radiant hydronic systems at the building level, using warm water supplied at 45

◦C and cool water supplied at 16 ◦C, and one with typical water-to-air systems at the building

level, with hydronic coils leveraging hot water at 82 ◦C and chilled water at 7 ◦C. In both cases,

the building-level hydronic systems were served by a district thermal energy system.

The two versions of the district were identical in all respects but the HVAC systems. The

prototypical district was populated with ten versions of the same underlying building model, with

certain parameters varied in order to create a realistic thermal load profile for the district energy

system, and to reflect the stochastic nature of occupant behavior. The internal load density,

occupant density, window-to-wall ratio, infiltration rate, and occupancy and internal load schedules

were the varied parameters, and the parameter values for each building were determined through

sampling from probability distributions.

To ensure a fair comparison between the two HVAC system types, each of the two system

types were controlled at the building level so that they achieved as similar as possible a trajectory

of operative temperatures in each space. Operative temperature is calculated as an average of

the mean radiant temperatures of the surfaces in a thermal zone and the air temperature, and
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Figure 2.1: Schematic illustration of system comparison.

is an important parameter in human thermal comfort. Thermal comfort is the primary “service”

provided by space conditioning systems, and this approach ensured that the energy comparison

was being made for HVAC systems providing the same level of service.

A model of the building loads was used to generate the district thermal load profile, which was

separately applied to a central plant model. The process by which this was performed is illustrated

in Figure 2.1. EnergyPlus does not currently facilitate modeling the interactions between connected

loads and a district energy system in a single model, and a limitation of this two-step approach is

that it assumes that the district thermal energy system is able to meet the building loads perfectly

at each timestep. This approach was refined in the energy modeling that was used to validate

elements of the Topology Optimization Framework. The evaluation of the energy performance of

low-exergy HVAC systems is discussed in detail in Chapter 3.

2.2 Evaluation of the minimal spanning tree heuristic

The performance of the minimal spanning tree (MST) heuristic was evaluated in order to

assess its inclusion in the Topology Optimization Framework.
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2.2.1 Problem description and approach

Conceptually, the MST heuristic showed promise as a means of selecting the optimal thermal

network by which to connect a given subset of buildings. Its performance was evaluated in the con-

text of a prototypical district, to determine if it should be leveraged by the Topology Optimization

Framework.

As shown in Figure 1.2, the “search space” of potential thermal network configurations grows

factorially as a function of the number of connected buildings. A district of five buildings creates

a search space of 30,770 potential network configurations. This was deemed to be sufficient to

evaluate the performance of the MST heuristic through an exhaustive search — evaluating the life

cycle cost of all potential network configurations, and determining if, in fact, the MST network

provided the least-cost configuration for all thirty-two potential sets of connected buildings.

The heuristic was evaluated in the context of a district thermal energy system operating at

near-ambient temperatures, which create the greatest potential for network topology optimization.

The prototypical district was constructed such that it was a realistic facsimile of one that would

be considered a candidate for district thermal energy systems in terms of its loads. The US DOE

Prototype building models were again used to generate the load profiles, and the building types were

selected such that, in combination, they provided a favorable value of a thermal load diversity metric

that has been proposed by [12] as a threshold for the level at which ambient-temperature district

energy systems will operate at a higher exergetic efficiency than building-level HVAC systems.

Based on this metric, a district consisting of three multi-family buildings, a retail building, and a

hospital were selected.

The HVAC energy use at each building, in both its “connected” and “independent” states

(cases in which it was tied to the district thermal energy system or had independent building-level

HVAC systems, respectively) was represented with data-driven metamodels that were trained on

a data set generated from a parameter sweep over the prototype building models in EnergyPlus

format, using the Metamodeling Framework developed by [31]. In the “connected” case, the sup-
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ply water temperature from the district system is one of covariates in the reduced order models,

ensuring that the building-level HVAC energy use reflects effects from any deviations in network

supply temperature. The use of the metamodels structured in this way facilitates accounting for

interactions between the building-level energy use and the network conditions, without the com-

putational intensity of a full coupling. The performance of the metamodels in predicting building

level HVAC energy use was validated in [31].

The energy consumption of the district thermal energy system was evaluated using an energy

model in Modelica, extended from one created by [3]. Modelica is an object-oriented, equation-

based language that is commonly used for modeling physical systems [36]. Modelica facilitates

modeling of pressure-driven flow and bi-directional mass flow in a hydronic distribution network.

The model from which this one was extended was validated in terms of its performance in predict-

ing temperatures at network nodes using data from experiments conducted at EURAC [3]. The

evaluation of the minimal spanning tree heuristic is discussed in detail in Chapter 4.

To evaluate the performance of the MST heuristic, the objective function of life cycle cost

was evaluated for each potential network configuration of the five-building prototypical district

described. For each potential subset of buildings (thirty-two, including the “null case” in which all

buildings are served by independent systems), the life cycle cost associated with the corresponding

MST network was compared to that of the other possible networks, to determine if it did, in fact,

offer the optimal configuration.

2.3 Evaluation of particle swarm optimization

The performance of a particle swarm optimization (PSO) algorithm was evaluated to deter-

mine if it should be implemented in the Topology Optimization Framework.

2.3.1 Problem description and approach

PSO is a meta-heuristic optimization algorithm that can be applied to continuous, non-convex

functions, and was originally developed by [37]. As such, it is compatible with the use of a “black-
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box” function evaluator, since it does not require an explicit definition of the objective function

or its derivative. PSO does not provide a guarantee of convergence at a global optimum, but past

work has shown that relative to other meta-heuristic approaches, PSO has a lower risk of getting

“stuck” at a local minimum [37]. Based on these attributes, the PSO algorithm was a promising

candidate for integration in the Topology Optimization Framework. Its performance was evaluated

to determine if it should be incorporated in the framework.

The performance of a PSO algorithm in identifying the optimal subset of buildings to connect

to a DES, as well as the network by which they should be connected, was compared with the

results of the exhaustive search described in Section 2.2. The data set derived from the exhaustive

search was extended using post-processing by varying high-level parameters in the life cycle cost

function, with six different sets of values, to enhance the robustness of the evaluation. This approach

leveraged the work of [38] in developing a post-processing framework for the dataset.

Conceptually, as part of the PSO algorithm, candidate solutions are represented by “parti-

cles”, which traverse a search space, with each particle retaining knowledge of both its previous

“best” location with respect to the objective function, and the best prior location visited by the

“swarm” as a whole. The network of other particles with which a given particle can communicate

this knowledge is known as a neighborhood. When this neighborhood is smaller in size than the

swarm as a whole, the approach is known as lbest. When each particle can share knowledge with

the entire swarm, the approach is known as gbest. Past studies have concluded that the relative

performance of lbest and gbest is generally problem-dependent, and thus both approaches were

initially evaluated for this problem. It was concluded that lbest was preferable in this case. An

implementation of PSO for binary-valued variables was selected for the full evaluation [39]. Values

of hyperparameters were selected based on recommendations in the literature.

The post-processing framework to be documented in [38] was used to select six sets of param-

eter values, each one corresponding to a different optimal level of network connectivity in terms of

the number of loads served by the DES. The electricity and natural gas rates, unit cost of piping

and trenching, and carbon intensity of electricity were the considered parameters. The ranges of
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the utility rates and maximum carbon intensity of electricity were selected based on historic values

in the mainland U.S., and a lower limit of zero was selected for carbon intensity of electricity, corre-

sponding to a 100% renewable electricity supply. The range of unit costs for piping and trenching

were selected based on a literature review. Thus, each of these six sets of scenarios corresponds

to a reasonably likely set of conditions that could exist or occur in the US now or in the future.

The performance of the PSO algorithm was evaluated under each of these sets of conditions. For

each set of conditions, the optimal solution returned by the algorithm after a fixed number of it-

erations was compared with the “ground truth” value, consistent with the approach taken by [40]

and others. The evaluation of particle swarm optimization is discussed in detail in Chapter 5.

2.4 Development of the Topology Optimization Framework

The focus of the work presented in this dissertation is the development of the Topology

Optimization Framework. The framework is intended to answer the question, for an urban district

with known building locations and loads, “What is the optimal subset of buildings, if any, to connect

to a district thermal energy system, and by what network should they be connected, to minimize

life cycle cost?”

2.4.1 Problem description and approach

The Topology Optimization Framework is intended to be flexible to a variety of district

thermal energy systems, and extensible to different cost functions. The framework was assembled

in the form of Python scripts. The evaluation of the cost function is based on the simulation of an

energy model representing the district thermal energy system and all buildings in the considered

district, in FMU format.

At each iteration, a PSO algorithm, implemented using the PySwarms Python package, is

used to generate a “swarm” of candidate solutions, in the form of binary vectors corresponding

to the connectivity status of each building and the centralized heat pump [41]. Evaluation of the

“swarm” (20 particles) at each iteration is executed in parallel. Each candidate solution is checked
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for validity (that the centralized heat pump is connected to the network if any loads are), and valid

solutions are then evaluated, through modifying the FMU energy model accordingly, and then

simulating it. (Invalid solutions are penalized with a high value of the cost function.) The PyFMI

Python package is used to modify and simulate the FMU. The cost function value is calculated

based on results from the energy model simulation, and parameters that can be modified by the

user. The algorithm continues until it reaches a convergence or termination criterion. A schematic

illustration of the workflow of the framework is shown in Figure 2.2. The development of the

Topology Optimization Framework is discussed in detail in Chapter 6.

2.5 Demonstration of the Topology Optimization Framework

The performance of the Topology Optimization Framework was demonstrated with a case

study, which was also used to quantify the potential benefits of network topology optimization in

the context of 5GDHC systems.

2.5.1 Problem description and approach

Quantification of the potential benefits of network topology optimization is important in

illustrating the value of the presented Topology Optimization Framework. The framework was

applied to a prototypical new-construction district as a case study.

A prototypical new-construction district of seven buildings situated on a university campus

was created, using the US DOE Prototype Building models [35]. The building types (three multi-

family buildings, three offices, and a restaurant) were selected such that the thermal load density

of the district would make it a viable candidate for an ambient-temperature district thermal energy

system, based on metrics that have been proposed for previous generations of district thermal

energy systems, and operating examples of ambient-temperature systems. Thus, this prototypical

district served as a valid “test case” for assessing the value of network topology optimization in

this context. An energy model representing the district thermal energy system was extended from

the one used for the exhaustive search analysis described in Sub-section 2.2. The framework was
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Figure 2.2: Schematic illustration of workflow of the Topology Optimization Framework.
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applied to the prototypical district, and the optimal solutions that it determined were compared

to four base cases, each of which entailed the connection of all buildings in the district to the DES,

with varying network configurations.

The comparison of the optimal solutions to the base case designs, which reflected common

heuristics, in terms of life cycle cost, carbon emissions, and source energy use intensity, provided

a means of quantifying the benefits of network topology optimization. The results also revealed

insights about the economic and policy conditions that would be necessary for ambient-temperature

district thermal energy systems to be favorable on a life-cycle cost basis relative to building-level

systems. The presented framework is distinct from existing contributions in that it provides a

flexible interface to network topology optimization for district thermal energy systems, leveraging

validated techniques. The demonstration of the topology optimization framework is discussed in

detail in Chapter 7.



Chapter 3

Evaluation of low-exergy building HVAC systems and motivation for topology

optimization

This chapter has been published as:

A. Allen, G. Henze, K. Baker, and G. Pavlak, Evaluation of low-exergy heating and cooling systems

and topology optimization for deep energy savings at the urban district level.

Energy Conversion and Management, vol. 222, p. 113106, 2020.
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3.1 Abstract

District energy systems have the potential to achieve deep energy savings by leveraging the

density and diversity of loads in urban districts. However, planning and adoption of district thermal

energy systems is hindered by the analytical burden and high infrastructure costs. It is hypothesized

that network topology optimization would enable wider adoption of advanced (ambient tempera-

ture) district thermal energy systems, resulting in energy savings. In this study, energy modeling is

used to compare the energy performance of “conventional” and “advanced” district thermal energy

systems at the urban district level, and a partial exhaustive search is used to evaluate a heuristic

for the topology optimization problem. For the prototypical district considered, advanced district

thermal energy systems mated with low-exergy building heating and cooling systems achieved a

source energy use intensity that was 49% lower than that of conventional systems. The minimal

spanning tree heuristic was demonstrated to be effective for the network topology optimization

problem in the context of a prototypical district, and contributes to mitigating the problem’s com-

putational complexity. The work presented in this paper demonstrates the potential of advanced

district thermal energy systems to achieve deep energy savings, and advances to addressing barriers

to their adoption through topology optimization.

3.2 Introduction

Governing bodies worldwide have recognized the importance of reducing carbon emissions.

Beneficial electrification of energy end uses, in conjunction with decarbonization of electricity gen-

eration, is widely recognized as a critical strategy to accomplish this goal [42]. Electrification of

transportation has made promising strides in this direction, but space heating and cooling pose

greater challenges. In 2016, the European Union introduced a Heating and Cooling Strategy which

seeks to promote decarbonization of space heating and cooling, and greater utilization of industrial

waste heat [43]. In this context, the potential of low-exergy heating, ventilation and air-conditioning

(HVAC) systems, which are compatible with electrically-driven primary heating and cooling equip-
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ment, and the beneficial use of waste heat, is demonstrated as a strategy to accomplish electrifica-

tion of space heating and cooling. However, these systems require district thermal energy networks,

which are expensive to build and difficult to screen for cost-effectiveness. Expansion of the use of

district thermal energy systems in the context of increased penetration of renewable electricity

generation will require new analysis tools capable of addressing integrated thermal and electrical

systems [44]. Specifically, selecting the best network topology for a district thermal energy system

is a key challenge, in both retrofits and new construction. A topology optimization framework is

proposed to address this problem.

The work presented in this paper is part of a larger effort to develop a framework for topology

optimization of district thermal energy systems, which seeks to answer the questions, for a given

urban district, “Which subset of buildings, if any, are most advantageous to connect to a district

thermal energy system, and by what network topology should they be connected, in order to

minimize life cycle cost?” The work presented in this paper demonstrates the potential of advanced

district thermal energy systems to achieve deep energy savings, and steps to addressing barriers

to their adoption through network topology optimization. This paper presents results from a

comparison of “conventional” and “advanced” district thermal energy systems at the level of a

low-energy urban district, and an evaluation of a heuristic for part of the topology optimization

problem.

3.2.1 Advanced district thermal energy systems

In this work, the term “advanced” district thermal energy systems will be used to encom-

pass fifth generation district heating and cooling systems, ambient loops, and other moderate-

temperature district networks. The evolution of district thermal energy systems over their 140

years of existence has often been characterized in terms of generations (with most authors recog-

nizing either four or five generations), with the defining feature being a progression from steam to

hot water for heating, and to more moderate temperatures of water for both heating and cooling

[4].



35

The work of [45] introduced the concept of “deep energy savings” in the context of design

strategies that address interactive effects among multiple building systems to achieve significant

reductions in energy use. In this work, the concept of deep energy savings is extended to systems

implemented at the urban district level. Advanced district thermal energy systems have the po-

tential to achieve deep energy savings by leveraging the density and diversity of loads in urban

districts [32]. An analysis found that wide-scale expansion of district heating, in conjunction with

building energy efficiency, would allow the European Union to achieve its target for reducing car-

bon emissions 80% from 1990 levels by 2050, at a 15% lower cost than through energy efficiency

strategies at the individual building level alone [46]. The work of [4] identified factors that allow

advanced systems to save energy and reduce carbon emissions relative to conventional district ther-

mal energy systems. Moderate water temperatures facilitate the integration of waste heat sources

(including through combined heat and power), and renewable heat sources, such as solar thermal

and geothermal. Reduced supply temperatures in heating facilitate the use of heat pumps and

condensing boilers, and warmer supply temperatures in cooling increase the potential for water-

side economizing, reducing the energy intensity of the primary equipment. The use of electric heat

pumps in place of natural gas-fired boilers is compatible with decarbonization of source energy and

a transition to 100% renewable energy [44]. Moderate water temperatures also reduce undesired

heat losses and gains in the distribution system [4]. Advanced district thermal energy systems can

also be leveraged for beneficial grid interactivity, such as through the use of “excess” renewable

electric generation to charge thermal energy storage [47].

This work will focus on so-called “fifth generation district heating and cooling (5GDHC)

systems.” The work of [7] defines a 5GDHC system as a thermal energy network circulating water

or brine that leverages water source heat pumps to temper the supply fluid at the connected loads.

A study of operating 5GDHC systems found that most had network temperatures in the range of

15-25◦C [7]. In the analysis of the topology optimization problem in this study, a 5GDHC system

with a two-pipe configuration, permitting bidirectional thermal and mass flow, is considered, with

buildings connected in parallel to the thermal network. Each connected building is equipped with



36

Figure 3.1: Schematic representation of 5GDHC system, courtesy of [3].

an energy transfer station (ETS), consisting of a heat pump, a heat exchanger, and a distribution

pump. The heat pump in the ETS will temper the water from the district energy network as

required for the building’s load. Based on the building’s load, the distribution pump or pumps will

draw water either from the system’s “cool pipe” or “warm pipe.” A schematic representation of

this system is shown in Figure 3.1.

3.2.2 Low-exergy building systems

The benefits of the use of more moderate water temperatures by advanced district thermal

energy systems can be characterized in terms of their lower exergy requirements compared with

conventional district thermal energy systems. The concept of exergy combines the first and second

laws of thermodynamics, and refers to the maximum work obtained if a system is brought into ther-

modynamic equilibrium with its environment [48]. Analysis on the basis of exergy facilitates direct

comparison of different types of energy flows [12]. To maximize the exergetic efficiency, advanced

district thermal energy systems must be paired with low-exergy HVAC systems at the building

level, of which radiant hydronic HVAC systems are one example [49]. Low-exergy hydronic HVAC

systems are characterized by lower temperature differentials between both supply water temper-
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atures and outdoor air temperatures, and supply water temperatures and zone air temperatures,

which allow for lower-lift operation of chillers and heat pumps and reduce distribution losses [12].

The flow exergy associated with meeting a heating or cooling load can be calculated as a function

of the supply temperatures of the working fluid, the rate of heat transfer to the zone, and the am-

bient temperature [12]. Note that for purposes of this analysis, since average site-to-source energy

conversion factors for electricity and natural gas are readily available for the US, the comparison

between the two HVAC system types is performed on the basis of source and site energy, instead

of exergy itself.

Radiant heating and cooling systems transfer and reject heat to a conditioned space through

both radiation and convection. Specifically, radiant heating and cooling systems have been defined

as HVAC systems that transfer more than 50% of their total heat flux by thermal radiation [50].

In this work, radiant hydronic thermo-active building systems (TABS), specifically, hydronic coils

embedded in concrete slab floors, will be analyzed. These types of systems are considered “thermo-

active” because building components, in this case, mass floors, are charged and discharged with

thermal energy, which is then transferred to (or absorbed from) the conditioned space through

convection and radiation [49]. Radiative transfer with the active heated and cooled surface can

increase the differential between inside and outside surface temperatures for the non-activated zone

surfaces [51]. A high-performance building envelope mitigates this effect and minimizes an increase

in conductive heat transfer for the non-activated surfaces, making low-exergy HVAC systems par-

ticularly well suited to buildings with high-performance envelope designs and limited cooling load

densities, such as those considered in this study. Due to their different operating mechanisms,

load profiles differing in both timing and magnitude would be observed on radiant hydronic and

air-based HVAC systems conditioning the same space and different metrics are used to assess their

performance [52]. In assessing energy performance of radiant hydronic systems, it is important to

consider heat transfer at both the surface level and the hydronic loop level. Due to the thermal

mass inherent in TABS, the peak rate of surface heat removal or addition is expected to be different

from the peak rate of heat removal or addition to the hydronic loop [52]. In sizing radiant hydronic
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systems, the peak loads imposed on the hydronic loop are generally the relevant parameter [52].

Several studies analyzing radiant hydronic systems at the building level have found the peak cooling

loads observed by radiant systems to be higher than those observed by air-based systems [53]. In a

simulation study of air-based and radiant hydronic HVAC systems in the form of TABS, in which

ventilation and latent loads were not considered, the peak surface cooling rate was found to be 23%

to 84% higher, and the peak hydronic cooling rate, 33% to 70% higher, than the peak cooling loads

for an air-based system. The wide variation reflects variation in several parameters, including solar

heat gain, level of envelope thermal insulation, radiative/convective split associated with internal

gains, and orientation of the radiant surface (ceiling or floor) [52]. Another comparison study of

air-based and radiant hydronic HVAC systems, in which the radiant systems were coupled with an

air system to supply ventilation air, found comparable peak cooling loads between the two system

types, with the radiant system having a higher annual cumulative cooling load. The higher annual

cooling load for the radiant system was attributed to a higher level of thermal comfort in cooling

mode being provided [49].

Radiant hydronic and air-based HVAC systems are generally controlled by different mecha-

nisms, making a direct comparison of the two system types challenging [51]. Due to their thermal

inertia, TABS cannot respond quickly to changes in load or setpoint [49]. Air-based HVAC systems

are generally controlled to air temperature, and in practice, radiant hydronic HVAC systems can be

controlled based on surface temperature, water temperature, or other parameters [51]. Controlling

the radiant system to operative temperature and controlling the air-based system to the sequence of

operative temperatures that results in the space conditioned by the radiant system, is one approach

that has been used in other simulation studies comparing the two system types [52]. Operative

temperature is defined as the average of the mean radiant temperature of the zone surfaces and

the air temperature and is a key factor in influencing human thermal comfort [49]. Through their

use of heated or cooled surfaces, radiant HVAC systems can achieve a comparable level of thermal

comfort to air-based systems at lower air temperatures in heating, and higher air temperatures in

cooling [53].
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3.2.3 District-scale energy analysis

In performing energy simulation of urban districts, to avoid modeling each building individu-

ally, archetypal buildings are often selected to represent either specific existing buildings, or typical

buildings of the type that are to be represented [54]. However, archetype-based models tend to

perform more poorly at a finer time resolution, such as in capturing the district’s hourly load pro-

file [54]. Whether existing buildings or hypothetical ones are being modeled, realistic hourly load

profiles are key to the meaningful analysis of district thermal energy systems, due to the nonlinear

nature of the performance curves of primary equipment such as chillers, boilers, and heat pumps.

One factor contributing to the deficiency of many archetype models in predicting energy use at a

short time resolution is a reliance on deterministic values of modeling parameters, which fail to

capture the wide degree of variation in the actual values of those parameters, even among buildings

with similar characteristics [55].

Parameters related to occupant behavior, including schedules for occupancy and lighting

and plug loads, have some of the highest levels of uncertainty and are also key drivers of energy

use in residential buildings [55]. The work of [56] developed methods for Bayesian calibration of

normative energy models in the context of large-scale retrofits, and used the Morris method for

parameter screening. The authors identified lighting and plug load densities as highly influential

parameters. In [57], a sensitivity analysis was performed for building heating and cooling energy

end-uses specifically, considering occupancy and load densities, material properties, and design

considerations such as window-to-wall ratio. The authors identified infiltration rate as being one

of the most influential parameters. To address these sources of uncertainty, past studies have

attached probability distributions to uncertain input parameters, and generated distributions of

expected building energy use. This approach is also generally extensible to representing energy

use of districts, with individual buildings being assigned parameter values through probability

distributions.
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Figure 3.2: Grid topologies for district thermal energy systems, courtesy of [3].

3.2.4 Topology optimization

In this work, district energy system network topologies are represented using the mathemat-

ical concept of undirected graphs. An undirected graph consists of a set of vertices, or nodes, and

a set of edges, which can be expressed as unordered pairs of nodes [5]. A connected graph is one

in which there exists a path between each and every pair of nodes. The connectivity of a graph

can be represented by an adjacency matrix, A, in which an element Ai,j = 1 if there exists an

edge between nodes i and j and 0 otherwise. In graph theory, a cycle is a path that starts and

ends at the same node, and passes through at least three distinct nodes [5]. A connected graph

without cycles is considered a spanning tree. A minimal spanning tree is the spanning tree with the

least total edge length. Interpreted in the context of district energy system topologies, the minimal

spanning tree represents the network that achieves the connectivity of a given set of buildings with

the least infrastructure cost. In this study, the minimal spanning tree (MST) heuristic is evaluated

to select the network by which a given set of buildings should be connected.

