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Equivariant Homology of Representation Spheres for the Nonabelian Group of Order 21

Thesis directed by Dr. Agnès Beaudry

We present two methods for computing Mackey functor-valued Bredon homology, one using

an explicit equivariant cell structure and another using an isotropy separation sequence. For the

non-abelian group of order 21, we identify a representation sphere whose associated homology

computation does not simplify to previously known computations regarding finite cyclic groups.

The explicit cell structure for this representation sphere is given, and the homology is computed in

full using an isotropy separation sequence.
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Chapter 1

Introduction

1.1 History of the problem

Given the success of cohomology in the field of algebraic topology, it makes sense that we

would want an analogue for spaces that have a group action. One such equivariant cohomology

theory was introduced by Bredon [Bre67] and Illman [Ill75], and this theory is now called Bredon

cohomology. Like nonequivariant cohomology, Bredon cohomology is “stable” in the sense that

suspension by spheres Sn with a trivial group action yields the usual shift in degree. In 1981, Lewis,

May, and McClure [LMM81] extended Bredon cohomology so that suspension by representation

spheres of a group G would also produce an appropriate shift in degree. This extended cohomology

theory is known as RO(G)-graded cohomology, though some sources may use the term “Bredon

homology” to describe the RO(G)-graded case as well. A more detailed history of the developments

mentioned above can be found in the introduction of the book by Costenoble and Waner [CW16].

RO(G)-graded cohomology has many advantages over its predecessors, and was used in the

landmark result resolving the Kervaire invariant problem [HHR16]. Despite its power, one signifi-

cant drawback is that it is not easy to compute, and as a result, the bank of known computations

is small. For example, results about the cohomology of C2n were used in [HHR16], and the au-

thors had to compute those results therein. At a talk in 2017, May [May17] mentioned that the

RO(G)-graded homology of a point had not yet been computed for any non-abelian groups. Kriz

and Lu [KL20] followed up by performing those computations for the permutation group Σ3. Since
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then, the bank of computations has grown to include finite abelian groups (C2)
n [HK17] and Cpn

[HHR17], dihedral groups D2p [KL20, Zou18] and D8 [Zhu18], symmetric group Σ4 [Zhu18], and

quaternion group Q8 [Lu21]. The goal of this thesis is to provide the equivariant homology of a

point for the nonabelian group of order 21.

Remark: During the writing of this thesis, work by Angeltveit [Ang22] computing the equivariant

cohomology for semidirect products Cp ⋊ Cq was made public. Though Angeltveit’s work does

subsume the final result of this thesis, we will establish the independence of the results in this

thesis and discuss differences in methods used in Section 1.3.

1.2 Document structure and summary of results

Since RO(G)-graded homology involves knowledge about the group G and its real represen-

tation spheres, Chapter 2 gives classical background on real representation theory and the ring

RO(G).

Chapter 3 introduces Bredon homology. The presentation here is partly inspired by Hill’s

Handbook chapter [Hil20] and gives background on G-spaces, G-CW complexes, and representation

spheres. Since equivariant homology uses the language of Mackey functors and coefficient systems

instead of abelian groups, we define those here as well. A definition of Bredon homology using

coefficient systems, drawn from [Wil75], is provided. This definition is then shown to be consistent

with the Mackey functor-valued homology discussed in Section 3.3 of [HHR16]. We provide a

detailed description of this equivalence in the proof of lemma 3.4.1. This lemma, shown below,

gives an explicit chain complex for computing Bredon homology.

Lemma 3.4.1. The Bredon homology of X evaluated at G/K using constant Z coefficients,

denoted HZ•(X)(G/K) is the homology of the chain complex

· · · −→ Z{Tn}K
en−−→ Z{Tn−1}K −→ · · ·

where the differential en is the map of the same name described in Section 3.3, extended linearly

to free abelian groups.
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Then Chapters 4 and 5 apply the information in the previous two chapters to a specific

group of interest G21, the non-abelian group of order 21. We discuss the group structure and

representation theory of this group, as well its group homology. Since we will be interested in certain

representation spheres of G21, we also give a G-CW stucture for a degree-2 representation λ and

establish the existence of a subcomplex Y inside the degree-6 representation Λ. This subcomplex

Y will play a key role in the computations of Chapter 7. The explicit G-CW structure for Λ is

reserved for Chapter 5 because its development is more involved. While creating the cell structure

for SΛ, we develop a process for converting certain CW-structures into G-CW structures. The

method subdivides cells to create proper G-CW cells, like in the picture below.

0

σ

τσ

τ2σ

a1 := σ + τσ + τ2σ

The method of subdivision applies to more general settings as well, so several examples of how it

can be used in the context of different group representations are also provided.

Chapters 6 and 7 cover the computation of the homology of the 6-dimensional representation

sphere SΛ. Chapter 6 is concerned with parts of the computation that can be reduced to previously

known computations. Using the fact that HZn(X)(G/H) ∼= HZn(i
∗
HX)(H/H) from Lemma 3.4.3,

we restrict our attention from G21 to its proper subgroups, which are finite cyclic groups. Detailed

computations for each proper subgroup are provided, and the outcome is consistent with known

results about finite cyclic groups. Next, Chapter 7 presents the rest of the computation relating to

G21 itself. Drawing from Section 17.2.4 of [Hil20], we use an isotropy separation sequence to isolate
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the contributions of cells in SΛ that have trivial isotropy from those that have nontrivial isotropy.

The contributions of free cells of SΛ are found using the key observation that HZG
n (EG+ ∧ SΛ) ∼=

Hn−6(G21,Z). The contributions of non-free cells are computed using the subcomplex Y discussed

in Chapter 4. The results of Chapters 6 and 7 combine to produce the homology of SΛ, which we

state here.

Theorem. Let G21 be the non-abelian group of order 21 and Λ the irreducible degree-6 represen-

tation of G21. Then the Mackey functor-valued integer-graded Bredon homology of SΛ is

HZ6(S
Λ) HZ4(S

Λ) HZ2(S
Λ) HZ0(S

Λ)

Z Z/3 Z/3 Z/7

Z Z/7 Z/7 Z/7

Z Z/3 Z/3 0

Z 0 0 0

1

1

0

1

0

1

1

0

1

3

0

0

0

0

0

3

1

7

0

1

0

1

0

0

7

3

0

0

0

0

0

0

and HZn(S
Λ) = 0 for any n ̸= 0, 2, 4, 6.

Remark: Parts of the Mackey functor corresponding to the subgroups which are conjugate to C3

have been suppressed for succinctness.

1.3 Comparisons with other work

During the production of this thesis, both Angeltveit [Ang22] and Liu [Liu21] released works

that are related to the topics of this thesis. We now compare each of these works with the contents

of this document.

The most significant overlap between this thesis and the Angeltveit document is the com-

putation of HZn(S
V ) when V is an irreducible real representation of the non-abelian group of
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order 21. Angeltveit’s method uses the algebraic structure of cohomological Mackey functors under

restriction to Sylow subgroups. Cohomological Mackey functors are ones that satisfy an additional

condition regarding the composition of its transfer and restriction maps. The Mackey functors that

form the output of Bredon homology are indeed cohomological Mackey functors, so Angeltveit’s

method can be used to recover the equivariant homology of a point for a group G by investigating

the representations of G under restriction to its Sylow subgroups. Theorem 3.1 of [Ang22] is the

precise statement of this idea. Since the Bredon homology of a point for finite cyclic groups is

known and they are precisely the Sylow subgroups of semidirect product Cp ⋊ Cq, one application

of this method is to recover the homology of a point for Cq ⋊ Cq. Example 6.6 in [Ang22] is one

such computation, and it is here that the results of this thesis overlap the most clearly.

This thesis discusses two methods for computing the homology of a point for the nonabelian

group of order 21, and both of them are different from Angeltveit’s technique. In Section 5.1 of this

document, we present an explicit G-CW cell structure for the 6-dimensional representation sphere

SΛ. In contrast, Angeltveit uses a Cq-CW structure that is compatible with the group action by

Cp but is not a cell structure for the action by G. This Cq-CW structure is sufficient because

Angeltveit is pinpointing the action of Cp on HZn(S
V )(G/Cq), and Remark 6.3 in [Ang22] points

out that it would also be possible to compute the desired homology by using an explicit G-CW cell

structure like the one given in this thesis.

The second method of computation mentioned in this thesis is isotropy separation, which is

used in Chapter 7 to computeHZG
n (S

Λ). While this method is not used in the abovementioned work

of Angeltveit, it is used in related work by Liu that discusses the homotopy of G-spectra [Liu21].

In this work, Liu examines EF+ and ẼF to find the homotopy of the G-spectrum X. The spaces

EG+ and ẼG used in the computations of Chapter 7 of this thesis are particular examples of EF+

and ẼF when the family F consists of only the identity element of G. Liu uses this splitting of

spectra to compute an explicit example involving the G-spectrum X = HZ and dihedral group D2p

in Section 6 and gives a description of how this splitting works for semi-direct products in Section
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7 without computing an explicit example.

In summary, Liu’s work gives a method for computing the homology of a point for the non-

abelian group of order 21 via isotropy separation without performing said computation, and this

thesis uses a closely-related method in Chapter 7. Angeltveit’s work produces the homology groups

of Chapter 7 via a different method that examines the structure of Mackey functors. Any of the

above overlap is unintentional and the work of this thesis was done independently. Finally, the

explicit G-CW structure and method of subdivision in Chapter 5 is not in either of the abovemen-

tioned works.



Chapter 2

Some Representation Theory

In this chapter we summarize some useful facts from representation theory. Ultimately we

will be interested in the real representations of finite groups, so this section will cover the relevant

facts for that goal. The bulk of this material is drawn from Serre’s classic text on the topic [Ser77].

Throughout this section, G will denote a finite group.

2.1 Representations over C

Definition 2.1.1. A representation of a finite group G is a group homomorphism ρ : G→ GL(V )

where V is a vector space. A representation is real or complex if the field of coefficients for V is

R or C, respectively. The degree of a representation is the dimension of vector space V .

Remark: We may sometimes take the alternative but equivalent perspective that a representation

is a vector space V together with a linear G action. For this reason, we will also refer to a

representation as simply V .

Definition 2.1.2. A representation ρ : G→ GL(V ) is irreducible if V is not zero and no proper

subspace of V is stable under G.

Example 2.1.3. Let G = Cn be the finite cyclic group of order n, and choose a generator γ. Then

λn : G→ C∗ given by γ 7→ exp(i2π/n) is a degree-1 complex representation of G. By identifying C

with R2, we can form λ′n : G→ GL(R2), which is a degree-2 real representation of G.
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Definition 2.1.4. Let H be a subgroup of G and let ρ : H → GL(V ) be a representation of H.

Let n = [G : H]. Take g1, · · · , gn to be a complete set of representatives for all cosets of H. Let

W =
⊕
i

giV , i.e. n copies of V indexed by the coset representatives. Let G act on W via

g ·
∑

givi =
∑

gjρ(hi)vi, where ggi = gjhi. (2.1)

Then the induced representation of G is

IndGH(ψ) : G→ GL(W )

where each element g ∈ G is an automorphism ofW by the group action defined in statement (2.1).

Definition 2.1.5. Let V be a finite-dimensional vector space over a field F and let ρ : G→ GL(V )

be a representation of G. The character of ρ is the function χρ : G→ F given by

χρ(g) = Tr
(
ρ(g)

)
.

In other words, the character is the composition of the representation ρ with the trace function

GL(V ) → F .

We now summarize some facts about characters below.

� If two representations have the same character, then they are isomorphic as representations.

� For complex characters of a group G, group elements that share a conjugacy class will have

the same image under χ. In other words, complex characters are class functions.

� The character of a direct sum of representations is the sum of the characters of the sum-

mands.

� The character of a tensor product of representations is the product of the characters of the

factors.

We can organize the characters of all irreducible representations of a group into a character

table. Since the number of irreducible characters over C is equal to the number of conjugacy classes
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of G ([Ser77] Sec 2.5 Thm 7) and each character is constant on conjugacy classes, the character

table is organized such that each column represents one irreducible character, and each row is one

conjugacy class of G, often designated by a single representative of that class.

Example 2.1.6. Let λ3 be the degree-1 complex representation of C3 given by mapping the gener-

ator τ 7→ exp(i2π/3). Let λ′3 be the representation mapping τ 7→ exp(i4π/3). These two represen-

tations, together with the trivial representation, are the three irreducible complex representations

of C3. They are listed in the character table below. In the first column, χ0 is the character for the

trivial representation while χ1 and χ2 are characters for λ3 and λ′3, respectively. Since C3 = ⟨τ⟩ is

abelian, every element is its own conjugacy class.

χ0 χ1 χ2

e 1 1 1

τ 1 ei2π/3 ei4π/3

τ2 1 ei4π/3 ei2π/3

Figure 2.1: Characters of irreducible complex characters of C3

Definition 2.1.7. Let R(G)+ be the monoid of characters of G, where the binary operation is

the usual function addition in C. Observe that the characters of R(G)+ can also be multiplied,

with the character of the trivial representation serving as the multiplicative identity. Then ring of

virtual characters, denoted R(G), is the ring formed by taking the group completion of R(G)+

under the addition operation.

Remark: Every element of R(G) can be formed from irreducible characters. More explicitly, let

χ1, . . . , χh be the distinct irreducible complex characters of a finite group G. Then every character

of G is a linear combination of the irreducible characters with coefficients from Z≥0.

2.2 Representations over R

Let us now consider representations over fields other than C. We stated earlier that for

complex representations of a finite group G, the number of conjugacy classes of G is equal to
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the number of irreducible representations over C. For real representations, there is an analogous

statement, but the notion of conjugacy class must be modified. We summarize the appropriate

modification below, and then discuss the specific case when our field of interest is R.

Let m be an integer such that |G| divides m. Let K be a field of characteristic zero and let

L be the field obtained by adjoining the mth roots of unity to K. Then for each automorphism φ

in the Galois group Gal(L/K), there exists a unique t ∈ (Z/mZ)∗ such that for z ∈ L,

if zm = 1, then φ(z) = zt. (2.2)

Definition 2.2.1. Let ΓK be the subgroup of (Z/mZ)∗ consisting of the elements t described

statement (2.2). Two elements g′, g ∈ G are ΓK-conjugate if there exists t ∈ ΓK such that g′ and

gt are conjugate by an element of G.

