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Abstract: Changes in bacterial physiology necessarily precede cell death in response to antibiotics.
Herein we investigate the early disruption of Ca2+ homeostasis as a marker for antibiotic response.
Using a machine learning framework, we quantify the temporal information encoded in single-cell
Ca2+ dynamics. We find Ca2+ dynamics distinguish kanamycin sensitive and resistant cells before
changes in gross cell phenotypes such as cell growth or protein stability. The onset time (pharma-
cokinetics) and probability (pharmacodynamics) of these aberrant Ca2+ dynamics are dose and
time-dependent, even at the resolution of single-cells. Of the compounds profiled, we find Ca2+

dynamics are also an indicator of Polymyxin B activity. In Polymyxin B treated cells, we find aber-
rant Ca2+ dynamics precedes the entry of propidium iodide marking membrane permeabilization.
Additionally, we find modifying membrane voltage and external Ca2+ concentration alters the time
between these aberrant dynamics and membrane breakdown suggesting a previously unappreci-
ated role of Ca2+ in the membrane destabilization during Polymyxin B treatment. In conclusion,
leveraging live, single-cell, Ca2+ imaging coupled with machine learning, we have demonstrated the
discriminative capacity of Ca2+ dynamics in identifying antibiotic-resistant bacteria.

Keywords: calcium; E. coli; aminoglycosides; polymyxin B; antibiotic resistance; machine learning

1. Introduction

Calcium (Ca2+) is a critical ion for eukaryotic cells connecting membrane voltage
to cellular signaling [1]. From classic experiments in the squid giant axon [2] to plant
immune signaling [3], the role of Ca2+ in voltage-mediated cell signaling is universal to
life. However, compared to eukaryotic systems, the extent to which Ca2+ dynamics modify
cell behavior in prokaryotes is only just being discovered [4–7]. Recent evidence has con-
nected Ca2+ in prokaryotes to diverse processes including oxidative stress [8], motility [9],
virulence [10], and chemotaxis [11]. Additionally, Ca2+ is used for mechanosensation in
Escherichia coli [12], suggesting that the role of Ca2+, as well as sodium and potassium,
in cell–cell communication is not limited to eukaryotic organisms [13–17]. However, while
Ca2+ binding domains have been identified in prokaryotic genomes ([18–24] and reviewed
in [4,5]), it remains challenging to prove the functionality of these domains.

Nevertheless, despite its ubiquity, Ca2+ represents a Promethean paradox for cells,
being both necessary for life, but also cytotoxic, a dynamic signaling molecule necessarily
kept within a narrow concentration range [25,26]. Ca2+-dependent cytotoxicity occurs both
from the complexation of calcium phosphate [27] as well as signaling dependent mecha-
nisms. In eukaryotes, these signaling mechanisms include Ca2+-dependent proteases [28],
phospholipases [29], endonucleases [30], and activation of apoptotic proteins [30]. To pre-
cisely regulate intracellular Ca2+ levels, eukaryotes utilize a complement of Ca2+ transport
proteins including ATP-dependent pumps, voltage-gated membrane channels [31], ion
porters, and sequestration into organelles such as the endoplasmic reticulum, mitochondria,
and lysosomes [32,33]. That such a wide array of regulatory mechanisms have evolved to
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maintain and modulate intracellular Ca2+ levels, and initiate programmed cell death in
the event of failure, suggests that Ca2+ toxicity is a persistent danger in the life of a cell.
In prokaryotes, conversely, only recently has a native voltage-dependent Ca2+ channel been
discovered [34]. The extent to which similar mechanisms exist in prokaryotes for modifying
Ca2+ pools and initiating cell death is yet undetermined. Regardless, the double-edged
sword of Ca2+ is an unavoidable evolutionary constraint for single-cell organisms.

Recent evidence demonstrated that Ca2+ transients (characterized by hyper-oscillations
in intracellular free-Ca2+) were sufficient and necessary for the bactericidal activity of
aminoglycosides in E. coli [35]. This is in contrast to the previous claims that voltage-
dependent drug uptake [36] or reactive oxygen species (ROS) [37,38] are central to cell
death initiated by aminoglycosides. Other ions, in particular Mg2+, have been shown to
mediate the response of Bacillus subtilis to other translation inhibitors [39]. These studies
raise the possibility that ionic imbalance is a common mechanism of cellular death induced
by bactericidal antibiotics [40].

Because the maintenance of Ca2+ is integral to cellular health, we hypothesized that
Ca2+ disequilibrium is an early marker of antibiotic activity. In this work, we test this
hypothesis by leveraging a genetically encoded fluorescent biosensor of free Ca2+ [41,42]
to record Ca2+ dynamics at single-cell resolution. We find Ca2+ transients are a dose-
dependent and time-sensitive marker of aminoglycoside activity which mirror the number
of viable cells. Using a machine learning framework, we find the antibiotic-induced
Ca2+ signature precedes aberrant cell growth as well as reliably distinguishes kanamycin
sensitive and resistant cells. Applying our framework to a panel of antibiotic compounds,
we find Ca2+ dynamics encode drug action in more drug classes than just aminoglycosides.
In particular, we find a strong temporal Ca2+ signature in response to Polymyxin B, a broad-
spectrum antibiotic for Gram negative bacteria. In summary, by combining machine
learning with direct measurements of Ca2+ activity in single cells, we present evidence of
Ca2+ as an early signal of antibiotic response.

