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Abstract. Seasonal transitions in Arctic sea ice, such as the
melt onset, have been found to be useful metrics for evalu-
ating sea ice in climate models against observations. How-
ever, comparisons of melt onset dates between climate mod-
els and satellite observations are indirect. Satellite data prod-
ucts of melt onset rely on observed brightness temperatures,
while climate models do not currently simulate brightness
temperatures, and must therefore define melt onset with other
modeled variables. Here we adapt a passive microwave sea
ice satellite simulator, the Arctic Ocean Observation Op-
erator (ARC3O), to produce simulated brightness tempera-
tures that can be used to diagnose the timing of the earliest
snowmelt in climate models, as we show here using Com-
munity Earth System Model version 2 (CESM2) ocean-ice
hindcasts. By producing simulated brightness temperatures
and earliest snowmelt estimation dates using CESM2 and
ARC3O, we facilitate new and previously impossible com-
parisons between the model and satellite observations by re-
moving the uncertainty that arises due to definition differ-
ences. Direct comparisons between the model and satellite
data allow us to identify an early bias across large areas of
the Arctic at the beginning of the CESM2 ocean-ice hind-
cast melt season, as well as improve our understanding of the
physical processes underlying seasonal changes in brightness
temperatures. In particular, the ARC3O allows us to show
that satellite algorithm-based melt onset dates likely occur
after significant snowmelt has already taken place.

1 Introduction

Global climate models are important tools for understand-
ing how Arctic sea ice is changing today and will change
in the future. However, climate models show a large spread
in their projections of Arctic sea ice area, and the causes of
this spread are not well known (SIMIP-Community, 2020).
In order to assess the fidelity of model simulations, and ul-
timately improve climate model representations of sea ice,
we must evaluate model simulations against observations.
Satellite observations of Arctic sea ice have pan-Arctic spa-
tial coverage over four decades, and are thus well-suited for
climate model evaluation. However, the most common use of
satellite observations for model evaluation in terms of sea ice
area or extent provide a limited perspective on model differ-
ences, as they do not provide insights into why model dif-
ferences exist. To do that, more process-oriented metrics are
needed (Notz et al., 2016). In fact, differences in the simu-
lation of seasonal sea ice growth and melt have been shown
to contribute to intermodel spread (Massonnet et al., 2018).
Melt onset in particular was shown to be a useful metric for
model assessment of thermodynamic processes, as models
with biases in the timing of melt onset can produce realistic
September sea ice areas for the wrong reasons (Smith et al.,
2020).

Uncertainty as to which physical processes are captured
by remote sensing melt onset products, however, continues
to complicate the use of these products as process-based met-
rics for model assessment (Jahn et al., 2012; Smith and Jahn,
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2019; Smith et al., 2020). This is due to the fundamental dif-
ference in how melt onset, and other sea ice properties, are
obtained in models and from remote sensing. In models, the
physical evolution of the sea ice cover is simulated based on
energy and momentum fluxes, including when snow on sea
ice and sea ice itself begin to melt. In contrast, remote sensing
products of melt onset are based on brightness temperatures
from satellite retrievals, using an algorithm designed to de-
tect the increase in emissivity that occurs when liquid water
develops around snow grains (Smith, 1998; Drobot and An-
derson, 2001; Markus et al., 2009; Kern et al., 2016; Bliss
et al., 2017). However, there is uncertainty in which pro-
cesses or thresholds these brightness temperature-based al-
gorithms capture, as different algorithms, i.e., the advanced
horizontal range algorithm (AHRA) (Drobot and Anderson,
2001) and the passive microwave (PMW) algorithm (Markus
et al., 2009) show large differences (Bliss et al., 2017). This
uncertainty surrounding the physical conditions captured by
remote sensing melt onset products causes a fundamental
challenge for comparisons with models, as there are multiple
possible definitions for sea ice melt onset in climate models.
Modeled melt onset dates derived from different definitions
can differ from each other and hence complicate the definite
detection of a model bias (Smith and Jahn, 2019).

To reduce the uncertainty in the comparison of melt onset
between models and satellites, we here use simulated bright-
ness temperatures and a new, consistent metric for the earliest
snowmelt that can be applied to both simulated and retrieved
brightness temperatures. This approach enables a more di-
rect comparison between melt onset in models and satellite
data than has been previously possible. By utilizing the ear-
liest snowmelt metric, we can more precisely detect model
biases using the satellite data, as well as provide insights into
the physical processes captured by other melt onset defini-
tions. Since the goal of this study is to perform the most
direct model comparisons with satellite retrievals to estab-
lish the usefulness of the earliest snowmelt metric, we use an
ocean-sea ice hindcast to remove the influence of internal cli-
mate variability on the simulated sea ice cover that is present
in unconstrained simulations of coupled climate models. We
use the Community Earth System Model version 2 (CESM2)
as the model, as it includes a sophisticated and widely used
sea ice model, CICE5 (Hunke et al., 2015). To produce sim-
ulated brightness temperatures from model output, we adapt
and use the Arctic Ocean Observation Operator (ARC3O),
which has been developed specifically for sea ice-covered
ocean (Burgard et al., 2020a, b). Observation operators (also
commonly referred to as satellite simulators, satellite emula-
tors or instrument simulators) offer an opportunity to enable
more direct, physically based model-satellite comparisons.
They have been utilized extensively in studying cloud pro-
cesses in climate models (Bodas-Salcedo et al., 2011) and
are becoming more prevalent in the evaluation of other cli-
mate model processes (Flato et al., 2013). ARC3O is the first
observation operator that has been developed specifically for

sea ice from climate models (Burgard et al., 2020a, b). In the
following, we will use ARC3O and satellite simulator inter-
changeably.

