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Solar flares and the associated coronal mass ejections are spontaneous high energy bursts of

plasma from the Sun. Since the interaction of this high energy plasma with the earth’s atmosphere

can significantly impact human activity (radiation hazards, economic loss from infrastructure dam-

age, global navigation satellite system interference, etc.), accurately forecasting solar flares is of

vital importance. These flares have been known to be associated with sunspots that have com-

plex magnetic field structures called active regions. In recent years, the use of deep learning-based

methods for solar flare prediction has gained significant traction. Much of this work is classification-

based — every input magnetogram image is labeled as flaring or non-flaring based on whether a

solar flare of a certain magnitude or higher occurred in the vicinity of the active region in the next

k hours. Since solar eruptions are rare events, a highly imbalanced dataset is produced under such

a labeling scheme, that poses problems for designing and evaluating machine learning models. Typ-

ically, images of photospheric magnetic field observations (called magnetograms) of active regions

are either used as input data for convolutional neural network methods which automatically ex-

tract features, or are pre-processed to extract physics-based features that are used to train machine

learning models such as support vector machines (SVM), multi-layer perceptrons (MLP), extremely

randomized trees (ERT), etc. In this thesis, I explore novel directions in both approaches — fea-

ture engineering-based methods for training traditional machine learning models (e.g. MLP) and

CNN-based deep learning prediction methods. First, I propose a new method to extract features

from magnetograms using topological data analysis as a substitute for the standard physics-based

features used predominantly by existing feature-based models. Through rigorous machine learning

methodologies such as hyperparameter tuning, I show that these abstract shape-based features

extracted do just as well as the carefully designed physics-based features widely used in this field.
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Second, as part of the same study, I show that increasing the complexity of the machine learning

model does not guarantee an increase in the prediction performance — a simple logistic regression

model in fact performs slightly better than the complex long short-term memory (LSTM) model.

I also study the model complexity further through dimensionality reduction using principal com-

ponent analysis (PCA) and assess the effects upon model performance. Lastly, I propose a hybrid

ML architecture that combines the forecasting power of a feature-based model (ERT) with that of

an image-based prediction model (CNN), and show that this architecture reduces false positives in

prediction — an important issue in this highly data-imbalanced forecasting problem.
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Chapter 1

Introduction

Solar flares are sudden flashes of brightening observed on the surface of the Sun — a result of

sudden acceleration of charged solar particles to relativistic speeds. This acceleration can eventually

lead to an ejection of high energy particles from the solar corona which travels outwards into space,

called coronal mass ejections (CME). Solar flares are formed as a result of the accelerated particles

emitting radiation in a wide spectrum of electromagnetic waves such as radio, visible light, X-rays,

and gamma rays. The matter ejected in a CME is released into the solar wind and travels out

into the solar system attaining a speed ranging from 20 to 3200 km/s. Solar flares and CMEs can

have a significant impact on a range of human activity. CMEs can lead to electrostatic discharge

within spacecraft electronics – this may have been a cause for the communications blackout on

the Galaxy 15 communications satellite [67]. The work by Odenwald et al. [77] estimates a cost

of 70 billion dollars for lost revenue and satellite replacement under the impact of a Carrington

event-calibre superstorm (one of the most extreme space weather events in history). A burst of

protons through the human body can cause biological damage, endangering lives of astronauts in

interplanetary travel [51]. CMEs can cause severe additional damage on interacting with the earth’s

atmosphere — magnetic storms triggered by CMEs can lead to changes in the total electron count

in the ionosphere causing GPS systems to lose accuracy [40]. The geomagnetic storms caused in

the earth’s magnetosphere by CME shock waves induce currents in long transmission lines. Such

induced currents can cause transformer coils to heat up and destruct, even leading to a chain

reaction. For example, the great geomagnetic storm of March 13, 1989 closed down the entire
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Hydro Quebec system [7]. A risk report by Lloyd’s has estimated that a power outage from a

Carrington-level event could impact a population of 20-40 million in North America alone, with

outage durations ranging from 16 days to 1-2 years, and an economic cost of 0.6 to 2.6 trillion

dollars [97].

An early warning system of such impending flares and their accompanying CMEs can sig-

nificantly mitigate such critical hazards. An accurate forecast can enable satellite operators and

power grid operators to shut down equipment in advance, astronauts to take shelter in radiation-

safe zones, and navigators to move to backup systems in conditions of GPS failure. [96] estimate a

savings of 450 million dollars in economic cost by forecasting geomagnetic storms. Considering the

potential economic cost and danger to human life, it is important to accurately model and forecast

the solar flare phenomenon.

(a) (b)

Figure 1.1: (a) Standard Model for a solar flare showing magnetic reconnections of the arcing
loops. Source: Introduction to Solar Flares – Gordon Holman, LSSP, NASA Goddard Space Flight
Center, (b) Reconnection in an emergent magnetic flux (Takasaki et al., The Astrophysical Journal,
2004 )

Solar flares (and possibly resulting CMEs) are known to be caused by magnetic reconnections

– a sudden rearrangement of the photospheric magnetic field structure where proximate opposite

fields lines approaching each other rearrange themselves to form new field lines moving away from
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each other. Such magnetic reconnections are known to occur more frequently in areas with a

complex magnetic field structure known as sunspot active regions. These active regions are formed

when the Sun’s magnetic field forms arc-like structures perpendicular to the surface. As seen in

Fig. 1.1, these arcs have “positive footpoints” where the magnetic field lines are directed outwards

from the surface, which arch over and go back into the “negative footpoints” on the surface. In such

a magnetic field arrangement, magnetic reconnections can spontaneously occur when directionally

opposite magnetic field lines approach each other, causing tight loops to be ejected in the vertical

direction. Such reconnections may occur due to the magnetic twisting of an arc (Fig. 1.1(a)), or

across different arcs in cases of newly emergent flux (Fig. 1.1(b)). Both of these scenarios represent

a relatively complex magnetic field arrangement.

(a) (b)

Figure 1.2: (a) White-light intensity observations or continuum images (measured in W
m2 ) and (b)

photospheric line-of-sight images of an active region. The dark spots in the continuum image
indicates that the sunspot is cooler than the surrounding region. The photospheric magnetic field
(measured in Gauss) reveals the structure of the active region in more detail – the line-of-sight field
indicates that the magnetic field is more vertically aligned (upward or downward).

Fig. 1.2 shows the top-view structure of an active region as observed in white light and

from a line-of-sight (LOS) photospheric magnetic field perspective recorded by the Helioseismic

and Magnetic Imager (HMI) onboard the Solar Dynamic Observatory (SDO) mission. The white

light observations show the darker cooler structures in the active region against the background

of higher intensity. The vertical field line arrangement in an active region restricts the movement

of hot plasma from the interior of the Sun to the surface, causing these regions to be cooler and

darker than their neighboring regions (hence the term, sunspots). Of the detailed 3D magnetic field
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structures shown in Fig. 1.1, the HMI can record the photospheric field (at the footpoints), giving

us 2D magnetic field images, called magnetograms. The structure on these plots reveals interesting

structures in the active region — some cooler spots in white have a high line-of-sight (along the

HMI instrument) magnetic field coming out of plane (positive polarity) while other cooler, darker

spots have a high LOS magnetic field going into the plane (negative polarity).

The 2D images of the photospheric magnetic field observations provide important clues as to

the complexity of the 3D magnetic field arching over into the chromosphere and the corona. The

more complex and intertwined the photospheric field structure is, the more complicated the full 3D

magnetic field, and higher the chance of a magnetic reconnection and a solar eruption.

(a) (b) (c)

Figure 1.3: A series of HMI magnetograms of sunspot #AR 12673, which produced multiple large
eruptions as it crossed the disk of the Sun in September 2017: (a) at 0000 UT on 9/1, (b) at 0900
UT on 9/5, roughly 24 hours before this sunspot produced an X-class solar flare, and (c) at 1000
UT on 9/7, around the time of an M-class flare.

Fig. 1.3 shows a series of line-of-sight magnetograms of an active region before and during

an eruptive period. In panel (a), the active region is newly emerged and is concentrated into two

relatively compact, positive (white) and black (negative) centers—a “bipolar” configuration. Such

“simple” configurations store little free energy and are rarely associated with eruptions. However,

as more magnetic flux emerges and the active region evolves under the influence of the plasma flows

in the photosphere, it is stretched, rotated, and sheared into the complex shape shown in panel

(b). While in this complex configuration, the active region produced a strong flare that had major

impacts on Earth-based radio reception. The further development shown in panel (c), later in this
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sunspot’s series of flaring events, is characterized by intense “polarity mixing,” with positive and

negative field in close proximity in highly sheared and stretched shapes. From these figures, it is

clear that the shape of the photospheric magnetic field is an important indicator of a potential solar

eruption. This is a major point of leverage for the advances described later in this thesis.

Considering the correlation between the behavior of the magnetic field and the solar flare

occurrence, it is no surprise that the existing operational space weather forecasters classify sunspots

based on their photospheric magnetic field structure, and determine their flaring probability based

on the historical flaring rate of that class. Over the past couple of decades, there has been a

significant research effort towards developing statistical and machine learning models for this task.

Recently, there has also been a burst of work on more complex deep-learning methods to further

automate this task. These data-driven methods predominantly use the photospheric magnetic

field snapshots to train the models. They associate with each magnetogram a probability of a

flare occurrence in an upcoming time window, or alternatively, a categorical forecast for a flare

occurrence in the upcoming time window. These models (discussed in Chapter 2) either extract

properties based on the physics of the magnetogram (total flux, current helicity, etc.) and use

them as features to train standard machine learning models (SVM, MLP, etc.), or train on the

magnetogram images directly using more recent deep learning models such as convolutional neural

networks.

While these methods have achieved moderate success, certain limitations prevent them from

doing significantly better than expert forecasters. One important challenge is the rare-event nature

of the problem, since major solar eruptions occur rather infrequently. Posed as a two-class machine

learning classification problem (flare versus no-flare), the resulting dataset is highly imbalanced: for

each flaring sample, there are approximately 79 non-flaring samples. Such a high dataset imbalance

leads to challenges in model development and evaluation.

In this thesis, my objective is to expand on the ML-based flare forecasting research by ap-

plying new feature engineering techniques and deep learning models for improving the solar flare

forecasting accuracy. To be concise, I will address the following questions:
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• Can the shape of the active region magnetic field be leveraged for improving ML-based

solar eruption forecasting?

• Does the complexity of the modeling technique have an impact on the prediction perfor-

mance for this highly-imbalanced dataset problem?

• Can the high dataset imbalance problem be addressed using hybrid architecture design and

tuning on better metrics?

The thesis is outlined as follows. Chapter 2 describes the current effort in data-driven flare fore-

casting approaches and their limitations, setting the stage for the novel improvements described

in this thesis. Chapter 3 addresses the first problem posed in the list above — quantifying the

shape of the magnetogram and utilizing it for flare forecasting. In this chapter, I will introduce

algorithms from topological data analysis to extract shape-based active region features for training

ML models. Chapter 4 is focused on answering the second question: comparing the performance

of various traditional machine learning and deep learning models for a 24-hour flare prediction

task. This chapter outlines the design, optimization and evaluation processes for four different

ML/DL models, trained using the standard physics-based features, the novel topological features,

and combinations thereof. As an additional comparison point, these feature-based models are also

compared with a CNN model that is trained directly on images. Chapter 5 explores novel architec-

tures that combine the forecasting power of a CNN-based model (trained on magnetogram images)

with an extremely randomized trees (ERT) model (trained on numerical features) to reduce the

false positives in a 12-hour flare prediction task. Chapter 6 concludes the thesis, and offers some

thoughts about future work in this area.



Chapter 2

A Survey of Data-Driven Flare Prediction Methods

In operational space weather forecasting offices, human forecasters currently use the McIntosh

[71] or Hale [42, 53] classification systems to give each active region an alphabetical designation

reflecting its structure. Each category of active region has a statistical 24-hour eruption probability

derived from historical records [24]. This leads, after additional adjustments for factors such as

rate of flux emergence, to the 24-hour eruption probability for a particular active region. Recent

statistical methods extend and formalize this approach by using historical flaring rates, together

with a Poisson process hypothesis, to develop more-complicated models. For example, [36] uses

the McIntosh classification to determine the probabilities of C-, M-, or X-class flares and [100] uses

a power-law distribution of the flare magnitudes to determine an empirical eruption probability.

However, these statistical methods have not been used in operational forecasting, primarily because

they do not show greater predictive capability than the historical forecasts that use look-up tables

[57, 58].

In the past decade, the large increase in magnetogram data afforded by space missions and

advances in data access have shifted the forefront of flare-prediction research from empirical mod-

eling methods to “data analytic” approaches such as machine learning. [15] summarizes the state

of the art in machine learning approaches to space weather applications. In ML-based prediction

applications, characteristic “features” of the photospheric magnetic field, sometimes combined with

features seen in simultaneous Extreme UltraViolet (EUV) images of the solar corona, are used in a

statistical sense to “train” a computational model to predict the probability of an eruption within a
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given time period (usually 24 hours). One example is a support vector machine (SVM) architecture

to perform a binary classification of magnetograms as flaring or non-flaring [9, 11, 74, 103, 105]. [74]

applied decision trees and clustering to the same task. A variety of other ML algorithms, such as

Bayesian networks [104], radial basis model networks [23], logistic regression [105], LASSO regres-

sion [14, 46], and random forests or Extremely Randomized Trees (ERTs) [14, 74] have also been

implemented for solar flare prediction with some degree of success. In the new age of deep learning,

neural networks have resurfaced as a very powerful and popular tool for going beyond simple direct

binary classification on the input space by instead learning complex nonlinear relationships among

their inputs. Multilayer Perceptrons (MLPs), the simplest form of neural networks, have also been

used to great advantage for solar flare prediction [29, 30, 75]. Long short-term memory (LSTM)

models — neural networks that learn important patterns from a temporal sequence of data — have

been used in some approaches [20, 92]. [8] use Fuzzy C-Means—an unsupervised machine learn-

ing method—in combination with some of the aforementioned supervised methods for solar flare

prediction. Approaches such as [41] and [50], while not machine-learning approaches themselves,

provide statistical tools for evaluating the engineered features in terms of their potential advantage

in machine learning models.

A key challenge is to choose the best features—the individual measurable properties or char-

acteristics of the phenomena that can be extracted from the raw data and then used by the machine-

learning method. To date, the majority of features used in ML-based flare prediction methods have

been predominantly physics-based.1 While physics-based features are important, an ML model

exclusively trained on them might miss crucial information available through features extracted by

other means—for example, quantification of the shape of the active region. The first part of my

thesis explores the use of methods that aim to quantify the shape complexity of a 2D magnetogram

using tools from computational topology and computational geometry. The motivation for this is

not only because shapes on a magnetogram are what human forecasters use in their classifications,

1 Some recent exceptions to this are features extracted using convolutional filters by [46], features learnt from
an autoencoder by [20], and spatial features based on Ripley’s index [83]—a functional summary of the density of a
point cloud at various scales —by [93].
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but also because these shapes have fundamental, meaningful connections to the physical causes of

an eruption.

Such a wide variety of machine learning models applied to this problem also raises an impor-

tant question: which is the best one? While there has been a performance comparison done across

a subset of these models [35, 74], a systematic comparison in terms of both model performance and

complexity is missing. This will be the second major focus of my thesis, where I investigate the

solar flare prediction performance of models which vary in complexity by orders of magnitude (from

logistic regression to LSTMs). A major component of this study involves an automated hyperpa-

rameter tuning approach for a fair comparison across models, similar to that done in [22], but with

a more sophisticated sampling mechanism. An alternative approach to modifying the model com-

plexity without significantly changing its architecture is by altering the feature-set representation.

In this part of my thesis, I also investigate dimensionality reduction of different feature-sets using

principal component analysis (PCA) and using the PCA-reduced features to train the different ML

models.

In recent years, the data-driven flare forecasting community has turned its attention to deep

learning methods that automatically extract important features from raw image data that are

relevant for flare-based classification. Examples that fall into this category are [1, 44, 61, 78, 107,

108], all of which use convolutional neural network (CNN) models. The work by [20] uses an

autoencoder model to perform an unsupervised feature extraction from image data — features that

are then used to train a recurrent neural network (RNN) architecture. An important advantage of

these types of models is that they can completely avoid the need for feature engineering of raw image

data. This is useful, especially when domain knowledge is not available. However, the features from

these architectures are extracted from a sequence of convolution operations on neighboring pixels

and do not necessarily represent a comprehensive set of information that is sufficient for completely

describing the raw data. An important problem that remains unexplored in the field of solar flare

prediction, to the best of my knowledge, is combining the forecasting power of the CNN-extracted

features with engineered features to improve flare prediction accuracy. This is the final major
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component of my thesis, where I develop a hybrid deep learning model (a standard CNN model

and an ERT model) to leverage the power of both approaches.