Topology optimization is particularly relevant in the context of 5GDHC systems. Such sys-

tems create the potential for buildings and industrial processes to act as “prosumers”, supplying

or rejecting heat to the thermal network in a way that can offset the load on centralized primary

equipment. As a result, more complex network topologies, such as ring and meshed configura-
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tions, are often implemented for systems of this type [3]. In the context of conventional district

thermal energy systems, where heat and mass flow are typically uni-directional, radial networks

are generally used, unless redundancy of supply is essential [3]. Figure 3.2 shows a schematic of

radial, ring, and meshed network topologies. Initial work by others suggests that ring and meshed

networks can deliver benefits in energy- and exergy-efficiency under certain conditions. The work

of [58] compared ring and radial networks for a 5GDHC system through a simulation study, and

found that ring networks could incorporate distributed sources of waste heat more effectively. A

simulation study by [59] compared two different configurations of 5GDHC systems. The authors

found that a two-pipe system with bi-directional flow, similar to the one considered in this study,

with a meshed network configuration, resulted in a greater exergetic efficiency than a single-pipe

system with uni-directional flow. However, the costs associated with piping and trenching are a

significant part of the overall life cycle cost of the district thermal energy system, as concluded

by [24] and others. These potential trade-offs between initial capital cost and energy performance

motivate the need for a topology optimization framework to guide decisionmaking.

Past studies addressing topology optimization for district thermal energy systems differ in

terms of the range of topologies considered and whether connected loads were treated as boundary

conditions, as well as in the nature of the thermal networks considered, and the fidelity of building

load profiles. Topology optimization problems in this context have often been formulated as mixed-

integer non-linear programs (MINLPs), and genetic algorithms have often been leveraged for solving

the problem. Life cycle cost, accounting for operating energy as well as the annualized capital cost,

has often been chosen as the objective function. In [24], an optimization problem was solved for

the network topology (including location of the central plant) and pipe diameters to minimize life

cycle cost for a low-temperature district heating network. The network topology was constrained

to be a tree and a connected graph and the connection status of each building was taken as a

boundary condition. Building loads were represented with an annual peak load, and a multiplier

for each of eight periods dividing the year. The authors of [24] concluded that the spatial lay-

out of the district considered, building heat loads, and pressure and temperature requirements for



42

the network were key factors influencing the optimal topology. The authors of [60] performed a

simultaneous optimization for sizing of a combined heat and power (CHP) plant and topology of

the associated district heating network, with annual net profit as the objective function, accounting

for initial capital investments and operating income from the sale of electricity and heat. Thus,

the interactions between the network topology and operating energy were not directly reflected in

the objective function. The analysis was performed for only one set of load conditions. With the

constraint of at least one connected building, the connection status of other considered buildings

was an optimization variable. The authors considered radial and ring, but not meshed, topologies.

They applied their methods to several study cases and concluded that the simultaneous optimization

of the plant design and network topology resulted in increased profitability relative to separate

optimizations due to the interactions between the thermal and electrical systems.

Other studies have considered more flexible thermal network configurations. The work of

[25] sought to optimize the topology configuration, pipe diameter, and operating parameters of a

district heating network for minimal life cycle cost. Operating parameters included supply and

return temperatures for the network, and mass flow rates. Both parallel and series connections of

buildings to the district network were considered, as well as the absence of a connection from a given

building to the network. The primary application for series connections were buildings with lower

temperature supply requirements [25]. The authors of [25] formulated the problem in three sub-

problems as a mixed integer nonlinear program, a mixed integer linear program, and a nonlinear

program and performed the analysis for steady-state conditions only. They considered several

sample configurations of building locations and loads, and concluded that the optimal topology

was highly context dependent, and not generalizable.

Other studies have considered objective functions other than economic cost, or multiple ob-

jectives. The work of [61] applied topology optimization to a district heating network, with an

objective of robustness to fluctuations in minimum supply pressure head. In their work, pipe

diameter (with a minimum value of zero, corresponding to the non-existence of the thermal con-

nection) was the optimization variable, and meshed networks were considered. The authors applied
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a method of moving asymptotes approach to the optimization problem. The connection status of

buildings to the network was treated as a boundary condition. The authors of [61] found that

the network connectivity was much more influential on robustness than the sizing of pipes. The

work of [27] considered multi-objective optimization (for life cycle costs and carbon emissions) for

district-level heating and electrical energy systems. In [27], the optimization problem was divided

into three sub-problems: selection of heating systems for each building (which could be tied to a

district system, or independent), design of primary equipment (with energy storage included in the

scope) and selection of efficiency measures at the building level, and operation of primary equip-

ment and energy storage units. The authors of [27] used detailed building load models, formulated

with resistor-capacitor (RC) networks. They considered various topology configurations, but not

meshed networks. Their solution process was iterative among the three sub-problems. The authors

of [27] concluded that, for the hypothetical district considered, distributed CHP and auxiliary heat

generation was more cost-effective than a centralized CHP system. The work of [62] performed

a multi-objective optimization for design and control of a low-temperature district heating net-

work leveraging renewable thermal and waste heat sources. The consumption of imported primary

energy, annualized costs, and carbon emissions were the considered objective functions. The op-

timization variables included the sizing and location of solar thermal collectors, seasonal thermal

energy storage, and waste heat injection, as well as the diameters of network pipes, with a zero

diameter corresponding to the absence of a pipe from the network. Individual building loads were

aggregated to larger nodes representing neighborhoods, and the connection of these nodes to the

network was treated as a boundary condition. The authors applied a master-slave approach to the

joint design and control optimization. The authors of [62] concluded that their results for a study

case were not readily generalizable to design guidelines, but supported the heuristic that thermal

sources should be located close to large loads.

Other studies of topology optimization for district thermal energy systems have investigated

the effects of the selection of the objective function. The work of [26] compared the outcomes

of optimized design of a district heating and cooling network under two different objective func-
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tions: capital costs and life cycle cost, formulating the problem as a mixed-integer linear program.

The authors effectively constrained the analysis to radial or ring topologies, and considered en-

ergy consumption associated with distribution pumping and heat losses, but treated the energy

consumption at loads, and their connection status, as boundary conditions, and performed the

analysis for a static load condition. In a study case, the authors identified differences between the

topologies of the networks optimized under the two objective functions, due to differences in pump-

ing energy and heat loss associated with the networks, further motivating the need for network

topology optimization. The authors of [26] identify consideration of higher-fidelity load profiles, as

well as greater flexibility in the network configuration, as areas for future work in the optimization

of district thermal networks.

3.2.5 Novelty and contribution

Among past works addressing topology optimization for district thermal energy systems,

some studies, such as [61], have addressed objective functions that are not influenced by energy

consumption. Others, such as [24], [25], [62], [60], and [27] addressed objective functions influenced

by energy consumption, but in the context of district heating networks only. This study introduces

greater complexity by analyzing an advanced district thermal energy system, with an objective

function influenced by energy consumption and investment and operating costs. Addressing the

need identified by [26], ambient loops and low-temperature district heating networks create more

interesting opportunities for optimization than high-temperature heating only networks, by intro-

ducing more potential topologies, and the potential for bidirectional thermal and mass flow. The

larger effort to develop a topology optimization framework, of which this study is a part, presents

a departure from past work because it considers both the questions of which subset of buildings

to connect as well as how they should be connected, is flexible to a variety of potential topologies,

and considers high-fidelity building load profiles. This effort extends the work of [3] and [31] by

leveraging tools developed by those authors (specifically the 5GDHC Topology Analysis Tool and

the Metamodeling Framework), to evaluate the minimal spanning tree heuristic for a larger use
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case, and test the hypothesis that the heuristic is effective in selecting the least-cost network.

An additional novelty of this contribution is the joint consideration of building- and district-

level HVAC system energy performance, and the network topology optimization problem. Low-

energy districts are an ideal case for the analysis of radiant hydronic HVAC systems, and compar-

isons with air-based systems. Existing literature, such as [52] and [63], has focused on comparisons

of TABS and air-based systems at the building level. Prior work has not addressed district ther-

mal energy systems serving multiple buildings with load profiles accounting for stochasticity of

energy use. To test the hypothesis that radiant hydronic HVAC systems will save energy at the

district level relative to air-based systems, a detailed comparison of the energy performance of two

hypothetical districts is performed.

3.3 Methods

This study comprises two analyses, both of which evaluate the potential of advanced district

thermal energy systems: the comparison of the energy performance of two HVAC system types

at the urban district level, and the evaluation of a heuristic for topology optimization of district

thermal networks.

3.3.1 Heating, ventilation, and air-conditioning (HVAC) system comparison

In this study, the energy performance of two hypothetical low-energy residential districts, one

with air-based HVAC systems, and one with radiant hydronic HVAC systems, was compared. Both

districts were served by district thermal energy systems. In both cases, to generate the district

energy model, a representative building energy model was perturbed to reflect a larger number of

buildings. The following steps were performed to carry out this analysis:

(1) Adapt a prototype building model for each HVAC system type under consideration (air-

based and radiant hydronic systems).

(2) Perturb each base building model to generate ten building models for each district.
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Figure 3.3: Analysis process performed for HVAC system comparison.

(3) Perform energy simulations at the individual building level for the districts, with the build-

ing models controlled to achieve an equal level of thermal comfort. Generate heating and

cooling load profiles for the district thermal energy systems.

(4) Assemble energy models for the primary heating and cooling plant serving each district,

using EnergyPlus components, and simulate with the load profiles generated in step 3.

(5) Evaluate results based on load intensity and annual heating and cooling energy use inten-

sities.

(6) Derive general conclusions from the particular case study.

The process for this analysis is also illustrated in Figure 3.3. In Figure 3.3, energy models

representing air-based systems and the conventional central plant are shown in blue, and energy

models representing radiant hydronic systems and the advanced central plant are shown in red.

Energy simulation for this analysis was performed using EnergyPlus v8.9 [64]. The analysis

was performed using a typical meteorological year (TMY3) weather file for Denver, Colorado, a

climate with both heating and cooling loads. Energy consumption results were analyzed in terms of

both site energy and source energy, with source energy used as the ultimate basis for comparison.
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Site energy refers to the energy delivered to a site (in this case interpreted as a district). Source

energy encompasses all the inputs required to generate the delivered energy, including losses in

electricity generation, transmission, and distribution, and in natural gas distribution [65].

Base building energy models The intention of this analysis was to isolate the effects of

the difference in HVAC systems between the two districts. Thus, the building models for the two

districts were identical, except for the HVAC system types. To represent a low-energy district, a

base building model with a high-performance envelope and efficient HVAC systems (compliant with

2013 ASHRAE 90.1 [66]) was adapted from a prototype building model. The U.S. Department of

Energy publishes prototype building energy models in EnergyPlus format, which are intended to

represent the characteristics of typical commercial and multi-family residential buildings in the U.S.

[35]. The multi-family prototype model, located in ASHRAE Climate Zone 5B and compliant with

2013 ASHRAE 90.1, was modified to create the base building energy models. The multi-family

prototype building model represents a four-story building, of 3,130 m2 in floor area, composed of

residential units and a small office space on the ground floor. The construction is steel frame, and

the building has a window-to-wall ratio of 20%. Windows are double-pane with a low-emissivity

coating. The prototype building model is configured with split systems with direct expansion

cooling and natural gas heating to serve each thermal zone. Internal loads other than lighting in

each residential unit include kitchen appliances, a washer and dryer, and miscellaneous plug loads,

all of which are powered by electricity. Characteristics of the envelope and loads of the prototype

building model, which are retained in the base building model, are summarized in Table 3.1.

The HVAC systems in the prototype building model were modified to generate the base

building models for this study. For the district with air-based systems, the split systems were

replaced with air handling units with hydronic coils, in order to allow integrating the building

level systems with district thermal energy systems. Heating hot water from the district loop was

supplied to these systems at 82◦C, and chilled water was supplied at 7◦C. The air-based systems

were controlled to achieve neutral thermal comfort in the space, as reflected in the Fanger model
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Table 3.1: Summary of base model envelope and load characteristics.

Parameter Value

Space allocation

Residential area (%) 87%
Corridor area (%) 10%

Office area (%) 3%

Envelope properties

Wall U-value( W
m2K

) 0.31

Roof U-value( W
m2K

) 0.17

Floor U-value( W
m2K

) 0.24

Window U-value( W
m2K

) 0.42

Window SHGC 0.40

Internal loads

Occupant density ( person
1000m2 ) 25

Lighting power density ( W
m2 ) 14

Internal load density ( W
m2 ) 6.7
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(using the control object (Thermostat:ThermalComfort) in EnergyPlus).

For the district with radiant systems, the split systems were replaced with low-temperature,

variable-flow, radiant hydronic heating and cooling systems, integrated in the floor slabs. Due to the

large area available for heat transfer, heating hot water and chilled water were supplied at moderate

temperatures. Heating hot water from the district loop was supplied to the radiant systems at 45◦C

and chilled water was supplied at 16◦C. The flow rate of hot water or chilled water through the

radiant hydronic coils was controlled based on operative temperature in the zone, consistent with

the approach taken in [49]. A dedicated outdoor air system (DOAS) was added to the model to

supply tempered ventilation air, at a constant volume. The DOAS units were each equipped with

a direct-expansion (DX) cooling coil and a gas heating coil to temper the outside air. The radiant

hydronic HVAC system model incorporated in EnergyPlus is documented in [67]. The work of

[68] performed a validation of the EnergyPlus radiant hydronic system model in the context of an

instrumented residential building with radiant systems, and found a good correspondence between

predicted and experimental results for the energy consumption and thermal comfort parameters

considered.

The DOAS units were equipped with a heat recovery ventilator (HRV), in the form of a

run-around loop. A run-around loop avoids the risk of cross-contamination between supply and

exhaust air from different residential units. Heat recovery ventilation is required by 2013 ASHRAE

90.1 for HVAC systems in ASHRAE Climate Zone 5B supplying 100% outdoor air, but not for

systems supplying less than 50% outdoor air at full design flow rate, as is the case for the hydronic

air handlers serving the buildings with air-based systems [66]. Thus, heat recovery ventilation was

not modeled in the hydronic air handling units.

Perturbations of building energy models To generate realistic heating and cooling

load profiles for the district thermal energy system, characteristics of the base building model were

perturbed in order to generate nine other sets of characteristics, which were then implemented

in nine other versions of the base building energy model. The same sets of perturbations were
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Table 3.2: Parameter space for building model perturbations.

Parameter Dist. Type Min. Max. Ref

Internal load density ( W
m2 ) Triangular 6.7 16 [69]

Occupant density ( person
1000m2 ) Triangular 17 50 [55] and [69]

Window-to-wall ratio (%) Uniform 15 40 [69] and [70]

Infiltration rate(
m3

s
m2wall area

) Triangular 0.2 2.0 [71]

Occupancy schedule shift (hours) Triangular -3.0 3.0 N.A.
Internal load schedule shift (hours) Triangular -3.0 3.0 N.A.

used for both the district with air-based systems and the district with radiant systems. The

following parameters were perturbed using probability distributions: window-to-wall ratio, internal

load density, occupant density, and infiltration rate. These parameters were selected based on

the uncertainty associated with them in a hypothetical building, and their influence on heating

and cooling loads, determined through a literature review. Ranges for the parameter values were

selected based on the literature, (as previously discussed, [55], [56], [57]), and existing guidelines

for energy modeling of residential buildings. Schedules for occupancy and internal loads were also

adjusted using probability distributions to select a duration by which to “expand” or “contract”

the schedule, and to shift the schedule values. These schedules were adjusted in order to reflect the

stochastic nature of occupant loads and occupant-driven energy use, both of which contribute to the

temporal distribution of building heating and cooling loads [55]. Table 3.2 shows the ranges over

which these parameters were perturbed, the distributions used, and references used to determine

the ranges. The approach for shifting occupant and plug load schedules was developed by the

authors.

System comparison and thermal comfort A meaningful comparison of energy perfor-

mance must ensure that different HVAC system types are delivering the same degree of thermal

comfort in a conditioned space. Thus, the two system types were controlled to achieve the same
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Figure 3.4: Comparison of annual distributions of predicted mean vote between corresponding
zones in multi-family buildings served by radiant hydronic and air-based systems.

degree of thermal comfort, as closely as possible, reflected by the Fanger model, which is widely

accepted for evaluating thermal comfort [72]. The predicted mean vote (PMV) for occupants in a

space is a metric typically used to interpret the results from Fanger’s model, with values ranging

from -2 (very cold) to 2 (very warm), and a value of 0 corresponding to thermal neutrality. The

modeling approach leveraged an option in EnergyPlus to control air-based systems to a thermal

comfort setpoint. The radiant systems were controlled to the sequence of operative temperatures

that previously resulted in the buildings with air-based systems. This approach resulted in a near-

perfect alignment of PMV between corresponding buildings at each timestep and maintained PMV

generally within the acceptable band of [-0.5, 0.5] overall. The annual cumulative distributions of

PMV for a representative zone for the two system types are shown in Figure 3.4. The analysis of

thermal comfort serves to ensure that the same degree of service is being provided by the two HVAC

system types considered, and thus that a direct comparison of their loads and energy performance

is valid.
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3.3.2 District thermal energy system models

The central plants serving the two districts were modeled with the same types of primary

equipment, and the same network of distribution pumps and pipes. The primary equipment con-

sisted of water-cooled centrifugal chillers, cooling towers, and hot water boilers. Both districts were

configured with a primary and distributed secondary pumping arrangement, with variable-speed

pumps.

Characteristics of the chillers and boilers in each plant are shown in Tables 3.3 and 3.4. Note

that the COP value listed is for the chiller alone, and not the chilled water plant as a whole.

Table 3.3: Summary of chiller characteristics.

Unit
Cooling
Capacity

Chiller Rated
COP
(W
W

)
Quantity

Shoulder season
chiller

130 5.9 1

Peak load chiller 470 8.2 3

Table 3.4: Summary of boiler characteristics.

Unit
Heating

Capacity(kW)
Nominal

Efficiency(%)
Quantity

Condensing boiler 200 to 2,900 89% 4
Non-condensing boiler 200 to 2,900 80% 4

Both central plant models were configured with water-side economizers, which use heat ex-

changers between the condenser water and chilled water loops, to allow heat to be rejected directly

from the chilled water return to the condenser water, when the condenser water is sufficiently cool.

Chiller characteristics, including performance curves and reference efficiency and capacity values,

were obtained from datasets available in EnergyPlus, which represent chillers that are or have

been produced by manufacturers [64]. The rated COP values are compliant with the standards
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for full-load and integrated part-load efficiency in 2013 ASHRAE 90.1 for equipment manufactured

through 2015 [66].

The central plant serving the low-exergy systems is configured with condensing heating hot

water boilers. The central plant serving the air-based systems is configured with non-condensing

heating hot water boilers. The nominal efficiency values of the boilers are compliant with 2013

ASHRAE 90.1 [66]. The higher return temperatures in the heating hot water loop serving the

conventional systems (observed to be 60◦C under typical conditions) are too warm to achieve

condensing in a condensing boiler [73]. After generating a load profile based on the ten buildings

modeled in each district, the thermal and electrical load profiles of each district were multiplied by

a factor of four, to better align the cooling load with the capacities of water-cooled chillers available

on the market. Thus, each district model effectively represented forty buildings.

3.3.3 Evaluation of minimal spanning tree heuristic

It is hypothesized that topology optimization will enhance the cost-effectiveness of advanced

district thermal energy systems, such as the low-exergy systems analyzed in this study. The minimal

spanning tree heuristic for the topology optimization problem was evaluated for a prototypical

urban district, through a search of all spanning tree networks. The cost function implemented in

the topology optimization problem corresponds to the life cycle cost, evaluated over a twenty-year

time horizon, with a discount rate of 3%, of piping infrastructure for the 5GDHC system, as well as

the energy required to meet the HVAC loads of all buildings in the district, whether or not they are

served by the 5GDHC system. (Note that the restriction of infrastructure cost to that associated

with the network itself is consistent with a common practice in past topology optimization studies

of district thermal energy systems, per the work of [24], and consistent with the cost function

formulated by [3]. It was assumed that the difference in capital costs for HVAC equipment between

independent and DES-tied systems would be minimal in the scope of the life cycle cost evaluated

over thirty years. The capital costs associated with a 5GDHC system (a centralized heat pump

and water-source heat pumps at individual buildings) are expected to be more similar to those
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associated with independent, building-level systems, than those associated with a “conventional”

DES.)

The cost function accounts for projected escalations in electricity and natural gas rates, and

for a potential future price on carbon dioxide (CO2) emissions, based on a scenario outlined by

the U.S. National Institute for Standards and Technology [74], as well as projected future declines

in the carbon intensity of electricity. The formulation of the objective function leverages uniform

present value (UPV) factors for the selected discount rate and time horizon, which represent a

ratio of the life cycle cost to the annual cost. UPV factors are obtained from [74] for the operating

cost streams (electricity, gas, and carbon) and also reflect the projected escalations in the costs of

these quantities over the project lifetime. The analysis is performed based on an application of

the energy consumption over a simulated year to all years of the time horizon. This formulation

of the cost function is consistent with that implemented by [3]. The cost function for the topology

optimization problem is formulated as shown in Eqn. 3.1.

min
A

Cpipes + CelecUPVelec(Ede +

n∑
i=1

Ebe,i) + CgasUPVgas

n∑
j=1

Ebg,j

+
20∑
t=1

mCO2(t)CCO2(t)UPVCO2

(3.1)

subject to:

(1): If there exists a pipe directly thermally connecting building i and building j, Ai,j = 1. Other-

wise, Ai,j = 0.

(2): If building i is served by the district thermal energy system, there exists a path from the

central plant to node i.

where A is the adjacency matrix describing the thermal network, Cpipes is the cost of pipes and

trenching, Celec is the electricity cost per unit of consumption, Cgas is the natural gas cost per unit

of consumption, Ebe,i is the annual electric consumption for HVAC at building i, Ede is the annual
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electric consumption for district energy systems, including primary equipment and distribution

pumps, Ebg,j is the annual natural gas consumption for HVAC at building j, UPVelec is the uniform

present value factor for electricity, UPVgas is the uniform present value factor for natural gas,

mCO2(t) is the annual carbon emissions in a given year, CCO2(t) is the cost associated with carbon

emissions in a given year, and UPVCO2 is the uniform present value factor associated with carbon

pricing. Note that the time-dependence of carbon emissions and their associated cost is due to

the projected future declines in carbon intensity of electric generation, and the projection of an

escalating carbon tax.

Note that with n buildings, in addition to a central plant, the graph representing the network

has n+1 nodes. Due to the complex interactions among building loads in the district energy system

context, as well as the equations governing energy consumption by pumps, and heat losses through

the pipes, the energy consumption terms in this function are nonlinear. The functions used to

evaluate building thermal loads, which are discussed in a following sub-section, are non-convex.

Thus, the problem formulated in Eqn. 3.1 is non-convex, due to the binary nature of the elements

of the adjacency matrix, and the non-convex functions for energy consumption.

The number of potential solutions to the topology optimization problem formulated in Eqn.

3.1 is a function of the number of possible subsets of buildings in the considered district, and the

number of ways in which a given subset can be thermally connected. Specifically, the number of

potential solutions is equal to the product of the number of ways to select a subset of buildings

of a given cardinality and the number of ways in which that subset can be connected, summed

over the number of buildings in the district. There is one additional solution corresponding to the

case in which no buildings are connected to the network. Figure 3.5 explores all fifty-four possible

solutions to the topology optimization problem for a district consisting of three buildings (shown

with blue nodes) and a district energy plant (shown with a red node).

As illustrated in Figure 3.5, the size of the search space quickly expands with an increasing

number of buildings. This makes an exhaustive search impractical. A means of addressing this is

dividing the analysis of the problem into two steps, first addressing the question of “which subset
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Figure 3.5: Topology optimization search space for district consisting of three buildings and DES
plant.
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of buildings should optimally be connected to the district energy system,” followed by, “given the

optimal subset of buildings, what is the best means by which to connect them?” It was hypothesized

that a minimal spanning tree may be a suitable heuristic for connecting a given subset of buildings,

addressing the second sub-problem. A minimal spanning tree minimizes the piping and trenching

costs relative to other potential networks. The costs associated with piping and trenching are a

significant part of the overall life cycle cost of the district thermal energy system, as concluded by

[24] and others. The use of the minimal spanning tree heuristic would significantly reduce the size

of the search space for the topology optimization problem as a whole. As there exists a unique

minimal spanning tree for each subset of buildings, the use of this heuristic reduces the search space

to the number of distinct combinations of buildings, which is equal to 2n for a set of n buildings,

including the null set. Figure 3.6 compares the number of possible minimal spanning trees to the

size of the solution set as a whole as a function of the number of buildings considered. (Note

that the y-axis in Figure 3.6 is non-linear.) The number of minimal spanning trees also becomes

intractable for districts of increasing size. Additional means of reducing the size of the potential

solution space for larger prototypical districts are an area of future work in development of the

topology optimization framework.