In the same way that conjugacy is an equivalence relation, ΓK-conjugacy is also an equivalence

relation on G, and we can use it to partition G accordingly. These ΓK classes will be the appropriate

analogue (over R) to replace conjugacy classes (over C).

Definition 2.2.2. Let the ring of virtual K characters, denoted RK(G), be the ring generated

by characters of representations of G over a field K of characteristic zero.

Lemma 2.2.3 (Serre 12.1 Prop 32). Let χi be the characters of the distinct irreducible representa-

tions of G over K. Then

(1) The χi form a basis of RK(G).

(2) The χi are mutually orthogonal with respect to the bilinear form

⟨χ1, χ2⟩ = (1/|G|)
∑
s∈G

χ1(s
−1)χ2(s).

Lemma 2.2.4 (Serre 12.4 Cor 1). In order that a class function f on G with values in a field K

to belong to K ⊗RK(G), it is necessary and sufficient that it be constant on the ΓK-classes of G.
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Lemma 2.2.5 (Serre 12.4 Cor 2). Let χi be the characters of the distinct irreducible representations

of G over K. Then the χi form a basis for the space of functions on G which are constant on ΓK-

classes, and their number is equal to the number of ΓK-classes.

In summary, if K is a field of characteristic zero and L/K is the field extension formed by

adjoining mth roots of unity (with |G| dividing m), then representations over L can be “collapsed”

to form representations over the ground field K. The general principle relies on the fact that some

representations over the ground field K split when a K-vector space is extended to an L-vector

space. The above-described method then reassembles the pieces to produce K-representations.

Now we apply this method to the specific case where our field of interest is R. Again let m

be an integer such that |G| divides m, and adjoin the mth roots of unity to R to obtain the field

C. We know C is a degree-2 Galois extension over R and so the Galois group Gal(C/R) must be

isomorphic to Z/2. In fact, Gal(C/R) must be generated by complex conjugation, since conjugation

is an automorphism of C that fixes R. Then the elements of (Z/mZ)∗ that satisfy statement (2.2)

are ΓR = {1,−1}. Two elements g′, g ∈ G are ΓR-conjugate if and only if g′ and g−1 are conjugate

by an element of G. In other words, the ΓR-classes of G can be formed from the conjugacy classes

of G by taking the union of the classes of g and g−1 for all g ∈ G.

Example 2.2.6. Let us examine the specific case where G is a finite cyclic group. In this case, we

can view the elements of G as roots of unity on the unit circle in C. Then any root of unity that is

purely real is a ΓR-class with only a single element, while any root of unity with nonzero imaginary

component, together with its inverse, is a ΓR-class with two elements. Thus G = Cn has (n+ 1)/2

irreducible real representations if n is odd and (n+ 2)/2 such representations if n is even.

By Lemma (2.2.5), each ΓR class will correspond to one irreducible real representation of G.

For G = Cn, the correspondence is listed below.

� The ΓR class of the identity corresponds to the degree-1 trivial representation.

� If n is even, then we have a second purely real root of unity, namely eπi = −1. The ΓR class



12

{−1} corresponds to the degree-1 sign representation given by g 7→ sign(g) where sign(g)

is the sign of the permutation representation of g ∈ G.

� The remaining ΓR classes each consist of two elements, namely exp(±i2πk/n) for k =

1, . . . , ⌊(n − 1)/2⌋. The corresponding representation for each class is the degree-2 real

representation φk that rotates R2 by an angle of 2πk/n in the counterclockwise direction.

Explicitly, if γ is our chosen generator of Cn, then

γ 7→

 cos 2πk/n − sin 2πk/n

sin 2πk/n cos 2πk/n

 .

The representations listed above generate a table of characters of real representations of Cn,

shown below in figures (2.2) and (2.3). Each column represents an irreducible real character and

each row is labelled with a representative from a ΓR-class of Cn = ⟨γ⟩.

Let j, k = 1, . . . , n−1
2

χ0 χk

1 1 2

γ 1 2 cos

(
2πk

n

)
γ2 1 2 cos

(
4πk

n

)
...

...
...

γj 1 2 cos

(
2πjk

n

)

Figure 2.2: Real characters of Cn, n odd

Let j, k = 1, . . . , n−2
2 .

χ0 χk χn/2

1 1 2 1

γ 1 2 cos

(
2πk

n

)
−1

γ2 1 2 cos

(
4πk

n

)
1

...
...

...

γj 1 2 cos

(
2πjk

n

)
(−1)j

γn/2 1 2 cos

(
2π(n/2)k

n

)
(−1)n/2

Figure 2.3: Real characters of Cn, n even

We have now established a method for finding all irreducible real characters from the set of

irreducible complex characters. We know two representations are isomorphic if and only if they

have the same character. This allows us to choose between two equivalent viewpoints - characters or
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isomorphism classes of representations. Since the latter viewpoint is more useful for the topological

applications to come, we will describe the change in perspective below and henceforth only use the

new perspective.

2.3 The ring RO(G)

The integer-graded homology theory introduced by Bredon [Bre67] and Illman [Ill75] was

“stable” in the sense that suspension by spheres with trivial action would generate a shift in degree

analogous to the suspension isomorphism for nonequivariant homology. But suspension by only

trivial spheres is highly restrictive, so Lewis, May, and McClure [LMM81] extended that homology

theory in a way that gives a suspension isomorphism for representation spheres of G as well. This

extension means that Bredon homology was no longer graded on the integers only, but on a larger

ring of representations of G. For this reason, we are interested in RO(G), the ring of orthogonal

representations. For now we establish the definition of RO(G).

Definition 2.3.1. Let V be a vector space with an inner product. A representation ρ : G→ GL(V )

is orthogonal if the image of ρ is contained in O(V ), the orthogonal group within GL(V ).

Note: For V = R with the standard inner product and a finite group G, a representation is

orthogonal when the determinant of ρ(g) is ±1 for all g ∈ G.

Definition 2.3.2. Let RO(G)+ be the monoid of real, orthogonal representations of G, where

the binary operation is the direct sum of vector spaces and the identity element is the trivial

representation. Observe that the representations in RO(G)+ also have a tensor product. Then the

ring of real, orthogonal representations, denoted RO(G), is the ring formed by taking the

group completion of RO(G)+ under the addition operation.

Remark: A typical element of RO(G) is a “virtual” representation of G written as a Z-linear

combination of irreducible representations of G. These representations are “virtual” because while

the sum of representations produces an honest representation, the difference of representations is

purely formal.
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Lemma 2.3.3. If G is a finite group, then every real representation of G is isomorphic to an

orthogonal representation.

Proof. We’ll use the “Weyl unitary trick” to define a new inner product. Let ρ : G → V be a

representation of G and let ⟨−,−⟩ be an inner product on V . Define a new inner product (−,−)

such that for v, w ∈ V ,

(v, w) :=
∑
g∈G

〈
ρ(g)v, ρ(g)w

〉
.

Note that the sum has no convergence issues because G is finite. The representation (V, ρ) is

orthogonal with respect to the new inner product since for any h ∈ G,

(
ρ(h)v, ρ(h)w

)
=
∑
g∈G

〈
ρ(gh)v, ρ(gh)w

〉
=
∑
g∈G

〈
ρ(g)v, ρ(g)w

〉
= (v, w).

Let T be the change-of-basis transformation from some orthonormal basis with respect to ⟨−,−⟩ to

a new orthonormal basis with respect to (−,−). Then T is also an isomorphism of representations

that maps (V, ρ) to an orthogonal representation.

Lemma 2.3.4. If G is a finite group, then RR(G) ∼= RO(G) as rings.

Proof. The isomorphism RO(G) → RR(G) takes each representation to its character.

Since we will only be discussing finite groups, we can see from Lemma (2.3.4) that we may

conflate the isomorphic rings RR(g) and RO(G). Our interest in representations of G is strongly

geometric, in the sense that we will want to think about spheres and disks formed from vector

spaces, flipping and turning under the action of G. For this reason, it behooves us to lean into

the geometric perspective of real vector spaces in RO(G) rather than the algebraic perspective of

characters in RR(G). So henceforth we will deal only with the ring RO(G).

Example 2.3.5. Let G = C3. The irreducible real representations of G are the trivial representa-

tion and λ3, the degree-2 representation given by rotating the real plane by 2π/3. Then a typical

element of RO(C3) is denoted a+ bλ3 for a, b ∈ Z.
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While the irreducible real characters of G form a basis for RO(G), the precise relations for

the ring RO(G) can be seen by examining the character table for the irreducible representations of

G.

Example 2.3.6. Let RO(C3) be the ring described in Example 2.3.5 and let λ3 be the represen-

tation described in Example 2.1.6 with the identification C ∼= R2. Let χ0 be the character for

the trivial representation and χ1 be the character for λ3. Then the character table below presents

the two irreducible real representations of C3 = ⟨τ⟩. The labels on the left side of the table are

representatives of the ΓR-classes of C3. Computing the pairwise products of these characters gives

χ0 χ1

e 1 2
τ 1 −1

Figure 2.4: Irreducible real characters of C3

the following results.

χ0 · χ0 = χ0

χ0 · χ1 = χ1

χ1 · χ1 = χ1 + 2χ0

Since χ0 serves as the unit of RO(C3), the first two lines are unremarkable. Thus RO(C3) ∼=

Z[λ3]/(λ32 − λ3 − 2). ⋆



Chapter 3

Background on Mackey Functors and Bredon homology

In this chapter, we will give a definition of Bredon homology that uses an explicit chain com-

plex. Before doing so, we will also discuss Mackey functors. This is because while non-equivariant

singular homology is presented as a series of abelian groups, Bredon homology is presented as a

series of Mackey functors. These definitions will form the relevant background to the computations

in Chapters 6 and 7 that produce the final result.

Throughout this chapter, G will be a finite group.

3.1 Background on G-spaces

We begin by listing some conventions. The G-spaces discussed in this document will be based

G-spaces. A space with a disjoint basepoint, denoted +, will be written as X+. The basepoint of

all other spaces will be denoted by ∗. Maps between G-spaces are assumed to be equivariant, i.e.

for a map of G-spaces f : X → Y and any g ∈ G, we must have g · f(x) = f(g · x). A G-homotopy

between maps f, g : X → Y is a (non-equivariant) homotopy F : X × I with the additional data of

a G-action where G acts trivially on I and diagonally on X × I.

For any point x in a G-space X, the stabilizer of x is some subgroup H and we say that x

has orbit type G/H. This notation is sensible because the orbit of x is isomorphic (as G-sets) to

the cosets G/H. Then rather than referring to single points in X, we will refer to the appropriate

equivariant analogue, which is the whole orbit of x. We choose one of the points in the orbit to
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represent the whole orbit, so we write G/H ×x, or G/H+ ∧x+ when we have need for a basepoint.

This notation extends to more than just points, and rather than a single point x, we can also have

disks, spheres, and more.

Having now established our conventions, we will discuss some specific G-spaces.

Definition 3.1.1. A G-space X is a G-CW-complex if it is a CW-complex with a cellular

group action of G. The n-cells of X are orbits of n-disks (as opposed to single n-disks in the

nonequivariant case) of the form G/H+ ∧Dn
+ where H is a subgroup of G. The n-skeleton of X

is defined iteratively: the 0-skeleton X(0) is a finite G-set, and the n-skeleton is formed from the

(n− 1)-skeleton by attaching cells G/H+ ∧Dn
+ along its boundary G/H+ ∧ Sn−1

+ .

Definition 3.1.2. A representation sphere for a representation ρ : G→ GL(V ) is the G-space

formed by taking the one-point compactification of V .

Remark: Notice that when a real representation V undergoes one-point compactification, rays

from the origin become semicircles connecting the poles of SV . For this reason we will use the

same notation to denote a ray from the origin in V , the unit vector contained in that ray, and the

semicircle formed from that ray. In addition, we will use the convention of naming cells of G-CW

structures by listing 1-cells inside square brackets. More precisely, for linearly independent vectors

v1, . . . , vn ∈ Rm, let [v1, . . . , vn] denote the n-dimensional subset of Rnm consisting of non-negative

linear combinations of v1, . . . , vn. The following Example 3.1.3 will demonstrate these conventions.

Example 3.1.3. Let G = C3 and let λ be the 2-dimensional real representation where the generator

τ ∈ G rotates R2 by an angle of 2π/3 counterclockwise. Then its representation sphere Sλ is S2

with rotation by 1/3 as shown in the figure below. This G-CW structure of Sλ consists of

� two fixed 0-cells: G/G+ ∧ 0+ and G/G+ ∧∞+

� a single 1-cell: G/e+ ∧ [e]+

� a single 2-cell: G/e+∧ [e, τ ]+, where [e, τ ] is the 2-dimensional panel between the 1-cells [e]

and [τ ]
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e

τ

τ2

0

∞

rotate by action of τ
−−−−−−−−−−−−−−−−−−→

τ2

e

τ

0

∞

⋆

Remark: The G-CW structure in Example 3.1.3 can be generalized for any finite cyclic group Ck.

Let λ be the 2-dimensional real representation of Ck where the generator τ ∈ Ck rotates R2 by an

angle of 2π/k. Then R2can be divided into k radial sectors, and the resulting representation sphere

Sλ will have a cell structure looks like a “beach ball” with k panels. The action of the group will

rotate the beach ball. Again there will be two fixed 0-cells, a single 1-cell with orbit type Ck/e,

and a single 2-cell with orbit type Ck/e.

Now we discuss how representation spheres are affected by combining representations via

direct sum. Let V,W be two representations of G. Then the representation sphere for V ⊕W is

G-homotopy equivalent to the smash product SV ∧ SW . If SV and SW have G-CW structures, it

is sometimes straightforward to obtain a cell structure on SV ∧ SW . The following is an example

is one such case.

Example 3.1.4. Let G = C2 and let σ be the sign representation. Then the generator γ of C2

acts on Sσ via reflection, swapping the two halves of the circle.

