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Complex systems are important when representing empirical systems in that they can model

the underlying structure of interactions. Accounting for this structure can offer important insights

for empirical systems such as social networks, biological processes, social phenomena, opinion for-

mation, and many other examples. Pairwise networks are a representation of complex systems

comprising a collection of entities (nodes) and pairwise interactions between entities (edges). Hy-

pergraphs are a generalization of pairwise networks where interactions are no longer constrained

to be between two nodes, but rather can be of arbitrary size. Modeling dynamics on hypergraphs

can uncover rich behavior that one might not see if the dynamics simply occurred on a pairwise

network. We focus on the interplay between the structure of a complex system, a particular dy-

namical process, and the resulting dynamical behavior. In the context of hypergraphs, we explain

the effects that degree heterogeneity, assortative mixing, and community structure have on a simple

hypergraph contagion model. Likewise, for pairwise networks, we explore both types of structure;

structure in the underlying contact network and varying heterogeneity in the infection model. We

examine the effect that representing inherently multiplex data (relationships of different types)

with uniplex networks (relationships of a single type) has on the resulting dynamical behavior. We

present two open source software libraries: (1) XGI, a package for representing complex systems

with group interactions and (2) HyperContagion, a package for simulating hypergraph contagion,

both of which can be used by the growing community of researchers studying higher-order interac-

tions.
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Chapter 1

Introduction

Complex systems are important in representing real-world systems in that they can model the

underlying structure of interactions. Accounting for this structure can offer important insights for

real-world systems such as social networks, biological processes, social phenomena, opinion forma-

tion, and many other examples. Pairwise networks are a representation of complex systems where

we assume that the system can be represented as a collection of entities (nodes) and connections

between these entities (edges). When reducing a system to a network, key assumptions are made

[1, 2] that simplify the system. One such assumption is that all entities interact only through pair-

wise interactions. Hypergraphs are a generalization of pairwise networks where interactions are no

longer constrained to be between two nodes, but rather, can be of arbitrary size. For this reason,

hypergraphs can more accurately model many real-world interaction patterns [3].

Modeling dynamics on hypergraphs can uncover rich behavior that one might not see if the

dynamics simply occurred on a pairwise network [4]. It has been shown that higher-order in-

teractions in networks (i.e., interactions involving multiple nodes) can have profound effects on

dynamical network processes [5] such as opinion formation [6], biological processes [7], synchro-

nization [8, 9, 10], population dynamics [7], and contagion processes [11, 12, 13]. In the case of

contagion processes, it has been shown in Ref. [11] that the addition of higher-order interactions

to the susceptible-infected-susceptible (SIS) epidemic model (called the hypergraph SIS model in

Ref. [12]) results in bistability, where above a critical mass or “tipping point” of individuals, an

epidemic will propagate and below which it will die out.
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The focus of this dissertation is the interplay between the structure of a complex system,

whether a hypergraph or a pairwise network, and the dynamics of a contagion process. The study

of contagion processes is a fundamental problem in network science, with applications including

epidemics [14, 15, 16, 17, 18, 19, 20], social media [21], opinion formation [22], idea diffusion [23, 24],

sudden changes in social convention [25, 26], and many more. Contagion processes can be of many

types, ranging from discrete-state models such as the SIS model, to continuous models of opinion

formation, to realistic models of disease such as those currently used to model the spread of COVID-

19 [27, 28]. Modeling the dynamics of such processes on pairwise interaction networks has been a

hallmark of network science, providing many insights into the effect of network structure on the

propagation of disease and information. For dynamical processes on hypergraphs, we primarily

consider the hypergraph SIS model. In this simple model, with the addition of more complex

interaction patterns that include higher-order interactions, rich behavior starts to emerge, including

bistability, explosive transitions, hysteresis, and polarization.

One can also consider more complex contagion processes with, for instance, a time-dependent

infection rate instead of the simplistic assumption that an agent transmits a contagion at a constant

rate [29]. In this case, not only the structure of the underlying interaction network affects the

dynamical behavior, but the “structure” of the contagion process as well.

In Chapter 2, we present common terminology and notation that will be used throughout

this dissertation.

Chapters 3 to 5 explore the effect of hypergraph structure on simple higher-order contagion

processes.

In Chapter 3 we present and analyze a hyperdegree-based mean-field description of the dy-

namics of the susceptible–infected–susceptible model on hypergraphs, i.e., networks with higher-

order interactions, and illustrate its applicability with the example of a hypergraph where contagion

is mediated by both links (pairwise interactions) and triangles (three-way interactions). We con-

sider various models for the organization of link and triangle structures and different mechanisms of

higher-order contagion and healing. We find that explosive transitions can be suppressed by hetero-
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geneity in the link degree distribution when links and triangles are chosen independently or when

link and triangle connections are positively correlated. We verify these results with microscopic

simulations of the contagion process and with analytic predictions derived from the mean-field

model. Our results show that the structure of higher-order interactions can have important effects

on contagion processes on hypergraphs.

In Chapter 4 we present the expansion eigenvalue, an eigenvalue analogous to the largest

eigenvalue of the matrix describing a network’s contact structure, for hypergraph dynamical pro-

cesses. Using a mean-field approach, we derive an approximation to the expansion eigenvalue in

terms of the degree sequence for uncorrelated hypergraphs. We introduce a generative model for

hypergraphs that includes degree assortativity, and use a perturbation approach to derive an ap-

proximation to the expansion eigenvalue for assortative hypergraphs. We define the dynamical

assortativity, a dynamically sensible definition of assortativity for uniform hypergraphs, and de-

scribe how reducing the dynamical assortativity of hypergraphs through preferential rewiring can

extinguish epidemics. We validate our results with both synthetic and empirical datasets.

In Chapter 5 we model the propagation of an ideology with the hypergraph susceptible–

infected–susceptible (SIS) model, where the ideology (represented with a binary variable) can spread

via pairwise or group interactions through the majority vote process. We construct a hypergraph

with nodes divided into two equally-sized communities and approximate our contagion model with

a two-variable mean-field model. We find that for sufficiently strong community structure the two

communities may hold very different average opinions when higher-order interactions are included.

We determine the ranges of link and triangle community strengths for which polarization may

occur. We also explore the effect of communities with different relative sizes.

Chapters 6 and 7 are on the importance of data and model choices when considering epidemics

on pairwise networks.

In Chapter 6 we compare the average and individual reproductive numbers and epidemic

dynamics for a model incorporating time-dependent infectiousness and a standard SIR (susceptible-

infected-recovered) model for both fully mixed and category-mixed populations. We find that the
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reproductive number depends only on the total infectious exposure and the largest eigenvalue of

the mixing matrix and that these two effects are independent of each other. When we compare

our time-dependent mean-field model to the SIR model with equivalent rates, the epidemic peak

is advanced, and modifying the infection rate function has a strong effect on the time dynamics of

the epidemic. We also observe behavior akin to a traveling wave as individuals transition through

infectious states.

In Chapter 7 we demonstrate that multiplex spreading processes are not simply the union

of spreading processes over their constituent uniplex networks. We use multiplex network data

from two different contexts—one representing behavioral networks to represent their potential for

infectious disease transmission using a simple epidemiological model, the other from online so-

cial network site users to represent their potential for information spread using a threshold-based

spreading process. Our results show that spreading on multiplex data is not represented accurately

in models developed from the uniplex networks even when they are combined, and that the nature

of the differences between the (combined) uniplex and multiplex results depends on the specific

spreading process over these networks.

In Chapter 8, we describe software that has been developed to support the algorithms and

models developed in Chapters 3 to 5 and to support the larger research community studying complex

systems with group interactions.

This dissertation is based on the following publications:

• Chapter 3:

Nicholas W. Landry, Juan G. Restrepo, The effect of heterogeneity on hypergraph con-

tagion models, Chaos, 2020. DOI: 10.1063/5.0020034

• Chapter 4:

Nicholas W. Landry, Juan G. Restrepo, Hypergraph assortativity: a dynamical systems

perspective, Preprint, 2021. arXiv:2109.01099
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https://arxiv.org/abs/2109.01099
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• Chapter 5:

Nicholas W. Landry, Juan G. Restrepo, Community structure in hypergraphs and the

emergence of polarization, In Preparation, 2022

• Chapter 6:

Nicholas W. Landry, Effect of time-dependent infectiousness on epidemic dynamics,

Physical Review E, 2021. DOI: 10.1103/PhysRevE.104.064302
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Nicholas W. Landry, jimi adams, On limitations of uniplex networks for modeling mul-

tiplex contagion, In Preparation, 2022
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Chapter 2

Preliminaries

In this Chapter, we present definitions and background material that we will draw from in

subsequent Chapters.

2.1 Hypergraphs

A hypergraph is a mathematical object that can represent group interactions among a set of

nodes. We represent it as H = (V,E), where V is the set of nodes and E is the set of hyperedges,

which are subsets of V and represent interactions of arbitrary size. If a hyperedge has cardinality

m, we call it an m-hyperedge. When a hypergraph only contains hyperedges of size m, we call it an

m-uniform hypergraph. It is also useful to consider weighted hypergraphs, where each hyperedge e

has an associated positive weight βe. We consider a population of N nodes labeled i = 1, 2, . . . , N

coupled via undirected hyperedges of sizes m = 2, 3, . . . ,M , where a hyperedge of size m is a set of m

nodes, {i1, i2, . . . , im}. We define the m-th order degree of node i, k
(m)
i , as the number of hyperedges

of size m to which the node belongs, and its hyperdegree as the vector ki = [k
(2)
i , k

(3)
i , . . . , k

(M)
i ].

The 2nd order degree of a node corresponds to the number of pairwise connections of the node,

while higher-order degrees measure the node’s participation in hyperedges of larger sizes. Figure

2.1 illustrates a hypergraph with hyperedges of sizes 2 and 3, which, for simplicity, we denote as

links and triangles respectively.

For a network or hypergraph, when interactions between nodes are of different types (e.g.,

Twitter and Facebook connections; train, plane, and bus routes; etc.), we can represent this com-
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𝛽3

𝛽2

Figure 2.1: Illustration of a hypergraph. Infected nodes (red) infect a healthy node (grey) via
hyperedges of sizes 2 and 3 with rates β2 and β3 respectively.

plex system with a multilayer network or hypergraph, where each layer corresponds to a different

interaction type. When the node set in each layer is identical, it is called a multiplex network or

hypergraph. For a dynamical process where the nature of the interactions between nodes depends

on the cardinality of the hyperedges representing that interaction, it can be sensible to separate

the hyperedges by size. Any hypergraph H = (V,E) can be partitioned into a set of m-uniform

hypergraphs, Hm = (V,Em), where Em = {τ ∈ E | |τ | = m}. We define the hyperunion of a

finite number of hypergraphs with the same set of nodes V to be
⋃

mHm = (V,
⋃

mEm). Then

H =
⋃

mHm and we can examine each Hm separately. We also define the m-th moment of a

quantity q = [q1, . . . , qN ] associated with each node as ⟨qm⟩ =
∑N

i=1 q
m
i /N .

In this dissertation, we exclusively consider mean-field approaches to the prediction of dy-

namical behavior. Extending degree-based descriptions of epidemic spreading on networks [30, 31],

we will develop a mean-field theory for the propagation of epidemics based on the assumption that

nodes with the same hyperdegree have the same statistical properties. We define N(k) to be the

number of nodes with hyperdegree k such that P (k) = N(k)/N is the degree distribution. For this

purpose, we assume that N(k) is given, and that the probability that nodes with hyperdegrees k1,

k2. . . , km belong to a hyperedge of size m is given by fm(k1,k2 . . . ,km). This assumes that the
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statistical structure of the network is completely described by the hyperdegree distribution P (k)

and the connection probabilities fm(k1,k2 . . . ,km). This is an example of a statistical model for

hypergraphs from which one can sample, also known as a generative model. Note that, counting

the number of hyperedges of size m in two different ways, the connection probabilities must be

normalized such that

1

m!

∑
k1,...,km

N(k1) . . . N(km)fm(k1,k2 . . . ,km) =
1

m

∑
k

k(m)N(k). (2.1)

This expression states that the expected number of hyperedges predicted with the connection

probability function fm must equal the number of hyperedges of size m specified by the non-

normalized degree distributionN(k). For example, for the configuration model for networks without

higher-order interactions (i.e., only hyperedges of size 2, M = 2), the hyperdegree of a node is just

the number of links, k = k, connecting that node to other nodes and the connection probability

is f2(k, k
′) = kk′/(N⟨k⟩), where ⟨k⟩ =

∑N
i=1 ki/N =

∑
k kP (k). For hypergraphs with hyperedges

of sizes 2 and 3, f3(k1, k2, k3) is the probability that three nodes with degrees k1, k2, and k3 are

connected by a hyperedge of size 3. The configuration model for hypergraphs and its associated

statistical properties has been studied in Refs. [32, 33] and the associated probability of a size-m

hyperedge is fm(ki1 , . . . , kim) = f
(0)
m (ki1 , . . . , kim) = (m− 1)!ki1 . . . kim/(N⟨k⟩)m−1.

This generative model can produce hypergraphs with heterogeneity in the node hyperdegrees

and correlations between hyperdegrees of connected nodes. It can also be easily generalized to

account for mixing by additional nodal variables such as community labels or dynamical parameters.

Its main limitation is that it does not capture connection patterns that are determined by structures

beyond a node’s immediate connections (e.g., the model cannot account for hyperedges of size 3

that occur only when there is a clique of 3 nodes connected by links, as one would see in a simplicial

complex). Nevertheless, this generative model is a versatile and tractable null model to explore the

effect of hypergraph structure on various hypergraph metrics and dynamical behavior. Table 2.1

summarizes the notation and variables presented in this section.
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2.2 Contagion models

Now we describe the contagion models we will study. In this dissertation, we primarily

consider discrete-state compartment models in contrast to other models which allow a node’s state

to be a continuous variable [34, 35]. In these models, we track the number of nodes that have a

given opinion or disease state, i.e., infected, susceptible, etc. and describe the rates governing the

transitions between these discrete states.

Among the most common discrete-state contagion models are the susceptible – infected (SI),

susceptible – infected – susceptible (SIS), and the susceptible – infected – recovered (SIR) models.

These models describe contagion that one can adopt and then reject (or contract and recover from)

in a cyclic manner and one which an individual adopts only temporarily (or contracts, heals, and

becomes immune to) respectively.

For the SIS model, we assume that at any given time t ≥ 0, each node can be in either the

susceptible (S) or infected (I) state. Infected nodes heal and become susceptible again at rate γ.

Now we specify how hyperedges mediate the contagion process. In contrast to pairwise networks

where a susceptible individual can only be exposed to a single infected individual at a time through

its interactions, in hypergraphs a susceptible individual can be part of a larger group with many

different possibilities of infection statuses. In general, the probability of contagion by a hyperedge

could be a function of the number of infected nodes in the hyperedge (e.g., as in Refs. [36, 13]).

However, we will only consider the two extreme cases where contagion occurs if all the other

members of the hyperedge are infected, or if at least one member of the hyperedge is infected.

More precisely, in the collective contagion case, a susceptible node that belongs to a hyperedge

of size m gets infected at rate βm if all the other members of the hyperedge are infected; in the

individual contagion case the node gets infected at rate βm if at least one member is infected. While

we will analyze these two cases only, in principle one could treat the case in which at least j other

nodes of the hyperedge need to be infected for contagion to occur using the techniques presented

below. This case corresponds to a quorum of size j and there is evidence for such effects in collective



10

behavior [37, 38]. For hyperedges of size 2, i.e., links, both cases reduce to the usual contagion

via pairwise interactions. The social contagion model of Ref. [11] corresponds to the collective

contagion case. The collective contagion process is illustrated in Figure 2.1 for hyperedges of sizes

2 and 3. Applying these contagion models to pairwise networks is a special case of the general

framework described above. In this case, we no longer need to consider the fraction of hyperedge

neighbors that may transmit that contagion because each edge contains a single neighbor.