In this study, all possible spanning tree networks that could serve a district consisting of

four buildings and a central plant were analyzed, constituting 212 different cases. A Modelica en-

ergy model of the 5GDHC system was used to evaluate the energy consumption terms in the cost

function. Modelica is an object-oriented, equation-based language for modeling physical systems

[36]. The underlying energy model was assembled and documented in [3] as the 5GDHC Topology

Analysis Tool. The model was validated by the authors of [3] using data from a laboratory test bed

operated under the FlexyNets Project. FlexyNets is a Horizon 2020 European Project which seeks

to develop and deploy fifth-generation district heating and cooling networks [75]. As part of the

validation, model parameter values were adapted to reflect those of the FlexyNets test bed, and

the model was initialized to a consistent set of conditions. Fluid temperatures calculated by the

model at specific points in the thermal network were compared to those measured in the FlexyNets
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Figure 3.6: Comparison of the sizes of the full search space and search space of minimal spanning
trees.
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test bed, and a satisfactory correspondence was found [76]. The load side of the energy model

was expanded in this work to represent a prototypical urban district consisting of three identical

office buildings, and one larger retail building. Based on the work of [12] and [3], it is expected

that increased thermal load diversity will enhance the viability of advanced district thermal energy

systems. Consistent with the approach taken by [3], in the 5GDHC energy model, building ther-

mal load profiles were represented with data-driven metamodels, generated with the Metamodeling

Framework developed in [31]. The Metamodeling Framework has been demonstrated to represent

building thermal load profiles accurately, and improves the efficiency of the 5GDHC model simu-

lation, compared with the use of full-order, physics-based models to represent building loads. In

the framework developed by [31], metamodels of building thermal load profiles are trained based

on a dataset developed using the U.S. DOE prototype building energy models. The Metamodeling

Framework offers several model types, and random forest models were used in this study. Two

thermal load profiles are developed for each building: one for the case in which the building is

tied to the 5GDHC system, and one for the case in which the building is served by independent

systems. Separate training data sets are used to generate metamodels for the connected and inde-

pendent cases. Characteristics of the prototypical buildings used to generate load profiles using the

Metamodeling Framework are shown in Table 3.5. For the independent case, the DOE prototype

building models, in their current form, are used, with a parameter sweep, to generate training

data. For the connected case, the models are modified to use water-source heat pumps for space

conditioning. Analysis was performed for the location of Golden, Colorado.

Table 3.5: Building characteristics, evaluation of MST heuristic.

Building Type Floor Area(m2) Baseline HVAC System Type

Retail 2,294
Packaged units with DX cooling and
gas heating

Office 512
Air source heat pumps with supple-
mental gas heating coils

In this analysis, natural gas and electricity rates obtained from the U.S. Energy Information
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Figure 3.7: Visualization of building locations in hypothetical district (courtesy of GeoJSON.io).

Administration for Colorado in 2017 [77], and unit costs for pipes and trenching ($500/meter), as

documented in [76] were used. The twenty-year time horizon used in the analysis is consistent with

that used in [76] for evaluation of a 5GDHC system. For purposes of calculating pipe lengths, and

for visual reference, the four hypothetical buildings and a district energy system (DES) central plant

were located on a block near the intersection of 13th Street and Washington Avenue in Golden,

Colorado. A visualization of the GeoJSON data used to plot the building and DES locations is

shown in Figure 3.7. In the analysis, this data was used only for calculating pipe lengths. In Figure

3.7, the office buildings are shown in brown, the central plant in blue, and the retail building in

green. The relative sizes of the representational buildings shown are not to scale.

3.4 Results

Results from the HVAC system comparison and the evaluation of the minimal spanning tree

heuristic for the topology optimization problem are discussed in the following sub-sections.
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3.4.1 Heating, ventilation, and air-conditioning system comparison

As part of the HVAC system comparison, thermal comfort, HVAC system performance, and

HVAC energy performance were analyzed. Results regarding HVAC system performance at the

hydronic loop level and energy performance are presented in this work. Results regarding thermal

comfort and zone-level HVAC system performance are presented in [78]. HVAC system performance

at the hydronic loop level is quantified using metrics discussed by [52]. For both heating and cooling,

cumulative distributions of heat added or extracted, respectively, at the hydronic loop level are

shown normalized by building floor area, and disaggregated by the system component. Cumulative

distributions of delivered cooling at the hydronic loop level for the base building are shown in

Figure 3.8 for air-based systems, and Figure 3.9 for radiant systems. These values represent the

cooling delivered by the cooling coil in the air handling unit for the air-based systems, and the sum

of the cooling delivered by the DX coils in the DOAS units and the zone radiant hydronic cooling

systems for the radiant systems. Note that these values do not represent electrical power input in

the case of the DX coils. The disaggregation of the delivered cooling associated with offsetting fan

heat is shown for the air-based systems. Due to the lower installed fan power, the cooling load on

the DX coil to offset fan heat is negligible for the radiant systems. The radiant systems experience

a higher peak cooling load at the hydronic loop level (by 44%) than the air-based systems, which

can be attributed to the more immediate conversion of long-wave and short-wave radiation into

cooling loads. The ratio between the peak loads on the hydronic loop for the radiant and air-based

systems is within the range found by [52]. The latent load constitutes a negligible portion of the

total cooling load in both buildings, and thus a disaggregation of sensible and latent loads is not

shown on these plots. 1

As shown in Figure 3.8 and Figure 3.9, a non-negligible cooling load is present at the hydronic

loop level in the building with air-based systems for significantly more time of the year than in the

1The 0.4% design wet bulb temperature for this location (Denver, Colorado, in ASHRAE Climate Zone 5B) is
18.5◦C, with a mean coincident dry bulb of 27.4◦C. That combination of wet and dry bulb temperatures corresponds
to a relative humidity of 42.8%. The 0.4% design dry bulb temperature for this location is 32.9◦C, with a mean
coincident wetbulb of 15.9◦C. That combination of wet and dry bulb temperatures corresponds to a relative humidity
of 13.9% [79].
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Figure 3.8: Cumulative distribution of cooling load at hydronic loop level, air-based systems.

Figure 3.9: Cumulative distribution of delivered cooling at hydronic loop level, radiant systems.
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building with radiant systems. This difference is partially explained by the cooling load imposed

by offsetting fan heat. Additionally, in the buildings with radiant systems, untempered ventilation

supply air offsets a portion of the cooling load. The DOAS supply air is not tempered when outdoor

air temperatures are between 12.8◦C and 23.9◦C. The ventilation supply air provides cooling, or

creates a heating load, throughout the year, as the DOAS supply temperature is consistently below

the zone air temperatures. During mild outside conditions, the DOAS effectively provides cooling

through air-side economizing, though the outdoor air volume remains fixed. The cumulative annual

thermal cooling loads of the two districts are similar. Due to the warm air temperatures in the

buildings with radiant hydronic systems when the building is in cooling mode, the benefits of the

heat recovery ventilator in cooling mode are minimal.

Plots of delivered heating intensities, at the hydronic loop level, are shown in Figure 3.10 for

the air-based systems and Figure 3.11 for the radiant systems. These values represent the heating

delivered by the heating coil in the air handling unit for the air-based systems, and the sum of the

heating delivered by the heat recovery ventilator and the zone radiant hydronic heating systems for

the radiant systems. Due to the presence of the HRV, the heating load on the gas coil in the DOAS

units is minimal and is not shown on this plot. Note that the heating supplied by the heat recovery

ventilator is not associated with additional energy use, but it is shown here for completeness in

representing the thermal loads observed with both system types. The contribution of fan heat

transferred to the supply air when the building is in heating mode (“useful” fan heat) is also shown

for the air-based systems. Useful fan heat is negligible for the radiant systems, due to the lower

airflows, and the presence of the HRV. The annual heating loads, also accounting for the effects

of useful fan heat and heating delivered by the HRV, are similar between the two system types.

The similarity in cumulative annual loads is expected in heating mode, due to the identical nature

of the two buildings, expect for the HVAC systems. This result enhances confidence that the two

systems are delivering the same service annually, and thus can be fairly compared on the basis of

energy performance.
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Figure 3.10: Cumulative distribution of delivered heating at hydronic loop level, air-based systems.

Figure 3.11: Cumulative distribution of delivered heating at hydronic loop level, radiant systems.
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3.4.2 Energy performance comparison

The detailed analysis of loads at the hydronic loop level for the two system types provides

insight into the expected energy performance comparison. Specifically, the similarity in cumulative

annual heating and cooling loads between the two system types suggests that sources of distinction

in their energy performance will relate to the presence of the HRV, the operating conditions of

central plant equipment, and distribution equipment such as pumps and fans. The dry climate

in the location analyzed in this study (Denver, Colorado in ASHRAE Climate Zone 5B) creates

ample potential for water-side economizing. Due to the higher chilled water supply temperatures,

water-side economizing can meet 53% of the chilled water load in the low-exergy district, compared

with only 10% in the conventional district. The effects of water-side economizing are reflected in

the ultimate energy use intensity of the chilled water plants. Energy use intensity of the two chilled

water plants was compared with a metric including energy use associated with the chillers, cooling

towers, and chilled water and condenser water pumps, and all cooling load delivered (including

through water-side economizing). Performance metrics for the two chilled water plants, with and

without the integration of water-side economizing, are shown in Table 3.6. As shown in Table 3.6,

the higher chilled water supply temperatures in the low-exergy plant improve the chillers’ efficiency,

and the use of water-side economizing significantly improves energy performance for the low-exergy

plant. Water-side economizing was implemented in both plants and is reflected in the analysis of

their energy performance. The performance of the plants without water-side economizing (“base”)

is shown for reference.

As shown by the cumulative distributions of annual heating load in Figure 3.10 and Figure

3.11, due to the presence of heat recovery ventilation, the load on the district heating loop and gas

heating coils serving the low-exergy systems is significantly lower than that on the conventional

district heating loop. The annual requirement for active heating (excluding the heat recovered

through the HRV) by the low-exergy district is 53% of that of the conventional district.

Figure 3.12 shows a comparison of the disaggregated site HVAC energy use intensity at the
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district level for the two districts, calculated as the ratio of the total HVAC energy consumption

in each modeled district to the total building floor area. Note that the floor area value is the same

for the two modeled districts. The total site HVAC energy use intensity for the district with low-

exergy systems is 51% lower than that of the district with conventional systems. Figure 3.13 shows

a comparison of the source HVAC energy use intensity at the district level for the two districts,

with the end uses again disaggregated. The total source HVAC energy use intensity for the district

with low-exergy systems is 49% lower than that of the district with conventional systems. The

difference in the proportions of the two districts in terms of site and source energy use intensity is

a result of the fact that the energy use savings of the low-exergy district is largely driven by the

gas energy savings associated with the HRV, which has a lower source-to-site ratio than electricity

does.

Table 3.6: Summary of chilled water plant performance metrics.

District
Full Load

Chiller Power
( kW
ton

)

CHW Plant
Power (Base)

( kW
ton

)

CHW Plant
Power(WSE)

( kW
ton

)

Low-Exergy 0.33 and 0.43 0.62 0.44
Conventional 0.33 and 0.43 0.83 0.78

3.4.3 Evaluation of minimal spanning tree heuristic

The objective function as shown in Eqn. 3.1 was evaluated for all possible spanning tree

networks for the prototypical district consisting of three office buildings, one retail building, and

a DES central plant. Figure 3.14 shows the life cycle cost as a function of total piping length

for all 211 spanning trees that involve a connection to the DES, with color-coding corresponding

to the number of buildings served by the DES. Note that the “null case”, in which all buildings

have independent systems, is not shown here for compactness, but has the least life cycle cost of

all potential solutions considered, a value of $188,000. As shown in Figure 3.14, when grouped

by ascending life cycle cost, the potential solutions involving a connection of one, two, or three
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Figure 3.12: Comparison of site HVAC energy use intensity at the district level.

Figure 3.13: Comparison of source HVAC energy use intensity at the district level.
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buildings are divided into two bands, based on whether or not the retail building is included in the

network. The large step increase in life cycle cost between the two bands corresponds to the addition

of the retail building to the network. The primary factor contributing to the bifurcation is the large

heating load of the retail building in comparison with the office buildings, which are smaller in floor

area and have significantly lower ventilation requirements. (The peak heating thermal load of the

retail building is 115,000 W, compared with 15,000 W for the office building, and the annual heating

energy consumption of independent systems is also correspondingly higher.) Given the prevailing

electricity and natural gas rates for the location considered, it is much more costly to serve this

large heating load with electricity as opposed to gas. The significant influence of the particular

combination of connected loads on the system’s life cycle cost performance is consistent with the

results of [12]. As shown in Figure 3.14, within each of the two bands of the solution space, the

life cycle cost increases as a function of total pipe length. Of the potential spanning tree topology

solutions for the prototypical district considered, infrastructure costs ranged from 2% to 28% of

the overall life cycle cost, with the balance attributable to energy costs. Note that this fraction is

expected to be higher for non-spanning tree networks, due to the greater length of piping used to

connect a given subset of buildings.

From an analysis of the results of the spanning tree search, it is confirmed that, among

spanning trees for this prototypical district, the minimal spanning tree network always results in

the least life cycle cost for any given combination of buildings (in this case, subsets of two or three

buildings, or the full four-building district). This result is expected, as the non-minimal spanning

trees result in higher pipe investment costs, without any expected benefits in thermal performance.

This result is consistent with the results of [3], who validated the minimal spanning tree heuristic

for a district of three identical buildings with an exhaustive search.

3.5 Discussion

The low internal load intensity of the hypothetical residential buildings studied in this analysis

enabled the use of radiant hydronic systems, coupled with heat recovery ventilation, to meet almost
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Figure 3.14: Life cycle cost and pipe length for spanning tree topology scenarios.
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the entirety of the heating and cooling loads, with minimal contribution from the air system. A

building type with higher load intensities or located in a climate with higher latent loads from

outdoor air would likely require more supplemental cooling from air-side systems, which would

undermine the benefits of the low-exergy primary systems. The detailed analysis of system loads

and the validation of the load intensity comparison results with those of [52] provide confidence

in the results of the energy use comparison. The HVAC energy savings associated with the low-

exergy district are driven by the use of heat recovery ventilation, and the lower energy intensity

of the primary plant equipment serving the low-exergy systems. The lower energy intensity of the

primary plant equipment is attributable to the higher nominal efficiency of the condensing boiler

and its operating efficiency at a high loop temperature differential, more efficient operation of the

chillers at the warmer chilled water supply temperatures, and increased potential for water-side

economizing. The detailed analysis of loads at the individual building level in combination with

analysis of a prototypical district represents a point of departure from previous studies. This

analysis highlights the benefits of 5GDHC systems, for which topology optimization can facilitate

cost-effective adoption.

Solving the topology optimization problem will require the use of non-convex optimization

approaches, which are computationally intensive and can produce multiple solutions. In the future,

as part of the development of the topology optimization framework, the minimal spanning tree

heuristic will be evaluated with a full exhaustive search for a larger prototypical district with

greater thermal load diversity. The prototypical four-building urban district for which the spanning

tree search was performed demonstrated the potential of the minimal spanning tree heuristic,

but did not offer sufficient thermal load diversity to reveal life cycle cost savings from a 5GDHC

system, relative to independent building-level systems. In the full exhaustive search analysis, a

sensitivity analysis to utility rates and to the investment costs associated with the district energy

system will be performed. Based on the work of [3] and [12], it is expected that a prototypical

district with a greater degree of thermal load diversity will be more likely to demonstrate life cycle

cost benefits from 5GDHC systems, and from meshed networks specifically, and thus such a case
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will provide an evaluation of the minimal spanning tree heuristic under the most relevant, and

challenging, conditions. If the heuristic is demonstrated to be valid in a more complex case, it

will be implemented as part of the framework. A black-box optimization algorithm that can use

the Modelica simulation as a function evaluator, such as particle-swarm optimization [80], will be

implemented to address the first part of the topology optimization problem, regarding the selection

of a subset of buildings to connect to the district thermal energy system. The implementation of

the minimal spanning tree heuristic in the framework will enable topology optimization of 5GDHC

networks without constraints on the connection status of individual buildings, providing a much

more flexible approach than the current state-of-the-art, and opportunities to investigate complex

interactions among building loads in a 5GDHC system.

3.6 Conclusion

The results of the HVAC system comparison demonstrate the potential of advanced district

thermal energy systems to achieve deep energy savings. For the prototypical urban residential

district considered, radiant hydronic HVAC systems mated with low-exergy district thermal energy

systems achieved a source energy use intensity that was 49% lower than that of air-based HVAC

systems and conventional district thermal energy systems. However, the high infrastructure costs

and large solution space for potential network configurations hinder the adoption of advanced

district thermal energy systems. The topology optimization framework proposed by the authors

seeks to address those obstacles.

This study leveraged tools developed by [3] and [31] to evaluate a topology optimization

heuristic for a four-building district, which demonstrated that the minimal spanning tree network

was the most cost-effective means, among spanning trees, to connect a given subset of buildings

through a 5GDHC system. This provides validation of the efficacy of the minimal spanning tree

heuristic. The use of the minimal spanning tree heuristic significantly reduces the size of the

solution space, and thus the computational complexity, of the topology optimization problem.

In the future, this heuristic may be adopted by the proposed topology optimization framework.
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This study illustrated the promise for topology optimization to facilitate the adoption of advanced

district thermal energy systems, which offer significant potential energy savings.



Chapter 4

Evaluation of the minimal spanning tree heuristic for the topology optimization

problem

This chapter compiles sections based on the following publications:

A. Allen, G. Henze, K. Baker, G. Pavlak, N. Long, and Y. Fu, “A topology optimization frame-

work to facilitate adoption of advanced district thermal energy systems,” in IOP Conference Series:

Earth and Environmental Science, Volume 588, 1.01 – 1.05.

A. Allen, G. Henze, K. Baker, G. Pavlak, and M. Murphy. “Evaluation of topology optimization to

achieve energy savings at the urban district level,” presented at 2021 ASHRAE Winter Conference,

February 2021.
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4.1 A topology optimization framework to facilitate adoption of advanced

district thermal energy systems

4.1.1 Abstract

Advanced district thermal energy systems, which circulate water at temperatures near am-

bient conditions, and facilitate the utilization of waste heat and renewable thermal sources, can

lower the carbon-intensity of urban districts, advancing the U.N. Sustainable Development Goals.

Optimization of the network topology — the selection of the best subset of buildings and the best

network to connect them, to minimize life cycle cost — can increase adoption of these system in

appropriate applications. The potential “solution space” of the topology optimization problem

grows factorially with the number of buildings in the district, motivating the consideration of a

design heuristic. In this study, a heuristic for the network selection was evaluated with an exhaus-

tive search, for a prototypical four-building district. For the prototypical district considered, the

heuristic was effective in selecting an optimal network topology. Additionally, it was found that,

in this case, the selection of the subset of buildings was more influential on the life cycle cost than

the selection of the network topology. This work is part of a larger effort to develop a topology

optimization framework for district thermal energy systems, which is anticipated to address barriers

to adoption of ambient-temperature systems.

4.1.2 Introduction

The global trend towards urbanization and the urgency of addressing climate change require

addressing the energy- and carbon-intensity of the built environment in cities [81]. Advanced

district thermal energy systems, which circulate water at near-ambient temperatures, can leverage

the density and diversity of load in urban districts and facilitate the use of renewable thermal

resources and waste heat, reducing reliance on fossil fuels, and advancing the U.N. Sustainable

Development Goals for Sustainable Cities and Communities, Affordable and Clean Energy, and

Climate Action [81].
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However, the high infrastructure cost and extensive planning effort required by district ther-

mal energy systems hinder their adoption, motivating the consideration of new approaches [4]. This

study is part of a larger effort seeking to address these challenges through development of a topology

optimization framework for district thermal energy systems. The topology optimization framework

seeks to minimize the life cycle cost associated with meeting the space conditioning requirements

of a new or existing district, through answering the questions, “Which subset of buildings, if any,

should be connected to a district thermal energy system, and by what thermal network should

that subset be connected?” The size of the search space associated with this topology optimization

problem grows factorially with the number of buildings considered. For example, for a district of 10

buildings, considering all potential subsets of the group of buildings, and all the potential networks

by which they could be connected represents a number of potential configurations on the order of

1016. This motivates the consideration of a heuristic to address the selection of the network by

which a given set of buildings should be connected.

In this work, a graph theoretical interpretation is applied to the topology optimization prob-

lem. District thermal energy system network topologies are represented as “undirected graphs.”

An undirected graph comprises a set of vertices, or nodes, and a set of edges (unordered pairs of

nodes) [5]. A graph can be represented by an adjacency matrix, A, in which an element Ai,j = 1 if

there exists an edge between nodes i and j and 0 otherwise. Additional relevant graph theoretical

concepts are those of graph connectivity, cycles, and spanning trees. A graph in which there exists

a path between each and every pair of nodes is considered a connected graph. A path that starts and

ends at the same node, and passes through at least three distinct nodes is a cycle [5]. A spanning

tree is a connected graph without cycles, and the spanning tree with the least total edge length

is considered the minimal spanning tree. In this context, a network corresponding to the minimal

spanning tree will connect a given set of buildings with the least infrastructure cost. However the

minimal spanning tree network may not necessarily minimize energy-related costs, since additional

thermal connections could potentially improve the efficiency of the network. In this study, the

selection of the minimal spanning tree (MST) as the network to connect a given subset of buildings
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is evaluated as a heuristic for the topology optimization problem, and will be referred to as the

“MST heuristic.”

This study and the larger effort focus on applications to fifth generation district heating

and cooling (5GDHC) systems. 5GDHC systems circulate water at temperatures near ambient

conditions (typically in the range of 15 –25 ◦C) and leverage water-source heat pumps at the

connected buildings to further temper the water [7] either for heating or cooling. This study

considers a 5GDHC system in a two-pipe configuration, with bi-directional mass flow permitted.

A centralized heat pump maintains the network temperature within a desired range. Buildings

are connected in parallel to the thermal network. An energy transfer station (ETS) serves as the

interface between each connected building and the district thermal network. The ETS consists of a

heat pump, heat exchanger, and a circulation pump. Based on the nature of the building’s thermal

load, water will be drawn from the network’s “cool pipe” or “warm pipe” by the circulation pump.

The moderate system temperatures allow individual buildings to add or reject heat to the network

in a manner that offsets the load on centralized supply equipment, and would facilitate integration

of waste heat and renewable thermal sources such as solar thermal and geothermal [4]. The use

of electrically-driven heat pumps as the primary equipment, facilitated by the moderate system

temperatures, is compatible with decarbonization of source energy, advancing targets in the U.N.

Sustainable Development Goals for substantially increasing the share of renewable energy in the

global energy mix [81]. Reducing the carbon intensity of space conditioning at the district scale,

which can be accomplished through leveraging 5GDHC systems, represents a scalable approach

for lowering carbon emissions, advancing targets in the U.N. Sustainable Development Goals for

reducing the per capita adverse environmental impact of cities [2].

With opportunities for buildings to exchange heat synergistically through the thermal net-

work, 5GDHC systems motivate consideration of more complex network topologies, including ring

and meshed configurations. Conventional district thermal energy systems are generally configured

with radial networks. Examples of these network types are shown in Figure 4.1. Past studies

addressing topology optimization for district thermal energy systems have primarily focused on
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Figure 4.1: Grid topologies for district thermal energy systems, courtesy of [3].

heating-only systems, and a limited set of network configurations. The work of [24] solved an

optimization problem for the network topology of a district heating system, including the location

of the central plant, and pipe diameters, to minimize life cycle cost. The authors constrained the

potential network topologies to exclude ring or meshed configurations, and the connection of each

building to the district network was imposed as a boundary condition. Simplified building load

profiles based on “time slices” were used. The authors approached the problem with genetic algo-

rithms, and concluded that the relative locations of the buildings, the thermal load, and pressure

and temperature requirements for the network significantly influenced the optimal topology.

The work of [25] optimized the network topology, pipe diameter, and supply and return

temperatures of a district heating network for minimal life cycle cost. They cast the problem

into three-sub problems, which they approached with linear and non-linear programming. The

authors considered several scenarios of building locations and loads, and concluded that the optimal

topology configuration was not readily generalizable.

A study by [26] performed topology optimization for a district heating and cooling network

and compared the outcomes based on two different objective functions: capital cost and life cycle

cost. The authors constrained the problem such that only radial and ring topologies were consid-

ered, and that the connection status of each building was a boundary condition. With analysis

of a study case, the authors concluded that differences in pumping energy and heat loss through

the networks led to different solutions associated with the two objective functions, highlighting
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the importance of topology optimization. The authors of [26] called for future work in the area of

topology optimization for district thermal energy systems to address more flexibility in the network

configurations, and higher-fidelity load profiles.

This study, and the larger effort to which it contributes, addresses this need and offers a

departure from past work, by considering the full space of potential network configurations, the

option for buildings to be served by independent systems, and by leveraging high-fidelity building

load profiles. 5GDHC systems, with bi-directional thermal and mass flow, offer greater potential

rewards from topology optimization than conventional district thermal energy systems, and pose a

more challenging problem, with the larger solution space of network configurations.