∞

0

e γ

Sσ

by action of γ
−−−−−−−−−−−−−→

∞

0

γ e

γ · Sσ



19

One possible G-CW structure of Sσ consists of

� one fixed 0-cell plus a basepoint at ∞: G/G+ ∧ 0+

� a single 1-cell: G/e+ ∧ [e]+

Then the representation 2σ = σ ⊕ σ has representation sphere S2σ, drawn below.

∞

0

e γ

∞

0

ê γ̂

Sσ Sσ

smash!−−−−−−−→

S2σ

ê

γ̂

e

γ

0

∞

One possible G-CW structure of S2σ consists of

� one fixed 0-cell plus a basepoint at ∞: G/G+ ∧ 0+

� two 1-cells: G/e+ ∧ [e]+, one drawn in orange and the other in blue

� two 2-cells: G/e+ ∧ [e, γ̂]+ and G/e+ ∧ [e, ê]+ ⋆

The previous example was tractable because the spheres had sufficiently low dimension that

we could rely on drawings and geometric intuition. But in general, when given G-CW structures

on representation spheres, it may not be an easy task to produce a G-CW structure on the smash

product of representation spheres. There may be convenient results in very particular cases. To see

method for producing cell structures on representation spheres that capitalizes on the tidy structure

of Cpn , see the discussion of representation spheres in the introduction of [HHR17].
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3.2 Background on Mackey functors

In this section, we give background on Mackey functors. The reason for this is that while

(nonequivariant) singular homology produces a series of abelian groups, the equivariant case uses

multiple abelian groups to keep track of infomation for both the acting group and also all of its

subgroups. For this reason, the Bredon homology we compute later will produce a diagram of

abelian groups rather than just a single abelian group.

The following definition of a Mackey functor is drawn from the one given in [Dre73].

Definition 3.2.1. A Mackey functor M is a pair of functors M = (M∗,M
∗) from the category

of finite G-sets to the category of abelian groups with the following properties:

(a) M∗ is covariant and M∗ is contravariant.

(b) M∗ and M∗ take disjoint unions of G-sets to direct sums of abelian groups.

(c) M∗ and M∗ agree on objects. In other words, for any finite G-set A, M∗(A) =M∗(A).

(d) M takes any pullback diagram

A B

X Y

α

γ β

δ

to the commutative square

M(A) M(B)

M(X) M(Y )

α∗

δ∗

γ∗ β∗

where the covariant maps are produced by M∗ and the contravariant ones by M∗.

The covariant maps produced by M are called transfer maps while the contravariant ones are

restriction maps.
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Remark: In this document, Mackey functors will be underlined. When a Mackey functor M is

evaluated on a G-set B, we will write M(B). If the G-set happens to be a single orbit G/H, then

we may write M(G/H). In some specific places where the notation is particular cumbersome, we

may also write MH to mean evaluation of M at G/H, and this peculiarity will be mentioned when

it arises.

Because Mackey functors satisfy property (b), and G-sets are disjoint unions of orbits of the

form G/H for various subgroups H, we may define Mackey functors by discussing their behavior

on single orbits G/H rather than more general G-sets. For this reason, when describing a Mackey

functor, it will suffice to describe the behavior of the functor on the orbit category, a subcategory

of the category of finite G-sets.

Definition 3.2.2. Let G be a finite group. The orbit category OG is the category whose objects

are the G-sets G/H for each subgroup H in G, and whose morphisms are equivariant maps between

these G-sets.

Remark: For subgroups K,H of G, there exists a map from G/K to G/H in the orbit category

if and only if K is subconjugate to H. To see this, suppose that there exists an equivariant map

f : G/K → G/H such that f(eK) = gH. Then for any k ∈ K, we also have

gH = f(eK) = f(kK) = kf(K) = kgH

Since for any k we have gH = kgH, we know g−1Kg ⊆ H. For the converse, suppose g−1Kg ⊆ H

and take aK ∈ G/K. Then the map given by aK 7→ agH is indeed an equivariant map G/K →

G/H.

The orbit category describes every possible orbit type that can arise from a G-action for a

particular group, as well as every restriction and transfer that can arise between G-sets consisting

of a single orbit. Larger G-sets consisting of multiple orbits can be formed via disjoint union. Since

restricting a Mackey functor to G-sets of the form G/H is sufficient, it is common to visualize a

Mackey functor as a structure that resembles a subgroup lattice. This structure is called a Lewis
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diagram, after those seen in [Lew88]. In the examples below, we will draw Mackey functors as

Lewis diagrams.

Definition 3.2.3. The constant Mackey functor, denoted Z is given by

Z(G/H) := homG(G/H,Z) ∼= Z.

For a given map of G-sets α : G/H → G/K, the restriction res : Z(G/H) → Z(G/K) is given by

precomposition with α while the transfer tr : Z(G/K) → Z(G/H) is given by the fibers of each

coset of K. Thus for single orbits G/K and G/H, the restriction and transfer are the identity and

multiplication by |K : H|, as shown below.

homG(G/K,Z) ∼= Z

homG(G/H,Z) ∼= Z

1 |K:H|

Example 3.2.4. Let G be the cyclic group of order p. The orbit category for G is shown on the

left. The map q is the quotient map, and every element of G gives an endomorphism on G/e via

left multiplication. For simplicity, only one such map (labelled g) is shown. The Mackey functor Z

applied to the orbit category is shown on the right. The restriction and transfer arising from q are

the identity and multiplication by p, respectively. Note that both the restriction and the transfer

arising from left multiplication by g ∈ G are the identity, so there is only one map from Z(G/e) to

itself.

G/G

G/e

Orbit category of Cp

q

g

apply Z−−−−−→

Z(G/G) ∼= Z

Z(G/e) ∼= Z

Constant Mackey functor Z for Cp

1 p

1
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Example 3.2.5. Let G21 be C7⋊C3, the nonabelian group of order 21. (See Chapter 4 for a closer

look at this group). A partial orbit category for G21 is shown on the left, and the constant Mackey

functor Z for this group is shown on the right.

G21/e

G21/G21

G21/C7

G21/C3

apply Z−−−−−→

Z

Z

Z

Z

1

3

1

7

1

7

1

3

Definition 3.2.6. Let B be a finite G-set. The permutation Mackey functor, denoted Z{B},

is given by

Z{B}(G/H) := homG(G/H,Z{B}).

The restriction maps are given by precomposition, while the transfer maps are given by summing

over the fibers.

Remark: Notice that if B is the one-point G-set G/G, then Z{G/G} ∼= Z. Thus the constant

Mackey functor is a particular case of the more general permutation Mackey functor.

Lastly, we record two definitions and a lemma that will be useful later.

Definition 3.2.7. A (covariant) coefficient system M for a group G is a functor from the orbit

category OG to the category of abelian groups.

Remark: A Mackey functor can be thought of as two coefficient systems, one covariant and one

contravariant, satisfying some additional conditions. Because of this close relationship between the

two, we will use underlined symbols to denote both Mackey functors and coefficient systems, and

we will be more specific if there is ambiguity.
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Definition 3.2.8. A Mackey functor M is cohomological if evaluating M on the map of G-sets

G/K
f−→ G/H produces restriction and transfer maps f∗ and f∗ that satisfy

f∗ ◦ f∗ = |K : H|

In other words, the composition is multiplication by the index of K in H.

Lemma 3.2.9. Any subfunctor of a cohomological Mackey functor is cohomological. Any quotient

of a cohomological Mackey functor is cohomological in the sense that given the following short exact

sequence of Mackey functors

M M ′ M ′/M

A A′ A′/A

B B′ B′/B

res tr res tr res′ tr′

where M ′ is cohomological, we know M ′/M is also cohomological.

Proof. The morphisms of a subfunctor are unchanged except that the domains are restricted. For

quotients, the composition tr′ ◦ res′ is determined by the effect of tr ◦ res on any choice of coset

representative, so the composition tr′ ◦ res′ is also multiplication by the index.

3.3 Background on Bredon homology

In Chapter 1, we mentioned that Bredon homology is an equivariant homology theory that

has many of the desirable qualities of a homology theory, but is difficult to compute. For one,

the dimension axiom only guarantees that the integer-graded part of the equivariant homology of

a point is zero, while the homology is often nontrivial on non-integer parts of the larger ring of

(virtual) representations RO(G).

Despite the fact that RO(G)-graded homology is difficult to compute, it does have prop-

erties that ease the diffiulties. Since RO(G)-graded homology has a suspension isomorphism for
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representation spheres, we know

HG
V (G/H+) ∼= HG

V⊕W (SW ∧G/H+).

This means we can find the homology of a point by investigating the homology of representa-

tion spheres instead. This approach will make use of the G-CW cell structures of representation

spheres discussed earlier. This perspective has the advantage of closely mirroring the perspective

of nonequivariant cellular homology. Drawing from [Wil73] and [Wil75], we will convert G-CW

structures into chain complexes of coefficient systems. We will then show that when the coefficient

system can be extended to a Mackey functor, this definition is consistent with the Mackey functor

version seen in [HHR16].

There are other compatible definitions of Bredon homology as well. To see a presentation

using G-spectra, see [HHR16]. To see a presentation in the language of categories that is ultimately

equivalent to the cellular perspective we are about to present, see [May96].

Now let us establish some notation and definitions that will be used to build a chain complex

for computing Bredon homology. Let X be a G-CW complex and let its n-skeleton be denoted

Xn. Since the n-cells of X are n-disks of the form G/H+ ∧Dn
+ (see Definition 3.1.1), the quotient

Xn/Xn−1 is a wedge of n-spheres. Let Tn be a discrete G-set that indexes the n-cells of X such

that Xn/Xn−1 ∼= (Tn)+ ∧ Sn.

Definition 3.3.1. The cellular n-chains coefficient system of a G-CW complex X of finite

type, denoted Ccell
n (X), is a (contravariant) coefficient system whose value at G/K is given by

Ccell
n (X)(G/K) := Hn

(
(Xn)K , (Xn−1)K ,Z

)
.

Since Xn/Xn−1 ∼= (Tn)+ ∧ Sn, ultimately Ccell
n (X) evaluated at G/K is the free abelian group

on (Tn)
K
+ . Given a map G/K → G/L in the orbit category, the corresponding map is the one

described in the remark following definition 3.2.2

The pairs
(
(Xn−2)K , (Xn−1)K

)
and

(
(Xn−1)K , (Xn)K

)
have their respective long exact se-

quences in homology. The two long exact sequences can be patched together at Hn−1

(
(Xn−1)K

)
,
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as shown in the diagram below.

Hn

(
(Xn)K , (Xn−1)K

)
Hn−1

(
(Xn−1)K

)
Hn−1

(
(Xn)K

)
Hn−1

(
(Xn−2)K

)

Hn−1

(
(Xn−1)K , (Xn−2)K

)

δ∗

j∗

Let dn : Ccell
n (X)(G/K) → Ccell

n−1(X)(G/K) be the composition j∗ ◦ δ∗, and consider the rela-

tive homology groups that form the domain and codomain of this map. We have the following

equivalences:

Hn

(
(Xn)K , (Xn−1)K

) ∼= H̃n

(
(Tn)

K
+ ∧ Sn; Z

)
∼= H̃0

(
(Tn)

K
+ ; Z

)
∼= Z

[
TK
n

]
∼= Z

{
FinG(G/K, Tn)

}
,

where the last line denotes the free abelian group on the set FinG(G/K, Tn), and FinG(G/K, Tn)

denotes the morphisms from G/K to Tn in the category of finite G-sets. Notice that as the input

of FinG(−, Tn) varies over OG, the maps dn form a natural transformation between the following

two coefficient systems.

dn : Z
{
FinG(−, Tn)

}
→ Z

{
FinG(−, Tn−1)

}
In particular, when the input is Tn itself, we have

dn : Z
{
FinG(Tn, Tn)

}
→ Z

{
FinG(Tn, Tn−1)

}
Let the image of the identity map on Tn be denoted en. Since en is an element of the free abelian

group Z
{
FinG(Tn, Tn−1)

}
, it is of the form en =

∑
aff where the maps f are in FinG(Tn, Tn−1).

DefineN(en) to meanN(en) :=
∑
afN(f). With these definitions in hand, we are ready to describe

the chain complex that ultimately computes Bredon homology.
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Definition 3.3.2. Let N be a covariant coefficient system. Then the cellular chain complex

CG
• (X) for a G-space X with coefficients in N is the chain complex

· · · −→ N(Tn)
N(en)−−−−→ N(Tn−1) −→ · · ·

Remark: In the next three definitions, the superscripts are used to indicate that HK
• (X;N)

the result of evaluating a coefficient system at G/K. It is equivalent to the clunkier notation

H•(X;N)(G/K).

Definition 3.3.3. The Bredon homology of X with coefficients in N , denoted HG
• (X;N) is the

homology of the cellular chain complex CG
• (X)

This completes the definition of Bredon homology when evaluated at G/G. We now extend

this definition to the case of evaluation at G/K for a subgroup K, and then provide the maps that

link the groups together into a coefficient system.

Definition 3.3.4. Let K be a subgroup of G. The Bredon homology of X evaluated at G/K,

denoted HK
• (X;N), is the homology of the chain complex

· · · −→ N(G/K × Tn)
N(id×en)−−−−−−−→ N(G/K × Tn−1) −→ · · ·

where the differential N(id× en) is given by

N(id× en) :=
∑

afN(idG/K × f)

Given a map of G-sets q : G/L→ G/K, we also have the map of spaces q× idX : G/L×X →

G/K × X, which induces a map on homology HL
• (X;N) → HK

• (X;N). The groups and maps

assemble to form the coefficient system HN•(X).

Definition 3.3.5. The coefficient system-valued Bredon homology of X with coefficients in

N , denoted HN•(X), is a coefficient system that takes G/K to

HN•(X)(G/K) := HK
• (X;N)

and takes the map G/L→ G/K to the map on homology induced by q×idX : G/L×X → G/K×X.
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This completes the definition of integer-graded, coefficient system-valued Bredon homology.

As mentioned in the introduction, there is value in extending the grading from Z to the ring of

virtual representations RO(G), and we can find the relevant theorem that describes when it is

possible to do so as Theorem 5.2 in [May96].