The SI model is the same as the SIS model with the key difference that an infected node does

not recover. The SIR model is similar to the SIS model in that infected nodes infect susceptible

nodes and infected nodes recover, but with the key difference that once a node is infected, it can

develop immunity to that contagion and cannot be re-infected.

Empirical studies have shown that complex contagion, where a node requires multiple ex-

posures to become infected, can drive behavioral adoption [26]. This type of process has been

described in pairwise networks by, for example, the threshold contagion model [24, 22]. This simple

model can be described as follows: Consider a pairwise network with a two-state (“0” and ‘1”)

contagion process spreading on top of it. If a node holds the “0” opinion, it will be convinced of the

opposite opinion if greater than a critical fraction τ of its pairwise neighbors hold the “1” opinion.

This process can also be described more generally using hypergraphs where contagion spreads if a

critical fraction of members of a hyperedge hold the “1” opinion.

A natural extension of these simple contagion models is to consider time-dependent infec-

tiousness. An individual’s infectiousness varies over the duration of the infection according to their

viral load [39, 40]. One can divide the single I compartment into k stages, each of which has their

own associated infectiousness [29, 41] to model the effect that viral load has on epidemic dynamics.

This model is commonly known as the SIkR model [16].

Table 2.1 summarizes the notation and variables presented in this section.

2.3 Notation

This is a brief summary of the notation used in this dissertation.
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Variable Definition

H Hypergraph

V Set of nodes (vertices) of a hypergraph

E Set of hyperedges of a hypergraph

N Number of nodes

k(m) Number of hyperedges of size m to which a node
belongs

k = [k(2), . . . , k(M)] hyperdegree

N(k) Number of nodes with hyperdegree k

P (k) Probability of a node with hyperdegree k

γ Rate of healing

βm Rate of infection by a hyperedge of size m

fm(k1,k2 . . . ,km) Probability that m nodes form a hyperedge of
size m

xk Fraction of nodes with hyperdegree k that are
infected

τ Threshold process adoption threshold

Table 2.1: Relevant notation



Chapter 3

The effect of heterogeneity on hypergraph contagion models

It was shown in Ref. [11] that the addition of higher-order interactions to the SIS epidemic

model on Erdös-Rényi networks results in bistability, hysteresis, and explosive transitions to an en-

demic disease state (see also Refs. [42, 43, 36, 44]). The simplicial SIS model has also been extended

to scale-free uniform hypergraphs [45]. The fact that the network SIS model with more general

higher-order interactions results in bistability has been proven rigorously in Ref. [43]. However,

so far there is no general theory explaining how heterogeneity and correlations in the structure of

higher-order interactions affect the onset of bistability.

In this Chapter, we present and analyze a degree-based mean-field description of the dynamics

of the SIS model in networks with higher-order interactions. To describe higher-order interactions

we consider the SIS model on a hypergraph, formed by a set of nodes and a set of edges of multiple

sizes (so that edges of size larger than two represent higher-order interactions). Our formulation

allows us to consider heterogeneous structure in the organization of the edges of a given size, and

correlations between the structure of edges of different sizes. Using the illustrative case of networks

with edges of sizes 2 and 3, we derive conditions for the appearance of bistability and hysteresis in

terms of moments of the degree distribution of the pairwise interaction network. We find that the

onset of bistability and hysteresis can be suppressed by heterogeneity in the pairwise interaction

network and promoted by positive correlations between the number of pairwise and higher-order

interactions a node has. We also consider the effect of healing by higher-order interactions (a

“hipster effect”).
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The structure of this Chapter is as follows. In Sec. 3.1 we derive a mean-field description of

the model and apply it to various illustrative cases. In Sec. 3.2 we study how model parameters

affect the onset of bistability. Finally, we discuss our results and present our conclusions in Sec. 3.3.

3.1 Mean-Field Analysis

In this section we present a mean-field analysis of the epidemic dynamics on a network spec-

ified by the hyperdegree distribution P (k) = N(k)/N and the hyperedge connection probabilities

fm(k1,k2 . . . ,km). Assuming that all nodes with the same hyperdegree behave similarly, we fo-

cus on xk, the fraction of nodes with hyperdegree k that are infected. The mean-field equation

describing the evolution of xk is

dxk
dt

= −γxk + (1− xk)
M∑

m=2

βm
1

(m− 1)!

∑
k1,...,km−1

m−1∏
l=1

N(kl)fm(k,k1, . . . ,km−1)G(xk1 , . . . , xkm−1)

(3.1)

G(xk1 , . . . , xkm−1) =


m−1∏
l=1

xkl
, collective contagion,

1−
m−1∏
l=1

(1− xkl
), individual contagion.

(3.2)

The first term on the right-hand side of Eq. (3.1) corresponds to healing at rate γ and the

second term accounts for infection by hyperedges. The number of hyperedges of size m that can

pass an infection to a node with hyperdegree k is calculated by considering all the possible hy-

perdegrees of the other m − 1 nodes participating in the hyperedge (k,k1, . . . ,km−1), counting

how many such combinations there are not counting permutations [N(k1) · · ·N(km−1)/(m − 1)!],

calculating what fraction of such combinations form a hyperedge with the node in consideration

[fm(xk, xk1 , . . . , xkm−1)], multiplying by the probability that the hyperedge can transmit the infec-

tion [G(xk1 · · ·xkm−1)], and summing over all hyperdegree combinations. The probability that the

hyperedge can transmit the infection, given by (3.2), depends on whether the collective contagion

or individual contagion model is assumed. Note that the form for G taken above, and the mean field
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treatment in general, assume that the states of nodes are independent. A better approximation

that includes correlations between connected nodes has been implemented in Refs. [44, 46] for the

case of unstructured hyperedges of sizes 2 and 3, leading to improved quantitative agreement with

the results of numerical simulations. Since our interest is in the effects of higher-order structures on

qualitative aspects of the epidemic dynamics, we will use the mean field approximation in Eq. (3.1).

A similar mean-field equation for a node-based description of the contagion process was recently

formulated in Ref. [43]. In the following we will apply the mean-field description to illustrative

cases.

3.1.1 Hyperedges of sizes 2 and 3 with collective contagion

Here we focus on the case where the hyperedge sizes are either 2 or 3, i.e., M = 3. This

corresponds to a network like in Fig. 2.1, with hyperedges of size 2 (links) and 3 (triangles). For

simplicity, here we denote the number of links per node as k, i.e., k = k(2), and the number of

triangles a node belongs to by q, i.e., q = k(3). In addition, we will consider the case where the con-

nection probabilities depend only on the node links, i.e., fm(k,k1, . . . ,km−1) = fm(k, k1, . . . , km−1).

With these assumptions, and using the collective contagion rule in Eq. (3.2), Eq. (3.1) becomes

dxk,q
dt

= −γxk,q + (1− xk,q)β2
∑
k1,q1

N(k1, q1)f2(k, k1)xk1,q1 (3.3)

+ (1− xk,q)
β3
2

∑
k1,q1,k2,q2

N(k1, q1)N(k2, q2)f3(k, k1, k2)xk1,q1xk2,q2 , (3.4)

where the first term on the right hand side represents healing, the second represents contagion by

links, and the third represents contagion by triangles.

Since the connection probabilities do not depend on q, we can reduce the dynamics to the

fraction of nodes with degree k that are infected,

xk =

∑
qN(k, q)xk,q

N(k)
, (3.5)

where N(k) =
∑

qN(k, q) is the number of nodes with degree k. Multiplying Eq. (3.3) by N(k, q),
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summing over q and dividing by N(k), we obtain

dxk
dt

= −γxk + (1− xk)β2
∑
k1

N(k1)f2(k, k1)xk1 (3.6)

+ (1− xk)
β3
2

∑
k1,k2

N(k1)N(k2)f3(k, k1, k2)xk1xk2 .

For the link connection probability f2(k, k1), we will take f2(k, k1) = kk1/(N⟨k⟩), which corresponds

to nodes being connected completely at random according to their degree as in the configuration

model. For the triangle connection probability f3, we will consider two cases: the uncorrelated

case and the degree-correlated case. In the degree-correlated case, we assume that the connection

probability is given by f3(k, k1, k2) = 2kk1k2/(N⟨k⟩)2, so that nodes that have a higher number of

links also belong to more triangles. In the uncorrelated case, we assume instead that f3(k, k1, k2) =

2⟨k⟩/N2, so that triangles are formed independent of the nodal degrees. The normalization is

chosen using Eq. (2.1) so that the mean number of triangles per node, ⟨q⟩ =
∑N

i=1 k
(3)
i /N , in each

case is equal to ⟨k⟩. We note that the model for triangle formation in Ref. [11] corresponds to the

uncorrelated case. We can choose the mean triangle degree independent of the mean network degree

by scaling f3(k, k1, k2) by ⟨q⟩/⟨k⟩, but for simplicity, we assume ⟨q⟩ = ⟨k⟩. Figure 3.1 illustrates

the difference between the two cases in a small network, where in the degree-correlated case, the

triangles cluster around nodes with high pairwise degree, and in the uncorrelated case, the triangles

are distributed uniformly at random on the network.
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Degree-correlated Uncorrelated

Figure 3.1: Schematic illustration of the degree-correlated and uncorrelated cases. In the degree-
correlated case (left), nodes with more links are more likely to belong to a triangle. In the uncor-
related case (right), triangles connect nodes with a probability independent of their degree.

We can also specify the distribution of triangle degrees by defining f2(q, q1) and f3(q, q1, q2)

and then reducing Eq. (3.3) by multiplying by N(k, q), dividing by N(q), and summing over k to

reduce the dynamics to the fraction of infected nodes with triangle degree q. For the triangle con-

nection probability, we take f3(q, q1, q2) = 2qq1q2/(N⟨q⟩)2 which corresponds to three nodes being

connected at random according to the configuration model for triangles [32]. For the pairwise links,

we define the degree-correlated and uncorrelated cases as before, where in the degree-correlated

case, f2(q, q1) = qq1/(N⟨q⟩), and for the uncorrelated case, f2(q, q1) = ⟨q⟩/N . From there, we can

use the same formalism as our approach when specifying the pairwise degree.

Now we consider separately the degree-correlated and uncorrelated cases. In the correlated

case, where f3(k, k1, k2) = kk1k2/(N⟨k⟩)2, Eq. (3.6) can be rewritten in terms of the fraction of

infected links

V =
∑
k

kN(k)xk
N⟨k⟩

=
∑
k

P (k)
kxk
⟨k⟩

(3.7)

as

dxk
dt

= −γxk + β2(1− xk)kV + β3(1− xk)kV 2. (3.8)

In this case, the dynamics of nodes of degree k is determined by the global variable V . To
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study the qualitative characteristics of the dynamics, we find the steady-state solutions. The fixed

point of Eq. (3.8) is

xk =
β2kV + β3kV

2

γ + β2kV + β3kV 2
. (3.9)

Inserting this in (3.7), we obtain a nonlinear equation that determines the fraction of infected links

V :

V =
1

N⟨k⟩
∑
k

kN(k)(β2kV + β3kV
2)

γ + β2kV + β3kV 2
. (3.10)

The state with no infection, V = 0, is a solution to (3.10). However, it is linearly unstable

for β2 > βc2 = γ⟨k⟩/⟨k2⟩, as can be seen by linearizing Eq. (3.8) about V = 0, multiplying by

kN(k)/(N⟨k⟩), and summing over k, which yields the linearized equation for the evolution of the

perturbation δV

dδV

dt
= −γδV + β2

⟨k2⟩
⟨k⟩

δV. (3.11)

The nonzero solutions of Eq. (3.10) represent states with a nonzero fraction of infected nodes.

Now we study the uncorrelated case where f3(k, k1, k2) = 2⟨k⟩/N2. In this case, Eq. (3.6)

can be rewritten in terms of the fraction of infected nodes

U =
∑
k

N(k)xk
N

=
∑
k

P (k)xk, (3.12)

and the fraction of infected links V . In terms of these quantities, Eq. (3.6) reads

dxk
dt

= −γxk + β2(1− xk)kV + β3(1− xk)⟨k⟩U2. (3.13)

As in the prior case, the equilibrium is

xk =
β2kV + β3⟨k⟩U2

γ + β2kV + β3⟨k⟩U2
. (3.14)

Evaluating this expression in Eqs. (3.7) and (3.12) we obtain the coupled equations

U =
1

N

∑
k

N(k)(β2kV + β3⟨k⟩U2)

γ + β2kV + β3⟨k⟩U2
, (3.15)

V =
1

N⟨k⟩
∑
k

kN(k)(β2kV + β3⟨k⟩U2)

γ + β2kV + β3⟨k⟩U2
. (3.16)
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The state with no infection, U = 0, V = 0, is a solution of (3.15)-(3.16). By considering

perturbations δU , δV from this solution, linearizing Eq. (3.13), and evaluating in Eq. (3.7) for the

first equation and Eq. (3.12) for the second equation, we obtain the linear system

dδV

dt
= −γδV + β2

⟨k2⟩
⟨k⟩

δV, (3.17)

dδU

dt
= −γδU + β2⟨k⟩δV, (3.18)

which shows that the no infection state is linearly unstable for β2 > γ⟨k⟩/⟨k2⟩, which is the same

threshold we obtained for the correlated case.

In summary, nonzero solutions of Eq. (3.10) and Eqs. (3.15)-(3.16) for the degree-correlated

and uncorrelated cases, respectively, represent states with a nonzero number of infected nodes.

Figure 3.2 shows the fraction of infected nodes U for the uncorrelated case as a function of the

normalized pairwise infectivity β2/β
c
2 for three values of the triangle infectivity β3 obtained from

numerical solution of Eqs. (3.15)-(3.16) with P (k) ∝ k−4 for 67 < k < 1000 and 0 otherwise. Dif-

ferent solutions are plotted as solid and dashed lines to indicate stability or instability, respectively.

The connected circles are obtained from numerical simulations of the full stochastic microscopic

model. In these simulations β2 was slowly increased in small steps up to a maximum value, and

subsequently decreased back to its initial value. For each β2, the average number of infected nodes

after transient effects disappeared is shown as a filled circle. For more details about the simulations,

see Appendix A.

The behavior of the microscopic simulations is captured qualitatively by the mean field equa-

tions. The quantitative disagreement is likely due to the assumptions inherent to the mean-field

approximation. In fact, Ref. [44] has shown that, for the particular case of uncorrelated triangles on

an Erdös-Rényi network, the disagreement almost disappears when pair correlations are taken into

account. Since our interest in this Chapter is on the qualitative dynamics, we use the mean-field

theory, but note that the approaches proposed in Refs. [44, 47] could be used to obtain better

approximations. The qualitative aspects of interest, captured by the mean field equations and the

numerical solution of Eqs. (3.15)-(3.16), are the following.
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Figure 3.2: Fraction of infected nodes U versus link infectivity β2 obtained from the mean field
equations (3.15)-(3.16) (solid and dashed lines) and from microscopic simulations (connected circles)
using P (k) ∝ k−4 on [67, 1000], γ = 2, and N = 10000 for β3 = 0.0194 (a), 0.0388 (b), and 0.05482
(c). Refer to the text for an explanation of the discrepancy between the mean field equations and
microscopic simulations.