Design of a district thermal energy system typically begins with a feasibility assessment in

which potential system types and technologies are identified, and parcels in a geographically-defined

district are screened for suitability to connect to a district energy system, based on their current or

expected base thermal loads, proximity to a potential central plant, and regulatory and economic

factors. District thermal energy systems in the U.S. are often developed through a design-bid-build

contractual structure, or built, owned, and operated by a third party [82]. Traditionally, design of

district thermal energy systems has treated building loads as deterministic. However, the emergence

of net-zero energy and other low-energy districts has motivated consideration of more integrated

design approaches [83]. The development of the topology optimization framework addresses a need

identified by [4] for “advanced energy system analysis tools of coherent systems” to enable the use

of advanced district thermal energy systems in the context of increased penetration of renewable

electricity generation.

4.1.3 Methods

In this study, an exhaustive search was performed to evaluate the MST heuristic for a prototypical

urban district consisting of three multi-family buildings and a hospital. All possible networks that

could serve a district consisting of four buildings and a central plant were analyzed, constituting 908

different cases. This topology optimization problem seeks to minimize a cost function representing
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the life cycle cost of piping infrastructure for the district thermal energy system, and the energy

required to meet the HVAC loads of all buildings in the district, whether or not they are served

by the 5GDHC system. The cost function considered also accounts for a potential future price on

carbon in the United States, based on a scenario outlined in [84]. The cost function is based on

that implemented by [3] and is formulated as follows:

min
A

Cpipes + CelecUPVelec(Ede +
n∑

i=1

Ebe,i) + CgasUPVgas

n∑
j=1

Ebg,j

+ UPVCO2

20∑
t=1

mCO2(t)CCO2(t)

(4.1)

subject to:

(1) If there exists a pipe directly thermally connecting building i and building j, Ai,j = 1. Otherwise,

Ai,j = 0.

(2) If building i is served by the district thermal energy system, there exists a path from the central

plant to node i.
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A ε R(n+1) x (n+1): adjacency matrix describ-

ing the thermal network

Cpipes : Cost of pipes and trenching

Celec: Electricity cost rate

Cgas: Natural gas cost rate

Ebe,i: Annual electric consumption for HVAC

at building i

Ede: Annual electric consumption for district

energy systems, including primary equipment

and distribution pumps

Ebg,j : Annual natural gas consumption for

HVAC at building j

UPVelec: Uniform present value factor for elec-

tricity, accounting for projected escalation in

rates

UPVgas: Uniform present value factor for nat-

ural gas, accounting for projected escalation

in rates

mCO2(t): Annual CO2 emissions, account-

ing for projections of reduced carbon intensity

of electricity

CCO2(t): Cost associated with CO2 emissions

in a given year, per projections under a sce-

nario by NIST

UPVCO2: Uniform present value factor as-

sociated with carbon pricing

The twenty-year time horizon used for calculating the life cycle cost is consistent with that used

in [3] for evaluation of a 5GDHC system. Note that a graph representing a network for a district

with n buildings will have n+1 nodes, as one node of the graph corresponds to the central plant.

An energy model of the 5GDHC system, implemented in Modelica, was used to evaluate the

energy consumption terms in the cost function. The underlying energy model was developed and
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documented in [3]. Modelica is a “non-proprietary, object-oriented, equation-based language to

conveniently model complex physical systems,” such as systems containing mechanical, electronic,

hydraulic, and thermal components [36]. The load side of the energy model was adapted to represent

the prototypical urban district under consideration in this study. Building types to be included in

the district were selected based on an evaluation of thermal load diversity, using a metric defined by

[12]. This metric captures the extent to which simultaneous heating and cooling loads are present

in the district, which enhance the potential for buildings to recover and reject heat synergistically,

improving the exergetic efficiency of 5GDHC systems at the district level. The combination of

buildings selected for this study, three multi-family buildings and one hospital, yield a value of the

thermal load diversity metric of 0.63, exceeding the threshold of 0.60 identified by [12], for 5GDHC

systems to exceed distributed building-level HVAC systems in exergetic efficiency. This study

expands on previous work performed by the authors, which analyzed the spanning-tree scenarios

only, for a prototypical district with less thermal load diversity present, documented in [85].

In the energy model of the 5GDHC system, building thermal load profiles were represented

with data-driven metamodels, developed with the Metamodeling Framework documented in [31].

This is consistent with the approach taken by [3]. The use of metamodels to represent building

loads, in comparison with full-order physics-based models, improves the simulation efficiency of the

5GDHC model, and the Metamodeling Framework has been demonstrated to represent building

thermal load profiles accurately [31]. Under the Framework, a data set based on the U.S. DOE

prototype building energy models for the applicable building types is used to train the metamodels

[31]. The Framework offers several model types, and random forest models were selected in this

study, based on their accuracy, and the computational efficiency of building the models [31]. Each

building has two associated thermal load profiles: one for the case in which the building is connected

to the 5GDHC system, and one for the case in which the building is served by independent systems.

Separate training data sets are used to generate metamodels for the “connected” and “inde-

pendent” cases, i.e., when a building is connected to a district energy system or when it is served

by its own dedicated building energy systems. The applicable DOE prototype building models are
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Table 4.1: Characteristics of prototypical buildings considered in study.

Building Type Floor Area(m2) Baseline HVAC System
Type

Baseline EUI (MJ
m2 )

Multi-family 3,134 Packaged units with DX
cooling and gas heating

436

Hospital 22,436 Variable-air volume
with hot water reheat

924

used, with a parameter sweep, to generate the training data set for the “independent” case. For

the “connected” case, the HVAC systems of the prototype building models are modified to use

water-source heat pumps. Table 4.1 shows the characteristics of the prototypical multi-family and

hospital buildings represented in this study.

The analysis was performed using weather data for Golden, Colorado. Natural gas and

electricity rates obtained from the U.S. Energy Information Administration for Colorado in 2017

[77], and unit costs for pipes and trenching ($500/meter) from [3] were used in this study. The four

hypothetical buildings and a district thermal energy system central plant were “placed” on a block

in Golden, Colorado, for purposes of calculating pipe lengths.

4.1.4 Results and discussion

In order to evaluate the MST heuristic, the life cycle cost associated with each MST network

was compared to the costs associated with the other possible networks connecting the same subset of

buildings. For each of the fifteen possible subsets, the MST network resulted in either the minimal

life cycle cost, or a life cycle cost that was within a negligible margin (1%) of the minimum. This is

summarized in Figure 4.2, which shows the ratio of the life cycle cost of a given scenario to the life

cycle cost of the MST for the same subset of buildings, as a function of the total pipe length, with

scenarios color-coded based on the nature of the buildings connected to the network. Scenarios that

represent an MST are depicted with stars, and for these scenarios the value of the ratio is naturally

1.0. (Note that for clarity, only scenarios with a total pipe length under 100 m are shown, which
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encompasses all MSTs.)

In this case study, the life cycle cost (LCC) of a particular scenario was more influenced by

the selection of the subset of buildings than the network by which they were connected. Figure 4.3

shows life cycle cost as a function of the total pipe length associated with each scenario, with the

scenarios grouped by the nature of the buildings connected to the network. As shown in Figure 4.3,

for the scenarios consisting of two or three connected buildings, the inclusion of the prototypical

hospital building in the network resulted in a significantly higher LCC, due to the high heating load

associated with this building, and the high cost of meeting that load with electricity as opposed to

natural gas. (Note that in Figure 4.3, a representative sample of the datapoints with four buildings

connected is shown, due to the large number of scenarios.)

Figure 4.4 shows a disaggregation of the LCC by component (energy, carbon, and infras-

tructure) for a randomly selected subset of the topology scenarios. Consistent with the subset

represented in Figure 4.4, among all scenarios, the fraction of the life cycle cost attributable to

energy costs ranges from 82% to 88%, the fraction attributable to carbon costs from 10% to 17%,

and the fraction attributable to infrastructure does not exceed 2%. This dominance of costs related

to energy and carbon (which is also proportional to the energy consumption) is attributable to the

magnitude of the thermal loads of the prototypical buildings considered. The infrastructure costs

are a function of the spatial locations of the buildings. Note that the nature of this disaggrega-

tion is not expected to extend to districts with buildings with lower energy use intensity, or lower

spatial density, in which cases, the infrastructure costs would be expected to be more significant

proportionately.

The small fraction of the LCC that is attributable to infrastructure costs in the scenarios

resulting from this case study explains the lack of sensitivity of the LCC to the network by which

the subset of buildings is connected. The selection of the network influences LCC through the

infrastructure cost component, as well as through thermal interactions that influence the energy

consumption of the network. Given the dominance of energy-related costs in the LCC, and the

higher costs of electricity relative to gas per unit of delivered energy, a sensitivity analysis was
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Figure 4.2: Ratio of life cycle cost to life cycle
cost of MST as a function of pipe length for
topology scenarios.

Figure 4.3: LCC as a function of pipe length
for topology scenarios.

performed for the electricity cost value. The multiplier applied to the electricity cost was a proxy

for a multiplier on the ratio between the electric and gas rates per unit of delivered energy. The

results of this analysis are shown in Figure 4.5, for two different values of a ratio (Rele) by which

the base case electric rate was multiplied, Rele=0.75, and Rele=0.5.

As shown in Figure 4.5, the maximum and median values of the life cycle cost are reduced

with the reduction in electric rates, and as a result, the range of values is also reduced. This shows

that a reduction in the ratio of electricity to natural gas rates per unit of delivered energy would

reduce the bifurcation of solutions shown in Figure 4.3, corresponding to the presence or absence

of the prototypical hospital building in the network. (In the cases considered in the electric rate

sensitivity analysis, the minimum values remain approximately the same, as they correspond to

cases in which the largest heating load, associated with the hospital, is not connected to the district

thermal energy system, and is thus served with natural gas.) This suggests that a reduction in

electricity rates relative to natural gas rates could contribute to a greater influence of the network

selection, as opposed to the subset of buildings served, on life cycle cost. A shift in building HVAC

energy use in the “independent” systems case from natural gas to electricity, as would occur if

building heating systems were electrified, would also be expected to increase the influence of the

network selection for this reason.
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Figure 4.4: Disaggregation of life cycle cost by
component for selected topology scenarios.

Figure 4.5: Box and whisker plot showing the
range of life cycle costs for all scenarios, for
the base case and for two cases with a multi-
plier (Rele) applied to the electricity rates.

4.1.5 Conclusion

This study demonstrated that, for the prototypical urban district considered, with a relatively

high degree of thermal load diversity, the MST heuristic is effective in selecting the “best” network

by which to connect a given subset of buildings. In this study, due to the relatively high magnitude

of the thermal loads present at each building, the selection of a network was relatively unimportant

in influencing LCC relative to the selection of the subset of buildings.The results of this study

support the inclusion of the MST heuristic in the proposed topology optimization framework. In

the future, the MST heuristic will be evaluated for a larger prototypical district, with the integration

of a waste heat source, and the robustness of the MST heuristic will be evaluated through Monte

Carlo analysis of high-level parameters in the cost function. Future work could also potentially

characterize the relative importance of the two elements of the topology optimization problem with

a load diversity metric. Further development of the topology optimization framework will include

implementation of an optimization algorithm for selection of the subset of buildings to connect to

the network. Particle swarm optimization and other meta-heuristic algorithms will be considered, as

they are compatible with the use of the Modelica simulation as a function evaluator. It is anticipated

that the topology optimization framework, when complete, will result in a useful tool for planners,

consultants, and engineers that can expand adoption of advanced district thermal energy systems



86

in appropriate applications, supporting progress towards the U.N. Sustainable Development Goals.
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4.2 Evaluation of topology optimization to achieve energy savings at the

urban district level

4.2.1 Abstract

Advanced district thermal energy systems have the potential to achieve significant energy

savings and facilitate the integration of renewable thermal resources and waste heat, contributing

to reductions in carbon emissions. Such systems, also known as fifth generation district heating

and cooling (5GDHC) systems, circulate water at temperatures close to ambient, and leverage

electrically driven water-source heat pumps located at connected buildings to further temper the

water. However, barriers exist to the adoption of 5GDHC systems, including the factorial growth

in potential network configurations as a function of the number of considered buildings. Topology

optimization, which seeks to answer the questions, “Which is the best subset of buildings, if any,

to connect to a district thermal energy system, and by what network should they be connected, to

minimize life cycle cost?” can accelerate the adoption of 5GDHC systems. This study is part of an

effort to develop a topology optimization framework for district thermal energy systems. In this

study, a heuristic for one important aspect of the topology optimization problem—the use of the

minimal spanning tree network to connect a given set of buildings at the least life cycle cost—is

validated.

4.2.2 Introduction

Emerging technologies and design practices have enabled significant improvements in building

energy performance [86]. Examining energy use intensity (EUI) beyond the level of an individual

building, and at the level of an urban district, can unlock even greater reductions in energy use

and associated carbon emissions [32]. Past studies have demonstrated that there is significant

techno-economic potential for greater adoption of district energy systems (DES) in urban areas

in the United States, and that advanced district thermal energy systems can meet targets for

reductions in carbon emissions more cost-effectively than building-level systems alone ([87]; [46]).
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Figure 4.6: Schematic representation of 5GDHC system, courtesy of [3].

Past work has characterized the evolution of district thermal energy systems into either four or five

generations, with the later generations circulating water as opposed to steam and leveraging more

moderate temperatures [4]. As delineated in the work of [7], fifth generation district heating and

cooling (5GDHC) systems are characterized by their use of water at temperatures close to ambient

as a working fluid and leveraging water-source heat pumps located at connected buildings to further

temper the water as needed to heat and cool the buildings. A schematic representation of such a

system is shown in Figure 4.6. This configuration facilitates synergistic exchange of heat among

connected buildings and processes, through bi-directional thermal flow, offsetting the requirements

for active heating and cooling of the district loop, as well as facilitating the integration of waste

heat and renewable thermal sources. However, barriers exist to the adoption of 5GDHC systems,

including the factorial growth in potential network configurations as a function of the number

of considered buildings. Topology optimization seeks to answer the questions: “Which is the best

subset of buildings to connect to a district thermal energy system, and by what network should they

be connected to minimize life cycle cost?” Topology optimization has the potential to accelerate

the adoption of 5GDHC systems.

Network topology optimization is particularly relevant in the context of 5GDHC systems
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Figure 4.7: Topology optimization search space for district consisting of three buildings and DES
plant, also presented in [6].

relative to earlier generations of district heating and cooling systems. “Conventional” district

thermal energy systems circulating steam or hot water and chilled water are typically configured

with radial networks, or with ring networks if redundancy of supply is essential [3]. The potential for

synergistic thermal exchange among buildings tied to a 5GDHC system motivates consideration of

ring or meshed networks ([58]; [59]). In the context of the network topology optimization problem,

the number of potential thermal networks that could connect a subset of buildings in a given urban

district grows factorially with the number of buildings considered and is a function of the number of

subsets of buildings that can be selected from the district and the number of potential networks by

which a given subset can be connected. Note that in this study, it is not assumed that every building

in a given urban district will be served by a district thermal energy system. As an illustration of

this concept, all potential networks that could connect buildings in a district consisting of three

buildings and a central plant are shown in Figure 4.7.

This study is part of a larger effort to develop a topology optimization framework for district

thermal energy systems. The goal of the framework is to assist urban planners and engineers in the

design of advanced district thermal energy systems by determining the optimal subset of buildings
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(if any) in an urban district to connect to such a system, and the optimal network by which to

connect them. In this work, optimality is defined with respect to life cycle cost, encompassing

costs associated with infrastructure, operating energy, and carbon. The very large “search space”

associated with this optimization problem results in a computationally intractable problem: the

search space is on the surprisingly high order of 1015 scenarios for a district consisting of 10 buildings,

motivating consideration of heuristics to address this part of the problem.

Concepts from graph theory can be leveraged to describe thermal networks. In the mathe-

matical context, an “undirected graph” consists of a set of nodes and a set of edges, which can be

represented as unordered pairs of nodes [5] . Such a graph can be represented by an “adjacency

matrix,” a binary matrix with a number of rows and columns equal to the number of nodes of the

graph, in which a given element of the matrix is equal to one if there exists an edge between the

corresponding nodes, and zero if there does not [5] . An undirected graph provides a convenient

structure for representing thermal networks with “nodes” corresponding to buildings or a central

plant and “edges” corresponding to thermal connections. The “minimal spanning tree” (MST) is

the graph connecting a given set of nodes with the least total edge length, while providing a path

between any two nodes in the set [5]. In the context of DES, the MST represents the network

that connects a given set of buildings with the least total length of pipes, thus minimizing the

infrastructure cost. In this study, the use of the MST to identify the best (least life cycle cost)

thermal network by which to connect a given set of buildings was evaluated as a heuristic for the

topology optimization problem, substantially reducing the number of scenarios to be considered.

Past work in the area of topology optimization for district thermal energy systems, such as that

of [24], [60], and [27], has primarily focused on high-temperature heating-only networks, and has

often addressed only radial networks, and treated the connection status of a particular building

to a thermal network as a boundary condition. This study is distinct from past work because it

addresses both the selection of the set of buildings to connect to a DES as well as the network

by which they are connected, and considers 5GDHC systems, which introduce more complexities,

and more interesting potential synergistic interactions among building loads, addressing a need
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identified by [26]. This work builds on that of [3], who developed a model of a 5GDHC system and

evaluated the performance of particle swarm optimization for the network topology optimization

problem for a district consisting of three prototypical buildings, with a small search space of 54

scenarios.

4.2.3 Methods

In this study, the MST heuristic was evaluated by performing an exhaustive search of all

potential network configurations for a prototypical urban district consisting of five buildings and

a central plant and confirming that the MST indeed represented the network with the least life

cycle cost to connect a given subset of buildings. The search space consisted of 30,770 possible

scenarios, including the “null case” in which all buildings were served by independent systems,

with 32 possible subsets of buildings in the district. For each subset, it was confirmed that the

MST network had the least life cycle cost relative to other networks connecting the same subset of

buildings, or a life cycle cost within a very small margin (0.1%) of the least life cycle cost.

For purposes of this study, the topology optimization problem was formulated based on

minimizing the life cycle cost associated with the infrastructure for a district thermal energy system

and operating energy costs for heating, ventilating, and air conditioning (HVAC), and associated

carbon costs (assuming a carbon fee), for the urban district. The infrastructure cost was defined as

the cost associated with pipes for the district thermal energy system. It was assumed that any cost

difference between district-level and building-level HVAC generation and distribution equipment

would be insignificant. Note that the costs associated with operating energy encompassed all

buildings in the considered district, whether or not they were served by the district thermal energy

system in a particular scenario. The life cycle cost was calculated for a 30-year time period. The
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optimization problem was formulated as follows:

min
A

Cpipes + CelecUPVele(Ede +
n∑

i=1

Ebe,i) + CgasUPVgas

n∑
j=1

Ebg,j

+ UPVCO2

30∑
t=1

mCO2(t)CCO2(t)

(4.2)

where A is the adjacency matrix representing the connectivity of the thermal network; Cpipes is the

cost associated with the infrastructure of the DES; Celec and Cgas are the costs of electricity and

gas per unit of consumption; UPVele, UPVgas, and UPVCO2 are the uniform present value factors

used to convert an annual cost to the value over the lifetime of the system for electricity, gas, and

carbon, respectively; Ede is the energy consumption associated with the centralized DES heat pump

and distribution pumps; Ebe,i is the electricity consumption for HVAC at a given building; Ebg,j

is the gas consumption for HVAC at a given building; mCO2(t) is the emissions of carbon dioxide

associated with the district’s energy use for a given year; and CCO2(t) is the unit cost of carbon

dioxide emissions in a given year. Note that the gas consumption term exists because buildings

with independent HVAC systems are served by gas heating systems. The uniform present value

factors associated with electricity and natural gas account for expected escalation in the costs of

these utilities projected by the National Institute for Standards and Technology, documented in the

work of [88]. The real annual electricity cost escalation rates (between -4% and 2%) and natural

gas cost escalation rates (0% to 9%) varied from year to year over the time period considered.

Escalation of the carbon price also varies from year to year, ranging from 0% to 33% annually over

the time period considered [74].

The economic inputs to the life cycle cost calculation considered in this study, and their

sources, are summarized in Table 4.2. In this work, the energy consumption terms in the cost

function were evaluated using an energy model developed in Modelica, an object-oriented, equation-

based language that is often used for modeling physical systems [36]. Note that for purposes of this

study, the calculated energy consumption was taken to be the same for each year in the considered
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Table 4.2: Summary of economic parameters in life cycle cost calculation.

Parameter Value Source

Discount rate (%) 3% [3]

Electricity cost, base year ( $
GJ ) 27.8 [77]

Natural gas cost, base year ( $
GJ ) 6.48 [77]

Carbon cost, base year ( $
mt) 20.0 [88]

Pipe cost ( $
m) 548 [26] and [89]

life span of the system (30 years). The model of a 5GDHC system was extended from one developed

by [3] as the 5GDHC Topology Analysis Tool. The 5GDHC system considered, similar to the one

represented in Figure 4.6, was configured with a two-pipe network, circulating warm water at 26 ◦C

and cool water at 16 ◦C, with the loop tempered by a ground-source heat pump, and water-source

heat pumps tempering the water further at each connected building. The mass flow rate at each

building was controlled to maintain a 10°C temperature differential between the “warm pipe” and

“cool pipe.”

The prototypical district considered consisted of three multi-family buildings, a hospital,

and a retail building. The building types were selected based on a thermal load diversity metric

developed by [12]. The load diversity metric reflects the extent to which simultaneous heating and

cooling loads exist in the district, which improves the exergetic efficiency of a 5GDHC system, by

increasing the extent to which buildings can reject heat to or draw heat from the thermal network

in a synergistic manner. In the work of [12], a threshold for the diversity metric was established (a

value of 0.60), above which 5GDHC systems are likely to exceed distributed building-level HVAC

systems in exergetic efficiency. The combination of buildings selected for this study, three multi-

family buildings and one hospital, yield a value of the thermal load diversity metric of 0.58, close

to this threshold. For purposes of calculating pipe lengths, the locations of the buildings were

superimposed on an existing block in Golden, Colorado. The analysis was performed using the

Typical Meteorological Year 3 weather file for Golden-NREL (724666).

Building heating and cooling loads were represented using data-driven metamodels, lever-
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Table 4.3: Characteristics of prototypical buildings considered in study.

Building Floor Area(m2) Individual HVAC Sys-
tem

Multi-family 3,120 Zone-level direct-
expansion cooling and
gas heating

Hospital 22,436 Variable-air volume
reheat system served
by water-cooled chillers
and hot water boilers

Retail 2,2956 Roof-top units with DX
cooling and gas heating

aging the Metamodeling Framework developed by [31]. The Metamodeling Framework has been

demonstrated to represent building loads in an accurate manner and reduces the computational

complexity of the district energy model relative to the use of full-order models to represent building

loads [3]. The metamodels were trained based on data generated from the DOE prototype building

models in EnergyPlus® [64]. Separate metamodels were trained to represent building thermal

loads for the case in which the building was connected to the district thermal energy system, and

the case in which the building was served by independent systems. For the metamodels repre-

senting the case in which the buildings were served by independent systems, the HVAC system

types existing in the prototype building models were preserved. For the case in which the buildings

were served by a district thermal energy system, the underlying EnergyPlus models were altered

to represent a consistent HVAC system type, with water-source heat pumps tied to a heat source

and sink at temperatures corresponding to that of the district loop. It was confirmed that the

modified HVAC systems continued to meet thermal loads in the modeled buildings. Details of the

prototypical buildings are summarized in Table 4.3.

Due to the computational burden of the energy model simulations, hierarchical clustering

was performed on the building heating and cooling load profiles to select a smaller set of days to

represent an entire year, following an approach similar to that outlined in the work of [90]. It was
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found that a set of 30 days could represent the annual heating and cooling load profiles with a

coefficient of variation of the root-mean squared error CV(RMSE) of 10.8% and 5.9%, respectively,

which was deemed to be acceptable per criteria in ASHRAE Guideline 14 [91].

4.2.4 Results

In this study case, the nature of the set of buildings connected to the network was highly

influential on the overall life cycle cost. As shown in Figure 4.8, the inclusion of the prototypical

hospital building in the set of connected buildings was necessary in order for the life cycle cost of a

particular scenario to be less than that associated with the “null case,” in which all buildings are

served by independent heating and cooling systems. The hospital building is the only prototypical

building for which a connection to the DES results in lower annual building-level energy costs

relative to independent systems. For all of the prototypical buildings, a connection to the DES

results in lower source- and site-EUI (albeit a very slight reduction in the case of source EUI for the

multi-family building), but the low costs of natural gas result in lower annual energy costs when

independent systems are employed for the multi-family and retail buildings. Note that the DES

considered uses only electricity for both heating and cooling. The prototypical hospital building

benefits from a substantial reduction in EUI with a connection to the DES relative to building-level

systems due to its year-round base cooling load, which, when the building is connected to the DES,

can offset a simultaneous heating load through the shared water loop serving the building’s heat

pumps and through bi-directional heat and mass flow in the energy transfer station. Note that

the zone-level HVAC systems implemented in the “connected” case for the hospital building also

eliminate the use of reheat for temperature control. Figure 4.9 shows heating and cooling EUIs, on

both a site and source basis, for the prototypical buildings considered, in both their “connected”

and “independent” states. This benefit from simultaneous heating and cooling loads at the building

level is consistent with results observed in other studies, including that of [92].

