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Abstract  26 

Unsanctioned travel routes through alpine ecosystems can influence water drainage 27 

patterns, cause sedimentation of streams, and erode soils. These disturbed areas can 28 

take decades to revegetate. In 2012 a volunteer-driven project restored a 854 m section 29 

of unsanctioned road along the Continental Divide in Colorado, USA. The restored area 30 

was seeded with three native grass species and then treated by installing erosion 31 

matting or adding supplemental rock cover. Four years later, results suggest that the 32 

seeding, along with the use of erosion matting or supplemental rock can enhance 33 

revegetation. Matting appeared to accumulate litter, and this effect might have 34 

contributed to enhanced moisture retention. Treated areas contained 40% of the 35 

vegetation cover found on adjacent controls, which averaged 69% vascular plant 36 

absolute cover. Recovery on both treatments was markedly higher than published 37 

estimates of passive revegetation of disturbed areas measured elsewhere suggesting 38 

seeding with added cover or protection led to substantial vegetative cover after four 39 

years. Two of the three seeded grass species, Trisetum spicatum and Poa alpina, 40 

dominated the restored plots, composing 81.7% of relative vegetation cover on matting 41 

sites and 73.4% of relative cover on rock supplemented areas. Presumably due to its 42 

preference for moister sites, Deschampsia cespitosa, had low establishment rates. 43 

Volunteer species, i.e., species that appeared on their own, contributed 6.3% to the 44 

absolute vegetation cover of matting and rock sites, and species such as Minuartia 45 

biflora, Minuartia obtusiloba, Poa glauca and Festuca brachyphylla, should be 46 

considered for use in future  restorations.  47 

 48 
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 50 

Implications for Practice: 51 

 Natural recovery of vegetative denuded sites in dry alpine tundra ecosystems 52 

can take decades to reach even 30% cover if unaided and is often difficult to 53 

access. Thus, any improvements in the restoration process can have a large 54 

saving of time and money for land managers. 55 

 Seeded restoration sites responded positively to two treatment types: erosion 56 

matting and supplemental rock cover suggesting anthropogenic assistance can 57 

make a difference in the timeline and success of natural processes such as 58 

vegetative recovery. 59 

 Two of three seeded species represented the majority of the vegetative cover in 60 

restored sites supporting the concept of having diversity in seed mixes as some 61 

species will likely do better than others under different circumstances. 62 

 Several unseeded native species exhibited recruitment to the sites and should be 63 

considered for future seed mixes. These species present a potential tool to future 64 

restoration projects as they established on their own in disturbed sites. 65 

66 
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INTRODUCTION  67 

Alpine landscapes represent a large economic and ecologically important 68 

ecosystem (Loomis et al. 2000, Hesseln et al. 2004, Grêt-Regamey, et al. 2008a). 69 

Alone, the recreational visitation of three of Colorado’s peaks above 14,000 feet in 70 

elevation has been estimated to bring over $1.94 million dollars in annual revenue to the 71 

state and create an estimated 42 annual jobs (Keske & Loomis 2008). Though 72 

representing 3% or less of the earth’s surface (Körner 1995) such studies indicate that 73 

the alpine ecosystems can be a significant part of economic systems. Additionally, 74 

alpine systems are of global ecological importance. Alpine ecosystems provide a supply 75 

of fresh water to many regions (Walker et al. 1993), have very high plant diversity 76 

(Körner 1995) and are a key indicator for the effects of global environmental change 77 

(Benedict 1970, Lapp et al. 2005, Neff et al. 2002, Schmidt et al. 2008, Grêt-Regamey 78 

et al. 2008b). At the same time, these important alpine systems across the globe are 79 

showing increased degradation from fragmentation and loss of diversity (Cole and 80 

Landres 1995, Urbanska and Fattorini 2000, Zabinski et, al. 2000, Hagen et al. 2014) 81 

due to a variety of factors including climate change (Theurillat & Guisan 2001) and 82 

increasing recreational use (Ebersole et al. 2002, Bay & Ebersole. 2006, Hagen et al. 83 

2014). 84 

The increasing disturbance of alpine habitat is especially of concern. Willard & 85 

