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Abstract: With promising properties of fast imaging speed, large field-of-view, relative low
cost and many others, back-illuminated sCMOS cameras have been receiving intensive attention
for low light level imaging in the past several years. However, due to the pixel-to-pixel difference
of camera noise (called noise non-uniformity) in sCMOS cameras, researchers may hesitate
to use them in some application fields, and sometimes wonder whether they should optimize
the noise non-uniformity of their sCMOS cameras before using them in a specific application
scenario. In this paper, we systematically characterize the impact of different types of sCMOS
noise on image quality and perform corrections to these types of sCMOS noise using three
representative algorithms (PURE, NCS and MLEsCMOS). We verify that it is possible to use
appropriate correction methods to push the non-uniformity of major types of camera noise,
including readout noise, offset, and photon response, to a satisfactory level for conventional
microscopy and single molecule localization microscopy. We further find out that, after these
corrections, global read noise becomes a major concern that limits the imaging performance
of back-illuminated sCMOS cameras. We believe this study provides new insights into the
understanding of camera noise in back-illuminated sCMOS cameras, and also provides useful
information for future development of this promising camera technology.
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1. Introduction

Low-light cameras are indispensable for various low-light imaging applications, especially
single molecule fluorescence microscopy [1]. Semiconductor complementary metal oxide
semiconductors (sCMOS) camera is a new type of low-light cameras with high imaging speed
and large field-of-view, and thus is well-suited to be used in high-speed fluorescence microscopy
of biological samples.

However, the detection ability of sCMOS cameras is limited by their relatively low signal-
noise-ratio (SNR), especially in comparison with another popular type of low-light cameras:
electron multiplier charge-coupled device (EMCCD) cameras [2]. It is well-known that SNR
could be improved by either increasing quantum efficiency (QE) or decreasing camera noise.
Recently, with the invention and mature of back-illuminated sCMOS sensors, the QE of sCMOS
cameras has been increased to ∼ 95%, and the SNR of some commercial back-illuminated
sCMOS cameras is even better than that of many EMCCD cameras when the incident signal is >
4 photon/pixel [3]. Clearly, decreasing camera noise becomes the next step for further pushing
the detection ability of back-illuminated sCMOS cameras into single-photon detection regime.
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Compared with EMCCD cameras, sCMOS cameras suffer from not only higher global readout
noise, but also larger pixel-to-pixel difference in camera noise (that is, noise non-uniformity). The
latter mainly originates from the individual readout structure in sCMOS cameras [4]. Various
efforts were developed to characterize and correct the noise non-uniformity. The types of noise
in sCMOS cameras (abbreviated as sCMOS noise hereafter) were characterized [5–8] and their
impact on some applications, such as single molecule localization microscopy (SMLM), was
studied [9–14]. Noise correction algorithms were integrated into some commercial sCMOS
cameras by their manufacturers, or developed for several specific imaging scenarios by researchers
[11,13,15–17].

Since the noise correction algorithms developed by researchers were usually designed to correct
several types of sCMOS noise simultaneously, it is difficult to obtain quantitative information on
what level a specific type of sCMOS noise has been corrected to. Besides, some noise correction
algorithms (for example, defect pixel correction) have been integrated into commercial sCMOS
cameras, and are routinely used by many users without any pre-cautions. However, it is not clear
whether these noise correction algorithms should be used in some special application scenarios.
Moreover, it is generally believed that the characteristic of sCMOS noise under long exposure
time is different from that under short exposure time, but the performance of the noise correction
algorithms under different exposure times has not been well studied. In a word, although many
noise correction algorithms have been developed and used to improve the noise non-uniformity of
sCMOS cameras, researchers are still confused about when and how to select appropriate noise
correction algorithms in their specific applications. They may even have no confidence on which
technical specifications in a camera datasheet are more important for choosing an appropriate
camera, and whether the noise correction algorithms used by their colleagues should be modified
before being used in their specific experiments.

In this paper, we systematically analyze the impact of different types of camera noise on image
quality, and evaluate whether a specific camera noise can be properly corrected. Firstly we
characterize individual types of camera noise in two popular back-illuminated sCMOS cameras
and a popular EMCCD camera. Then, we investigate the impact of different types of camera
noise on SMLM and conventional microscopy. We take special efforts on analyzing the global
read noise and read noise non-uniformity. Finally, we quantify some commonly-used noise
correction algorithms. We confirm that the impact of noise non-uniformity on image quality
could be minimized to a negligible level. After applying these noise corrections, we find out
that global read noise becomes the major camera noise that limits the imaging performance of
back-illuminated sCMOS cameras.

2. Theory and methods

2.1. Background of sCMOS noise

There are mainly three types of noise in an sCMOS camera: fixed pattern noise (FPN), read
noise, and shot noise [9]. FPN represents the pixel-to-pixel difference of time-independent fixed
bias, and can be further divided into offset FPN and gain FPN, which account for pixel-dependent
variations in dark signal and photon response, respectively [18]. Read noise usually represents
all types of camera noise that are independent on signal intensity [19]. To distinguish read noise
from offset FPN, here we only consider the signal-independent temporal noise as read noise.
Shot noise is originated from quantum fluctuation, and is always equal to the square root of input
signal. Since shot noise is from incident light itself instead of the associated camera, we would
not consider it as camera noise in this work.

In an sCMOS camera, light hitting the sensor is converted into photoelectrons, and then into
voltage by the individual voltage converter in each pixel. Moreover, each column has its own
Analog to Digital Converter (ADC). This kind of readout structure increases the pixel-to-pixel
difference of offset, photon response and read noise, and thus resulting in a more severe noise
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non-uniformity. Camera manufacturers usually provide some parameters including dark-signal
non-uniformity (DSNU), photon response non-uniformity (PRNU), and root-mean-square (RMS)
value of read noise to characterize the amplitude of offset FPN, gain FPN, and read noise,
respectively. However, the RMS of read noise can only characterize the amplitude of global
read noise, and there is no parameters to characterize the read noise amplitude variation from
pixel to pixel. In this work, to keep consistent with DSNU and PRNU, we propose to use a new
parameter, read noise non-uniformity (RNNU), which is calculated by the ratio of the standard
deviation (SD) to the RMS of read noise, to describe the read noise amplitude variation from
pixel to pixel. We compare the impact of global read noise and RNNU on imaging quality.

For pixel i in an sCMOS camera, when the incident signal is Si, the output digital number
(DN) Xi is modelled as:

Xi = Si × QEi × gi+Ri,shot + Of fi + Ri,read (1)

where Ri,shot denotes shot noise and Ri,read denotes read noise, and both of them are temporal
noise; gi and Offi are gain and offset value, respectively. Note the difference of QEi, gi, Offi,
Ri,read from pixel to pixel are used to characterize the noise non-uniformity in the sCMOS camera.
Dark current is not included in this model because: 1) most of the experiments in this work are
performed with short exposure time (≤ 20 ms), where dark current is negligible; 2) for any given
exposure times, the major impact of dark current on output digital value is already included in
the amplitude of offset and read noise.

Defect pixels are pixels with abnormal performance that results in imaging errors. However,
the standard for distinguishing abnormal from normal performance is usually not clear. Generally,
there are two types of defect pixels: high dark noise pixels and low gain pixels [20,21]. High
dark noise pixels are pixels with high dark electric signal or dark noise variation, including
but not limit to high dark current pixels (also called hot pixels). Low gain pixels are pixels
with relatively low photoelectric conversion ability. Clearly, defect pixels result in high noise
non-uniformity. Note that the number of defect pixels usually increases during the manufacturing
process or during the usage of an sCMOS camera [20,21]. Besides, since defect pixels (or high
noise pixels) are easily observed in enlarge images, they were often used to analyze the impact of
noise non-uniformity on imaging quality [11,13,16,17].