District-wide source EUI for HVAC follows a trend similar to the one observed for life cycle

cost, as shown in Figure 4.10. Note that this EUI value encompasses energy consumption for
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generation and rejection of heat at the building level and at the centralized heat pump serving

the DES, and distribution pumping energy for the DES. Site-source multipliers for electricity and

natural gas were obtained from [93]. The scenarios in which the hospital building is not served by

the DES have a similar source HVAC EUI to the null case, as the prototypical hospital building

has the largest thermal load. The scenarios in which the hospital building is served by the DES

have an associated source EUI that is approximately 25% lower than that of the null case. This

result highlights the potential reductions in source energy and associated carbon emissions from

5GDHC systems, as well as the benefits of optimization in the selection of the subset of buildings

to connect to the network.

At a more granular level of comparison, Figures 4.12 and 4.13 show the trajectory of the

cooling electricity requirements, and the heating energy delivered, for the multi-family building, over

a summer and winter period, respectively. Note that in both the “DES-tied” and “independent”

states, each of the prototypical buildings is served by electricity for cooling, but that natural gas

provides most of the heating in the “independent” state, while the heating is fully electrified in the

“DES-tied” state. Thus, the heating requirements of the two states are compared on the basis of

heating energy delivered, and not energy input. The comparison between the two states for the

multi-family building is similar to that for the two other prototypical building types considered.

Source energy savings generally accrues in heating mode, due to the greater efficiency of heating

with efficient heat pumps on a source-energy basis relative to natural gas-fired heating, while the

end-use heating requirements of the building in the two states remains similar, as expected. In

cooling mode, similar energy end-use requirements or an increase are exhibited through the DES

connection. This is partially attributable to the nature of the shared condenser water loop that

serves the water-source heat pumps in heating and cooling modes, which helps achieve a reduction

in overall HVAC energy use through facilitating the ability of loads to offset each other, but can

also appear to “penalize” energy consumption for cooling at the expense of improvement in heating

when the energy use attributable to each is disaggregated.

Analysis of the results confirms that the MST network indeed represents the least-cost net-
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work to connect any of the thirty-two subsets of buildings associated with the prototypical urban

district considered, or results in a life cycle cost within 0.1% of that of the least-cost network.

These results are summarized in Figure 4.11 with a plot of the “MST ratio” as a function of net-

work length. The “MST ratio” is defined as the ratio of the life cycle cost of a given scenario to the

life cycle cost associated with the MST connecting the same subset of buildings. The fact that the

MST ratio is always greater than or equal to unity affirms the validity of the heuristic. Note that

the network with the greatest life cycle cost to connect a given subset of buildings never exceeds

the cost associated with the MST by more than 20%. In this case study, the selection of the subset

of buildings to connect to the DES has more influence on life cycle cost, and source HVAC EUI,

than the network by which they are connected. The nature of this result is consistent with expec-

tations based on the type of network configuration considered, in which all loads are connected in

parallel, with mass flow rates controlled to a fixed temperature differential. This ensures that all

connected loads are served with the same supply temperatures (absent the relatively minute effects

of heat loss and gain through the distribution system), and thus, the energy use associated with a

connected load is not expected to be altered by the presence or absence of another load, or thermal

connection.

For the set of possible networks connecting a given subset of buildings, the life cycle cost

generally increases with the length of the network, as the infrastructure cost scales with the network

length, and little variation in energy and carbon costs is observed among networks connecting the

same subset of buildings. Thus, in Figure 4.11, a linear trend is generally observed in the MST

ratio as a function of the total network length.

Figure 4.14 shows a disaggregation of life cycle cost for a random subset of the scenarios

considered in this study. Among all scenarios considered, the fraction of life cycle cost attributable

to energy costs ranged from 68% to 83%, carbon from 10% to 21%, and infrastructure, 0% to 22%

(The null case, representing a scenario in which all buildings are served by independent systems,

has no costs for DES infrastructure). The fact that infrastructure-related costs account for less

than 25% of the overall life cycle cost in all scenarios in this case study is consistent with the
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Figure 4.8: Life cycle cost (LCC) as a func-
tion of total network pipe length for all sce-
narios, sub-divided by whether they include
or exclude the hospital building.

Figure 4.9: Building-level HVAC EUI for pro-
totypical buildings considered.

Figure 4.10: District-level HVAC source EUI
as a function of total network pipe length for
all scenarios.

Figure 4.11: MST ratio as a function of total
network pipe length for all scenarios consid-
ered in this case study.

fact that the selection of the subset of buildings has a greater influence on life cycle cost than the

network by which they are connected.

4.2.5 Conclusion

This study has validated the use of the MST as a heuristic for identifying the thermal network

with the least life cycle cost for connecting a given set of buildings in an urban district. This

study also demonstrated a potential for significant reduction in HVAC-source EUI (on the order
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Figure 4.12: Cooling electricity required by
the multi-family building, in independent and
DES-tied states, during a summer period.

Figure 4.13: Heating energy delivered to
the multi-family building, in independent and
DES-tied states, during a winter period.

Figure 4.14: Disaggregation of life cycle cost for selected set of representative scenarios.
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of 25%) from the use of a 5GDHC system with an optimally selected subset of buildings in an

urban district, relative to independent, building-level HVAC systems. Future work will quantify

the benefits of integration of available low-temperature waste heat into a similar 5GDHC network,

which is expected to improve further the energy and economic performance of the 5GDHC network

relative to independent systems. Future work will also investigate the use of an algorithm, such

as particle swarm optimization, for selection of the “best” subset of buildings (if any) in an urban

district to connect to a 5GDHC network. An approach for selecting the best subset of buildings

will be combined with the MST heuristic to create a topology optimization framework for district

thermal energy systems. It is anticipated that this framework will help facilitate the adoption of

5GDHC systems in appropriate applications, and contribute to energy and cost savings as well as

reduced carbon emissions.



Chapter 5

Validation of particle swarm optimization for the network topology

optimization problem

This chapter has been submitted for publication as:

A. Allen, G. Henze, K. Baker, G. Pavlak, and M. Murphy, Development of a framework for

topology optimization of district thermal energy systems to achieve energy and cost savings.

Energy Conversion and Management, submitted July 2021.
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5.1 Abstract

District thermal energy systems operating at near-ambient temperatures have the potential

to achieve significant reductions in energy-use intensity and carbon emissions, but face barriers

to adoption due to their high infrastructure cost, and design challenges resulting from the large

“search space” of potential network configurations. In this work, a topology optimization framework

for such district thermal energy systems is presented to address those barriers. The approaches

leveraged by the framework are validated, as is the performance of the framework with the imple-

mentation of an additional constraint.

5.2 Introduction

A scientific consensus has emerged that widespread electrification of space heating will be

necessary to achieve significant reductions of carbon emissions cost-effectively and on the required

time scale. A report recently issued by the U.S. National Academies of Science, Engineering, and

Medicine called for electrification of heating in new construction in much of the United States by

2030, in order for the country to reach net-zero carbon emissions by 2050, and avert the worst

consequences of climate change [94]. Given worldwide trends towards urbanization, it is expected

that 68% of people will be living in cities by 2050 [95]. District thermal energy systems operating at

near-ambient temperatures facilitate beneficial electrification of heating in urban districts, as well

as significant reductions in source-energy use intensity in appropriate applications. However, such

systems face barriers to adoption, especially in the United States, due to their high infrastructure

costs, and the very large “search space” of potential network configurations, which complicates

their design.

In this paper, a novel framework for network topology optimization of district thermal energy

systems is presented, and the techniques that it leverages are validated. The Topology Optimization

Framework (“Framework”) is particularly relevant in the context of 5GDHC systems, but the

general approach is extensible to other types of district thermal energy systems as well.
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5.2.1 Fifth-generation district heating and cooling systems

Many authors have grouped district thermal energy systems into generations, distinguished

by their working fluid (steam or water), and the range of temperatures of the working fluid. Recent

studies have generally classified district thermal energy systems into four or five generations. This

work will adopt the definition of fifth-generation district heating and cooling (5GDHC) systems

proposed by [7]. Such systems are distinguished from earlier generations of district thermal energy

systems through their use of water at near-ambient temperatures (15 ◦C - 25 ◦C) as a working fluid,

and the use of water-source heat pumps at connected buildings, which operate with the network

as a heat source and sink [7]. The near-ambient water temperatures used by 5GDHC systems are

conducive to the integration of lower-temperature waste heat sources, as well as renewable thermal

sources, and facilitate the use of electrically-driven heat pumps, and thus, the decarbonization of

source energy for heating [4].

The more moderate operating temperatures of 5GDHC systems also creates the potential

for connected loads to act as “prosumers”, and exchange heat (or heat rejection) in a synergistic

manner [76]. This motivates the consideration of meshed thermal network configurations, beyond

the radial or ring networks that are commonly used in earlier generations of district thermal energy

systems, and makes the question of network topology optimization especially relevant. Figure 5.1

illustrates common types of thermal network configurations.

5.2.2 Relevant concepts from graph theory

In this work, thermal networks will be described using concepts from graph theory. In math-

ematics, a “graph” is defined as a set of nodes (vertices) and edges (pairs of vertices) [5]. In the

context of a thermal network, nodes represent connected loads and centralized supply equipment,

and edges represent thermal connections (pipes carrying the working fluid). A graph can be repre-

sented with an “adjacency matrix”, a square matrix with dimension equal to the number of nodes.

A given element of the adjacency matrix has the value of unity if there exists a connection between
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Figure 5.1: Notional representation of thermal network configurations, courtesy of [3].

the corresponding nodes, and a value of zero otherwise. Of particular interest in the context of

thermal networks are “connected graphs”, in which there exists at least one path between each pair

of nodes. A “spanning tree” is a type of connected graph in which there exists exactly one path

between each pair of nodes. A “minimal spanning tree” (MST) is the spanning tree that connects

the given nodes with the least total edge length [5]. In the context of a thermal network, the MST

minimizes the total network length, and thus, the infrastructure cost. In general, the infrastructure

cost is often a significant fraction of the overall life cycle cost of a district thermal energy system

[24].

5.2.3 Particle swarm optimization

Non-convex optimization problems motivate the use of so-called metaheuristic techniques,

which, while not offering a guarantee of convergence at the global optimum, are often effective

at finding near-optimal solutions, in an efficient manner (relative to an exhaustive search) [96].

Metaheuristics do not require an explicit definition of the objective function or its gradient, making

them compatible with the use of a “black box” function evaluator. Most metaheuristic approaches

incorporate some degree of stochasticity, which can help prevent the algorithm from getting “stuck”

in a local optimum [96]. Particle swarm optimization (PSO) is one such metaheuristic approach.

Like other metaheuristics, PSO mimics a search process. In the PSO context, “particles” can be
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interpreted as animals acting as part of a swarm in the natural world, seeking a location that

maximizes the value of a certain objective [97]. In an optimization problem, this corresponds to

the value of the objective function at a given candidate solution, which is visited by a particle as

it progresses through the search space. At each iteration of the algorithm, particles are assigned

a “velocity,” which is used to determine its next position in the search space. Particles retain

knowledge of both their own prior best location, and that of the best location visited by any

member of the group, and are attracted back to both of these locations, to varying extents. The

balance between these two factors is described as a trade-off between exploration and exploitation.

The cognitive parameter value scales the degree to which a particle is attracted to its prior best

location, and the social parameter scales the degree to which a particle is attracted to the global

best location [97]. In some implementations of PSO, each particle can “communicate” knowledge

of its best position with only a subset of other particles in the swarm. That implementation is

known as local best (lbest) PSO, and the set of particles that can communicate with each other is

known as a neighborhood. Implementations in which all particles in the swarm can communicate

with each other are known as global best (gbest) PSO [97].

For application to the network topology optimization problem for district thermal energy

systems, the implementation of PSO for problems with discrete, binary variables is of interest. The

work of [39] developed such an approach, and conceptualized each dimension of the velocity vector

as the probability that the corresponding dimension of the position vector would “flip” from one

binary value to the other. In the work of [39] the position of a particle xi,j(t+ 1) (with i being the

index in the swarm, and j the dimension) is determined as follows:

xi,j(t+ 1) =


0, if rand() ≥ S(vij (t+ 1))

1, if rand() < S(vij (t+ 1))

(5.1)
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where the sigmoid function S(x) is defined as:

S(x) =
1

1 + e−x
(5.2)

and the particle’s velocity vi,j(t+ 1) is determined as:

vi,j(t+ 1) = wvi,j(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷj(t)− xij(t)] (5.3)

where w is the inertia weight, c1 is the cognitive component, c2 is the social component, yij(t) is

the particle’s previous best position, ŷj(t) is the best position of a particle in the “neighborhood,”

and r1j(t) and r2j(t) are random numbers.

5.2.4 Optimization of district thermal energy systems

There is an extensive body of work in the area of optimization of different aspects of district

thermal energy systems, including network topology and operating parameters, across different sys-

tem generations. Past studies can be distinguished based on the type of cost function considered, as

well as the generation of system, which has implications for the optimization variables. Many past

studies addressing network topology optimization have focused on district heating networks only,

or uncoupled district heating and cooling systems. The work of [24] addressed a network topology

optimization problem to minimize a life cycle cost metric for a district heating system operating

at 55 ◦C. The life cycle cost metric considered encompassed infrastructure (pipes and distribution

pumps), energy associated with pumping and heat losses, and a carbon tax. The optimization vari-

ables included pipe diameters (with a zero diameter corresponding to the non-existence of a thermal

connection) and the location of a central heating plant. The authors formulated the problem as a

mixed-integer nonlinear programming problem (MINLP), and employed genetic algorithms to solve

it. Only tree network topologies were considered, and the connected building loads were taken as

a boundary condition.
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The work of [26] addressed a network topology optimization problem for a third-generation

district thermal energy system, to minimize a life cycle cost based on costs for piping and trenching,

and a limited set of operating costs. The authors compared the optimal network configuration they

determined to the network with minimal first cost, and found limited benefits in life cycle cost,

though a more significant savings in terms of the internal rate of return. The authors of [26]

treated the connected loads as a boundary condition, and also treated the energy consumption of

centralized equipment as static. They identified addressing the selection of loads to connect to a

district energy system as an area in which further work was needed.

Other past studies have taken a multi-objective approach to optimization of district thermal

energy systems. The work of [98] solved an optimization problem for the network topology and

selection of primary equipment for a district heating network, to minimize life cycle cost and

carbon emissions, using an ε-constrained approach. The authors of [98] compared the optimally-

designed district heating network to a scenario in which buildings were served by independent

heating systems, and found a 23% reduction in carbon emissions, for the same initial investment.

The work of [23] optimized the supply temperature for a 5GDHC system to minimize energy

use, using the Nelder-Mead method, with an agent-based control approach implemented to maintain

the loop setpoint. They identified energy savings of around 15% from implementing the optimal

setpoint, relative to allowing the setpoint to float freely in the range of 12 ◦C to 20 ◦C. The authors

of [23] also compared the energy consumption associated with uni-directional and bi-directional

5GDHC networks, and found that bi-directional networks saved energy in the two climate zones

that they considered.

The work of [99] applied adjoint-based methods to an optimization problem for a district

heating system, with the optimization variables including the network topology and pipe diameters,

as well as valve positions at connected loads, and the rate of heat supplied by individual pieces

of centralized equipment. The authors considered an objective function based on the investment

cost of piping and distribution pumps, and the operating cost for pumping. They developed an

approach to project a continuous-valued diameter variable onto a set of discrete values of available
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pipe diameters, using a modified version of the projection method often used in structural topology

optimization, and structured the cost function to penalize intermediate values of this variable. The

use of adjoint-based methods, in conjunction with constraint aggregation facilitated a large-scale

analysis, considering a network with 160 connected loads. Through their topology optimization

approach, they identified a network with a 23% reduction in piping cost relative to a base case.

The connectivity status of the loads was taken as a boundary condition.

The presented Topology Optimization Framework is novel because it addresses both the se-

lection of loads to connect to a district thermal energy system, as well as the network by which they

should be connected (fulfilling a need identified by [26]), and addresses investment and operating

costs in a comprehensive way, accounting for all HVAC-related energy consumption by a considered

district. The compatibility with an underlying energy model of high fidelity makes it suitable for

detailed analysis of potential trade-offs, and distinct from past approaches to network topology op-

timization for district energy systems, which have focused on model formulations oriented around

specific sets of conditions. The framework has been evaluated in case studies involving 5GDHC

systems with bi-directional thermal and mass flow in the context of which network topology opti-

mization is particularly interesting and relevant, though it can be applied to district thermal energy

systems of any generation. The development of the Topology Optimization Framework builds on

the work of [3] and extends previous work by the authors to evaluate the energy-savings potential

of 5GDHC systems coupled with low-exergy building level systems [6], and to evaluate the minimal

spanning tree heuristic [100].

5.3 Methods

The presented Topology Optimization Framework (“Framework”) seeks to address the ques-

tion, for a given urban district, with known building locations and loads, “What is the best subset

(if any) of buildings to connect to a district thermal energy system (DES), and by what network

should they be connected, to minimize life cycle cost?” It was hypothesized that a particle swarm

optimization (PSO) algorithm could effectively identify the optimal subset of buildings, and that
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the minimal spanning tree (MST) heuristic could effectively select the optimal thermal network

by which to connect them. The following subsections describe the formulation of the optimization

problem, and how these approaches were evaluated in the context of a prototypical district.

5.3.1 Optimization problem

The cost function considered in the network topology optimization problem represents the

life cycle cost (LCC) associated with meeting the heating and cooling loads of all buildings in

the prototypical district, whether they are served by independent systems or the DES. The LCC

considered includes energy costs for HVAC, costs associated with a potential future price on carbon,

and infrastructure costs for the thermal network of the DES, evaluated over a thirty-year time

period. It was assumed that any differential in costs for building-level HVAC systems observed

between buildings tied to the DES and buildings with fully independent HVAC systems would be

small relative to the overall LCC. The LCC is calculated as shown in Eqn. 5.4:

min
~L
Cpipes + CelecUPVelec(Ede +

n∑
i=1

Ebe,i) + CgasUPVgas

n∑
j=1

Ebg,j

+ UPVCO2

30∑
t=1

mCO2(t)CCO2(t)

(5.4)

subject to:

(1) For i, j ∈ {1 . . . n+ 1}, such that j > i,Ai,j = Li+j−1

(2) If there exists a pipe directly thermally connecting building i and building j, Ai,j = 1. Other-

wise, Ai,j = 0.

(3) If building i is served by the district thermal energy system, there exists a path from the central

plant to node i.

(4) ∀i, j ∈ {1 . . . n+ 1}, Ai,j = Aj,i.

where A is the adjacency matrix corresponding to the thermal network, ~L is a vector corresponding

to the upper-triangular elements of the adjacency matrix, Cpipes is the cost of pipes and trench-
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ing, Celec is the electricity cost per unit of consumption, Cgas is the natural gas cost per unit of

consumption, Ebe,i is the annual electric consumption for HVAC at building i, Ede is the annual

electric consumption for the centralized heat pump, Ebg,j is the annual natural gas consumption

for HVAC at building j, n is the number of buildings considered, UPVelec is the uniform present

value factor for electricity, UPVgas is the uniform present value factor for natural gas, mCO2(t) is

the annual carbon emissions in a given year, CCO2(t) is the cost associated with carbon emissions

in a given year, and UPVCO2 is the uniform present value factor associated with carbon pricing.

Note that since, in the context of this application, the adjacency matrix A must be symmetrical,

it can be represented with its upper-triangular elements only. The total number of network nodes

is equal to n+ 1, corresponding to all buildings considered and the centralized heat pump.

The uniform present value (UPV) factors are used to convert a cost incurred in one year to

a cost over 30 years, accounting for the time value of money at a 3% discount rate. The UPV

factors applied for natural gas and electricity account for projected escalation in the costs of those

commodities. Note that the time-dependence of carbon emissions and their associated cost is due to

the projected future reduction in carbon intensity of electricity in the US, and the consideration of

a potential future price on carbon, which escalates over time, in a scenario developed by [88]. The

cost function was originally adapted from that used by [3]. Note that the framework’s approach

is generally extensible to other cost functions based on energy consumption. Table 5.1 shows a

summary of values of parameters used in the LCC calculation.

5.3.2 Prototypical district

An exhaustive search, considering all potential thermal network configurations, was per-

formed for a prototypical urban district in order to evaluate the performance of the MST heuristic

and the implementation of PSO. The prototypical district consisted of three multifamily buildings,

a retail building, and a hospital. An energy model in Modelica was used to calculate the energy

use associated with the district thermal energy systems. Modelica is an equation-based, acausal

modeling language that is often used for representing physical systems [36]. The energy model was
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Table 5.1: Summary of values of economic parameters used in LCC calculation.

Parameter Value Units Source

Discount rate (%) 3% NA [3]

Electricity cost, base year 27.8 $
GJ [77]

Natural gas cost, base year 6.48 $
GJ [77]

Carbon cost, base year 20.0 $
mt [88]

Piping and trenching cost 548 $
m [26]

extended from one developed by [3]. The district thermal energy system modeled operated in a

two-pipe configuration, with the “warm pipe” at 26 ◦C, and the “cool pipe” at 16 ◦C. A central

ground-source heat pump controlled the network temperature.

The U.S. Department of Energy’s Prototype Building Models, which are intended to be

representative of the characteristics of common commercial building types in the US, and are

available in EnergyPlus format, were used to generate the building load profiles [35]. The Prototype

Building Models are adapted from the Commercial Reference Building Models, whose development

is documented in [101]. The building types were selected in order to create a sufficient level of

thermal load diversity, based on the value of a metric proposed by [12]. Higher levels of thermal

load diversity in a district increase the potential level of source energy use intensity reductions from

a 5GDHC system [12], due to the ability of connected buildings to “offset” each other’s loads. For

purposes of calculating pipe lengths, these buildings were plotted on an existing block in Golden,

Colorado. Figure 5.2 shows a rendering of the district for illustrative purposes. Note that this

district was not intended to represent actual buildings at that location.

Since the life cycle cost calculation includes the HVAC energy use of all buildings in the

prototypical district, whether or not they are tied to the DES in a particular scenario, a separate

energy model is required to represent each building in its “DES-tied” and “independent” cases. In
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Table 5.2: Summary of characteristics of prototypical buildings.

Building
Floor Area

m2 Individual HVAC System

Hospital 22,436 Variable-air volume reheat
system served by water-cooled
chillers and hot water boilers

Multifamily 3,120 Zone-level direct-expansion
cooling and gas heating

Retail 2,295 Roof-top units with DX cool-
ing and gas heating

the “DES-tied” cases, the HVAC systems in the building models were modified to be compatible

with hydronic systems. The existing building-level HVAC equipment was replaced with water-

source heat pumps. In the “independent” case, the HVAC systems present in the prototype building

models were preserved. Table 5.2 summarizes attributes of the prototypical buildings considered. In

order to integrate the building energy models with the district model in a computationally efficient

manner, data-driven metamodels based on the physics-based models were used to represent the

building-level HVAC energy use. The Prototype Building models were used to generate a data set

over a sweep of parameter values, and random forest models were trained on the data using the

Metamodeling Framework developed by [31].

5.3.3 Evaluation of minimal spanning tree heuristic

An exhaustive search, evaluating the life cycle cost of each potential network configuration

corresponding to the five-building prototypical district (a total of 30,770 possible configurations),

was performed in order to validate the MST heuristic. For each possible subset of connected

buildings, the life cycle cost of the minimal spanning tree network was compared to that of all other

possible networks to determine if, in fact, the minimal spanning tree corresponded to the least-cost

network. There are thirty-two such subsets, including the “null set”, in which all buildings are

served by independent systems.
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Figure 5.2: Prototypical district for evaluation of MST heuristic and PSO implementation, with
the prototypical hospital building shown in green, the prototypical multi-family buildings shown in
blue, the prototypical retail building shown in red, and the central plant in brown.
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5.3.4 Evaluation of particle swarm optimization

An implementation of the PSO algorithm was evaluated, through comparison of the solution

determined by the algorithm to the “ground truth” determined by an exhaustive search of all

possible scenarios. This was performed for six cases, distinguished by values of key parameters in

the objective function (life cycle cost), in order to affirm the robustness of the conclusion. Parameter

values such as costs for energy and carbon in the objective function effectively “weight” different

components of the life cycle cost, and thus, varying them potentially alters the solution to the

problem, making these changes meaningful extensions of the ground-truth data set.