Marr (1971) and Ebersole (2002) have shown the natural recovery of these systems can 86 

take decades or longer. For example, Ebersole (2002) reported that devegetated, 1 m2 87 

dry meadow plots in a Colorado, USA alpine site had only 20% of the relative vegetation 88 

cover of control plots after 13 years of recovery. Further, restoration of alpine vegetation 89 

can be challenging because areas are often difficult to access, the zone has a limited 90 
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number of colonizers, and many areas have a very short growing season (Billings 1973, 91 

Chambers 1997, Rydgren et al. 2013).  92 

A meta-analysis by Benayas et al. (2009) synthesized 89 restoration 93 

assessments finding that ecological restoration increased biodiversity by 44% and 94 

ecosystem services by 25% on average. Previous studies show that restoration, or 95 

assisted revegetation can speed up the recovery process (May et al. 1982, Bay & 96 

Ebersole 2006, Mallik & Karim 2008, Jorgenson et al. 2010, Güsewell & Klötzli 2011, 97 

Hagen et al. 2014). In these studies seeding and transplanting are two common 98 

revegetation techniques (Bayfield 1980, Behan 1983, Roach & Marchand 1984, 99 

Guillaume et al. 1986, Chambers 1997, Conlin and Ebersole 2001, Hagen et al. 2014, 100 

McDougall 2001, Ebersole et al. 2002, Rydgren et al. 2017). Transplanting, while a 101 

viable option can be time consuming and costly, especially in the alpine environment 102 

where access to sites is often limited and difficult. For this reason, seeding is often a 103 

common technique in the alpine (Hagen et al. 2014). While the current body of 104 

knowledge on alpine restoration is beginning to grow, it is largely based on research 105 

conducted on post resource extraction or mine reclamation (Chambers et al. 1987, 106 

Smyth 1997, Rieder et al. 2013, Cohen-Fernandez & Naeth 2013). These studies show 107 

the importance of restoration and the challenge of limited resources but in a limited 108 

perspective. By continuing to broaden the literature on recovery of alpine ecosystems to 109 

recreationally disturbed sites it will allow increased efficiency through optimized 110 

treatments for a variety of alpine disturbances and can allow more work to be 111 

accomplished.  112 
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The graminoid species, Deschampsia cespitosa, Trisetum spicatum, and Poa 113 

alpina were used in previous alpine restoration studies (Chambers et al. 1987, Kershaw 114 

& Kershaw 1987, Smyth 1997, Payson et al. 2005, Isselin-Nondedeu & Bédécarrats 115 

2007, Cohen-Fernandez & Naeth 2013). Deschampsia cespitosa is a widespread bunch 116 

grass prevalent, with observed tillers and often dominant in moist meadows across the 117 

alpine but present in a variety of other alpine plant communities (May et al. 1982, 118 

Gehring & Linhart 1992, Walker et. al 2001, Suding et al. 2015). The rapid growth and 119 

rhizomatous tillering make it an ideal species for many restoration sites (May et al. 120 

1982, Fattorini et al. 2001, Suding et al. 2004, Payson et al. 2005). Deschampsia 121 

cespitosa is a good indicator of nitrogen deposition (Farrer et al. 2013) and has been 122 

shown to create a positive feedback loop for nitrogen deposition (Bowman & Steltzer 123 

1998) adding to its value as a species for active restoration. Trisetum spicatum is noted 124 

as a rapid colonizer by Harper and Kershaw (1996) and was listed as one of the top 125 

species at providing cover in multiple studies by Urbanska & Fattorini (2000) and 126 

Ebersole et al. (2002). Finally, Poa alpina is a tufted and moderately compact alpine 127 

grass (Isselin-Nondedeu & Bédécarrats 2007) that occurs in moist and dry meadows 128 

(Ebersole 2002).  129 

While many factors contribute to establishment of vegetation, seed availability 130 

and the presence of microsites or microclimates have been shown as two limiting 131 

elements (Turnbull et al. 1999, Roach & Marchand 1984, Lindgren et al. 2007). 132 

Previous studies by Urbanska (1997) and Chambers (1995) suggest that microsites 133 

mitigate difficulty in early plant development by providing shelter from the alpine 134 

ecosystem’s harsh conditions and delivering essential, limited resources such as 135 
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moisture. This process has been described as the “nurse effect,” where surrounding 136 

biotic or abiotic structure provides an advantage for newly establishing vegetation 137 