There is also a class of flare forecasting methods that attempt to completely model the full

3D fields using the measured photospheric field as a given boundary condition. The 2D magne-

togram images provide only the boundary conditions of such physics: the magnetic reconnection

that triggers eruptions takes place well above the region sampled by a magnetogram, in the upper

atmosphere of the sun. The simplest way to do this is to extrapolate the surface field into the corona

assuming zero current, using the potential field solution to the Laplace equation [4, 5, 99]. However,

potential fields cannot store energy—they are by definition the lowest energy state of the field and

thus cannot model the build-up of energy leading to a CME. More-sophisticated strategies such

as Non-Linear Force-Free Field (NLFFF) extrapolations [3, 26, 80, 101], have produced accurate

reproductions of active region coronal loop structures and, in some special cases, non-potential en-

ergy storage sites above photospheric polarity reversal regions. These NLFFF models are presently

the most promising avenue of physics-based coronal magnetic field and eruption modeling [88], but

they have a large number of free parameters that require extensive manual tuning. These degrees

of freedom reflect the non-uniqueness of the boundary value problem: the photospheric boundary

conditions are not sufficient to uniquely determine the field [28, 72, 87]. Hence, the operational

forecasting utility of these methods appears limited at present. An alternate approach models the

connectivity between opposite polarity magnetic patches in the photosphere to identify significant

structures such as magnetic “nulls” and “separatrix surfaces.” For example, the Magnetic Charge

Topology (MCT) metric is used to characterize eruption potential by [5]. The work by [66] reviews

the application of “field-line topology” to infer connections and Tarr et al. [94, 95] apply these

methods to analyze the eruption potential of active regions. While the structures extracted by

these sophisticated methods are meaningful in the context of solar eruptions, their computational

complexity presently limits their operational application2 .

2 Note that Barnes and Leka have gone on to apply their MCT metric to an operations-ready flare prediction
algorithm called Discriminate Analysis Flare Forecasting System (DAFFS) [59].



Chapter 3

Featurizing Active Region Magnetograms

The previous two chapters should by now have impressed the reader of the importance of

magnetic field data of active regions in providing useful information for solar flare prediction, and

the ability of machine-learning methods to leverage that information. For that to happen, however,

the data needs to be preprocessed first. One of the important considerations that determines the

ML modeling strategy is the input representation of data. Traditional machine learning approaches

such as logistic regression, support vector machines, extremely randomized trees, etc. typically work

well with a more compact set of numerical features, rather than high-dimensional raw images. De-

veloping these models for solar flare prediction thus requires extracting numerical attributes from

raw data (in this case, raw magnetogram images). This methodology, called feature engineering,

is usually a preferred approach for problems where domain knowledge has been sufficiently devel-

oped, which is true for the solar magnetic eruption problem. Extensive studies for understanding

the magnetic eruption process has allowed solar physicists to identify important physical features

derived from the magnetic field images that are useful indicators for solar flares, and thus solar

eruptions. Some examples of such features are the total magnetic flux, the magnetic flux around the

neutral lines (boundaries shared by highly positive and highly negative flux regions), the vertical

current, current helicity, etc. A complete list of these features for each observed active region is

available in a public database (described later in Section 3.2).

It is no surprise that a large majority of the ML-based flare prediction literature, discussed

in Chapter 2, use these features. The advantage of feature-based models is their relatively lower
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complexity as compared to the newer deep learning models. However, the features may not represent

the most comprehensive and representative set that could be possibly extracted from the raw data.

The other approach is to use raw image data directly as input to an ML model. This approach,

adopted by many of the latest deep learning methods such as convolutional neural networks or

self-attention models, involves automatically learning salient features from raw data as part of the

training process. Such methods are very useful in the absence of domain knowledge. Further, they

can be useful in supplementing the information available from engineered features. However, a

drawback of these methods is their high complexity when compared with traditional ML models.

In this thesis, I introduce a novel feature extraction process based on the abstract shape of

the magnetic field layout of an active region. The chief motivation for developing these abstract

topology-based features is domain-independent featurization with the intention of training ML

models of lower complexity, an important objective of this thesis. In this chapter, I will first

describe the magnetic field data that I use in this thesis, discussing the challenges that it poses

for machine learning. I also describe the labeling methodology, i.e. how each magnetic field image

is labeled as flaring or non-flaring. I then introduce the standard physics-based feature set that

has been popularly adopted by ML-based solar flare prediction literature. Finally, I introduce new

shape-based features by applying topological data analysis to magnetogram data. The following

chapters will use both of these feature sets to train and evaluate various ML models.

3.1 Data

Over the past few decades, various earth-based and orbital telescopes have been observing

the magnetic field of the Sun for the purposes of scientific study, as well as forecasting of solar

eruptions. Of these, one that has been widely adopted for ML-based solar flare prediction is the

Solar Dynamics Observatory (SDO) [79]. Launched in 2010, the SDO mission uses the Helioseismic

and Magnetic Imager (HMI) instrument [84] to observe full-disk vector magnetic field images of the

Sun’s photosphere at a cadence of 12 minutes. These images, available on the Stanford Joint Space

Operations Center (JSOC), capture the magnetic field evolution of the active regions (ARs) as they
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travel across the solar disk. Since these ARs only occupy a small part of the solar disk, it is beneficial

to cut out rectangles around them and use these cut-outs for flare forecasting. The Solar HMI Active

Region Patches (SHARPs) database, maintained by the JSOC, stores these patches, indexed by the

active region number and the time-stamp of observation. Multiple representations of the vector field

data are available in the database; in this thesis, I will be using the hmi.sharp cea 720s variant,

which stores the Lambert Cylindrical Equal-Area projection of the magnetic field — Br, Bθ and

Bϕ. Of the three field components in each SHARPs image, I use only the radial component, Br.

This is standard practice in ML-based flare forecasting work, since the radial surface field is used

as the boundary condition for computing global coronal magnetic fields that are not yet routinely

measurable [16]. Example images of the radial component are shown in Fig. 1.3 of Chapter 1.

In this thesis, I choose SHARPs records from May 2010 to December 2017, using a one-hour

cadence to reduce redundancy between consecutive images. This data set contains a total of 505, 872

records. Of these, some of the images lie close to the limb of the Sun, containing NaN values for

some of the pixels, and therefore unsuitable for training ML models. Thus, I filter out all images

containing NaN values from the dataset, resulting in a final dataset of 459, 042 images. For training

supervised ML models on this data, each record has to be categorized as flaring or non-flaring. The

flaring data is recorded by the NOAA Geostationary Operational Environment Satellite (GOES)

X-ray Spectrometer, which measures the solar X-ray flux intensity for wavelengths in the range 1-8

Å. The observations are available in the NOAA XRS flare catalog1 which contains records of the

location, time, and magnitude of all solar flares since 1975. This catalog categorizes flares into five

classes based on their peak X-ray flux intensity, from the weaker A, B and C, to the stronger M-

and X-class flares. The flux intensity, in W
m2 , for each of these classes is presented in Table 3.1. For

the period of May 2010 to December 2017, the GOES database reports 509 M-class flares and 36 X-

class flares. Focusing on the stronger flares, because of their potentially catastrophic consequences,

I label each SHARPs as flaring if an M1.0+ flare occurred (one with an intensity above 10−5 W
m2 )

within 24 hours after the observation time; otherwise, it is labeled as non-flaring. This yields a

1
www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-flares/x-rays/goes/xrs/
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Flare class X-ray flux in W

m2

A < 10−7

B 10−7 − 10−6

C 10−6 − 10−5

M 10−5 − 10−4

X > 10−4

Table 3.1: Peak output flux measured from the GOES X-ray band (1-8 Å).

data set containing 3872 active regions, with 453,273 SHARPs labeled as non-flaring and 5769 as

flaring.

This kind of imbalance is a major issue from a machine-learning point of view, as I will

discuss in the later chapters. I now discuss the two approaches for extracting features for each of

the magnetogram image of this dataset.

3.2 Physics-based features

Each record in the SHARPs data set includes a set of metadata containing values for a

variety of numerical attributes that represent properties of the corresponding active region. These

attributes, developed and refined by the solar physics community over the past 11 years, are given

in Table 3.2. They are predominantly derived from the raw magnetic flux observations and are

believed to be useful indicators of solar flares. Their values are calculated automatically and stored

by the JSOC group at Stanford2 . The vast majority of ML-based flare forecasting work has, as

mentioned above, used these 20 quantities as the feature set.

3.3 Shape-based features

The evolution of the magnetic fields in the Sun during the lead-up to a solar flare manifests

as an increase in the complexity of the structures on the magnetogram. This observation, which is

visually obvious from the shapes of the regions in Fig. 1.3, plays a critical role in the qualitative

classifications used in operational space-weather forecasts. The McIntosh classification system used

2 http://jsoc.stanford.edu/
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Acronym Description Units

LAT FWT Latitude of the flux-weighted center of active pixels degrees
LON FWT Longitude of the flux-weighted center of active pixels degrees
AREA ACR Line-of-sight field active pixel area MH
USFLUX Total unsigned flux Mx
MEANGAM Mean inclination angle, gamma degrees
MEANGBT Mean value of the total field gradient G/Mm
MEANGBZ Mean value of the vertical field gradient G/Mm
MEANGBH Mean value of the horizontal field gradient G/Mm
MEANJZD Mean vertical current density mA/m2

TOTUSJZ Total unsigned vertical current A
MEANALP Total twist parameter, alpha 1/Mm
MEANJZH Mean current helicity G2/m
TOTUSJH Total unsigned current helicity G2/m
ABSNJZH Absolute value of the net current helicity G2/m
SAVNCPP Sum of the absolute value of the net currents per polarity A
MEANPOT Mean photospheric excess magnetic energy density ergs/cm3

TOTPOT Total photospheric magnetic energy density ergs/cm3

MEANSHR Mean shear angle (measured using Btotal) degrees
SHRGT45 Percentage of pixels with a mean shear angle greater

than 45 degrees percent
R VALUE Sum of flux near polarity inversion line G

Table 3.2: The SHARPs feature set. Values for these 20 features, and the associated error estimates,
are available for each magnetogram in the SDO HMI database. Abbreviations: A and mA are Am-
peres and milli-Amperes, respectively; Mm is megameters, G is Gauss, MH is micro-hemispheres
and Mx is Maxwells.
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at the NOAA Space Weather Prediction Center, for instance, is based on characteristics like the

presence of umbras and penumbras. These spatial details are, however, largely absent from the

definitions of the SHARPs features of Table 3.2, most of which are aggregate quantities such as

means or totals. Thus it seems natural to explore whether features that characterize shape would be

useful in ML-based flare forecasting methods—not only because this is what human forecasters use

in their classifications, but also because AR shape in the photosphere has fundamental, meaningful

connections to the coronal magnetic field physics leading up to an eruption.

Topology is the fundamental mathematics of shape: it distinguishes sets that cannot be de-

formed into one another by continuous transformations. Part of this shape classification (homology)

corresponds to the number of components, 2D holes, 3D voids, etc., of a set. These numbers are the

“Betti” numbers, β0, β1, β2, . . ., where βk is the number of k-dimensional “holes.” Topological data

analysis (TDA), or computational topology, operationalizes this framework for situations where

one has only finitely many samples of an object. One way to create a shape from finite data is

to “fill in the gaps” between the samples by treating two points as connected if they lie within

some distance ϵ of one other. Building an approximating object at an ϵ-scale, TDA computes the

Betti numbers, then varies ϵ and repeats the process. The dependence of βk on ϵ provides an

approximate topological signature that captures the “shape” of an object at multiple resolutions.

A richer representation tracks the ϵ value at which each component or hole is formed, and at which

it is destroyed or merges with another. This results in a set of (birth, death) values of ϵ for each

component or hole. This methodology has proved to be quite powerful; it has been successfully

applied to a range of different problems ranging from coverage of sensor networks [25], to structures

in natural images [38], neural spike train data [90], and even the large-scale structure of the universe

[102].

My strategy for employing TDA in solar-flare forecasting, which I first proposed in [29], is

somewhat different from the approach described in the previous paragraph. Conjecturing that

the shapes of the level sets of a magnetogram are of central importance, I use the magnetic field

intensity Br as the variable parameter, rather than a distance ϵ. I threshold the SHARPs image,
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keeping only the pixels where the magnetic field intensity falls at or below some value (i.e., sub-

level thresholding) then compute the topology of the resulting object. By varying the threshold and

tracking the birth and death of each feature, I obtain a signature that captures the morphological

richness of a magnetogram in a manner that factors in the field strength as well as its spatial

structure. A brief synopsis of this TDA-based feature extraction process follows, more details are

given in [29].

I start by building what is technically known as a cubical complex [48] from the pixels in the

SHARPs image whose Br values fall below some threshold. Pixels are connected in such a complex

if they share an edge or a vertex. Since magnetograms are 2D images, only connected components

and non-contractable loops make sense—there is no higher-dimensional structure. Counting these

gives β0 and β1 for the given threshold field, and this computation is then repeated for a range of

Br thresholds.

Figure 3.1 demonstrates this procedure for a simple example. Panel (a) represents an image,

with each pixel color-coded according to intensity. Given an intensity value, a sub-level thresholded

image corresponds to those pixels with a magnitude at or below the threshold. The gray regions in

panels (b)-(f) represent such images for thresholds Br ∈ [0, 4]. Pixels that share an edge or a vertex

in a thresholded image become a component, which contributes to β0. Empty regions (black) in the

interior of a thresholded image that are surrounded a loop of connected gray pixels become holes,

incrementing β1. In panel (b), where Br = 0, the gray, thresholded image contains two components

separated by the empty, black region where the intensity is larger than zero; thus β1 = 2. There

is a single non-contractable loop in the image (the red curve) that encloses the empty region, so

β1 = 1. Increasing the threshold to Br = 1, panel (c), causes the image to enlarge, shrinking the

hole and splitting it into two; thus β1 = 2 (the green box corresponds to a loop in the image since

gray pixels are connected at vertices). The two components from panel (b) merge in panel (c), and

for the remainder of the thresholding process, the number of components remains one, so β0 = 1.

Upon raising the threshold (panel d), the dominant hole splits into seven while the single pixel hole

remains intact, bringing the number of holes to eight (β1 = 8). At Br = 3 in panel (e), two holes
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Figure 3.1: Topological data analysis for the example “image” in panel (a). The gray pixels in
panels (b)-(f) represent the cubical complex of the image for five sub-level thresholding values,
Br = 0, 1, 2, 3, and 4. For each complex, the (β0, β1) values are given. The colored loops represent
the holes in the thresholded images.
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Figure 3.2: The β1 persistence diagram for Fig. 3.1 The color scale represents the multiplicity, i.e.,
how many points share the same (birth, death) values.

disappear or die; thus β1 = 6. Finally, for Br = 4 in panel (f), the number of holes is reduced to

three as three of the holes are filled in by new image pixels. If the threshold were raised to five

(not shown), all pixels would be filled so that the image would have β0 = 1 and β1 = 0.

A number of different representations have been developed by the TDA community to capture

information about the scale and complexity of the different structures [38]. One of the most

common, the persistence diagram (PD) [34], is a plot of the birth and death filtration values for

each feature (e.g., the threshold value of Br). Figure 3.2 shows a β1 PD for the example of Fig. 3.1.

Each point in this PD corresponds to the (birth, death) thresholds for a hole in the filtered image.

We use color to indicate the number of holes with same lifespan. In our example, there are three

holes that live until Br = 5. The longest-living hole, indicated by the red border in Fig. 3.1, is born

at Br = 0, and thus corresponds to the point (0,5) on the PD. The single pixel hole (green loop) is

born at Br = 1, giving the point (1, 5) on the PD, and the hole with the magenta border is born

at Br = 2 so it appears on the PD at (2, 5). There are also five relatively short-lived holes; three

of them (with yellow, orange and light-green borders) are represented by the yellow point (2, 4) on

the PD. The remaining two are the shortest-lived (cyan and blue) and correspond to (2, 3). Points

that lie far from the diagonal on a PD are said to be persistent, as their birth and death values

are widely separated. Points near the diagonal, which have short lifespans, are often formed due
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Figure 3.3: β1 persistence diagrams generated from the positive magnetic flux density values of the
magnetograms of Fig. 1.3. A clear change in the topology of the field structure is observed well in
advance of the major flare eruption that occurred in this AR at 0910 UT on 6 September 2017.

to noise in the data [38].