For programmatic implementation, which was necessary for the evaluation of PSO, the con-

straints to the optimization problem were formulated in a slightly different manner than previously

described. (The objective function was formulated as shown in Eqn. 5.4.) The constraints were

implemented in the following manner:

(1) For i, j ∈ {1 . . . n+ 1}, such that j > i,Ai,j = Li+j−1

(2)
∑n+1

i=1,j=1 Ai,j = 0 or
∑n+1

j=1 A1,j ≥ 1 and
∑m−1

k=0 Bk is positive

where node 1 corresponds to the central plant, and B is an adjacency matrix of dimension m

that has been constructed to represent the thermal connectivity of only the loads served by the

DES, with Bi,i = 1 for all ∀i ∈ {1 . . .m}. Recall that a “positive” matrix is one in which all

elements are greater than zero. This constraint corresponds to confirming that either there are no

connected loads, or, if there are, a modified version of the adjacency matrix (representing just the

connected loads), is irreducible. Since this modified adjacency matrix has been constructed to have

values of unity along the diagonal, this is equivalent to representing a connected graph [5]. Thus,

constraint 2 above effectively ensures that any candidate solution conforms to constraint 3 in Eqn.

5.4. The constraint was implemented through returning a high “penalty” value of the cost function
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for candidate solutions that violated it. This approach is consistent with that taken by [102], as

well as other authors. Constraints 2 and 4 from Eqn. 5.4 are incorporated implicitly, through the

approach by which candidate solutions are interpreted in this context.

For each valid candidate solution, the energy model (in FMU format) was modified to rep-

resent the thermal network connectivity corresponding to the candidate, using the PyFMI Python

package. The PyFMI package was then used to simulate the model [103]. The energy consumption

values calculated by the simulation, and the static LCC parameter values were then used to calcu-

late the life cycle cost. Details of the convergence criteria and other aspects of the implementation

are discussed in more detail in the following subsection.

Implementation of particle swarm optimization The formulation of the PSO algo-

rithm for a problem with discrete, binary, variables was implemented, using the PySwarms package

in Python [41]. For each of the six sets of LCC parameter values considered, the PSO algorithm

was executed for a fixed number of iterations, in order to form a consistent basis of comparison.

Comparison of the performance of implementations of PSO based on the solution returned after a

fixed number of iterations is consistent with the approach taken by [40], among others. Based on the

conclusions of past studies that the relative performance of gbest and lbest is problem-dependent,

both forms of the PSO algorithm were initially evaluated for this problem. The lbest algorithm was

evaluated using a ring topology, based on the general recommendation of [104]. In the evaluation

of lbest, three neighborhood sizes (25%, 50%, and 75% of the swarm size) were considered. These

swarm sizes are consistent with the range recommended by the work of [105]. In past studies, the

performance of the PSO algorithm has been evaluated based on the best value for the objective

function returned after a fixed number of iterations [106], and, additionally, on the number of it-

erations required for the algorithm to reach a certain criteria value of the objective function [107].

In this case, since all implementations of the algorithm succeeded in returning the solution to the

optimization problem within the considered number of iterations, a selection was made based on

the fraction of the total number of iterations required for convergence to the solution. Due to the
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superior performance on this metric of the lbest implementation with a neighborhood size equal to

25% of the swarm size, it was selected for implementation in the full analysis. As a proportion of

the swarm size, the size of this neighborhood is consistent with the recommendations of [105] based

on an empirical analysis. In an initial evaluation of the particle swarm algorithm, it was observed

that, in the absence of any control of consideration of duplicate values, a significant proportion (as

high as 60%) of values considered were duplicates. Consistent with the work of [102] and [108], a

“taboo list” was implemented. In this work, the “taboo list” served to improve the computational

efficiency by simply “looking up” the already-determined objective function value for the repeated

solution and returning it, instead of re-evaluating the cost function. The repeated value was not

penalized with a high value of the cost function.

In this implementation of PSO, the cognitive and social parameters were set such that c1 =

c2 = 1.7, based on guidance from [104] that c1 = c2 and from [109] that 1.4 ≤ c1, c2 ≤ 2. The

work of [104] reports that the values of the cognitive and social parameters are generally static, and

determined empirically. Additionally, an empirical study by [110] demonstrated that fixed values

for the cognitive and social parameters resulted in better performance than the use of dynamic

values. The inertia weight w was set to a fixed value of 0.85 based on a recommendation by [104]

that 1 > w > 0.5(c1 + c2) − 1. The use of c1 = c2, the selection of a fixed value for w and the

magnitudes of c1, c2 and w are also consistent with the approach taken by other studies, including

that of [105].

In the literature, swarm sizes ranging from 15 to 50 particles have been reported ([102],

[97], [40], [105], [111], among others). Swarm sizes of both ten and twenty particles were initially

evaluated in this study, and the algorithm’s optimization performance was similar in both cases.

(See the Appendix for more details of this initial evaluation.) To improve the efficiency of the

analysis, a swarm size of 20 particles was used, and evaluation of the particles was executed in

parallel.

Based on the work of [112], a threshold for the CV-RMSE of the objective function values for

the swarm relative to that of the best objective function thus far was implemented as a convergence
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criterion, with CV-RMSE and RMSE defined as shown in Eqn. 5.5:

RMSE =

√∑n
i=1(yi − obest)2

n
(5.5)

CV −RMSE =
RMSE

var(~y)

where ~y contains the objective function values of the swarm’s particles at the current iteration, obest

represents the best value of the objective function found thus far, n corresponds to the number of

particles in the swarm, and var refers to the variance.

In several trial evaluations of the PSO algorithm, it was observed that the CV-RMSE was

often small in magnitude, and did not change significantly, over the execution of the algorithm–that

is, that while the particles found improved values of the objective function, they did not “converge”

in position over repeated iterations. Thus, an additional criterion for termination of the algorithm

was implemented, based on “stall”, under which the algorithm will terminate if the global best

value of the objective function has not improved for a certain number of iterations. Based on

several test evaluations, the number of iterations to trigger termination based on stall was set at

40% of the maximum number of desired iterations. In this implementation of PSO, the maximum

number of iterations was set at 500.

Selection of life cycle cost parameter values The six scenarios, distinguished by their

parameter values, were selected such that each one resulted in the optimal solution consisting of a

different number of buildings served by the thermal network. These parameter values were selected

by leveraging the Monte Carlo Simulation Framework (MCS Framework) for 5GDHC Systems,

which will be documented in the work of [38]. The MCS Framework performs Monte Carlo analysis

varying the values of parameters in the life cycle cost function, to enhance the extensibility of the

exhaustive search performed for the five-building prototypical district.

For the prototypical district previously introduced, utility costs were generally found to ac-
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count for at least 60% of the LCC across all scenarios. For this reason, parameters related to utility

costs–natural gas and electricity rates–were selected to distinguish the scenarios, in addition to the

carbon intensity of electricity, and the unit cost of piping and trenching. The carbon intensity of

electricity in the US is expected to continue to decline significantly over the next 30 years [88], and

from a review of relevant literature, there is a substantial range in the expected unit cost of piping

and trenching [26]. The considered range of values for the utility costs was selected based on data

from the continental US between 2013 and 2018, and for carbon intensity of electricity, for data

from the continental US between 1990 and 2018 [77]. The range of values for the unit cost of piping

and trenching was selected based on an extensive literature review, including the work of [26], [60],

and [25]. The selected values of parameters for these scenarios are shown in Table 5.3.

Table 5.3: Summary of scenarios for PSO evaluation.

Number of
connected buildings

Elec. cost
$

kWh

Gas cost
$

therm

Elec.
carbon intensity

kg
kWh

Pipe cost
$
m

0 0.14 0.57 0.38 922
1 0.15 0.76 0.44 436
2 0.15 1.25 0.75 324
3 0.12 1.20 1.0 311
4 0.11 1.40 0.76 1130
5 0.09 1.20 0.55 815

5.3.5 Constraint evaluation

The performance of the framework was also evaluated in the context of an additional con-

straint to require a minimum of two direct thermal connections for each connected load, to represent

a requirement for redundancy of supply. This constraint was formulated as shown in Eqn. 5.6:

∀i ∈ {1 . . . n+ 1},
n+1∑
j=1

(Ai,j) 6= 1 (5.6)
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where n+ 1 is the dimension of the adjacency matrix, a square. This constraint ensures that

each considered load has exactly zero thermal connections, or more than one. The framework was

executed for the base case and a subset of the scenarios described in the previous section with this

constraint added, to evaluate its performance under those conditions.

5.4 Results

5.4.1 Evaluation of minimal spanning tree heuristic

For the prototypical district considered, the subset of buildings selected for connection to

the DES was greatly influential on the life cycle cost, much more so than the choice of network by

which a given subset of buildings was connected. Inclusion of the prototypical hospital building

among the connected buildings is necessary in order for a given scenario to have a lower life cycle

cost than that of the “null case”, in which all buildings are served by independent systems. The

prototypical hospital building had a significantly higher thermal load density than the multi-family

or retail buildings, and also has significant internal load diversity. Other studies, including that

of [92], have also concluded that higher internal thermal load diversity, as well as higher district-

level thermal load diversity, contributes to greater reductions in source EUI for 5GDHC systems

relative to independent systems. The hospital is the only building for which a reduction in energy

cost occurs with a connection to the DES, though all buildings exhibit at least a slight reduction

in site- and source-energy use intensity through a connection to the DES. For the prototypical

retail and multi-family buildings, the lower magnitude of this reduction is eclipsed by the higher

unit cost of electricity than natural gas. In the “independent” case, the buildings have natural

gas-fired heating systems, while the DES uses only electricity for heating and cooling. Figure 5.3

plots LCC as a function of network length for all scenarios in the search space, with the scenarios

disaggregated by whether or not the hospital building was connected to the DES. As shown in

Figure 5.3, there is generally a positive correlation between network length and LCC, due to the

fact that the infrastructure cost scales with the network length.



120

Figure 5.4 shows the source energy use intensity (EUI) for HVAC for all scenarios, as a

function of the network length. In this space, the results also show a bifurcation among the scenarios

based on whether or not the hospital building is connected to the DES, with the scenarios in which

the hospital is served by the DES having a significantly lower source EUI for HVAC (approximately

25% lower than in the null case), for the reasons articulated previously. The significantly larger

thermal load intensity of the hospital, and the significant difference in its EUI for the DES-tied

and independent cases, overrides the differences in EUI for the multi-family and retail buildings in

their connected and non-connected states. This result highlights the potential reductions in source

EUI through the use of 5GDHC systems. Figure 5.5 shows a comparison of source EUI for HVAC

for each prototypical building type, for their connected and non-connected states. The reduction

in source HVAC EUI is particularly substantial for the prototypical hospital building in heating

mode, due to the fact that the year-round base cooling load can offset some of this heating load

through the shared condenser loop serving water-source heat pumps in the building. Note that

this HVAC configuration for the prototypical hospital building also eliminates the use of reheat for

temperature control, which also contributes to the heating energy savings.

The exhaustive search confirmed the validity of the MST heuristic. For all possible subsets

of buildings in the prototypical district, the network corresponding to the MST indeed provided

the solution with the least life cycle cost. These results are presented in Figure 5.6, with the “MST

ratio” representing the ratio of the life cycle cost of a given scenario to that of the MST connecting

the same subset of buildings. For MST scenarios, the value of this ratio is naturally unity. The

fact that this ratio never takes on a value less than one demonstrates the validity of the heuristic.

5.4.2 Evaluation of particle swarm optimization

A summary of results for three of the sets of parameter values considered (corresponding to

0, 3, and 5 connected buildings, respectively), are shown in Figures 5.7, 5.8, 5.9. The minimum

value in the current swarm and the global minimum thus far, as well as the “ground truth” value,

and the maximum value in the search space, are plotted as a function of the number of iterations.
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Figure 5.3: Life cycle cost for all scenarios in search space, also presented in [100].
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Figure 5.4: Source HVAC EUI for all scenarios in search space, also presented in [100].

Figure 5.5: Source HVAC EUI for each prototypical building type, also presented in [100].
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Figure 5.6: Comparison of MST ratio for all scenarios, also presented in [100].
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(The scenarios are identified based on the number of connected buildings in the optimal case, with

“Scenario 0” corresponding to all buildings having independent systems.) As expected, the global

minimum value is monotonically decreasing. In all the scenarios considered, the global best value

quickly approached the “ground truth” value, within the first 100 iterations.

In Scenarios 3 and 5, the variation in the swarm minima is small compared with the range

between the minimum and maximum values of life cycle cost in the search space. In all scenarios,

the swarm minimum did not consistently decrease as the algorithm progressed. This behavior is

inherent in the structure of the PSO algorithm to balance exploration of the search space, with

exploitation of a “fruitful” area. By definition, once the algorithm has identified what is in fact

the “ground truth” solution, it will be impossible to identify a better one, and the algorithm will

continue to “explore” other areas of the search space. As observed in the initial evaluations of PSO

in this work, and has also been observed by other authors, including [102], the algorithm frequently

“returned” to solutions that previously were the minimum value of the swarm, including that

corresponding to the ultimate solution. Note that though the optimal network identified in each

of the scenarios considered is equivalent to that corresponding to the “ground truth” solution, the

calculated values of the objective function were slightly different, due to rounding in the parameter

values. In all cases considered, the algorithm terminated due to the stall criteria being met.

5.4.3 Constraint evaluation

A summary of results for three of the sets of parameter values considered for the analysis of

an additional constraint (corresponding to the base case, Scenario 3, and Scenario 5, respectively),

are shown in Figures 5.10, 5.11, and 5.12. The additional constrained required at least two separate

thermal connections for each connected building, which could provide added resiliency to equipment

failures. The minimum value in the current swarm and the global minimum thus far, as well as the

“ground truth” value, with the inclusion of the constraint, and the maximum value in the search

space (compliant with the constraint), are plotted as a function of the number of iterations. The

optimal value in absence of the constraint is also shown for reference.
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Figure 5.7: Best values over first 100 iterations, implementation for Scenario 0.

Figure 5.8: Best values over first 100 iterations, implementation for Scenario 3.
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Figure 5.9: Best values over first 100 iterations, implementation for Scenario 5.
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For all three sets of parameter values considered, the algorithm terminated due to stall, and

reached the solution it ultimately returned within the first 100 iterations. As shown in Figures

5.10, 5.11, and 5.12, the inclusion of the additional constraint did not significantly increase the

life cycle cost associated with the optimal solution. The life cycle cost “penalty” associated with

enforcing this constraint ranged from 1.1% to 3.4% for the three sets of parameter values considered.

For all three cases considered, the optimal solution with the additional constraint (“constrained

optimal”) was topologically similarly to the optimal solution without the constraint (“unconstrained

optimal”).

For the base case, the constrained optimal solution involved the connection of an additional

load, and two additional thermal connections. (The fact that the constrained optimal solution en-

tailed the connection of an additional load is an artifact of how the search space was defined–such

that “duplicate” thermal connections were not permitted–and that the unconstrained optimum in

the base case entailed the connection of a single load.) For Scenario 3, the constrained optimal

solution involved the connection of one fewer load, and the same number of thermal connections,

though the connections were greater in total length. (Note that another candidate solution would

have complied with the constraints and connected the same loads, for an incremental “penalty”

of less than 0.2% of life cycle cost.) For Scenario 5, the constrained optimal solution involved the

same number of connected loads, and an additional thermal connection. The minimal “penalty”

associated with compliance with this constraint is expected due to the fact that constraint compli-

ance requires a marginal increase in the infrastructure cost, which is a limited fraction of the overall

life cycle cost. For example, in the case of Scenario 5, with the most extensive network, constraint

compliance entails an increase of 17% of the network length, and thus also, network cost, while the

network cost accounts for only 11% of the overall life cycle cost.

With the addition of the constraint, for the three sets of parameter values evaluated, the

framework successfully identified the “ground truth” optimal solution, or a “near-optimal” solution

within 1% of the objective function value of the ground truth. For the base case, the solution

returned was near-optimal, and for Scenarios 3 and 5, the solution returned was optimal. Thus,
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in Figures 5.11 and 5.12, the line corresponding to the global best becomes coincident with the

ground truth.

5.4.4 Value of topology optimization

For each of the six sets of parameter values considered in the evaluation of PSO, there is a

significant range of associated lifetime carbon emissions and life cycle cost, when statistical outliers

are included, as well as significant variation between scenarios. Note that the energy consumption

for each case remains the same across scenarios, as the scenarios are distinguished in utility rates,

carbon intensity of electricity, and unit cost of infrastructure. Each of the scenarios represents

a set of circumstances that is reasonably likely to occur in the United States, and thus, forms a

reasonable basis for quantifying benefits of network topology optimization.

Figure 5.13 shows a boxplot depicting the variation in associated lifetime carbon emissions

across scenarios and the base case. The variation in lifetime carbon emissions among the scenarios

considered is due to the differing rates of carbon intensity of electricity. The variation in carbon

intensity of electricity has the effect of scaling the carbon emissions due to electricity use, which

are then summed with the carbon emissions attributable to natural gas. The scenarios considering

the highest carbon intensity for electricity (Scenario 3 has the highest value for this parameter,

at 1.027 kg/kWh), have the least range of carbon emissions within the scenario, since the more

carbon-intense electricity serves to reduce the difference in emissions among scenarios due to their

differing levels of reliance on natural gas. Scenario 0, which has the least carbon-intense electricity

(at 0.379 kg/kWh), has the widest range in carbon emissions within the scenario.

The variation in life cycle cost among the scenarios considered is due to differences in utility

rates and infrastructure unit costs, as well as variation in carbon intensity of electricity, which

influences the amount of carbon tax accrued. Figure 5.14 shows a boxplot depicting the variation

in associated life cycle cost across scenarios and the base case. The wide variation in life cycle

cost, carbon emissions, and source EUI among the network configurations in the search space

motivates the use of topology optimization. (Note that the energy consumption of a given network
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Figure 5.10: Best values over first 100 iterations, implementation for base case, with additional
constraint.

Figure 5.11: Best values over first 100 iterations, implementation for Scenario 3, with additional
constraint.
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Figure 5.12: Best values over first 100 iterations, implementation for Scenario 5 with additional
constraint.

Figure 5.13: Variation in lifetime carbon emissions across scenarios.
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Figure 5.14: Variation in life cycle cost across scenarios.
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configuration remain the same across all scenarios considered, and Figure 5.4 shows the range of

source EUI for all potential network configurations.) The network configuration with the minimum

source EUI has a value that is 28% less than that of the maximum source EUI in the search space.

Among the six scenarios considered and the base case, the median range of lifetime carbon emissions

is 9.8 megatons, or about 40% of the overall maximum value. Among those same scenarios, the

median range of life cycle cost is $1.64 million, or about 26% of the maximum value. Thus, the

use of the framework has the potential to provide engineers and planners with opportunities for

significant savings in life cycle cost, energy, and carbon emissions.

5.5 Discussion

While the evaluation of the MST heuristic was performed for a particular set of conditions,

it is expected that the validation result will be extensible to other climate zones, spatial densities,

and building load densities, among those in the range commonly encountered in urban districts,

since the results rest on the fact that networks with added thermal connections fail to provide

significant enough energy savings benefits to outweigh the additional infrastructure cost. For other

5GDHC system configurations (such as those that incorporate series connections to the DES), the

MST validation may not be extensible, as series configurations result in greater variation in supply

temperature along the network length.

It is also expected that the validation of the use of the MST heuristic and PSO are extensible

to a cost function including electric demand charges. The effect of the consideration of demand

charges in the cost function is expected to increase costs for both the “connected” and “indepen-

dent” states, and more significantly for the “connected” states, due to the use of electrified heating.

As discussed previously, the validation of the MST heuristic rests on the lack of compelling energy

efficiency benefits from a greater number of network connections, a comparison which is not ex-

pected to change if demand charges were considered. The performance of the PSO algorithm is

also tied to the nature of the search space, which is characterized by a greater influence on life cycle

cost from the selection of a subset of buildings than the network by which they are connected, a
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dynamic that is not expected to be altered by the consideration of a demand charge. However, the

cost function implemented in the Topology Optimization Framework could be easily modified to

account for consideration of a demand charge, or a time-of-use electric rate structure.

Uncertainty exists regarding the trajectory of future costs for electricity and natural gas. An

increase in electricity costs relative to those of natural gas would further exacerbate the economic

“penalty” observed for heating electrification. Different future escalation rates (positive or negative)

in natural gas or electricity rates than those considered in this analysis are not expected to alter

the conclusion regarding the validity of the MST heuristic and PSO in the context of this problem.

The future trajectory of electric and natural gas rates is not expected to result in energy efficiency

benefits associated with the presence of additional thermal connections (which would change the

conclusion regarding the MST heuristic) or significantly change the nature of the “search space” of

life cycle cost as a function of the adjacency matrix elements. A higher disparity between electric

and natural gas rates in the future would likely have the effect of further emphasizing the trend

already observed in the search space of the greater influence of the selection of connected loads

(through their energy costs) on life cycle cost than the network by which a set of buildings is

connected.

The results of this analysis, consistent with that of past work, confirm that buildings with a

higher degree of internal load diversity exhibit greater reductions in HVAC source EUI through a

connection to a 5GDHC system relative to independent systems. A variety of prototypical buildings

represented (in this case, a multifamily building, hospital, and retail building) were shown to exhibit

at least some reduction in HVAC source EUI through a connection to a 5GDHC system. This is

consistent with the validity of the thermal load diversity metric (proposed by [12]) used to select

the collection of prototypical buildings.

Based on the results of the evaluation of the MST heuristic and PSO, the framework leverages

both techniques to address the network topology optimization problem. The optimization problem
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is formulated as follows:

min
~L
Cpipes + CelecUPVelec(Ede +

n∑
i=1

Ebe,i) + CgasUPVgas

n∑
j=1

Ebg,j

+ UPVCO2

30∑
t=1

mCO2(t)CCO2(t)

(5.7)

subject to:

(1) Li = 1 if building i is connected to the DES, and Li = 0 otherwise

(2) If there exists a pipe directly thermally connecting building i and building j, Ai,j = 1. Other-

wise, Ai,j = 0.

(3) If
∑n+1

j=1

∑n+1
i=1 Ai,j ≥ 1,

∑n+1
j=1 A1,j ≥ 1

(4) ∀i, j ∈ {1 . . . n+ 1}, Ai,j = Aj,i.

where ~L is now a vector of n+ 1 dimensions, corresponding to the total number of network nodes

considered, for each of the buildings and the centralized heat pump. The use of the MST heuristic

to determine the network connectivity allows the dimensionality of the problem to be reduced.

Constraint 3 ensures that if any load is connected to the network in a candidate solution, the

centralized heat pump is also connected. By definition, an MST network is a connected graph,

and thus this constraint is now sufficient to ensure network connectivity. Constraints 2 and 4 are

incorporated implicitly, through the approach by which candidate solutions are interpreted in this

context.

Prim’s Algorithm is used to construct the adjacency matrix of the minimal spanning tree

graph corresponding to ~L [113]. PSO is implemented with the same parameter values as described

previously. In the same manner as described in the evaluation of PSO, PyFMI is used to modify

the FMU energy model to match the network connectivity associated with the candidate solution,

and simulate the model. The energy consumption values from the model simulation, as well as the

fixed parameter values, are then used to calculate the LCC. A diagram illustrating the workflow of
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Figure 5.15: Diagram illustrating the workflow of the presented Topology Optimization Framework.

Figure 5.16: Comparison of growth in search space as a function of number of buildings considered,
presented also in [6].
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the framework is shown in Figure 5.15. The use of the MST heuristic significantly reduces the size

of the “search space” and thus improves the computational efficiency of the framework. Figure 5.16

shows the growth in the size of the search space as a function of the number of buildings considered,

for all potential solutions, and for MST networks only.

The analysis of an additional constraint, intended to promote redundancy of supply, shows

that a requirement for each connected load to be served by at least two thermal connections can

be enforced at a life cycle cost penalty of less than 3.5%, for the three sets of parameter values

considered. The value of such redundancy to a project could be quantified in terms of the value of

potential lost operations, and compared to this margin.

5.6 Conclusion

An exhaustive search evaluating the life cycle cost of all potential thermal network config-

urations for a five-building prototypical district (more than 30,000 configurations) highlights the

motivation for network topology optimization in the context of 5GDHC systems. The scenarios

have a range of district-level HVAC source EUI of 28% of the maximum value. An analysis of six

different sets of realistic values of high-level LCC parameters revealed a median range of carbon

emissions across the scenarios of 40% of the overall maximum value, and a median range of life

cycle cost of 26% of the maximum value. Thus, network topology optimization has the potential

to facilitate significant reductions in life cycle cost, source EUI, and carbon emissions.