Theorem 3.3.6 (Lewis–May–McClure [May96]). Let G be a compact Lie group and let M and

N be contravariant and covariant coefficient systems. The ordinary cohomology theory H̃∗
G(−;M)

extends to an RO(G)-graded cohomology theory if and only if M extends to a Mackey functor. The

ordinary homology theory H̃G
∗ (−;N) extends to an RO(G)-graded homology theory if and only if N

extends to a coMackey functor.

The constant Z coefficients used in the remainder of this document do indeed extend to a

Mackey functor, which means that suspension by representation spheres is sensible. Thus we can

compute the RO(G)-graded homology of a point by investigating the homology of representation

spheres instead. This is the main focus of the rest of this document.

3.4 Bredon homology with constant Z coefficients

For constant Z coefficients, the above chain complex has an alternate presentation. In this

section we’ll show that when N = Z, the groups N(G/K×Tn) in the chain complex for computing

Bredon homology becomes Z{Tn}K , the K-fixed points of the free abelian group on Tn. We’ll also

compute an example.

Lemma 3.4.1. The Bredon homology of X evaluated at G/K using constant Z coefficients, denoted

HZ•(X)(G/K) is the homology of the chain complex

· · · −→ Z{Tn}K
en−−→ Z{Tn−1}K −→ · · ·

where the differential en is the map of the same name described in Section 3.3, extended linearly to

free abelian groups.
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Proof. Beginning with the definition of Bredon homology in Definition 3.3.4, we have the following

isomorphisms.

Cn(X;Z)(G/K) := Z(G/K × Tn)

∼= homG(G/K × Tn,Z)

∼= homG(G/K, hom(Tn,Z)) (3.1)

∼= homG(G/K,Z{Tn}) (3.2)

∼= Z{Tn}K (3.3)

The isomorphism in line 3.1 is given by assigning φ(s, t) ∈ homG(G/K × Tn,Z) to φ̃ : G/K →

hom(Tn,Z) such that for gK ∈ G/K, we have φ̃(gK)(t) = φ(gK, t). Line 3.2 holds because a

(nonequivariant) set map σ : Tn → Z gives an element of Z{Tn} via
∑

t∈Tn
σ(t) · t. Lastly, the

isomorphism in line 3.3 is given by assigning ψ : G/K → Z{Tn} to ψ(eK), the image of the identity

coset, which is indeed a K-fixed point in Z{Tn}.

Remark: The form of Bredon homology given in Lemma 3.4.1 is consistent with the definition

of Bredon homology found in [HHR16]. This can be seen most clearly in Section 3.3, where the

authors discuss the special case of the constant Z Mackey functor.

Remark: Bredon homology produces cohomological Mackey functors, and in the case of Z coef-

ficients, we can see that this is true because of Lemma 3.2.9. The Mackey functors of the chain

complex are given by Z so they are cohomological. Then passing to homology involves taking

subgroups and quotients so the output Mackey functor is also cohomological.

We use Lemma 3.4.1 to compute an example of Bredon homology using constant Z coefficients.

Example 3.4.2. Let G = C3 and let X be the representation sphere Sλ with G-CW structure

given in Example 3.1.3. In this cell structure, the G-sets Tn are empty except in dimensions 0, 1,

and 2, and they are

T0 ∼= G/G+
∼= {0,∞} T1 ∼= G/e ∼= {e, τ, τ2} T2 ∼= G/e ∼= {e, τ, τ2}
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Apply Lemma 3.4.1 to obtain a chain complex. Since the subgroups of G are only itself and

the trivial subgroup, its orbit category has two “levels”, which will be apparent in the chain

complex below. Note that the bottom level is the chain complex for the non-equivariant sphere

S2 while the top level is the C3-fixed points of the bottom level. The diagonal map ∆ is given

by e + τ + τ2 → e + τ + τ2, while the fold map ∇ takes generators e, τ, τ2 to e + τ + τ2. The

augmentation map ε maps each generator to 1.

Z[e, τ, τ2]

Z[e+ τ + τ2]

Z[e, τ, τ2]

Z[e+ τ + τ2]

Z[0,∞]

Z[0,∞]

Z

Z

n = 2 n = 1 n = 0

∆ ∇ ∆ ∇ 1 1

τ − e ∞− 0 ε

τ − e ∞− 0 ε

Then we pass to homology to produce the final result HZn(X;Z) for n ∈ Z. The maps in the final

result are the induced maps on homology arising from the restrictions and transfers of the chain

complex. Multiplication-by-zero maps have been suppressed.

Z

Z

0

0

0

Z/3

HZ2(X) HZ1(X) HZ0(X)

1 3

Finally, we record a fact about Bredon homology that will be useful in Chapter 6. This

lemma will allow us to evaluate HZ on proper subgroups more easily.

Lemma 3.4.3. Let X be a G-space. Then

HZn(X)(G/H) ∼= HZn(i
∗
HX)(H/H)

where HZ on the left is a G-spectrum while HZ on the right is the H-spectrum i∗HHZ.
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Proof. HZH
n (X) ∼= [Sn, HZ ∧ X ∧ G/H+]

G ∼= [G/H+ ∧ Sn, HZ ∧ X]G ∼= [Sn, i∗H(HZ ∧ X)]H ∼=

HZH
n (i∗HX)

In Chapter 1 we mentioned that the RO(G)-graded homology of a point for a generic group

was unknown and often difficult to compute. Yet we were able to compute homology groups in

Example 3.4.2 fairly easily. This is because the example happens to be highly tractable - the

group in question has an uncomplicated orbit category, the representation sphere that we looked

at was low-dimensional, and the G-CW structure was small. For cases where our representation

spheres have higher dimensions or our groups have other complications, the chain complex given

in Definition 3.4.1 will be more difficult to obtain. We will need to leverage other methods when

our spheres and groups become large and burdensome. This will be addressed in Chapter 7 when

the issue arises.



Chapter 4

About the group C7 ⋊ C3

In this chapter we will introduce the family of nonabelian groups of order pq for primes p

and q. Then we will restrict our attention to the group of order 21 and record several useful facts

about this particular group, including its ring of real representations and its group homology.

4.1 Nonabelian groups of order pq

Let p, q both be primes, with p > q and p ≡ 1 (mod q). Let Cn be the cyclic group of order

n and let the binary operation of Cn be written as multiplication. Then there is one nonabelian

group of order pq up to isomorphism, and it is Cp ⋊ Cq.

More explicitly, let τ and σ be generators of Cq and Cp, respectively. Then the elements of

Cp ⋊ Cq are of the form σsτ t and multiplication is subject to the relation τ−1στ = σk where σk is

a fixed nonidentity element of Cp satisfying kq ≡ 1 (mod q). If there is more than one value of k

satisfying kq ≡ 1 (mod q), we may choose any of them and the resulting group = Cp ⋊ Cq will be

unique, up to isomorphism.

The nonabelian group of order pq has p + 3 subgroups. There is one subgroup isomorphic

to Cp, and this subgroup is normal. There are p nontrivial, non-normal subgroups isomorphic

to Cq, and they are conjugate to each other. Below is a subgroup diagram for Cp ⋊ Cq and the

corresponding orbit category. Since there are p subgroups isomorphic to Cq, all but one of them is

suppressed for simplicity.
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{e}

G = Cp ⋊ Cq

Cp = ⟨σ⟩

Cq = ⟨τ⟩ ⟨τ⟩σ · · · ⟨τ⟩σp−1

G/e

G/G

G/Cp

G/Cq

Figure 4.1: On the left, the subgroup lattice of Cp⋊Cq. On the right, the orbit category of Cp⋊Cq

with conjugate G/Cq suppressed

4.2 Irreducible representations of the nonabelian group of order 21

We now restrict our attention to the case where p = 7 and q = 3, and let G21 denote this

nonabelian group of order 21. We choose the following presentation: let σ and τ be the generators

of C7 and C3, respectively, and let τσ = σ2τ .

Since the subgroups of G21 are finite cyclic groups, we may use the method of “little groups”

as described in [Ser77] Section 8.2. Applying this construction to G21 produces five irreducible

complex representations. There are two degree-1 representations given by composing the projection

G21 → C3 with the two nontrivial complex representations of C3 (see Example 2.1.6). There are also

two degree-3 representations given by inducing (see Definition 2.1.4) two degree-1 representations

of C7, namely σ 7→ exp(i2π/7) and σ 7→ exp(i2π3/7). And finally there is the trivial representation.

The characters of these five complex representations are given below
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χ0 χ1 χ2 χ3 χ4

1 1 1 1 3 3

σ 1 exp(i2π/3) exp(i4π/3) 0 0

σ3 1 exp(i4π/3) exp(i2π/3) 0 0

τ 1 1 1 1
2(−1− i

√
7) 1

2(−1 + i
√
7)

τ2 1 1 1 1
2(−1 + i

√
7) 1

2(−1− i
√
7)

Ultimately we will be interested in the ring RO(G21), so if we observe that the ΓR-class of

G21 partition the group into the sets {e}, {σi}i∈Z/7, and {τσi, τ2σi}i∈Z/7, then by Lemma (2.2.5)

we must have three irreducible real representations of G.

Here is the character table for the three real irreducible representations of G21. The elements

on the left side of the table are representatives of their respective conjugacy classes, the three

columns are characters for the trivial representation, the degree-2 representation λ, and the degree-

6 representation Λ, respectively.

χ0 χλ χΛ

e 1 2 6

σ 1 2 −1

τσ 1 −1 0

Figure 4.2: Real character table for C7⋊C3. The three columns are characters for the trivial repre-
sentation, the representation created via restriction, and the representation created via induction,
respectively.

Using these three irreducible representations as the basis for RO(G21), we can compute ring
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relations for RO(G21) from the character table for G21.

λ · λ = λ+ 2

Λ · Λ = 2 + 2λ+ 5Λ

λ · Λ = 2Λ

Lemma 4.2.1. The ring RO(G21) is a quotient of the free abelian group on λ and Λ by three

polynomial relations. Explicitly,

RO(G21) ∼= Z[λ,Λ]/{λ2 − λ− 2,Λ2 − 5Λ− 2λ− 2,Λλ− 2Λ}

Proof. By Lemma (2.3.4), the relations between representations in RO(G21) will be the same as

the relations between irreducible characters of G21, so the computations performed with characters

above produce a full description of RO(G21).

We finish this subsection by defining an orientable representation. This will be used in the

computations of Chapter 7

Definition 4.2.2. Let φ : G→ O(V ) be a real orthogonal representation of G. If the determinant

of φ(g) = 1 for all g in G, then we say that the representation φ is orientable.

Example 4.2.3. Let G be a group of odd order. Then every representation of G is orientable. To

see this, note that for a representation φ, the composition G→ O(n) → {±1} that maps g ∈ G to

the determinant of φ(g) is a group homomorphism. If this composition were surjective, then the

kernel must have order |G|/2. Since G is odd, we know the composition maps every element of G

to 1.

4.3 Representation spheres of G21

In section 3.3, we mentioned that suspension isomorphism for RO(G)-graded homology uses

representation spheres. Let us now consider the representation spheres for the group G21.
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Let λ and Λ be the representations of G21 whose characters are given in figure 4.2. First, the

representation λ has a representation sphere Sλ with real dimension 2. The representation λ gives

a G21-action on Sλ where the generator τ of C3 acts by rotating S2 by an angle of 2π/3 while the

generator σ of C7 acts trivially. The representation sphere Sλ and its G-CW structure can be seen

in Example 3.1.3.

Second, the representation Λ has a representation sphere SΛ with real dimension 6. Recall

that this representation was formed via the method of “little groups” described in [Ser77] Section

8.2. In this method, we used a degree-2 representation of the subgroup C7 to induce a representation

of G21. The underlying vector space of the induced representation is the direct sum of |G21 : C7| = 3

copies of R2, and G21 acts on the resulting vector space R2⊕τR2⊕τ2R2 using the action given in the

definition of an induced representation (See definition 2.1.4). Then the one-point compactification

of the induced representation produces SΛ. The sphere is the smash product of three copies S2,

and the action of G21 is given by 2.1.

It is possible to find an explicit cell structure for SΛ as well. Since Λ was formed via induction

from a degree-2 representation of C7 (call this λ7), we may be tempted to believe that we can take a

G-CW cell structure on λ7 and making an “induced cell structure” on Λ. In Example 3.1.4, we saw

that it is sometimes possible to obtain a cell structure for a smash product by taking the product

of cells. But the cell structure produced by smashing together copies of λ7 suffers some flaws. The

discussion of these flaws and methods for correcting them is the content of Chapter 5

Even though we will not give an explicit G-CW complex structure for SΛ in this section,

the sphere SΛ contains an important subcomplex, which we will describe now and use later in

Chapter 7. We will construct a subcomplex Y ⊆ SΛ that differs from SΛ by cells of the form

G+ ∧Dk
+ for some non-negative integer k. In other words, we will have a subcomplex Y such that

SΛ = Y ∪ (
⋃
G+ ∧Ddi

+ ) for disks of various dimensions di.

Let a generic point in Λ = R2 ⊕ τR2 ⊕ τ2R2 be denoted (u, v, w) where u, v, w are vectors in

R2. We let the origin (0, 0, 0) be denoted by 0, and within each copy of R2, identify the seventh
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roots of unity with seven evenly-spaced vectors in R2. These vectors are denoted with a power of

τ to indicate which copy of R2 they hail from, and then are labelled e, σ, σ2, · · ·σ6 (see drawing

below). Using the notational convention described in 3.1.2, extend each vector to the point at

infinity to form a 1-cell the begins at 0 and ends at ∞, and let this 1-cell share the name of the

vector that it contains.

Thus each copy of R2 is divided into seven equal “panels,” shown below. Let each panel be

named by the 1-cell found on its counterclockwise boundary.