2.2. Theoretical background for sCMOS noise characterization

Noise characterization for scientific cameras can be performed in camera level or pixel level.
Camera-level noise characterization usually applies photon transfer curve (PTC) method [19]
to calculate some important parameters, including but not limited to DSNU, PRNU, RMS of
read noise. This level of characterization is widely used by camera manufacturers to describe
the overall performance of a scientific camera [8], and is also used to compare the imaging
performance of different cameras [3,5,9,22]. Pixel-level noise characterization aims to provide
noise maps that shows the noise difference in every pixel. A few camera manufacturers perform
this kind of characterization for users who are interested in quantitative imaging [6]. Researchers
may also perform noise map measurement using their own methods to increase the precision
in biological microscopy imaging [11,13,16,17] or astronomy imaging [23–26]. In this paper,
we systematically describe the theory and experiment of the pixel-level noise characterization
method, which presents three important noise maps including photon response map, read noise
map and relative offset map. These noise maps are informative and useful to characterize the
sCMOS noise in every pixel.

Based on Eq. (1), when there is no incident light (called dark frame), the output digital value is
only determined by the offset and read noise. For each pixel, we use the mean and the SD values
of continuous N dark frames to represent the offset value (Offi) and read noise value (σi,read) of a
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pixel, respectively:

Of fi=
N∑︂

j=1
Xi,j,dark/N−

N∑︂
j=1

Ri,read/N (2)

σi,read=

⌜⃓⎷ N∑︂
j=1

(Ri,j,read)
2/(N − 1)=

⌜⃓⎷ N∑︂
j=1

(Xi,j,dark−Of fi,j)2/(N − 1). (3)

Since read noise is a temporal noise with a mean value of zero, the sum of read noise in
Eq. (2) is negligible when N is large. Offi and σi,read can be further transferred to electron unit
by dividing their grey values with the camera gain value, and the latter is usually provided by
camera manufactory or measured by PTC method [5]. To help compare the offset values between
different cameras, we use relative offset, that is, the offset subtracted with the mean offset value
of all pixels. The number of dark frames used to calculate the read noise and offset is 5000 for
normal exposure time (1s or shorter) and 1000 for long exposure time (> 1s).

We use a uniform-illumination system to measure the photon response map. We assume that
the photon signal is the same for all pixels in a frame (Si= S), and use the averaged digital value
Xi from continuous frames to eliminate shot noise and read noise. We calculate the relative
photon response value (rpi) of each pixel as the ratio between the signal value of a single pixel to
the mean value of all the pixels:

rpi=(M × (Xi − Of fi))/
M∑︂
i=1

(Xi − Of fi) (4)

where M is the number of all pixels. To calculate the relative photon response from several groups

of images captured at different signal intensity levels, we use a linear fitting with
M∑︁
i=1

(Xi − Of fi)

as dependent variable and (Xi − Of fi) as independent variable for each pixel. Usually we capture
6 groups of raw images with 1000 frames in each group. The illumination intensities are usually
controlled to uniformly distribute among 10% ∼ 85% of the full signal range. To get a better
FPN correction for images with weak signal (< 200 e-/pixel), which are typical in SMLM, the
illumination intensities were controlled to be 0.6% ∼ 10% of the full signal range, corresponding
to 30 ∼ 200 e-/pixel for the Dhyana 95.

We calculate the precision of noise map measurement by [5]:

εmap = std(Map1 − Map2)/
√

2 (5)

where Map1 and Map2 refer to two maps measured independently under the same experimental
conditions, and std is the SD of all pixels. The two maps are recommended to be measured at
different days to account for experimental environment changes.

To assess the noise non-uniformity of sCMOS cameras, we capture continuously a large number
of dark frames to calculate relative offset map, and bright frames at one signal level (typically,
half of the signal range) for photon response map. Under the non-uniformity nomenclature, the
relative offset map and photon response map here are referred as DSNU map and PRNU map,
respectively.

DSNU and PRNU are two widely-used parameters for quantitative camera assessment, as
mentioned in the camera calibration standard EMVA 1288 [27]. DSNU is defined as the SD of
dark signal and can be calculated by the SD of the relative offset map (DSNU map) in electron
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unit:
DSNU = std(Of fi)/gc (6)

where gc is the camera gain value, and std is the SD of all the pixels. PRNU is defined as:

PRNU =
√︂

std2(Xi,s) − std2(Of fi)/mean(Xi,s−Of fi) × 100% (7)

where Xi,s represents the mean digital value of pixel i measured at signal intensity level S, and std
is the SD of all pixels. PRNU equals to the SD of PRNU map (or photon response map measured
at one signal intensity level S). In this work, to assess the PRNU of a camera at full signal range,
we also calculate the SD of the photon response map measured from several different signal
levels.

We also use local sensitivity variation (SV) to characterize local photon response non-uniformity
[13], and calculate it as:

SV = std(gf (rgi)/rgi) (8)

where gf represents Gaussian smoothing filtering with a sigma of 9 pixels, and std is the SD of all
pixels. Compared with PRNU, SV only characterizes the local photon response non-uniformity,
and thus is suitable for applications with a small number of pixels, such as SMLM.

We calculate RNNU as:

RNNU = std(σi,read)/rms(σi,read) (9)

where std and rms are the SD and RMS of all pixels, respectively.

2.3. Experimental conditions for sCMOS noise characterization

A customized system based on an integrating sphere was specially designed for characterizing
the PRNU of low-light cameras (see Fig. 1). Three LEDs with peak wavelength around 400
nm (EP-U4545K-A3, Epileds, China), 600 nm (BN-R3838C-A3, Epileds, China), and 850 nm
(ES-SASFPN35, Epileds, China), respectively, were placed at the input port of an integrating
sphere (Flight technology, China) as the light source. The LED intensity was controlled by
home-built electronic circuits. To decrease the irradiance difference between the camera edge
and the camera center, the tested low-light cameras were placed ∼30 cm away from the exit
port (diameter: ∼8 cm) of the integrating sphere. The camera sensor should be aligned to be
completely vertical to a plane where the longitudinal axis of the exit port lies; however, we found it
is hard to obtain such a perfect alignment, and the residual angle would degrade the effectiveness
of PRNU correction. Therefore, we fixed the test camera on the platform for several days to
guarantee the same illumination angle for PRNU map and photon response map measurement.
The input port (from the LEDs to the integrating sphere) and the exit port (from the integrating
sphere to the test camera) of the integrating sphere were covered separately to block ambient light,
so that the tested camera received photons only from the LEDs. The threaded metal adapter on
the low-light cameras was removed to minimize illumination uniformity deterioration. The time
fluctuation of the illumination was measured to be 0.05% root-mean-square (RMS) using a Flash
4.0 V3 (SN: 303487, Hamamatsu Photonics, Japan) at the intensity of ∼15000 photons/pixel.

Two popular back-illuminated sCMOS cameras were tested in their best modes for low-light
detection: the high gain mode for a Dhyana 95 (SN: KBS4951703002, Tucsen Photonics, China),
and the 12 bit high sensitivity mode for a Prime 95B (SN: A18A203022, Photometrics, USA).
The camera gains for these two modes, measured from the PTC method [5], were 1.98 DN/e- for
the Dhyana 95 and 1.64 DN/e- for the Prime 95B, respectively. The maximum signal range for
these two modes are ∼ 2000 e-/pixel for the Dhyana 95 and ∼ 2400 e-/pixel for the Prime 95B.
The exposure times were all set to be 20 ms except otherwise specified.
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Fig. 1. A schematic of the experimental setup.