To advance this, a network Topology Optimization Framework has been developed for district

thermal energy systems, to address the question “Given a set of buildings with known locations

and loads, what is the optimal subset of buildings, if any, to connect to a district thermal energy

system, and by what subset should they be connected, to minimize life cycle cost?” The framework

is implemented in Python, and takes an energy model of a district thermal energy system in FMU

format as an input. The framework uses particle swarm optimization (PSO) to determine the

optimal subset of buildings to connect to a DES, and the minimal spanning tree (MST) heuristic

to identify the network by which to connect them. In this paper, the use of PSO and the MST
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heuristic have been validated through the exhaustive search for the five-building prototypical dis-

trict, extended with six different sets of realistic parameter values. The framework has also been

demonstrated to work effectively with the addition of a constraint to promote redundancy of supply.

It is anticipated that the framework can facilitate the adoption of 5GDHC systems in appropriate

applications, and thus, opportunities for reductions in energy use and carbon emissions.



Chapter 6

Development of the Topology Optimization Framework

The Topology Optimization Framework is a software module that is intended for use by both

researchers and practitioners who are evaluating or designing district thermal energy systems. The

Topology Optimization Framework will determine, for a set of buildings with known locations and

loads, the optimal subset (if any) of buildings to be served by a district thermal energy system,

and the optimal network by which the subset should be connected, to minimize life cycle cost.

6.1 Technical approach

The Topology Optimization Framework uses the minimal spanning tree (MST) heuristic to

identify the optimal (with respect to life cycle cost) network by which a given subset of buildings

should be connected, and a version of the particle swarm optimization (PSO) algorithm adapted for

a discrete problem ([39]) to select the optimal subset of buildings to be connected to the network.

The validation of the MST heuristic and PSO for application to this problem, as well as details

of the implementation in the framework, are discussed in Chapters 4 and 5. A constraint related

to network connectivity is enforced through assignment of a high “penalty” value to the objective

function for candidate solutions that violate the constraint. In the context of this research, the

topology optimization problem was investigated with life cycle cost as the objective function. The

Topology Optimization Framework could be easily adapted to use any objective that is a function

of energy consumption, carbon emissions, or life cycle cost.
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6.2 Implementation

The Topology Optimization Framework is implemented in a series of Python scripts, which

will soon be publicly available through a GitHub repository. The framework takes as inputs a

GeoJSON file characterizing the locations of the buildings, and an energy model (in the form of

a functional mock-up unit, or FMU) representing a district thermal energy system serving the

buildings. The energy model is used to calculate the energy consumption associated with HVAC

for all buildings in the district, whether or not they are served by a district thermal energy system

in a given scenario. Thus, the energy model must also calculate the energy consumption associated

with HVAC for a case in which a considered building is served by independent, building-level HVAC

systems. The use of metamodels to represent thermal loads of buildings served by a district thermal

energy system to improve the efficiency of simulation, while preserving accuracy, is recommended,

and the Metamodeling Framework developed by [31] can accomplish this, as well as modeling HVAC

energy use for buildings served by independent systems. See Figure 2.2 for a schematic illustration

of the workflow of the Topology Optimization Framework.

Requirements for inputs to the framework An energy model representing the HVAC

energy consumption of the considered district must be provided in FMU format. FMUs facilitate

the exchange of simulation models in a compact and accessible format. FMUs are generated through

the Functional Mock-Up Interface (FMI), and contain an XML file with definitions of the variables

used, the equations used by the model, expressed in the form of C functions, as well as additional

data that may be required, such as tables of parameter values [114]. Modelica, EnergyPlus, and

other modeling tools support exports of models to FMU format, and the focus of the implementation

of the framework has been on models created in Modelica.

The energy model must be structured so that each thermal connection in the district thermal

energy system can be “enabled” or “disabled” with a binary variable. The energy model must be

configured with the “full mesh” (all possible connections) of thermal connections present, so that
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any possible network configuration can be explored. The model must also be structured so that the

“connectivity status” of each considered building load can be set with a binary variable, so that in

“connected mode” the building is thermally and hydronically tied to the district thermal energy

system, and in “independent mode”, it is served entirely by building-level HVAC systems. The

Modelica language provides a convenient format for implementing such a model. The framework

manipulates the model in FMU format, and uses the PyFMI Python package to set the values of

these binary variables to represent a particular network configuration.

The energy model must output values that are used to evaluate the cost function, includ-

ing the total amounts of electricity and natural gas that are used for HVAC at the district level,

encompassing both buildings served by the district thermal energy system and those with indepen-

dent systems. The framework reads these output values from the .mat output file resulting from

the simulation, using the BuildingsPy Python package [115]. The approach for configuration and

manipulation of the energy model is extended from that of [3].

The framework uses a GeoJSON file representing the physical locations of buildings and a

centralized heat pump for the district to calculate the lengths of thermal connections. GeoJSON

is a commonly used format for encoding geographic data, and can represent points, polygons,

linestrings, and other geometry types [116]. By default, the string names assigned to buildings in

the GeoJSON file are used to infer names for the thermal connectors in the energy model. Both

of these steps can be overriden by a user to manually set the lengths of pipes and their names. A

GeoJSON file can be constructed manually, or generated through online tools, including NREL’s

URBANopt software modules, or the GeoJSON.io interface [117].

Example modeling implementation The energy models used for evaluation and demon-

stration of the framework were extended from one created by [3] in Modelica. These models are

described as an example of how the required energy model could be structured for use by the

framework. The Metamodeling Framework developed by [31] was used to generate data-driven

metamodels for the HVAC energy use by each considered building, in both its “connected” and
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“independent” states. (The training of the metamodels is discussed in more detail in Chapter 3.)

For the “connected” state, the supply water temperature from the network is one of the model co-

variates. In the Modelica model, each considered building load is represented, and associated with

it is a binary variable representing its connectivity status. For greater computational efficiency,

the metamodels are pre-compiled and heating and cooling energy use (as a function of network

water temperature, where applicable) at each time step is cataloged in a table embedded in the

district model. At each time step, the district model “looks up” the heating and cooling energy con-

sumption of each building, using the metamodel for the appropriate state. Each possible thermal

connection is represented in the district model, and associated with a binary variable that renders

it “active” or “inactive,” to facilitate the representation of all potential network configurations.

Computational intensity The use of the minimal spanning tree heuristic significantly

reduces the size of the “search space” for the topology optimization problem, and thus, the com-

putational intensity. The Topology Optimization Framework parallelized the model simulation

task across workers on a given compute node and can be implemented in a high-performance

computing (HPC) environment. The computational intensity of the execution of the framework

depends primarily on the computational intensity of the underlying DES model, and the number

of buildings considered in a prototypical district. For a seven-building prototypical district, and a

computationally-intensive DES model (requiring approximately 30 minutes of simulation time), the

full execution of the topology optimization framework required around one day of compute time

parallelized in an HPC environment.

6.3 Integration with related tools

The topology optimization framework will soon be available as a module in the URBANopt

advanced analytics platform developed by NREL [32]. The functionality of the URBANopt plat-

form is discussed in more detail in Chapter 1. As part of URBANopt, the topology optimization

framework will leverage the OpenStudio Analysis Framework [118] (OSAF) for cloud-based sim-
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ulation. Figure 6.1 shows a schematic illustration of how this workflow could be configured. In

Figure 6.1, files are shown in light green, software modules in yellow, and measures (scripts that

manipulate input files) in red. The processes associated with the topology optimization module

are enclosed in a yellow rectangle at the left of the figure. Also shown is a parallel workflow path

(terminating at the “eplusout.sql” file), that can modify and simulate the energy model without

performing network topology optimization.

The GeoJSON-to-Modelica Translator (GMT) is a software module that programmatically

configures Modelica models of district thermal energy systems based on high-level user inputs [119],

in the form of a GeoJSON and a system design parameters file. A model generated by the GMT

can be exported as an FMU, and used as an input to the topology optimization module. The

OSAF will use an optimization algorithm selected by the user to generate candidate solutions to

the topology optimization problem, and modify and simulate the FMU energy model to evaluate

them. The OSAF’s operations, such as the choice of algorithm and related hyper-parameters, can be

configured through the “OSAF analysis JSON” file. This process will continue until a convergence

or termination criterion is met. The energy model and the set of inputs used to generate it can be

modified programmatically at several stages: through a measure acting on the JSON file (“JSON

measure”), a measure acting on the Modelica model (“Modelica measure”) or a measure acting on

the model in FMU form (“FMU measure”). The outputs can be processed through the use of a

reporting measure.
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Figure 6.1: Schematic illustration of workflow of the topology optimization module in the context
of URBANOpt.



Chapter 7

Demonstration of the topology optimization framework

This chapter is based on a paper that will be presented as:

A. Allen, G. Henze, K. Baker, G. Pavlak. “Quantification of the Benefits of Topology Optimization

for Advanced District Thermal Energy Systems,” to be presented at 2021 SDEWES Conference,

October 2021.
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7.1 Abstract

In this paper, a network topology optimization framework was developed and applied to

a prototypical district to determine the best design solutions for a district thermal energy system

with respect to life cycle cost. The analysis focused on an advanced, fifth-generation district system

operating at near-ambient temperatures. The framework leverages a particle swarm optimization

algorithm and a minimal spanning tree heuristic to select an optimal subset of buildings and

optimal network configuration. The topology optimization approach identified solutions resulting

in life cycle cost savings of 14% to 72% (depending on the reference case) relative to designs based

on heuristics. Analysis of the results indicates that advanced district thermal energy systems have

the potential to achieve significant reductions in energy use and emissions relative to building-level

systems, but face obstacles to cost-competitiveness due to the prevalence of natural gas heating

and low natural gas costs in the U.S.

7.2 Introduction

This work seeks to evaluate and quantify the potential benefits of network topology opti-

mization in the design of a district thermal energy system operating at near-ambient temperatures,

commonly referred to also as a fifth-generation system. In this context, topology optimization is

used to address the questions, “Given an urban district with known building locations and loads,

what is the best subset of buildings to connect to a district thermal energy system to minimize

life cycle cost, and by what thermal network should that subset be connected?” A novel topology

optimization framework is then applied to a prototypical new construction district in the setting

of a university campus.

7.2.1 Fifth-generation district heating and cooling systems

The evolution of district thermal energy systems is often characterized by “generations”, with

systems progressing from the use of steam to water as a working fluid for heating, and then to the
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use of water at more moderate temperatures, over time [4]. Fifth-generation district heating and

cooling (5GDHC) systems are characterized by their use of water at near-ambient temperatures

(often in the range of 15-25◦C) and the use of water-source heat pumps to meet thermal loads at

connected buildings, using the district network as both a heat source and a sink [7]. Through their

use of more moderate water temperatures, 5GDHC systems facilitate the beneficial electrification

of heating. 5GDHC systems also offer potential reductions in energy consumption and carbon

emissions through their ability to facilitate the integration of renewable thermal and waste heat

sources, as well as the reduction of unwanted heat losses and gains through the distribution system

[4].

The use of network topology optimization is especially valuable in the context of 5GDHC sys-

tems. The moderate water temperatures characteristic of 5GDHC systems facilitate the exchange

of heat (and heat rejection) among connected buildings and motivate consideration of network

configurations outside of the typical ring or radial networks used by older generations of district

systems [3]. This dramatically increases the “search space” of potential network configurations

under consideration, motivating the need for a topology optimization approach in order to select

the best solution, as the number of potential configurations grows factorially with the number of

buildings in the district. Figure 7.1 illustrates this conceptually for a prototypical district of only

three buildings, which creates fifty-four potential network configurations. The size of the search

space grows quickly to more than 30,000 potential configurations for a district of five buildings.

Previous work by the authors has also demonstrated the motivation for network topology op-

timization for 5GDHC systems, identifying a reduction in life cycle cost on the order of 2/3 by the

optimal, relative to non-optimal, network configurations [6], in the context of a small prototypical

district. Previous work by the authors has also validated the use of a heuristic for the topology

optimization problem [120]. This study extends this previous work by creating a network topol-

ogy optimization framework, which implements the heuristic, in conjunction with an optimization

algorithm, to address the problem in a computationally efficient manner.

The work of [4] says that the increased adoption of 5GDHC systems in the context of in-
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Figure 7.1: Illustration of all potential thermal network configurations associated with three build-
ings (represented with blue nodes) and a central plant (represented with a red node), originally
presented in [6].
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creasing penetration of renewable electric generation will require “advanced energy system analysis

tools of coherent systems.” Past work in the realm of topology optimization for district thermal

energy systems has primarily focused on heating-only systems, with the work of [24] addressing a

low-temperature district heating network, and the work of [25] addressing a “cascade” district heat-

ing system operating at two different temperatures. The work of [26] performed network topology

optimization for a third-generation district heating and cooling system, with an objective function

based on costs for piping and trenching and certain operating costs, finding a limited reduction

in life cycle cost, though a more significant benefit in internal rate of return, for the life cycle

cost-optimal network, relative to the best network with respect to initial cost. The work of [26]

considered only the network configuration, and not the selection of connected loads. Additionally,

[26] treated the energy use associated with centralized equipment as a static condition.

Past studies have also addressed topology optimization with a multi-objective approach. The

work of [121] sought to optimize the network configuration and pipe diameter of an existing district

heating network in Turin, for the objectives of investment cost and robustness, with robustness de-

fined in terms of minimal fluctuation of minimum supply pressure, using an ε-constrained approach.

The work of [122] performed optimization for the network topology and selection of primary equip-

ment for a district heating network, for the objectives of carbon emissions and life cycle cost, also

using an ε-constrained approach, and identified reductions in carbon emissions of 23% through the

use of a district heating network, for the same investment cost as building-level heating systems.

The present work is novel because it addresses both aspects of topology optimization (selection of

a subset of buildings and of a network configuration, a need highlighted by [26]) and is presented

in the context of a 5GDHC system with bi-directional thermal and mass flow, which presents the

greatest potential benefits for this approach.

7.2.2 Optimization approaches and relevant concepts from graph theory

In the context of optimization problems, it is convenient to represent thermal networks as

“undirected graphs.” An “undirected graph” is a set of nodes (vertices) and edges, which can be
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defined by the two vertices that they connect [5]. A relevant concept is a graph known as a “minimal

spanning tree (MST),” in which a given set of vertices is connected with the least total edge length,

and there exists exactly one path between each pair of nodes [5] . In the graph theoretical context,

a thermal network can be represented with an “adjacency matrix,” which is a square matrix with

its dimension corresponding to the number of nodes in the graph. The matrix has binary values,

with a value of one in a given position if there exists a connection between the corresponding nodes,

and a value of zero otherwise [5].

Particle swarm optimization (PSO) is a method for optimization of continuous, non-convex

functions developed by [37]. The algorithm does not rely on an explicit definition of the objective

function or its derivative. While PSO does not provide a guarantee of convergence to a global

optimum, the characteristics of PSO have been shown to mitigate the risk of becoming “stuck”

at a local minimum [112] relative to other approaches for non-convex problems. Conceptually,

PSO emulates the behavior of animals in the natural world acting as part of a swarm and being

attracted towards a location that satisfies an objective through both each individual’s knowledge

and the group’s collective knowledge of the location and terrain. In the context of optimization, the

individuals represent vectors that are potential solutions, and the goal is to minimize an objective

function. Each iteration of the algorithm involves evaluation of a “swarm” of these candidate

solutions, termed particles. At each iteration of the algorithm, the value of each candidate solution,

represented with the location of a particle in the solution space, is updated, using a “velocity” that

seeks to drive each particle towards both its prior best solution, and the prior best solution of the

swarm as a whole. The velocity also incorporates a stochastic component [37]. In the velocity

update step, the current velocity is multiplied by a scalar, known as the “inertia weight,” which

controls the influence of the existing velocity in directing the motion of the particle through the

search space [37].

In the PSO algorithm, the value of the cognitive parameter (c1) scales the degree to which

a particle is attracted back to its prior best position, and the value of the social parameter (c2)

scales the degree to which a particle is attracted back to the prior best position of the group. The
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set of other particles with which a given particle can “communicate” knowledge of best positions

is described as a “neighborhood” [37]. When this “neighborhood” consists of a number of particles

that is less than the swarm size at a given iteration, the approach is called “local best” (lbest)

PSO. When each particle can communicate with all others, the approach is known as “global best”

(gbest) PSO.

7.2.3 Case study definition

The prototypical district considered in this case study consists of seven buildings: three office

buildings, three multi-family housing buildings, and a restaurant. To provide realism, the general

building types and locations are based on those of real buildings on the campus of the University

of Colorado Boulder (CU Boulder), with some adjustments. CU Boulder is located in a dry, high-

altitude climate with hot summers and cold winters. The intention is not to represent the load

profiles of those buildings exactly, but to reflect the nature of loads that tend to exist in urban

developments. In this case study, the life cycle cost and energy performance of a district thermal

energy system configuration determined through network topology optimization, and a district

thermal energy system serving the prototypical district designed based on high-level metrics that

are often used to assess district energy potential, are compared.

Given the emerging nature of district thermal energy systems operating at near-ambient

temperatures, metrics to assess their techno-economic potential have not yet been widely adopted,

though some authors, including [12], have proposed metrics to assess their energy performance.

Existing metrics for assessing techno-economic potential of district thermal energy systems largely

focus on third-generation (or earlier) versions of district heating systems. Due to their ability to

leverage less costly distribution infrastructure (such as plastic pipes), systems operating at near-

ambient temperatures can potentially be favorable on a life-cycle cost basis at lower load densities

than higher-temperature district heating systems [7]. An annual load-per-area density metric was

used by [87] to evaluate the techno-economic potential for district heating systems in the U.S. Based

on modelled building loads, this prototypical district has an annual heating load density (8.45 GWh
km2 )
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that exceeds the lower value used by [87] as a threshold (5 GWh
km2 ). Another metric used to assess

potential for district heating systems is the linear heating power demand density (LHPDD), with

a lower threshold of 1.25 kW
m often considered [2], with the heating power corresponding to the

system’s installed thermal capacity. The authors of [7] note that operating examples of fifth-

generation systems have values of LHPDD less than this threshold. For this district, the value of

the LHPDD is 0.77 kW
m , which is within the range of values for operating fifth-generation systems

surveyed in [7].

Based on these criteria, interpreted in the context of the expected lower infrastructure costs

for fifth-generation systems, it is concluded that this prototypical district would be a plausible

application for a fifth-generation district thermal energy system, and thus, the inclusion of all

buildings in the prototypical district will serve as the basis for comparison in this case study, in

four different network configurations: radial, ring, the minimal spanning tree, and a full mesh

network with all possible thermal connections present. Ring and radial network configurations are

commonly used in district thermal energy systems, and the minimal spanning tree and full mesh

networks represent the two extremes of network connectivity.

7.3 Methods

In this study, a novel topology optimization framework was applied to a prototypical urban

district, to determine the best potential network configuration for a district thermal energy system

operating at near-ambient temperatures, to minimize life cycle cost. The results of the topology

optimization process were compared with several “base cases” representing network designs deter-

mined through common heuristics. To perform this analysis, an energy model of the district energy

system and the prototypical building loads was applied. The energy models and the topology

optimization framework are discussed in the following sub-sections.
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7.3.1 Building load models

In this study, the U.S. DOE Prototype Building models, with modifications, are used to

represent the building thermal load profiles, for three prototypical building types: a medium of-

fice building (three instances), a multi-family housing building (three instances), and a full-service

restaurant (one instance). The Prototype Building models are designed to represent characteristics

of common commercial building types in the U.S. and are available in formats corresponding to sev-

eral recent energy code standards, and all U.S. climate zones [35]. The Prototype Building models

are adapted from the Commercial Reference Building models, whose development is documented in

[101]. This analysis was performed for the location of Boulder, Colorado, using the 724699 TMY3

weather file (Boulder/Broomfield/Jefferson County AP), and the versions of the prototype building

models that are compliant with 2013 ASHRAE 90.1. for Climate Zone 5B (in which Boulder is

located) were applied.

The prototypical office building has lighting and plug loads reflective of typical office space

and light computer equipment. The prototypical multi-family building consists of dwelling units,

as well as a small office space on the ground floor. The prototypical restaurant building consists

of a kitchen and a dining area, with the kitchen having electric and natural gas-fired equipment

for cooking and food preparation, and reach-in refrigeration cases. For illustration, a schematic

representation of this district is shown in Figure 7.2, and a satellite image of the location shown

in Figure 7.3. Notionally, these prototypical buildings correspond to university administration

buildings, dormitories, and a large cafeteria that exist in this location on the CU Boulder campus.

(Note that a student health center also exists at this location, and a suitable match for this building

type does not currently exist among the DOE Prototype Building models.) It is not expected that

the Prototype Building models would represent the nuances of the operating schedules and load

densities of these particular buildings, but that they would capture some expected elements of the

load diversity (balance between heating and cooling loads) of a plausible new construction district.

New construction also more readily facilitates the drilling of wells tied to the ground-source heat
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Figure 7.2: Prototypical district analysed in this case study, with multi-family buildings shown in
blue, offices in grey, a restaurant in green, and the central plant in red. Note that the rectangles
representing the buildings are not shown to scale for building area.

pump that serves the district thermal energy system considered in this study.

To represent the full scope of potential network configurations, the load of each prototypical

building must be represented for two cases: one in which the building is tied to the district ther-

mal energy system, and one in which the building is served by independent, building-level HVAC

systems. To represent the case in which the building is served by a district thermal energy system,

the HVAC systems in the prototype building models were modified to incorporate water-source

heat pumps tied to the district network. (The modifications were based on OpenStudio measures

developed by [31]. ) To represent the case in which the building was served by independent HVAC

systems, the HVAC systems present in the prototype building model were preserved. Characteris-

tics of the prototype building models applied in this study are summarized in Table 7.1 and Table

7.2. Note that heating and cooling are entirely supplied by electricity for buildings tied to the DES,

whereas the buildings with independent systems have heating supplied primarily by natural gas.

For each of the building energy models considered, it was confirmed that there were fewer than 300

hours annually in which zone-level temperature setpoints were not met, as recommended by [66] .
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Figure 7.3: Satellite image of location considered in this case study, courtesy of Google Earth.

Table 7.1: Envelope characteristics of building load models.

Building Type Floors Floor Area(m2) Envelope

Office 3 4,980

Reinforced
concrete

construction with
built-up roof,

33%
window-to-wall
ratio (WWR)

Multi-family 4 3,130

Steel frame
construction with

built-up roof,
20% WWR

Full-service restaurant 1 510

Steel frame
construction with
attic above wood

joists, 18%
average WWR

(varying by
façade)
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Table 7.2: HVAC system types for independent (“indep”) and district energy system-tied (“DES”)
cases for building models.

Building Type HVAC-Indep. HVAC-DES.

Office

Packaged variable
air volume (VAV)

unit with
direct-expansion
(DX) cooling, gas

heating, and
electric reheat

Zone-level
water-to-air heat

pumps with
electric reheat

Multi-family
Split-system with
DX cooling and

gas heating

Zone-level
water-to-air heat

pumps

Full-service restaurant
Packaged unit

with DX cooling
and gas heating

Zone-level
water-to-air heat

pumps
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7.3.2 District energy system model

A model created in Modelica, an object-oriented, equation-based language for representing

physical systems, was used to calculate the energy consumption associated with the district thermal

energy system [36]. The model was extended from the one in [3]. In this case study, the district

thermal energy system considered operated in a two-pipe configuration, facilitating bi-directional

thermal and mass flow. A centralized ground-source heat pump controlled the loop temperature,

with the “warm pipe” operating at 26 ◦C, and the “cool pipe” at 16 ◦C. Based on ground tem-

peratures for the location, and guidance from [123] regarding design of ground-source heat pump

systems, the model assumed an evaporator temperature for the heat pump of 4.4 ◦C in heating

mode, and a condenser temperature of 21 ◦C in cooling mode. Each building was equipped with an

“energy transfer station” with water-source heat pumps, whose energy consumption was calculated

through the use of the building load model.

7.3.3 Topology optimization framework

The novel topology optimization framework developed by the authors and applied in this

study uses an energy model to determine the “best” configuration of a district thermal energy

system with respect to life cycle cost. The life cycle cost considered encompasses the energy costs

associated with HVAC systems for buildings in the district of interest, the cost of installing the

thermal network itself, and costs associated with a potential future price on carbon. The framework

leverages the PSO algorithm to determine the best subset of buildings (if any) to connect to

the network and applies the MST heuristic to specify the best network by which to connect a

given subset of buildings. The MST minimizes the length of the thermal network, and thus, the

infrastructure cost. The use of the MST heuristic was validated in [120]. Development of the

framework has been documented in [6] and [120].