R2

e

σ
σ2

· · ·
e

σ

τR2

τe

τσ
τσ2

· · ·
τe

τσ

τ2R2

τ2e

τ2σ
τ2σ2

· · ·
τ2e

τ2σ

For any subgroup H ⊆ G, we can find points with orbit type G/H by looking for points fixed

by H. The only point fixed by G21 is 0, and the same is true for the subgroup C7. On the other

hand, the subgroup C3 = ⟨τ⟩ fixes all points of the form (v, v, v), and these points form a subspace

of dimension 2 in Λ. Similarly, each conjugate subgroup ⟨σ−iτσi⟩ fixes a 2-dimensional subspace

given by (σ−iv, σ−4iv, σ−2iv) for all v ∈ R2. So the set of points of Λ that are fixed by some

subgroup of G21 (excluding the trivial subgroup that fixes every point) comprises seven 2-planes

that intersect only at 0. Taking the one-point compatification of Λ to produce the representation

sphere SΛ turns these seven planes into seven 2-spheres, all joined together at 0 and also at ∞. Let

this subspace be denoted Y . Here is one possible G-CW structure on Y that elevates it from just

a subspace to a subcomplex of SΛ.

� one fixed 0-cells and a basepoint at ∞: G/G+ ∧ (0, 0, 0)
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� a single 1-cell: G/C3+ ∧ (e, e, e), where e is the 1-cell containing (1, 0)

� a single 2-cell: G/C3+ ∧ (v, v, v)

Note that since the subcomplex Y was built from points of Λ whose stabilizer subgroup in G21 is

nontrivial, the remaining points of SΛ must be fixed by only the identity of G21, and so we know

that this subcomplex Y satisfies SΛ = Y ∪ (
⋃
G+ ∧ e+).

4.4 Group homology of G21

We will now record the group homology of G21 here. This computation will be used later in

Lemma 7.2.1 and elsewhere.

Recall that for a Serre fibration f : X → B and its fiber F , the Serre spectral sequence gives

the following relationship among the homologies of the three spaces:

E2
p,q = Hp(B,Hq(F )) ⇒ Hp+q(X).

Analogously, for a group quotient π : G → G/H and its normal subgroup H, the Lyndon-

Hochschild-Serre spectral sequence gives a relationship between the homologies of the three groups.

The statement of the spectral sequence below is quoted from [Wei94].

Lemma 4.4.1 (Weibel 6.8.2). For every normal subgroup H of a group G, there are two convergent

first quadrant spectral sequences:

E2
pq = Hp(G/H;Hq(H;A)) ⇒ Hp+q(G;A);

Epq
2 = Hp(G/H;Hq(H;A)) ⇒ Hp+q(G;A).

Remark: There is an action of G/H on the (co)homology of H that must be accounted for. We

detail the origin of this action for the homology case here. Let F• → Z → 0 be a right, free, ZG

resolution of Z. Observe that F• and A are right and left ZH-modules via restriction, respectively.

Let each g ∈ G define a map g : F• ⊗ZH A → F• ⊗ZH A given by x⊗ a 7→ xg−1 ⊗ ga. Notice that
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the map g is the identity map for all g ∈ H. Also, the map g commutes with the differentials of

F• ⊗ZH A. Combining these last two observations, g induces an action on the homology of H and

the action is trivial when g ∈ H, so we have an induced action of G/H on H•(H,A).

Let us use the homological spectral sequence to compute the group homology H∗(G21,Z).

For our group of interest, we have

E2
pq = Hp(G21/C7;Hq(C7;Z)) ⇒ Hp+q(G21;Z).

Notice that the homology groups of C7 serve as the coefficients in Hp(G21/C7;Hq(C7;Z)), so we

begin by stating Hq(C7;Z), which is a well-known result (one place it can be found is as Theorem

9.48 in [Rot09]).

Hq(C7,Z) =


Z q = 0

Z/7Z q > 0, q odd

0 otherwise

Combining the information about the homology of C7 and the action of G21/C7, we can fill in the

E2 page of the spectral sequence as follows.

...

Z/7Z 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Z Z/3Z 0 Z/3Z 0 Z/3Z · · ·

q

p

Since the nonzero entries are very sparse, the spectral sequence collapses right away and we arrive

at the group homology of G.
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Hn(G21,Z) =



Z n = 0

Z/3Z n > 0, n ≡ 1, 3 (mod 6)

Z/21Z n > 0, n ≡ 5 (mod 6)

0 otherwise



Chapter 5

Cell structure on SΛ

In this chapter, we present an explicit cell structure for the representation sphere SΛ, where

Λ is the 6-dimensional real representation of G21 whose character is given in table 4.2. The method

used for generating this explicit G-CW cell structure is also suitable for dealing with cell structures

for other representation sphere as well, so we will present more general examples at the end.

In section 4.2, we saw that the representation Λ is induced from a degree-2 representation λ7

of its subgroup C7. We might hope that a cell structure on λ would induce a corresponding cell

structure on Λ. In the non-equivariant setting, this turns out to be true. Let X be a space (not a

G-space) with a CW-cell structure composed of cells dX and attaching maps φX , and let it also be

so for space Y , dY , and φY . Then the cells of X×Y are indeed all the pairwise Cartesian products

dX × dY with attaching maps φX × φY .

This process is less simple when X and Y are G-spaces, so let us examine a complication that

arises when trying to replicate the non-equivariant case. Let λ7 denote the degree-2 representation

of C7 = ⟨σ⟩ where σ rotates R2 by 2π/7. Then using example 3.1.3 (which gives a G-CW structure

for the C3 analogue) as a model, one possible cell structure for λ7 consists of these cells.

� a fixed 0-cell plus basepoint at ∞: G/G+ ∧ 0

� a single 1-cell: G/e+ ∧ [e]

� a single 2-cell: G/e+ ∧ [e, σ], where [e, σ] is the 2-dimensional panel between the 1-cells [e]

and [σ]
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Remark: Remember, the symbol σ is somewhat abusive as it is used to denote both the unit vector

⟨cos 2πi/7, sin 2πi/7⟩ in R2 as well as the 1-cell of λ7 (or Sλ
7 ) with endpoints 0 and ∞ that contains

said unit vector. We accept this conflation because we are never interested in the unit vector itself

except to identify the ray that contains the unit vector.

Next we take inspiration from the non-equivariant case and form n-cells for Λ by taking

products of cells (one from each copy of λ) with dimension summing to n. This näıve attempt will

ultimately require corrections, and we will address those issues in Section 5.1. For now we detail

the formation of these product cells.

Let τ and σ be fixed generators of subgroups isomorphic to C3 and C7, respectively. Let the

three copies of λ that form Λ be indexed by the set {e, τ, τ2}. These copies are drawn below along

with labels that show the “seven-paneled” cell structure on λ7.

R2

e

σ
σ2

· · ·
[e, σ]

[σ, σ2]

τR2

τe

τσ
τσ2

· · ·
[τ, τσ]

[τσ, τσ2]

τ2R2

τ2e

τ2σ
τ2σ2

· · ·
[τ2, τ2σ]

[τ2σ, τ2, σ2]

Even though this drawing is the same as the one in section 4.3, the naming convention for

cells is slightly different. Here we are referring to cells of dimension 2 or greater by listing the 1-cells

that form its edges, e.g. [σ, σ2] is the 2-cell bordered by σ and σ2. We will need this expanded

notation to describe the product cells.

The cells in the product cell structure will range in dimension from 0 to 6. We will denote an

n-cell in the product cell structure by listing the cells in each of the three copies of λ7 whose product

forms that n-cell. Since λ7 only contains cells up to dimension 2 and its 2-cells are described by
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listing consecutive 1-cells, these restrictions must be respected when forming product cells. We give

examples of cells in the product cell structure to illustrate their notation.

(a) The product of the 2-cell [σ, σ2] in λ, the 1-cell [τσ3] in τλ, and the 1-cell [τ2] in τ2λ is the

4-cell [σ, σ2, τσ3, τ2] in Λ. This 4-cell is a 4-dimensional region of R6 that consists of all R≥0-

linear combinations of the four listed vectors. This region in R6 becomes a 4-cell of SΛ through

one-point compactification of R6.

(b) [σi, σi+1, τσj , τσj+1, τ2σk, τ2σk+1] for i, j, k ∈ Z/7Z denotes a six-cell in the product cell struc-

ture of SΛ. It was formed as the product of three pairs of 2-cells, one from each copy of Sλ.

As in the previous example, this cell is a region of R6 consisting of R≥0-linear combinations of

the listed vectors, and it becomes a cell of SΛ through the one-point compactification of R6. It

was formed as the product of two 2-cells from λ and τλ and one 1-cell from τ2λ.

(c) [σ, τσ3, τ2] denotes a three-cell in the product cell structure of SΛ. It was formed as the product

of 3 one-cells, one from each copy of Sλ.

(d) The following is not a cell in the product cell structure: [σ, σ2, σ3, τσ5]. There is no cell of the

form [σ, σ2, σ3] in λ because λ does not contain any three-cells.

The product cell structure on SΛ contains 73 = 343 6-cells because there are seven 2-cells in

each of the three copies of λ. The number of 5-cells in the product cell structure is (3)73 = 1029

because a 5-cell can only be formed from the product of a two 2-cells and one 1-cell, one from

each of the three copies of λ and each with seven choices. Here is a list of how many cells of each

dimension exist in the product cell structure.
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Dimension Cells

6 73 = 343

5 (3)73 = 1029

4 (3)72 + (3)73 = 1176

3 (6)72 + 73 = 637

2 (3)7 + (3)72 = 168

1 21

0 2

Under the action of G, these cells are partitioned into orbits. The following list is a transversal,

i.e. a complete list of orbit representatives, one for each of the 21 orbits formed by the action of G

on 6-cells:

[σi, σi+1, τσi, τσi+1, τ2σi, τ2σi+1]

[σi, σi+1, τσi, τσi+1, τ2σi−1, τ2σi]

[σi, σi+1, τσi, τσi+1, τ2σi+1, τ2σi+2]

where i ∈ Z/7. The following lemma shows that the list is indeed a transversal.

Lemma 5.0.1. Let C be a generic 6-cell of the product cell structure. It is of the form

C = [σi, σi+1, τσj , τσj+1, τ2σk, τ2σk+1]

Let IC be the following set of elements of Z/7:

IC = {k − 2j, j − 2i, i− 2k}.

Then 6-cells C and D have the same orbit if and only if IC = ID.

Proof. First suppose that cells C,D are in the same orbit. Then to show that IC = ID, it suffices

to show that the generators τ and σ of G preserve IC when acting on C. The generator τ of C3
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acts on C in the following way.

τC = τ [σi, σi+1, τσj , τσj+1, τ2σk, τ2σk+1]

= [τσi, τσi+1, τ2σj , τ2σj+1, σk, σk+1]

= [σk, σk+1, τσi, τσi+1, τ2σj , τ2σj+1].

Since the elements of IC are symmetric with respect to cyclic permutations, we know IC = IτC .

The generator σ of C7 acts on C in the following way.

σC = σ[σi, σi+1, τσj , τσj+1, τ2σk, τ2σk+1]

= [σi+1, σi+2, τσj+2, τσj+3, τ2σk+4, τ2σk+5]

That action of σ does not alter IC , as seen below.

IσC = {(k + 4)− 2(j + 2), (j + 2)− 2(i+ 1), (i+ 1)− 2(k + 4)}

= {k − 2j, j − 2i, i− 2k − 7}

= {k − 2j, j − 2i, i− 2k}

= IC

For the other direction, suppose C and D are 6-cells such that IC = ID and denote the cells by

C = [σi, σi+1, τσj , τσj+1, τ2σk, τ2σk+1]

D = [σr, σr+1, τσs, τσs+1, τ2σt, τ2σt+1].

Since r, s, t exhibit symmetry under the action of τ , we may assume without loss of generality that

k − 2j = t− 2s j − 2i = s− 2r i− 2k = r − 2t.

These equations imply

r = i s = j − 2i+ 2r t = k + 4r − 4i
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and so

σr−iC = σr−i[σi, σi+1, τσj , τσj+1, τ2σk, τ2σk+1]

= [σr, σr+1, τσj+2r−2i, τσj+2r−2i+1, τ2σk+4r−4i, τ2σk+4r−4i+1]

= [σr, σr+1, τσs, τσs+1, τ2σt, τ2σt+1]

= D

Thus we see C and D have the same orbit.

The above lemma allows us to determine that the 73 = 343 cells of dimension 6 are partitioned

into twenty-one orbits, with seven orbits of size 7 and fourteen orbits of size 21.

5.1 Method of subdivision

We will now discuss why some cells in the product cell structure fail to be G-cells. Since a

typical G-cell is of the form G/H × Dn for some subgroup H ≤ G, every point in the interior of

Dn should have an orbit of size |G/H|. The following example demonstrates that some cells in the

product cell structure fail to have this property.

Example 5.1.1. Consider the 3-cell from the product cell structure [σ, τσ, τ2σ]. A point in this

cell is a positive linear combination of the vectors associated to each 1-cell, so a point is given by

α(σ) + β(τσ) + γ(τ2σ) for α, β, γ ∈ R≥0

A point in the interior of the cell is a point with α, β, γ ̸= 0. First consider a point with α, β,

and γ not all equal. Then under the action of G, this point generates an orbit of size 21. Now let

α = β = γ, and notice that this point is fixed under the action of C3 and only generates an orbit

of size 7. So different points in the interior have different isotropy, and this 3-cell in the product

cell structure fails to be a G-cell.

We introduce vocabulary for specifying how product cells can fail to be G-cells
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Definition 5.1.2. A k-face of an n-cell is a k-dimensional cell given by positive linear combinations

of k of the n 1-cells that generate the n-cell.

Definition 5.1.3. A cell with non-uniform isotropy is a non-equivariant cell in the product cell

structure whose interior points do not all have the same isotropy group.

In the näıve product cell structure for SΛ, cells with non-uniform isotropy are those formed

by 1-cells that comprise a complete orbit. The nontrivial orbits of G are G/e, G/C3, and G/C7.

But since the dimension of our cells is at most six, we have no need to consider orbit types G/e

and G/C3 because those orbits are larger than six. In a sense, all of the failure of the product cell

structure lies with 1-cells of orbit type G/C7. So now we will identify precisely where in each cell

we can find these problematic 1-cells.

Since we are concerned with 1-cells with orbit size three, i.e those of orbit type G/C7, no cells

formed by fewer than three 1-cells can have non-uniform isotropy. The 3-cells with non-uniform

isotropy are those of the form

[σi, τσi, τ2σi]

and the 6-cells with non-uniform isotrophy are those of the form

[σi, σi+1, τσi, τσi+1, τ2σi, τ2σi+1].