2.4. sCMOS noise correction

In addition to the normal denoising tasks, an sCMOS denoising algorithm should also consider
noise non-uniformity. Note that FPN correction and defect pixel correction are usually performed
by CMOS camera manufacturers to satisfy their users. For both the FPN and defect pixel
correction algorithms, we classify them into two types: static correction algorithm and dynamic
correction algorithm. The only difference between them is on how to calibrate the camera noise.
In the static correction algorithm, special images (typically under homogeneous illumination
[20,28]) are taken and used to calculate the characteristics of the camera noise. In the dynamic
correction algorithm, the camera noise is characterized from normally images [20,21,28,29].
Then, different noise correction strategies are used according to the camera noise characteristics.
The static correction algorithm is usually used in sCMOS camera, after considering the following
reasons: 1) sCMOS cameras have a more stable noise characteristic than normal CMOS cameras,
thus the static noise correction in sCMOS cameras can be valid for a long time; 2) Raw data is
desirable in many applications using sCMOS cameras, but the dynamic correction algorithm
usually processes more raw data than the static correction algorithm.

In this paper we adopt two common-used static correction algorithms: a modified two-point
correction algorithm for FPN correction, and a static local mean filtering algorithm for defect
pixel correction. The normal two-point correction algorithm assumes a stable and linear photon
response from each pixel [30]. It first captures images under homogeneous illumination and two
representative signal levels, then uses them to calculate the offset map and the photon response
map. In the modified version, the offset map is calculated from dark images, and the photon
response map is calculated from bright images at one or several signal levels [13,14]. These two
maps are further used to correct the raw images via an inverse operation of Eq. (1), and can be
expressed as:

Xi,cor = (Xi,raw − Of fi)/rpi (10)

where Xi,cor and Xi,raw are the corrected digital value and the raw digital value for pixel i,
respectively. When there is no photon response map, Eq. (10) can be simplified as:

Xi,cor = Xi,raw − Of fi (11)

For defect pixel correction, a common strategy used in both dynamic and static correction
algorithms is that the raw digital value of a defect pixel is substituted by a mean value calculated
from the surrounding pixels [21,31]. In this work, we first determine the defect pixels from
their statistical noise characteristics, and then substitute their values by the mean values of the
surrounding 8 pixels. This correction algorithm is thus called static local mean filtering. We
use probability density function analysis [32] to determine whether a pixel is defect pixel. The
distribution of offset (or read noise) is measured with 10 s exposure time, and fitted with a
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log-normal probability density function. The distribution of relative photon response is measured
with 20 ms exposure time, and fitted with a normal probability density function. Then, we use
three-sigma as the cut-off bound to determine high offset pixels, high read noise pixels, and
abnormal photon response pixels as defect pixels. Here the high read noise pixels and the high
relative offset pixels are both measured with 10 s exposure time, which is the maximum exposure
time of both sCMOS cameras for normal users. However, an exposure time of 20 ms is used
for characterizing the low gain pixels for the following reasons: 1) the relative photon response
changes only slightly with the exposure time; 2) the offset value is small under short exposure
time, leaving sufficient capability for the pixel to response to the incident photons.

Although FPN and defect pixels are usually corrected by sCMOS camera manufacturers,
researchers may perform FPN re-correction or develop some sCMOS specific algorithms for
conventional microscopy and SMLM. Therefore, we evaluated the noise correction ability of two
popular sCMOS specific algorithms, including NCS [16] and MLEsCMOS [11]. For conventional
microscopy, we chose PURE [33] to compare with NCS. PURE is a denoising algorithm that
considers camera noise, but not the noise difference between pixels. Note that NCS uses the
noise maps (including offset, read noise, and gain) from every pixel, and combines them with a
high frequency filter for denoising, while PURE only uses the noise values (including offset, read
noise, and gain) of an entire camera, and combines them with a mixed Poisson-Gaussian model
for denoising. For SMLM, a conventional localization algorithm is usually used for calculating
the center positions of the molecules in raw images, and shot noise is generally considered in
this localization algorithm. The sCMOS specific localization algorithm considers not only shot
noise model, but also read noise and FPN. We compared a conventional maximum likelihood
estimation (MLE) based localization algorithm, which is embedded in a widely-used software
called ThunderSTORM [34] (referred as MLEnormal below), with an sCMOS specific localization
algorithm called MLEsCMOS [11]. To investigate the impact of defect pixel correction on SMLM,
we calculated the images after defect pixel correction with the MLE in ThunderSTORM, and
referred the results as MLEdefect below.

We evaluated NCS [16] and MLEsCMOS [11] using the Matlab codes provided in the published
papers, and tested PURE [33] and ThunderSTORM [34] with the ImageJ plugins provided on the
websites. Most parameters were used as the default settings. We replaced the camera noise data
with our measurement or simulation. The NCS and MLEsCMOS use a gain map to correct FPN,
which is considered to be not accurate enough [3,15]. Therefore, instead of using the gain map,
we used the measured gain value of the camera multiplying by the photon response map.

To compare MLEnormal with MLEsCMOS, we set the parameters in ThunderSTORM based on
those used in MLEsCMOS. We chose “Difference of averaging filters” as the image filter, “local
maximum” as the localization method, and “Maximum likelihood” as the fitting method. The
rendering method was “Normalized Gaussian” for both MLEnormal and MLEsCMOS. We identified
the localized molecules from different algorithms as molecule pairs using the following criteria:
two molecules in the same image frame have a distance of less than three pixels (330 nm), but
were localized from different localization algorithms. Besides, we adapted the “log-likelihood
ratio threshold” in MLEsCMOS, which is based on the signal-noise-ratio in the single molecule
images. Most parameters were kept the same as the default settings.

2.5. Image simulation

Camera noise maps were simulated based on the noise maps of the Dhyana 95 with 20 ms
exposure time. To analyze the impact of different types of camera noise on image quality, the
noise maps were scaled to simulate images with different noise amplitudes. To obtain noise maps
with different non-uniformity, the SD of the standard maps (the photon response map, read noise
map, or relative offset map of the Dhyana 95) was modified by keeping the mean value of the
map and scaling the residual of each pixel. To obtain read noise maps with different amplitude of
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global read noise, the RMS of the standard read noise map was directly scaled. To investigate the
impact of different types of camera noise on imaging, we changed only one of the three noise
maps from the standard map of simulated images. The quantum efficiency (QE) was set to be
82%, which mimics the QE of the Dhyana 95 or Prime 95B around 700 nm. The pixel size was
110 nm.

To simulate conventional microscopy images, we first obtained a ground-truth image from the
following steps: average a group of experimental microtubule images, perform FPN correction,
and convert the unit from digital number to photon. The mean value of the top 1%∼70% pixels
was used as the photon signal value of this ground-truth image. Then, the intensity of the image
was scaled to provide images with different signal intensities, and a background photon of 10
photons/pixel was added to the images. Finally, several groups of images with 100 frames in
each group were generated based on Eq. (1).