2. Materials and Methods
2.1. Experimental Set Up

E. coli strains BW25113 and mntH (genomically-integrated kanamycin-resistant) were
acquired from the Yale Coli Genetic Stock Center. Cells were transformed, as previously de-
scribed [35], with a GCaMP6-mScarlet containing plasmid (Addgene #158979) (Figure 1a).
B. subtilis strain with genomically-incorporated, isopropyl-β-d-thiogalactopyranoside
(IPTG)-inducible expression of GCaMP6f (hyperspank promoter) was obtained from Dr.
Ethan Garner (Harvard University). The genomically incorporated cassette in B. subtilis
also included spectinomycin resistance. For each experimental run, three GCaMP6 express-
ing colonies were picked from an agar plate and grown overnight in LB 37 ◦C with shaking
between 150 and 200 rpm and with carbenicillin (100 µg/mL) for E. coli and spectinomycin
(100 µg/mL) for B. subtilis to maintain GCaMP6 expression. From overnight cultures, cells
were diluted 1:100 in PMM minimal media (pH 7.5) and grown at 30 ◦C for 2 h shaking
(150–200 rpm). The PMM recipe used is: 1x M9 salts (Sigma), 0.2% glucose (Sigma), 0.2 mM
MgSO4, 100 µM CaCl2, 1x MEM amino acids (Gibco). For inducing the GCaMP6 expres-
sion in the B. subtilis cells, IPTG was diluted to 1 mM concentration in both the LB and
PMM media.

After 2 h of outgrowth in PMM, 2 µL of dilute cell culture was added to the top of
200 µL 2% low melt agarose pads, molded to fit in 96-well square glass-bottom plates
(Brooks Automation, MGB096-1-2-LG-L) (Figure 1b). B. subtilis required concentrating
10X by centrifugation before plating. See [35] for details regarding well molds and pad
preparation. For experiments involving PI (3 µg/mL), CCCP (50 µM), EGTA (5 mM),
and excess Ca2+ (1mM), reagents were diluted directly in liquid agarose before pouring the
pad. Concentrations of free Ca2+ in the presence of EGTA were calculated according to [43].
For B. subtilis experiments, IPTG was also included in the pad at 1 mM concentration. After
15 min, the pad with affixed cells was inverted and pressed into the bottom of a pre-warmed
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imaging plate (30 ◦C). Imaging positions were selected on the microscope and then, after the
cells had been on the pad for exactly 1 h at 30 ◦C, 5 µL of 40X drug was added to the top
of the pad, and the imaging was initiated immediately. Measurements with a fluorescent
dye show compounds diffuse through the agarose with pharmacokinetics which better
mimic drug uptake in vivo (Figure S1). Imaging experiments were conducted at pH 7.5 and
without carbenicillin or spectinomycin. Each experiment consisted of selecting 3 colonies
(biological replicates) that were imaged in separate wells.

Imaging took place using a Nikon Ti inverted microscope running the Slidebook
software package (3i Inc). Fluorescent excitation was achieved with a laser source (488 nm
and 561 nm) using a high-angle illumination to minimize the out-of-focus background.
The excitation laser was brought to a focus at the back aperture and then a pair of galvo
mirrors (3i Inc) was used to rotate the image around the back focal plane of the objective,
minimizing sample-induced striping. All images were acquired with either a 40x, NA 0.95
or 60x, NA 0.95 air objective. Images were acquired on two sCMOS cameras (Photometrics,
Prime 95B) using a 570 nm beam splitter (Cairn, TwinCam) to image mScarlet and GCaMP6
channels separately. Images were acquired at 1-minute intervals for 240 time-points. Each
experiment contained biological triplicate of the tested conditions distributed between 50
and 70 fields of view.
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Figure 1. Measuring Ca2+ dynamics in single E. coli. (a) BW25113 cells are labeled with a GCaMP6f-
mScarlet dual fusion plasmid (mScarlet channel not shown). Cells are segmented (white outline)
using both channels (see Methods Image Processing). (b) Dilute cells in log-phase growth are affixed
to a 2% agarose pad and inverted into a 96-well plate for imaging. Drug addition is done at
t = 0 by pipetting on top of the agarose. Cells are imaged at 1-minute intervals. (c) The Ca2+

dynamics are extracted from the single-cell segmentation (top panel). Rapid oscillations in the
cellular Ca2+ content, so-termed Ca2+ transients, have previously been observed in response to
aminoglycosides [35]. To quantify these oscillations, a moving window standard deviation (std,
bottom panel) is calculated. As the magnitude of the Ca2+ transients increases in a given time-
window, the std increases. The sliding window size is 30 min.

2.2. Image Processing

The Ca2+ dynamics were extracted by segmenting single cells (white outline, Figure 1a)
using a Hessian-based routine specific for identifying tubular structures. Image processing
was done in Matlab (Mathworks, R2020a) and followed the general scheme described
in [35]. Briefly, the illumination profile for all wells in an experimental run was estimated
from the average of 50 images per well. Morphological opening and blurring were used to
broaden the illumination pattern before correcting the images. After illumination correction,
the jitter in the movie was removed by aligning each sequential frame using a fast 2D
Fourier transform implemented in Matlab. Once images were illumination-corrected and
aligned, the background was estimated for each frame using morphological opening and
subtracted from the original image.