2 Data and methods

In order to create and evaluate a new metric, namely the
simulated earliest snowmelt estimation date, we utilize hind-
cast simulations with the ocean-sea ice components from the
CESM2, the ARC3O satellite simulator and various satel-
lite data products (DMSP SSM/I-SSMIS brightness temper-
atures (Meier et al., 2019), AMSR-E/Aqua brightness tem-
peratures (Cavalieri et al., 2014) and continuous and early
melt onset dates based on the DMSP brightness temperature
data (Steele et al., 2019)). All data have been regridded to
the same rectilinear grid for consistency using the nearest
neighbor source-to-destination method. Detailed results are
described for the year 2003 to demonstrate the utility of the
method. The year 2003 was chosen for multiple reasons: it
is not an extreme year in terms of pan-Arctic average melt
onset (Fig. S1 in the Supplement), it falls after the start of the
AMSR-E data (June 2002) and is not an anomalously low sea
ice extent year (such as 2007 or 2012).

2.1 Satellite brightness temperature data

To evaluate the simulated brightness temperatures we utilize
two sets of satellite data, the DMSP SSM/I-SSMIS Daily Po-
lar Gridded Brightness Temperatures Version 4 (Meier et al.,
2019) and the AMSR-E/Aqua Daily L3 Brightness Temper-
atures Version 3 (Cavalieri et al., 2014). Both products are
gridded to a 25 × 25 km grid and have been regridded to a
0.9 × 1.25◦ grid here for comparisons with the model. The
DMSP data begin on 9 July 1987 and processing of data is
ongoing. The AMSR data span from 1 June 2002 to 4 Oc-
tober 2011. The DMSP data are collected from 19.3, 22.2,
37.0, 85.5 and 91.7 GHz frequency channels at both horizon-
tal and vertical polarizations. The AMSR data are likewise
collected at both horizontal and vertical polarizations from
slightly different channels: 6.9, 10.7, 18.7, 23.8, 36.5, and
89.0 GHz.

2.2 Melt onset definitions

Early and continuous melt onset dates are taken from the
Arctic Sea Ice Seasonal Change and Melt/Freeze Climate In-
dicators from Satellite Data Version 1 (Steele et al., 2019),
which is based on the DMSP brightness temperatures from
1979–2017. The Steele et al. (2019) dataset provides melt on-
set dates calculated using the method established by Markus
et al. (2009) as well as additional variables based on ice
concentration. It is used here for consistency and ease of
comparison with past work on spring sea ice transition met-
rics (Smith et al., 2020). Early and continuous melt onset
dates are derived from a set of weighted parameters based on
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brightness temperatures at 19.3 and 37.0 GHz (vertically po-
larized and hereby referred to as 19.3V and 37V GHz). These
parameters are designed to capture changes in the brightness
temperature driven by increasing emissivity associated with
increasing snow and ice wetness. If no continuous melt onset
date is captured by the brightness temperature parameters,
the continuous melt onset date is defined as the last day that
ice concentration falls below 80 %, and the data do not pro-
vide information on how often this back-up method is em-
ployed.

In previous work that aimed to use seasonal transitions to
assess models, several model definitions of the melt onset
were created and compared (Smith and Jahn, 2019). These
definitions were based on physical processes associated with
melt, but no single definition was found to directly corre-
spond to the continuous melt onset dates. The two definitions
most comparable to the continuous melt onset (the first based
on snowmelt and the second based on surface temperature)
are used here to assess if using simulated brightness temper-
atures to derive estimations of melt onset provides more di-
rect comparisons between models and satellite data. As in
Smith and Jahn (2019), snowmelt-based melt onset is de-
termined to occur on the first day that snowmelt is greater
than 0.01 cm d−1 for 5 consecutive days. Melt onset derived
from the surface temperature of either the sea ice or over-
lying snow is determined to occur on the first day that sur-
face temperature exceeds −1 ◦C for 3 consecutive days, as
also used in the assessment of melt onset in CMIP6 models
(Smith et al., 2020).