(Cavieres et al. 2002, 2014, Padilla & Pugnaire 2006). It is important to note that while 138 

vegetation can provide a nurse effect it can also create competition (McDougall 2001, 139 

Cavieres et al. 2002, 2014, Padilla & Pugnaire 2006, Dullinger et al. 2007, Hagen et al. 140 

2014).  141 

The manipulation of the abiotic environment is one proven way to accomplish 142 

revegetation goals. In a previous study the addition of rock cover surrounding installed 143 

plugs of Deschampsia cespitosa and Trisetum spicatum suggests that supplemental 144 

rock cover helps create microclimates and facilitate survivorship of transplants (Roberts 145 

2012). In addition to using supplemental rock cover in the creation of microclimate 146 

environments, Burroughs and King (1989) along with other studies have used matting to 147 

aid seedling establishment in the alpine (Lewis 1995, Whitall 1995, Lavendel 2002, 148 

Ebersole et al. 2004, Krautzer et al. 2006).These techniques of using matting to aid in 149 

alpine seeding dates back at least as far as 1857 according to a review by Gorer & 150 

Harvey (1979).  Matting serves to alter the microclimate for seedling establishment 151 

reducing wind and increasing seedling germination by as much as five to six times 152 

compared to seeding without matting (Ebersole et al (2002). Further, seeding with two 153 

species, including Deschampsia cespitosa, under erosion matting produced 400 154 

seedlings per square meter after 2 years in a trail restoration study done by Ebersole et 155 

al. (2002), 20 to 28 times more than untreated plots. Matting has additionally been 156 

shown to reduce erosion from the splash of rain which can disrupt the establishment of 157 

new vegetation through impacting and eroding soils (Berglund 1978, Bhattacharyya et 158 
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al. 2010). Erosion matting clearly increases vegetation cover and reduces erosions but 159 

is expensive and difficult to transport to remote, high-elevation sites (Carr 1975). 160 

To understand how seeding can affect restoration on recreationally disturbed 161 

alpine sites, this study compared the vegetative cover and differences in plant 162 

community compositions four years after reclamation of alpine road under two 163 

treatments: utilization of erosion matting and use of added rock cover. We characterized 164 

differences in vegetative cover between the two treatments and explored the potential 165 

for future species of interest by comparing treated plots to the surrounding source 166 

populations. Half the treated sites were applied with erosion matting while the other half 167 

were applied with supplemental rock cover. Both applications received the same 168 

seeding rates and all installation was done over a single weekend. Each treated site 169 

was paired with an adjacent native site for comparison. The study then compared the 170 

differences between treated and native sites to answer three main questions: First, do 171 

the different treatments provide differing overall vegetative cover? Second, will the two 172 

treatments result in varied species compositions? Third, utilizing timeframes from other 173 

studies as a baseline, will these treatments and seeding increase recovery rates? 174 

Furthermore, this study sought to examine potential species for use in seeding. We 175 

predicted that matting would result in overall higher vegetative cover compared to the 176 

rock cover. However, the addition of either would result in increased revegetation 177 

compared to documented rates in previous studies of unaided restoration.  178 

 179 

METHODS  180 

Site Description 181 
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Within the southern Rocky Mountains of the United States of America, the study 182 

site is located within the White River National Forest, along the Continental Divide and 183 

between the Colorado towns of Breckenridge and Jefferson near Georgia Pass. The 184 

study site runs 853 linear meters from the base of the slope at 3535 m above sea level 185 

to the first major ridgeline at 3658 m in elevation (latitude and longitude 39.463506, -186 

105.904778 to 39.468906, -105.901624). Annual precipitation for the specific site was 187 

not available, however at a nearby research site Niwot Ridge 80 km away and 188 

approximately the same elevation (3743 m) recorded 1322 mm in 2010, 1141 mm in 189 

2011, 1161 mm in 2012, 1277 mm in 2013 and 767mm (January-August only) in 2014, 190 