Segmenting cells was done using the Hessian-based fibermetric segmentation routine
implemented in Matlab. Segmented regions were included only if they met a minimum
area and intensity threshold. This segmentation was done for both the mScarlet and the
GCaMP6 channels before adding the segmentation maps together to get the final binary
mask. To simultaneously measure cell growth and Ca2+ dynamics, the segmentation map
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was redrawn such that each segmented object was enclosed by an ellipse with a major
and minor axis equal to 1.0 and 1.5X the major and minor diameter of the segmented
cells, respectively, (Figure S2). For segmenting B. subtilis, the ellipse axes were equal
to 0.6 and 0.8X the major and minor diameter of the segmented cells, respectively. We
found these values to faithfully capture cells growing and drifting in the wide array of
conditions we tested (Videos S1 and S2). The mean, standard deviation (std), minimum,
and maximum GCaMP6 and mScarlet signals within the enclosed ellipse for each time-
point were extracted from the pixels enclosed within each ellipse (Figure 2a). Within each
ellipse, only pixels with a signal greater than background were included in the summary
statistics. We refer to these summary statistics collectively as the Ca2+ “trace”. The change
in cell area over time was also computed by counting the number of non-background pixels
inside the ellipse for each frame.

2.3. Machine Learning Classifier

To investigate the temporal information in the Ca2+ dynamics, we leveraged a random
forest classifier trained to distinguish sensitive and resistant cells at different time intervals
(∆t) (Figure 2). Specifically, we trained the random forest using features calculated from
the Ca2+ traces (Figure 2a,b). Data cleaning steps were as follows. Mean GCaMP6 intensity
was cleaned by filling any missing values with a moving mean (window 15 frames) or
with the nearest non-missing value. Additionally, any cells where the cell drifted out of the
ellipse were identified and removed by identifying frames where the cell area dropped to
zero. Finally, outliers were removed from the data using multi-dimensional gating based
on the segmentation area, major/minor axis lengths, circularity, and length of the perimeter.
The mean Euclidean distance in multi-dimensional space for each cell to all other cells
was computed, and cells in the 98th percentile or above in average distance from all other
cells were excluded. To compensate for the less accurate segmentation in the B. subtilis, we
removed cells in the 85th percentile or above in the multi-dimensional gating.

Once the data was cleaned, the feature matrices were computed (Figure 2b). A total of
600 features were calculated for each trace regardless of trace length. Features included
convolutions of different sizes to increase the long-range information embedded in the
trace. Feature descriptions are included in the Supplementary Materials Feature calculation
from fluorescent traces. The feature matrix was normalized and any features or cells which
were undefined were removed. Features were further reduced using Principal Component
Analysis (PCA) to the minimal set of eigenvectors comprising >95% of the variance in the
dataset. For the GCaMP6 signal in the kanamycin treated E. coli dataset, this reduced the
dimensionality to 58 features.

To identify optimal hyper-parameters for each treatment condition, the full time-
course (∆t = 240 min) was split 80/20 into training and testing data sets. The training data
was fit to a random forest classifier using Matlab’s fitcensemble method (Figure 2c) in 2
stages. During the first stage, the hyper-parameter sweep optimized the boosting function,
while in the second stage, the learning rate, maximum number of splits, minimum leaf size,
and number of learning cycles for a particular boosting function were optimized. Both
boosting function and learner parameters optimization used 200 learning iterations. We
consistently found that the AdaBoostM1 method [44] to be the optimal boosting approach.
Boosting is a technique that continuously updates the weights in the dataset as decision
trees are being added to the random forest to “boost” the classifier performance on samples
that are poorly performing in early trees. The AdaBoostM1 method was used for all drugs;
however, the optimal hyper-parameters for each drug were determined independently. See
Table S1 for the hyper-parameters for each drug.

To classify sensitivity and resistance based on cell area, we use Support Vector Ma-
chines (SVM), which are appropriate for distinguishing classes in univariate datasets.
The same approach was used for selecting hyperparameters based on first maximizing the
full-time-course classifier performance. Hyperparameters optimized include the kernel
density and box constraints. These hyperparameters were then used for training classi-
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fiers with different ∆t. An SVM was also used to measure the performance of only Ca2+

transients (Figure 1c) in predicting sensitivity and resistance.
Based on the optimal hyper-parameters for the full-time-course dataset, the classifier

performance for varying ∆t was computed. Importantly, the PCA dimensionality reduc-
tion was performed on each ∆t classifier separately. An equal number of sensitive and
resistant traces were used to train each ∆t classifier to appropriately weigh the algorithm
performance. Untreated sensitive cells were labeled as resistant to prevent the classifier
from identifying the subtle cell-line specific differences in GCaMP6 expression. Classifier
performance was measured using the area under the receiver operator curves (ROC AUC),
as well as the error rate. Ten-fold cross-validation was performed to ensure classifiers were
not being over-trained.

All code and processed data required to create and train the classifiers are available
on BitBucket at https://meyerct1@bitbucket.org/meyerct1/gcamp_paper.git accessible as
of 1 May 2021.
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Figure 2. Machine learning schematic to measure how Ca2+ dynamics distinguish sensitive and resistant cells
at single-cell resolution. (a) For each cell’s Ca2+ trace, summary statistics are calculated. (b) Features
are different summary statistics (i.e., moments) of the Ca2+ trace with different smoothing functions
and normalization protocols resulting in 600 total features, (see Supplementary Materials section
Feature calculation from fluorescent traces). We define a value ∆t corresponding to the length of the trace
to subset before calculating the features. Calculating these features for a particular ∆t for all cells
results in a feature matrix. The feature matrix is used to train a random forest classifier to distinguish
sensitive and resistant cells. (c) The random forest is comprised of decision trees (left), which make
a binary classification for each cell based on the calculated trace features (Fn). Many decision trees
are combined to create a random forest, which makes a final classification by weighting the decision
from all the trees. As ∆t increases, more of the Ca2+ trace is included, improving the classifier’s
discriminative capacity. Therefore, the random forest acts as a stopwatch for how early the sensitive
and resistant cells can be reliably distinguished.