For SMLM, we simulated several groups of single molecule images with different noise maps
or signal intensities. Each group contains 400 image frames, and each frame has 400 emitters.
The camera noise maps and the ground-truth positions of the emitters were not changed inside
the same group. The image size of each frame is 420× 420 pixels. The camera noise maps were
constructed from 400 different areas of 21× 21 pixels, which were randomly chosen from the
scaled noise maps of the Dhyana 95. There was only one emitter in each area (21× 21 pixels), and
the emitter was usually placed randomly in the center pixel (110 nm× 110 nm). For the simulated
images with isolated high noise pixels, the center pixel in an area of 21× 21 pixels was replaced
by a high noise pixel in the noise map, and the emitter was set to be located randomly in the area,
with a fixed distance from the center of the high noise pixel. Based on the ground-truth positions
of the emitters and the signal intensities, a Gaussian model with a sigma of 1.3 pixel was used as
the emitter model to present a photon image. A background photon of 10 photons/pixel was then
added to the photon image. Finally, simulated image frames were generated using Eq. (1).

2.6. Imaging experiments

We performed conventional microscopy imaging on an inverted microscope system (IX-73,
Olymplus, Japan) equiped with a 640 nm laser (LWRL640-3W, Laserwave, China), an oil-
immersion objective (100×, NA 1.4, Olympus, Japan), and the Dhyana 95 sCMOS camera. The
microtubles of U-2 OS cells were labled with Alex Fluor 647 using a typical immunofluorecence
method. Fluorescent beads (F8807, FluoSpheres, Molecular Probes, USA) with peak emission
wavelength of ∼ 680 nm were fixed on a glass slide. The illumination intensity of the laser was
controlled to be low, so that the emission from fluorescent beads is weak and the impact of
camera noise on fluorescence images could be clearly visualized. The exposure time was 20 ms
for the microtuble imaging and 10 s for the fluorescent bead imaging. The pixel size was 110 nm.

SMLM imaging was performed on the same optical microscope system. Alexa 647 labeled
U-2 OS cells were imaged with a standard SMLM buffer as described in our previous work [35].
Raw image frames were captured with 1 ms exposure time to enhance the impact of camera noise
on raw images.

2.7. Image quality assessment

We use a temporal pixel fluctuation map and three parameters, including peak signal-noise-ratio
(PSNR), structural similarity (SSIM), and the number of “outlier pixel” (NOP), to assess the
quality of conventional microscopy images. PSNR and SSIM are two common-used parameters
for comparing de-noising algorithms [36]. PSNR is defined as the ratio between the peak signal
value to the noise value:

PSNR =10 × log10(
max(g)2

1
M

M∑︁
i=1

(fi−gi)

) (12)



Research Article Vol. 29, No. 5 / 1 March 2021 / Optics Express 6676

where M is the total number of pixels, f is the reference image and g is the test image. max(g) is
the peak signal value of the test image. We use the value of the top 1% pixels in the image as the
peak signal value to avoid interference from defect pixels. SSIM is calculated as:

SSIM =
(2f g+C1) × (2σfg+C2)

(f
2
+g2
+C1) × (σ2

f +σ
2
g+C2)

(13)

where σf and σg are the standard deviations and σfg is the cross-covariance for the reference
image f and test image g; f and g are local mean of the image; C1 and C2 are used to avoid a null
denominator, and are both set to 0.01. For each imaging condition, usually we capture a group of
100 image frames to assess the image quality. We use the mean value of PSNR and SSIM as the
figure of merit.

To characterize the temporal noise non-uniformity in conventional microscopy, we calculate
the SD value of each pixel in each group of images to present a temporal pixel fluctuation map
[16], and use NOP to characterize the impact of RNNU on conventional microscopy images.
Because the pixel values in the temporal pixel fluctuation maps varies gradually, high read noise
pixels can be discovered by comparing their pixel values in the temporal pixel fluctuation map
with their surrounding pixels. We define “outlier pixel” to be the pixel with a significantly higher
value than the surrounding 8 pixels in the temporal pixel fluctuation map:

TM(X, Y)>n ×

⌜⎷
1+

RN2
RMS

Smean+RN2
RMS

× max(TM(X ± 1, Y ± 1)) (14)

where TM (X,Y) is the value of pixel (X,Y) in the temporal pixel fluctuation map, RNRMS is the
RMS of read noise, and Smean is the mean value of the raw image. n is an empirical factor to
control the dividing line of the outlier pixel, and is set to be 1.25.

To compare the performance of different localization algorithms, we imported the localization
results (including but not limit to localization position, background, intensity, uncertainty) of
MLEsCMOS into ThunderSTORM, and obtained a rendered super-resolution image. To assess
the impact of camera noise on SMLM images, for each experimental conditions, 400 image
frames with 400 emitters in each frame were simulated. For each emitter, the SD of the localized
positions was calculated as localization precision, and the distance between the mean value of
the localized position and the ground truth position was calculated as localization bias. For each
group of raw images, we used the RMS of localization precision or localization bias, which was
calculated from different emitters, as the final localization precision or localization bias.

3. Results

3.1. Characterization of sCMOS noise

Since sCMOS noise vary from pixel to pixel, it is necessary to measure the noise in every
pixel, and thus the characterization of read noise, offset FPN, gain FPN in conventional cameras
should be replaced by the characterization of read noise map, offset map, photon response map,
respectively. Here, we use relative offset map instead of offset map to compensate the mean offset
value difference among cameras. We use photon response map to replace gain map and/or QE
map, so that the calculation can be easier. Note that this treatment is accurate enough for photon
signal calculation but would lead to a small bias in electron signal calculation [15]. We further
analyze these noise maps by: 1) calculate the SD of relative offset map and photon response map
to obtain DSNU and PRNU, respectively; 2) calculate the RMS of read noise map to obtain the
amplitude of global read noise of the entire camera; 3) calculate the ratio of the SD to the RMS
of the read noise to present RNNU.
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We characterized two popular back-illuminated sCMOS cameras, including a Prime 95B (SN:
A18A203022, Photometrics, USA) and a Dhyana 95 (SN: KBS4951703002, Tucsen Photonics,
China), and a representative iXon Ultra 897 EMCCD camera (SN: X-4652, Andor, England).
5000 dark frames were used to calculate the read noise map and relative offset map, and 6 groups
of bright images with 1000 frames in each group were used to calculate the photon response map.
For these two sCMOS cameras, striped patterns and high dark noise pixels were easily found
in the enlarged noise maps. Here we show only the results from the Dhyana 95 (see Fig. 2(a)).
We further found the camera noise in the iXon 897 is much smaller than those in the sCMOS
cameras: 1) The DSNU of the Dhyana 95, Prime 95B and iXon 897 are 1.31 e-, 0.52 e-, 0.07
e-, respectively; 2) The PRNU of the Dhyana 95, Prime 95B and iXon 897 are 1.02%, 0.65%,
0.32%, respectively; 3) the RNNU is ∼ 24% for both sCMOS cameras and ∼2% for the iXon
Ultra 897, while the RMS of read noise is ∼2 e- in both sCMOS cameras and 0.43 e- in the iXon
Ultra 897 (Fig. 2(b)). Additionally, as compared with the Dhyana 95, we found a much shorter
trail in the read noise probability distribution function (PDF) of the Prime 95B. It is probably
because some defect pixels (i.e. high read noise pixels) had been corrected by the default defect
pixel correction in the Prime 95B.

The dependence of the noise map measurement precision on frame number and group number
was characterized in an area of 128× 128 pixels, which was cropped from nearly the center of the
camera sensor. To measure the precision of the read noise map and relative offset map, six groups
of dark frames captured at different days were randomly divided into three groups of datasets.
These datasets were further analyzed to present three independent measurements showed in Fig.
2(c). Result shows that the Prime 95B has a better repeatability than the Dhyana 95, indicating a
better dark noise control in the former. To measure the precision of the photon response map,
two datasets were measured at different days for both the Dhyana 95 and the Prime 95B (Fig.
2(d), (e)). Result shows the photon response map precision are nearly the same for both sCMOS
cameras. We found a total of 5000 dark frames are sufficient to provide a precision of < 0.2 e- in
the relative offset map and ∼ 0.03 e- in the read noise map, and 6 groups of 1000 bright frames
are enough to provide a precision of 0.05% in the photon response map. Note we measured the
noise map precision with 20 ms exposure time and the precision will change with exposure time.