1250 mm in 2015 and 1179 mm in 2016 suggesting adequate precipitation over the 191 

study period (NWT 2019). However, the dry meadows are the study site are often wind 192 

scoured of their snow so inputs could be substantially less.  The location of the study 193 

was largely homogenous in typical vegetative cover, aspect, soil moisture and 194 

disturbance. The major dissimilarity between plots was elevation which varied 123 195 

meters from the lowest site to highest.  196 

The study took place on a section of unsanctioned and recently closed road. This 197 

section of road ran directly up the fall-line, was heavily eroding, averaged over 2.7 198 

meters in width, and had begun to braid into multiple paths (Figure 1). Observation 199 

notes over visits two years apart describe gullying up to 42 cm in depth, rilling and 200 

incised areas. The linear distance of the study site runs roughly south to north with an 201 

aspect ranging from 120 degrees to 142 degrees and slope grades ranging from 8% to 202 

26%. The area is best catalogued as a dry alpine meadow as described by Komarkova 203 

(1976) and later by May et al. (1982).  204 

Restoration Project Implementation 205 
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Success of the project and study depended heavily on ensuring future off-road 206 

vehicle travel did not continue to occur at the site. As such, it was important that the 207 

unsanctioned road which was closed parallels a second road which will remain open 208 

and maintained by the Forest Service. Thus, a large ecological gain through improved 209 

habitat connectivity and reduced erosion could be made without restricting recreational 210 

access to surrounding areas. Additionally, the project and study were performed in 211 

conjunction with installation of a fence and signage put in place to keep vehicles from 212 

driving on the restoration work and to educate the public about the project goals.   213 

The volunteer driven restoration project took place between August 24 and 214 

September 12, 2012. A backhoe and operator prepared the site by removing larger rock 215 

cover, smoothing and decompacting the surface with a backhoe. Decompaction was 216 

achieved by using the teeth of the backhoe bucket to till the top approximately 15 cm of 217 

soil. Modest ditching with straw wattles for water runoff was added, where necessary, at 218 

30 m intervals and some transplanting of native plugs was added to plots where data 219 

were not recorded. This process took roughly 40 hours of equipment operation time. 220 

Soon after, 66 volunteers from a local Colorado non-profit, Wildlands Restoration 221 

Volunteers, worked for two days to finish site preparation, seed the entire 222 

decommissioned road, and add either erosion matting or rock cover to each section of 223 

the project. Rock cover was added from rock disturbed during site preparation or 224 

collected outside the study site. Seeding was done at a rate of 1250 seeds per square 225 

meter. The seed mix consisted of 30% Poa alpina, 40% Deschampsia cespitosa and 226 

30% Trisetum spicatum by number of pure live seed. Using a large group of volunteers 227 

allowed better control of the temporal variability when installing seed and differing 228 
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restoration techniques on a large scale, ensuring consistent conditions during 229 

installation over a very large project site. No soil amendments or supplemental watering 230 

were used partially due to the extreme difficulty to get large trucks or these materials to 231 

the site. Additionally, supplemental water or soil amendments were not typically used in 232 

high elevation projects by the sponsoring company or in previous studies to be used for 233 

comparison. 234 

At the time of this study the raw cost of material for a biodegradable erosion 235 

matting comprised of coconut husk, 33.5 m long by 2.4 m wide, was $89 US, not 236 

including installation. To save money as well as generate a test of techniques, the study 237 

design alternated supplemental rock cover and erosion matting along the elevational 238 

gradient. Erosion matting was installed covering 2.4 meters of the road width over 30.5 239 

meter-long sections, fastened in place with metal staples. Minimal rock removed before 240 

installing the matting was also replaced to help fasten the matting in place. The 241 

alternation of treatments avoided some confounding variables such as elevational 242 

gradient, aspect, slope, and location along the project site by ensuring both matting and 243 

rock treatments were spread along the entire road closure. Supplemental rock ranging 244 

from 20 cm to 60 cm in diameter was added to the rock cover areas so that 60 or more 245 

percent of the surface was visually covered by supplemental rocks. This procedure 246 

produced 18 sections of 30.4 m lengths of matting and 12, 30.4 m lengths of rock cover 247 

(Fig S1). The 30.5 m section lengths were attributed to the matting roll length of 100 248 

linear feet. The size of the rock has a large variance because it was harvested at the 249 

project site but typically ranged from approximately 10 square cm to 30 square cm.  250 