2.4. CFU Assays

CFUs were measured by plating treated cells onto LB-agarose without antibiotic and
counting growing colonies. CFU measurements were conducted to mimic the experiments
performed via microscopy. Briefly, three biological replicates were grown overnight in LB
and diluted 1:100 in 5 mL PMM followed by growth at 30 ◦C for 2 h. Antibiotic was added
directly to liquid cultures after the outgrowth phase. The liquid cultures were repeatedly
sampled after each predetermined treatment interval and plated. Plating the cells was
done by first washing in PBS and diluting in a 10X series. From each of the 10X dilutions,
5 µL was plated onto an LB agar pad and left to dry. Colonies were counted manually
following incubation overnight at 37 ◦C. The smallest number of CFUs observable in our
assay is 200 CFUs/mL. To increase our limit of detection at 100 µg/mL kanaymcin after
2 h, 100 µL treated culture was plated onto a 10 cm dish and counted to measure CFUs

https://meyerct1@bitbucket.org/meyerct1/gcamp_paper.git
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per milliliter. This experiment concluded that there are an estimated 30 CFUs/mL after
2 h of treatment compared with 3 × 107 CFUs/mL before treatment. Therefore, we expect
approximately one cell in every million cells for this condition is viable.

3. Results

3.1. Ca2+ Transients Are a Dose- and Time-Dependent Indication of Sensitivity to
Aminoglycosides, Preceding Changes in Cell Growth, in a Bacterial Population

A previous study demonstrated that Ca2+ transients, as measured by an increase in the
moving standard deviation of GCaMP6 intensity over time (Figure 1c), distinguished E. coli
cells, which permanently arrest from those that regrew in response to aminoglycosides [35].
Building on this observation, we first investigated how the time to onset of these Ca2+

transients related to the dose of kanamycin (Figure 3a). Titrating the concentration from
0 to 100 µg/mL (yellow to red, Figure 3a), we observed the fraction of cells experiencing
Ca2+ transients (green in heat map) is dose-dependent for aminoglycoside-sensitive cells
(blue colorbar). In the 100 µg/mL condition, most cells displayed sustained Ca2+ transients
by 120 min from drug addition. Each successively lower dose saw Ca2+ transients with a
temporal delay compared to the 100 µg/mL condition in a decreasing portion of cells. There
was a notable absence of transients in the 3 µg/mL condition, indicating this concentration
was well tolerated by the cells. These observations suggested that the time-to-onset and
probability of Ca2+ transients were dose-dependent. Cells with a genomically encoded
kanamycin resistance (resistant cells, Figure 3a, black colorbar) did not show evidence of
GCaMP6 transients as expected. To investigate how the duration and concentration of
kanamycin treatment altered the number of viable cells, we measured the colony-forming
units (CFUs) across the same concentration range for exposures ranging from 30 to 240 min
for both sensitive (Figure 3b) and resistant (Figure 3c) cells. We found a 106 fold reduction
in viability after 120 minutes exposure to 100 µg/mL kanamycin, which matches the
concentration and time-point at which persistent Ca2+ transients are observed in the single-
cell traces (Figure 3a). We also observed no significant change in the CFUs between the
3 µg/mL and untreated conditions at 2 h, corroborating our observation that the absence
of Ca2+ transients is a proxy for viable cells [35]. Therefore, Ca2+ transients distinguished
sensitive and resistant populations, and they mirrored the dose and time-dependence on
viability during kanamycin treatment.

We next compared the onset of Ca2+ transients to changes in cell growth between
sensitive and resistant cells (Figure 4). At the population level, divergence in GCaMP6 std
was observed in less than 50 min (asterisk, Figure 4a, KS-statistic > 0.25), whereas the area
did not diverge until 131 min (asterisk, Figure 4b, KS-statistic > 0.25). This demonstrates
that drug-induced alterations in Ca2+ homeostasis preceded changes in growth rate at the
population level during kanamycin treatment.
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Figure 3. The onset of Ca2+ transients distinguishes sensitive and resistant cells and is dose and time
dependent. (a) Heatmap of 1272, single-cell, GCaMP6 std traces (see Figure 1) for sensitive (naive
BW25112 cells, blue rows) and Kan resistant (mntH cells, black rows) E. coli treated with different
concentrations of kanamycin (second color column; yellow->red). Green shading corresponds to high
GCaMP6 std (colorbar) and therefore marks the onset of Ca2+ transients. (b,c) The colony forming
units (CFUs) per mL for different exposure periods and concentrations of kanamycin for sensitive (a)
and resistant (b) cells. Colors match the concentration colors in panel a. The limit of detection for our
assay is 200 CFUs/mL (dotted black line, see Methods). Values for each concentration and exposure
time are the average of 3 biological replicates.a   b
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Figure 4. The onset of Ca2+ transients precedes measurable growth defects at the population level in response
to kanamycin. (a,b) Average (dark line) of single cell measurements for GCaMP6 std (a) and cell
area (b) over time in 100 µg/mL of kanamycin. The squared variance between single-cells for each
time-point shown in shaded error bar. The sensitive (blue, 5011 total cells) and resistant (black, 3005
total cells) populations diverge in 50 min by Ca2+ transients (a) while the divergence in cell growth
(b) occurs at 131 min (asterisk, KS-statistic > 0.25).