Cells of dimension between 3 and 6 can have k-faces with non-uniform isotropy. For example, the

5-cell

[σi, σi+1, τσi, τσi+1, τ2σi]

contains a 3-face with non-uniform isotropy.

All the cells discussed above with some form of non-uniform isotropy, either in its interior

or on a k-face, fail to be G-cells and will need to be subdivided to form a G-cell structure on SΛ.

We will now give a method of subdivision for doing so. The method of subdivision is most clear

for 3-cells, so we will begin by discussing 3-cells of the form [σi, τσi, τ2σi]. Let σi, τσi, and τ2σi

represent vectors in R2, τR2, and τ2R2, respectively. Then the ray of positive multiples of the
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vector σi + τσi + τ2σi is fixed under the action of τ . Let i be an element of Z/7 and let [ai] denote

the following 1-cell:

[ai] = {α(σi + τσi + τ2σi) ∈ R2 ⊕ τR2 ⊕ τ2R2 | α ∈ R≥0}.

The seven new 1-cells [ai] can be used to subdivide cells with non-uniform isotropy. We will start

with an example of dimension 3 to demonstrate the subdivision.

Example 5.1.4. Consider the 3-cell [σi, τσi, τ2σi] discussed in example 5.1.1. The newly-created

1-cell [ai] contains all the interior points that are fixed under the action of C3. Thus we can use it

to create the following three 3-cells:

[ai, τσ
i, τ2σi]

[σi, ai, τ
2σi]

[σi, τσi, ai]

These new cells were formed by replacing each 1-cell in the original cell by ai in turn. The union of

these three 3-cells is the original cell and the new 3-cells intersect only on their boundaries. Here

is a drawing of the 3-cell [σi, τσi, τ2σi] subdivided into three different colors of new 3-cells

0

σ

τσ

τ2σ

a1 := σ + τσ + τ2σ

⋆
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Recall that cells of dimension 2 or lower do not require subdivision. For cells of dimension

higher than 3, we can extend the method of subdivision. Again we illustrate with examples.

Example 5.1.5. The 5-cell [σi, σi+1, τσi, τσi+1, τ2σi] contains [σi, τσi, τ2σi] as a 3-face. We can

divide it into three 5-cells by replacing each of σi, τσi, and τ2σi by ai in turn. The three new cells

are

[ai, σ
i+1, τσi, τσi+1, τ2σi]

[σi, σi+1, ai, τσ
i+1, τ2σi]

[σi, σi+1, τσi, τσi+1, ai]

This subdivision makes three 5-cells whose union is the original 5-cell and the three new 5-cells

intersect only on their boundaries. Notice that these three new 5-cells each generate three disjoint

orbits of size 21. ⋆

Example 5.1.6. The 6-cell [σi, σi+1, τσi, τσi+1, τ2σi−1, τ2σi] contains the 3-cell [σi, τσi, τ2σi]. We

can divide it into the following three 6-cells

[ai, σ
i+1, τσi, τσi+1, τ2σi−1, τ2σi]

[σi, σi+1, ai, τσ
i+1, τ2σi−1, τ2σi]

[σi, σi+1, τσi, τσi+1, τ2σi−1, ai].

As in the example above, these new cells were formed by replacing three of the 1-cells with ai in

turn, their union forms the original cell and the new cells only intersect on their boundaries. Notice

that the three new 6-cells each generate three disjoint orbits of size 21. ⋆

Example 5.1.7. The 6-cell [σi, σi+1, τσi, τσi+1, τ2σi, τ2σi+1] contains two non-uniformly isotropic

3-faces, namely [σi, τσi, τ2σi] and [σi+1, τσi+1, τ2σi+1]. Since there are three choices of 1-cells to

replace with ai and three choices of 1-cells to replace with ai+1, subdividing this 6-cell will result
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in the following nine 6-cells:

[ai, ai+1, τσ
i, τσi+1, τ2σi, τ2σi+1]

[σi, σi+1, ai, ai+1, τ
2σi, τ2σi+1]

[σi, σi+1, τσi, τσi+1, ai, ai+1]

[σi, ai+1, ai, τσ
i+1, τ2σi, τ2σi+1]

[σi, σi+1, τσi, ai+1, ai, τ
2σi+1]

[ai, σ
i+1, τσi, τσi+1, τ2σi, ai+1]

[ai, σ
i+1, τσi, ai+1, τ

2σi, τ2σi+1]

[σi, ai+1, τσ
i, τσi+1, ai, τ

2σi+1]

[σi, σi+1, ai, τσ
i+1, τ2σi, ai+1]

The union of these nine cells is the original 6-cell, and the new cells intersect only on their bound-

aries. Unlike the previous examples though, these nine cells do not generate nine distinct orbits.

Each new cell has the same orbit as two other cells in this list. In particular, the first three new

cells form a C3-orbit and are elements in an orbit of size 21. The same goes for the next three new

cells, and the last three new cells. ⋆

Let us summarize the method of subdivision. We create a cell structure on a vector space

whose 1-cells are rays and whose top dimension cells are positive linear combinations of those rays.

For each subgroup, we partition the set of 1-cells into subsets and consider whether that subset is

part of a higher-dimensional cell. If so, we create new cells out of the fixed points and subdivide.

If not, nothing more needs to be done.
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5.2 Cell structure for SΛ

We can apply the method of subdivision to the näıve product cell structure of SΛ. This gives

a proper G-CW structure on SΛ, which we list as a large table on the following pages. Since every

G-cell is of the form G/H ×Dn, we will list all the cells by giving an orbit representative for each

G-cell. For brevity, let i range over the elements of Z/7.

Dimension Orbit representative Orbit type No. of G-cells

6 [ai, σ
i−1, τσi−1, τσi, τ2σi, τ2σi+1] G/e 7

[ai, σ
i−1, σi, τσi−1, τ2σi, τ2σi+1] G/e 7

[ai, σ
i−1, σi, τσi−1, τσi, τ2σi+1] G/e 7

[ai, σ
i+1, τσi, τσi+1, τ2σi−1, τ2σi] G/e 7

[ai, σ
i, σi+1, τσi+1, τ2σi−1, τ2σi] G/e 7

[ai, σ
i, σi+1, τσi, τσi+1, τ2σi−1] G/e 7

[ai, ai+1, σ
i, σi+1, τσi, τσi+1] G/e 7

[ai, ai+1, σ
i, σi+1, τσi, τ2σi+1] G/e 7

[ai, ai+1, σ
i, σi+1, τσi+1, τ2σi] G/e 7

5 [ai, ai+1, τσ
i+1, τ2σi, τ2σi+1] G/e 7

[ai, ai+1, τσ
i, τ2σi, τ2σi+1] G/e 7

[ai, ai+1, τσ
i, τσi+1, τ2σi+1] G/e 7

[ai, ai+1, τσ
i, τσi+1, τ2σi] G/e 7

[ai, ai+1, σ
i, τσi, τ2σi+1] G/e 7

[ai, ai+1, σ
i, τσi+1, τ2σi+1] G/e 7

[ai, σ
i, σi+1, τσi, τσi+j ] for j ∈ {−1, 1} G/e 14

[ai, σ
i−1, σi, τσi, τσi+j ] for j ∈ {−1, 1} G/e 14

[ai, σ
i, σi+1, τσi, τ2σi+j ] for j ∈ {−1, 1} G/e 14

[ai, σ
i−1, σi, τσi, τ2σi+j ] for j ∈ {−1, 1} G/e 14

[ai, σ
i, τσi, τσi+1, τ2σi+j ] for j ∈ {−1, 1} G/e 14

[ai, σ
i, τσi−1, τσi, τ2σi+j ] for j ∈ {−1, 1} G/e 14

[ai, σ
i−1, σi, τσi+1, τ2σi+j ] for j ∈ {−1, 1} G/e 14

[ai, σ
i−1, σi, τσi−1, τ2σi+1] G/e 7

[ai, σ
i, σi+1, τσi−1, τ2σi+j ] for j ∈ {−1, 1} G/e 14

[ai, σ
i, σi+1, τσi+1, τ2σi−1] G/e 7

[σi+j , τσi, τσi+1, τ2σi, τ2σi+1] for j ∈ {2, 4, 6} G/e 21
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Cell structure for SΛ, continued. Let i ranges over the elements of Z/7.

Dimension Orbit representative Orbit type No. of G-cells

4 [ai, ai+1, σ
i, σi+1] G/e 7

[ai, ai+1, σ
i, τσi+j ] for j ∈ {0, 1} G/e 14

[ai, ai+1, σ
i+1, τσi+j ] for j ∈ {0, 1} G/e 14

[ai, σ
i, τσi, τ jσi+1] for j ∈ {0, 1, 2} G/e 21

[ai, σ
i, τσi, τ jσi−1] for j ∈ {0, 1, 2} G/e 21

[ai, σ
i, σi+j , τσi+j ] for j ∈ {−1, 1} G/e 14

[ai, σ
i, σi+j , τσi−j ] for j ∈ {−1, 1} G/e 14

[ai, σ
i, σi+j , τ2σi+j ] for j ∈ {−1, 1} G/e 14

[ai, σ
i, σi+j , τ2σi−j ] for j ∈ {−1, 1} G/e 14

[ai, σ
i, τ2σi+j , τσi+j ] for j ∈ {−1, 1} G/e 14

[ai, σ
i, τ2σi+j , τσi−j ] for j ∈ {−1, 1} G/e 14

[ai, σ
i+1, τσi+j , τ2σi−j ] for j ∈ {−1, 1} G/e 14

[σi, σi+1, τσi, τσi+1] G/e 7

[σi, σi+1, τσi, τ2σi+j ] for j ∈ {−1, 1} G/e 14

[σi, σi+1, τσi+1, τ2σi+j ] for j ∈ {−1, 0} G/e 14

[σi, σi+1, τσi−1, τ2σi−1] G/e 7

3 [ai, ai+1, σ
i+j ] for j ∈ {0, 1} G/e 14

[ai, σ
i, τσi+j ] for j ∈ {−1, 0, 1} G/e 21

[ai, σ
i−1, τσi+j ] for j ∈ {−1, 0, 1} G/e 21

[ai, σ
i+1, τσi+j ] for j ∈ {−1, 0, 1} G/e 21

[ai, σ
i, σi+j ] for j ∈ {−1, 1} G/e 14

[σi, σi+1, τσi] G/e 7

[σi, σi+1, τ2σi] G/e 7

[σi, τσi, τ2σi+j ] for j ∈ {−1, 1} G/e 14

2 [ai, ai+1] G/C3 7

[ai, σ
i+j ] for j ∈ {−1, 0, 1} G/e 21

[1, τσi] G/e 7

[1, σ] G/e 1

1 [ai] G/C3 7

[1] G/e 1

0 [O] G/G 1

[∞] G/G 1
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It is tedious, but straightforward to verify that this gives a CW-structure. It is also an

impractical cell structure for hand computations.

Notice that in this large list of cells, most of cells are free. The only non-free cells are in

dimensions 2 and 1, with orbit type G/C3, and fixed points in dimension 0. This is consistent with

the analysis of SΛ toward the end of Section 4.3, where we saw that the only non-free cells of SΛ

are in dimension 2 or lower and can be assembled into the subcomplex called Y .

5.3 Other groups

The method of subdivision can be applied to other groups and G-CW structure. We give

two examples of such use cases. This first example is a straightforward application of the method

of subdivision to produce a cell structure on a representation γ of the symmetric group S3. To see

a related subdivision scheme that applies to Smγ , see [KL20].

Example 5.3.1. Let S3 be the symmetric group on n elements and C3 be the cyclic subgroup of

order 3. Let λ3 be the degree-2 irreducible representation of C3 and endow it with a cell structure

given by 3 “beach ball panels” (see Example 3.1.3). The order-2 subgroups of S3 will generate

non-uniform isotropy in the 2-cells since a given order-2 subgroup will swap two elements of C3

while leaving the third fixed. We can add three new rays between the three existing rays to produce

a cell structure with six panels. This new structure will be S3 equivariant. ⋆

This second example shows that looking for non-uniform isotropy one subgroup at a time

can help determine that a given cell structure is a proper G-CW structure.

Example 5.3.2. Recall that the quaternions H are a real algebra of dimension 4 generated as a

vector space by the elements 1, i, j, and k, and also that the quaternion group Q8 is a subgroup

of the units of this algebra. Then H is a 4-dimensional irreducible real representation of Q8. Let

the eight rays generated by the positive multiples of ±1,±i,±j and ±k be 1-cells. The eight rays

divide H into sixteen sectors of dimension 4, and the lower dimension cells are the k-faces of these
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sectors. To see if this cell structure requires subdivision, consider the action of each subgroup of

Q8. The action of the subgroup generated by −1 takes a ray to its opposite ray, but [j,−j] is

not a 2-cell in the proposed cell structure, and the same can be said of the other 1-cells. So the

subgroup generated by −1 does not create any non-uniform isotropy. Next consider the action of

the subgroup generated by i. The eight 1-cells are partitioned into orbits in the following way:

{±1,±i}, {±j,±k}

None of these sets are 4-cells in the proposed cell structure. The same argument applies to the

subgroups generated by j and k, so we conclude that the proposed cell structure is a proper G-CW

cell decomposition. ⋆



Chapter 6

HZn(S
Λ) for proper subgroups of G21

In this chapter, we begin the computation of HZn(S
Λ). In particular, we will focus on

HZn(S
Λ)(G21/H) for proper subgroups H of G21 and leave the computation of HZn(S

Λ)(G21/G21)

for the next chapter. The reason for this separation is that, for proper subgroups of G21, we can

reduce the computation to previously-known facts about C3 and C7. We will use Lemma 3.4.3 to

do this, and we restate that lemma here.

Lemma 3.4.3 Let X be a G-space. Then

HZn(X)(G/H) ∼= HZn(i
∗
HX)(H/H)

where HZ on the left is a G-spectrum while HZ on the right is the H-spectrum i∗HHZ given by

forgetting the action of elements of G not in H.