Cover Sampling 251 
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Point-intercept techniques were used to collect vegetative cover and species 252 

composition. Collection occurred from July 20 to July 26, 2016. The timing of collecting 253 

data was chosen because it provided the ability to identify many early season species 254 

before senescence while still being able to identify late season species still in and early 255 

growth phase. Within each 30.5 m section a point was selected roughly two meters from 256 

the bottom of the section end. This point became the marker for placing a 1 m2 plot. In 257 

total, 30 treatment plots (18 matting, 12 rock cover) were chosen spanning the study 258 

site. At each plot a paired sample of native vegetation was taken 20 meters from the 259 

edge of the restored road. The east or west side of the restored road was randomly 260 

selected for this paired sample. The meter squared plots of the restored road and paired 261 

sample were divided into 100 points. At each point, using point-intercept methods, the 262 

species or substrate hit by a vertical pin placed from above was recorded. Species were 263 

recorded to the lowest taxonomic level possible in the field and samples were taken of 264 

any unknown plants to be identified later in the lab. At each plot the slope, aspect, soil 265 

moisture, date, recorder, observer, site number, restoration technique, species at point 266 

intercept, and additional species were recorded. Soil moisture was collected using a 267 

Rapitest, Moisture Meter™ once during this collection period and did not provide 268 

precise measurements but did allow a generalized comparison of the sites soil moisture 269 

content.  We used first hit (100 records per plot) to quantify absolute vegetation, rock, 270 

and litter cover. We used total hits (multiple plant species found beneath a single point) 271 

to calculate relative vegetation cover. 272 

Plant cover and plant species responses on reference plots, erosion matting, and 273 

rock-supplemented plots were summarized using SAS 9.4 (SAS 2019) programs. Cover 274 
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characteristics were compared using a one-way ANOVA, with a post-hoc SNK test used 275 

when statistically significant differences were found among treatments. While additional 276 

explorations of community composition were undertaken, only summary findings are 277 

reported here, and a larger suite of analyses and all data are available in Roberts 278 

(2018). 279 

 280 

RESULTS  281 

The commercially purchased seed mixture was tested by the supplier to provide 282 

1292 pure live seeds per meter, adequate for ample vegetative coverage under ideal 283 

circumstances.   284 

In total 55 species were identified using point-estimate methods with an overall 285 

mean of 10.3 species per square meter. Five species not scored as ‘hits’ but seen in 286 

quadrats were also observed. The mean number of species for the rock cover 287 

treatments was 4.6, the mean for erosion matting was 4.2 species and the mean for the 288 

native plots was 16.1 species. 289 

Total vascular vegetation was not statistically different between matting and rock 290 

cover plots and was lower in both than in native, undisturbed plots (Table 1). Further 291 

analysis shows a statistical difference in the combine performance of the three seeded 292 

species with the highest cover in the matting plots (Table 1). Despite ample seeding 293 

rates, Deschampsia cespitosa was less prevalent in restored matting and rock cover 294 

plots than in the native surrounding plots. The other two seeded species, Trisetum 295 

spicatum and Poa alpina however were significantly more prevalent in the matting than 296 

in the native plots. Trisetum spicatum exhibited a statistically higher presence in the 297 
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matting plots than rock cover or the native plots making it the only of the three seeded 298 

species to statistically different cover in all three plot types (Table 2).  299 

Non-vascular plant cover information was only obtained if vascular plants were 300 

not encountered first and therefore do not reflect absolute amounts on the plots. Given 301 

this limitation, litter had statistically higher mean counts in matting plots than rock cover 302 

or native plots (Table 2). Additionally, results suggest that bare ground was more 303 

prevalent in the rock cover plots (46.2%) than either matting (20.8%) or reference plots 304 

(14.9% cover; p<.0001).  305 

Within the undisturbed reference plots, there were eight species that had greater 306 

than 5% relative cover (Table 1) and 21 species that comprised over 1% relative cover. 307 

The matting and rock cover treatments comparatively had three species with over 5% 308 

relative cover including two of the seeded species, Trisetum spicatum and Poa alpina.  309 