One can similarly construct a β0 persistence diagram to capture the birth and death of the

connected components in the analysis. For the example here, this is not too interesting, since apart

from the brief appearance of a second component at Br = 0, there is only one component for all

thresholds. This holds true for the β0 PDs of actual magnetograms as well—they do not add much

information to the analysis. For this reason, I restrict further analysis to β1 PDs.

Persistence diagrams (PDs) of real-world images can be far more complicated. Figure 3.3

shows β1 PDs for the AR from Fig. 1.3. As in Fig. 3.1, these persistence diagrams show only the

positive sub-level thresholds for Br. The three images in Fig. 3.3 clearly bring out the evolving

structure of this AR. The relatively simple structure of the fields in Fig. 1.3(a) creates one long-lived

hole in the PD of Fig. 3.3(a) at approximately (0, 2600), corresponding to the central white spot,

along with a large number of short-lived holes near the diagonal, which correspond to short-lived

structures likely due to noise. The persistence diagram in panel (b), 24 hours before an X-class

flare, has a large number of long-lived holes, reflecting the complexity of the structure of the active

region at this time. After the flare, the PD in the rightmost panel is still complex, but the number

of off-diagonal holes has reduced—the number of holes with a lifespan of 500 Gauss or more, for

example, drops from 70 in panel (b) to 61 in panel (c).
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We can also construct separate PDs for the negative flux regions by choosing negative thresh-

old values, though in this case it is appropriate to use “super-level” instead of sub-level thresholding.

Thus for this case I first include—for the threshold Br = 0—all pixels with Br ≥ 0, and then filter

for increasingly negative values of Br. For example, in Fig. 3.1(a), this process will leave a hole

surrounding the blue pixels for a super-level threshold of Br = −3. For the AR of Fig. 1.3, the

resulting PDs (not shown) exhibit a similar evolution pattern to those in Fig. 3.3.

These results suggest that PDs can be useful indicators of impending solar flares. To oper-

ationalize this in the context of machine learning, however, there is an additional challenge. ML

models generally require data that have a fixed dimension, but the PD contains an arbitrary number

of (birth, death) tuples. Various approaches to this “vectorization” problem have been proposed

[2, 13, 17, 18, 19, 54, 55, 82]. Here I use a simple technique: I choose 10 equally spaced thresholds

with Br > 0 for sub-level thresholding and 10 thresholds with Br < 0 for super-level thresholding,

setting the maximum |Br| = 5000G; this gives a range that covers the magnetic flux observed

in most active regions.3 The threshold spacing was chosen to ensure a good balance between

redundancy (i.e., closely spaced, highly similar images with identical β counts) and adequate rep-

resentation (avoiding a spacing so coarse as to miss important information). This was validated

by experimentation using configurations of various spacing values, and determining the one which

gave the most optimal prediction score using standard machine learning models described in the

next chapter. As future work, a more rigorous approach could be to study the variation of the β

counts over a very fine initial grid of resolutions. One could then use it to choose a final adaptive

grid that is coarser where the β counts vary slowly as a function of threshold, and is finer where

they vary rapidly.

This process produces two 10 × 10 discrete PDs, one for positive and one for negative Br.

Instead of this full information, I construct a 10-dimensional vector from each PD by simply count-

ing the number of “live” holes at each threshold. These 20 values make up the feature set to be

3 Specifically the thresholds are {263G, · · · , 4473G, 5000G} for sub-levels and {−263G, · · · ,−4473G,−5000G} for
super-levels.
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used for training ML models in Chapter 4.



Chapter 4

Modeling Strategies: Is More Complexity Better?

In Chapter 3, I discussed two different feature sets that are derived from raw solar magne-

togram images. The first feature set, also the more popularly used one, consists of physics-based

attributes (called SHARPs features) that have been carefully handcrafted by domain experts, while

the second feature set is the abstract topological properties proposed in Section 3.3. In ML-based

solar flare prediction literature, a host of machine learning models have been developed, most of

which use the SHARPs features. These range from simpler statistical models like linear discriminant

analysis (LDA) to more complex models such as neural nets (see Chapter 2 for a complete survey

of the ML models used in different papers). While some papers in this literature have provided

a performance comparison of different models, a systematic comparison in terms of both model

complexity and performance has not been done before. Additionally, for a fair model performance

comparison, each model needs to be optimized in terms of its hyperparameters, a methodology

that is not necessarily followed in existing studies. In this chapter, I aim to tackle both of these

issues by proposing a systematic comparison of ML models in terms of both performance and com-

plexity using an automatic hyperparameter tuning framework. I specifically address two important

research questions:

• How does increasing model complexity affect 24-hour forecast accuracy for solar flares?

• Are there useful ways to move beyond the set of physics-based attributes in the SHARPs

metadata?
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The outline of this chapter is as follows. First I describe in brief the cohort of ML models

used in my comparison study. Next, I dive into the details of the hyperparameter tuning framework

for optimizing these models. I then discuss the results from the comparison experiments, including

the effects upon model performance for different forecasting windows. I also discuss the perfor-

mance comparison between the baseline SHARPs and the novel TDA-based features over the four

different models. Taking the complexity/performance analysis further, I investigate how lowering

the complexity via feature set reduction affects the model performance.

4.1 Machine Learning Models

In this study, I use four different models: logistic regression, multilayer perceptrons, long

short-term memories, and extremely randomized trees. For each of these models, I tune the relevant

hyperparameters as explained in Section 4.2, then compare the results on the flare-forecasting

problem across different feature sets and models trained on the dataset described in Section 3.1.

In the following paragraphs, I give brief descriptions of these methods; for more details, please see

[39, 73] or any other basic machine-learning reference.

Logistic regression, perhaps the simplest of all models in the ML literature, uses a sigmoid

function as the basis function to fit the model (h) to the data (x):

hθ(x) =
1

1 + e−θT x

Here, θ is a vector of n weights that are applied to each element of the n-dimensional input vector.

For x ∈ Rn, the model output hθ(x) takes the range [0, 1]. In the context of the flare-prediction

problem, hθ(x) represents the flaring probability, which we then convert to a categorical “flare/no-

flare” output using a threshold of 0.5. That is, an input x with a model output value of hθ(x) < 0.5 is

classified as non-flaring, else is classified as flaring. Training this model is a matter of determining

values for θ; we accomplish this using the LBFGS algorithm of [64]. The only hyperparameter

involved in this process is the class weight that is used in the gradient descent: the higher the

weight for one class, the more the model is penalized for getting the classification for that class



25

wrong.

A multilayer perceptron or MLP is a type of feedforward artificial neural network contain-

ing multiple layers of nodes or neurons, with the outputs of each layer propagated forward to the

next layer. These canonical ML models contain an input layer, some number of hidden layers, and

an output layer. The output of each neuron is a nonlinear function of its inputs with a single free

parameter (typically a multiplicative constant) that is “learned” during training using some gradi-

ent descent optimization on a suitable loss function: in this case, the weighted binary cross-entropy

loss function, as described in [29]. We employ the Adagrad optimizer [33] to update the weights

during gradient descent and an architecture with five dense layers with 36, 24, 16, eight and two

nodes, respectively, a configuration optimized via a manual trial-and-error approach. There are

two important hyperparameters here: the class weight, which plays a similar role as in the logistic

regression model, and the L2 regularization constant in the loss function, which ensures that none

of the neuron weights get too large, which would lead to overfitting.

Active regions evolve over time in ways that are meaningful from the standpoint of solar

physics. Logistic regression and MLPs cannot leverage the information that is implicit in a sequence

of magnetograms, as their forecasts are based on individual snapshots. For that reason, a thorough

evaluation of ML-based solar flare forecasting should include methods that factor in the history of

the observations. To that end, I use a long short-term memory (LSTM), which is designed to

work with temporal sequences of data. LSTMs operationalize this via the addition of a feedback

loop in the hidden layer that takes the state calculated in time step tn−1 and feeds it to the same

network when processing the sample at time step tn. The LSTM used in this study contains

the same number of hidden layers as the MLP discussed above, but with such a feedback loop

incorporated in one of the hidden layers. This strategy for propagating information forward in

time is powerful, but it can complicate the training of these models. Simple gradient descent,

for instance, can be problematic if there are long-term temporal dependencies in the data, since

the gradient can decay as it is propagated through the timesteps. To address this, LSTM nodes

often incorporate mechanisms called “forget gates” that limit the number of steps through which
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information is propagated forward in time. This limit is an important choice, and one that is

generally tuned by hand for a given model and data set. We take that approach here, finding that

a sequence length of ten works well in our application. Like MLPs, members of this class of models

have two hyperparameters that significantly impact their performance: the weights in the binary

cross-entropy loss function and the L2 regularization constant.

Decision trees are a wholly different class of ML models. As the name suggests, they have

a tree-like structure, where each branch point represents a decision based on some attribute of

the data and the leaf nodes correspond to the salient classes for the problem at hand (flaring and

non-flaring, in our case). The values of the different attributes of each input datum dictate the path

taken through the tree during the classification process, eventually routing the outcome to one of

these classes. A major advantage of this strategy is that its results are an indication of how well

each individual feature is able to divide the data set: a major step towards explainability, a critical

challenge in modern AI. The main disadvantage of decision trees is their tendency for overfitting.

One can mitigate this by building an ensemble of decision trees using a different randomized feature

subset selection at each branch point—a so-called “Random Forest”—and use the mean or mode of

their predictions to classify a sample. The extremely randomized tree (ERT) [37] that I use

in this thesis is a variant of this approach. Training these models involves three hyperparameters:

the class weight; the minimum impurity decrease, which controls when nodes will split; and the

number of the trees in the ensemble, which plays a role in overfitting.

This set of choices covers the full gamut of ML methods, in terms of architecture (e.g., tree-

based or not) and complexity (number of free parameters), making it a sensible evaluation set for

the research question. There is another issue, though. Since the performance of an ML model

depends on both the data and the training process, and because that training process is governed

by the model’s hyperparameters, a fair comparison of two different ML models requires tuning their

hyperparameters individually, as described next.



27

4.2 Model Evaluation and Tuning

Before I dive into the details of hyperparameter tuning, a quick word on how the above ML

models are evaluated on the available data. The dataset, consisting of 453, 273 magnetogram images

over 3872 active regions, has already been described in the previous chapter. Training, optimizing

and evaluating ML models requires splitting this data into training, validation, and testing sets

respectively. A high-level summary of this procedure follows; see Section 3.1 for the full details.

I assign all images of a given AR to a single set, rather than choosing the images for each set

randomly. This ensures that the data for the same AR at different points in its evolution does not

appear in both the training and testing sets, thus preventing a possible artificial score improvement

from testing the model on data related to that used for training. Of the 3872 active regions, I use

70% for training (for fitting the model to the data) and 30% for the testing (to evaluate the trained

and tuned models on previously unseen data). Notice that I do not outright reserve any samples for

the validation set. I use k-fold cross-validation to choose the validation samples from the training

set; I will discuss this in detail in the next section. I produce ten different training-testing splits

through randomized selections, each generated with a different seed. These serve as ten trial runs

of each experiment.

To optimize the hyperparameters for an ML model, one evaluates its performance on a

subset of the data, called the validation set, for different hyperparameter combinations. The best-

performing combination is then used to train the model on the training set before it is evaluated

on the corresponding test set. Using distinct subsets of the data for these three purposes ensures

that the processes are completely independent, and thus not artificially boosted. Instead of using

a single validation set, a better strategy is to perform what is called a k-fold cross-validation. In

this approach, the training set is divided randomly into k subsets, or “folds,” of roughly equal size.

For each hyperparameter combination being evaluated, one of the k folds acts as the validation set

and the remaining k − 1 folds are merged together into the training set. After being trained on

this k − 1-fold training set, the model is then tested on the 1-fold validation set. This process is
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repeated using each of the k folds, individually, and the success of the hyperparameter combination

is judged by the mean of the model performance metric across these runs.

This process is illustrated in Figure 4.1. The first step is the standard random splitting of

the data set. I repeat this ten times using a 70%-30% ratio to generate 10 trial runs, then generate

k folds on each of those training sets. In machine-learning practice, k is generally chosen as 3, 5,

or 10. In my study, k = 5 worked well for obtaining sufficiently long training and validation sets.

A second important decision in this tuning process is the sampling method for the hyperparame-

ter value combinations. Various strategies have been proposed for this in the ML literature: grid

search, random sampling, Bayesian sampling, etc. Here, I use the Bayesian optimization method of

[69], a Gaussian-process based approach that uses a mixture of exploration and exploitation to opti-

mize hyperparameter combination samples. I employ the Python implementation BayesOptSearch

and use the ray.tune Python library [62] to deploy the sampling and evaluation process on the

graphics processing unit. As shown in Figure 4.1, the BayesOptSearch method iteratively samples

40 hyperparameter combinations and chooses the combination that gives the best performance on

the validation set, as measured by some metric that compares the forecast to the ground truth (the

choice of this metric has some important implications; I use the True Skill Statistic, as described

further in the following section.) For BayesOptSearch, I use the upper confidence bound as the

acquisition function with the exploration parameter κ set to five in order to strike a good balance

between exploitation and exploration in the sampling process; see [91] for more details. That sam-

pling process begins with 10 uniformly chosen samples over the hyperparameter space, continuing

in steps of 10 until the algorithm has explored 40 different hyperparameter combinations.1 The

model is then trained on the full training set using the best-performing hyperparameter values

before being evaluated on the 30% test set.

Not all hyperparameters require this kind of complex, computationally intensive treatment;

some of them can be quite effectively tuned using a manual trial-and-error approach. I employ a

two-phase model-tuning strategy, first performing a hand optimization of hyperparameters like the

1 i.e., using initial random steps in ray.tune, with max concurrent trials=10
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Figure 4.1: Hyperparameter tuning workflow.
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number of model layers, the nonlinear activation function, the optimization function, etc.—choices

that are made from among a finite number of options, and that generally impact all metrics in a

similar way. This is followed by the automated approach described above for tuning hyperparam-

eters such as the loss function weights or the regularization penalty. Automatic tuning of these

parameters is important for two reasons. Firstly, they take on continuous values, so hand-tuning

them to a precise number becomes cumbersome. Secondly, their effects are not independent: chang-

ing one of them often improves one metric at the cost of another—a situation where an automated,

systematic exploration of the search space can be especially appropriate. It is entirely possible, of

course, to use the automated approach for all the hyperparameters, but that significantly increases

the computation time.

4.3 Model Comparison Results

In this section, I compare the relative prediction performance of the machine-learning based

flare-forecasting models described in Section 4.1 for feature sets covered in Chapter 3. After ex-

tracting values for those features from the labeled data set, I carry out the hyperparameter tuning

procedure outlined in the previous section on each model/feature-set combination, using the k-fold

cross validation approach on the 10 datasets, then train the model with optimized hyperparameters

on the corresponding training set. To evaluate the results, I run the model on the corresponding test

set and compare its 24-hour forecasts to the ground truth using four standard prediction metrics:

accuracy; the true skill statistic or TSS (also known as the H&KSS), the Heidke skill score (HSS2),

frequency bias (Bias), and F1, which is the harmonic mean of precision and recall. These metrics,

whose detailed formulae can be found in [6, 9, 24], are derived from the entries of the contingency

table—i.e., the numbers of true positives (TP), false positives (FP), true negatives (TN) and false

negatives (FN), and are summarized in Table 4.1.

In the context of this problem, a flaring magnetogram is considered as a positive while a non-

flaring magnetogram is considered a negative. Since our data set includes 5769 of the former and

447504 of the latter, accuracy is not a very useful metric here; a simple model that classified every
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Metric Formula

Accuracy TP + TN
TP + TN + FP + FN

True Skill Statistic (TSS) TP
TP + FN − FP

FP + TN

Heidke Skill Score (HSS2)
2(TP×TN−FP×FN)

(TP + FP)(FP + TN) + (TP + FN)(FN + TN)

F1
TP

TP+ 1
2
(FP+FN)

Bias TP+FP
TP+FN

Table 4.1: Metrics used for evaluating the binary forecasting models.

input as non-flaring would have a high accuracy of 98.7%. The different skill scores strike various

balances between correctly forecasting the positive and negative samples. TSS ranges from [−1, 1]

and HSS2 from [− 2PN
P 2+N2 , 1], where P and N are the total positive and negative samples in the

dataset being evaluated. In both cases, these scores are 1 when there are no false positives or false

negatives, while a score of 0 means the model is doing only as well as a random forecast: that is,

an “always no-flare forecast.” Bias has the range [0,∞], where Bias < 1 indicates underforecasting

(many false negatives), and Bias > 1 implies overforecasting (many false positives). F1 has the

range [0, 1] with 1 indicating a perfect forecast score. These metrics, all of which are used broadly

in the flare-prediction literature, represent a good span of ways to quantify the performance of ML

models.