2.3 The Arctic Ocean Observation Operator (ARC3O)

The ARC3O is a newly developed observational opera-
tor that simulates Arctic brightness temperatures from two-
dimensional model output for the purpose of comparisons
with observations (Burgard et al., 2020a, b). The ARC3O
brightness temperatures are simulated using a modified ver-
sion of the Microwave Emission Model for Layered Snow-
packs (MEMLS) extended to sea ice (Tonboe et al., 2006).
The ARC3O was developed and evaluated to produce bright-
ness temperatures at 6.9 GHz. Additionally, it includes the
respective atmospheric corrections for all AMSR frequen-
cies. In this study, brightness temperatures are calculated
for ARC3O under “cold conditions”, which means that all
brightness temperatures are calculated using MEMLS and
no assumptions are made about when and where melt is
occurring prior to brightness temperature calculation. Note
that while ARC3O was developed and tested for 6.9 GHz,
MEMLS has been used in previous studies for higher fre-
quencies than 6.9 GHz (Tonboe, 2010; Tonboe et al., 2011;
Willmes et al., 2014; Lee et al., 2017). The ARC3O requires
atmosphere, ocean and sea ice model output to act as input
to the simulator. For the atmosphere, the required modeled
variables include 10 m wind speeds, columnar liquid water,
and columnar water vapor. For the ocean and sea ice, the re-

quired modeled variables include sea surface temperatures,
sea ice concentrations, sea ice thicknesses, surface tempera-
tures at the interface between the atmosphere and the snow or
sea ice, melt pond fraction, snow water equivalent and snow
fraction on the sea ice.

In addition to providing input data, ARC3O users can
choose whether to use the simply parameterized ARC3O
snow and ice profiles or to submit other profiles. Variables
that require vertical profiles are layer temperature, layer
salinity, layer density, layer thickness, layer wetness, layer
correlation lengths, and layer classification into multiyear
ice, first year ice, or snow.

2.4 CESM2 JRA-55 ocean-ice hindcast simulation

Natural variations in the climate system inhibit exact repli-
cation of the satellite observations in climate models (Kay
et al., 2011; Notz, 2015), as observations themselves repre-
sent only one of many possible physical outcomes due to the
chaotic nature of the climate system (Lorenz, 1963). Here
we use a CESM2 (Danabasoglu et al., 2020) ocean-ice hind-
cast forced by JRA-55 reanalysis-based atmospheric forc-
ing (Kobayashi et al., 2015; Tsujino et al., 2018) to remove
the influence of internal climate variability on the simulated
sea ice cover, since analysis of large ensemble simulations
demonstrates that model definitions of melt onset can vary
by almost 1 week in their annual pan-Arctic means due to
internal variability alone (Smith and Jahn, 2019). The ocean-
ice hindcast set-up uses the CESM2 ocean (Smith et al.,
2010) and sea ice (Hunke et al., 2015) components at the
default CESM2 resolution of 1◦ nominal resolution, and at-
mospheric fields from the JRA-55 forcing for ocean-ice mod-
els (Kobayashi et al., 2015; Tsujino et al., 2018). By using a
hindcast atmosphere instead of the fully coupled version of
CESM2, we are able to compare the evolution of simulated
brightness temperatures day by day without considering in-
ternal variability. We use a spin-up restart from the simula-
tion used by Kim et al. (2020) to run the model for the period
1979 to 2019 with the required output. The spin-up followed
the OMIP1 protocol (Griffies et al., 2016), which means 5
cycles of the 1958–2009 forcing. We here analyze year 2003
from the last cycle.

2.5 Framework for brightness temperature simulation

As we are interested in snowmelt, and scattering in the snow-
pack is more prevalent at higher frequencies (Mätzler, 1987;
Barber et al., 1998), we adapted the ARC3O simulator (Bur-
gard et al., 2020a, b) to produce brightness temperatures for
18.7 GHz instead of 6.9 GHz. The main change this required
was an adaptation of the snow wetness parameter in ARC3O,
which was set to zero for 6.9 GHz. To achieve the best agree-
ment with the evolution of the observed brightness temper-
atures during the melt season, we added a step function
representation of snow wetness based on the CICE5 daily
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snowmelt. In the step function, the snow wetness is set to 0.2
(fractional wetness) when snowmelt is less than or equal to
0.2 cm d−1 (including 0 cm d−1), and 0.5 when snowmelt is
greater than 0.2 cm d−1. These thresholds were determined
through sensitivity testing of the brightness temperature to
snow layer wetness and were found to yield results more
comparable to satellite observations than zero snow wetness.
Simulated brightness temperatures are slightly more sensi-
tive to changes in the step function threshold than the as-
signed wetness value, but sensitivity analysis showed that
varying the step function resulted in brightness temperature
changes of less than 10 K. The value of the layer wetness is
equal for all snow layers, and held constant at zero for all sea
ice layers.

Because the continuous melt onset dates are derived from
DMSP brightness temperatures at 19.3V and 37V GHz, we
produce simulated brightness temperatures at 18.7V GHz,
the closest AMSR frequency to 19.3V GHz, in order to
be as consistent as possible with the early melt on-
set and continuous melt onset products. Evaluation of
the 18.7V GHz AMSR brightness temperatures versus the
19.3V GHz DMSP brightness temperatures show that differ-
ences between the two products are often less than 5 K, and
it is therefore appropriate to use the 18.7V GHz frequency
for evaluating brightness temperatures and melt onset dates
derived from the satellite simulator. Since the annual cy-
cle of brightness temperatures is clearly discernible at the
18.7V GHz frequency, we do not create brightness temper-
atures at 37V GHz, an even higher frequency than ARC3O
was originally designed to simulate, likely requiring further
refinements to the representation of snow on sea ice than
were needed for 18.7 GHz.