For small values of β3 [Fig. 3.2(a), β3 = 0.0194] the bifurcation from the state with no

infection (U = 0) to the infected state (U > 0) is continuous. However, for larger values of β3

[Fig. 3.2(c), β3 = 0.0582], the transition is discontinuous: as β2 increases past a critical value βc2,
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the fraction of infected links increases explosively towards an epidemic equilibrium (upward arrow).

If β2 is subsequently decreased, the fraction of infected links remains high until β2 decreases past

the value at which the epidemic equilibrium solution disappears, and then it decreases to zero

(downward arrow). For such values of β3, there is hysteresis, bistability, and explosive transitions.

At a critical value β3 = βc3, which will be the focus of our interest, there is a transition from the

type of bifurcation shown in Fig 3.2(a) to the type of bifurcation shown in Fig. 3.2(c). Fig. 3.2(b)

shows U as a function of β2 for a value β3 = 0.0388 ≈ βc3. We are interested in exploring how the

presence of this bistable regime is affected by the degree distribution P (k) and other parameters

of the model, in particular the triangle infectivity, β3.

Figure 3.3 shows the phase diagram in the (β2, β3) plane for the degree-correlated, collective

contagion model. The plot was obtained by counting the number of solutions of Eq. (3.10) as

a function of β2 and β3 for γ = 2, and P (k) ∝ k−4 when 67 < k < 1000 and 0 otherwise (all

subsequent phase diagram plots are calculated using the same parameters). Light pink indicates

that there is only the solution V = 0 corresponding to a stable state with no contagion. Orange

indicates two solutions, the unstable V = 0 solution and another stable solution with V > 0.

Finally, dark red indicates a bistable regime with three solutions: the stable V = 0 solution, and

a pair of stable and unstable solutions with positive V . As noted in Refs. [11, 43], this regime

is only present for large enough triangle infectivity, i.e., for β3 > βc3. The phase space for the

uncorrelated case (not shown) is qualitatively similar to the one in Fig. 3.3, but the transition to

bistable behavior occurs at a larger value of β3.
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Figure 3.3: Phase diagram for the degree-correlated, collective contagion model. The light pink
region labeled “No infection” corresponds to 1 solution of Eq. (3.10), the orange region labeled
“Infection, no bistability” to 2 solutions, and the region labeled “Bistability” to 3 solutions. The
parameters are γ = 2 and P (k) ∝ k−4 when 67 < k < 1000 and 0 otherwise.
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Figure 3.4: Bistability index B as a function of β3 for (a) P (k) constant for 50 < k < 150 and 0
otherwise, (b) P (k) ∝ k−4 for 67 < k < 1000 and 0 otherwise, and (c) P (k) ∝ k−3 for 53 < k < 1000
and 0 otherwise. For each distribution, we considered the uncorrelated case (orange connected
circles) and the degree correlated case (blue connected triangles). The dashed lines indicate the
value βc3 at which we expect the onset of bistability, obtained from the numerical solution of the
mean field equations (3.12) and (3.15)-(3.16).

To quantify how the onset of bistability depends on the hypergraph parameters, we define

the bistability index B(β3) as the maximum separation, over all values of β2, between the largest
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and smallest stable solutions for the fraction of infected nodes U . The bistability index can be

calculated from microscopic simulations of the contagion process such as those used to produce

Fig. 3.2, or from numerical solution of Eq. (3.10) for the correlated case and Eqs. (3.15)-(3.16) for

the uncorrelated case. In Figure 3.4 we plot the bistability index B as a function of β3 computed

from microscopic simulations for three choices of the link degree distribution P (k), all with a

mean degree of 100: (a) P (k) constant for 50 < k < 150 and 0 otherwise, (b) P (k) ∝ k−4 for

67 < k < 1000 and 0 otherwise, and (c) P (k) ∝ k−3 for 53 < k < 1000 and 0 otherwise. For

each distribution, we considered the uncorrelated case (orange connected circles) and the degree

correlated case (blue connected triangles). The dashed lines indicate the value βc3 at which we

expect the onset of bistability, obtained from numerical solution of Eqs. (3.10) and (3.15)-(3.16)

for the degree correlated and uncorrelated cases, respectively (in Sec. 3.2 we provide analytical

expressions for these values). As the degree distribution of the pairwise interaction network P (k)

becomes more heterogeneous from (a) to (c), the value of β3 at which the onset of bistability occurs

increases for the uncorrelated case, while it remains almost unchanged for the degree-correlated

case. A heuristic interpretation of this phenomenon is the following: in the uncorrelated case, the

triangle interactions do not depend on the heterogeneity of the link degree distribution. Therefore,

as the link degree distribution P (k) becomes more heterogeneous, contagion becomes dominated

by hubs of the pairwise interaction network, a mechanism which does not result in bistability.

Therefore, bistability is suppressed in the uncorrelated case. On the other hand, for the degree

correlated case, both triangle and link contagion mechanisms increase their effectiveness in tandem

as the heterogeneity of the link degree distribution is increased. It is important to note that the

increase in βc3 with heterogeneity, which is shown here in absolute terms, still occurs if one considers

it relative to the value of βc2 (i.e., βc3/β
c
2 also increases with heterogeneity), as we will show later.

Another interesting aspect seen in Figure 3.4 is that the transition to bistable behavior seems

sharper in the uncorrelated case for the more heterogeneous networks. As we will see in Sec. 3.2, the

nature of the bifurcation is indeed different for the uncorrelated case and heterogeneous networks.

Finally, we have to point out that the numerical calculation of the bistability index from
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numerical simulations can be challenging. When the unstable solution is small, finite size effects

can cause transitions to the nonzero stable solution from the stable zero solution, making the

numerical determination of the stable fixed points difficult and the bistability index plots noisy.

Nevertheless, the mean field theory predicts well the onset of bistability.

3.1.2 Hyperedges of sizes 2 and 3 with individual contagion

Now we consider the case of individual contagion, in which an m-hyperedge infects a suscep-

tible node with rate βm when at least one member of the hyperedge is infected. For simplicity, we

will still consider only links and triangles (M = 3) with infection rates of β2 and β3 respectively.

The analogue to Eq. (3.6) for the individual contagion case is

dxk
dt

= −γxk + (1− xk)β2
∑
k1

N(k1)f2(k, k1)xk1+ (3.19)

(1− xk)
β3
2

∑
k1,k2

N(k1)N(k2)f3(k, k1, k2)[1− (1− xk1)(1− xk2)].

For the correlated case, f3(k, k1, k2) = 2kk1k2/(N⟨k⟩)2, this can be rewritten as

dxk
dt

= −γxk + (β2 + 2β3)(1− xk)kV − β3(1− xk)kV 2, (3.20)

with fixed point

xk =
(β2 + 2β3)kV − β3kV 2

γ + (β2 + 2β3)kV − β3kV 2
. (3.21)

Inserting this into Eq. (3.7) like before, we obtain

V =
1

N⟨k⟩
∑
k

kN(k)[(β2 + 2β3)kV − β3kV 2]

γ + (β2 + 2β3)kV − β3kV 2
. (3.22)

Linearizing about the V = 0 equilibrium, we find that the epidemic threshold is given by the

condition

β2 + 2β3 = γ
⟨k⟩
⟨k2⟩

, (3.23)

which defines a linear relationship between β2 and β3 for fixed γ, in contrast to the collective

contagion mechanism which does not alter the epidemic threshold βc2 = γ⟨k⟩/⟨k2⟩. This relationship
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can be understood heuristically by noting that, close to the V = 0 solution, the probability that

two nodes in a hyperedge are simultaneously infected can be neglected. Under that assumption,

infection of a susceptible node by a triangle when at least one other node is infected is equivalent

to independent infection by either of the two other nodes in the triangle with rate β3. Since in the

correlated case a node belongs, on average, to the same number of links and triangles, the individual

contagion model reduces to the traditional SIS model with contagion rate βeff2 = β2 + 2β3 in the

linear regime (we emphasize, however, that the nonlinear behavior can be different).

In Fig. 3.5 we plot the (β2, β3) phase space for this scenario, with light pink indicating one

solution (V = 0) to Eq. (3.22) and orange indicating two solutions, the unstable V = 0 solution

and a stable V > 0 solution.
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Figure 3.5: Phase diagram for the degree-correlated, individual contagion model with parameters
γ = 2 and P (k) ∝ k−4 when 67 < k < 1000 and 0 otherwise.

Considering the uncorrelated case where f(k, k1, k2) = 2⟨k⟩/N2, and expressing Eq. (3.19) in
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terms of U and V , we obtain

dxk
dt

= −γxk + β2(1− xk)kV (3.24)

+2β3(1− xk)⟨k⟩U − β3(1− xk)⟨k⟩U2,

with equilibrium

xk =
β2kV + 2β3⟨k⟩U − β3⟨k⟩U2

γ + β2kV + 2β3⟨k⟩U − β3⟨k⟩U2
, (3.25)

which has different first-order behavior than the degree correlated case. Inserting this expression

into Eqs. (3.7) and (3.12), we obtain

U =
1

N

∑
k

N(k)(β2kV + 2β3⟨k⟩U − β3⟨k⟩U2)

γ + β2kV + 2β3⟨k⟩U − β3⟨k⟩U2
, (3.26)

V =
1

N⟨k⟩
∑
k

kN(k)(β2kV + 2β3⟨k⟩U − β3⟨k⟩U2)

γ + β2kV + 2β3⟨k⟩U − β3⟨k⟩U2
. (3.27)

Linearizing, we obtain the system

δU =
⟨k⟩β2
γ

δV +
2⟨k⟩β3
γ

δU, (3.28)

δV =
⟨k2⟩β2
⟨k⟩γ

δV +
2⟨k⟩β3
γ

δU. (3.29)

Solving this system and canceling the zero solution, we find that the epidemic threshold is defined

by a non-linear relationship between the three epidemic parameters

β2 =
⟨k⟩γ2 − 2⟨k⟩2γβ3

⟨k2⟩γ − 2(⟨k2⟩ − ⟨k⟩2)⟨k⟩β3
(3.30)

This relationship implies that there is a singularity when β3 = β∗3 = γ⟨k2⟩/[2(⟨k2⟩−⟨k⟩2)⟨k⟩].

However, one can check that β2 is negative at β3 = β∗3 , and therefore the singularity is not physically

relevant. Note that when ⟨k2⟩ = ⟨k⟩2 in the case of a k-regular network, the threshold reduces to

that of the degree-correlated case.

3.1.3 Higher-order healing: hipster effect

Here we consider the effect of higher-order healing for both collective and individual contagion.

By higher-order healing we refer to a situation where infected nodes that belong to a hyperedge of
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size m > 2 with other infected nodes heal at rate βm. This can be thought of as a “hipster effect”

where if an idea or trend is popular in groups, then this makes an individual less likely to adopt the

trend, but the individual can be convinced to adopt the trend by their pairwise connections [48].

For both the collective and individual contagion cases, we comment on the existence of bistability

based on numerical phase plots.

When the contagion is collective, the model including higher-order healing can be written as

Eq. (3.6) with the sign of the third term changed, and because the triangle healing mechanism is

solely higher-order, there is no effect on the epidemic threshold which is obtained by the linearization

of the 0 solution. However, we find that explosive transitions do not occur for β2, β3 ≥ 0.

Likewise, for the individual contagion model, higher-order healing can be written as Eq. (3.19)

with the third term negative. In this case, the epidemic threshold for both the degree-correlated

and uncorrelated case can be obtained by substituting −β3 for β3 in Eq. (3.23) and Eq. (3.30)

respectively. Higher-order healing in individual contagion enables explosive transitions to occur

for ranges of β2, β3 ≥ 0, as can be seen in Fig. 3.6 which shows the phase space (β2, β3) for the

degree-correlated case. As one might expect, for large enough higher-order healing β3 there is no

infection, but there is a narrow band of bistable behavior separating the regions of no infection and

monostable infection.
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Figure 3.6: Phase diagram for the degree-correlated, higher-order healing with individual contagion
with parameters γ = 2 and P (k) ∝ k−4 when 67 < k < 1000 and 0 otherwise.

3.1.4 Unfortunate series of events

So far we have considered hypergraphs with hyperedges of sizes 2 and 3 only. We now

briefly discuss contagion in networks with hyperedges of all sizes, i.e., M = N . In the context

of epidemic spreading, hyperedges could be interpreted as participation in social events such as

parties, conferences, concerts, and sports events. For simplicity, we will focus on a hypergraph with

degree-correlated hyperedges where

fm(k,k1, . . . ,km−1) =
(m− 1)! kk1k2 . . . km−1

(N⟨k⟩)m−1

⟨k(m)⟩
⟨k⟩

, (3.31)

such that the average number of hyperedges of size m a node belongs to is ⟨k(m)⟩. In this case, by

repeating the calculations of Sec. 3.1.2, the fraction of infected nodes of degree k evolves in terms

of the fraction of infected edges V (3.7) as

dxk
dt

= −γxk + k(1− xk)
M∑

m=2

βm⟨k(m)⟩
⟨k⟩

[1− (1− V )m−1], (3.32)
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for individual contagion and

dxk
dt

= −γxk + k(1− xk)

M∑
m=2

βm⟨k(m)⟩
⟨k⟩

V m−1, (3.33)

for collective contagion. In the case of collective contagion, larger hyperedges can cause the emer-

gence of new stable fixed points which can lead to richer consensus dynamics [11]. We focus,

however, on the case of individual contagion. Linearizing, we find that the solution xk = 0 becomes

unstable when
M∑

m=2

(m− 1)βm⟨k(m)⟩
⟨k⟩

>
γ⟨k⟩
⟨k2⟩

. (3.34)

If the sum yields a value larger than γ⟨k⟩/⟨k2⟩ propagating social contagion will result.

Social event restrictions implemented as a truncation of the series by prohibiting events larger than

a certain size, or practices that reduce contagion in social events and reduce βm (such as enforcing

physical separation) can reduce the value of the sum so that contagion does not propagate [49, 50].

3.2 The effect of degree distribution on βc
3

In Section 3.1 we expressed the epidemic threshold βc2 in terms of moments of the degree

distribution of the underlying network structure. Similarly, we would like to express the critical

value of β3 at which the explosive transitions appear, βc3, as a function of hypergraph structure.

Explosive transitions and bistability occur when there are two stable steady-state solutions to

Eqs. (3.6). For the degree-correlated and uncorrelated cases, this occurs when there are two non-

zero solutions to Eq. (3.10) and the coupled system of Eqs. (3.15)-(3.16) respectively. We can

compute the critical value of β3 by finding the numerical solution of these mean field equations

and determining the value of βc3 at which bistability appears. This method is much more efficient

than using stochastic microscopic simulations of the contagion model to infer the onset of explosive

transitions and to map the phase space. Fig. 3.7 shows the predicted value of βc3 normalized by

βc2 for the correlated (a) and uncorrelated (b) cases as a function of the power-law exponent r

and the maximum degree kmax, where Eqs. (3.10) and (3.15)-(3.16) were solved using P (k) ∝ k−r

if 50 ≤ k ≤ kmax and P (k) = 0 otherwise. Larger values of r and kmax correspond to larger
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heterogeneity of the degree distribution. We note that for the most homogeneous network – the

k-regular network – βc3/β
c
2 is 1, and we see in Figs. 3.7(a) and (b) that βc3 increases relative to βc2

as r or kmax increase, except for small values of r and large values of kmax in the degree-correlated

case. Thus, heterogeneity in the degree distribution of the pairwise interaction network appears to

suppress explosive transitions. However, this effect is much more pronounced for the uncorrelated

case (b) that for the degree-correlated case (a), as we discussed previously. In Appendix A.2.1, we

describe in more detail the algorithm employed to find βc3 from the mean field equations.