As discussed in Section 4.1, hyperparameters for each model must be individually tuned in

order to provide a fair comparison of their performance. The choice of metric plays a subtle role

here, since hyperparameters can have different effects on the various metrics. Tuning performance

based on values of one of them, then, can impact performance as measured by the others. The

choice of which metric to use for a particular problem is often left as a decision for the forecaster

based on their priorities: some might wish to have a model that prioritizes the TSS score (e.g.

[30]), while others might prefer a model that has lower false positive rate [31] or is more reliable, as

defined in [76]. In this application, a number of choices are possible. Optimizing based on accuracy
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would be a particularly bad choice here, as it would lead to models defaulting to the “always no-flare

forecast” configuration. I use TSS in my work, choosing hyperparameters that maximize its values

via the k-fold cross-validation described above. TSS is a common choice in the flare-forecasting

literature, as well as the broader deep-learning literature. It does come with limitations, however;

optimizing the TSS score can lead to high false positives due to the high dataset imbalance, thereby

impacting some of the other metrics like precision, F1, and Bias. This effect manifests in the results

described below.

These experiments were carried out on an NVIDIA Titan RTX (24 GB, 33 MHz) GPU for

the deep-learning models (MLP, LSTM, and CNN), and on an Intel i9-9280X (3.30 GHz) CPU for

the simpler models (logistic regression and ERT). 2 Run times ranged from 2.5 seconds to train and

0.02 seconds to test each logistic regression model on the SHARPs feature set to 210 seconds and 9

seconds for the LSTM model using the combined feature set. The run time of the hyperparameter

tuning procedure also depended on the model and the data, ranging from 40 seconds for each

logistic regression model with the SHARPs feature set to just under two hours for each LSTM

model with the combined feature set.

Table 4.2 compares the performance of the various models across three feature sets: the tra-

ditional physics-based features that appear in the SHARPs metadata, the shape-based attributes

extracted from each magnetogram image using topological data analysis via the procedures de-

scribed in Section 3.3, and a third set that combines the two. Note that the topological features

perform just as well as the SHARPs features. Moreover, the combined feature set does not provide

any improvement over either of its two constituents, confirming that neither feature set provides a

significant advantage over the other. This is an answer to the second research question: abstract

spatial properties of active region magnetograms appear to give ML methods just as much traction

on flare-forecasting problems as the set of physics-based SHARPs attributes, thus providing a way

to move beyond these standardized SHARPs metadata features.

2 Different machine-learning models lend themselves to different types of hardware, depending on how well they
parallelize. The machine used to carry out these experiments affects only the run time, not the results.
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Model Feature Set # of Parameters Accuracy TSS HSS2 F1 Bias

Logistic Regression
SHARPs 21 0.87 ± 0.01 0.79 ± 0.01 0.13 ± 0.02 0.15 ± 0.02 11.44 ± 1.75

Topological 21 0.87 ± 0.01 0.78 ± 0.02 0.12 ± 0.02 0.14 ± 0.02 11.88 ± 1.40
Combined 41 0.87 ± 0.02 0.79 ± 0.02 0.13 ± 0.02 0.15 ± 0.02 11.76 ± 1.98

ERT
SHARPs 332 0.84 ± 0.01 0.79 ± 0.01 0.11 ± 0.01 0.13 ± 0.01 13.96 ± 0.81

Topological 483 0.85 ± 0.02 0.76 ± 0.04 0.11 ± 0.02 0.13 ± 0.02 13.34 ± 1.93
Combined 340 0.86 ± 0.02 0.77 ± 0.03 0.12 ± 0.02 0.14 ± 0.02 12.27 ± 2.12

MLP
SHARPs 2198 0.85 ± 0.02 0.76 ± 0.02 0.11 ± 0.02 0.13 ± 0.02 13.13 ± 2.42

Topological 2198 0.85 ± 0.02 0.76 ± 0.02 0.11 ± 0.01 0.13 ± 0.01 13.56 ± 1.53
Combined 2918 0.86 ± 0.03 0.76 ± 0.03 0.11 ± 0.02 0.13 ± 0.02 13.10 ± 1.78

LSTM
SHARPs 6662 0.87 ± 0.02 0.75 ± 0.02 0.12 ± 0.02 0.14 ± 0.02 11.90 ± 1.93

Topological 6662 0.85 ± 0.02 0.75 ± 0.03 0.11 ± 0.02 0.13 ± 0.02 13.28 ± 2.11
Combined 7382 0.86 ± 0.01 0.75 ± 0.02 0.12 ± 0.01 0.14 ± 0.01 12.00 ± 1.63

Optimal Scores 1.0 1.0 1.0 1.0 1.0

Table 4.2: 24-hour forecast performance of different machine-learning models using three different
feature sets. The third column shows the number of free parameters needed to classify a single
data sample. In case of the ERT, this is equal to the average depth of the tree (the path taken by
a data sample from the root to a leaf node in the tree).
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A between-models comparison addresses the first research question posed at the beginning:

whether model complexity is an advantage in the context of this problem. The numbers in the table

suggest that the answer is no. Indeed, the general trend in the TSS scores shows that increased

complexity results in slight performance reduction. That is, while the MLP and LSTM models

have orders of magnitude more parameters, the simpler logistic regression and ERT models in

fact perform marginally better, as judged by the TSS scores. (For the other metrics, there is no

significant change across the four models.) The lack of “value added” for the more-complex models

may simply be due to data limitations: in general, the higher the complexity of a machine-learning

model, the more data is needed for training. If the training set is too small, the model will overfit

that data, causing it to fail to generalize well to the testing set. Simpler models, by their very

nature, avoid this trap. Note that while ≈ 460000 samples might seem large, many of the images

in the solar flare data set are similar, and many of those are non-flaring. In other words, the total

amount of information—i.e., the number of sufficiently diverse and useful samples—is small in this

data set. Determining whether data limitations are in play is an important open problem in current

ML research. One way to approach it is to compare the values of the weighted binary cross-entropy

loss function across the models; another is to observe the patterns in the convergence over the

training process. Both are problematic for the more-complex models in our study. The ERT model

does not generate a loss, nor does it have an iterative training process. For models that do have

an iterative training procedure (MLP and LSTM), I carried out the second test, finding that the

validation loss and training loss both reached asymptotes during the training process, suggesting

(but of course not proving) that overfitting is not at issue. The first approach is not useful in the

case of the LSTM because one-to-one loss comparisons are problematic in such models due to the

variation in the number of samples in the training and testing sets that occurs when the original

data are converted to temporal sequences by the feedback loop in the model. In the future, as

more data is recorded by SDO/HMI, we will be able to learn—by re-running these experiments

on longer, richer data sets—whether the lack of value-added for model complexity is an artifact of

data limitations or something more fundamental.
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To assess the effects of the prediction horizon, I carried out a set of experiments using the

best-performing model/feature combination from Table 4.2—logistic regression with the combined

feature set—and generated forecasts for 3, 6, and 12 hours in addition to the previous 24 hour

case. The results are shown in Table 4.3. As one would expect, the shorter the forecast window,

the higher the accuracy, but the story in the other columns of the table is more complicated: TSS

is roughly similar for all forecasting windows, while HSS2, F1, and Bias actually worsen as the

forecast window shrinks. This counterintuitive result is almost certainly due to an increase in

imbalance that is created by shortening the window: the number of negative samples in the data

set increases at the expense of the positive samples (for each flare, fewer magnetograms will be

labeled as “flaring within m hours” if m is smaller). This is, again, a side effect of tuning on the

TSS score, as discussed above: optimizing that particular score leads to a high false positive rate

for a severly imbalanced dataset.

The LSTM is not only the most complicated model in this study—by a factor of three, as

judged by the number of free parameters—but also the only one that uses the AR history. In

view of this, its lack of performance is particularly striking. The feedback loop in this architecture

makes it difficult to deconvolve the effects of the temporal history and the number of parameters,

so we cannot say for sure whether or not the former, alone, confers any advantage, but all of the

additional free parameters certainly do not appear to help.

Forecasting Window Accuracy TSS HSS2 F1 Bias

24 hours 0.87 ± 0.01 0.79 ± 0.01 0.13 ± 0.02 0.15 ± 0.02 11.44 ± 1.75
12 hours 0.89 ± 0.02 0.82 ± 0.01 0.10 ± 0.03 0.11 ± 0.03 17.13 ± 4.10
6 hours 0.91 ± 0.01 0.82 ± 0.02 0.07 ± 0.02 0.07 ± 0.02 25.17 ± 4.83
3 hours 0.93 ± 0.01 0.79 ± 0.05 0.05 ± 0.01 0.05 ± 0.01 33.18 ± 4.60

Table 4.3: Logistic regression forecasts for different horizons.
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4.4 Feature-Set Reduction

As part of the training process, ML models learn which attributes of the input data, in which

combinations, are meaningful. Their efficiency in doing so depends on the amount and complexity of

the data, and also—importantly—on the way it is represented. In general, a larger feature set leads

to increased model complexity, which in turn can result in overfitting and increased computational

time [39], as well as requiring more training data. The nature of the individual features also matters.

Features that are not salient, or that are redundant, slow down the learning process. For these

reasons, it is important to minimize the number of features and maximize their relevance.

A good way to approach this problem is to apply dimensionality-reduction techniques to

the feature space in order to find the most relevant subspaces. A variety of methods have been

proposed for this, including principal component analysis, linear discriminant analysis, t-distributed

stochastic neighbor embedding [98], uniform manifold approximation and projection [70], etc. I use

principal component analysis (PCA) because of its simplicity and effectiveness. It determines an

alternative basis set to represent the data by iteratively constructing an orthogonal basis such

that the variance of the data along the first dimension is maximal, the second dimension is in the

direction of maximum variance that is orthogonal to the first dimension, and so on. One then

typically keeps the first l, say, principal vectors that together account for some chosen fraction of

the total variance. This approach, applied to a given feature set with n dimensions, effectively

reduces the dimensionality from n to l. Note that any or all of the original n values may appear in

the coordinates of each of these l basis vectors; I will discuss this more below.

Applying this approach to the ten randomly shuffled training sets discussed previously—first

using the SHARPs feature set of Sec. 3.2, then the shape-based feature set of Sec. 3.3, and finally

their combination—gives Fig. 4.2. For the SHARPs feature set, the first principal component cap-

tured 38% of the variance; adding a second component increases the total to 60%. The topological

feature set is much more anisotropic: its first principal component captures almost 85% of the

variance of the data set, a level that requires four principal components in the SHARPs feature set.
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Figure 4.2: Cumulative explained variance plots of the principal components for the three feature
sets, determined from the ten training sets. The darker curves represent the medians of the ex-
plained variance, while the shaded regions around them indicate standard deviations. The dashed
line marks the 98.5% level.
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This is a direct reflection of the relevance of the TDA features for the purpose of flare prediction—as

well as an indication of how many principal components will be needed as discriminating features

for the corresponding ML models.

A detailed analysis of the reduced features is revealing. The coefficients of the first principal

component—i.e., the weights of each SHARPs attribute in the coefficients of that basis vector—for

one of the ten training sets are shown in Fig. 4.3(a). These results are to some extent consistent with

the science: the R VALUE and USFLUX attributes, for instance, which are known to be important

for flare prediction, are weighted heavily in the first principal component of the SHARPs set.

Note, though, that six other quantities are also weighted heavily in Fig. 4.3(a); moreover, this first

principal component does not capture much of the variance, so one should not over-interpret its

weights. Rather, one must think about all of the principal components for each feature set, acting

together as a basis set for the new feature space. (A feature that is totally absent from every

principal component, of course, is certainly not salient, but a low-weighted feature in the first one

could have a high weight in another.) That being said, interpretation of Fig. 4.3(b) is somewhat

different because, as Fig. 4.2 shows, the first principal component in the topological feature set

captures a very large fraction of the variance, making it somewhat more safe to analyze in isolation.

In view of that, it is interesting to note that the topological features at lower magnetic fluxes are

weighted more heavily in the first principal component, and with some +/− symmetry. This makes

sense in view of the nature of the thresholding used in their construction: a high threshold value

removes much of the small-scale structure of the magnetogram, leaving only the highest-magnitude

pixels. Finally, note that the first principal component from the combined feature set is a weighted

combination of both SHARPs and TDA features. As discussed later, this can have implications

regarding model performance.

Again, PCA only finds a new basis set for the feature space; it does not produce a feature

ranking. The previous paragraph is only to explain how one principal component is represented in

terms of the original features, in one particular split of the data. While that narrative offers some

possible ties to the physics, it does not represent a comprehensive, formal analysis of the feature
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(a) (a) SHARPs features set (b) (b) Topological feature set

(c) (c) Combined feature set

Figure 4.3: The weights of the SHARPs, topological, and combined features in the first principal
component of the corresponding feature set for one of the ten training sets examined in this paper.
Labels of the topological features indicate the flux level of the threshold value used to construct
those features.
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importance in the classification problem. I will discuss a detailed ERT-based feature ranking later

in Chapter 5.

I address the problem of model complexity by performing reduction of the dimension of the

feature sets, re-processing the data sets to calculate values for the PCA-based features—nine, three,

and 11 dimensions from the orthogonal PCA representation for the traditional, topological and

combined feature sets, respectively—then re-tuning the model hyperparameters and repeating the

train/test procedure. The results are shown in Figure 4.4. For all three feature sets, the performance

of the full and reduced-order models are similar for the logistic regression, MLP, and LSTM models,

as judged by TSS scores. This extends to the other metrics as well, as demonstrated for the

topological features across all four models in Tbl. 4.4. In other words, we can successfully simplify

these three types of models by reducing the number of features without sacrificing performance.

In view of the discussion above about data limitations, this is an obvious advantage, as models

that work with smaller feature sets have fewer free parameters that must be learned from the same

training data.

The ERT model, however, departs from this pattern, demonstrating marked reductions in

TSS scores with the PCA-reduced feature set. This effect is strongest for the topological feature

set, followed by the SHARPs feature set, with the combined feature set seeing the smallest impact.

A possible explanation for this performance degradation with dimensional reduction lies in the way

Model Feature Set Accuracy HSS2 F1 Bias

Logistic Regression
Full 0.87 ± 0.01 0.12 ± 0.02 0.14 ± 0.01 11.88 ± 1.40

Reduced 0.87 ± 0.02 0.13 ± 0.02 0.15 ± 0.02 11.85 ± 2.04

ERT
Full 0.86 ± 0.02 0.11 ± 0.02 0.13 ± 0.02 13.34 ± 1.93

Reduced 0.87 ± 0.04 0.11 ± 0.03 0.13 ± 0.03 11.69 ± 3.56

MLP
Full 0.85 ± 0.01 0.11 ± 0.01 0.13 ± 0.01 13.56 ± 1.53

Reduced 0.86 ± 0.02 0.11 ± 0.02 0.13 ± 0.02 12.77 ± 2.31

LSTM
Full 0.85 ± 0.02 0.11 ± 0.02 0.13 ± 0.02 13.28 ± 2.11

Reduced 0.85 ± 0.02 0.13 ± 0.02 0.11 ± 0.02 13.14 ± 2.43

Table 4.4: Performance comparison of the four different models trained on the complete topological
feature set and its PCA-reduced counterpart. It can be seen that reducing the topological feature
set does not impact the model performance.
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(a) Logistic Regression (b) ERT

(c) MLP (d) LSTM

Figure 4.4: TSS score comparison in the form of box-whiskers plots across various models, trained
on the three feature sets and their PCA reduced counterparts over 10 trials. The central line each
box represents the median TSS score while the top and bottom edge of the boxes represent the 25
and 75 percentiles over the 10 trials. The whiskers on either sides are the upper and lower bounds
for the scores in each experiment, and the dots represent the extremities. After PCA reduction, the
SHARPs feature set is reduced from 20 to 9 features, the topological set from 20 to 3 features, and
the combined set from 40 to 11 features. For all models except for the ERT, the reduced feature
set does just as well as the complete feature set.