We investigated the defect pixels in the Dhyana 95. We used probability density function
analysis to determine whether a pixel is defect pixel (mentioned in Section 2.5). Only the center
1800× 1800 pixels were used for this characterization, because the performace of the pixels in
camera edge is genarally worse than the pixels in camera center for long exposure time. We
found the number of high offset pixels (97495, ∼3.01% of all the pixels) and high read noise
pixels (98220, ∼3.03% of all the pixels) is close. However, at the cut-off boundary (3 sigma),
high offset pixels are found to have higher noise (16.9 e-) than high read noise pixels (7.5 e-).
Besides, there are 7110 abnormal photon response pixels (∼0.22% of all pixels) with relative
photon response bias larger than 3 sigma (here the sigma is ∼ 0.094). This proportion is close to
theoretical analysis (0.26%) using the three-sigma rule for Gaussian model. We also investigated
the dependence of relative offset and read noise on exposure time (Fig. 3(b)). Since dark current
increases with exposure time, read noise and offset will also increase accordingly, but the increase
of offset will be more obvious. As seen in Fig. 3(b), when the exposure time in pixel 1 increases
from 1 ms to 10 s, the relative offset increases from ∼ 0 e- to ∼ 480 e-, while the read noise
increases from ∼ 2 e- to ∼ 18 e-. In some pixels, the offset even reaches the maximum signal
range, leaving no capability for these pixels to response to any incident photons. These findings
indicate sCMOS users should pay more attention to offset FPN correction rather than read noise
correction when long exposure time is necessary.

It is interesting to further investigate whether high read noise pixels overlap with high offset
pixels, and whether the indentity of high dark noise pixels changes with exposure time. Using
PDF, we identified four groups of high dark noise pixels (top 3% of the high read noise pixels
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Fig. 2. Camera noise characterization. (a) The relative offset map, read noise map, and
photon response map of the Dhyana 95, calculated from Eq. (2) ∼ Eq. (4). (b) The read
noise probability distribution function (PDF) for the three cameras. The read noise PDF of
the Dhyana 95 in (b) is calculated from the read noise map in (a). The read noise PDF was
found to follow log-normal distribution. The dependence of the measurement precision of
(c) the relative offset map, read noise map, and (d, e) the photon response map on frame
number and group number. The entire images in (a) are 2000× 2000 pixels and the enlarged
images in the top-right corners of (a) are 50× 50 pixels. Note that the read noise PDF of the
iXon 897 has a sharpen distribution. The exposure time was 20 ms.
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Fig. 3. High noise pixel characterization in the Dhyana 95. (a) A fluorescence image of
beads (in blue circles). The read noise map, relative offset map, and defect pixel map of
the same imaging area are also shown below. (b) The dependence of relative offset and
read noise on exposure time. Pixel 1-5 were marked out in (a). The data points in (b) were
calculated from 100 dark frames. (c) The PDF of read noise (left) and relative offset (right).
The statistics in (c) were from the top 3% pixels with highest read noise (high read noise) or
offset (high relative offset), or all of the 1800× 1800 pixels (all). The read noise and the
relative offset in (a, c) were calculated from 1000 dark frames. Note the zero read noise
pixels in (c) are probably defect pixels whose values are close to the maximum signal range
and never change. The exposure time in (a, c) was 10 s.

or high offset pixels, with 20 ms or 10 s exposure time), and compared the overlap pixels of
any two groups from these four groups. The overlap rate between high read noise pixels and
high offset pixels is 69% when the exposure time is 10 s (Fig. 3(c)), and becomes lower (11%)
when the exposure time is 20 ms. When the exposure time changes from 20 ms to 10 s, the
location of top 3% high read noise pixels or high relative offset pixels also change (overlap rate <
15%), meaning the identity of high dark noise pixels should be characterized separately for short
exposure time and long exposure time.

3.2. Impact of different types of sCMOS noise on conventional microscopy and SMLM

We analyzed the impact of sCMOS noise using simulated images on two imaging scenarios:
conventional microscopy and SMLM (Fig. 4). The impact of sCMOS noise on conventional
microscopy is directly assessed by the imaging quality of raw image frames, including peak
signal-noise-ratio (PSNR), structural similarity (SSIM), and the number of “outlier pixel” (NOP).
The impact of sCMOS noise on SMLM is assessed by the localization results calculated from
raw image frames, including localization precision and localization bias.

For conventional microscopy images, we used the measured noise maps (including read noise
map, relative offset map, and photon response map) of the Dhyana 95 as standard noise maps,
and enhanced the noise amplitude in these maps to obtain high noise maps. We generated high
noise images with a high level of camera noise (including global read noise, offset FPN, or gain
FPN), using a ground-truth image, the standard noise maps and the high noise maps. Details
can be found in Section 2.5. We calculated PSNR and SSIM using the simulated images with
standard and high noise maps, and found offset FPN and read noise decrease PSNR when the
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Fig. 4. The impact of camera noise on conventional microscopy and SMLM. (a) Three
simulated conventional microscopy images with different read noise maps. The corresponding
temporal pixel fluctuation maps are shown in the bottom. (b) Four simulated single molecule
images. (c) The impact of different types of camera noise on PSNR. The dependence of
(d) PSNR and (e) the number of outlier pixels (NOP) on different signal levels for images
with different read noise maps. (f) The impact of read noise on localization precision. The
dependence of (g) localization bias or (h) localization precision on the distance between high
noise pixel and the emitter center. A normal pixel was replaced by a high offset pixel (Add
off.) or a high read noise pixel (Add rn.) in the standard noise maps around each emitter in
(g) or (h). The simulated noise maps in (a-h) were the noise maps of the Dhyana 95 (that is,
the standard noise maps, DSNU= 1.31 e-, PRNU= 1.02%, RMS of read noise= 1.83 e-,
RNNU= 25%) or changing a noise map from the standard noise maps. The changed noise
map was shown in the legend. The simulated background in (a-h) is 10 photons/pixel. The
PSNR and SSIM and the temporal pixel fluctuation maps in (a, c-e) were calculated from
100 frames for each group. The signal level in (a) is ∼63 photons/pixel. The signal of the
emitters in (b, f-h) is 500 photons/emitter. Pixel size in (a-b): 110 nm. Scale bar in (b):
1 µm.
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signal is low (< 100 photons), and gain FPN decreases PSNR when the signal is relatively high
(> 100 photons) (Fig. 4(c)). Similar results were found for the SSIM assessment. Note that, for
both the PSNR and SSIM assessment, the common-used reference image is the averaged image
without FPN correction. But this image could not be used to assess the impact of FPN, because
averaging images could only eliminate temporal random noise rather than FPN.

We compared the impact of global read noise and RNNU on the image quality of conventional
microscopy. To visualize the impact more easily, we simulated images with several times higher
RMS of the read noise maps, as compared with the standard read noise map. We studied three
groups of simulated images with different read noise maps and used the relative low read noise
group (RMS= 5 e-, RNNU= 2%) as the reference. We found the PSNR of the high global read
noise group (RMS= 10 e-) is the lowest when the signal is moderate or low (< 1000 photons),
and the PSNR of the high RNNU group (RNNU= 50%) is close to that of the reference group in
the full signal range under studied (Fig. 4(d)). However, only the high RNNU group has outlier
pixels (Fig. 4(e)). These findings indicate: 1) global read noise decreases the image quality of
the whole image, while RNNU raises a larger temporal fluctuation in some high read noise pixels,
including but not limited to the outlier pixels; 2) PSNR is not suitable to assess the impact of
RNNU on image quality. Because FPN would not change with time, it adds only a fixed bias
to the digital value of a pixel, and thus would not increase NOP. Therefore, for all the types of
camera noise under investigation, NOP only increases with RNNU.