(a) Degree-correlated hyperedges (b) Uncorrelated hyperedges

Figure 3.7: βc3/β
c
2 as a function of power-law distribution parameters for the degree-correlated case

(a) and the uncorrelated case (b). βc3 was calculated numerically from the mean field equations
(see Appendix A.2.1), and βc2 = γ⟨k⟩/⟨k2⟩. The parameters are P (k) ∝ k−r if 50 ≤ k ≤ kmax and
P (k) = 0 otherwise and γ = 2.

Although this method works well in predicting the value of βc3, it does not provide a direct

relationship between the network structure and the onset of explosive transitions and is more

computationally expensive than an analytical expression. For this reason, we present closed form

approximations to βc3 and describe the parameter regimes over which they are accurate. Starting

with the degree-correlated case and canceling the zero solution of Eq. (3.10), we find conditions

under which there are at least two solutions to

h(V, β2) =
1

N⟨k⟩
∑
k

kN(k)(β2k + β3kV )

γ + β2kV + β3kV 2
− 1 = 0. (3.35)
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First, note that h(0, β2) = β2/β
c
2 − 1 and that h(1, β2) < 0. Therefore, if ∂h

∂V (0, βc2) > 0, then

by continuity, there will be at least two solutions for β2 less than, but sufficiently close to, βc2. This

condition gives

βc3
γ

=
⟨k3⟩⟨k⟩2

⟨k2⟩3
, (3.36)

which works well in predicting the onset of bistability for the degree-correlated case. The relative

error with respect to the value obtained from directly solving Eq. (3.10) for all distributions tested

is less than 2% (not shown).

The analysis for the degree-correlated case was based on the behavior of h(V, β2) near V = 0.

For the uncorrelated case, however, we find that a saddle-node bifurcation can occur at positive

values of V , and it is necessary to expand Eqs. (3.15)-(3.16) to higher order.

Expanding Eqs. (3.15)-(3.16) to second order, setting β2 = βc2 = γ⟨k⟩/⟨k2⟩, and subtracting

the two equations yields

U =
⟨k⟩2

⟨k2⟩
V +

(
⟨k⟩⟨k3⟩
⟨k2⟩2

− ⟨k⟩
2

⟨k2⟩

)
V 2, (3.37)

which, when evaluated in

h(V, β2) =
1

N⟨k⟩
∑
k

kN(k)(β2kV + β3⟨k⟩U2)

γ + β2kV + β3⟨k⟩U2
− V = 0 (3.38)

and expanded to fourth order, again setting β2 = βc2, yields

h(V, βc2) = (a0 + a1V + a2V
2)V 2, (3.39)

where

a0 = −⟨k⟩⟨k
3⟩

⟨k2⟩2
+
⟨k⟩5β3
⟨k2⟩γ

, (3.40)

a1 =
⟨k⟩2⟨k4⟩
⟨k2⟩3

− 4
⟨k⟩5β3
⟨k2⟩2γ

+ 2
⟨k⟩4⟨k3⟩β3
⟨k2⟩3γ

, (3.41)

a2 = −⟨k⟩
3⟨k5⟩
⟨k2⟩4

+ 5
⟨k⟩5β3
⟨k2⟩2γ

+ 3
⟨k⟩6⟨k3⟩β3
⟨k2⟩4γ

(3.42)

−6
⟨k⟩4⟨k3⟩β3
⟨k2⟩3γ

+
⟨k⟩3⟨k3⟩2β3
⟨k2⟩4γ

− ⟨k⟩
10β23

⟨k2⟩4γ2
.

For continuous transitions to epidemics, there is only one equilibrium for V at β2 = βc2,

namely V = 0. The onset of bistability occurs when a second solution appears, which corresponds
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to the first appearance of a root of (3.39) in the interval (0, 1). Such a root can appear at V = 0

in a transcritical bifurcation, or at V > 0 as a pair of roots in a saddle-node bifurcation. A pair

of roots appears when the discriminant of the quadratic equation a0 + a1V + a2V
2 = 0 is zero.

However, this bifurcation is physically meaningless if it occurs for values of V outside the interval

[0, 1]. Therefore, we impose the constraint that the value of β3 found by solving a21 − 4a0a2 = 0

must satisfy the inequality 0 ≤ −a1/2a2 ≤ 1. In addition, we note that because of continuity, the

sign of the a2 term must be negative, because otherwise ∂h
∂V (0, βc2) > 0 and the bifurcation has

already occurred. The transcritical bifurcation occurs when a root crosses from a negative value

to a positive value, which occurs when one root of a0 + a1V + a3V
2 = 0 is V = 0, implying that

a0 = 0 and βc3 = γ⟨k3⟩/⟨k⟩4. Using these conditions, we can construct a piecewise definition of βc3

βc3 =


Solve(a21 − 4 a0 a2 = 0), a2 < 0, 0 ≤ − a1

2a2
≤ 1,

⟨k3⟩
⟨k⟩4γ, else.

(3.43)

The relative error in the value of βc3/β
c
2 obtained from Eq. (3.43) compared with the numer-

ically obtained value shown in Fig. 3.7(b) is shown in Fig. 3.8.
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Figure 3.8: Relative error in the value of βc3/β
c
2 obtained from Eq. (3.43) compared with the

numerically obtained value shown in Fig. 3.7(b).

In principle, one can expand to higher order to gain accuracy for the most heterogeneous

of distributions. However, there is limited utility in increasing the order of the expansion further,

because the resulting conditions become extremely complicated.

3.3 Discussion

In this Chapter we studied the SIS model of social contagion on hypergraphs with hetero-

geneous structure. The mean field description in Eq. (3.1) allowed us to explore the effects of

hyperedge organization on the epidemic onset and the onset of bistability and explosive transi-

tions. One of our main findings is that with increasing heterogeneity of the pairwise network

degree distribution, the onset of explosive transitions is postponed when the pairwise and higher

order interactions have independent structure. More generally, when considering a hypergraph

contagion model, the group infection and pairwise infection are competing mechanisms by which

contagion spreads. Factors that promote contagion via pairwise infection, such as a heterogeneous
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degree distribution of the pairwise contact network, suppress discontinuous transitions. Conversely,

heterogeneity in the degree distribution of hyperedges of higher order promotes such transitions.

We considered two ways in which the structure of hyperedges of different sizes could be

organized: the uncorrelated case, in which they are independent, and the correlated case, in which

hyperedges of different sizes connect preferentially to the same nodes. While the organization of

hyperedges in real world networks is surely much more complicated, these cases can be considered

as null models against which the structure of real-world hypergraphs can be compared.

We studied various forms of higher-order contagion and healing: (i) collective contagion, in

which all other members of the hyperedge need to be infected for contagion to occur, (ii) individual

contagion, in which at least one member of the hyperdegree needs to be infected, and (iii) higher-

order healing, in which pairwise interactions are infectious while higher-order interactions heal.

Other forms of higher-order contagion could in principle be studied with the same methodology,

but we leave these studies for future research.

Now we mention some of the limitations of our study. First, since we focused on the simplest

contagion model, an important question left for future research is whether our results remain

valid for more realistic epidemiological models (e.g. such as those used to model COVID-19 [51,

27]). Our model also does not apply to non-Markovian contagion dynamics, which are important

when modeling real-world epidemics. From a technical standpoint, another limitation is that we

used a mean-field description of the dynamics, and it is known that such a description is not

quantitatively accurate for moderate values of the infected population value [52, 44]. Since we were

mainly interested in the behavior close to the onset of epidemics, the mean-field approximation was

enough for our purposes. However, more precise descriptions could be obtained as in Refs. [44, 53].

Another important limitation of our hypergraph model is that we assume that the probability

that two nodes belong to the same hyperedge is a function of their hyperdegrees. While this

assumption can be relaxed by considering additional nodal variables, it is possible that such a model

might be inadequate to describe some real-world networks. Finally we note that our model relies

on knowledge of the functions fm, which encode the organization of hyperedges across different
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hyperedge sizes. These functions have not yet been estimated from real-world networks, but as

progress is made towards understanding the organization of higher-order interactions [54], the

determination of these functions could be a natural next step.

While in this Chapter we applied our hyperdegree based mean-field equation to the SIS

epidemic model, the same formalism could be applied to other dynamical processes on hypergraphs,

such as synchronization, opinion formation, and other types of epidemic models. We believe that

this methodology will be useful to study the effect of heterogeneity on these hypergraph dynamical

processes.

Data Availability

All code used in this study can be found at https://github.com/nwlandry/SimplexSIS [55].

https://github.com/nwlandry/SimplexSIS


Chapter 4

Hypergraph assortativity: a dynamical systems perspective

Complex social systems often exhibit assortative mixing [56, 57], where individuals with sim-

ilar characteristics connect with each other more often than it would be expected if they were

connected at random. Assortativity has been extensively studied in network science [58] and found

to have significant effects on synchronization [59], epidemic dynamics [30, 60], stability [61], evolu-

tionary game dynamics [62], and general diffusion processes [63].

The pairwise notion of assortativity has been extended to hypergraphs for categorical node

labels [64, 65, 66] and continuous attributes [3]. Assortativity on hypergraphs can provide different

insights on the structure of the interactions than assortativity on the pairwise network projection

[3] and, as we will show, affect the outcome of hypergraph dynamical processes.

A fundamental problem when studying dynamics on networks is to determine how structural

characteristics of the network affect the dynamical behavior. Many dynamical properties such as

the onset of epidemic spreading [20], synchronization [67], and percolation [68] are determined by

the largest eigenvalue of the network’s adjacency matrix (or, in some cases, of the non-backtracking

matrix [69]). In turn, this eigenvalue is affected by the network’s degree distribution and assortative

mixing properties [70] as well as other structural characteristics. In this Chapter we show how the

expansion eigenvalue, a suitably generalized eigenvalue for hypergraphs, is similarly modified by

the assortative properties of the hypergraph. This eigenvalue has been shown to determine the

extinction threshold for the SIS model on hypergraphs [71], and we believe it will also prove useful

in relating hypergraph assortative mixing patterns to other dynamical processes.



37

Our approach is as follows: first, we define and motivate the importance of the expansion

eigenvalue on dynamical processes; second, we derive a mean-field approximation of this eigenvalue

for hypergraphs without assortativity; third, we present a generative model for assortative hyper-

graphs; fourth, we employ a perturbation approach to derive the effect of degree-degree mixing on

the eigenvalue and define the dynamical assortativity; and lastly, we show how our results can be

used to modify hypergraph dynamics through preferential rewiring of hyperedges.

4.1 Motivation

We define the expansion eigenvalue and discuss its relevance to dynamical processes on hy-

pergraphs. For a weighted hypergraph, the expansion eigenvalue λ and associated eigenvector u

are defined by the eigenvalue equation

λui =
∑

e={i,i1,...,im−1}∈E

βe(ui1 + · · ·+ uim−1), (4.1)

where λ and u are the Perron-Frobenius eigenvalue and eigenvector of the nonnegative matrix

associated to linear equation (4.1).

Here we present some applications of the expansion eigenvalue. First, just like the Perron-

Frobenius eigenvector of a network adjacency matrix represents eigenvector centrality [72], in the

unweighted case (i.e., βe = 1 for every hyperedge e), the eigenvector u corresponds to the Clique

motif Eigenvector Centrality, a generalization of eigenvector centrality for hypergraphs [73]. Second,

just as the largest eigenvalue of a network’s adjacency matrix is determinant for network dynamics,

the expansion eigenvalue plays an important role in dynamical processes on hypergraphs. For

example, consider an SIS process on a hypergraph, where a healthy node can get infected via a

hyperedge e to which it belongs at rate βe if at least one other node in e is infected (the case

referred to as individual contagion in Ref. [12]) and heals spontaneously at rate γ. As discussed in

Ref. [71] in Theorem 9.1, the extinction threshold for the exact stochastic process can be bounded

above by that for the mean-field dynamics. The mean-field equation for xi, the probability that
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node i is infected, is given by

dxi
dt

= −γxi + (1− xi)
∑

e={i,i1,...,im−1}∈E

βe

× [1− (1− xi1) . . . (1− xim−1)]. (4.2)

By inspection, xi = 0 for all i is always a fixed point of this equation. We write an ODE for

linear perturbations around this equilibrium to derive conditions for the system’s stability. To first

order, the equation for the perturbations, δxi, is

d(δxi)

dt
= −γ(δxi) +

∑
{i,i1,...,im−1}∈E

βe(δxi1 + · · ·+ δxim−1), (4.3)

If we assume δxi = uie
rt, then

(r + γ)ui = λui =
∑

{i,i1,...,im−1}∈E

βe(ui1 + · · ·+ uim−1), (4.4)

where λ is the expansion eigenvalue and so, r = λ−γ. Therefore, a sufficient condition for epidemic

extinction is γ > λ [71]. For an m-uniform hypergraph with βe = βm, the extinction threshold is

βm/γ < 1/λ, where λ is the expansion eigenvalue of the unweighted hypergraph.

If we rewrite the last term of Eq. (4.3) as a sum over uniform hypergraphs, then

d(δxi)

dt
= −γ(δxi) +

M∑
m=2

(m− 1)
(
W (m)δx

)
i
, (4.5)

where W (m) is the weighted version of the clique motif matrix defined in Ref. [73] and δx =

[δx1, . . . , δxN ]. We can define W =
∑M

m=2(m− 1)W (m) as a linear operator with eigenvalue λ and

as before, the extinction threshold is γ > λ. In addition, we can determine the relative importance

of a node i with respect to this contagion model (in terms of its probability of infection at the onset

of the epidemic) from the ith entry of the associated eigenvector.

Finally, the importance of the expansion eigenvalue in spreading processes can be understood

from the fact that in the unweighted case the number of nodes reachable via hyperedges from a

given starting node in ℓ steps grows asymptotically as λℓ as demonstrated in Ref. [73]. We discuss

limitations of the expansion eigenvalue in Section 4.4.



39

4.2 Mean-Field Approach

4.2.1 Uncorrelated m-uniform case

We start by deriving a mean-field approximation for the expansion eigenvalue λ in the case

where nodes are connected with hyperedges completely at random (as in the hypergraph configu-

ration model [33, 32, 12, 3]), which we call the uncorrelated case, before considering hypergraphs

with degree assortativity. In the uncorrelated case, the function fm is given by fm(ki1 , . . . ,kim) =

f
(0)
m (k

(m)
i1

, . . . , k
(m)
im

) = (m − 1)!k
(m)
i1

. . . k
(m)
im

/(N⟨k(m)⟩)m−1. For simplicity, from now on we will

consider an unweighted m-uniform hypergraph, and will denote k
(m)
i by ki and refer to it as the

degree of node i. Now we assume that all nodes with the same degree are statistically equivalent

and that the eigenvector entry of node i depends only on its degree, i.e., ui → uki . In Section 4.4,

we discuss the limitations of this approach. Henceforth λ will denote the mean-field approximation

to the expansion eigenvalue for convenience unless explicitly stated otherwise. Defining N(k) to

be the number of nodes with degree k such that P (k) = N(k)/N is the degree distribution, the

equation defining the expansion eigenvalue can be written as

λuk =
1

(m− 1)!

∑
k1,...,km−1

N(k1) . . . N(km−1)

× f (0)m (k, k1, . . . , km−1)(uk1 + · · ·+ ukm−1). (4.6)

By symmetry of the function f
(0)
m , we get

λuk =

(m− 1)
∑
k1

P (k1)
k1 uk1
⟨k⟩

 k, (4.7)

and multiplying both sides by k P (k)/⟨k⟩ and summing over k, we obtain for the uncorrelated case

λ = (m− 1)
⟨k2⟩
⟨k⟩

, (4.8)

and uk ∝ k from Eq. (4.7).
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4.2.2 Derivation of the non-uniform uncorrelated expansion eigenvalue

We now relax the assumption of an m-uniform hypergraph and consider an uncorrelated

hypergraph with hyperedges of sizes m = 2, . . . ,M and hyperedge weights of the form βe = β|e|.