42

ERTs are constructed. In a k-feature ERT,
√
k randomly chosen features are typically considered

when determining the split at each branch point. A reduction in the number of features, then,

effectively confines the exploration of the model-fitting search space. This could result in suboptimal

splits at each branch point that do not effectively separate the positive and negative samples,

thereby impacting the model performance. If this is indeed the case, one can work around it, to

some extent, by modifying the training process to instead use all k features for choosing the best

split. In this application, doing so raised the TSS scores for the topological and combined feature

sets to the point where there is no statistically significant difference between the reduced and the full

features, thereby validating the conjecture suggested at the beginning of this paragraph about the

effects of the small number of features on the ERT construction.3 For the dimensional-reduction

experiment with the SHARPs feature set, however, increasing the number of features used in the

split did not have much effect. This disparity is interesting: it suggests that the presence of shape-

based features in the combined set—which allows the PCA algorithm to use them in combination

with the SHARPs features—helps make up for the shortcomings of those physics-based features.

This is in accordance with the PCA results in Figure 4.3(c) of Section 4.4, where both SHARPs and

topological features are highly weighted in the first principal component of the combined feature

set.

As a next step, one could investigate other methods for feature-set reduction, for example

kernel-PCA [85], t-distributed stochastic neighbor embedding (tSNE) [98], uniform manifold ap-

proximation and projection (UMAP) [70], etc., that go beyond the linear reduction approach used

in PCA. It would be interesting to see if the reduction using these techniques is more efficient

than PCA, i.e. whether it leads to a smaller reduced feature set than PCA without impacting

performance.

3 This is a current topic of discussion in the ML community, but no consensus has yet been reached.
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4.5 Summary

Machine learning-based solar flare prediction has been a topic of interest to the space weather

community for some time now. Various machine-learning models, ranging from simple tools like

logistic regression to incredibly complex “deep-learning” models such as multilayer perceptrons

(MLPs) and long short-term memories (LSTMs), have been used to map the correlation between

physics-based magnetic field features and the flaring probability in the near future. There have been

studies that compared different machine-learning flare-forecasting models [6, 35, 74]; however, the

dominant focus of these papers has been on performance comparison and they only used the basic

SHARPs feature set. Furthermore, none of these approaches performed a systematic, automated

hyperparameter tuning process to assure a fair comparison, and only [35] did any hyperparameter

tuning at all (using a grid search method on discrete hand-selected values). I addressed some of

these issues in this chapter that reproduces the results from [32].

My first objective in this chapter was to systematically compare a set of machine-learning

models and determine whether higher complexity is correlated with better performance. Using

an automated hyperparameter tuning approach, I compared four models with increasing order

of complexity: logistic regression, extremely randomized trees, MLP and LSTM. Across multi-

ple experiments, and using an automated hyperparameter tuning approach to obtain a truly fair

comparison, I showed that more-complex models do not perform better for the 24-hour M1.0+

flare-forecasting problem.

Secondly, I evaluated a new shape-based feature set, first introduced in [29], that is composed

of quantities extracted from magnetograms using topological data analysis, comparing their results

to the standard physics-based SHARPs feature set. The results extend upon my initial studies of

this idea [29, 30, 49] by using a far more comprehensive SHARPs feature set, employing four different

ML models, and using a systematic hyperparameter tuning methodology to ensure fairness in

comparison. This broader and deeper study confirmed that these shape-based features—calculated

using abstract universal algorithms that do not encode any assumptions about the underlying
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mechanics—provide as much traction to ML models as the set of physics-based attributes that

were hand-crafted by experts. Further, the combination of the shape-based and physics-based

feature sets does not provide any improvement over the individual sets, confirming that neither

feature set provides a significant advantage over the other.

Lastly, I studied a different aspect of model complexity: the dimensionality of the feature

set. Using principal component analysis to find relevant subspaces of the feature space, I compared

the performance of models trained on the full feature sets versus the same models trained on

their PCA-reduced counterparts. I found that the feature subspaces for both the SHARPs and

topological features were significantly shorter than their full spaces, with the topological feature

set affording the highest degree of dimensionality reduction to just three components. This implies

that the topological feature set is highly anisotropic, with just three dimensions explaining 98.5%

of the dataset variance. Further, I found that the PCA-reduced datasets performed just as well

when compared with the original feature sets for three out of the four models.4 In a data-

limited situation, this is a major advantage for the effectiveness of machine-learning based solar-flare

prediction methods, since more-complex models generally require larger training sets.

4 The only exception was the ERT model, due to architectural design choices.



Chapter 5

Reducing False Positives in a CNN-based Flare Prediction Models

The focus of the thesis so far has been on featurizing magnetograms of active regions —

extracting attributes that discriminate flaring from non-flaring active regions, and using these

representative attributes (or features) to train machine learning models. In the field of machine

learning, there are multiple approaches for extracting features from raw data, one of which is to

use domain knowledge of the application. In flare prediction, for example—as described at length

in the previous chapter— solar physicists have determined various physics-based features known to

be associated with the flaring phenomenon. While this approach works well, one cannot guarantee

that the extracted features represent all the information necessary to discriminate between flaring

and non-flaring magnetograms. A way around this is to use featurization methods that are domain-

independent. I demonstrated this in Chapter 3, where I leveraged topological data analysis (TDA)

— an abstract approach from applied mathematics — to extract features that represent the “shape”

of magnetograms. These abstract features perform well in predicting flares as seen in Chapter 4,

but the combination of topological and domain-specific features does not perform well over either

individual set. In this chapter, I explore a different methodology for extracting additional features

from raw magnetogram images that is also domain-independent: deep learning convolutional neural

networks.

While feature-engineering based ML methods have been a popular approach for solar flare

prediction over the last decade, the last few years have seen the application of more complex deep

learning models such as convolutional neural networks (CNNs) to this problem. Given raw data,



46

the CNN models employ spatial convolution operations in a hierarchical manner to extract patterns

that are relevant to the task at hand. Unlike the other ML methods explored in the last chap-

ter (logistic regression, extremely randomized trees, etc.), this feature extraction occurs as part

of model training, instead of the standard two-step process we have seen in the last two chapters

(feature extraction and model training). For example, CNNs for flare prediction would automati-

cally extract patterns in the magnetic field that discriminate flaring and non-flaring magnetograms.

This is advantageous for the feature-extraction process: any feature learned during training is auto-

matically relevant to the model task (classification or regression). In many standard applications,

this approach has been applied with great success, even achieving accuracy surpassing humans

[43]. Naturally, multiple efforts in recent times have attempted to apply CNNs to the solar flare

prediction task [1, 44, 61, 78, 107, 108]. However, the high imbalance in the flare prediction dataset

has posed challenges to these implementations, resulting in models that predict more flares than

present in the dataset (or false positives)—aka overforecasting—an issue which I also demonstrated

in the context of the standard ML models in Chapter 4.

In this chapter, my goals in designing a CNN-based flare prediction model are two-fold. The

first is to provide a preliminary comparison of a CNN model with type of feature-based models

covered in the previous chapter, all of which share common feature sets while training. Comparing

this with an ML methodology trained solely from raw data would be interesting. My second goal is

to combine the two ML methodologies, i.e., leveraging information both from engineered features

(using a simple ML model) and from features extracted automatically from raw data by a CNN.

The aim is to determine if this combined approach can address the overforecasting issue observed

not only in other implementations, but also in previously studied models in this thesis.

As a choice of CNN architecture, I use VGG-16 — a standard convolutional neural network

used for classifying images of everyday objects — and modify it for the flare prediction problem. I

first experiment with multiple variants of this architecture that process the input data in different

ways, and analyse the performance over various splits. I show that the best-performing VGG-16

model is on par with one of the feature-based ML models from Chapter 4, when optimized on
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the True Skill Statistic Score (TSS). Additionally, as with the feature engineering results in the

previous chapter, I show that this model also overforecasts, that is, produce many false positives

during prediction. To address this, I design a novel approach that combines the VGG-16 model with

an extremely randomized trees (ERT) model trained on the physics-based and topological features

discussed in Chapter 3. This hybrid model is designed in two stages, the flaring probability output

of the first VGG-16 stage is combined with the engineered features to train the ERT model in

the second stage. After optimizing this combined architecture, I demonstrate its effectiveness in

lowering the false positives. As an additional effort towards that goal, I also propose a new metric

to replace the standard True Skill Statistic (TSS) for optimizing my models.

The chapter is outlined as follows. I first describe the dataset used for these set of experiments

in Section 5.1. Because the CNN-based models are computationally intensive, I downsample the

complete dataset of 450,000 samples by a factor of three to shorten the experimentation time.

From this dataset, I extract values for the topological and SHARPs feature sets which are used

for training the hybrid ML architecture. These are discussed in Section 5.2. Next, I describe in

detail the VGG-16 model and its architecture variants, and choose the best performing variant

for a final systematic evaluation in Section 5.3. I also introduce a hybrid two-stage ML model for

flare prediction that includes the best performing VGG-16 variant as a first stage model, followed

by an extremely randomized trees (ERT) model in the second stage. As mentioned, my goal here

is to compare it to the first-stage VGG-16 model alone. I next discuss the metrics used in this

chapter for comparing the two models in Section 5.4. I also introduce a new metric for tuning

the two models, called TSSscaled, which I claim is more useful than the standard TSS score for

reducing false positives. Before comparing VGG-16 alone and the VGG-16+ERT combination,

both models needs to be hyperparameter-tuned first. I discuss the hyperparameter tuning process

in Section 5.5, also demonstrating the advantage of the TSSscaled metric. Post tuning, I show the

model performance for the VGG-16 and the hybrid models, specifically focusing on the balance

between the true positives (TP) and false positives (FP) scores for each case in Section 5.6, and

conclude my findings in Section 5.7.
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5.1 Data

For evaluating the CNN-based models, I use a dataset similar to the one described in Chap-

ter 3, but with a couple of changes. That dataset included magnetogram images in each active

region at a cadence of 1 hour, resulting in about approximately 450,000 images. For training deep

learning models like VGG-16, such a huge dataset can lead to high computational costs. To make

the computation more manageable, I reduce the cadence to 3 hours, resulting in a dataset of 157095

images. The second deviation from the previous dataset is the labeling scheme. In both cases, each

magnetogram is labeled as flaring if an M1.0+ class flare is produced by the corresponding active

region in the next k hours, else it is labeled as non-flaring. In the previous chapter, I used k = 24,

a popular choice in the ML flare prediction literature. For my CNN studies, I change this to k = 12

with the intention of developing short-term forecasting. Since major flares are rare, this labeling, as

before, results in an extremely imbalanced dataset. Here, 1561 (≈1%) of the total magnetograms

are labeled positive (flaring), and the rest of the 99% are labeled negative.

To train and evaluate the different architectures, I split the dataset into 70% training, 10%

validation and 20% testing samples. As in the experiments reported in the previous chapter, the

splitting is based on the active region number, so that all images of any given active region are not

split between sets. The splitting is repeated 10 times using 10 random seeds; the model is trained,

tuned and tested one randomized dataset at a time. The statistics of the performance score are

reported across these 10 trials. With this arrangement, the total number of samples in the testing

set is approximately 24000. The positive and negative samples for the individual splits are shown

in Table 5.6, demonstrating the imbalance across all the splits.

One way of handling dataset imbalance is by data augmentation, which has been used suc-

cessfully in image classification research [52]. Existing CNN flare prediction models [1, 44, 61, 78,

107, 108] create balanced datasets for training and evaluating the models, either by undersampling

the majority class (lower intensity or no-flares) or oversampling the minority class (higher inten-

sity flares) for both the training and testing sets. However, this strategy, while informative, is
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not useful from an operational standpoint; measuring the performance on an artificially-balanced

testing set is not representative of performance on real-world data, which is highly imbalanced in

favor of negative (non-flaring) samples. For example, given a model with a certain false positive

rate, the absolute number of false positives increases significantly when changing the model testing

from a balanced to an imbalanced test dataset 1 . This leads to a significant discrepancy between

the balanced versus imbalanced scenarios especially for metrics associated with false positives. On

my dataset, I find that balancing only the training set using augmentation did not improve model

performance score on a imbalanced testing set. Accordingly, I do not include data augmentation

in any further experiments.

Finally, the magnetogram image dataset is not directly usable as-is with deep learning models.

Each image cut-out is variable in size, whereas convolutional neural networks require fixed input

dimensions across the entire dataset. There are multiple ways to transform all images to a standard

size; in this work, I choose to perform affine transformations 2 : linear transformations that preserve

lines and parallelism in an image, but not distances. I experimented with three fixed dimensions

for the final image size: 64 × 64, 128 × 128 and 256 × 256. The motivation behind these choices

was to ensure equal length on both axes, so as to not stretch the data unnecessarily along one of

the dimensions (over the other). Choosing dimensions higher than these also led to out-of-memory

errors on our setup. On each of these input configurations, I trained and evaluated individual

VGG-16 models, finding that 128 × 128 is the smallest set of dimensions that require the least

memory and processing time without affecting the quality of predictions. I therefore transform all

images to 128× 128 before using them in all experiments described in this chapter.

5.2 Feature sets

I use the SDO HMI radial field (Br) magnetograms as a direct input to the CNN model

studied in this chapter, and as a source to extract features that are used to train the extremely

1 false positives = false positive rate × negative samples
2 using the standard OpenCV package
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randomized trees (ERT) model. Here, I use a combination of the same two feature sets that were

introduced in Chapter 3 and evaluated in Chapter 4 — the physics-based SHARPs features and the

newly introduced topological features — with some slight changes, as summarized in the following

section.

5.2.1 Physics-based Features

The first feature set is the standard attributes of an active region cut-out that are available in

the metadata of the SDO/HMI SHARPs dataset. These attributes, such as the area, total magnetic

flux, magnetic shear, total vertical current, current helicity, etc., are predominantly derived from

the physics-based properties of the vector magnetic field in a given magnetogram image. A complete

list of these features is available in Table 5.1. This is the same SHARPs feature set introduced

earlier in Table 3.2, but with the addition of two new features — SIZE ACR and SIZE. I excluded

these in my previous studies because I did not expect the size of the AR to impact the flaring

probability. Here, I include them for the sake of completeness; however, I show later in this chapter

that these two features are indeed not highly correlated with flaring.

5.2.2 Shape-based Features

To complement the physics-based features, I also include the shape-based features extracted

using topological data analysis (TDA), described in 3.3. These features measure the number of

two-dimensional “holes” in a sub-level thresholded magnetogram at different threhold levels of

magnetic flux. In this chapter, I choose equally spaced magnitudes of magnetic flux thresholds for

the positive and negative fluxes,

thresholds = {20G, 420G, 820G, 1220G, 1620G, 2020G, 2420G}.

These threshold levels are determined, after some experimentation, to give the best performance

of the hybrid ML model. This gives a total of 14 TDA-based features, denoted by flux pos t and

flux neg t, where t ∈ thresholds.



51

Acronym Description Units

LAT FWT Latitude of the flux-weighted center of active pixels degrees
LON FWT Longitude of the flux-weighted center of active pixels degrees
AREA ACR Line-of-sight field active pixel area MH
USFLUX Total unsigned flux Mx
MEANGAM Mean inclination angle, gamma degrees
MEANGBT Mean value of the total field gradient G/Mm
MEANGBZ Mean value of the vertical field gradient G/Mm
MEANGBH Mean value of the horizontal field gradient G/Mm
MEANJZD Mean vertical current density mA/m2

TOTUSJZ Total unsigned vertical current A
MEANALP Total twist parameter, alpha 1/Mm
MEANJZH Mean current helicity G2/m
TOTUSJH Total unsigned current helicity G2/m
ABSNJZH Absolute value of the net current helicity G2/m
SAVNCPP Sum of the absolute value of the net currents per polarity A
MEANPOT Mean photospheric excess magnetic energy density ergs/cm3

TOTPOT Total photospheric magnetic energy density ergs/cm3

MEANSHR Mean shear angle (measured using Btotal) degrees
SHRGT45 Percentage of pixels with a mean shear angle greater

than 45 degrees percent
R VALUE Sum of flux near polarity inversion line G
NACR The number of strong LOS magnetic field pixels in the patch N/A
SIZE ACR Projected area of active pixels on image MH
SIZE Projected area of patch on image MH

Table 5.1: The SHARPs feature set, as available in the metadata of the SDO HMI dataset. Ab-
breviations: Mx is Maxwells, G is Gauss, Mm is Megameters, A is Amperes and MH is micro-
hemispheres. Most of these features are discussed in [10], while the last two are described in [20].
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5.3 A Two-stage Machine Learning Pipeline

The baseline machine learning model in this chapter is a convolutional neural network (CNN).