Other changes to ARC3O are related to the fact that
ARC3O was developed to be applied to the largest pos-
sible range of GCMs (global climate models), regardless
of the complexity of their sea ice output (Burgard et al.,
2020a, b). We therefore leverage the additional model out-
put from CICE5 to replace the vertical profiles and multiyear
ice fractions used in ARC3O with model output.

For the vertical profiles, the layer thickness is derived by
equally dividing the snow and ice thicknesses between the
respective number of layers, as in the original ARC3O. Here,
CICE5 was configured using the mushy-layer thermodynam-
ics scheme and to provide information on three snow layers
and eight sea ice layers. Instead of the default ARC3O simply
parameterized profiles, we use temperature and salinity pro-
files from CICE5 across the sea ice layers and temperature
profiles from CICE5 across the snow layers. Snow salinity
is constant at 0 PSU (practical salinity units) in CICE5. Both
the snow and sea ice profiles are provided for five ice thick-
ness categories. As the differences in the temperature pro-
files between the thickness categories are small, we create a
weighted mean of the five profiles in order to create profiles
representative of the entire grid cell. For this, the five pro-
files are weighted by the ice volume in each category at each

respective grid cell and time step. The three snow layers pro-
vide more information about the vertical temperature profile
of the snow on sea ice – an important quantity for detect-
ing melt onset – than the original ARC3O set-up, which used
only one snow layer. Based on the sea ice temperature and
salinity profiles derived from CICE5, the density of the sea
ice at each layer is calculated following the original frame-
work of ARC3O, based on Notz et al. (2005). Snow density
is held constant at 330 kg m−3, as in CICE5.

In terms of multiyear versus first year ice, we use the
CICE5 daily first year ice fractions based on an Eulerian
transport scheme, instead of the original ARC3O algorithm
for determining first or multiyear ice, which defined areas of
first year ice as those where ice thickness reached zero on
any day in the past year. Here, sea ice in any grid cell with
more than 50 % first year ice is considered first year ice, and
all other sea ice is considered multiyear ice. The layer corre-
lation length, a metric of the scatterer size, is 0.15 for snow,
0.25 for first year ice and 1.5 for multiyear ice. This is a mi-
nor simplification from Burgard et al. (2020a, b), in which
the correlation length for first year ice changes to 0.35 be-
low 0.2 m depth. As explained in Burgard et al. (2020a), the
correlation length is a variable that is well understood and
quantifiable for snow (Mätzler, 2002; Proksch et al., 2015;
Lemmetyinen et al., 2018), but not necessarily for sea ice.
The values used are therefore based on past experiments con-
ducted by Rasmus T. Tonboe (Burgard et al., 2020a).

Feeding daily CESM2 JRA-55 data as input to our slightly
adapted version of ARC3O, the evolution and spatial pat-
tern of the brightness temperature in the shelf seas during the
spring agrees well with the remotely sensed brightness tem-
peratures (Fig. S2). A high bias tends to correspond to areas
of very deep snow (greater than 30 cm; Fig. S3), as well as ar-
eas of multiyear sea ice (Fig. 2c). In Burgard et al. (2020a, b)
a correction of 0.968 was applied to brightness temperatures
at all grid cells, and we have modified this approach by ap-
plying a correction of 0.92 only to regions of multiyear sea
ice to achieve the best agreement with satellite observations
(Fig. S2).

2.6 New metric: earliest snowmelt estimation date

Using the simulated snowmelt and its signature in the simu-
lated brightness temperatures (Fig. 1), we define a new metric
called the “earliest snowmelt estimation” date. By creating a
new metric for snowmelt and applying it in the same way to
both observed and simulated brightness temperatures, we are
able to reduce the uncertainty related to definition differences
between the model and observations. By basing it on a phys-
ical process, i.e., the beginning of snowmelt in the model,
this metric enables a process-based, direct model compari-
son with the remotely sensed brightness temperatures. This
is not possible for the original continuous melt onset from
Markus et al. (2009), where the physical processes that it
captures are not exactly clear, and which uses a sophisticated
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algorithm that weights a combination of three melt onset pa-
rameters, using brightness temperatures at two frequencies,
as well as employing an ice concentration-based back-up
method. Nonetheless, we can compare our earliest snowmelt
estimation to early and continuous melt onset dates from the
algorithm of Markus et al. (2009) to assess their differences
and evaluate if different snow and sea ice changes are cap-
tured by the two methods (Sect. 3.2).

The earliest snowmelt estimation is based on the 10 d run-
ning mean of the brightness temperatures, so that the esti-
mation is not unduly affected by small day-to-day differ-
ences between the AMSR, DMSP and simulated datasets.
We then define the earliest snowmelt estimation as the first
day between 1 March and 31 June that the brightness tem-
perature crosses a given threshold, which is chosen to reflect
when snowmelt begins in the model. We begin on 1 March
to avoid transient winter melt events and to reduce the num-
ber of earliest melt estimation dates falling by default on the
first possible day in the CESM JRA-55 relative to later start
dates. Furthermore, the brightness temperatures on the first
day of simulated snowmelt vary spatially (Fig. 1). In order to
keep the definitions based solely on brightness temperatures
so that consistent comparisons between model and satellite
data are possible, we set two brightness temperature thresh-
olds based on the brightness temperature distributions, which
are skewed high in all products and appear more bimodal in
the CESM2 (Fig. S4). The best agreement is found with the
following thresholds: if the brightness temperature at a given
grid cell is greater than 242 K on 1 January, the brightness
temperature has to be greater than 259 K to be counted as ear-
liest snowmelt date, and if the brightness temperature is less
than or equal to 242 K on 1 January, the brightness temper-
ature has to be greater than 239 K (Fig. 2). In the model the
boundary between these thresholds aligns with the boundary
between multiyear and first year ice. Hence, this approach is
similar to that used by Markus et al. (2009), where the bright-
ness temperature on 1 April is used to determine whether
the sea ice is multiyear or first year ice, and where different
thresholds at the 19.3V GHz frequency are used to determine
one of the melt onset parameters.