For SMLM, FPN was previously found to increase localization bias, while read noise would
degrade localization precision [11–13]. Here, we compared the impact of RNNU and global
read noise on localization precision by simulating three groups of single molecule images with
three different read noise maps. We found the localization precision of the high global read
noise group (RMS= 10 e-) is the lowest, and the localization precision of the high RNNU group
(RNNU= 50%) is the same as the reference group (RMS= 5 e-, RNNU= 2%) (Fig. 4(f)). This
is probably because the read noise map with high RNNU has not only more relative high read
noise pixels but also more low read noise pixels, and their impact on localization precision is
counteracted from a statistical point of view.

We also studied the impact of isolated high dark noise pixels on SMLM. We simulated single
molecule images with high noise maps by replacing a normal pixel with a high read noise pixel or
a high offset pixel, with a fixed amplitude and varied distance in the standard noise maps around
each emitter. We found the impact of the isolated high noise pixel changes with the distance
between the emitter center and the position of the high noise pixel (Fig. 4(g)-(h)). A high offset
pixel with 10 e- relative offset could lead to >1 nm localization bias, while a high read noise pixel
with 10 e- read noise could lead to ∼ 10% degradation in localization precision. For the Dhyana
95 with 20 ms exposure time, there are only ∼ 60 pixels with read noise > 10 e- and ∼ 20 pixels
with relative offset > 10 e- in an area of 2000× 2000 pixels, meaning the high dark noise pixels
bring a negligible degradation to the performance of SMLM. However, for some unlikely cases
where the exposure time increases to several seconds, the number of high dark noise pixels may
increase significantly (see Fig. 3(b)-(c)) and notable degradation for SMLM may be observed.

3.3. FPN correction

We captured 5000 dark images to calculate a DSNU map, and 5000 bright images at ∼950
e-/pixel to calculate a PRNU map, and used the statistic parameters (including DSNU, PRNU,
and local sensitivity variation (SV)) to assess the performance of FPN correction. For the two
sCMOS cameras, we directly used the measured relative offset maps and photon response maps
to perform FPN correction. After correction, the DSNU decreases from 1.31 e- to 0.16 e- for
the Dhyana 95 and from 0.52 e- to 0.15 e- for the Prime 95B (Fig. 5(a)), respectively. For
both sCMOS cameras, the DSNU after correction is already close to quantizing noise (that is,
0.14 e- for the Dhyana 95 and 0.17 e- for the Prime 95B) [19], which is the minimum noise for
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digital equipment. The DSNU for the iXon 897 was measured to be 0.07 e- before correction
and < 0.01 e- after correction, when the EMgain is 100. Note the corrected DSNU of the iXon
897 is mainly limited by quantizing noise (∼ 0.03 e-). For gain FPN, the corrected PRNU and
SV of both sCMOS cameras decrease to < 0.3% and < 0.2%, respectively (Fig. 5(b)), which
are comparable to those of the iXon 897 (before correction: PRNU= 0.32%, SV=0.22%; after
correction: PRNU= 0.12%, SV= 0.07%). In addition, all of the characterization parameters
(DSNU, PRNU, SV) of the uncorrected Prime 95B are better than those of the Dhyana 95, and the
uncorrected SV of the Prime 95B is even close to that of the iXon 897. These findings can also
be verified by the probably distribution function of the DSNU map or PRNU map (see Fig. 5(c)).
These findings suggest the FPN of the Prime 95B had been partially corrected in the factory, and
could be further corrected by end-users if necessary. Therefore, we verified that FPN could be
corrected to a negligible level using the modified two-point correction algorithm.

We further analyzed the robustness of FPN correction (DSNU and PRNU) using the Dhyana
95. Offset FPN correction may not work well when the experimental images are not captured with
the same exposure time as the relative offset map, because the offset value of a pixel increases
with exposure time. For example, when a relative offset map with 1 s exposure time was used to
correct the DSNU map with 20 ms exposure time, the DSNU was found to increase from 1.31 e-
to 3.46 e-.

For gain FPN correction, different experimental conditions were analyzed (Table 1). Typically,
we performed gain FPN correction using photon response maps measured under the following
conditions: 600 nm illumination wavelength, approximately 150 ∼ 1700 e-/pixel signal intensity,
20 ms exposure time. We found the performance of gain FPN correction would degrade when
the raw images are not taken with the same experimental conditions used for the photon response
map measurement. Specifically, we found the photon response map measured under the same
illumination wavelength could decrease the PRNU from > 1% to < 0.15%, but a photon response
map measured under a different illumination wavelength (600 nm) could even increase the PRNU
(measured under 850 nm) from 1.57% to 1.64%. However, the photon response map measured
under a mismatched illumination wavelength could still be effective to correct SV from ∼ 0.69%
to ∼ 0.12%, which is close to the case using matched experimental conditions. We also found the
photon response map measured under mismatched intensities could partly correct the PRNU
and SV, but the photon response map measured under matched intensities provides much better
correction. These findings prove that, to obtain an optimal FPN correction, both the relative
offset map and photon response map should be measured under the same experiment conditions.

It is noteworthy that, during the past two years we repeated the FPN correction with the Dhyana
95 several times, and found the offset map changes only slightly, while the photon response map
is kept stable. When the relative offset map and the photon response map were measured several
months before used, the DSNU after correction changed from 0.2 e- to ∼ 0.5 e-, while the SV
after correction was still nearly the same (from 0.11% to 0.13%). So the relative offset map
should be checked and updated regularly. Besides, because PRNU is sensitive to the illumination
angle that may change after a long period (for example, several months), the corrected PRNU of
the Dhyana 95 may deteriorate from 0.15% to ∼ 0.30%, depending on the illumination angle
repeatability.

3.4. Defect pixel correction

We corrected the defect pixels in the Dhyana 95 with a 3× 3 average filter, and compared
the results with those from FPN correction (Table 2). We assessed the performance of these
corrections under different exposure time: 20 ms or 1 s or 10 s for DSNU, and 20 ms for PRNU.
The DSNU map with 1 s exposure time was averaged from 5000 dark frames, and the DSNU map
with 10 s exposure time was averaged from 1000 dark frames. Results show the improvement in
DSNU and PRNU is negligible when the exposure time is 20 ms. With a longer exposure (1



Research Article Vol. 29, No. 5 / 1 March 2021 / Optics Express 6683

Fig. 5. FPN correction for the Dhyana 95 and the Prime 95B. (a) DSNU map, (b) PRNU
map. The cross-sectional profiles along the dark blue dashed lines are also shown. (c) The
corresponding PDF of the relative offset (DSNU map) and the relative photon response
(PRNU map). The DSNU and PRNU results in (a-c) were averaged from 5000 images. The
whole images in (a-b) are 2000× 2000 pixels for the Dhyana 95, and 1200× 1200 pixels for
the Prime 95B. The exposure time was 20 ms.
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Table 1. Gain FPN correction using different photon response mapsa