The expansion eigenvalue equation can be written as

λui =

M∑
m=2

βm
∑

{i,i1,...,im−1}∈E

(ui1 + · · ·+ uim−1). (4.9)

The degree-based mean-field eigenvalue equation, where we assume ui = uki
, can be written as

λuk =
M∑

m=2

βm
1

(m− 1)!

∑
k1,...,km−1

N(k1) . . . N(km−1)

× fm(k,k1, . . . ,km−1)(uk1 + · · ·+ ukm−1). (4.10)

Focusing on the uncorrelated case, we assume that

fm(k,k1, . . . ,km−1) = f (0)m (k(m), k
(m)
1 , . . . , k

(m)
m−1)

=
(m− 1)!k(m)k

(m)
1 . . . k

(m)
m−1

(N⟨k(m)⟩)m−1
,

so

λuk =

M∑
m=2

βm
∑

k1,...,km−1

N(k1) . . . N(km−1)

×
k(m)k

(m)
1 . . . k

(m)
m−1

(N⟨k(m)⟩)m−1
(uk1 + · · ·+ ukm−1),

and from symmetry,

λuk =

M∑
m=2

k(m)βm(m− 1)
∑
k1

P (k1)
k
(m)
1 uk1

⟨k(m)⟩
. (4.11)

From Eq. (4.11), we can see that uk must be a linear combination of k(m). We assume an ansatz

of the form

uk =

M∑
m=2

vmk
(m) = kTv (4.12)
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where v = (v2, . . . , vM ) is an unknown vector of nonnegative weights. Renaming the summation

indices and evaluating this ansatz in the eigenvalue equation,

λ
M∑
j=2

vjk
(j) =

M∑
i=2

k(i)βi(i− 1)

×
∑
k1

P (k1)
k
(i)
1

∑M
j=2 vjk

(j)
1

⟨k(i)⟩
.

Changing the order of summation,

λkTv =
M∑
i=2

M∑
j=2

k(i)
βi(i− 1)

⟨k(i)⟩
vj
∑
k1

P (k1)k
(i)
1 k

(j)
1 ,

=
M∑
i=2

M∑
j=2

k(i)
βi(i− 1)⟨k(i)k(j)⟩

⟨k(i)⟩
vj ,

= kTKv.

We call K the degree-size correlation matrix, with entries Kij = βi(i− 1)⟨k(i)k(j)⟩/⟨k(i)⟩ which we

call the inter-size correlations. In Ref. [74], the authors derive a similar matrix for higher-order

percolation processes. Generically (when k is not orthogonal to the range of K−λI), this equation

has a solution if and only if λ and v solve the eigenvalue equation λv = Kv. Notice that in the

m-uniform case, we recover the expression we previously derived. Consider the network formed by

specifying hyperedge sizes (m = 2, . . . ,M) to be the nodes and constructing a link between two

sizes m1 and m2 if at least one node in the original hypergraph is a member of a hyperedge of size

m1 and a hyperedge of size m2. K is irreducible if and only if this network is strongly connected. If

this is the case, by the Perron-Frobenius theorem the eigenvalue with largest magnitude is positive

and has a corresponding positive eigenvector, and they correspond, respectively, to λ and v.
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4.2.3 Perturbation approach for the correlated case

In contrast with the uncorrelated case, we now assume that nodes are connected with an

arbitrary function fm determining the connection probability. We define

fm(k1, . . . , km) = f (0)m (k1, . . . , km) [1 + ϵgm(k1, . . . , km)] , (4.13)

where ϵ is a parameter which will later assume to be small and gm an assortativity function for

m-uniform hypergraphs. The assortativity function gm(k1, . . . , km) determines how likely it is that

nodes with degrees k1, . . . , km are joined by a m-hyperedge; if ϵgm > 0 (ϵgm < 0) it is more (less)

likely than it would be expected if they were connected at random. In order to preserve the expected

degree sequence, gm must satisfy
∑

k1,...,km
f
(0)
m (k1, . . . , km)gm(k1, . . . , km) = 0.

We now assume that the parameter ϵ is small and develop perturbative approximations to

the eigenvalue λ and its eigenvector uk. To first order these approximations are

λ = λ(0) + ϵλ(1),

uk = u
(0)
k + ϵu

(1)
k ,

(4.14)

where λ(0) = (m− 1)⟨k2⟩/⟨k⟩ and u
(0)
k = αk, where α is an arbitrary constant.

Replacing f
(0)
m on the right-hand side of Eq. (4.6) with the fm in Eq. (4.13), using Eq. (4.14),

assuming symmetry of fm, multiplying by kP (k)/(N⟨k⟩), summing over k, and canceling the zero-

order terms, we obtain to first order (see Appendix B.1 for more detailed calculations)

λ(1) = (m− 1)
⟨k⟩
⟨k2⟩

∑
k,k1,...,km−1

N(k)N(k1) . . . N(km−1)

× k2 k21 k2 . . . km−1

(N⟨k⟩)m
gm(k, k1, . . . , km−1). (4.15)

Removing the reference to gm using the relation in Eq. (4.13) we find

ϵλ(1) = (m− 1)
⟨k⟩⟨kk1⟩E
⟨k2⟩

− λ(0), (4.16)

where ⟨kk1⟩E is the mean pairwise product of degrees over all possible 2-node combinations in each

hyperedge in the hypergraph, ⟨kk1⟩E =
∑

e∈E
∑

{i,j}⊆e kikj/
(
|E|
(
m
2

))
.
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Therefore, the expansion eigenvalue can be written, to first order, as

λ = λ(0) + ϵλ(1) = (m− 1)
⟨k⟩⟨kk1⟩E
⟨k2⟩

,

= λ(0)(1 + ρ), (4.17)

where we defined

ρ =
⟨k⟩2⟨kk1⟩E
⟨k2⟩2

− 1. (4.18)

We refer to ρ as the dynamical assortativity for its relation to hypergraph dynamics. One can verify

that the expected value of ρ for an uncorrelated hypergraph is 0. Interestingly, to first order the

expansion eigenvalue does not depend on the particular assortativity function gm used, but only

on the average of pairwise products of the degrees belonging to the same hyperedge. A schematic

of disassortative (ρ < 0) and assortative (ρ > 0) hypergraphs is shown in Fig. 4.1.
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Higher Degree
(a)

(b)

Figure 4.1: An illustration of disassortative and assortative 3-uniform hypergraphs. The color of
the nodes indicates their degree, with low-degree nodes on the left and high-degree nodes on the
right. For a given degree sequence, the term ⟨kk1⟩E (the average pairwise product) determines ρ
and on average, (a) hyperedges containing nodes with dissimilar degrees decrease this term leading
to disassortative hypergraphs and (b) hyperedges containing nodes of similar degree increase this
term leading to assortative hypergraphs.

4.3 Numerical Results

4.3.1 Approximating the eigenvalue

We validate our results with numerical simulations on both synthetic and empirical hyper-

graphs. For both types of data, we modify the dynamical assortativity of the datasets by performing

preferential double hyperedge swaps on the hypergraphs.

For each dataset hypergraphH, we focus on anm-uniform partition Hm (i.e., we only consider

its hyperedges of size m). We set a target dynamical assortativity ρ̂ and swap edges as follows. We

choose two hyperedges e1 = {i1, i2, . . . , im}, e2 = {j1, j2, . . . , jm} and a node from each uniformly

at random, say i1 and j1. Then we consider the rewired hypergraph H ′
m obtained by replacing e1
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and e2 with e′1 = {j1, i2, . . . , im} and e′2 = {i1, j2, . . . , jm} respectively. If the assortativity of H ′
m

with this hyperedge swap, ρ′, reduces the difference between the current assortativity, ρ, and the

desired assortativity, ρ̂, the swap is accepted and we set Hm = H ′
m. To ensure that the algorithm

explores the space of possible hypergraphs, we accept hyperedge swaps which increase the difference

between the desired assortativity and the current assortativity with probability e−[(ρ̂−ρ)2−(ρ̂−ρ′)2]/T

(we set T = 10−5). We terminate the algorithm when |ρ− ρ̂| is smaller than a prescribed tolerance

or when a maximum number of hyperedge swaps have been performed (we used a tolerance of 10−2

and 106 maximum hyperedge swaps).

For the synthetic hypergraph, we constructed a 3-uniform configuration model (CM) hyper-

graph of size N = 105 according to the algorithm described in Ref. [12] with a degree sequence

drawn from a truncated power-law distribution, P (k) ∝ k−3 on [10, 100]. We also used the tags-ask-

ubuntu (TAU), congress-bills (CB), and Eu-Emails (EE) hypergraph datasets from Refs. [75, 76, 77],

filtered to only include hyperedges of size 3. The characteristics of these datasets are described in

Table 4.1.
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Dataset N ⟨k⟩ P (k)

CM 104 18.2

100 101 102 103 104

k(3)

10 3

10 2

10 1

P(
k(3

) )

TAU 3029 71.2

100 101 102 103 104

k(3)

10 5

10 3

10 1

P(
k(3

) )
CB 1718 20.6

100 101 102 103 104

k(3)

10 4
10 3
10 2
10 1
100

P(
k(3

) )

EE 998 53.7

100 101 102 103 104

k(3)

10 4

10 2

100

P(
k(3

) )

Table 4.1: Characteristics of the 3-uniform hypergraph datasets used.
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Figure 4.2: A comparison of the actual expansion eigenvalue λ (connected triangles) to the first-
order approximation of the eigenvalue λ(0)+ϵλ(1) (connected circles) for (a) the configuration model,
(b) the tags-ask-ubuntu dataset, (c) the congress-bills dataset, and (d) the Eu-Emails dataset. The
square marker denotes the original (ρ, λ) value of the dataset. Details of the characteristics of these
datasets can be found in Table 4.1.

In Fig. 4.2, the expansion eigenvalue λ calculated numerically via the power method from

Eq. (4.1) (connected triangles) and the first-order approximation λ(0)+ϵλ(1) (connected circles) are

plotted as a function of ρ for the four datasets mentioned above. For each dataset, the starting point

[i.e., the point (ρ, λ) for the original hypergraph] is shown with a square marker. For the synthetic

hypergraph (a), as expected, the first order approximation works well for small values of dynamical

assortativity. For the TAU dataset (b) the agreement is even better than for the synthetic dataset

for larger values of ρ. Interestingly, for the CB (c) and EE (d) datasets, and to a much lesser

extent for the TAU dataset, the value of λ changes sharply when first increasing (CB dataset and

EE datasets), or both increasing and decreasing (TAU dataset) the assortativity. We hypothesize

that initial hyperedge swaps might be destroying other structure (such as community structure,

clustering, or assortative mixing by unaccounted attributes), causing λ to change abruptly as

this structure is destroyed, and then to change slowly as the effects of changing the assortativity
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dominate. We note that there appear to be limitations to the extent to which ρ can be modified.

This is similar to the limitations to the values of assortativity that networks and hypergraphs can

achieve [78, 79, 80, 81].

In all cases, we see that rewiring the hypergraph to increase the average value of ⟨kk1⟩E (or,

equivalently, ρ) has a dramatic effect on the expansion eigenvalue. For example, for the EE dataset

λ can be reduced threefold by the rewiring process. Thus, hypergraph rewiring might be a useful

theoretical tool to control dynamical processes that depend on the expansion eigenvalue.

4.3.2 Extinguishing epidemics

Lastly, we show how modifying the dynamical assortativity by rewiring hypergraphs can

extinguish an epidemic. As an example, consider a hypergraph SIS contagion spreading amongst

groups of size m at a fixed rate βm. In Ref. [71], the authors derive a sufficient condition for epidemic

extinction for such models. For m-uniform hypergraphs and βe = βm, the extinction threshold for

the individual contagion model is βm < βcm = γ/λ. By decreasing λ through hyperedge swaps and

thus increasing βcm so that βcm > βm, the epidemic can be extinguished. (Note, however, that this

is a sufficient condition; βm > βcm may not lead to an epidemic.)
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EPIDEMICS POSSIBLE

NO EPIDEMICS

REWIRING

Figure 4.3: (a) The solid line with markers denotes the fixed value of β3 as a fraction of the
extinction threshold, β3/β

c
3. The dashed line indicates β3/β

c
3 = 1, below which epidemics are not

possible. (b) The epidemic equilibrium (percentage of the population infected) for each hypergraph
given the fixed value of β3. The grey bars indicate the standard deviation at each data point.

We present an example based on the CB dataset, and additional cases in Appendix B.2. In

this case, we consider m = 3, γ = 1, and β3 = 7.9× 10−3. In Fig. 4.3(a), we plot the chosen value

of β3 as a fraction of the extinction threshold, β3/β
c
3 (solid line with markers), which decreases

as βc3 is increased by hyperedge swaps, and the threshold for extinction (dashed line) β3/β
c
3 = 1.

Below the dashed line, epidemics are impossible. Above the dashed line, they may be possible.

In Fig. 4.3(b), we plot the percentage of the population infected as a function of ρ (averaged over

100 realizations of the epidemic). For more details about the numerical epidemic simulations see

Appendix B.3. For all values of ρ such that β3/β
c
3 < 1, no epidemics occur. For large enough values

of ρ, however, we see that epidemics occur.

We caution, however, that decreasing λ via hyperedge swaps might not necessarily suppress

epidemics if β3/β
c
3 is not reduced below 1. In principle, epidemics will occur for values of β3

larger than a threshold β∗3 ≥ βc3 which depends on the hypergraph structure. If the hyperedge
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swaps modify this threshold in such a way that βc3 < β∗3 < β3, when originally βc3 < β3 < β∗3 ,

epidemics can actually be promoted by the rewiring process (we show examples in Appendix B.2).

Therefore, reduction of β3/β
c
3 by preferential hyperedge swaps should be attempted only when one

can guarantee that β3/β
c
3 can be reduced below 1 or when there is already an epidemic.

4.4 Discussion

In this Chapter, we have presented a novel definition of assortativity for hypergraphs, related

it to the expansion eigenvalue, and motivated its use in relating assortative structure in hypergraphs

to the epidemic behavior. This approach, however, has limitations regarding the application of the

expansion eigenvalue to hypergraphs and the calculation of the epidemic threshold.

There are two main limitations of the expansion eigenvalue. The first limitation is that one

can think of the matrix associated to the right-hand side of Eq. (4.1) as the weighted adjacency

matrix of an effective pairwise network, therefore reducing group interactions to multiple pairwise

interactions. Such a reduction does not always capture all the complexity of nonlinear dynamical

processes [34]. In particular, higher-order dynamical correlations might be missed by this approach.

The second (related) limitation is that, since this eigenvalue is, by definition, a quantity related

to linear processes, its applicability is restricted in principle only to certain dynamical regimes.

However, approaches that reduce a hypergraph to an effective pairwise network have been successful

and found application in clustering [82], diffusion and consensus [83], centrality [73], contagion

[84], and other areas. In addition, as we showed, the expansion eigenvalue still encapsulates a

large amount of information about the hypergraph structure, such as the hyperdegree distribution,

correlations between degrees of different order, and assortative mixing. Therefore, the expansion

eigenvalue should be considered as a complementary tool to other measures of hypergraph structure.