3 Results

The results are presented in three sections, beginning with
the evaluation of the simulated brightness temperatures in
Sect. 3.1. We then compare the new metric, the earliest
snowmelt estimation dates, to various representations of melt
onset in Sect. 3.2, demonstrating the utility of the new met-
ric for improving model-satellite data comparisons and bias
detection. Finally, we provide an assessment of how much
snowmelt occurs prior to the detection of melt onset using
the early and continuous melt onset algorithms in Sect. 3.3.

3.1 Simulated brightness temperatures at the
beginning of the melt season

Spring brightness temperatures produced at 18.7V GHz by
the satellite simulator are comparable to those from the
DMSP and AMSR satellite data in terms of their variabil-
ity, magnitudes and, most importantly, temporal evolution
(Fig. 3). First, the simulated brightness temperatures, which
are produced based on CESM2 hindcast simulation output,
capture the day to day variability seen in the satellite data
(Fig. 3), consistently matching local maxima and minima.
The variability in the observed brightness temperatures is
large, with single day changes at times exceeding ±10 K, and
the simulated brightness temperatures generally capture such
changes well. Furthermore, the magnitudes of the brightness
temperatures are consistent with observations in large areas
of the Arctic and for much of the year (Figs. 3 and S2). In the
marginal seas, the simulator consistently produces brightness
temperatures of similar magnitude to satellite data from Jan-
uary through June (Fig. 3a–c). Simulated brightness temper-
atures tend to deviate from the satellite observations when
the ice concentration declines, showing less agreement in
their variability (Fig. 3a–c). In the central Arctic, the vari-
ability is also captured well in the model, but the magnitude
of the brightness temperatures is higher than observed early
in the year. Once the sea ice concentration declines, the mag-
nitude of the brightness temperature in the central Arctic in
the model becomes lower than observed and the variability
no longer matches the observations (Fig. 3d), likely due to
differences in sea ice concentration between the model and
observations at individual grid cells. However, this does not
affect evaluation of the earliest snowmelt estimation, which
occurs earlier in the spring, before substantial sea ice loss.
Over the course of the late winter and spring, brightness tem-
peratures show a small decline or are steady from January
to April in both the simulator and observations, followed by
a clear increase from April until May, when snowmelt in-
creases (Fig. 4) and simulated ice concentrations first start
to decrease (Fig. 3). Since the simulated brightness temper-
atures tend to correctly capture the evolution of brightness
temperatures from January through June, they are suitable
for assessing the beginning of the melt season.

3.2 Utilizing earliest snowmelt estimation dates

3.2.1 Physical insights into the impact of melt processes
on brightness temperature

Simulated brightness temperatures are valuable for under-
standing the physical processes associated with sea ice sea-
sonality because they are directly comparable to other model
variables that are relevant to brightness temperature-sensitive
processes, such as snowmelt and ice concentration changes
(Smith, 1998; Markus et al., 2009). Here we have used the
dependence of the brightness temperature on snowmelt to
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Figure 1. The brightness temperature (K) on the first day in 2003 at each grid point when CESM2 JRA-55 snowmelt is greater than
0.01 cm d−1 in (a) DMSP, (b) AMSR and (c) CESM JRA-55.

Figure 2. Areas where the earliest snowmelt estimation employs a 259 K threshold (orange) and a 239 K threshold (turquoise) in 2003 for
(a) DMSP, (b) AMSR and (c) CESM JRA-55. In panel (c) the area of multiyear ice from CESM JRA-55 is stippled.

define the snowmelt estimation threshold when the earliest
snowmelt in the model occurs (Sect. 2.6). Since the temporal
evolution and variability of the simulated brightness temper-
atures agree well with satellite data, especially in the spring
(Sect. 3.1), agreement between the simulated and observed
brightness temperatures in terms of the earliest snowmelt es-
timation suggests that snowmelt occurs at about that time
in reality as well. Furthermore, for periods when simulated
and observed brightness temperatures agree, we can use the
model to provide insights into which processes are captured
by existing melt onset definitions.

The earliest snowmelt estimation based on brightness tem-
perature thresholds successfully captures the beginning of
snowmelt on sea ice in the model at individual locations, even
considering that the timing in snowmelt varies across regions
of the Arctic (Fig. 4). Furthermore, the earliest snowmelt es-
timation agrees well between the simulation and DMSP and
AMSR satellite data across the Arctic (Fig. 3). At this time,
ice concentration gradually begins to decline as well, but at
many locations still exceeds 95 % (Fig. 3). Hence, the in-
crease in the brightness temperature that triggers the earliest
snowmelt estimation suggests that this metric is capturing the

start of snowmelt in both the model and reality, as captured
by the satellite data.