Parameters Correction Typeb Standard 850 nmc 400 nmc Intensityd Exposure timee

PRNU
No correction 1.10% 1.57% 1.07% 1.74% 1.16%

Mismatched - 1.64% 0.35% 1.10% 0.28%

Matched 0.14% 0.13% 0.15% 0.27% 0.16%

SV
No correction 0.69% 0.68% 0.70% 1.35% 0.74%

Mismatched - 0.12% 0.12% 0.95% 0.20%

Matched 0.11% 0.11% 0.11% 0.23% 0.13%

aThe photon response map measured under typical conditions (600 nm illumination wavelength, appropriate 150 e-
∼1700 e-/pixel intensity level, 20 ms exposure time) was used as the standard map. The PRNU map was measured under
the typical conditions (standard) or customized conditions where one parameter in the typical conditions was changed
and others remained the same.
bThe PRNU map was corrected by the standard map (mismatched) or the photon response map measured under the same
conditions as the PRNU map (matched).
cPRNU map measured under 400 nm or 850 nm illumination.
dPRNU map measured under an illumination intensity of ∼ 105 e-/pixel, and the matched photon response map was
measured under an illumination intensity of appropriate 30 ∼ 200 e-/pixel.
ePRNU map measured under 1 s exposure time.

s or 10 s), defect pixel corretion improves DSNU, but FPN correction improves DSNU more
significantly. Moreover, a combination of FPN correction and defect pixel correction brings a
better improvement in DSNU than FPN or defect pixel correction itself. Note the FPN correction
needs to be performed with noise maps under matched experimental conditions, while the defect
pixel correction doesn’t require a tight experimental control. This requires caution for the
correction under long exposure time. Actually, using a relative offset map with 10 s exposure
time to correct the DSNU map with 1 s exposure time will increase the DSNU from 2.94 e- to
24.24 e-. However, if we use the relative offset map with 10 s exposure time to determine the
defect pixels and then perform defect pixel correction for the DSNU map with 1 s exposure time,
the DSNU would decrease from 2.94 e- to 1.29 e-. This means defect pixel correction is easier to
perform than FPN correction for experiments with varied exposure time.

Table 2. Comparing defect pixel correction with FPN correction in the Dhyana 95

Parameters
Exposure
time

Without
correction

Defect pixel
correction

FPN
correction

Combined
correctiona

PRNU 20 ms 1.04% 1.02% 0.14% 0.14%

DSNU 20 ms 1.31 e- 1.27 e- 0.16 e- 0.16 e-

DSNU 10 s 27.92 e- 6.90 e- 3.94 e- 3.39 e-

DSNU 1 s 2.94 e- 1.29 e- 0.80 e- 0.74 e-

aThe combined correction executes firstly FPN correction, then defect pixel correction.

3.5. Scenario-specific noise correction for conventional microscopy

We compared the performance of NCS [16] (an sCMOS-specific de-noising algorithm) with
PURE [33] (a normal de-noising algorithm) by correcting the same group of experimental images:
100 frames of fluorescent microtubules in fixed U-2 OS cells. We found both algorithms could
increase the PSNR and SSIM, but PURE is more effective. Compared with NCS, PURE brings
more smooth structures in the corrected images (Fig. 6(a)-(b)) and a lower temporal fluctuation
(Fig. 6(c)). However, as seen in Fig. 6(c), the outlier pixels can be well-corrected by NCS, but
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not PURE. This means that, for conventional microscopy images, NCS is effective in minimizing
the impact of RNNU.

Fig. 6. Noise correction for conventional microscopy. (a) A raw image and the corresponding
corrected images using an sCMOS-specific de-noising algorithm (NCS) and a normal de-
noising algorithm (PURE). (b) The cross-sectional profiles along the green dashed lines
in (a). PRUE modified more raw data, and thus present a smoother structure and clearer
background. (c) Three corresponding temporal pixel fluctuation maps. The individual bright
pixels in (c) may be outlier pixels. The dependence of (d) PSNR and (e) SSIM on the RMS
of read noise. (f) The dependence of NOP on RNNU. The PSNR, SSIM and temporal pixel
fluctuation maps in (c-f) were calculated from 100 frames for each group. In (c), the left
and the middle maps share the same color bar marked in the left, and the right map has a
different color bar. The pixel size in (a, c) was 110 nm.
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We further compared the performance of these two de-noising algorithms using simulated
images, which are based on the same group of experimental images, but with different noise maps.
We simulated images with different RMS of read noise, and found both the PSNR and SSIM of
the corrected images decrease with the increase of RMS of the read noise for both de-noising
algorithms (Fig. 6(d)-(e)). This means the image quality of the corrected images is negatively
correlated with the global read noise. To further improve the image quality, new algorithms or
better circuit design should be developed to minimize global read noise. On the other hand, for
both de-noising algorithms, we found the PSNR or SSIM improves even when the RMS of read
noise is ∼ 0 (Fig. 6(d)-(e)), indicating that these two algorithms minimize not only global read
noise but also shot noise. Additionally, using simulated images with different RNNU, we verified
NCS could always correct the outlier pixels (Fig. 6(f)), confirming the previous finding that NCS
could minimize the impact of RNNU on conventional microscopy images [37].

We performed FPN correction and defect pixel correction on the same group of experimental
images. After FPN correction, the PSNR increased from 15.5 dB to 15.8 dB, the SSIM increased
from 0.75 to 0.76, and NOP was not changed as expected (Data not shown in Fig. 6). Although
in the FPN correction section we confirmed FPN could be corrected to a negligible level, the
increase of PSNR and SSIM from FPN correction is not as remarkable as those from NCS or
PURE (see Fig. 6(a)). That is because temporal noise (including read noise and shot noise)
are the dominant noise under this signal intensity [5]. Note that NCS performs FPN correction
at the first step. On the other hand, after defect pixel correction, the PSNR, SSIM, and NOP
became 16.6 dB, 0.80, and 23, respectively (Data not shown), respectively. The NOP didn’t
change because the defect pixels determined under long exposure time may not overlap with the
relative high read noise pixels with short (20 ms) exposure time, and thus was not corrected.
Compared with the NCS and PURE, the FPN correction and defect pixel correction keep more
raw data, at the expense of having less impact on imaging quality. Taking these results together,
we conclude that global read noise would be the limit for noise correction, and the impact of
RNNU on conventional microscopy images could be well corrected by NCS.

3.6. Scenario-specific noise correction for SMLM

We analyzed the localization algorithms with the simulated single molecule images mentioned in
Section 3.2. Three MLE-based algorithms (mentioned in Section 2.4) were used for localization.
We used MLEsCMOS to localize the molecules simulated with different read noise maps and
compared the results with those from MLEnormal (Fig. 7(a)). We found MLEsCMOS improves
∼ 10% in localization precision in the high RNNU group, but does not change the localization
precision in the low RNNU group. Because there are more relative high read noise pixels in the
high RNNU group, the degradation of high read noise pixels on localization precision could be
compensated by MLEsCMOS. For the low RNNU group, there are no relative high read noise
pixels, and thus the localization precision doesn’t benefit from MLEsCMOS. These results indicate
MLEsCMOS could correct the impact of RNNU but not global read noise on localization precision.