3.2. Machine Learning Reveals Single-Cell Ca2+ Dynamics Are an Early and Reliable Marker of
Kanamycin Activity

To quantify the minimum time required for Ca2+ dynamics to discriminate between
sensitive and resistant cells, we constructed a machine learning framework to function as
an in silico stopwatch. This framework took as input GCaMP6 traces from single cells that
were labeled as either sensitive or resistant and trained a random forest classifier (Figure 2).
The quality of the classifier was measured by predicting the identity of a new cell based
on its GCaMP6 trace. The confidence in classifying the two populations depended on
the length of the GCaMP6 trace used to train the classifier. This characteristic length we
term ∆t. For each cell, we calculated a feature matrix (Figure 2b) which depended on ∆t.
As ∆t increased, more of the cell’s Ca2+ dynamics are included in the classifier reducing
the classification error. We defined sensitive cells to be the BW25113 cells at 100 µg/mL.
We defined resistant cells as either mntH cells (genomically-integrated KanR) treated at
100 µg/mL or untreated BW25113 cells. Labeling both the untreated BW25113 and treated
mntH cells in our training data as resistant was critical to preventing the classifier from
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identifying subtle cell line differences in GCaMP6 expression rather than differences in
Ca2+ dynamics. To benchmark the Ca2+ signal, we compared it to classifiers based on cell
area and the mScarlet signal (see Methods). As the mScarlet signal integrates changes in
protein translation, degradation, and cell growth, we consider it a proxy for estimating
global phenotypic changes in the cell.

As expected, we found a strong temporal signature in the error rate (Figure 5a, top
panel, red curve) for classifiers trained on GCaMP6 traces while cell area and mScarlet had
less pronounced temporal dependence (Figure 5a, middle and bottom panel). Before the
sustained onset of the Ca2+ transients (~120 min, Figure 3a), the error in the GCaMP6-based
classifier began to decrease as the classifier begins to correctly discriminate sensitive and
resistant cells achieving <5% error rate by 108 min (Figure 5a, top panel, dashed cyan line).
When the labels were scrambled, the classifier cannot improve from a 50% error rate or
equal to a random guess (Figure 5a, blue curve). The ~25% error rate of the GCaMP6-based
classifier even at small ∆t was a result of the classifier correctly distinguishing resistant cells
at early time points, but unable to correctly classify sensitive cells any better than a random
guess. Because the number of sensitive and resistant cells that feed into the classifier is
equal, this leads to the ~25% error rate. Cell area and mScarlet based classifiers did not reach
<5% error (Figure 5a, middle and bottom panels) within the 4-h measurement window.
Finally, we compared the performance of a SVM classifier trained only on Ca2+ transients
(std GCaMP6, Figure 1c) to our more complex random forest model and found that the
inclusion of additional features substantially reduced the time to correctly distinguish
sensitive and resistant cells (Figure S3). Therefore, Ca2+ dynamics are an early marker of
kanamycin activity which preceded changes of several gross phenotypic modifications.

The overall discriminative capacity of Ca2+ dynamics for classifying single cells was
compared to mScarlet and cell area using the full 240 min time-course. Classifying based
on GCaMP6 results in an extremely accurate classifier (Figure 5b, top panel). Overall,
the classifier had <3% error in classifying both sensitive and resistant cells, while mScarlet
and cell area classifiers had greater error rates (Figure 5b, middle and bottom panel). In the
case of cell area, even with the full time-course, up to 16% of the sensitive cells were
misclassified as resistant (Figure 5b, middle panel). Ca2+ dynamics also outperformed
mScarlet and cell area-based classifiers in other metrics of machine learning classifier
performance (Figure S4). Interestingly, our original definition of Ca2+ transients (moving
window std of GCaMP6, Figure 1b) was one of the most predictive features learned by
the GCaMP6-based classifier (Figure S5) emphasizing the random forest was correctly
learning to distinguish the sensitive and resistant cells based on observable changes in the
Ca2+ dynamics.

We also tested our random forest framework at detecting the response of a Gram-
positive bacteria (B. subtilis) to kanamycin. While our segmentation algorithm was not as
efficient in detecting single B. subtilis cells (Figure S6a), the classifier was able to distinguish
treated and untreated cells in as little as 52 min with <5% error (Figure S6b). Overall
discriminative capacity of Ca2+ dynamics in this cell line was high (Figure S6c), but the
most important feature was different than for the E. coli classifier (compare Figure S5a,b
and Figure S6d,e). Specifically, the minimum GCaMP6 signal over time was the most
predictive feature which we found significantly distinguished treated and untreated cells
(Figure S6f, Video S2). Therefore, our approach is flexible enough to account for the varying
reactions of different cell types to the same antibiotic; however, these results emphasize the
need to train cell type-specific classifiers.
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Figure 5. Using machine learning to discriminate kanamycin sensitive from resistant cells at single-cell
resolution. (a) Comparing the error rate of machine learning classifiers as a function of ∆t for GCaMP6,
cell area, and mScarlet traces. A random forest classifier with AdaBoostM1 boosting (Figure 2) was
used for the GCaMP6 and mScarlet traces while an SVM was used for cell area (see Methods). As the
amount of the trace included in training the classifier increases (i.e., ∆t increases), the total error
rate of the classifier decreases (red curve). The hyper-parameters are the same for all ∆t classifiers.
The blue curve is the error rate of the same random forest architecture trained on scrambled cell
labels. As expected, the classifier cannot improve upon a 50/50 guess when the traces are scrambled.
This demonstrates the information content is unique to the Ca2+ dynamics. Shaded error bars are
the standard deviation in the error rate calculated between 10-folds (80/20 split). Dashed, cyan line
marks when the error rate for GCaMP6-based classifier is first below 5% (108 min). Neither cell area
nor mScarlet signals achieve a <5% error rate in single-cell classification. (b) Confusion matrices for
the full time-course classifiers based on the GCaMP6 trace (top), cell area (middle), and mScarlet
trace (bottom). The confusion matrix was calculated based on a 20% subset of all cell traces withheld
from the training dataset. Training used an 80/20, 10-fold cross-validation scheme. A total of 7557
and 4969 resistant (Res) and sensitive (Sens) single-cell traces were used for testing and training.