Both early and continuous melt onset based on the DMSP
brightness temperatures fall later in the season than the earli-
est snowmelt estimation. In addition, both the early and con-
tinuous melt onset tend to occur after approximately 10 % of
the ice in the grid cell has been lost (Fig. 3). The continuous
melt onset date tends to fall near the middle of the seasonal
cycle of snowmelt on the sea ice (Fig. 4). Early melt onset is
less consistent as to when in the seasonal cycle of snowmelt
it occurs, in some places occurring on the same day as con-
tinuous melt onset (Fig. 4c), and in other places about 1 week
earlier (Fig. 4d).

While the melt onset algorithms are designed to capture
snow and ice melts (Markus et al., 2009), it has not pre-
viously been possible to analyze if one or both of the two
processes are occurring at the time of diagnosed melt on-
set across the Arctic. Based on what we have found, it is
clear that the earliest snowmelt estimation captures a differ-
ent physical change in the snow and sea ice than the early
and continuous melt onset dates: the earliest snowmelt esti-
mation occurs at the beginning of snowmelt, while early and
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Figure 3. AMSR (black), DMSP (gray) and CESM2 JRA-55 (red) daily brightness temperatures in 2003 at approximately (a) 76◦ N, 168◦ W,
(b) 80◦ N, 140◦ E, (c) 80◦ N, 80◦ E and (d) 84◦ N, 50◦ W. In each panel the daily CESM2 JRA-55 ice concentration (purple) is shown in
percent at the respective location. Dashed lines show the AMSR (black), DMSP (gray) and CESM2 JRA-55 (red) earliest snowmelt estimation
dates (ESE) as well as the early melt onset date (light blue) and the continuous melt onset date (dark blue).

continuous melt onset occur after substantial seasonal snow
and ice loss has occurred.

3.2.2 Diagnosing model biases based on direct
comparisons

The earliest snowmelt estimation provides a method of de-
termining melt that can be applied to both observed and sim-
ulated brightness temperatures. This not only allows us to
leverage other model variables to improve our understand-
ing of snow and sea ice processes (Sect. 3.2.1), but also
provides more direct comparisons between climate models
and satellite observations. The earliest snowmelt estimation
of the simulated brightness temperatures from the ocean-
ice CESM2 hindcast shows a similar spatial pattern to the
earliest snowmelt estimations from the DMSP and AMSR
satellite data (Fig. 5). Simulated earliest snowmelt estima-
tion dates occur latest in areas north of the Canadian Arc-
tic Archipelago, the Laptev Sea and in the northern Kara
Sea. Direct comparison between the model and observations
shows that the simulated earliest snowmelt dates, while gen-
erally occurring at a similar time to the DMSP and AMSR
earliest snowmelt estimations, tend to occur earlier than
those derived from satellite data (Fig. 6). Modeled earliest

snowmelt dates fall slightly late in the Beaufort Sea, as well
as the northern areas of the Laptev, Kara and Barents seas
(Fig. 6). Since the regions of late bias fall along the line dif-
ferentiating thresholds in the calculation of earliest snowmelt
dates (Sect. 2.2), these biases may be related to differences
in the position of multiyear ice between the model and ob-
servations. The largest differences between the model and
observations are in the Central Arctic, where simulated ear-
liest snowmelt dates fall over 60 d earlier in some areas. By
comparing the same quantity (brightness temperature), pro-
cessed in the same way (earliest snowmelt estimation), we
can clearly discern that the earliest snowmelt estimation in
the ocean-ice CESM2 hindcast is occurring too early in the
Central Arctic (Fig. 6). Finally, AMSR and DMSP satellite
products disagree on the sign of the bias in the southern re-
gion of the Laptev Sea, thus a model bias cannot be confi-
dently diagnosed in this region.

The direct comparison improves upon previous model-
satellite data comparisons involving the continuous melt on-
set. Because brightness temperatures were not previously
simulated using the CESM, other definitions based on known
physical processes in the model were previously used to com-
pare melt onset dates between climate models and satellite
observations (Smith and Jahn, 2019; Smith et al., 2020).
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Figure 4. AMSR (black), DMSP (gray) and CESM2 JRA-55 (red) daily brightness temperatures in 2003 at approximately (a) 76◦ N, 168◦ W,
(b) 80◦ N, 140◦ E, (c) 80◦ N, 80◦ E and (d) 84◦ N, 50◦ W. In each panel, daily CESM2 JRA-55 snowmelt (purple) is shown in cm d−1 at
the respective location. Dashed lines show the AMSR (black), DMSP (gray) and CESM2 JRA-55 (red) earliest snowmelt estimation dates as
well as the early melt onset date (light blue) and the continuous melt onset date (dark blue).