We examined the performance of MLEsCMOS on an extreme case, where the emission pattern
from single molecules is contaminated by an isolated high noise pixel. We also evaluated the
performance of a modified MLEnormal (called MLEdefect), where MLEnormal is used to localize the
raw images after defect pixel correction. We used the three algorithms (MLEnormal, MLEsCMOS
and MLEdefect) to localize two selected groups of images (10 e- relative offset group, and 20 e-
read noise group) in Fig. 4(g)-(h), and then compared their localization results with the standard
group in Fig. 4(g)-(h). We found MLEsCMOS decreases the localization bias from > 8 nm to
∼ 1 nm (Fig. 7(b)), which is obviously lower than that of the standard group. That is because
MLEsCMOS performs FPN correction before localization, which corrects the fixed bias from not
only the isolated high offset pixel but also every pixel. We also found MLEsCMOS could improve
localization precision from > 23 nm to ∼ 16 nm (Fig. 7(c)), which is slightly worse than the
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Fig. 7. The performance of three localization algorithms (MLEnormal, MLEsCMOS, and
MLEdefect) for SMLM. (a) Localization precision of MLEsCMOS and MLEnormal for
simulated images with different RNNU. (b) Localization bias and (c) localization precision
of the three algorithms for simulated images with isolated high noise pixels: 10 e- relative
offset pixels in (b), and 20 e- read noise pixels in (c). (d) Rendered super-resolution images.
(e) Localization statistics of all molecules localized by MLEsCMOS (All) and the molecules
localized by both MLEsCMOS and MLEnormal (Common). All of the localization statistics
data in (e) were originated from MLEsCMOS calculation results. The signal in (a-c) was 500
photons/emitter. In (d), the image size was 128× 128 pixels, and the pixel size was 110 nm.

localization precision of the standard group. That means MLEsCMOS is effective to correct the
impact of isolated high read noise pixel on localization precision. Since the high read noise pixels
in sCMOS cameras are usually random distributed, we conclude MLEsCMOS could minimize the
impact of high read noise pixels on SMLM.

On the other hand, MLEdefect could reduce the impact of isolated high noise pixels on the
localization bias and localization precision, especially when the isolated high noise pixel is 100
nm (or more) away from the emitter center (Fig. 7(b)-(c)). However, as compared with the
standard group, MLEdefect was observed to have an increase of ∼ 2 nm in the localization bias and
localization precision (Fig. 7(b)-(c)). This is probably because the digital value of the isolated
high noise pixel was replaced by the mean value of 8 adjacent pixels, which reduces the impact
of high noise pixels on SMLM, but results in a distorted emission pattern. That is to say, when
normal pixels are considered as defect pixels and are corrected, the localization precision and
localization bias would be degraded when a normal MLE algorithm is used.

We compared MLEsCMOS and MLEnormal by localizing the same group of SMLM data: 10000
raw image frames captured by the Dhyana 95 with 1 ms exposure time (Fig. 7(d)). We found
MLEscmos could localize more molecules than MLEnormal: 188890 molecules for MLEscmos
and 161464 molecules for MLEnormal. This is probably because MLEscmos considers noise
non-uniformity when image segmentation is performed [11]. We further identified 157559
molecule pairs from both localization algorithms, and compared them with all of the molecules
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localized by MLEscmos (Fig. 7(e)). We found most of the molecules localized by MLEscmos
but not MLEnormal are low signal molecules, which are beneficial for fast SMLM imaging. But
this advantage is not enough to raise a notable difference in the global spatial resolution when
the number of molecules is high. Actually, the Fourier ring correlation (FRC) [38] of the final
super-resolution image is close: 135.6 nm for MLEnormal, and 137.4 nm for MLEscmos.

Taking these results together, it is reasonable to conclude that MLEsCMOS is a good choice
for localizing raw images with high noise non-uniformity, because MLEsCMOS could minimize
the impact of RNNU but not global read noise on SMLM. This conclusion also agrees with the
theoretical analysis of the localization precision in sCMOS camera, where read noise map should
be included [11,15].

4. Discussion and conclusion

Camera noise non-uniformity is a major concern for the selection and use of sCMOS cameras.
In this paper, we analyzed systematically different types of camera noise in two popular back-
illuminated sCMOS cameras, and confirmed camera noise non-uniformity (including offset FPN,
gain FPN, and RNNU) could be well-corrected by using proper algorithms. We also studied the
impact of different types of noise on conventional microscopy and SMLM, and investigated the
usability of FPN correction and defect pixel correction performed by camera manufacturers.

We found the commonly-used parameters (including PSNR and SSIM for conventional
microscopy, localization precision and FRC for SMLM) are insensitive for assessing the noise
non-uniformity, and thus new methods or parameters should be developed to characterize the
impact of the noise non-uniformity on imaging quality. We suggest to study the regions around
high noise pixels separately when discussing the impact of sCMOS noise non-uniformity on
imaging quality.

Both defect pixel correction and FPN correction are regularly used by camera manufacturers
to improve the image quality of sCMOS cameras. However, their usability should be considered
carefully. For defect pixel correction, manufactory usually determines defect pixels using images
with long exposure time, because the defect pixels are more obvious under long exposure time.
However, because dark noise increases with exposure time, some defect pixels identified under
long exposure time may be recognized as normal pixels when the exposure time is short. Taking
defect pixel correction to these normal pixels results in distorted images. For FPN correction,
because offset FPN may change over time, relative offset map should be measured regularly. The
effectiveness of FPN correction depends on whether the noise maps are measured with the same
conditions as the experiment, FPN re-correction may be necessary for a specific experiment.
Besides, although the number of high noise pixels in the Dhyana 95 changed little during the past
two years, we did observe some newly developed high offset pixels in another sCMOS camera
that has been used for six years. We recommend sCMOS users to keep tracking the number and
locations of high noise pixels, and perform re-correction if necessary.

Although camera noise non-uniformity can be well-corrected, performing the correction
may need additional experiments and expertise, and using the correction algorithms could be
time-consuming. Therefore it is necessary to determine whether any sCMOS noise correction
algorithms should be used in a specific imaging scenario. After considering all the findings
in this paper, we present the following suggestions: 1) For most sCMOS users, it is necessary
to perform noise non-uniformity correction only when the final images or the post processing
algorithms cannot tolerate the isolated high noise pixels (like pixel 1-2 in Fig. 3(a)), because
noise non-uniformity has smaller impact on image quality than shot noise and global read noise
for normal pixels. 2) FPN correction is necessary for some applications that requires time-domain
averaging to improve the experiment precision, because in this case shot noise and global read
noise have been minimized. A typical example is ultra-high resolution imaging of nuclear pore
complex scaffold via particle averaging, where the localization precision is expected to be better
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than 1 nm [39]. 3) For experiments with long exposure time, dark FPN correction is always
recommended, except for varied exposure time in continuous frames.

We have illustrated that the representative EMCCD camera has better noise non-uniformity
than the two back-illuminated sCMOS cameras, but would not conclude that the imaging
performance of EMCCD cameras is better than back-illuminated sCMOS cameras. It is known
that EMCCD cameras suffer from another pixel-independent noise called excess noise, while
sCMOS cameras do not [19]. Since the noise non-uniformity of sCMOS cameras could be
corrected to a satisfactory level, we recommend to focus more on comparing the imaging
performance of low light cameras at camera-level using the PTC method [3,5,19]. Previously, we
found a representative back-illuminated sCMOS camera performs better performance in SMLM
than a popular EMCCD camera in a wide signal range [3].

Finally, it is worthy to point out that, after all possible corrections, the camera noise non-
uniformity is no longer the major problem for applying sCMOS cameras in various application
fields. To further improve the imaging performance of current commercial sCMOS cameras,
camera manufacturers and end-users should take more efforts to minimize the RMS of read noise
in sCMOS cameras. Recently, Hamamatsu Photonics took a desirable step towards this direction,
and released a low-noise back-illuminated sCMOS camera called ORCA-Fusion BT, where the
RMS of read noise is 0.7 e- for low read out speed mode. It would be interesting to see what kind
of new applications would benefit from this technology advance.
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