We further explored the observation that cell viability is dose- and time-dependent
(Figure 3b) at the single-cell resolution using our random forest classifier. Specifically, we
examined the pharmacodynamics (i.e., percent of cells affected) and pharmacokinetics
(i.e., time to effect onset) as a function of time and dose. Beginning with GCaMP6-based
random forest classifiers ∆t > 110 min (where the classifier error on the 100 µg/mL
condition is <5%), we calculated the predicted fraction of sensitive cells at different doses
(Figure 6a). As expected, we observed ~0% of the cells are classified as sensitive for all ∆t
values at 0 µg/mL condition and ~100% in the 100 µg/mL condition. The classification
of resistance for the 0 µg/mL condition is because the untreated cells’ Ca2+ dynamics are
indistinguishable from resistant cells. At intermediate doses, there is a marked temporal
dependence on the fraction of sensitive cells. In particular, only ~30% of cells were classified
as sensitive for the 33 µg/mL condition after 110 min, but by 240 min, over 70% were
sensitive (Figure 6b).
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Figure 6. Machine learning-based single-cell pharmacokinetics and pharmacodynamics. (a) Percent of sensitive cells (y-axis)
classified by the random forest for each concentration of kanamycin (x-axis) as a function of ∆t (colorbar). Minimum ∆t was
110 min corresponding to when the random-forest classifier’s error in classifying sensitive and resistant in the 100 µg/mL
kanamycin condition was <5% (Figure 5b). As expected, the classifier correctly predicts ~0% of cells are sensitive at
0 µg/mL kanamycin as all untreated cells look resistant. At the 100 µg/mL kanamycin condition, ~100% are classified as
sensitive. For the intermediate doses, as ∆t increases (purple to yellow), the percent of cells classified as sensitive increases
(y-axis). Shaded error bar is the standard deviation in percentage between 10 classifiers. (b) The average probability of a
single cell at the 33 µg/mL concentration being classified as sensitive as a function of ∆t. Shaded error bars denote the
standard deviation in single-cell probability at every ∆t. The large error bars are indicative of heterogeneity in single-cell
predictions. (c) Heat map of a single-cells’ probability of being classified as sensitive (blue 0%, orange 100%) as a function of
time (∆t, x-axis) for the 33 µg/mL kanamycin condition. The 645 cell probability traces are clustered (ward linkage) into
5 groups. Probability is calculated as the mean of 10 classifiers each built with randomly sampled 80% of the total data.

However, all cells did not follow this average trend. Clustering single-cell probabilities
over time, we found 5 classes emerged (Figure 6c). The classes corresponded to different
onset times (gold, green, and blue clusters), already classified as sensitive at t = 110 min
(magenta cluster), and never sensitive by 240 min (red cluster). The heterogeneity in the
single-cell onset time suggested the pharmacokinetics of drug delivery at this dose is
critical for determining cell killing, as was observed in the CFU assay (Figure 3b). At this
dose, both variability in the time to drug action and the probability of drug activity played
a role in determining the sensitivity profile of these cells. Remarkably, once a cell was
predicted to be sensitive, the subsequent classifiers were consistent as ∆t increased (i.e.,
more information was included). This provided a novel view of how the single cell activity
of aminoglycosides depends on time and dose.
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Figure 7. Ca2+ dynamics distinguish sensitivity and resistance to other drug classes. (a) Comparing the
minimum ∆t to reach <5% error rates for 6 different antibiotics. Abbreviations are: PmB = Polymyxin
B, kan = Kanamycin, gent = Gentamicin, chlor = Chloramphenicol, cipro = Ciprofloxacin, trim =
Trimethoprim. See Figure S7, for error traces and full-time course classifier performance for all
drugs. See Table S1 for concentrations tested as well as optimal hyper-parameters for each classifier.
Plus-sign indicates that Trimethoprim never reaches <5% error threshold in 240 minute time-course.
(b) Error rate as a function of ∆t for Polymyxin B sensitivity classifier (red curves). The blue curve
is the error rate of the same random forest architecture trained on scrambled cell labels. Error bars
are the variance calculated between 10 and folds (80/20 split). Dashed, cyan line marks when the
error rate is first below 5% at 100 min. (c) Example GCaMP6 signal in three single cells in response to
10 µg/mL Polymyxin B.

3.3. Ca2+ Dynamics Resolves Multiple Phases of Polymyxin B Activity

Given the accuracy of the classifiers in predicting kanamycin treatment, we were
next interested in investigating if disruption of Ca2+ homeostasis was an early marker
of response to other antibiotics. Using our imaging and machine learning framework,
we measured the Ca2+ dynamics in E. coli in response to 5 other antibiotic compounds
spanning several drug classes (Figure 7a). Distinct random forest classifiers were generated
for each new compound. We used the same threshold (minimum time to <5% error) to
compare between different drugs’ classifiers. We found a wide range of temporal depen-
dencies for the different drugs ranging from <100 min (Polymyxin B) to never reaching
the 5% threshold (Trimethoprim) (Figures 7a and S7). Interestingly, the hyper-parameters
on the maximum number of tree splits and minimum leaf size, both measures of classifier
complexity, modestly related to the predictive time suggesting classifier complexity scaled
proportionally to the information contained in the traces (Table S1).