CNNs are an effective tool for learning patterns from images which can help them automatically

classify the image content. This is advantageous as a way to avoid manual feature engineering of the

dataset, or alternatively as a way to complement these manually-engineered features. Here I aim to

combine the predictive power of the manually-engineered features (SHARPs and topological) of the

magnetograms with the predictive power of features automatically extracted by a CNN model. To

do so, I propose a two-stage model architecture. The first stage is a CNN architecture that is trained

on the magnetogram images directly and outputs a flaring probability. This flaring probability is

then used as a feature, along with the manually-engineered features, to train an ERT. I choose this

design on account of its simplicity as well as its ability to separate the prediction capabilities of the

CNN features and the engineered features. An additional benefit of ERTs is their ability to rank

the relevance of various features in terms of predicting flares. I discuss the two stages below.

5.3.1 Stage I: Convolutional Neural Network

The first stage of my hybrid model is a VGG-16 model [89] — a deep CNN designed to classify

images into 1000 pre-defined categories. This model was developed for classifying everyday images

from ImageNet[27], a dataset that contains 14-million high resolution images of everyday objects

belonging to over 1000 categories. Here, I modify the the VGG-16 architecture, an example of which

is shown in Fig 5.1, to classify magnetogram images into two classes — flaring and non-flaring.3

The input sample is not a single RGB image, but can either be a vector magnetogram image

([Br, Bϕ, Bθ]), the radial component of the magnetogram (Br), or a temporal stack of four consec-

utive magnetograms separated by a cadence of three hours ([Br,t, Br,t−3, Br,t−6, Br,t−9]), depending

on the selected configuration (described below). Accordingly, the input layer of the VGG-16 model

3 One could alternatively start with a pretrained VGG-16 model, i.e. a model with pre-assigned weights learnt
from training on the ImageNet database, and fine tune those weights by additional training on the magnetogram
dataset. I believe, however, that the weights are not necessarily transferrable since the fundamental patterns of
everyday objects are different from magnetogram patterns, so I use the VGG-16 architecture without any pretrained
weights.
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is modified to have different number of channels (3, 1, or 1/4 respectively) instead of the three

needed for standard RGB images. As an example, let us consider an architecture designed for an

input of four channels (this will end up being the final configuration we use, as will become clear

later). The first part of the model consists of 13 2D convolution layers, each designed with a filter

size of 3 × 3 pixels and a one-pixel padding. These convolution layers are interspersed with five

max-pooling layers, with the pooling performed over a window of 2 × 2 pixels. Each convolution

layer operation preserves the size of that map, while each max-pooling layer halves the size of the

feature map. The stack of convolution layers is followed by a series of three fully connected layers.

The first two of these contain 4096 output channels each. In the original VGG-16 architecture,

this is followed by a third layer with 1000 output channels (for the 1000 categories of ImageNet).

I modify this to have just two output channels instead—for the flaring and non-flaring classes, in

accordance with the described labeling scheme. A final softmax layer normalizes the output of the

two channels to take values between [0, 1], representing the probability of flaring and non-flaring

in the next k hours for a given input sample, where k is the forecast window. For this study I set

k = 12, since I am interested in developing short-term forecasts 12 hours into the future.

Figure 5.1: The VGG-16 architecture, as adapted for the solar flare prediction problem. In this
figure, the input to the VGG-16 model is a temporal stack of four magnetograms. For other
experiments, this is changed accordingly. The output of the model is two complementary neurons
representing the flaring and non-flaring probability of the input sample.

I investigate four variations on the model architecture and the input data format.

(1) C1: Using an input stack consisting of the [Br, Bϕ, Bθ] components of the vector magne-
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togram and setting the number of input channels of the VGG-16 model to three.

(2) C2: Using a single component Br at a single time instance as the input data sample, setting

the number of input channels of the VGG-16 model to one.

(3) C3: Using the temporal stacked configuration [Br,t, Br,t−3, Br,t−6, Br,t−9] as the input data

per sample (as described above), and setting the number of input channels of the VGG-16

model to 1. Each component in the temporal stack is operated on by the convolutions

and dense layers individually to generate four feature representations. An LSTM layer is

introduced before the output layer to process the sequence of the four representations. The

input configuration is heuristically chosen after experimenting with a few configurations of

different sequence lengths and temporal spacing, and determining the best performing con-

figuration in terms of the model validation score. Given enough computational resources, an

optimal configuration can be determined instead through a more rigorous hyperaparameter

tuning process (such as the one demonstrated in Chapter 4).

(4) C4: Using the temporal stacked configuration [Br,t, Br,t−3, Br,t−6, Br,t−9] as the input data

per sample (as described above), and setting the number of input channels of the VGG-16

model to four. All components of the temporal stack are treated as individual channels in

the input layer. Such a setup leads to a single feature representation at the final layer that

is acted upon by the softmax function, as opposed to the four representations generated

from the temporal stack in C3.

To evaluate these four configurations, I choose a single dataset splitting configuration of mag-

netogram images based on their timestamp: all magnetograms recorded from years 2010-2014 are

assigned to the training set, magnetograms from 2015 are used for validation, while magnetograms

in the years 2016-2017 are allocated to the testing set. The rationale behind using a single split is to

provide a quick first-cut analysis of the architectures without incurring a high computational cost

of a thorough one (as we do with multiple random seeds later). All four configurations are modeled
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(a) ROC AUC (b) PR AUC

Figure 5.2: ROC AUC and PR AUC curves reported for the performance of the four VGG-16
configurations on the data test set.

in Pytorch, using a weighted focal loss function (α = 1
11 , γ = 2) [63] with an additional L2 regu-

larization weight decay factor β = 0.001. The weights of the models are updated with an Adagrad

optimizer [33], using an initial learning rate of 0.0001 and a batch size of 64. A cosine annealing

learning rate scheduler is used for adjusting the learning rate through 10 epochs of training. Values

for these parameters are chosen through hand-tuning such that the validation set performance is

optimal.

For each input sample, all configurations output the probability of flaring in the next 12

hours. For a categorical output, a threshold should be applied to the output to categorize the input

in a binary fashion (flaring/non-flaring). This is especially useful when comparing the performance

with another model that also has a categorical output, using metrics discussed in Section 5.4.

However, in this case, since all the model configurations are probabilistic, I choose two metrics that

are independent of the final choice of threshold for comparing the performance. First is the area

under the curve (AUC) of the Receiver Operating Characteristic Curve (ROC) [45]. ROC plots

are generated by varying the probability threshold between 0 and 1, and plotting the true positive

rate (TPR) versus the false positive rate (FPR). For a given threshold, the former represents the
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Configuration ROC AUC PR AUC

C1: [Br, Bϕ, Bθ] 0.967 0.43
C2: Br 0.965 0.43

C3: Br stack w/LSTM 0.975 0.43
C4: Br stack as channels 0.974 0.46

Table 5.2: Performance of the VGG-16 model variants discussed in Section 5.3.

fraction of the positive samples correctly classified, while the latter represents the portion of negative

samples incorrectly classified (formulae for both are provided in Table 5.3). This generates a curve

in the 2D plane. The AUC of this ROC plot is a value between 0 and 1 (1 indicating a perfect

model) and thus represents the summarized performance of the model over various thresholds. The

second metric is the Precision-Recall AUC (PR AUC)[12], generated by determining the area under

the curve of the Precision versus Recall plot for the range of thresholds between 0 and 1. Here,

Recall is the same as the TPR, whereas Precision is the fraction of correct predictions amongst all

the samples marked as positive (definitions provided in Table 5.3). PR AUC also varies between 0

and 1, just like ROC AUC, with 1 indicating the most predictive model. The ROC and PR curves

for the four different configurations are shown in Fig. 5.2, while the corresponding AUC metrics

are reported in Table 5.2.

Looking at the ROC plots in Fig. 5.2(a), the profiles for all configurations are pretty close

to each other, making it hard to determine the best performing one. This is also reflected in

the ROC AUC values in Table 5.2, which are more or less the same. However, the PR curve

for configuration C4 is, on average, located above others, especially for recall values below 0.2 and

above 0.5 approximately. This is reflected in the PR AUC score for C4, which is higher than others.

This makes C4 a more suitable choice for the final VGG-16 architecture. These results indicate

that using all three components of the magnetic field (Br, Bϕ, Bθ) is just as better as using the Br

component alone. Additionally, between C3 and C4, both of which use a temporal sequence of four

magnetograms as input, the LSTM configuration C3 performs worse than using the sequence as

individual channels of the CNN input layer as in C4. A probable reason for this is the short sequence

of only four data samples being used for training the LSTM model, suggesting that treating them
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as channels is better. Note that increasing the sequence length to better train the LSTM would

require more computation.

Using the AUC metrics above was an acceptable approach since all models being compared

were generating probabilistic forecasts. However, for the purposes of comparison with the hybrid

model architecture proposed next, which produces categorical flare/no-flare event predictions, I

convert the probabilistic output into a categorical output by defining an optimal flare event thresh-

old. Some methods choose an arbitrary threshold of 0.5 to do this [57] (as I did in Chapter 4) while

others use an automatically-determined threshold based on the Receiver Operating Characteristic

by determining where the ROC curve is furthest from the diagonal. 4 . Here, I choose a different

approach: I convert the threshold to a hyperparameter that can be optimized using a validation

set. This is a useful strategy for CNN tuning and evaluation. Instead of going through a time-

consuming process of tuning numerous hyperparameters such as the regularization weight decay

and the loss weights, I fix them to reasonable values (with some hand-tuning), and determine an

ideal threshold for the chosen configuration that optimizes certain metrics.

5.3.2 Stage II: Extremely Randomized Trees (ERT) model

While there have been CNN implementations for solar-flare forecasting proposed in recent

years, the novelty in my approach is the combined use of the features extracted through convolutions

together with engineered features based on the physics and the shape of the magnetogram, which

are covered in Section 5.2. To explore this, I generate a feature set that concatenates the output

of the VGG-16 model (the probability of a flare) with these engineered features (20 SHARPs and

14 TDA) to obtain a combined feature set with 35 elements.

I use this feature set to train an extremely randomized trees (ERT) model [37] in the second

stage. An ERT (introduced earlier in Section 4.1) is a tree-based model built as a hierarchical

structure of nodes that successively perform the operation of separating the dataset into two classes.

The entire dataset is “fed” to the root of this tree and undergoes a sequence of splitting operations

4 Logically, this coincides with the threshold that maximizes the TSS score.
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at the intermediate nodes. At each node, the incoming dataset is separated into two subsets —

termed “left” and “right” — based on a feature thresholding criterion. That is, a random subset of

m features is chosen from the entire candidate feature set, together with m random splits (one for

each feature). For each split at node t—let us call it st—the quality (of that split) is determined

by computing the reduction in some “impurity” metric of the dataset given by —

∆i(st, t) = i(t)− pL × i(tL)− pR × i(tR). (5.1)

Here, the impurity function i(t) quantifies the degree of class intermixing for a given dataset input

into node t. Correspondingly, the impurities for the left and the right subsets from the split are

denoted by i(tL) and i(tR) respectively. pL = NtL/Nt and pR = NtR/Nt represent the proportions

of the dataset arriving at node n of size Nt, split into the left (size NtL) subset and right subset (size

NtR) respectively. Of the m splits, the one that maximizes ∆i(st, t) is chosen. For the definition

of impurity, I use the standard Gini impurity index, as described in [81]. In the context of our

setup, if Nt,+ and Nt,− are the number of positive and negative samples arriving at node t, the

Gini impurity index is calculated as

i(t) = 1−
(
Nt,+

Nt

)2

−
(
Nt,−
Nt

)2

. (5.2)

Whether the two subsets are further subject to splitting at the next level is determined by an

important hyperparameter in the training process known as the min impurity decrease index,

denoted by ∆imin. A dataset at any point in the tree is split further using an additional node if

∆i(st, t) ≥ ∆imin.

In the context of this problem, ∆imin determines how the model balances between the true positive

rate (TPR) and false positive rate (FPR, also called the False Alarm Rate), which are the fraction

of positive samples correctly and incorrectly classified respectively by the model. A low value of

∆imin results in low FPR but a low TPR as well, whereas a high ∆imin raises the TPR at the cost

of increased FPR as well. Just as with the threshold in the CNN stage, I tune this hyperparameter

using a validation set (discussed in Section 5.5).
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The two-stage model is summarized in Fig. 5.3. In the context of this two-stage model, I

hereon denote the VGG-16 model as CNN-Only and the ERT stage as CNN+ERT (since it uses

the VGG-16 probability output as a feature).

5.4 Metrics

With a categorical forecast (flare/no-flare), we can compute the standard confusion matrix

on the testing set predictions: true positives (TP), false positives (FP), true negatives (TN) and

false negatives (FN). Using the entries of this matrix, one can define various metrics, some of which

appear in Table 5.3. Most of these metrics are standard in the flare prediction literature. A popular

one among these is the true skill statistic score (TSS), equal to the difference TPR− FPR, where

true positive rate (TPR) is the fraction of TP among all positive samples, and the false positive

rate (FPR) is the fraction of FP among all negative samples. TSS provides some utility to the flare

prediction problem because it is insensitive to dataset imbalance, and is a better indicator of the

model performance than the standard accuracy [6, 9]. However, optimizing the TSS score often

leads to overforecasting in the model; models optimized on TSS tend to improve TPR at the cost

of also slightly increasing the FPR. A slight increase in FPR, however, can lead to a significant

increase in the absolute false positives FP, since the number of negative samples is huge, thereby

impacting other metrics like precision or F1, that are sensitive to FP.

To address this problem, I define a new metric for model optimization, TSSscaled, given by

TSSscaled = TPR− TPRmax

FPRmax
FPR, (5.3)

where TPRmax and FPRmax are the maximum values of the TPR and FPR, respectively, determined

over the range of model hyperparameters. The scaling factor TPRmax
FPRmax

applied to the FPR term is a

quantity greater than 1 for my hyperparameter choices; it is designed to penalize increase in false

positives more than the TSS score does. As I will show in the next section, this provides a better

balance between TPR and FPR.
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Figure 5.3: My two-stage model for solar flare prediction. The input is a temporal stack of Br

magnetograms from SDO/HMI which is both fed to a custom CNN model and analyzed for feature
vectors. The CNN model outputs the probability of flaring with the 12-hour forecast window and
this probability is combined with the feature vectors to create a single feature vector input to the
ERT model. The output of the ERT model is a binary event prediction.

Metric Formula

Recall (TPR) TP
TP + FN

False Positive/Alarm Rate (FPR) FP
FP + TN

Accuracy TP + TN
TP + TN + FP + FN

Precision TP
TP + FP

True Skill Statistic (TSS) TP
TP + FN − FP

FP + TN = TPR− FPR

Heidke Skill Score (HSS2)
2(TP×TN−FP×FN)

(TP + FP)(FP + TN) + (TP + FN)(FN + TN)

Table 5.3: Metrics used for evaluating the binary forecasting models.
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5.5 Hyperparameter Tuning

(a) Stage-1 CNN-only (b) Stage-2 CNN+ERT

Figure 5.4: Hyperparameter tuning across multiple seeds for both stages of the hybrid flare predic-
tion model. In both stages, hyperparameters that optimize the TSSscaled metric are determined.

Hyperparameter tuning is essential for optimizing machine leaning model performance. For

both the stages, I carried out simple hand-tuning experiments to identify the hyperparameters

that significantly affect the TPR-FPR balance. In the case of the first stage CNN-only model,

it is the threshold for converting probabilistic to categorical forecast. This is obvious, since the

threshold decides exactly the cut-off point for labeling a probability prediction as flaring or non-

flaring; any prediction with a probability greater than the threshold is labeled as flaring. For a

threshold of 0, all samples are labeled as flaring, making both TPR = 1 and FPR = 1. For a

threshold of 1, all samples are labeled as non-flaring, making both entities equal to zero. Since an

ideal configuration requires TPR = 1 and FPR = 0, neither of these extreme cases are optimal,

and an intermediate threshold needs to be selected. In the case of the second stage ERT model,

it is the min impurity decrease index parameter. Low values of this parameter leads to lower

FPR and TPR values, while raising the value of the parameter increases both TPR and FPR.