The upshot of lemma 3.4.3 is that when evaluatingHZn(S
Λ) at G/H for any proper subgroup

H, we may restrict our attention to only the action of H on X. Since the nonabelian group of

order 21 that we are interested in has three proper subgroups (discounting conjugates of C3), we

will examine the three cases in turn, beginning with the simplest case of the trivial subgroup.

For the trivial subgroup {e}, Lemma 3.4.3 becomes

HZn(S
Λ)(G/e) ∼= HZn(i

∗
eS

Λ)(e/e).

Forgetting all group actions on SΛ except for that of the trivial subgroup means we have a sphere

S6 with trivial action. Thus we recover the ordinary homology of S6 when HZn(S
Λ) is evaluated
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at G/e.

The next two sections tackle the computation of HZn(S
Λ) evaluated at C7 and C3.

6.1 Homology of SΛ evaluated at C7

By Lemma 3.4.3, we may compute HZn(S
Λ)(G/C7) by instead considering

HZn(i
∗
C7
SΛ)(C7/C7).

First we examine the G-space i∗C7
SΛ. Let λ7 denote the degree-2 representation of C7 = ⟨σ⟩ given

by letting the generator σ act on R2 via rotation by 2π/7. Recall from Section 4.3 that one possible

G-CW cell structure for Sλ7 involves cutting R2 into seven “panels.” Furthermore, three copies of

Sλ7 together with an action from C3 form a cell structure for SΛ. From this construction, we can

see that

i∗C7
SΛ ∼= S3λ7 .

Next we can find a cell structure for S3λ7 . By using the “cell trick” described in the introduction

of [HHR17], we arrive at this cell structure:

� two fixed 0-cells: C7/C7+ ∧ 0 and C7/C7+ ∧∞

� a single n-cell: C7/e+ ∧ en for n = 1, 2, . . . , 6

Lemma 3.4.1 instructs us as to how to form a cellular chain complex using this data, and the

complex can be seen below. For simplicity, the index i = 0, . . . , 6 has been omitted in some places,

but we should interpret each summation as a sum over seven terms and Z[σi] as the free abelian

group generated by the seven σi. The omitted differentials alternate following the pattern of the

first two differentials shown. Notice that the “lower level” is the chain complex corresponding to

the non-equivariant homology of the sphere S6, and the “upper level” is formed by taking C7-fixed

points of the lower level. The diagonal map ∆ is given by e+σ+ · · ·+σ6 → e+σ+ · · ·+σ6, while

the fold map ∇ takes generators e, σ, . . . , σ6 to e+ σ + · · ·+ σ6.
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Z
[∑

σi
]

Z[σi]

Z
[∑

σi
]

Z[σi]

Z
[∑

σi
]

Z[σi]

· · ·

· · ·

Z
[∑

σi
]

Z[σi]

Z[∞, 0]

Z[∞, 0]

Z

Z

n = 6 n = 5 n = 4 · · · n = 1 n = 0

∆∇ ∆∇ ∆∇ ∆∇ idid

0 7 7(∞− 0) ε

1− σ
∑
σi ∞− 0 ε

We seek the C7/C7 part, i.e. the top level, so passing to homology gives the following result.

HZn(S
Λ)(G/C7) ∼= HZn(S

3λ7)(C7/C7)

∼=


Z n = 6

Z/7 n = 0, 2, 4

0 otherwise

6.2 Homology of SΛ evaluated at C3

Just as in the case for C7, we use Lemma 3.4.3 to deduce that

HZn(S
Λ)(G/C3) ∼= HZn(i

∗
C3
SΛ)(C3/C3).

We again examine the G-CW cell structure of SΛ given in Section 4.3 to gain insight into i∗C3
SΛ.

Noticed that the actio of τ ∈ C3 permutes the three copies of R2 cyclically. This demonstrates that

i∗C3
SΛ ∼= S2ρ3

i.e. that i∗C3
SΛ consists of two copies of the regular representation ρ3 of C3. Observe that ρ3 can

be decomposed as 1 ⊕ λ3 where 1 denotes the degree-1 trivial representation and λ3 is given via

rotation by 2π/3. Thus our desired homology group can be simplified in the following way.

HZn(S
Λ)(G/C3) ∼= HZn(S

2ρ3)(C3/C3)

∼= HZn(S
2 ∧ S2λ3)(C3/C3)

∼= HZn−2(S
2λ3)(C3/C3)
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Next we use the “cell trick” as before to arrive at the following cellular chain complex. The index

i = 0, 1, 2 has been omitted for simplicity in some places, but we should interpret each summation

as a sum over three terms and Z[τ i] the free abelian group generated by the τ i.

Z
[∑

τ i
]

Z[τ i]

Z
[∑

τ i
]

Z[τ i]

Z
[∑

τ i
]

Z[τ i]

Z
[∑

τ i
]

Z[τ i]

Z[∞, 0]

Z[∞, 0]

Z

Z

n = 4 n = 3 n = 2 n = 1 n = 0

∆∇ ∆∇ ∆∇ ∆∇ idid

0 3 0 3(∞− 0) ε

1− τ
∑
τ i 1− τ ∞− 0 ε

Again we are interested in the top level of this stacked chain complex, so passing to homology, we

arrive at the final result.

HZn(S
Λ)(G/C3) ∼= HZn−2(S

2λ3)(C3/C3)

∼=


Z n = 6

Z/3 n = 4, 2

0 otherwise
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To summarize the results of this chapter, we can arrange the homology groups that have

been computed up to this point into the shape of the orbit category of G21, leaving blank some of

the computations that will be completed in a later chapter.

Summary of progress toward computing HZn(S
Λ)

HZ6(S
Λ) HZ4(S

Λ) HZ2(S
Λ) HZ0(S

Λ)

HZG
6 (S

Λ) HZG
4 (S

Λ) HZG
2 (S

Λ) HZG
0 (S

Λ)

Z Z/7 Z/7 Z/7

Z Z/3 Z/3 0

Z 0 0 0

1 0 0 0

1 0 0 0

7

3

0

0

0

0

0

0



Chapter 7

Computing HZG
n (S

Λ) via Isotropy Separation

In Chapter 6, we computed HZH
n (SΛ) for proper subgroups of G, and in this chapter, we

complete the work by computing HZG
n (S

Λ). The strategy is to generate a long exact sequence

whose terms include HZG
n (S

Λ), use various methods to compute all other terms, and then leverage

the exactness of the sequence to find HZG
n (S

Λ). This method is based on the concept of isotropy

separation, which can be found in [Hil20].

To begin, we can take the smash product of SΛ with the cofiber sequence EG+ → S0 → ẼG

to produce the new cofiber sequence below.

EG+ ∧ SΛ → SΛ → ẼG ∧ SΛ (7.1)

This cofiber sequences gives the following long exact sequence on homology:

· · · → HZn+1(EG+ ∧ SΛ) → HZn+1(S
Λ) → HZn+1(ẼG ∧ SΛ)

→ HZn(EG+ ∧ SΛ) → HZn(S
Λ) → HZn(ẼG ∧ SΛ) → · · · (7.2)

Since the above sequence is exact and repeats every three terms with a drop in degree, we can

compute HZ∗(EG+ ∧ SΛ) and HZ∗(ẼG ∧ SΛ), and then use those results to determine HZ∗(S
Λ).

This is the content of Sections 7.2 and 7.3. First we devote one section to presenting the Atiyah-

Hirzebruch spectral sequence, because it is used extensively in the computations that follow.
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7.1 Atiyah-Hirzebrush Spectral Sequence

The spectral sequences used in the proof of Lemma 7.2.1 and the final computation toward the

end of Section 7.3 are both examples of the Atiyah-Hirzebruch spectral sequence for homology. We

will describe the technique for generating these spectral sequences in this section. The idea behind

the technique is that cofibrations generate long exact sequences, and the long exact sequences link

together to form exact couples. That exact couple will contain the data for a spectral sequence

that computes the homology groups we are ultimately interested in.

To begin, let X and Y be spaces and let X → Y be a cofibration with cofiber F . Then

applying a homology functor H∗(−) generates the following long exact sequence:

· · · → Hm(X) → Hm(Y ) → Hm(F ) → Hm−1(X) → Hm−1(Y ) → Hm−1(F ) → · · ·

We will be interested in the specific homology functor whose output is Mackey functor-valued,

RO(G)-graded homology evaluated at G/G, so henceforth we will use the specific functor HZG
∗ (−)

instead of the general H∗(−).

Now suppose X is a space with a filtration X(0) ⊆ X(1) ⊆ · · · ⊆ X(n) ⊆ · · · ⊆ X. Then

each inclusion X(n) ↪→ X(n+1) is a cofibration with cofiber X(n+1)/X(n), and together they form

a tower of cofibrations. The tower of cofibrations is shown below with one specific cofibration and

its cofiber highlighted in blue.

X(0) X(1) · · · X(n) X(n+1) · · ·

X(1)
⧸X(0)

X(n)
⧸X(n−1)

X(n+1)
⧸X(n)

Applying the homology functor HZG
∗ (−) generates long exact sequences that link up to form the

following unrolled exact couple,

· · · HZG
m(X(n−1)) HZG

m(X(n)) HZG
m(X(n+1)) · · ·

HZG
m(X

(n)
⧸X(n−1)) HZG

m(X
(n+1)

⧸X(n))

i

j

i

j
k k
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where the maps i and j are the induced maps stemming from the fibration and its fiber, highlighted

in blue above, and and k is the connecting homomorphism that changes the degree m by -1. In

other words, k is the composition of the induced map on

(
X(n+1)

⧸X(n) → ΣX(n)

)
followed by the

suspension isomorphism HZG
m(ΣX(n)) ∼= HZG

m−1(X
(n))

It will be convenient to use Adams grading in our desired spectral sequence, so let us re-index

our terms by defining p := n and q := m− p. Then let the E1
p,q-page be given by

E1
p,q := HZG

p+q

(
X(p)

⧸X(p−1)

)
and let the E1

p,q differential be given by the composite map

d1 : HZG
p+q

(
X(p)

⧸X(p−1)

)
HZG

(p−1)+q

(
X(p−1)

)
HZG

(p−1)+q

(
X(p−1)

⧸X(p−2)

)
k j

We will use this spectral sequence for several computations that follow.

7.2 Computing HZn(EG+ ∧ SΛ)

In the beginning of this chapter, we mentioned that the task of computing HZG
n (S

Λ) can be

reduced to the tasks of computing HZG
n (EG+ ∧ SΛ) and HZH

n (ẼG ∧ SΛ) instead. We address the

former now. The cellular filtration of EG+ generates a spectral sequence whose E1 page has terms

that coincide with the terms of the bar resolution for computing group homology H∗(G21,Z). This

is the content of the following lemma.

Lemma 7.2.1. Suppose that V is orientable and dim(V ) = d. There is an isomorphism

HZG
n (EG+ ∧ SV ) ∼= Hn−d(G,Z)

where the right-hand side is group homology.

Proof. Let the p-cells of EG+ be ordered tuples of Gp+1 and let the p-cells be denoted by symbols

[g0 ⊗ g1 ⊗ · · · ⊗ gp], with each gi ∈ G. Let G act on a p-cell via left multiplication in the first
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component, that is,

g · [g0 ⊗ g1 ⊗ · · · ⊗ gp] = [(gg0)⊗ g1 ⊗ · · · ⊗ gp]

The inclusion of the p-skeleton EG
(p)
+ into the (p+1)-skeleton is a cofibration with cofiber Cofp :=

EG
(p)
+ /EG

(p−1)
+ . The inclusion maps and their respective cofibers join to form a tower of cofibra-

tions. Taking the smash product of each space in the tower with SV produces a new tower of

cofibrations. Then we can apply the method described in Appendix 7.1 to this tower to arrive at

the spectral sequence

E1
p,q = HZG

p+q(Cp ∧ SV )

with the differential on the E1
p,q induced by

Cp ∧ SV → ΣEG
(p−1)
+ ∧ SV → ΣCp−1 ∧ SV

The cofiber Cofp is a wedge of spheres Sp with a G-action inherited from the G-action on

cells of EG. In particular, Cofp is a wedge of |G|p copies of G+ ∧Sp where each copy is indexed by

a symbol of the form [e⊗ g1 ⊗ · · · ⊗ gp]. Thus it will be useful to view Cofp in the following way.

Cofp := EG
(p)
+ /EG

(p−1)
+

∼=
∨

[g0⊗···⊗gp]

Sp ∼=
∨

[e⊗g1⊗···⊗gp]

Sp ∧G+
∼=

∨
[g1⊗···⊗gp]

Sp ∧G+

for p > 0 and Cof0 ∼= G+. Applying this view of Cofp to the terms of the E1 page gives

E1
p,q = HZG

p+q

 ∨
[g1⊗···⊗gp]

Sp ∧G+ ∧ SV


∼=

⊕
[g1⊗···⊗gp]

HZe
q(S

V )

∼=

 ZGp if q = dimV

0 otherwise

This interpretation of Cofp as a wedge of spheres produces the differential d1 : E1
p,q

∼= ZGp →

E1
p−1,q

∼= ZGp−1. Explicitly, the map is

[g1 ⊗ · · · ⊗ gp] 7→ [g2 ⊗ · · · gp] +
p−1∑
i=1

(−1)i[g1 ⊗ · · · ⊗ gigi+1 ⊗ · · · ⊗ gp] + (−1)p−1[g1 ⊗ · · · ⊗ gp−1]
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We observe that the differential d1 : ZGp → ZGp−1 is precisely the differential in the bar resolution

for computing group homology H∗(G;M) for M = HZu
q (S

V ) when q = dimV . In other words, we

have the following commutative diagram between the row of E1
p,q with q = dimV comprising the

row above and the bar resolution below:

0 E1
0,q · · · E1

p−1,q E1
p,q · · ·

0 B0 ⊗M · · · Bp−1 ⊗M Bp ⊗M · · ·

∼= ∼=

d1p,q
∼=

d

Then we can conclude that the only nonzero part of the E2 page is the group homology of G on

the row q = dim(V ).