These process-based definitions were developed based on
criteria that represent melt (snowmelt and a change in sur-
face temperature, see Sect. 2.2), and the specifications of
each definition have been refined to best characterize con-
tinuous melt onset, although they do so without any known
basis for which physical processes are most relevant. These
model definitions of melt onset fall about 10–40 d later than
the earliest snowmelt estimation dates (Fig. 7). The snowmelt
and surface temperature melt onset dates fall earlier than the
early and continuous melt onset dates from DMSP, and tend
to fall closer to one of these two metrics than to the earliest
snowmelt estimation dates (Fig. 7). While snowmelt and sur-
face temperature changes sometimes occur close to the melt
onset dates based on the algorithms by Markus et al. (2009)
(Fig. 7a and b), they do not always (Fig. 7c and d), and the
physical reasons for when they agree and when they do not
agree are not clear. Hence, this comparison is less process-
specific than the newly possible comparisons between the
earliest snowmelt estimations from the simulated brightness
temperatures.

Because the snowmelt and surface temperature melt on-
set dates generally fall earlier than the observed continuous
melt onset dates (Figs. 5 and 6) and the simulated earliest
snowmelt estimation falls earlier than the AMSR and DMSP

earliest snowmelt estimations in most regions of the Arctic,
the direction of the model bias has generally not changed in
implementing a new comparison. This suggests that the un-
derlying biases persist throughout the melt season. This bias
detection adds value to our assessment of model representa-
tions of the melt, because the processes captured are known
and the quantities being compared between the model and
observations are identical, reducing the uncertainty from dif-
ferences in definitions.

3.3 Quantifying the snowmelt detected by melt onset
algorithms

Direct comparisons between climate models and satellite ob-
servations also provide opportunities for the models to in-
form us about the physical processes captured by satellite
data. In Sect. 3.2.1, we show that substantial snowmelt oc-
curs in the model before the melt onset algorithms detect
early or continuous melt. Since the evolution in the simu-
lated brightness temperatures agrees well with the satellite
brightness temperatures during the melt season, in particular
in the marginal seas, we can use the model to provide some
insights into how much snowmelt occurs by the time melt on-
set is detected by the satellite algorithm. In order to quantify
the amount of snowmelt before diagnosed melt onset, we cal-
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Figure 5. Comparison of the (a) DMSP earliest snowmelt estimation dates, (b) AMSR earliest snowmelt estimation dates, (c) CESM2 JRA-
55 earliest snowmelt estimation dates, (d) continuous melt onset dates (based on DMSP), (e) CESM2 JRA-55 snowmelt melt onset dates and
(f) CESM2 JRA-55 surface temperature melt onset dates at each grid cell, for 2003.

culate the cumulative snowmelt starting on the day of max-
imum snow depth and ending on the the dates of early and
continuous melt onset. Because total snowmelt is dependent
on snow depth, we normalize the cumulative snowmelt by the
maximum snow depth at each grid cell. This yields a unitless
quantity referred to here as the normalized snowmelt, which
estimates the amount of snowmelt that occurs prior to early
and continuous melt onset at each grid cell (Fig. 8). The nor-
malized snowmelt ranges between 0 and 1 across most of the
Arctic. However, this value can and does exceed 1 in some
locations, particularly in the Barents and Chukchi seas where
late spring storms may be expected, since snow accumulation
can still occur after the date of maximum snow depth.

Because the normalized snowmelt falls below 1 across
large areas of the Arctic and the spatial variability is not large
in either the case of early or continuous melt onset (Fig. 8),
we are able to take spatial means to provide pan-Arctic esti-
mations of the normalized snowmelt. The mean normalized
snowmelt prior to early melt onset is about 0.5, while the the
mean normalized snowmelt prior to continuous melt onset is
about 0.75. This means that approximately half of the snow
melts in the model before the detection of early melt onset
by the satellite algorithm and approximately three quarters
melts before continuous melt onset detection. While mod-
els can have biases, they can still provide valuable insights
such as these that would be impossible to obtain without a
large number of spatially distributed in situ snowmelt obser-
vations. Normalized snowmelt therefore serves as an exam-

ple of the novel, process-oriented analysis that can be done
through more direct comparisons between models and satel-
lite observations in the Arctic.

4 Conclusions

We find that brightness temperatures produced at 18.7 GHz
using a ocean-ice CESM2 hindcast and the ARC3O satellite
simulator agree well with observed brightness temperatures
in our period of interest, from January to the end of June.
This combination is therefore a useful tool for investigating
Arctic sea ice and snowmelt processes from a novel perspec-
tive. In the marginal seas, simulated brightness temperatures
are similar to AMSR and DMSP brightness temperatures in
terms of their magnitude and variability in the spring months,
which are of interest for evaluating melt (Fig. 3).