We were particularly interested in Polymyxin B, as the temporal dependence on
classifier predictivity was especially pronounced (Figure 7b). The Polymyxin B classifier
was more predictive than the kanamycin classifier with an error rate of < 1% for both
sensitive and resistant classification (Figure S7a). This was remarkable given the extensive
connection between Ca2+, membrane voltage, and its role in mediating aminoglycoside
sensitivity [35]. Polymyxin B is a chimeric, non-ribosomal peptide originally derived
from Bacillus polymyxa [45]. A zwitterionic compound, one end displaces Ca2+ and Mg2+

in the outer membrane matrix, binding the lipopolysaccharides (LPS) of Gram negative
bacteria, while the other end acts as a detergent, permeabilizing the lipid bilayer [46].
A 1970s study found that increasing the concentrations of Ca2+ decreased the potency of
Polymyxin B in bacterial cultures [47], and the importance of cation concentrations for
reliable antimicrobial susceptibility measurements for colistin and Polymyxin B has been
previously discussed [48,49]. Ca2+ is thought to reduce binding of Polymyxin B, which
competes with Ca2+ to bind the LPS in Gram-negative cells. Additionally, a seemingly
unrelated observation found CCCP, an ionophore, to sensitize resistant cells to Polymyxin
B [50,51]. This was proposed to be mediated by a restoration of the negative charge on
the LPS via disruption of the proton motor force. Therefore, circumstantial evidence ties
Polymyxin B mechanism to membrane voltage.

When we examined the GCaMP6 signal in Polymyxin B (Figure 1c), we observed a
pronounced Ca2+ blink (Figure 7c, Video S3), in contrast to the Ca2+ transients characteris-
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tic of kanamycin. Aligning the single-cell blinks (Figure S8) revealed Ca2+ has three phases
in response to Polymyxin B (Figure 8a, green curve). Initially, free Ca2+ decreases in the
cytosol. This phase is followed by a large and rapid spike in GCaMP6 signal, which we
termed a blink. Finally, the amount of free Ca2+ decayed to background concentrations as
the external and internal Ca2+ equilibrated. The initial decline in Ca2+ precedes the entry
of propidium iodide (PI, a measure of membrane permeability) into the cell (Figure 8a, red
curve, Video S3) suggesting the initial loss of Ca2+ in the cytosol is mediated by the change
in periplasmic [Ca2+]. In support of this, we found the phases of Ca2+ response depended
on the concentration of external Ca2+ (Figure S9a,b). Additionally, the onset time of PI
entry was dose-dependent (Figure S10a), but the time between the Ca2+-blink and PI entry
was not (Figure S10b).
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Figure 8. Polymyxin B induces three-phase Ca2+ dynamics. (a) Time aligned GCaMP6 (green curve) and propidium iodide (PI,
red dashed curve) traces in 10 µg/mL Polymyxin B (PmB). Because the Ca2+ blink does not happen simultaneously in all
cells, we aligned the traces to the last time-point where the derivative of the GcAMP6 signal is 5 standard deviations above
average after 150 min (Figure S8a). This point is Aligned Time = 0 in the plot. The GCaMP6 and PI signals from −45 to
+45 min of this point are included. Fluorescence is normalized to the average intensity of the signal between frames 10
and 20. (b) The GCaMP6 and PI traces with the addition of 50 µM CCCP in 10 µg/mL PmB treatment condition. (c) The
distribution of time to PI entry in single cells for 10 µg/mL PmB treatment with or without CCCP. PI entry was defined as
the fluorescent signal 5 standard deviations above the mean signal over the first 40 frames. The p-value was calculated using
a one-tail Mann–Whitney U test (null hypothesis: Median(+CCCP)<Median(-CCCP)). The presence of CCCP increases the
mean time to PI entry (black lines) from 95 to 149 min. See Video S3.

The phases of Ca2+ response also depended on membrane voltage (Figure 8b,
Figure S9c,d). Dissipating the membrane voltage using CCCP magnified the initial decline
in Ca2+ as well as the subsequent blink (Figure 8b). Interestingly, despite CCCP sensitizing
cells [50,51], the presence of CCCP delayed the time to PI entry in the cells by nearly 66%
(Figure 8c, Video S3). Delayed PI uptake in the absence of membrane voltage is not a
result of changes in electrostatic-amplified diffusion of PI as PI has a neutral formal charge.
This suggests membrane voltage modifies the rate of membrane permeabilization with
Polymyxin B. Finally, we found external Ca2+ modified both the absolute time to PI entry
and the time between the GCaMP6 blink and the entry of PI (Figure S10c–e) suggesting
that Ca2+ flux plays a previously unappreciated role in the membrane break down.