This is not as intuitive in terms of explanation as the CNN threshold. A possible explanation is

that, for higher values of min impurity decrease index, less splitting occurs, causing the model to
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clump many non-flaring samples with flaring-like characteristics together with the flaring samples,

and mark them as flaring. This configuration implies accurate prediction of the positive class,

but misprediction of the negative class, thus resulting in high TPR and FPR. On reducing the

min impurity decrease index, the model performs further splitting, breaking up this set into two

subsets. The splitting separates out the majority of the non-flaring samples from the flaring ones

(reducing the FPR), but also inaccurately mispredicting some of the flares as non-flares (reducing

the TPR).

The reader might recall that I used an automated systematic hyperparameter tuning process

for optimizing the ML models in Chapter 4. This was possible because those models were relatively

simpler (fewer trainable parameters) than VGG-16. For example, the most complex LSTM model

(which took days to optimize and train), contained 7382 trainable parameters, compared to millions

of parameters in the standard VGG-16 model. The computational cost of automatically tuning the

VGG-16 model is thus significantly higher, even with a reduced dataset. To work around this, I

implement a simpler hand-tuning algorithm in work reported in this chapter. Doing a grid search

over the hyperparameter space, I determine the optimal hyperparameter that gives the best results

on a single validation set (as opposed to k-fold cross-validation), and then use it to evaluate the

models on the testing set.

This process is performed individually on the VGG-16 and ERT. For the VGG-16 stage,

the only hyperparameter is the threshold used for converting a probabilistic prediction output

into a categorical one. To tune the model, the VGG-16 model is trained once, and probabilistic

outputs are generated for all samples in the validation set. The threshold hyperparameter is then

applied to convert all probabilistic outputs to binary outputs for the entire validation set, which can

then be used to quantify the model performance in terms of categorical forecast metrics discussed

in Section 5.4. I study two of these metrics — TSS and TSSscaled — over eight evenly-spaced

thresholds in the interval [0.2, 0.9]. The final choice of the threshold hyperparameter is one that

maximizes the metric of choice on the validation set. In case of the ERT model in the second stage,

the single important hyperparameter is the min impurity decrease index. Unlike the VGG-16
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model, the ERT has to be trained once for every hyperparameter choice in the set before it is

evaluated on the validation set. Six values of min impurity decrease index are chosen for tuning

— [3× 10−5, 6× 10−5, 1.2× 10−4, 2.5× 10−4, 5× 10−4, 1× 10−3]. The value that optimizes a chosen

metric is the used as the final model setting.

I iterate this procedure for both stages over 10 dataset splits obtained from 10 random seeds.

For both stages, I perform tuning primarily to optimize the newly proposed metric — TSSscaled —

and compare it with the model tuned on the standard TSS score. The results for the TSSscaled-

tuned model are shown in Fig. 5.4. From the figure, it is clear that for the majority of the dataset

combinations, a single value of the hyperparameter maximizes TSSscaled. For the first stage, this

is a threshold of 0.4; for the second, min impurity decrease index= 0.00012. Performing a sim-

ilar optimization study for the TSS score instead yields an optimal threshold of 0.3 for stage 1

and an optimal min impurity decrease index= 0.001. The difference in hyperparameter val-

ues is in accordance with the preference of TSS-optimized and TSSscaled-optimized configurations:

TSS-optimized models tend towards higher TPR and FPR values than the TSSscaled models. As

explained above, high TPR/FPR values occur at lower value settings of the threshold in the CNN

model, and for higher values of min impurity decrease index in the ERT model.

Model stage Optimized metric Optimal hyperparameter TPR FPR

CNN-only TSS threshold = 0.3 0.90± 0.05 0.13± 0.02
CNN-only TSSscaled threshold = 0.4 0.75± 0.09 0.06± 0.01

CNN+ERT TSS ∆imin = 0.001 0.90± 0.05 0.12± 0.02
CNN+ERT TSSscaled ∆imin = 0.00012 0.65± 0.11 0.03± 0.01

Table 5.4: The mean and standard deviation values of TPR and FPR on the validation set (10%
of the full dataset or ≈ 15, 000 samples) for the two models. The statistics are shown separately
using TSS and TSSscaled metrics for optimizing hyperparameters of these models. The statistics are
generated over 10 trials with 10 different random dataset splits. The CNN+ERT hyperparameter
min impurity decrease index is denoted by ∆imin.

The TPR and FPR statistics on the validation set across the 10 trials for each of the these

hyperparameter choices are shown in Table 5.4. It can be seen that optimizing TSSscaled rather

than TSS on average reduces FPR by a factor of approximately 2-4 while only reducing the TPR
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Model Accuracy TSS HSS2 F1 Bias

Logistic regression 0.89 ± 0.02 0.82 ± 0.01 0.10 ± 0.03 0.11 ± 0.03 17.13 ± 4.10
VGG-16 0.87 ± 0.01 0.77 ± 0.04 0.11 ± 0.03 0.12 ± 0.04 14.78 ± 4.36

Table 5.5: Comparison of the VGG-16 and the Logistic regression models for a 12-hour flare
prediction problem. While the accuracy and the TSS are slightly worse, other metrics such as
HSS2, F1 and Bias are better in the VGG-16 model.

by a factor of approximately 1.2-1.4. In other words, hyperparameters using TSSscaled offer a more

favorable result in terms of the TPR-FPR balance, so I use it henceforth in this thesis (i.e., threshold

= 0.40 for the first stage, min impurity decrease index= 0.00012 for the second).

5.6 Results

5.6.1 Comparison with feature-engineering based models

Before I discuss the performance of the VGG-16 model and the two-stage model, I provide

a brief comparison of the VGG-16 model with the least complex model from Chapter 4: logistic

regression. Since all of my models in that chapter were optimized for the TSS score, I re-optimize

the VGG-16 model by tuning on the TSS metric as well, using a threshold of 0.30 (a threshold

that maximizes TSS as discussed in Section 4.2), and compare the results against those of logistic

regression for the 12-hour forecasting problem provided in Table 4.3. The results are summarized

in Table 5.5. Of all the metrics in the comparison, F1 and Bias are computed according to the

definitions in Chapter 4 5 . It should be highlighted that the dataset and tuning methodology

for these models is slightly different. The logistic regression model is trained on a much larger

set, and hyperparameter-tuned with an automated algorithm. For reasons of high computational

complexity, the VGG-16 model, on the other hand, is trained on one-third the dataset used by

the former, and also hand-tuned. While the fairness of comparison here does not hold up to the

standards of Chapter 4, it should give the reader a rough idea of where the two models stand

relative to one another. Comparing the two rows in Table 5.5, it can be seen that the VGG-

5 These are only used for comparison with logistic regression but are ignored for later analysis since they show
trends that are correlated with HSS2.
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16 model has a slightly lower accuracy and TSS score than logistic regression. However, logistic

regression does worse as measured by other metrics, such as HSS2, F1 and Bias. Overall, neither

model significantly outperforms the other, which further reinforces my conclusions from the last

chapter: high computation complexity does not necessarily provide better performance for the

flare prediction problem. Secondly, the comparison indicates that features extracted from the

convolution process of the VGG-16 model do not perform any better than the topological and

SHARPs features engineered from the images. Finally, while one model seems to overforecast more

than the other, both, on the whole, have a high degree of overforecasting, leading to low values of

HSS2 and F1. In other words, the CNN model does not resolve the overforecasting issues identified

in the previous chapter. I discuss methods to address this next.

5.6.2 Tackling overforecasting: CNN-Only versus CNN+ERT

My design for the two-stage hybrid model described in section 5.3, which combines a CNN

and an ERT, was motivated by the need to reduce overforecasting. To evaluate its success, I now

compare it with the VGG-16 model (CNN-Only) with the two-stage hybrid model (CNN+ERT), op-

timizing both models on the TSSscaled metric to address the overforecasting problem discussed pre-

viously. Note that optimizing the CNN-Only model also optimizes the first stage of the CNN+ERT

architecture; this can be alternatively considered as a comparison between two stages of the hybrid

model. For the 10 dataset splits, I separately determine the confusion matrix on the test set for

each of the two stages, and calculate the metrics discussed in Table 5.3. The optimal hyperparam-

eters for each stage, as derived in Section 5.5, are used. I then evaluate the change in these various

metrics between stages, i.e. using only the CNN and then appending the ERT to it. The raw

values of six metrics are shown in Fig. 5.5 in the form of box plots. Looking at these two metrics

in box plots Fig. 5.5(a) and (b), we observe that TPR is slightly decreased with the addition of the

ERT stage to the model. On the other hand, the addition of the ERT reduces FPR significantly,

thus reducing the overforecasting nature of the model. It should also be observed that the FPR

box plots for the CNN-Only and CNN+ERT architecture are non-overlapping, demonstrating that
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the improvement is significant. The TPR and FPR trends are encouraging, but these normalized

metrics indicate a part of the story. Values of the raw confusion matrix (TP, TN, FP and FN) for

each individual dataset split in Table 5.6 show a significant decrease in the FP values (≈ 670 on

average) with only a minor decrease in TP (≈ 17 on average) for the CNN+ERT model. Further,

the table also shows that this decrease is consistent across all dataset splits. These changes in TP

and FP scores impact other metrics both positively and negatively. For example, the Precision and

the HSS2 score in Fig. 5.5(c) and (f) respectively are better overall for the CNN+ERT architecture,

whereas the Recall and TSS are overall slightly worse due to the dominance of TPR in calculating

these metrics (Fig. 5.5 d,e).

Table 5.7 shows the average percentage improvement across all the dataset splits, which

summarizes the results in Fig. 5.5. The true positive rate is decreased (on average) by 12%, while

the false positive rate improves by 48%. Again, this impacts the derived metrics in different ways.

For example, the more popular TSS metric is decreased by an average of 8%, and similarly the

recall is decreased by an average of 12%. On the other hand, we see very large improvements in

precision (≈69%) and HSS2 (≈56%). These results indicate that the two-stage model provides a

better prediction, especially in terms of FP and associated metrics.

5.6.3 Feature Ranking

It is useful to know which features in a feature set play an important role in the model

prediction. I use the Gini impurity index extracted from the ERT model to determine how much

each feature is successful in separating the positive and negative labels across all the nodes of

the tree. The relative rankings are shown in Fig. 5.6. While there are other ways for performing

multivariate feature ranking, e.g. the linear discriminant analysis from [56] — leveraging the

information that is implicit in our ERT prediction model to also perform feature ranking makes

sense.

Fig. 5.6 shows a mix of features from the topological and SHARPs sets in the top-20 ranking

features. The highest ranking feature, however, is the VGG-16 output probability cnn prob, which
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(a) TPR (b) FPR

(c) Precision (d) Recall

(e) TSS (f) HSS2

Figure 5.5: Performance comparison between CNN-Only and CNN+ERT models across six different
metrics. For each metric boxplot, the 10 dots shown represent the individual score of each of the
dataset splits.
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Random seed P N Architecture TP TN FP FN

Seed 100 286 23345 CNN-only 217 21977 1368 69
CNN+ERT 200 22662 683 86

Seed 200 207 23768 CNN-only 145 22343 1425 62
CNN+ERT 126 22979 789 81

Seed 300 137 22283 CNN-only 97 21214 1069 40
CNN+ERT 76 22064 219 61

Seed 400 347 22760 CNN-only 261 21525 1235 86
CNN+ERT 231 22015 745 116

Seed 500 228 22787 CNN-only 192 21117 1670 36
CNN+ERT 172 21942 845 56

Seed 600 156 24532 CNN-only 108 22628 1904 48
CNN+ERT 81 23496 1036 75

Seed 700 325 22187 CNN-only 251 20889 1298 74
CNN+ERT 234 21395 792 91

Seed 800 217 24007 CNN-only 151 22360 1647 66
CNN+ERT 139 22966 1041 78

Seed 900 207 22425 CNN-only 144 20765 1660 63
CNN+ERT 126 21697 728 81

Seed 1000 184 23509 CNN-only 148 21994 1515 36
CNN+ERT 146 22643 866 38

Table 5.6: Confusion matrix results for the CNN-Only and CNN+ERT architectures, shown for
each of the 10 individual dataset splits. P and N represent the total positive and negative samples
in the testing set of each split.

Metric % average change in metric between stages

Recall (TPR) -12 ± 6.9
False Positive/Alarm Rate (FPR) -48 ± 12.4

Accuracy 3 ± 0.7
Precision 69 ± 16.7

TSS -8 ± 7.0
HSS2 56 ± 35.7

Table 5.7: Percent change in metrics of the performance of the two-stage model (CNN+ERT) over
a single stage CNN-only model, along with the standard deviation, summarized over 10 dataset
experiments.
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Figure 5.6: Feature ranking using the Gini impurity index from the ERT model for the top 20
features.
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indicates that the VGG-16 by itself is able to discriminate a significant of flaring from non-flaring

samples by learning patterns from the raw data. The R VALUE feature from the HMI feature-set

ranks highly (second only to the VGG-16 probability). This makes sense because this quantity

corresponds to the magnetic flux from the neutral line where magnetic reconnection (and thus

coronal mass ejections) occur. With regard to the topological feature set, the β1 counts in the

range of 800G to 1600G are shown to be important. Finally, it should be mentioned in passing

that the two additional SHARPs parameter included in this chapter — SIZE and SIZE ACR — do

not rank highly in this analysis, so their inclusion does not obfuscate the comparison between the

results described here and the feature-engineering based models in the previous chapter.

5.7 Summary

In recent years, quite a few CNN-based deep learning models have been applied to the flare-

prediction problem. While these methods have achieved some success, extreme dataset imbalance

in this problem remains a significant challenge in the development of these models, causing them

to produce a high number of false positives in relation to true positives. While most of these

models artificially balance the training and testing sets (by oversampling flares or undersampling

non-flares), such an evaluation approach does not reflect a real-world scenario. To address this

problem, I have proposed a novel two-staged machine learning model for predicting M1.0+ class

flares in the next 12 hours. The first stage is a state-of-the-art VGG-16 convolutional neural

network model that outputs a flaring probability by extracting features from raw magnetogram

images. The output of this model is then used as input to an extremely randomized trees model in

the second stage, along with various engineered physics-based and topological features extracted

from the magnetogram. Not only does this architecture combine the predictive power of features

extracted with different approaches (CNNs, topology-based, physics-based) — a first-of-its-kind

model in this field — I show that it helps mitigate the overforecasting problem.

My first important contribution is the impact evaluation of various dataset manipulations

and modeling strategies on the performance of a CNN-only model (i.e. the first stage VGG-16
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model). Primary among the dataset manipulations is dataset augmentation. I find that performing

augmentation of the minority class (using standard rotation and polarity swapping) on the dataset

for this model yields no improvement in predictive skill. It should be noted that, unlike some

studies which incorrectly augment both training and testing sets as explained in Section 5.1, I

perform augmentation only on the training set. I also explore the use of temporal sequences of

different components of the magnetogram data in the VGG-16 model, showing that the Br sequence,

alone, is just as predictive as the full stack (Br, Bθ, and Bϕ), indicating redundancy between these

components of the field. Finally, when modeling on a temporal sequence of image data, I show that

adding an LSTM layer after the VGG-16 stage causes the overall model to perform worse than a

strategy that uses the sequence as channels to the VGG-16 input layer. Finally, I also show that the

VGG-16 model by itself does not do any better than the significantly less complex logistic regression

model trained on SHARPs and topological features from the previous chapter. This implies that

not only does the high complexity of VGG-16 have no impact on performance when compared

with the simple logistic regression, but the two different feature extraction approaches (engineered

versus the CNN-based features) are comparable. In order to study both effects separately — feature

extraction and complexity — one could first extract CNN-based features using an autoencoder, and

then use those to train feature-based models described in Chapter 4, like in [20]. This would then

provide a fair comparison between the two featurization methods on a model of fixed complexity.

The second focus of the study in this chapter is the use of binary categorization metrics for

evaluating flare prediction models. Tuning hyperparameters to optimize on the commonly-used

TSS metric alone can lead to a model that highly overforecasts, i.e. one with many false positives.

To address this, I propose a modified alternative metric — TSSscaled, which I showed reduces the

false positive rate in optimized models.