There were six species volunteer (non-seeded) species with relative cover above 1% in 310 

the matting treatment and four species in the rock cover treatments (Table 1). The 311 

percent of absolute cover from volunteer species did not differ between matting and 312 

rock cover treatments and was 6.3%.  313 

  314 

Discussion  315 

 This study sought to examine the benefits of using erosion matting and rock 316 

cover as restoration treatments of a road obliteration as measured by relative and 317 

absolute vegetative cover. Comparing effectiveness with restoration goals such as 318 

creating specific plant communities or maximizing cover will better inform future 319 

restoration projects on the value of these treatments. Our findings addressed both the 320 
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relative benefits of proactive restoration and compared a reduced budget (rock addition) 321 

to a preferred (erosion matting) technique to reduce erosion and enhance seedling 322 

establishment. 323 

Our results suggest that the addition of matting or supplemental rock can lead to 324 

substantial vegetative growth in disturbed sites. This trend is consistent though less 325 

pronounced than a study by Ebersole et al. (2002) that looked at restoration of smaller 326 

disturbed trails and found matting provided 5 to 6 times more seedling establishment 2 327 

years after restoration. Supplementing natural processes with matting appears to 328 

correlate with increased vegetative cover over a short period of time in other studies 329 

and to considerable vegetative growth in this study. In previous studies by Chambers 330 

(1993) and Ebersole (2002) restored sites that received treatments provided higher 331 

cover than plots left untreated, leading to the conclusion that the effort required to 332 

perform restoration may be worthwhile to reach adequate levels for vegetative cover. 333 

Trisetum spicatum was the most successful seeded species in our restoration. At 334 

the well-studied Niwot Ridge alpine site, approximately 80 km north of our study, this 335 

species is also common and one of the few to be as abundant in disturbed, unseeded 336 

restoration sites as in adjacent controls (Ebersole 2002). Both this species and the 337 

combined Poa species, P. alpina and P. glauca, have been shown to be strong 338 

responders to increased nitrogen and phosphorus abundance at the Niwot Ridge site 339 

(Theodose and Bowman 1998; Seastedt, unpublished results). This response criteria 340 

might suggest that these species are likely good candidates for restoration of disturbed 341 

alpine areas, but perhaps do not need to be a large percentage of the seed mix to 342 

prevent heavy dominance by a single species. 343 
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 Findings for Poa alpina were consistent with previous studies by Ebersole 344 

(2002), where the species was noted as only occurring in disturbed plots of dry 345 

meadows. In this study Poa alpina accounted for only 0.1% of relative cover 346 

undisturbed, native plots but was 19.0% of the relative cover in matting plots and 28.8% 347 

of cover in rock cover plots. This suggests Poa alpina is a good species for increasing 348 

vegetative cover on disturbed, dry meadow, alpine plots. However, depending on the 349 

goals of the restoration project, Poa alpina’s ability to establish may also be a sign of 350 

out competing other species which could lower overall diversity. 351 

Deschampsia cespitosa is a species which, along with other grasses, has been 352 

shown to dominate the reclamation of disturbed sites in alpine ecosystems (Chambers 353 

et al. 1984). Despite being present in native plots and accounting for 40% of the seed 354 

mix, Deschampsia cespitosa was largely absent in the treated plot types. While present 355 

in the native plots at 6.0% relative cover, Deschampsia cespitosa is more likely to 356 

dominate systems with higher moisture content (Chambers et al. 1984). The high 357 

relative cover of Carex rupestris at 9.0% and Kobresia myosuroides at 5.8% in the 358 

native plots, support the conclusion that the study site was characteristic of a dry 359 

windblown meadow (Walker et al. 1994) which could help explain the lack of 360 

Deschampsia cespitosa in restored plots.  361 

This study also identified which of the locally abundant species might be used in 362 

future seed mixes. Among the non-seeded species that composed about 6% of the total 363 

absolute vegetation cover in treated plots, Festuca brachyphyla, Poa glauca, Cerastium 364 

arvense, and two species of Minuarta emerged as potentially useful species in 365 
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subsequent restorations making up at least 0.5% of absolute cover in restored plots 366 

(Table 1). 367 

 One important question that arises from the dominance of seeded species in 368 

restoration is what the long-term effect will be on species composition. Previous studies 369 

have considered other possibilities to the notion of succession in the alpine (Schmidt 370 

2008, Smyth 1997), noting that many species act as both colonizers and components of 371 

established vegetative systems. With seed species making up 71-83% of the restored 372 

plots in this study, future studies should consider looking at the lasting effect of using a 373 

limited seed mix that includes species capable of potentially out-competing native 374 

recruited species. Future studies should also consider comparing the effect of a more 375 

diverse seed mix to mitigate for the dominance of a few species, as well as to evaluate 376 

its impact on absolute vegetation cover. 377 

Vegetative recovery in the alpine ecosystem was found by Willard & Marr (1971) 378 

to be a very slow process across Colorado’s Front Range. The observed absolute 379 

vegetative cover in the present study for matting plots at 35% and rock cover plots at 380 