4. Discussion

All cells live on a razor edge with respect to Ca2+. On one side, they must maintain
a 4-order of magnitude gradient between the extracellular environment and the cytosol
to prevent cytotoxicity. On the other side, precise Ca2+ release in space and time is
required control cell signaling. This dichotomy has been well studied in eukaryotes;
however, limited tools exist for modifying prokaryotic Ca2+. In this work, we combined
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fluorescent Ca2+ imaging with machine learning algorithms to uncover new facets of
Ca2+ signaling in E. coli and B. subtilis. Our approach provided a unique view of single-
cell pharmacokinetics and pharmacodynamics (Figure 6) revealing the dose-dependent
contributions of heterogeneous drug response and time to onset on the bactericidal activity
of kanamycin. While the dynamic range of the machine learning framework is significantly
lower than the CFU assay (~3/100 versus 1/109, respectively) the strong dependence of
drug action on dose and time is apparent even at the single-cell level (Figure 6). However,
the relationship between the time point at which a cell is correctly labeled as sensitive
to the actual time-point that cell is no longer viable is unknown. The use of pulse-chase
experiments will be helpful to determine this relationship. Additionally, our approach
does not rule out Ca2+ dynamics as a signal of antibiotic activity for drugs which took
longer for the random forest to classify (Figure 7a), merely that time to onset of such
disruption is delayed compared to Polymyxin B and kanamycin. Finally, our model does
not currently distinguish between tolerant, persistent, and resistant cell types, which are
important distinctions clinically [52,53]. We envision with specific cell markers and enough
training data, these sub-states could also be distinguished by machine learning algorithms
at single-cell resolution.

As prefaced above, one of the foremost challenges in the study of Ca2+ in prokaryotic
organisms is the dearth of tools to directly manipulate free Ca2+ due to the large stores in the
periplasm [5,54]. Depleting or overloading Ca2+ in the extracellular environment is readily
compensated by the cell [54]. The paucity of approaches to controlling intracellular Ca2+

has precluded identifying the function of the many predicted Ca2+-binding proteins [20].
The discovery of Ca2+-mediated signaling processes in prokaryotes, akin to proteases
and phospholipases in eukaryotes, depends on the ability to directly modulate free Ca2+

inside the cell. Here, we have investigated how Ca2+ dynamics differentiate sensitive and
resistant cells in the context of antibiotic treatment and found that Ca2+ dynamics contain
rich information regarding cellular stresses. While the induced changes in Ca2+ are not the
classic dose–response relationship, titrating intracellular Ca2+ proportional to the input,
each perturbation represents a reproducible change in Ca2+ homeostasis. Leveraging an
expanding arsenal of reproducible perturbations could be combined to enable a systems
control framework for manipulating Ca2+ inside the cells. As we observed, the dose and
timing are critical for the onset of distinguishing Ca2+ dynamics in the aminoglycosides
and Polymyxin B, suggesting that timing sample collection will be critical for identifying
Ca2+-dependent processes.

Our studies suggest a novel, voltage enhanced breakdown of membrane integrity
during poration by Polymyxin B. Further studies are required to disentangle the role of
Ca2+ in modifying Polymyxin B binding from voltage-mediated membrane disruption;
however, our studies suggest that Ca2+ modifies the rate at which membrane breakdown
occurs. The prototypical example of a Ca2+-dependent antibiotic is daptomycin [40,55],
a broad-spectrum antibiotic against Gram-negative pathogens, originally derived from
Streptomyces roseosporus [56,57]. Like daptomycin, Polymyxin B belongs to the same family
of N-acylated cyclic peptides, but evolved in a different bacterial phylum. The growing
body of Ca2+-dependent antibiotics, including the recent discovery of malacidins [40],
suggests a broader role of disruption of Ca2+ homeostasis in mediating cell death. Given
the paradox Ca2+ presents to cells, being both necessary and cytotoxic, it is reasonable
to suspect that bacterial assailants have evolved many mechanisms to manipulate their
neighbor’s Ca2+. In eukaryotes, Ca2+ connects membrane voltage to cellular signaling;
therefore, it further seems plausible that the existence of such mechanisms in prokaryotes
would provide ample opportunity for the development of many Ca2+-dependent natural
products in both commensal and amensal relationships.

One immediate application of this work would be to improve the rapid detection of
antibiotic sensitivity in clinical samples. Machine learning approaches have been developed
to accelerate classic antibiotic sensitivity tests (AST) by increasing the detectable changes
in growth in the presence of antibiotic [58–61]. Two notable clinical products of these



Microorganisms 2021, 9, 1000 14 of 17

efforts are the Accelerate Pheno and the Vivek 2 [62,63], clinically approved instruments
which automate AST. However, the time to diagnosis remains approximately 8 h after an
overnight culture, while antibiotics are commonly prescribed immediately. The insight
that Ca2+ is a reliable and early indicator of antibiotic sensitivity could be leveraged to
further increase the speed of these algorithms instead of waiting for gross phenotypic
changes such as cell growth. That this could be done at single-cell resolution opens the
possibility of examining mixed populations to estimate the prevalence of resistant cells.
While we demonstrated our approach was applicable to multiple species (E. coli and
B. subtilis), and multiple antibiotic classes (aminoglycosides, quinolones, and colistins),
our approach also necessitates building specific classifiers for each pair. By building a
library of these classifiers, specific to pairs of species and antibiotics, rapid detection of
antibiotic resistance in bacterial consortia could be achieved. An additional limitation of
our approach is the requirement of stable expression of genetically-encoded, fluorescent
sensors. This limitation could be overcome by leveraging Nernstian dyes or other live-cell,
staining-based measurements of cellular physiology which changes in response to antibiotic
stress. For example, stains which measure changes in DNA accessibility in response to
beta-lactamases [64] could be explored. Integrating multiple signals of dynamic physiology,
akin to a dynamic version of cell painting [65] developed for eukaryotic cells, will further
enrich our understanding of drug mechanisms of action while simultaneously increasing
the speed at which computers can identify resistant pathogens in the clinic.
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