When deriving approximations to the epidemic threshold for the SIS model in pairwise net-

works, many approaches may be considered such as using heterogeneous mean-field approaches [30],

the largest eigenvalue of the adjacency matrix [20] (the quenched mean-field approach), the largest

eigenvalue of the non-backtracking matrix [69], the largest eigenvalue of the branching matrix [69],
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message passing approaches [85, 86], and many others. The differences between and advantages of

these approaches are discussed at length in Ref. [87]. The same is true for the epidemic threshold in

hypergraphs. Although there are more accurate approximations of the epidemic threshold [69, 88],

we employ the quenched mean-field approach because of its simple relation to the adjacency tensor

of an m-uniform hypergraph and corresponding explainability. As in the pairwise network case,

more sophisticated approaches [44] can yield a better approximation to the epidemic threshold.

Similarly, there are many ways to derive an approximation to the largest eigenvalue for

pairwise networks, given an adjacency matrix. The authors in Ref. [89] derive the largest eigenvalue

for a Chung-Lu network excluding any correlations. In Ref. [90], the authors extend the approach

of Ref. [89] by allowing degree-degree correlations to occur. We use a heterogeneous mean-field

approach as in Ref. [89] which requires certain assumptions. First, we enforce that the hypergraph

is realizable; that is, fm(k
(m)
1 , . . . , k

(m)
m ) ≤ 1 for every combination of k

(m)
1 , . . . , k

(m)
m , which for the

uncorrelated case requires that

k(m)
max ≤

m

√√√√( N∑
i=1

k
(m)
i

)m−1

.

For the assortative case, this necessary condition depends on the specific assortativity function used.

In addition, the mean-field approximation where we assume that nodes with the same hyperdegree

have the same eigenvector entry is valid only when each node has a large number of connections,

so that the states of neighbors of nodes with the same hyperdegree are statistically similar.

Despite these limitations, our results provide a way to connect various measures of hypergraph

structure with dynamical processes in a systematic way and for a large class of tunable null models.

We believe that exploring the role of the expansion eigenvalue in other dynamical processes on

hypergraphs will be a fruitful research direction.

Data Availability

All code used in this study can be found at https://github.com/nwlandry/hypergraph-assortativity

[91].

https://github.com/nwlandry/hypergraph-assortativity


Chapter 5

Community structure in hypergraphs and the emergence of polarization

Polarization is the extent to which opinions on an issue are opposed [92] and there is evidence

of polarization in politics [93], social media [94], and ideology [95]. It is thought that echo-chambers,

where communities reinforce their own beliefs, may be partially responsible for the polarization seen

in politics, media, and society at large [96].

Empirical networks often contain community structure, with dense connections within each

community and sparser connections bridging between communities [52]. Community structure in

pairwise networks can affect the dynamical behavior in many different ways. Coupled oscillators

on networks with community structure can simultaneously exhibit incoherent and synchronized

behavior (known as chimera states) [97]. In the context of epidemics, community structure has

strong effects on disease dynamics [98, 99].

Often, researchers will model polarization explicitly by including mechanisms likely to create

polarization, the most common of these being bounded confidence models (BCMs) where the opin-

ions of an agent’s neighbors affect the opinion of the agent only if their opinion is close enough.

In this model, however, opinion fragmentation or the formation of sects can occur without any

community structure whatsoever.

In Ref. [96], the authors present a variant of the Hegselmann-Krause BCM with smooth,

non-linear activation functions. The authors run this process on a directed, temporal network

specified by the activity model with a power-law degree distribution. The authors also explore this

phenomenon by extending a 1-dimensional model to multi-dimensional topic spaces and validating
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this model with empirical opinion data [100]. Although this model may produce polarization

for populations without community structure, opinions are segregated according to community

structure when it does exist.

The Deffuant-Weisbuch BCM model selects an interaction at random for each time step and

updates the opinions of the agents participating in that interaction if their opinions are similar

enough. The measure of their similarity is called the confidence bound and denoted with ϵ. For

the Deffuant-Weisbuch model, the number of polarized clusters is O(1/ϵ) [101] in the fully-mixed

case. In Ref. [35], the authors extend this model to hypergraphs and show that even if community

structure exists, if the communities are not completely disconnected, the probability that polariza-

tion exists approaches zero as the number of nodes approaches infinity. However, if one limits the

intercommunity edge size, polarization is a stable state for any density of inter- or intra-community

edges.

In addition to bounded-confidence models, researchers have examined cooperation and par-

tisanship [102], echo chambers on social media [94], news media influence [103], moderates seen

as outsiders [104], Congress partisanship [105], and many other topics. In Ref. [106], the authors

show that in the case of complex contagion on pairwise networks, particularly the threshold model,

community structure leads to a greater number of fixed points which can be thought of as polarized

factions.

The dynamical behavior of a complex system is determined by the interplay between the

underlying interaction structure and the dynamical system being modeled. In many approaches,

however, the focus is on models which, while incorporating sensible mechanisms modeling polariza-

tion, will show evidence of polarization in completely homogeneous populations. We examine this

problem from a different perspective; rather than focus on a realistic model that will create po-

larization, we implement a simple hypergraph contagion model and show that with strong enough

community structure that polarization can occur. This perspective complements current research

on this topic; polarization is likely the result of both structural and dynamical factors. One way

that this may occur is an adaptive model where, in addition to opinion dynamics, the structure of
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a network may change over time to optimize opinion homophily [107].

In Ref. [108], the authors examined the effect of community structure on the dynamical be-

havior of hypergraph contagion models. The authors considered a binary state stochastic dynamical

model where active nodes spontaneously become inactive according to a Poisson process with a rate

δ and inactive nodes become active by edge ej at a rate λj if more than Θj nodes in edge ej are

active. Using this model, the authors found the existence of bimodal distributions of active nodes

caused by multistability, where there are multiple stable fixed points, and intermittency, where there

is temporal switching between fixed points. We look at a more specific version of this model where

λj = λ|j| and Θj = |ej | − 1 for edge sizes of 2 and 3, also known as the hypergraph SIS model in

Ref. [12]. We similarly find that polarization can occur for sufficiently strong community structure

in hypergraphs and explore theoretical predictions for the regimes at which this can occur. We

also explore the effect of imbalanced communities and offer efficient algorithms for the generation

of synthetic hypergraph datasets with community structure.

The structure of this Chapter is as follows: in Section 5.1 we discuss the theoretical generative

and contagion models that we use; in Section 5.2, we define and analyze a mean-field model including

community structure; and in Section 5.3, we discuss our results.

5.1 Model

In this section, we describe the generative hypergraph models and opinion formation model

that we use. We define simplistic generative models that incorporate community structure so that

we can analyze how the dynamical behavior depends on the strength of the community structure.

We refer to Chapter 2 for basic terminology and notation.

5.1.1 The stochastic block model for uniform hypergraphs

The simplest random network model incorporating community structure is the stochastic

block model (SBM), which assumes that the probability that two nodes i and j are connected with

an edge depends only on their community labels gi and gj , given by pgi,gj . Extending this notion to
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m-uniform hypergraphs gives rise to what is known as the m-uniform hypergraph stochastic block

model (m-HSBM). Studies have examined this model with two communities of random size [109]

and an arbitrary number of communities of equal size [110]. Several studies have looked at this

model for general hypergraphs, known as the hypergraph stochastic block model (HSBM) [35, 111].

Given an m-uniform hypergraph H = (V,E) where N = |V | is the number of nodes and E

is the set of hyperedges where |e| = m for every e ∈ E. Suppose that each node i has a community

label, gi and that the number of groups is given by G. Then we define P ∈ [0, 1]G×···×G as the

m-dimensional tensor which, given nodes i1, . . . , im and community labels gi1 , . . . , gim , specifies the

probability of forming a hyperedge as Pgi1 ,...,gim
. Because hyperedges are sets and therefore every

vertex order is equivalent, we specify that P is a symmetric tensor, i.e., Pi1,...,im = Pσi1
,...,σim

, where

σ is any permutation of the indices. When sampling from this random model, näıve algorithms

iterate through every edge combination leading to O(Nm) complexity. In Appendix C.1, we present

more efficient algorithms for sampling from this random model.

5.1.2 Planted partition model for uniform hypergraphs

If we add additional constraints to the SBM, namely that there are two equally-sized com-

munities, the mean degree of the network remains fixed, and that a single parameter controls the

community structure, we obtain the planted partition model for pairwise networks [112]. Consider

a pairwise network of size N with a mean degree of ⟨k⟩. We define the imbalance parameter, ϵ, as

the difference between the mean degree restricted to links contained within a single group, ⟨kin⟩,

and the mean degree restricted to links connecting two groups, ⟨kout⟩. The total number of con-

nections that a node has is the sum of its connections within its group and between two groups,

i.e., ⟨k⟩ = ⟨kin⟩ + ⟨kout⟩. When ϵ = 0, this model specifies an Erdös-Rényi network, and when

ϵ = ⟨k⟩, we obtain a network with two completely disconnected communities. If nodes i and j

are within a single community, we connect them with probability p1,1 = p2,2 = pin = pER + ∆

and if nodes i and j are in communities 1 and 2 respectively, we connect them with probability

p1,2 = p2,1 = pin = pER − ∆. In both cases, the pER term specifies the Erdös-Rényi connec-
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tion probability and the second term varies the ratio of the density of links within and between

communities. Assuming a simple undirected network, N⟨k⟩ = 2
(
N
2

)
pER and we obtain

pER =
⟨k⟩

N − 1
.

Likewise, because ⟨kin⟩N/2 = 2
(
N
2

)
pin,

∆ =
2 N
N−2⟨kin⟩ −

N
N−1⟨kin⟩ −

N
N−1⟨kout⟩

N
.

As N →∞, pER = ⟨k⟩/N and ∆ = ϵ/N asymptotically.

Now we extend this idea to m-uniform hypergraphs. We assume that intra-community hyper-

edges are formed with probability pin and inter-community hyperedges are formed with probability

pout (as in Refs. [110, 109, 64]). We derive the values of pin and pout in terms of a specified mean

degree ⟨k⟩ and imbalance parameter ϵm. We consider an m-uniform hypergraph H of size N with

mean degree ⟨k⟩ and two communities, both of size N/2. We say that a hyperedge e = {i1, . . . , im}

is intra-community if all its members have the same group label and inter-community otherwise,

in accordance with the “All-or-Nothing” (AoN) definition in Ref. [113]. In principle, one can relax

this binary classification to account for the number of communities of which the hyperedge is a

part and the proportion of nodes in each community [113], but for simplicity, we do not consider

this case. For size m-hyperedges, the AoN assumption leads to a factor of 2m−1 − 1 more possi-

ble inter-community edges than intra-community edges. To enforce a constant mean degree while

varying the imbalance parameter, we scale the intra- and inter-community connection probabilities

as

pin = pER + (2m−1 − 1)∆, (5.1)

pout = pER −∆. (5.2)

Constraining N⟨k⟩ = m
(
N
m

)
pER for an m-uniform Erdös-Rényi uniform hypergraph and employing

the asymptotic approximation
(
N
m

)
≈ Nm/m! for N ≫ m, we obtain

pER =
(m− 1)!⟨k⟩
Nm−1

.
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Likewise, enforcing that ⟨kin⟩N/2 = m
(
N/2
m

)
pin and using the same asymptotic approximation,

∆ =
(m− 1)!ϵm
Nm−1

,

where ϵm = ⟨kin⟩ − ⟨kout⟩/(2m−1 − 1) is the size-m imbalance parameter. When m = 2, we recover

the probabilities derived for pairwise networks. The two communities are completely disconnected

when ϵm = ⟨k⟩ and we recover an m-uniform Erdös-Rényi hypergraph when ϵm = 0. When ϵm < 0,

nodes in the same groups tend to connect with each less often than nodes in different classes.

For pairwise networks, a bipartite network is obtained when ϵ2 = −⟨k⟩. Any hypergraph can be

partitioned into its uniform “layers” [114] and so we can create a hypergraph from its uniform

hypergraph constituents, each with their own community structure.

5.1.3 The degree-corrected stochastic block model for uniform hypergraphs

When trying to model empirical hypergraph data sets, incorporating the degree distribution

into models of community structure can provide additional accuracy [115] and has been used ex-

tensively in community detection and inference [116]. The degree-corrected stochastic block model

(DCSBM) presented in Ref. [115] is defined as follows: consider an undirected, pairwise network

of size N , where each node i has ki neighbors and a community label gi. The probability of a link

being formed between two nodes i and j is defined as

pij =
ki
κgi

kj
κgj

ωgi,gj ,

where κgi is the sum of the degrees of the nodes in group gi and ω is a symmetric matrix where

ωgi,gj specifies the number of links between communities gi and gj . The matrix ω must satisfy∑
i ki =

∑
i,j ωi,j so that each node’s expected degree and target degree are equal to each other.

Extending this notion to an m-uniform hypergraph, which we call the m-uniform hypergraph

degree-corrected stochastic block model (m-HDCSBM), where each node i belongs to a community

gi and is a member of ki m-hyperedges, we similarly define the connection probability between m

nodes, {i1, . . . , im} to be

pi1,...,im =
ki1
κgi1

. . .
kim
κgim

ωgi1 ,...,gim
, (5.3)
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Similar to the tensor P for the m-HSBM, ω is a symmetric tensor of dimension m. The term κgi is

the sum of the degrees of the nodes that belong to community gi. A similar framework for uniform

hypergraphs is presented in Ref. [117] and Ref. [113] presents a model for non-uniform hypergraphs

with varying affinity functions controlling the community structure.

5.1.4 Opinion model

Similar to Refs. [12, 11], we study the hypergraph contagion model with the collective con-

tagion model described in Ref. [12]. This model allows nodes to hold binary opinions: susceptible

(S) and infected (I). An infected node spontaneously transitions to the susceptible state at a rate γ

independently of the states of neighboring nodes. A susceptible node may transition to the infected

state at a rate βm if that node is a member of a group of size m and all of the other members in

this group are infected. In this work, we associate the susceptible state with the “0” state and the

infected state with the “1” state.

We comment that that this model contains asymmetry in the contagion contagion; in the

absence of influence or infection by other groups an individual will almost surely heal (if γ > 0)

given enough time. Likewise, the opinion corresponding to the infected state may only be sustained

if the opinion is continually shared with neighbors. This is akin to a peer pressure effect where a

phenomenon will likely die out on its own and needs group pressure to sustain it. Both opinions

are not interchangeable; each has distinctive dynamical features.

5.2 Mean-field analysis

5.2.1 Planted partition model

Consider a hypergraph of size N with hyperedges of sizes 2 (links) and 3 (triangles). We

construct a planted partition model of the 2-uniform and 3-uniform subsets of the hypergraph with

parameters ϵ2 and ϵ3 respectively as described in Section 5.1.2. We denote the fraction of infected

individuals in each community as x1 and x2 and extend the mean-field model described for Erdös-
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Rényi hypergraphs in Ref. [11] to include community structure. Using the same notation as in

Ref. [12], we define ⟨k⟩ as the mean link degree, ⟨q⟩ as the mean triangle degree, γ as the rate of

healing, β2 as the pairwise infectivity, and β3 as the triangle infectivity. Without loss of generality,

we derive a rate equation for the fraction of infected nodes in the first community, x1. Firstly, for

the SIS model, nodes heal independently of their neighbors’ states at a rate γ so the healing term

is −γx1. For the pairwise infection term, the fraction of susceptible nodes is (1 − x1) and there

are N/2 nodes in each community. The probability that two nodes are connected to each other is

(⟨k⟩ + ϵ2)/N if they belong to the same community and (⟨k⟩ − ϵ2)/N if they belong to different

communities. We multiply by the probability that a single node is infected which is x1 and x2 for

communities 1 and 2 respectively. Therefore, the pairwise infection term becomes

β2
2

(1− x1)[(⟨k⟩+ ϵ2)x1 + (⟨k⟩ − ϵ2)x2].