26% after four years were much higher than absolute cover on plots in Ebersole’s 381 

(2002) study looking at disturbed sites left untreated at Niwot Ridge. Ebersole’s (2002) 382 

study, showed that after 13 years untreated plots had an absolute cover of 14% 383 

(±6.8%). The same study (Ebersole 2002) showed 58% cover (±38.9%) after 30 years. 384 

While not directly comparable, the recovery of vegetative cover in 4 years at Georgia 385 

Pass was similar to natural recovery over 13 years at Niwot Ridge. Similarly, in 386 

Chambers’ (1993) study untreated plots on the Beartooth Plateau, Montana had 387 

vegetative cover of 25% after 35 years. Again, less than assisted recovery in this study. 388 
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The potential increased rate of recovery due to the two treatments could save decades 389 

compared to natural recovery rates. Additionally, the restored plots were placed in the 390 

middle of a much wider road, removing the effect of edge expansion which can enhance 391 

restoration recovery measurements. In Ebersole’s (2002) study, edge expansion was 392 

thought to be a large contributing factor to increasing vegetative cover. This makes the 393 

present recovery rate potentially even more significant in jump-starting the restoration 394 

process. These findings are promising for future restoration efforts but is it important to 395 

acknowledge the site-specific nature of the current research. 396 

With increasing environmental and recreational pressure on alpine ecosystems 397 

and very slow natural recovery management, agencies should prevent unnecessary 398 

disturbances that will require restoration efforts. Such efforts are costly to repair and 399 

even with the increased recovery rates seen in the present study and others, full 400 

recovery will take decades, if not longer (Colin & Ebersole 2001). Leveraging volunteers 401 

can reduce costs and build capacity for future restoration projects but most importantly, 402 

engaging volunteers can create buy-in from local user groups and further develop a 403 

sense of stewardship for public lands. If loss of plant cover does occur on slopes and 404 

especially in drier communities where they are more likely to occur (Colin & Ebersole 405 

2001), then restoration efforts such as seeding may be aided by rock cover and matting 406 

to expedite recovery. 407 
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 705 

Table 1. Raw cover, relative cover and absolute cover of plant species on restoration 706 
matting or rock addition areas of an obliterated road in the Colorado alpine. 707 

 708 
 709 

 Rock Cover Erosion Matting Undisturbed 
Plot Type Count Relative 

Cover 

(%) 

Absolute 

Cover      

(%) 

Count Relative 

Cover   

(%)   

Absolute 

Cover 

(%) 

Count Relative 

Cover   

(%)  

Absolute 

Cover    

(%) 

Bare Ground 554  46.2  374  20.8  446  15.7  

Litter 74  6.2  508  28.3  155  5.4  

Moss 3 n/a 0.3  2 n/a 0.1  43 n/a 1.5  

Rock 249  20.8  281  15.6  114  4.0  

Lichen 0  0.0  0  0.0  23  0.8  

          