The third major contribution from this chapter is the incorporation of an ERT model as

a second stage. The ERT model is trained on a feature set that includes the output probability

from the VGG-16 model from the first stage together with various engineered features. This hybrid

design offers various advantages. First, it combines the prediction power of the features learned
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automatically by VGG-16 from magnetogram images with the engineered features described in the

earlier chapters of this thesis. To the best of my knowledge, this is a first-of-its-kind approach in the

flare prediction literature that combines different feature extraction techniques into a single model.

Secondly, the two-stage model has significantly lower false positive rates compared to the VGG-16

model alone: it reduces the false positives (≈48%) without significantly reducing the true positives

(≈12%). Finally, the ERT model provides a natural way to rank the forecasting capability of the

various features. Using this method, I found that two features considerably outrank the others.

The most highly ranked is the VGG-16 output probability, indicating that the first-stage model

is skillfully predictive of flares. The second feature is the R VALUE parameter — the total flux in

the polarity inversion line — a feature designed by solar physicists for discriminating flaring from

non-flaring active regions [86].



Chapter 6

Conclusions and Future Work

Accurate solar eruption forecasting has become ever imperative given the significant impact of

space weather on human activity, especially the electric grid. Humanity’s expanding space program

has become a second important reason to monitor space weather. Latest events concerning the loss

of multiple Space-X satellites due to a geomagnetic storm are evidence enough to stress this point

[68]. Since solar eruptions occur around complex magnetic field structures called active regions

(ARs), computationally modeling these solar eruptions the traditional way involves numerically

solving for the AR magnetic field starting from an initial condition. The biggest problem with this

approach is that current instrumentation only observes the magnetic field data on the photosphere,

while the rest of the 3-dimensional magnetic field in the upper solar atmosphere is missing. While

the photospheric field data is informative as useful indicator for solar eruptions, it does not provide

a complete initial condition for numerical simulations of the future evolution of the system.

This is where machine learning models come to the rescue: the magnetic field observations

while insufficient for numerical modeling are well suited for developing ML models. Over the last

couple of decades, ML approaches to solar flare prediction have taken off, resulting in a slew of

approaches that determine a correlation between solar observations (photospheric, chromospheric

and coronal properties) with an upcoming solar flare (eruption). Of course, these models are not

perfect. Noisy observations, lack of sufficient data, and a high dataset imbalance (due to flaring

being a rare event phenomenon) has generally led to under-performing models, leaving a lot to be

desired in this field. A 2016 workshop to systematically compare many of these models showed that
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none of the models significantly outperform others [6]; two similar workshop papers from 2019 also

showed that none of the methods outperform human-in-the-loop solar flare forecasting methods

[57, 58]. Clearly, ML-based solar flare prediction is far from being a solved, and it poses many open

challenges.

This thesis aims not to solve this problem in a general way, but rather to investigate the

current limitations of the existing methodology and address a few of these important challenges. I

first address the form of the input data to the ML models. Majority of the existing ML approaches

use the standard set of properties extracted from the magnetic field properties — called SHARPs

— that are motivated by the physics of the AR. These carefully designed physics-based features

are believed to be a good way to characterize the state of the AR. In this thesis, I proposed

a new and quite different set of features. Inspired from the McIntosh and Hale classification

systems that characterize ARs using their shape, I applied topological data analysis (TDA) — a

tool from applied mathematics that describe shapes of arbitrary discrete data — to AR magnetic

field images (Chapter 3). The TDA-based features I extracted using this abstract methodology—

which require no hand-crafting by human experts—describe “holes” present in these images at

different thresholds. A preliminary analysis using a single ML model showed that these newly

proposed features performed better in 24-hour forecasts of major flares than the standard SHARPs

features [29].

As a next step, I designed a systematic model training, optimization, and evaluation frame-

work to evaluate and compare the performance of the TDA and SHARPs feature sets using multiple

ML models. While numerous ML models trained on various feature sets have been implemented

in the solar flare prediction literature, an important aspect that is often missing in these studies

is hyperparameter tuning, especially when comparing the performance of different ML models. To

address this, I designed a pipeline for automatically selecting optimal hyperparameters to pro-

vide the best True Skill Statistic (a popular metric to measure model performance on imbalanced

datasets) for each model and feature set combination using a k-fold cross validation. In this study,

reported in [32] and covered in Chapter 4, I also used a more comprehensive SHARPs feature set to
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incorporate important features missed in the preliminary study. I chose four models in increasing

order of complexity: logistic regression, extremely randomized trees, multilayer perceptron (MLP)

and long short-term memory (LSTM). Two key findings were the result of this study. Firstly,

neither the TDA-based or the SHARPs-based feature set outperformed the other across all of the

ML models. While this differed from my preliminary analysis, it validated my claims about the

power of TDA for featurizing magnetic field images: abstract domain-independent features ex-

tracted from the magnetogram perform just as well as the carefully chosen features by domain

experts. Further, the combination of the two feature sets performed just as well as the individual

sets alone, indicating that neither feature set adds informative value to the other from the point of

view of solar flare forecasting. It should be mentioned that another study by [93] influenced from

my work have extracted TDA-based features from the neutral line regions and similarly showcased

their importance. Lastly, with the aim of reducing complexity of these models, I investigated the

use of principal component analysis to reduce the feature sets. Using the same tuning framework,

I showed that the less-complex models trained on PCA-reduced versions of the feature sets per-

formed almost as well as the original models trained on the full feature sets. I also showed that the

TDA-based feature set was the most reducible, with a PCA-reduced version of just three features

(components), highlighting yet another advantage of TDA-based analysis.

The last part of this thesis explored an important missing component in my thesis so far: the

application of deep learning models that extract patterns directly from the magnetogram images (as

opposed to featurizing the images first). To that end, I investigated the performance of VGG-16, a

standard convolutional neural network (CNN) architecture, for flare forecasting. When optimizing

VGG-16 to maximize the True Skill Statistic (TSS), the model exhibited a key problem also observed

in the previously studied models in Chapter 4: overforecasting or high false positives. In both cases,

this was a side effect of a highly imbalanced dataset. I proposed two solutions to this problem. The

first was a modification of the TSS metric used to optimize the models, the scaled-TSS score, that

additionally penalizes false positives. Optimizing on this metric reduced overforecasting, drastically

reducing the false positives without significantly reducing the true positives. Building on this, I
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developed a novel hybrid architecture which combined the features learned automatically by VGG-

16 with the SHARPs and TDA features. This hybrid model had two stages: a first-stage VGG-16

model that outputs a flaring probability, which is then combined with TDA and SHARPs features to

train an extremely randomized trees model in the second stage. This architecture further improved

on the false positive rate, over the single-stage VGG-16 model. Use of the ERT architecture in

the second stage also allowed for ranking on all the features, which showed the VGG-16 flaring

probability as the most important feature followed by the R VALUE parameter—the total magnetic

flux in the neutral line region. This indicated that the VGG-16, by itself, was quite capable in

discriminating flaring from non-flaring active magnetograms.

This thesis covers a range of ML methods and various features based around magnetic field

observations of active regions. The hybrid model proposed towards the end of this thesis in a

sense encompasses different kinds of information extracted from magnetograms (physics-based,

topological and CNN-based) that can be useful for predicting flares. Different modeling strategies

have also been employed in the form of ML models with varying degrees of complexity. I conjecture

that any further exploration in magnetogram-based modeling is unlikely to show performance

improvements over the current models presented in the thesis; rather, the field will have to move

towards chromospheric and coronal observations as well. These data contain useful information

about the AR structure as well, for example coronal loops and micro-flares, which could be potential

indicators of impending major flares, and are available in the Atmospheric Imaging Assembly

(AIA) products from the SDO mission [60]. Future work should involve employing some of the ML

strategies described in this thesis (featurization and modeling) to AIA data. In addition to the

AIA-based observations, another non-HMI feature that could be incorporated in these models is

the flaring history, i.e. whether a magnetogram observation produced a C, M or an X-class flare in

the past m hours. These history-based features — which are in a sense, persistence-based — have

been incorporated successfully in certain works, e.g. [47, 65].

With data images available across different channels (multiple AIA wavelengths, HMI mag-

netograms, dopplergrams and continuum images), developing deep learning models that extract
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information across different multiple disparate channels (and possibly also across temporally se-

quential instances) will be challenging. Newer strategies, such as 4D Minkowski ConvNets [21]

and self attention models [106], which can efficiently extract patterns from high dimensional raw

input data, will need to be employed. Additionally, I have focused on developing ML models with

a forecasting window of 12/24 hours from an AR observation, but would be useful to develop

ML models for shorter windows (3-12 hours). Such a solar flare warning product would be more

useful to space weather customers such as airlines and radar operators who can then take rapid

remediating actions. With a short forecasting window, though, the dataset imbalance problem

becomes higher, worsening the overforecasting problem. Whether strategies discussed in Chapter 5

to mitigate overforecasting also apply for shorter windows will need to be validated.

Lastly, the introduction of the TSSscaled metric in this thesis opens up avenues for exploring

more useful metrics by operational forecasters to optimize and evaluate ML models. The TSSscaled

metric was a modification of the TSS score (= TPR − FPR) that scaled the FPR with a factor

greater than unity chosen through an exploration of different hyperparameter values. One could

alternatively choose a user-defined scaling factor k to modify the TSS, e.g., TSSmodified = TPR−k×

FPR. The forecaster could then choose different values of k based on their priorities of TPR-FPR

balance, the FPR-associated penalty being directly proportional to k. The value of k could also

be determined by taking into account the economic costs associated with false positives and false

negatives. For example, while the cost associated with the damage from a missed flare or eruption

(false negative) can be very high (power grid failures, spacecraft damages, etc.), the accrued cost

associated with frequent multiple false alarms (false positives) could surpass the false negative cost

(power grid adjustments, flight cancellations, etc.). Further, the damages or costs associated with

flares of different intensities may vary, and this would need to be accounted for evaluating flare

prediction systems that go beyond a simple binary major flare forecast (M1.0+ flare/no-flare).

Designing such a metric would therefore require a close collaboration between solar physicists, ML

scientists and economists.

ML-based solar flare prediction is an interesting and challenging field, evolving rapidly with
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the availability of richer data generated from ever-improving solar instrumentation and advances

in the field of machine learning. In this thesis, I have explored various strategies for improving

ML-based flare forecasting using magnetic field observations. These include developing innovative

featurization techniques, novel ML architectures, a systematic evaluation methodology and new

tuning metrics for reducing overforecasting — an inherent problem arising in this problem due

to an imbalanced dataset. With the evolution of this field, I envision these techniques being

incorporated to produce reliable and efficient models for real-time solar flare forecasting.
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M. Fuhrmann, K. Kusano, S. Régnier, and J. K. Thalmann. Nonlinear Force-Free Field
Modeling of a Solar Active Region around the Time of a Major Flare and Coronal Mass
Ejection. The Astrophysical Journal, 675(2):1637–1644, Mar. 2008. doi: 10.1086/527413.

[89] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. arXiv e-prints, art. arXiv:1409.1556, Sept. 2014.

[90] G. Singh, F. Memoli, and G. Carlsson. Topological Methods for the Analysis of High Di-
mensional Data Sets and 3D Object Recognition. In M. Botsch, R. Pajarola, B. Chen, and
M. Zwicker, editors, Eurographics Symposium on Point-Based Graphics. The Eurographics
Association, 2007. ISBN 978-3-905673-51-7. doi: 10.2312/SPBG/SPBG07/091-100.

[91] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian Optimization of Ma-
chine Learning Algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing Systems, volume 25. Cur-
ran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/

05311655a15b75fab86956663e1819cd-Paper.pdf.

[92] H. Sun, W. Manchester, Z. Jiao, X. Wang, and Y. Chen. Interpreting LSTM Prediction on
Solar Flare Eruption with Time-Series Clustering. arXiv preprint arXiv:1912.12360, 2019.

[93] H. Sun, W. Manchester IV, and Y. Chen. Improved and Interpretable Solar Flare Predictions
With Spatial and Topological Features of the Polarity Inversion Line Masked Magnetograms.
Space Weather, 19(12):e2021SW002837, 2021. doi: 10.1029/2021SW002837.

[94] L. Tarr and D. Longcope. Calculating Energy Storage Due to Topological Changes in Emerg-
ing Active Region NOAA AR 11112. The Astrophysical Journal, 749(1):64, Mar. 2012. doi:
10.1088/0004-637x/749/1/64.

[95] L. Tarr, D. Longcope, and M. Millhouse. Calculating Separate Magnetic Free Energy Esti-
mates for Active Regions Producing Multiple Flares: NOAA AR11158. The Astrophysical
Journal, 770(1):4, Jun. 2013. doi: 10.1088/0004-637X/770/1/4.

[96] T. J. Teisberg and R. F. Weiher. Valuation of Geomagnetic Storm Forecasts: An Estimate
of the Net Economic Benefits of a Satellite Warning System. Journal of Policy Analysis and
Management, 19(2):329–334, 2000. ISSN 02768739, 15206688. URL http://www.jstor.org/

stable/3325618.

[97] S. G. Trevor Maynard, Nell Smith. Solar Storm Risk to the North American Electric Grid.
Technical report, Lloyd’s, 2013.

https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
http://www.jstor.org/stable/3325618
http://www.jstor.org/stable/3325618


87

[98] L. Van der Maaten and G. Hinton. Visualizing Data Using t-SNE.
Journal of machine learning research, 9(11), 2008.

[99] Y. M. Wang and N. R. Sheeley Jr. On Potential Field Models of the Solar Corona.
Astrophysical Journal, 392:310, 1992. doi: 10.1086/171430.

[100] M. S. Wheatland. A Bayesian Approach to Solar Flare Prediction. The Astrophysical Journal,
609(2):1134–1139, Jul. 2004. doi: 10.1086/421261.

[101] T. Wiegelmann and T. Sakurai. Solar Force-Free Magnetic Fields. Living Reviews in Solar
Physics, 9:5, 2012. doi: 10.12942/lrsp-2012-5.

[102] X. Xu, J. Cisewski-Kehe, S. B. Green, and D. Nagai. Finding Cosmic Voids and Filament
Loops Using Topological Data Analysis. Astronomy and Computing, 27:34–52, 2019. doi:
10.1016/j.ascom.2019.02.003.

[103] X. Yang, G. Lin, H. Zhang, and X. Mao. Magnetic Nonpotentiality in Photospheric Active
Regions as a Predictor of Solar Flares. The Astrophysical Journal, 774(2):L27, Aug. 2013.
doi: 10.1088/2041-8205/774/2/l27.

[104] D. Yu, X. Huang, H. Wang, Y. Cui, Q. Hu, and R. Zhou. Short-Term Solar Flare Level
Prediction Using a Bayesian Network Approach. The Astrophysical Journal, 710(1):869,
2010.

[105] Y. Yuan, F. Shih, J. Jing, and H. Wang. Solar Flare Forecasting using Sunspot-Groups
Classification and Photospheric Magnetic Parameters. Proceedings of the International
Astronomical Union, 6:446 – 450, 08 2010. doi: 10.1017/S1743921311015742.

[106] H. Zhao, J. Jia, and V. Koltun. Exploring Self-Attention for Image Recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2020.

[107] Y. Zheng, X. Li, and X. Wang. Solar Flare Prediction with the Hybrid Deep Convolutional
Neural Network. The Astrophysical Journal, 885(1):73, Nov. 2019. doi: 10.3847/1538-4357/
ab46bd.

[108] Y. Zheng, X. Li, Y. Si, W. Qin, and H. Tian. Hybrid Deep Convolutional Neural Network
with One-Versus-One Approach for Solar Flare Prediction. Monthly Notices of the Royal
Astronomical Society, 507(3):3519–3539, 07 2021. ISSN 0035-8711. doi: 10.1093/mnras/
stab2132.


	Introduction
	A Survey of Data-Driven Flare Prediction Methods
	Featurizing Active Region Magnetograms
	Data
	Physics-based features
	Shape-based features

	Modeling Strategies: Is More Complexity Better?
	Machine Learning Models
	Model Evaluation and Tuning
	Model Comparison Results
	Feature-Set Reduction
	Summary

	Reducing False Positives in a CNN-based Flare Prediction Models
	Data
	Feature sets
	Physics-based Features
	Shape-based Features

	A Two-stage Machine Learning Pipeline
	Stage I: Convolutional Neural Network
	Stage II: Extremely Randomized Trees (ERT) model

	Metrics
	Hyperparameter Tuning
	Results
	Comparison with feature-engineering based models
	Tackling overforecasting: CNN-Only versus CNN+ERT
	Feature Ranking

	Summary

	Conclusions and Future Work
	 Bibliography