For the triangle infection term, the number of unique triangles in each community given a

fixed susceptible node is
(
N/2
2

)
≈ N2/8. Assuming independence of each node’s infection state,

the fraction of edges where both neighboring nodes are infected is xixj depending on the group

memberships of nodes i and j. The probability that three nodes form a 3-hyperedge is 2(⟨q⟩+3ϵ)/N2

if they are in the same community and 2(⟨q⟩ − ϵ)/N2 if they are in different communities. Then

the triangle infection rate is

β3
4

(1− x1)[(⟨q⟩+ 3ϵ)x21 + 2(⟨q⟩ − ϵ)x1x2 + (⟨q⟩ − ϵ)x22].

Putting these terms together we get the following system of equations.

dx1
dt

= −γx1 +
β2
2

(1− x1) [⟨k⟩(x1 + x2) + ϵ2(x1 − x2)]

+
β3
4

(1− x1)
[
⟨q⟩(x1 + x2)

2 + ϵ3(3x
2
1 − 2x1x2 − x22)

]
, (5.4)

dx2
dt

= −γx2 +
β2
2

(1− x2) [⟨k⟩(x1 + x2) + ϵ2(x2 − x1)]

+
β3
4

(1− x2)
[
⟨q⟩(x1 + x2)

2 + ϵ3(3x
2
2 − 2x1x2 − x21)

]
. (5.5)

This system has a fixed point at x1 = x2 = 0. We linearize about this fixed point to obtain
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an equation for the perturbations, δx1 and δx2. The equations governing the perturbations becomed δx1
dt

d δx2
dt

 = β2

 ⟨k⟩+ϵ2
2 − γ

β2

⟨k⟩−ϵ2
2

⟨k⟩−ϵ2
2

⟨k⟩+ϵ2
2 − γ

β2


δx1
δx2

 . (5.6)

The two eigenvalues of this system are λ1 = β2⟨k⟩ − γ and λ2 = β2ϵ2 − γ, and because

ϵ2 ≤ ⟨k⟩, λ1 is the maximal eigenvalue and the epidemic threshold is βc2/γ = 1/⟨k⟩. Now we assume

that x1 = x2 and solve for the non-zero fixed point. Substituting x1 = x2 = x, setting the left hand

side of Eq. (5.4) equal to zero and canceling the zero solution, we obtain

(β2⟨k⟩ − γ) + (β3⟨q⟩ − β2⟨k⟩)x− β3⟨q⟩x2 = 0.

Evaluating at β2 = βc2, we obtain

[(β3⟨q⟩ − γ)− β3⟨q⟩x]x = 0.

Again, canceling the zero solution, we obtain the fixed point x = 1−γ/(β3⟨q⟩). For this fixed

point to be realizable, x > 0 which predicts that bistability occurs when β3/γ > 1/⟨q⟩. Both the

epidemic threshold and the onset of bistability are independent of ϵ2 and ϵ3 respectively. Therefore,

this analysis indicates that balanced community structure has no effect on the epidemic threshold

or the onset of bistability when compared to the simpler Erdös-Rényi model. Earlier studies seem

to corroborate this result for pairwise networks [118, 119].
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Figure 5.1: A phase plot of Eqs. (5.7) - (5.8) with ϵ̃2 = 0.5, ϵ̃3 = 0.95, β̃2 = 0.2, and β̃3 = 4.

We use these results to perform a rescaling. Without loss of generality, assume that γ = 1.

Then we define rescaled variables β̃2 = β2/β
c
2 = β2⟨k⟩/γ, β̃3 = β3/β

c
3 = β3⟨q⟩/γ, ϵ̃2 = ϵ2/⟨k⟩,

and ϵ̃3 = ϵ3/⟨q⟩. When ϵ2 and ϵ3 are zero, this corresponds to the Erdös-Rényi case for 2- and

3-hyperedges respectively, and when they are one, this corresponds to completely disconnected

communities by 2- and 3-hyperedges respectively. Then Eqs. (5.4)-(5.5) become

dx1
dt

= −x1 +
β̃2
2

(1− x1) [(x1 + x2) + ϵ̃2(x1 − x2)]

+
β̃3
4

(1− x1)
[
(x1 + x2)

2 + ϵ̃3(3x
2
1 − 2x1x2 − x22)

]
, (5.7)

dx2
dt

= −x2 +
β̃2
2

(1− x2) [(x1 + x2) + ϵ2(x2 − x1)]

+
β̃3
4

(1− x2)
[
(x1 + x2)

2 + ϵ̃3(3x
2
2 − 2x1x2 − x21)

]
. (5.8)
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In our analysis, we assumed that x1 = x2, which may not be the case. Indeed, as shown

in Fig. 5.1, for certain structural and infectious parameter regimes, we see that there are four

stable fixed points: two symmetric (x1 = x2) fixed points corresponding to bistable behavior

and two additional asymmetric (x1 ̸= x2) fixed points where x1 ̸= x2. This behavior is not

present for the hypergraph contagion model on random null models without community structure.

The physical interpretation of this phenomenon is that when two communities are sufficiently

disconnected, they are able to, on average, hold different opinions. We refer to this phenomenon as

polarization and quantify the polarization between two communities i and j, ψij , as the maximum

distance between their stable fixed points given a hypergraph and a set of infection parameters, i.e.,

ψij = max{|xi − xj | such that (xi, xj) is a stable fixed point of Eqs. (5.4)-(5.5)} (or, equivalently,

Eqs. (5.7)-(5.8)).
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Figure 5.2: A plot of the polarization in Eqs. (5.7)-(5.8) for different values of ϵ2 and ϵ3.

When there are only two communities we let ψ12 = ψ21 ≡ ψ. When asymmetric fixed points

do not exist, the polarization is 0. In the planted partition model, asymmetric fixed points exist
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for certain regimes of ϵ2 and ϵ3. Using Eqs. (5.4)-(5.5), we can quantify the regimes of ϵ2 and ϵ3

for which polarization occurs. We do this numerically by doing the following: first, we set the

derivatives in Eqs. (5.4)-(5.5) equal to zero; second, we specify that the asymmetric roots should

exist in the interval [0, 1]× [0, 1]; third, we specify fixed values of ϵ2 and ϵ3; and fourth, we employ

interval root finding methods to find all fixed points of these 2D coupled equations in the specified

interval and iterate over values of β2 ∈ [0.01βc2, 0.95βc2] and β3 ∈ [2βc3, 10βc3] holding γ = 1 fixed.

After generating a list of all fixed points for each combination of β2, β3, we select the stable fixed

point with the largest value of |x1−x2|. The stability of each fixed point is determined by evaluating

the spectral abscissa of the Jacobian at that fixed point. We repeat this process for all specified

values of ϵ2 and ϵ3.

In Fig. 5.2, we see that the model is much more sensitive to the sparsity of 3-hyperedge

connections between communities than it is to pairwise interactions between communities; the link

structure has very little effect on the polarization.

5.2.2 Imbalanced communities

Up until this point, we have assumed that the two communities are the same size. We now

relax this assumption and specify that a fraction, ρ, of nodes belongs to the first community and

the remaining fraction of nodes, 1 − ρ, belongs to the second community. As before, we seek

to preserve the expected number of hyperedges regardless of the value of ϵm. We denote the

probability of forming a hyperedge solely containing members of the first community and solely

containing members of the second community as p1,1 and p2,2 respectively. We define p1,2 as the

probability of forming a hyperedge containing nodes from both communities. The average number

of hyperedges solely containing members of the first community and solely containing members

of the second community to which a node is connected is denoted ⟨k1,1⟩ and ⟨k2,2⟩ respectively.

The average number of hyperedges containing members from both communities to which a node

is connected is denoted ⟨k1,2⟩. Because the number of unique hyperedges in the first and second

communities is
(
ρN
m

)
and

(
N−ρN

m

)
respectively and following the same steps as in Section 5.1.2, we
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derive that

p1,1 =
(m− 1)!⟨k1,1⟩

(ρN)m−1
(5.9)

and

p2,2 =
(m− 1)!⟨k1,1⟩
([1− ρ]N)m−1

. (5.10)

Because these communities are of different sizes, we can make one of two assumptions: (1) that

⟨k1,1⟩ = ⟨k2,2⟩ or (2) that p1,1 = p2,2. If we enforce that p1,1 = p2,2, then ⟨k1,1⟩ and ⟨k2,2⟩must differ,

and vice-versa. For both cases, the number of unique connections between the two communities is

the number of leftover connections,
(
N
m

)
−
(
ρN
m

)
−
(
N−ρN

m

)
≈ (1− ρm − [1− ρ]m)Nm/m! and so

p1,2 =
(m− 1)!⟨k1,2⟩

(1− ρm − [1− ρ]m)Nm−1
. (5.11)

Examining the first case where ⟨k1,1⟩ = ⟨k2,2⟩ = ⟨kin⟩. Then Eq. (5.11) can be simplified to

pout = pER −
(m− 1)!ϵρ,m

Nm−1
,

where ϵρ,m = ⟨kin⟩ − ⟨kout⟩/rρ,m and rρ,m = (ρm + [1 − ρ]m)−1 − 1. When ρ = 1/2, we recover

the expression for the size-m imbalance parameter that we derived previously. Looking at both

communities together, ⟨kin⟩N = m
[(

ρN
m

)
−
(
N−ρN

m

)]
pin, and so

pin =
(m− 1)!⟨kin⟩

(ρm + [1− ρ]m)Nm−1

= pER + rρ,m
(m− 1)!ϵρ,m

Nm−1
. (5.12)

Because the mean degrees are identical for each community, we can calculate the probabilities for

each community: p1,1 = (ρm + [1 − ρ]m)/ρm−1 pin and p2,2 = (ρm + [1 − ρ]m)/[1 − ρ]m−1 pin. For

case (2) where p1,1 = p2,2 = pin we use Eq. (5.12) along with Eqs. (5.9) and (5.10) to derive

⟨k1,1⟩ = ρm/(ρm + [1− ρ]m)⟨kin⟩ and ⟨k1,1⟩ = [1− ρ]m/(ρm + [1− ρ]m)⟨kin⟩.
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For the second case, performing the same calculations as in Section 5.2.1, we obtain

dx1
dt

=− γx1 + β2(1− x1)[ρ(⟨k⟩+ rρ,2ϵρ,2)x1 + (1− ρ)(⟨k⟩ − ϵρ,2)x2]

+ β3(1− x1)[ρ2(⟨q⟩+ rρ,3ϵρ,3)x
2
1 + (1− ρ)(⟨q⟩ − ϵρ,3)(2x1x2 + x22)], (5.13)

dx2
dt

=− γx2 + β2(1− x2)[(1− ρ)(⟨k⟩+ rρ,2ϵρ,2)x2 + ρ(⟨k⟩ − ϵρ,2)x1]

+ β3(1− x2)[(1− ρ)2(⟨q⟩+ rρ,3ϵρ,3)x
2
2 + ρ(⟨q⟩ − ϵρ,3)(2x2x1 + x21)], (5.14)

and to obtain the mean-field equation corresponding to the first case, we can simply multiply

the first terms in the square brackets on each line of Eq. (5.14) by the multipliers relating pin to

p1,1 and p2,2 respectively, which restores symmetry to the terms relating to neighbors in the same

community. Unlike the balanced planted partition model, the derived epidemic threshold now has

a dependence on ϵ2 for both cases.
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Figure 5.3: A phase plot of Eqs. (5.13) - (5.14) (the imbalanced case where p1,1 = p2,2) with
ρ = 0.48, ⟨k⟩ = ⟨q⟩ = 20, ϵ2 = 10, ϵ3 = 20, β2 = 0.2βc2, β3 = 4βc3, and γ = 1.

In Fig. 5.3, we can see that changing the relative sizes of the communities even slightly

destroys the symmetry of the phase plot such that the only symmetric fixed point is x1 = x2 = 0.

In addition, the asymmetric fixed point where x1 ≫ x2 is no longer stable and the asymmetric fixed

point where x1 ≪ x2 develops a larger basin of attraction. For small enough ρ, the only remaining

stable fixed point is the one where x1 ≪ x2. This makes physical sense because as ρ decreases, the

size of the first community decreases and there are fewer neighbors to sustain the contagion in the

first community.
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5.3 Discussion

We presented a mean-field model of hypergraph contagion incorporating community structure

and used this model to examine the structural characteristics of hypergraphs for which polarization

occurs. We also modified this framework to explore the effect of changing the relative sizes of

communities.

In this study, we solely considered the hypergraph SIS model, which is a simple model of

social contagion. In the future, it may be fruitful to consider more realistic models of opinion

formation. In addition, we assumed that the dynamics of these opinion formation processes do not

affect the underlying structure of the hypergraph. In empirical case studies, the formation of echo

chambers may be the result of intrinsic opinion formation dynamics and the hypergraph adapting

to dissolve interactions with heterogeneous opinions.

Empirical systems often contain degree heterogeneity and deriving additional results for the

m-HDCSBM will help bridge the gap between theory and empirical datasets. Numerical experi-

ments through stochastic simulations on the m-HSBM and the m-HDCSBM as well as empirical

datasets will help to validate these results. In addition, using statistical inference to fit empirical

datasets the m-HDCSBM will improve our numerical results.

Nonetheless, our work offers a helpful framework for predicting the existence of polarization

and shows that simple models of contagion can drive polarization in systems with community

structure and group interactions.



Chapter 6

Effect of time-dependent infectiousness on epidemic dynamics

In traditional literature, the SIR model is a canonical example of modeling the spread of

disease with total immunity. This model has common extensions such as the SEIR (Susceptible

– Exposed – Infected – Recovered) when one wants to incorporate a latent period which captures

delays between transmission and infectiousness. With most of these models, however, a key as-

sumption is that an individual’s infectivity is constant. However, we know that an individual’s

infectiousness varies over the duration of the infection, according to their viral load [39, 40]. We

define a framework to extend the SIR model by dividing the single infectious compartment into n

stages as has been considered by Ref. [120], known as the SIKR model in Ref. [16], and assigning

each stage a different infection rate as in Refs. [121, 41]. Other approaches have been considered,

such as the message-passing approach [85, 122], mapping an individual’s viral load to an infection

probability [123], and looking at an infection density function [16, 124]. We use this approach to

examine fully-mixed populations and theoretical networks constructed from category-based mixing,

both static and temporal.

The structure of this Chapter is as follows. In Section 6.1 we describe a framework for

modeling time-dependent infectiousness. In Section 6.2 we use this model to create theoretical

predictions for the reproductive number, apply these predictions to several common cases, and

validate our theory with numerical simulations. Lastly, in Section 6.3 we discuss the implications

of our theory.
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6.1 Model

We propose a general mean-field model to describe the spread of an epidemic including time-

dependent infectiousness. In the following, we will refer to this model as the viral load (VL) model.

We consider a population of N nodes. We assume that a node i’s intrinsic infectiousness

is solely determined by the amount of time it has been infected, τ , and its corresponding viral

load at that time, denoted vi(τ), although other factors may be involved as well [125]. Several

studies have examined the correspondence between an individual’s viral load and their infectiousness

[39, 40] but for this study, we simply define βi(τ), the infectious rate function, as the rate at which

node i transmits infection having been infected for a duration of time τ . Note that in the case

where an infectious threshold exists [126, 123], we can express the function as βi(τ)Iτ∈δ, where

δ = {τ | βi(τ) ≥ η} and η is the infectious threshold. This infectious rate function can vary

in response to many factors such as asymptomatic versus symptomatic infection or severity of

symptoms and be considered as being drawn according to some distribution. For much of this

study, however, we assume that while βi(τ) is heterogeneous in time, that every member of the

population has the same infectious rate function, i.e., βi(τ) = β(τ), i = 1 . . . N , although we relax

this assumption later. We assume that nodes start in the susceptible compartment (S) and that an

infected individual infected for time τ infects a susceptible node with rate β(τ). We approximate

β(τ) by evaluating it at n discrete times τj = j∆τ , where ∆τ is fixed and n∆τ = τR, the recovery

time. Then we divide the infectious compartment, I into n stages, Ij , j = 1 . . . n, each with an

associated infection rate βj , in a similar manner to Refs. [120, 41]. Lastly, nodes that transition

through all infection states accumulate in the recovered (R) compartment.