E2
p,q

∼=

 Hp+q(G;Z) if q = dimV

0 otherwise

Since all nonzero terms are concentrated in the row q = dimV , the spectral sequence collapses to

HZG
p+q(EG+ ∧ SV ) ∼= Hp(G;Z)

Recall that in Example 4.2.3, we showed that the degree-6 real representation Λ was ori-

entable. Then by applying Lemma 7.2.1 to the representation Λ, we have an isomorphism

HZG
n (EG+ ∧ SΛ) ∼= Hn−6(G21;Z). (7.3)

Since group homology is always zero in negative degrees, we use this data in the long exact sequence

(7.2) to produce the following isomorphisms.

HZG
n (S

Λ) ∼= HZG
n (ẼG ∧ SΛ), n ≤ 5 (7.4)

So to determine HZG21
n (SΛ) for n ≤ 5, we now turn our attention to HZG21

n (ẼG ∧ SΛ).
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7.3 Computing HZn(ẼG ∧ SΛ)

In the previous section, we used Lemma 7.2.1 to produce the isomorphism in equation (7.4).

Thus to find HZG21
n (SΛ) for 0 ≤ n ≤ 5, we may instead compute HZG21

n (ẼG ∧ SΛ). This can

be accomplished first by using an important property of ẼG to restrict our attention to a smaller

subcomplex within SΛ, creating a filtration of this subcomplex, and then using a spectral sequence

built from this filtration to finish the computation.

Lemma 7.3.1. Suppose that X is a G-CW complex and Y is a subcomplex such that X differs

from Y by attaching finitely many free cells, i.e.

X = Y ∪

(⋃
i∈I

G/e+ ∧Ddi
+

)

where Ddi is a disk of dimension di. Then the inclusion Y → X induces an isomorphism

HZG
• (ẼG ∧ Y )

∼=−−→ HZG
• (ẼG ∧X).

Proof. Because X can be built from Y by attaching free cells one at a time, it suffices to prove the

desired isomorphism in the case that X differs from Y by attaching a single free cell of dimension d.

In this case, the inclusion Y → X is a cofibration with cofiber X/Y ≃ G/e+ ∧ Sd. This cofibration

induces a long exact sequence on homology. In particular, the homology functorHZ∗(ẼG∧−)(G/G)

produces the following long exact sequence:

· · · →HZG
n+1(ẼG ∧ Y ) → HZG

n+1(ẼG ∧X) → HZG
n+1(ẼG ∧G/e+ ∧ Sd)

→ HZG
n (ẼG ∧ Y ) → HZG

n (ẼG ∧X) → HZG
n (ẼG ∧G/e+ ∧ Sd) → · · ·

We can compute the homology terms associated with the cofiber. By Lemma 3.4.3, we know

HZG
• (ẼG ∧G/e+ ∧ Sd) = HZe

•(i
∗
eẼG ∧ Sd).

Since i∗eẼG is contractible, i∗eẼG ∧ Sd ≃ ∗, and we are now looking to compute the underlying

reduced homology of a point. Thus

HZe
•(i

∗
eẼG ∧ Sd) = 0.



66

Substituting these zeroes into the abovementioned long exact sequence, we see that the

inclusion Y → X produces the desired isomorphisms

HZG
• (ẼG ∧ Y )

∼=−−→ HZG
• (ẼG ∧X).

In order to use Lemma 7.3.1 to compute HZG
n (ẼG∧ SΛ), we take a brief detour to establish

the following fact.

Lemma 7.3.2. Let H be a finite group, EH be the universal cover of the classifying space of H,

and ẼH be the homotopy cofiber of the map EH+ → S0 that sends EH to 0 and sends + to the

basepoint ∞ of S0. Then

(a) the map

HZn(ẼH) → HZn−1(EH+)

induced by ẼH → ΣEH+ is an isomorphism for n ̸= 0, 1 and

(b) for any subgroup K ⊆ H, there is an exact sequence

0 −→ HZK
1 (ẼH) −→ Z |K|−−→ Z −→ HZK

0 (ẼH) −→ 0

so that HZK
1 (ẼH) = 0 and HZK

0 (ẼH) = Z/|K|.

Proof. The cofiber sequence EH+ → S0 → ẼH produces the following long exact sequence:

· · · → HZ1(EH+) → HZ1(S
0) → HZ1(ẼH)

→ HZ0(EH+) → HZ0(S
0) → HZ0(ẼH)

→ HZ−1(EH+) → HZ−1(S
0) → HZ−1(ẼH) → · · ·

Then statement (a) holds because HZn(S
0) = 0 for all n ̸= 0. To see statement (b), notice that the

map HZK
0 (EH+) → HZH

0 (S0) is induced by the map of spaces where the 0-cells of EH+ (there

are |H| of them) are mapped to a point. In other words, this is equivalent to the map of G-sets
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H/K → H/H. The induced map on homology must be the transfer map in the constant Mackey

functor, i.e. Z(H/H)
|K|−−→ Z(H/K). Finally EH+ is a CW-complex with cells only in non-negative

dimensions, we must have HZK
−1(EH+) = 0. The relevant portion of our long exact sequence

becomes

0 −→ HZK
1 (ẼH) −→ Z |K|−−→ Z −→ HZK

0 (ẼK) −→ 0

and by exactness, we can see that HZK
1 (ẼH) = 0 and HZK

0 (ẼH) = Z/|K|.

We now resume our work of computing HZG
n (ẼG∧SΛ) by using Lemma 7.3.1 to restrict our

attention to a suitable subcomplex of SΛ instead. At the end of Section 4.3, we established that

the representation sphere SΛ contains the subcomplex Y and that SΛ can be formed from Y by

attaching free cells. Recall from Section 4.3 that one possible cell structure of Y consists of:

� two 0-cells: G/G+ ∧ 0 and G/G+ ∧∞

� a single 1-cell: G/C3+ ∧ a0

� a single 2-cell: G/C3+ ∧ â0

Let Y (p) be the p-skeleton of Y under this cell structure. Take HZG
n (ẼG ∧ −) to be our

homology functor of interest, and apply the spectral sequence method of Subsection 7.1 to produce

a spectral sequence with E1 page given by

E1
p,q = HZG

p+q

(
ẼG ∧ Y

(p)
⧸Y (p−1)

)
⇒ HZG

p+q(ẼG ∧ Y ).

The quotient Y (p)/Y (p−1) is a wedge of p-spheres, so we have the following equivalences.
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E1
p,q = HZG

p+q

(
ẼG ∧ Y

(p)
⧸Y (p−1)

)
∼= HZG

p+q

(
ẼG ∧

(∨
i∈I

G/Hi+ ∧ Sp

))

∼=
⊕
i∈I

HZG
p+q

(
ẼG ∧G/Hi+ ∧ Sp

)
∼=
⊕
i∈I

HZG
q

(
ẼG ∧G/Hi+

)
∼=
⊕
i∈I

HZHi
q

(
ẼHi

)
(7.5)

∼=
⊕
i∈I

HZHi
q−1 (EHi+) for q ̸= 0, 1 (7.6)

∼=
⊕
i∈I

Hq−1(Hi,Z) for q ̸= 0, 1 (7.7)

The isomorphisms in the last two lines are consequences of earlier statements. The isomorphism

that produces line 7.6 is due to Lemma 7.3.2(a). The isomorphism that produces line (7.7) is

discussed in lemma 7.2.1. So with the exception of the bottom two rows where q = 0, 1, the first

column is populated with the group homology of G21, the second and third columns with the group

homology of C3, and all other columns are zero.

It remains to determine the appropriate groups for q = 0, 1 corresponding to the two bottom

rows of the E1 page. As described in line (7.5), these two rows are given by

E1
p,q

∼=
⊕
i∈I

HZHi
1

(
ẼHi

)
, q = 0, 1

so using the cell structure for our specific complex Y , we conclude that for q = 0, 1, the E1 page of

our desired spectral sequence is given by

E1
p,q

∼=


HZG

q (ẼG) p = 0

HZC3
q (ẼC3) p = 1, 2

0 otherwise

We can refer to Lemma 7.3.2(b) to see what these groups will be. The E1 page is now complete,

and the populated page is shown below.
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Z/21 Z/3 Z/3

0 0 0

Z/3 Z/3 Z/3

0 0 0

Z/3 Z/3 Z/3

0 0 0

Z/21 Z/3 Z/3
p

q

×7

×1

×1

×7

The differential on the E1 page is the composition

HZG
p+q

(
ẼG ∧ Y

(p)
⧸Y (p−1)

)
k−→ HZG

p−1+q

(
Y (p−1)

)
j−→ HZG

p−1+s

(
ẼG ∧ Y

(p−1)
⧸Y (p−2)

)
where the map k is the connecting homomorphism in the long exact sequence on homology for

the inclusion Y (p−1) → Y (p) and the map j is the map on homology induced by the quotient

Y (p−1) → Y (p−1)/Y (p−2). The nonzero differentials have been labelled on the E1 page above. Then

passing to homology, we arrive at the E2 page, which has only zero differentials. The result of the

computation is

HZG
n (ẼG ∧ SΛ) ∼=



Z/7 n = 0

Z/3 n = 2, 4 (mod 6), n > 0

Z/21 n = 0 (mod 6), n > 0

0 otherwise

The long exact sequence (line 7.2) containing HZG
n (S

Λ) can now be filled in with the com-

pleted computations, and the updated sequence is shown below. The content of the orange box

below is the result of Lemma 7.2.1. The blue box contains the computations of Section 7.3.
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HZ7(ẼG ∧ SΛ) = 0

HZ6(S
Λ ∧ EG+) = Z HZ6(S

Λ) HZ6(ẼG ∧ SΛ) = Z/21

HZ5(S
Λ ∧ EG+) = 0 HZ5(S

Λ) HZ5(ẼG ∧ SΛ) = 0

HZ4(S
Λ ∧ EG+) = 0 HZ4(S

Λ) HZ4(ẼG ∧ SΛ) = Z/3

HZ3(S
Λ ∧ EG+) = 0 HZ3(S

Λ) HZ3(ẼG ∧ SΛ) = 0

HZ2(S
Λ ∧ EG+) = 0 HZ2(S

Λ) HZ2(ẼG ∧ SΛ) = Z/3

HZ1(S
Λ ∧ EG+) = 0 HZ1(S

Λ) HZ1(ẼG ∧ SΛ) = 0

HZ0(S
Λ ∧ EG+) = 0 HZ0(S

Λ) HZ0(ẼG ∧ SΛ) = Z/7

· · ·

· · ·

∼=

∼=

∼=

∼=

∼=

∼=

From this we can draw conclusions about HZG
n (S

Λ).

HZG
n (S

Λ) ∼=



Z/7 n = 0

Z/3 n = 2, 4

Z n = 6

0 otherwise

Lastly we wish to assemble the results and present the data in the form of Mackey functors.

We will need to determine the maps that connect the various groups. We present the completed

Mackey functors below first, and give explanations for the maps immediately after.
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Theorem. Let G21 be the non-abelian group of order 21 and Λ the irreducible degree-6 represen-

tation of G21. Then the Mackey functor-valued 1 integer-graded Bredon homology of SΛ is

HZ6(S
Λ) HZ4(S

Λ) HZ2(S
Λ) HZ0(S

Λ)

Z Z/3 Z/3 Z/7

Z Z/7 Z/7 Z/7

Z Z/3 Z/3 0

Z 0 0 0

1

1

0

1

0

1

1

0

1

3

0

0

0

0

0

3

1

7

0

1

0

1

0

0

7

3

0

0

0

0

0

0

Remark: The restrictions and transfers given above may vary by an automorphism depending on

one’s choice of generator. Details for the choices made here are given below.

We used four approaches to determine the maps in the above Mackey functors, and the

explanations below are grouped into four parts accordingly.

� Twelve pairs of restriction and transfer maps, highlighted in blue, are forced to be zero by

the domain and codomain

� Example 3.10 in [HHR16] demonstrates that all restrictions in HZ6(S
Λ) are the identity

map. Using the fact that HZn(−) is a cohomological Mackey functor (see second remark

below Lemma 3.4.1), we deduce that the transfers must be multiplication by the index.

These maps are the maps highlighted in pink.

� To determine the maps between HZG
0 (S

Λ) and HZC7
0 (SΛ) (highlighted in green), we ex-

amine the behavior of the poles of SΛ. Let the map aV : S0 → SV (known as the Euler

class) be given by inclusion at the poles. Notice that if SV has no G-fixed points except

for the poles, then aV is not homotopic to the constant map. On the other hand if SV has

1 Parts of the orbit category corresponding to the subgroups conjugate to C3 have been suppressed for succinctness
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any G-fixed points, there must be a path of G-fixed points connecting the poles and aV is

null-homotopic.

The sphere SΛ has G-fixed points only at the poles, so let the nonzero class of aV be the

generator of HZG
0 (S

Λ) ∼= Z/7. Then the restriction to HZC7
0 (SΛ) ∼= Z/7 takes aV to

i∗C7
aV : S0 → S3λ7

since forgetting the action of G for elements not in C7 produces S3λ7 (see Section 6.1 for

details). The sphere S3λ7 has G-fixed points only at the poles, so i∗C7
aV also produces

a nonzero class, which we designate as the generator. Thus the restriction HZG
0 (S

Λ) →

HZC7
0 (SΛ) is the identity. The composition of restriction and transfer must be multiplica-

tion by the index, so the transfer is multiplication by 3.

� Lastly, the maps between HZG
n (S

Λ) and HZC3
n (SΛ) for n = 2, 4 (highlighted in yellow)

are isomorphisms. Since the restriction and transfer must compose to multiplication by 7,

which is the identity map when interpreted modulo 3, the two maps must be inverses of

each other. Depending on one’s choice of generator, we can specify the maps as either the

identity or multiplication by −1, and for convenience we choose the identity.

Remark: The “bottom half” maps to and fromHZn(S
Λ)(G/e) can also be determined by examining

the chain complexes in Sections 6.1 and 6.2. Those chain complexes contain maps ∆ and ∇, and

these maps become the restrictions and transfers in our desired Mackey functor after passing to

homology.

This computation of HZn(S
Λ) is consistent with the result presented in Theorem 6.5 of

[Ang22]. In said theorem, our computation is the case t, r = 0, s = 1, p = 3 and q = 7.
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