Since the variability of the simulated brightness temper-
atures agree well with satellite data, we use the model to
develop a new metric for melt onset, called the earliest
snowmelt estimation. The earliest snowmelt estimation is de-
signed to capture the beginning of snowmelt, based on when
snowmelt first occurs in the simulation from the brightness
temperatures (Fig. 4), and can hence be applied consistently
to both the model and the satellite data. We find that the ear-
liest snowmelt estimation dates generally agree well between
the model and AMSR and DMSP, but generally occur about
5–45 d earlier in the model compared to AMSR and DMSP in
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Figure 6. Differences between melt onset dates. The CESM2 JRA-55 earliest snowmelt estimation dates minus (a) DMSP earliest snowmelt
estimation dates and (b) AMSR earliest snowmelt estimations dates; (c) CESM2 JRA-55 snowmelt melt onset dates minus continuous melt
onset (CMO) dates (based on DMSP), (d) CESM2 JRA-55 surface temperature melt onset dates minus CMO dates (based on DMSP). All
for 2003.

most regions of the Arctic (Figs. 5–7). The early model bias
in the earliest snowmelt date is also seen in the comparison
of the satellite-based continuous melt onset dates (Markus
et al., 2009; Steele et al., 2019) with other CESM2 melt on-
set definitions derived from the snowmelt and surface tem-
perature variables that are designed to approximate the melt
onset as captured by the satellite data (Figs. 5–7). By taking
advantage of the more direct model-to-observation compar-
isons enabled by the simulator, we are able to show that this
persistent early occurrence of melt for different metrics in
CESM2 JRA-55 is indeed a model bias, and not due to defini-
tion differences. Regions showing a late bias in CESM2 JRA-
55 occur along the threshold line of the earliest snowmelt es-

timation definition and are likely affected by uncertainty in
the location of multiyear sea ice. This assessment was con-
ducted for 2003, which is not an extreme year in terms of
pan-Arctic average melt onset, and earliest snowmelt estima-
tion dates from other years should be evaluated in the future.

In addition to assessing the model performance by us-
ing the satellite simulator, we are also able to provide
insights into the physical processes captured by satellite
data in a novel way. We find that compared to the PMW
satellite algorithm-based early and continuous melt onset
dates (Markus et al., 2009; Steele et al., 2019), the earliest
snowmelt date occurs much earlier in the year. This means
that rather than at the start of the melt, the early and con-
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Figure 7. AMSR (black), DMSP (gray) and CESM2 JRA-55 (red) daily brightness temperatures in 2003 at approximately (a) 76◦ N, 168◦ W,
(b) 80◦ N, 140◦ E, (c) 80◦ N, 80◦ E and (d) 84◦ N, 50◦ W. Dashed lines show the AMSR (black), DMSP (gray) and CESM2 JRA-55 (red)
earliest snowmelt estimation dates (ESE) as well as the early melt onset date (light blue), the continuous melt onset date (dark blue), the
CESM2 JRA-55 snowmelt melt onset date (brown) and the the CESM2 JRA-55 surface temperature melt onset date (pink).

Figure 8. Normalized snowmelt in 2003 prior to the (a) early melt onset date and (b) continuous melt onset date at each grid cell. Spatial
mean values are listed below each panel.

tinuous melt onset dates occur after substantial loss of sim-
ulated snow and sea ice (Figs. 3 and 4). Using normalized
snowmelt analysis in the model, we find that approximately
one half of the snow melts before early melt onset is de-
tected and approximately three quarters melts by the time

continuous melt onset is detected (Fig. 8). While these val-
ues may be affected by model biases, they provide useful
quantitative insights that were previously impossible to quan-
tify. Hence, normalized snowmelt analysis demonstrates the
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power of direct, process-oriented comparisons between mod-
els and satellite observations.

To conclude, using a satellite simulator that provides
brightness temperatures from model output allows us to
perform the most direct assessment of simulated onset of
snowmelt against satellite observations to date, as well as to
provide physical insights into the meaning of various melt
onset-related dates. By doing so, we overcame several previ-
ous limitations on model-satellite comparisons, opening the
door for more robust and physically relevant model assess-
ments in the future. To enable such comparisons in future cli-
mate simulations, daily temperature and salinity profile infor-
mation as well as daily snowmelt and first year ice fractions
should be saved. However, even without this output needed to
run ARC3O, simulated daily snowmelt can be used to com-
pare models against the earliest snowmelt estimation dates
from satellite brightness temperatures.

Code and data availability. Documentation and installation guide-
lines for ARC3O are publicly available at https://arc3o.readthedocs.
io/en/latest/ (Burgard, 2020). AMSR and DMSP data are publicly
available at https://doi.org/10.5067/AMSR-E/AE_SI25.003 (Cav-
alieri et al., 2014) and https://doi.org/10.5067/QU2UYQ6T0B3P
(Meier et al., 2019). Earliest snowmelt estimation dates and
code adapted and created for this work have been published at
https://doi.org/10.5281/zenodo.6559861 (Smith et al., 2022).
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Supplementary Material

Figure S1. Average pan-Arctic melt onset dates north of 66 �N from 1979-2014. The year utilized for this analysis, 2003, is circled in red.
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Figure S2. Brightness temperatures on June 1, 2003 using (a) DMSP (b) AMSR (c) CESM JRA-55 and (d) CESM2 JRA-55 with 0.968

correction as in Burgard et al. (2020a, b) and (e) CESM2 JRA-55 with 0.92 correction applied only to areas of multi-year ice.
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Figure S3. CESM JRA-55 snow on sea ice depth on 1 June, 2003 (m).
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AMSR
DMSP
CESM2

Figure S4. Areal distributions of brightness temperatures (K) over 66-84.5 �N from AMSR (black), DMSP (grey) and CESM2 JRA-55 (red)

shown on on 1 May, 2003, near the timing of the earliest melt estimation dates show in Fig. 7.
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