Species          

Trisetum spicatum 143 44.7 11.9  397 62.7  22.1  60 2.9  2.1  
Poa alpina 92 28.8  7.7  120 19.0  6.7  2 0.1  0.1  
Festuca brachyphylla 19 5.9  1.6  37 5.9  2.1  167 8.1  5.9  
Poa glauca 11 3.4  0.9  20 3.2  1.1  25 1.2  0.9  
Deschampsia cespitosa 10 3.1  0.8  3 0.5  0.2  167 8.1  5.9  
Minuartia biflora 9 2.8  0.8  4 0.6  0.2  3 0.2  0.1  
Minuartia obtusiloba 7 2.2  0.6  8 1.3  0.4  46 2.2  1.6  
Cerastium arvense 7 2.2  0.6  3 0.5  0.2  38 1.8  1.3  
Oreoxis alpina 4 1.3  0.3  1 0.2  0.1  120 5.8  4.2  
Luzula spicata 3 0.9  0.3  24 3.8  1.3  23 1.1  0.8  
Artemisia scopulorum 3 0.9  0.3  0 0.0  0.0  149 7.2  5.2  
Arenaria fendleri 2 0.6  0.2  5 0.8  0.3  161 7.8  5.7  
Phacelia sericea 2 0.6  0.2  3 0.5  0.2  4 0.2  0.1  
Draba aurea 2 0.6  0.2  1 0.2  0.1  1 0.1  0.0  
Androsace septentrionalis 2 0.6  0.2  0 0.0  0.0  0 0.0  0.0  
Sedum lanceolatum 1 0.3  0.1  0 0.0  0.0  31 1.5  1.1  
Polygonum bistortoides 1 0.3  0.1  0 0.0  0.0  12 0.6  0.4  
Trifolium nanum 1 0.3  0.1  0 0.0  0.0  10 0.5  0.3  
Draba streptocarpa 1 0.3  0.1  0 0.0  0.0  0 0.0  0.0  
Lloydia serotina 0 0.0  0.0  3 0.5  0.2  41 2.0  1.4  
Geum rossii 0 0.0  0.0  1 0.1  0.1  32 1.6  1.1  
Heterotheca pumila 0 0.0  0.0  1 0.1  0.1  25 1.2  0.8  
Elymus scribneri 0 0.0  0.0  1 0.1  0.1  9 0.4  0.3  
Agoseris glauca 0 0.0  0.0  1 0.1  0.1  1 0.1  0.0  
Carex rupestris 0 0.0  0.0  0 0.0  0.0  257 12.4  9.0  
Kobresia myosuroides 0 0.0  0.0  0 0.0  0.0  164 7.9  5.8  
Trifolium dasyphyllum 0 0.0  0.0  0 0.0  0.0  129 6.2  4.5  



 

33 
 

710 

Trifolium parryi 0 0.0  0.0  0 0.0  0.0  88 4.3  3.1  
Campanula rotundifolia 0 0.0  0.0  0 0.0  0.0  70 3.4  2.5  
Artemisia pattersonii 0 0.0  0.0  0 0.0  0.0  68 3.3  2.4  
Selaginella densa 0 0.0  0.0  0 0.0  0.0  34 1.6  1.2  
Calamagrostis purpurascens 0 0.0  0.0  0 0.0  0.0  32 1.6  1.1  
Sibbaldia procumbens 0 0.0  0.0  0 0.0  0.0  21 1.0  0.7  
Other Species  (<1  Individually) 0 0.0  0.0  0 0.0  0.0  78 3.8  2.7  



 

34 
 

Table 2.  Absolute cover of restored alpine areas found on erosion matting, and rock-711 

supplemented sites versus that of undisturbed alpine tundra.  Values are means, ± std errors.  712 

Means followed by different letters are significantly different (P<.05) using a post-hoc SNK 713 

test. 714 

------------------------------------------------------------------------------------------------------------------------------------------           715 

 Undisturbed Erosion Matting Supplemental 716 

 Native Plots  Plots Rock Cover Plots 717 

 (n=30) (n=18) (n=12) 718 

Total vascular 68.9 (3.4) A 35.2 (2.8) B 26.7 (2.8) B                                                                                                                                                                                     719 

vegetation                  720 

Litter 5.2 (1.0) B 28.2 (2.4) A 6.2 (1.2) B                  721 

All seeded species 7.6 (2.3) C 28.9 (2.0) A                                     20.4 (3.1) B           722 

Deschampsia cespitosa 5.6 (2.4) A 0.2 (0.2) B 0.8 (0.5) B 723 

Trisetum spicatum 2.0 (0.5) C  22.1 (2.5) A                                     11.9 (2.4) B                724 

Poa alpina 0.1 (0.1) B                                  6.7 (1.2) A 7.7 (1.8) B 725 

Volunteer vascular  n/a                                            6.3 (1.6) A 6.3 (2.5) A                                                                                                                              726 

vegetation 727 

 728 

 729 

Figure Legends: 730 

 731 

Figure 1.  Road in 2011, before (A) and  after restoration (B) in 2014   In addition to the 732 

seeding effort, vegetation plugs, seen here as patches of vegetation, were inserted into 733 

flatter, less rocky portions of the former road. 734 

 735 

Figure 2.  Example of erosion matting (A) and supplemental rocks (B) added to the 736 

former road area. 737 
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Fig. 1 745 
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