The PSO algorithm, in its alternate formulation for a problem with discrete, binary variables,

is implemented in the framework using the pyswarms package available in Python [41]. For a
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candidate solution with valid connectivity, the corresponding minimal spanning tree network is

constructed using Prim’s Algorithm [113]. The energy model, in functional mock-up unit (FMU)

format, representing the district thermal energy system, is then modified through the Python

PyFMI package to represent the building and network connectivity corresponding to the candidate

solution [103]. The energy model is simulated (also by leveraging the PyFMI package) and the

outputs, as well as parameter values related to infrastructure and utility costs, are used to evaluate

the cost function. The framework incorporates several termination criteria, including one based

on “stall,” which will terminate the algorithm if the best value of the objective function does not

improve after a fixed number of iterations (in this case, 50% of the maximum number of iterations,

1,000). In this analysis, the algorithm terminated based on stall.

Based on an evaluation of the performance of the PSO algorithm on a similar problem, to

be documented in [124], the lbest version of PSO, with a swarm size (n) of 20 particles, and a

neighbourhood size (k) of 5 particles, was implemented for this study. As a proportion of the

swarm size, the size of this neighbourhood is consistent with the recommendations of [105] based

on an empirical analysis. The values of hyperparameters for the PSO algorithm that were used in

this study, and references used to determine them, are shown in Table 7.3.

Table 7.3: Values of hyperparameters used in configuration of PSO algorithm in this study.

Parameter Value Selected References

c1, c2 1.7 [104], [105], [109]
w 0.85 [104], [105]
n 20 [102], [97], [40]
k 5 [105]

In this case study, the topology optimization framework was configured to perform optimization
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based on the cost function shown in Equation 7.1:

min
A

Cpipes + CelecUPVele(Ede +
n∑

i=1

Ebe,i) + CgasUPVgas

n∑
j=1

Ebg,j

+ UPVCO2

30∑
t=1

mCO2(t)CCO2(t)

(7.1)

where A is the adjacency matrix corresponding to the connectivity of the thermal network,

Cpipes is the cost of the DES infrastructure, Celec and Cgas are the costs of electricity and natural gas

per unit of consumption, UPVele, UPVgas, and UPVCO2 are the uniform present value factors used

to convert an annual cost to the value over the lifetime of the system for electricity, gas, and carbon,

respectively, Ede is the electricity consumption associated with the centralized DES heat pump and

system distribution pumps, Ebe is the electricity consumption for HVAC at a given building, Ebg

is the natural gas consumption for HVAC at a given building, mCO2(t) is the emissions of carbon

dioxide associated with the district’s HVAC energy use for a given year, and CCO2(t) is the unit

cost of carbon dioxide (CO2) emissions in a given year, under a potential future carbon pricing

scenario outlined by [88]. A constraint was imposed to ensure that if any loads were connected

to the network in a given scenario, the centralized heat pump was also connected. The uniform

present value factors, developed by [88], account for projections of future escalation in utility costs,

as well as the time value of money. Note that declining values of carbon intensity for electricity are

used over the project’s lifespan, per a scenario outlined by [88].

The life cycle cost was evaluated over 30 years. The infrastructure cost component consists

of the cost associated with piping and trenching for the thermal network, calculated as a linear

function of the network length. It was assumed that differences in the cost associated with building-

level HVAC equipment for DES-tied or independent scenarios would be negligible relative to the

life cycle cost of the system. This is consistent with the approach taken in [6] and [3]. Note that the

objective function encompasses the energy costs associated with HVAC systems for all buildings in

the prototypical district, whether or not a given building is tied to the district thermal network.
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The building-level HVAC energy use considered encompasses the energy use associated with heating

and cooling coils, heat pumps, and hydronic distribution pumps (if present), and does not include

fan energy use. Table 7.4 shows a summary of values of parameters used in the life cycle cost

calculation. The cost function itself and these values are consistent with those used in [124].

Table 7.4: Values of economic parameters in life cycle cost calculation.

Parameter Value Units Source

Discount rate 3% NA [3]

Electricity cost, base year 27.8 $
GJ [88]

Natural gas cost, base year 6.48 $
GJ [88]

Carbon cost, base year 20.0 $
mt [88]

Pipe cost 548 $
m [26], [89]

7.4 Results and discussion

The application of the topology optimization framework identified design solutions with life

cycle costs significantly lower than that of the designs based on heuristics. Specifically, the topology

optimization framework identified four design solutions with very similar values of life cycle cost,

a value which is 14% lower than that of the best-performing base case (the minimal spanning tree

network), and 72% lower than that of the worst-performing base case (the full mesh network).

Attributes of the solutions determined through the framework, as well as the base case scenarios,

are summarized in Table 7.5. Optimal solutions are numbered in increasing order of associated life

cycle cost. A plot of all the candidate solutions evaluated by the topology optimization framework,

as well as the base cases, in terms of the total network length and life cycle cost, is shown in Figure

3. (Note that two among these best solutions have very similar values of network length, due to the

fact that two buildings in the prototypical district are roughly equidistant from the hypothetical

central plant location.)

As shown in Table 7.5 and Figures 7.4 and 7.5, all four solutions identified through the

topology optimization process entail a limited district thermal energy network (serving at most

two buildings), or no network at all. Of these four solutions with very similar values of LCC, the
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Table 7.5: Summary of optimal solutions and base case scenarios.

Scenario LCC Network
Length
(m)

Con.
Bldgs.

Source
EUI (MJ

m2 )

Opt-1 $979,867 0 0 176.9
Opt-2 $980,377 64 1 170.2
Opt-3 $981,602 65 1 170.3
Opt-4 $982,381 130 2 163.6

Base-Ring $1,254,779 803 7 141.6
Base-Radial $1,430,558 1,136 7 140.4

Base-Full Mesh $3,500,538 4,924 7 139.4
Base-MST $1,137,870 589 7 141.6

one with the least LCC (“Opt-1”) corresponds to the case in which all buildings in the prototypical

district are served by independent HVAC systems. The networks corresponding to the “Opt-2”,

“Opt-3”, and “Opt-4” solutions are visualized in Figures 7.6, 7.7, and 7.8. Note that the Opt-2 and

Opt-3 solutions correspond to the shortest possible networks that can be created to serve at least

one building, and that Opt-4 entails only a marginally longer network. (There are two possible

networks with lengths intermediate to those of Opt-3 and Opt-4, with a marginally higher LCC.)

The nature of these results is consistent with the theme that, though the DES connection provides

a reduction in source energy use intensity for each building type, the energy savings is offset by

the higher unit costs of heating by electricity instead of natural gas, and the infrastructure costs

further compound these higher costs. Thus, in this scenario, the most cost-effective networks are

generally the shortest ones.

The four base case scenarios all result in very similar values of district-level source energy

use intensity and vary chiefly in terms of the associated network length. As discussed in a following

sub-section, this trend is also borne out by the candidate solutions evaluated by the optimization

algorithm, when they are sub-divided based on the number of connected buildings. Due to its

high life cycle cost (driven by the associated infrastructure cost), and lack of benefit in reduction

of source energy use intensity in this case, it appears unlikely that the full mesh network would

be implemented in practice, but it is included among the base case scenarios for completeness, as
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representing one of the extremes of network length (the longest possible network). Ring, radial,

and full mesh networks can also provide benefits in terms of redundancy of supply. Resilience

or robustness were not objectives considered in this analysis, though they may be identified as

important objectives in some applications.

The candidate solutions explored by the optimization algorithm offer insights into the factors

influencing the energy and economic performance of 5GDHC systems in this case. Note that these

candidate solutions represent a subset of the total possible “search space” of network configurations,

and that the stochastic element of the PSO algorithm introduces some randomness into the identi-

fication of candidate solutions. It is useful to characterize the candidate solutions as a function of

the corresponding number of DES-connected buildings, as this significantly influences the life cycle

cost. In this study, the PSO algorithm converged before exploring any potential solutions involving

a connection of all seven buildings in the prototypical district to the DES. For purposes of compar-

ison, the four “base case” scenarios (representing thermal networks connecting all seven buildings

to the DES) are also plotted alongside candidate solutions explored by the optimization algorithm.

Note that while all the candidate solutions explored by the optimization approach correspond to

MST networks, only one of the base case scenarios corresponds to an MST.

Figures 7.9 and 7.10 show, in boxplot form, the variation in overall life cycle cost, and

the energy and infrastructure components specifically, for the candidate solutions evaluated by the

topology optimization framework, and the base cases, sub-divided based on the number of connected

buildings. The case in which all buildings are served by independent systems is represented as a

single point. (For purposes of concision, the “full mesh” base case, which has a significantly higher

infrastructure cost, is not represented on this plot.) Generally, a higher number of connected

buildings results in higher life cycle costs. Though the district thermal energy network results in

reduced source energy use intensity (as will be discussed further in a following sub-section), this

effect is dominated by the higher infrastructure costs associated with network connectivity. As

shown in Figure 7.10, variation in infrastructure cost, corresponding to different network lengths,

explains most of the variation in life cycle cost among scenarios with the same number of buildings
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connected to the network. All the scenarios explored by the optimization algorithm represent

minimal spanning tree networks, whereas only one of the “base case” scenarios is a minimal spanning

tree network, resulting in greater variability in the thermal network length among the scenarios

with all seven buildings tied to the DES. For a given number of connected buildings, the variation in

energy cost among different scenarios explored (corresponding to the selection of different subsets

of buildings), is very limited in this case. This trend is further elucidated by the boxplot showing

variation in district-level source EUI in Figure 7.12. Shown in Figure 7.11 is a boxplot showing the

variation in the component of life cycle cost associated with carbon, as a function of the number of

buildings connected. For a given number of connected buildings, there is limited variation in the

source EUI, and correspondingly, in the associated carbon emissions and carbon cost.

Among the scenarios evaluated by the optimization algorithm, energy cost dominated as a

fraction of the overall life cycle cost, ranging from 63% to 84% of the overall life cycle cost. The

fraction of life cycle cost attributable to infrastructure ranged from 0% (for the null case) to 27%,

and the fraction attributable to a price on carbon ranged from 10% to 16%. The high cost of

electricity relative to natural gas in the US as a whole and in this region contributes to the fact

that energy costs constitute a significant fraction of the life cycle costs of the systems considered.

Figure 7.12 shows the range of source EUI for HVAC as a function of the number of buildings

tied to the network. This value is based on the total district-level HVAC energy use, as used by

the cost function, and the total floor area of buildings in the prototypical district. Though the

restaurant building has a significantly higher source EUI than the multi-family or office buildings

(discussed in more detail in a following section), the overall building-level thermal loads, especially

in heating mode, are relatively similar among the three building types, resulting in limited variation

for district-level HVAC source EUI for a given number of connected buildings.

The median district-level source EUI for HVAC among the four “base case” scenarios rep-

resenting the connection of all buildings to the DES is 20% lower than that of the “null case” in

which all buildings have independent systems. For intermediate numbers of connected buildings,

the median source HVAC EUI is monotonically decreasing between these two values. However,
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Figure 7.4: Life cycle cost as a function of total network length, for all scenarios. Note the broken
axes in the plot.

Figure 7.5: Best solutions identified by the topology optimization framework.
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Figure 7.6: Graph corresponding to “Opt-2” solu-
tion.

Figure 7.7: Graph corresponding to “Opt-3” solu-
tion.

the median energy cost component of the LCC is reduced by only 14% (a reduction of roughly

$114,500) between the same two comparison points. This is largely driven by the lower cost asso-

ciated with meeting a given heating load with natural gas relative to electricity under the utility

pricing scenario considered in this study, with the unit cost of electricity 4.3 times that of natural

gas. The reduction in energy costs is eclipsed by the increase in infrastructure costs of $531,300

between the same two points. The median infrastructure cost as a function of the number of con-

nected buildings also increases monotonically between these two points and is a linear function of

the network length.

7.4.1 Source energy use intensity comparison

Each of the prototypical building types considered in this study exhibits a reduction in source

energy use intensity (EUI) for HVAC when tied to the district thermal energy system. For this

comparison, in the DES-tied scenario, energy use by the centralized heat pump was allocated to each

individual building based on the annual average coefficient of performance (COP) values in heating

and cooling modes, to approximate an annual source HVAC EUI for each prototypical building,

encompassing heating, cooling, and distribution pump energy use. (Note that this approximation

introduces a slight imprecision due to variations in loop operating temperatures as a function of the

nature of the connected buildings.) Site-to-source conversion factors for natural gas and electricity

were obtained from [93]. Figures 7.13 and 7.14 show the HVAC source EUI, disaggregated by
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Figure 7.8: Graph corresponding to “Opt-4” solution.

Figure 7.9: Boxplot showing range of variation of LCC, as a function of the number of buildings tied
to the network.Note that for concision, one of the base case scenarios, corresponding to the “full
mesh” network with seven connected buildings, is excluded from this plot due to its significantly
higher LCC.
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Figure 7.10: Boxplot showing range of variation of LCC for energy and infrastructure cost compo-
nents of the LCC. Note that for concision, one of the base case scenarios, corresponding to the “full
mesh” network with seven connected buildings, is excluded from this plot due to its significantly
higher LCC.
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Figure 7.11: Boxplot showing range of LCC for carbon emissions as a function of the number of
buildings tied to the network.

Figure 7.12: Boxplot showing range of district source HVAC EUI as a function of the number of
buildings tied to the network.
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heating and cooling, for each prototypical building type, when served by independent, building-

level systems (“indep”) and by the DES (“DES”). Note that the prototypical restaurant building

has a significantly higher source EUI for HVAC than the office or multi-family buildings, due to its

high ventilation loads, magnified by its smaller physical footprint. The restaurant building accounts

for around 13% of the overall source energy use of the prototypical district.

A connection to the DES results in an annual reduction in source EUI of 15% for the multi-

family and restaurant buildings, and 21% for the office building. The reduction in source EUI is

exhibited primarily in heating energy use. The centralized ground-source heat pump considered in

this analysis operates between an evaporator temperature of 4.4 ◦C and a condenser temperature

of 26 ◦C in heating mode, allowing it to achieve an annual average COP on the order of 6.0. The

building-level heat pumps operate with the district loop as a heat source or sink and have nominal

COPs in the range of 5.0 to 6.0 for the loop temperatures of 16 ◦C in cooling and 26 ◦C in heating.

In heating in particular, this represents a significant improvement in exergetic efficiency relative to

the 80% efficient natural gas heating coils that serve the buildings with independent systems.

One of the factors contributing to the greater proportionate reduction for the office building is

the greater amount of time during which, in the DES-tied configuration, simultaneous heating and

cooling occurs at the building level. During 42% of the time in which heating or cooling is required

in the office building, at least one zone in the building requires heating while another requires

cooling. This thermal diversity within the office building is contributed to by the configuration of

the building into core and perimeter thermal zones. The building-level water-source heat pump

loop facilitates the ability of simultaneous heating and cooling loads to partially (or fully) offset

each other, mitigating demand on the district-level loop. Simultaneous heating and cooling at

the building level occurs in just 10% of the time in which heating or cooling is required for the

prototypical multi-family building, and virtually never for the restaurant building. The restaurant

building model is configured with two thermal zones (corresponding to the kitchen and dining area,

respectively), and both have high ventilation loads, resulting in little thermal diversity within the

building itself. In addition to the benefits of building-level thermal diversity, the zone-level HVAC
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Figure 7.13: Source energy use intensity (EUI) for the prototypical office and multi-family buildings
considered in this study, for the cases in which the buildings are served by building-level systems
(“Indep”) and the district thermal energy system (“DES”).
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Figure 7.14: Source energy use intensity (EUI) for the prototypical restaurant building considered
in this study, for the cases in which the building is served by building-level systems (“Indep”) and
the district thermal energy system (“DES”).
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systems used in the DES-tied case for the office building eliminate the use of reheat purely for

temperature control, though not for humidity control.

Figure 7.15: Summary of results of sensitivity analysis for carbon price, presented with the carbon
price in the first year.

A sensitivity analysis for the price on carbon was performed using post-processing, based

on the data set generated from the points evaluated by the framework. The results from this

analysis are presented in a boxplot in Figure 7.15. For purposes of the sensitivity analysis, the

carbon pricing trajectory was scaled by a constant factor, and the price on carbon in the initial

year is used to represent the scenario. Several scenarios are presented, based on the resulting

optimal level of network connectivity, in terms of the number of buildings. There were no candidate

solutions evaluated that entailed the connection of all seven buildings to the network, so that level

of connectivity was not encompassed by the sensitivity analysis.

In general, in this study, a larger number of connected loads resulted in a higher life cycle cost,

due to higher energy costs (resulting from a greater degree of electrification of heating), and higher
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costs associated with network infrastructure. Thus, a higher price on carbon was required to offset

these costs and result in an optimum solution with a greater degree of network connectivity. The

significant increase in the carbon price required to result in an optimal connection of four buildings

compared with two is due to the significantly (28%) longer mean network length associated with the

candidate solutions consisting of three connected buildings, relative to two. (The limited number

of candidate solutions explored through the optimization—108—results in some discontinuities in

the results of this sensitivity analysis.) It is worth underscoring that in this study, a carbon pricing

scheme with rates scaled by a factor of 6 (for an initial rate of $120
ton ) from those projected as a

potential future scenario by NIST are required for the optimum solution to entail a high degree of

network connectivity (six connected loads), all other things being equal.

7.5 Conclusion

In this study, a topology optimization framework developed by the authors was applied to

the design of a 5GDHC system for a prototypical urban district to identify a network configuration

that would minimize life cycle cost. The results from the topology optimization process were

compared to four “base cases,” in which the district thermal energy system served all buildings in

the prototypical district, with a network design based on heuristics. The topology optimization

approach identified four solutions (with very similar values of life cycle cost), which would provide

reductions of life cycle cost ranging from 14% to 72% relative to the base cases, depending on the

base case scenario considered, highlighting the benefits of topology optimization in this context.

Though the study is tied to a particular set of conditions, the selection of prototypical buildings

based on a thermal load diversity metric ensures that it provides an evaluation of 5GDHC systems

in a “competitive” context.

All four solutions identified through topology optimization involved a limited district thermal

energy network, or the absence of a network at all. It is evident that while a 5GDHC system serving

all buildings in the prototypical district would provide reductions in source energy use intensity (on

the order of 20%), as well as energy cost savings, the scale of the energy cost savings are insufficient
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to offset the additional investment in infrastructure required. The low cost of natural gas relative to

electricity contributes to this disparity. A carbon tax of at least $30
ton under the initial conditions, and

increasing with time, is found to be necessary for even a moderate degree of network connectivity

to be cost-effective relative to distributed, building-level systems. Extending this analysis to a case

with electrified building-level heating systems, such as air-source heat pumps, is an area for future

work. This study has demonstrated the value of a network topology optimization approach for

the design of 5GDHC systems, as well as the potential benefits of 5GDHC systems themselves in

reducing the energy- and carbon-intensity of HVAC systems. Changes in utility costs or policy

interventions are likely to be necessary for these reductions in emissions to be cost-effective relative

to building-level HVAC systems.



Chapter 8

Conclusions and future work

As part of the work underlying this dissertation, the energy performance benefits associated

with low-exergy HVAC systems have been quantified, motivating a focus on network topology

optimization in the context of advanced district thermal energy systems. From a case study focusing

on multi-family housing buildings, it was concluded that low-exergy HVAC systems could achieve

reductions on the order of 25% in source energy use for HVAC relative to third-generation hydronic

HVAC systems, in appropriate applications. Low-exergy systems in the form analyzed in this

work — radiant hydronic thermo-active building systems — are best suited to buildings with high-

performance envelopes, limited sensible loads, and minimal dehumidification loads, due to the limits

on surface temperatures to avoid condensation. Low-exergy systems facilitate the use of district

thermal energy systems operating at near-ambient temperatures. The potential for connected loads

served by such 5GDHC systems to act as “prosumers”, and exchange heat, and heat rejection, in

a synergistic manner, motivates the consideration of the network topology optimization problem.

In this context, network topology optimization seeks to answer the question, “Given a prototypical

urban district with known building locations and loads, what is the best subset of buildings, if

any, to connect to a district thermal energy system, and by what thermal network should they be

connected, to minimize life cycle cost?”

An approach for optimization of network topology for district thermal energy systems —

namely, the use of the minimal spanning tree heuristic and particle swarm optimization — has been

validated, in the context of systems operating at near-ambient temperatures, with an exhaustive
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search evaluating the full “solution space” of more than 30,000 potential network configurations for a

five-building prototypical district. The MST heuristic and a PSO algorithm have been combined to

create a topology optimization framework, which will soon be integrated with NREL’s URBANopt

advanced analytics platform, and publicly available for use as a software module by researchers and

practitioners. A PSO algorithm is used to determine the optimal subset of buildings (if any) to

connect to a district thermal energy system, and the MST heuristic is used to select the thermal

network by which to connect them. In this way, the MST heuristic serves to significantly reduce the

size of the “search space.” The Topology Optimization Framework takes as inputs an energy model

of a district thermal energy system in FMU format, and a GeoJSON file with data on the physical

locations of the buildings considered. A PSO algorithm is used to generate candidate solutions,

and the FMU energy model is programmatically modified to represent the solution, using the MST

network. The energy model is simulated and its outputs, as well as other parameter values, are

used to evaluate the objective function. The process repeats until a convergence or termination

criterion is met. Topology optimization has been applied to two prototypical districts (one of five

buildings and one of seven buildings), with promising results regarding reduction in source energy

use intensity and life cycle cost, relative to a network designed based on rules-of-thumb.

The application of the Topology Optimization Framework to a prototypical new-construction

district in Colorado revealed that the relative costs of electricity and natural gas present a significant

barrier to the cost-effectiveness of 5GDHC systems in the US, since they entail the electrification

of space heating. The reductions in source energy use associated with beneficial electrification,

while notable, are not sufficient to offset the higher costs associated with electricity. In Colorado,

electricity costs per unit are 4.3 times that of natural gas, and similar disparities exist across the US

[77]. In the prototypical district considered, a carbon tax of at least $ 30/ton, increasing with time,

was found to be necessary in order for even a moderate degree of thermal network connectivity to be

optimal. Consistent with other case studies performed in the course of this work, it was found that

the use of a district thermal energy system to serve all buildings in the prototypical district resulted

in a reduction on the order of 20% of source energy use for HVAC, relative to a case in which all
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buildings were served by independent systems. This motivates the consideration of policy efforts

that would improve the relative cost-effectiveness of beneficial electrification of space heating. In

this and other case studies performed as part of this work, it was found that the selection of the

subset of buildings to connect to a district thermal energy system was much more influential on

the source energy use for HVAC of the district than the particular network configuration, though

the selection of network configuration could lead to significant variation in life cycle cost through

the varying infrastructure cost, especially with a greater number of buildings served.

The Topology Optimization Framework as developed can address cost functions related to

energy consumption, carbon emissions, and life cycle cost. Related work that is currently ongoing

applies the Topology Optimization Framework to objectives of carbon emissions and life cycle cost

in a multi-objective approach, and applies Monte Carlo analysis to the values of key parameters in

the cost function. It is anticipated that multi-objective optimization can identify trade-offs between

reductions in life cycle cost and carbon emissions that could guide decisionmaking. The application

of Monte Carlo analysis is expected to illustrate the ranges of values of particular parameters in

the life cycle cost function that either “promote” or “discourage” the connection of more loads to

the thermal network.

Additional ongoing work concerns the analysis of the integration of low- to moderate-temperature

waste heat sources into 5GDHC systems. It is anticipated that such sources, including commercial

refrigeration and data centers, will improve the relative cost-effectiveness of 5GDHC systems, as

well as further reducing the energy use and carbon emissions associated with meeting space heating

loads. The network topology optimization problem could also be extended to consider the loca-

tions at which waste heat should be integrated, and additional work could consider the optimal

temperature level and control of waste heat integration.

Further refinements could be made to the Topology Optimization Framework. In its current

form, the framework has been demonstrated to support the implementation of additional constraints

related to network connectivity, through the approach of assigning high “penalty” values to the

cost function when candidate solutions violate such constraints. In the future, the framework could
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be adapted to incorporate constraints into the optimization problem directly. Another relevant

area for further research, to mitigate the computational complexity associated with the network

topology optimization problem, is the development of metamodels to represent district-level energy

consumption for a thermal network. When integrated as part of the URBANopt platform, the

Topology Optimization Framework will be available to a wider array of potential users, including

researchers and practitioners. Research by others has concluded that, depending on the demand

density threshold considered, the techno-economic potential for district heating systems in the

US is on the order of 12% to 43% of the current energy consumption for space heating [87].

District energy systems operating at near-ambient temperatures can facilitate the integration of

moderate-temperature waste heat sources, which can further serve to improve the cost-effectiveness

of such systems. It is anticipated that the Topology Optimization Framework can help facilitate

the adoption of advanced district thermal energy systems in appropriate applications, and thus,

help achieve reductions in source energy use and associated carbon emissions, as well as addressing

additional research questions.
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