We assume that the flow of infected individual between subsequent infectious compartments

is deterministic and that upon entering the first infectious stage, an individual passes through all

the subsequent stages as shown in Fig. 6.1, meaning that γi = 1/∆τ where ∆τ = τR/n.
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…

𝛾 = 1/Δ𝜏

Figure 6.1: An illustration of the VL model.

In the following, we define the m-th moment of a quantity q as ⟨qm⟩ =
∑N

i=1 q
m
i /N when q

is a discrete quantity and as ⟨qm(τ)⟩ =
∫ τR
0 [q(τ)]m dτ/τR when q is a continuous function of τ .

There are many studies exploring the effect of more realistic infectious behavior. In Ref. [120],

the authors use the n-stage SIKR model with constant infectiousness on a fully-mixed network so

that the infectious waiting time is gamma-distributed. In Ref. [41], the authors explore the SIKR

model with variable infectiousness for fully-mixed networks. For both of these models, the authors

allow healing and recovery to occur at every infectious stage. In Ref. [127], the authors explore the

SIKR link-closure model with a constant infection rate and solely consider static networks. They

simulate their model numerically on homogeneous and Erdös-Rényi networks. In Ref. [85], the

authors consider a message-passing approach to model time-dependent infectiousness and simulate

their results on a static network. In Ref. [122], the authors present a non-Markovian edge-based

compartment model, prove its equivalence to the message-passing model, and describe how other

models compare to the message-passing approach. In Refs. [120, 41] the authors solely consider the

fully-mixed case and in Refs. [127, 122, 85] the authors solely consider static networks. In contrast,

our approach encompasses fully-mixed, static, and temporal networks. In Refs. [120, 127], although

the authors consider an SIKR model, they specify that the infectious rate is constant in contrast

to our model where we allow the rate to vary over time. In addition, Refs. [120, 41, 127, 127]

assume Markovian transitions between infectious states in contrast to our approach which enforces

deterministic transitions between infectious states (as in Ref. [123]).



71

6.2 Derivation of the population reproductive number

We derive the reproductive number for the viral load model described above that has been

cast as a system of mean-field ODEs. First, we derive the reproductive number for a fully-mixed

model and second, we derive the reproductive number for an arbitrary category-mixed population.

We comment on the continuum limit for both cases and derive specific closed-form solutions for

the reproductive number for a configuration model static network, and an activity model temporal

network.

6.2.1 Fully-mixed population

Consider a fully-mixed population of N individuals and an infectious rate function, β(τ). In

our formalism, we denote the fraction of the population in the susceptible, jth infectious stage, and

the recovered stage as S, Ij , j = 1 . . . n, and R respectively and note that S +
∑n

j=1 Ij +R = 1 by

conservation. Assuming that an individual’s infection status is independent of the infection status

of its neighbors, as done in Ref. [41], we can write the following system of mean-field equations as

dS

dt
= −S

n∑
j=1

βjIj , (6.1a)

dI1
dt

= − I1
∆τ

+ S
n∑

j=1

βjIj , (6.1b)

dIj
dt

=
Ij−1 − Ij

∆τ
, j = 2 . . . n, (6.1c)

dR

dt
=

In
∆τ

. (6.1d)

By construction, an infected node will always transition through all the infectious states until

it reaches the recovered state. However, we are not interested in whether infected nodes transition

through all the states, but rather whether susceptible nodes become infected. In Ref. [128], the

authors introduce the notion of a next generation matrix (NGM) which decomposes the linearized

system into infectious transmissions, T , and non-infectious transitions, Σ, where transmissions move
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susceptible nodes to infected compartments and transitions move infected nodes to other infectious

states. As done in Ref. [128], we exclude the susceptible and recovered states. The linearized

system can be written as

I′ =
1

∆τ



−1 + β1∆τ β2∆τ . . . . . . βn∆τ

1 −1 0 . . . 0

0 1 −1
. . .

...

...
. . .

. . .
. . . 0

0 . . . 0 1 −1


I,

where I = (I1, . . . , In)T . Splitting the matrix into transmissions and transitions according to the

procedure outlined in Ref. [128], we find that the reproductive number R0 is given by ρ(−TΣ−1),

where ρ is the spectral radius, which for the fully mixed case evaluates to

R0 =

n∑
i=1

βi∆τ, (6.2)

which matches the value found in Ref. [41].

This result indicates that any infectious rate function that has the same total infectiousness or

exposure yields the same reproductive number, regardless of the particular function. This, however,

does not hold for the time scale on which the epidemic spreads as we will see later.

6.2.2 Discrete category-mixed population

Now we consider a population with N individuals, each of which belongs to a category

ci, i = 1 . . . nc. These mixing categories can encode many different characteristics such as degree-

based mixing [31], age-mixing [129], spatial meta-population mixing [51], mixing due to travel, and

many other types of mixing.

We denote the probability that sub-populations ci and cj interact with each other as p(ci, cj)

and the probability that a node belongs to category i as p(ci). We discretize the infectious states

not only by the progression of the infection, but by the category to which that individual belongs
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as well. This model has (n+2)nc states: nc susceptible states, Sc1 , . . . , Scnc ; nnc susceptible states,

Ic11 , . . . , I
cnc
1 , . . . , Ic1n , . . . , I

cnc
n ; and nc recovered states, R1, . . . , Rnc . Then the mean-field model

becomes for each category c

dSc

dt
= −Sc

nc∑
i=1

n∑
j=1

p(c, ci)p(ci)βjI
ci
j , (6.3a)

dIc1
dt

= − Ic1
∆τ

+ Sc
nc∑
i=1

n∑
j=1

p(c, ci)p(ci)βjI
ci
j , (6.3b)

dIcj
dt

=
Icj−1 − Icj

∆τ
, j = 2 . . . n, (6.3c)

dRc

dt
=

Icn
∆τ

. (6.3d)

The linearized ODE is the following block-matrix system of equations:

I′ =
1

∆τ



−I + β1∆τP β2∆τP . . . . . . βn∆τP

I −I 0 . . . 0

0 I −I . . .
...

...
. . .

. . .
. . . 0

0 . . . 0 I −Iτ


I,

where

P =


p(c1, c1)p(c1) . . . p(c1, cnc)p(cnc)

...
. . .

...

p(cnc , c1)p(c1) . . . βip(cnc , cnc)p(cnc)

 ,

I = (Ic11 , . . . , I
cCnc
1 , . . . , Ic1n , . . . , I

cnc
n )T , and I is the identity matrix.

Splitting the matrix into transmissions and transitions, the next-generation matrix (see [128]

for details) is

−TΣ−1 =



P
∑n

i=1 βi∆τ P
∑n

i=2 βi∆τ . . . Pβn∆τ

0 . . . . . . 0

...
. . .

. . .
...

0 . . . . . . 0


. (6.4)
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Then, the reproductive number evaluates to

R0 = ρ(P )

n∑
i=1

βi∆τ, (6.5)

which indicates that the epidemic threshold depends both on the infectious exposure and the matrix

of mixing probabilities and that these two quantities are independent.

6.2.3 The continuum limit

For each case described prior, it is natural to take the limit as the number of infectious

compartments approaches infinity and ∆τ → 0. For the fully-mixed case, the reproductive number

becomes

R0 =

∫ τR

0
β(τ)dτ, (6.6)

and similarly, for category-based mixing, it is

R0 = ρ(P )

∫ τR

0
β(τ)dτ. (6.7)

Alternatively, we can treat τ as a continuous quantity and track the infectiousness, I(t, τ), as

a function of the overall time and how long an individual has been infected. When τ is continuous,

∆τ → 0 and the finite difference (Ij−1 − Ij)/∆τ in Eqns. (6.1c) and (6.3c) becomes a derivative

with respect to τ . With these assumptions, our ODE model can be expressed as the transport

equation with boundary conditions handling the infection and recovery. For the fully-mixed case,

this is

∂I(t, τ)

∂t
= −∂I(t, τ)

∂τ
, (6.8a)

I(t, 0) = S

∫ τR

0
β(τ)I(t, τ)dτ, (6.8b)

S = 1−
∫ τR

0
I(t, τ)dτ −

∫ t

0

∂I(t, τ)

∂τ

∣∣∣∣
τ=τR

dt, (6.8c)

I(t, τR) = 0. (6.8d)

The transport equation admits traveling wave solutions and this perspective lends physical

interpretation to our model; an infected individual is transported through the infectious stages and
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the boundaries merely introduce new individuals into this transport process and remove recovered

individuals at the other boundary. We can see this behavior in Fig. 6.4 for both static and temporal

networks.

Because our approach approximates the infectious rate function with discrete infectious com-

partments, we perform numerical experiments to analyze the number of states at which we can

expect the mean-field ODE model to reasonably approximate the continuous rate function. For a

small number of states, the discretized values of the infectious rate function fluctuate, leading to

non-monotone and non-smooth trends, so we only look at the viral load model with greater than 4

infectious states. As the number of infectious states is increased, the epidemic dynamics converge

to that of the continuous VL model with a continuous infectious rate function. From Fig. 6.2,

approximately 100 infectious states are necessary to capture key features of the epidemic response.
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Figure 6.2: A plot showing how the number of infectious states affects (a) the time at which the
infectious peak occurs and (b) the magnitude of the infectious peak for the viral load model in
the fully-mixed case. We use two different infectious rate functions described in Section 6.2.6 and
show the constant value of the SIR model (1 infectious stage) as a reference. For every data point,
R0 = 3.

6.2.4 Examples

In the following, we apply our category-mixing framework to two cases, a static degree-based

configuration model and a temporal activity-based model.



76

6.2.4.1 Configuration model

Consider a network of size N with a degree sequence k = (k1, . . . , kN )T and nodes connected

by links at random, which specifies the configuration model (described more in Ref. [130]). Networks

generated with the configuration model may have a non-negligible number of self-loops and multi-

edges in the infinite size limit [131], leading to correlated simple networks. In this study, however,

we consider a bounded degree distribution and so we can assume the configuration model to be

uncorrelated for large enough N . For the standard SIR model on a configuration model network,

the reproductive number is R0 = β⟨k2⟩/(γ⟨k⟩) [30]. We assume that a node’s degree completely

specifies its dynamic behavior, which ignores effects from a node’s other characteristics. From the

degree sequence k, we can compute the discrete probability distribution p(k) = N(k)/N , where

N(k) is the number of nodes in the degree sequence that have degree k, and the list of unique

degrees in the degree sequence, ku. From our general formalism in Section 6.2.2, the degree mixing

matrix is

P =
1

⟨k⟩
(kup)Tku. (6.9)

where kup = (k1p(1), . . . , kmaxp(kmax))T and ku = (k1, . . . , kmax)T . The largest eigenvalue of this

matrix is ⟨k2⟩/⟨k⟩ and so the reproductive number is

R0 =
⟨k2⟩
⟨k⟩

∫ τR

0
β(τ)dτ. (6.10)

Setting γ = 1/τR and β = ⟨β(τ)⟩ =
∫ τR
0 β(τ)dτ/τR for the SIR model yields the reproductive

numbers derived in Ref. [30].

6.2.4.2 Activity model

Our category-based framework applies not only to static contact structures, but to temporal

networks as well. We consider the activity model first presented in Ref. [132]. Given a temporal

network of size N , suppose that each node i has an activity rate ai, which denotes the probability

per unit time that the node is active. At each discrete time, each node is either active or idle,
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and each active node forms m connections with other nodes, active or inactive. Unlike degrees

which are discrete for an unweighted network, these activity rates are continuous, and to use our

category-based mixing framework, we assume that we can bin these rates into discrete categories,

ai, i = 1 . . . na and later take the continuum limit as before. We denote the probability that a node

has an activity rate ai as p(ai). Then the probability that nodes with activity rates ai and aj are

connected at any given time is (ai + aj)
m
N and the time-averaged mixing matrix is

Pij =
m(ai + aj)

N
p(aj),

which can be written P = 1bT + cpT where

b = (ma1 p(a1), . . . ,m ana p(ana))T ,

c = (ma1, . . . ,mana)T ,

p = (p(a1), . . . , p(ana))T .

Observing that this is a rank-2 matrix, the analytical solution for the Perron-Frobenius eigenvalue

is (m⟨a⟩+m
√
⟨a2⟩) and

R0 = (m⟨a⟩+m
√
⟨a2⟩)

∫ τR

0
β(τ)dτ. (6.11)

In Ref. [132], they derive the epidemic threshold for the activity model as β/γ = 2⟨a⟩/(⟨a⟩+√
⟨a2⟩). As before, setting γ = 1/τR and β = ⟨k⟩⟨β(τ)⟩ = 2m⟨a⟩⟨β(τ)⟩ yields the same result.

6.2.5 Individual variation in the infectious rate function

In Ref. [133], the authors consider heterogeneous susceptibility and recovery rate for the SIR

model. Similarly, we now relax the assumption that the infectious rate function is the same for every

individual. We extend our results in Section 6.2.2 for a distribution of infectious rate functions over

the population. In our analysis, we assume that the particular infectious rate function is distributed

independently of any other nodal characteristic such as its degree. We denote pb(b) as the fraction

of the population with an infectious rate function of βb(τ) and an associated recovery time of τRb
,

where the number of unique infectious rate functions is nb. We enforce that the number of infectious
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states regardless of recovery time is n so the time between infectious compartments is n∆τb = τRb
.

We define the discretized values βi(τj) = βi(j∆τi) as βij and denote the jth infectious stage with

infectious rate function βb(τ) and category c as Ib,cj . Then the mean-field equations become

dSb,c

dt
= −Sb,c

nb∑
i=1

nc∑
j=1

n∑
k=1

pb(bi)β
bi
k p(c, cj)p(cj)I

bi,cj
k , (6.12a)

dIb,c1

dt
= −I

b,c
1

∆τ

+ Sb,c
nb∑
i=1

nc∑
j=1

n∑
k=1

pb(bi)β
bi
k p(c, cj)p(cj)I

bi,cj
k , (6.12b)

dIb,cj

dt
=
Ib,cj−1 − I

b,c
j

∆τ
, j = 2 . . . n, (6.12c)

dRb,c

dt
=
Ib,cn

∆τ
. (6.12d)

Linearizing these equations, we obtain I′ = AI, where A = Σ + T . Σ and T are each n × n

block matrices of size ncnb × ncnb with blocks of size nc × nc.

Σi,j =


diag(I/∆τ1, . . . , I∆τnb

), i = j

diag(−I/∆τ1, . . . ,−I∆τnb
), i = j + 1

and

Ti,j =




pb(b1)β

1
jP . . . p(bnc)β

nb
j P

...
. . .

...

pb(b1)β
1
jP . . . p(bnb

)βnb
j P


, i = 1

0, else.

Then, the reproductive number (the maximal eigenvalue of −TΣ−1) is

R0 = ρ(P )
∑
b

pb(b)
n∑

j=1

βbj∆τb.

As n→∞, ∆τb → 0 for every b and we obtain

R0 = ρ(P )
∑
b

pb(b)

∫ τRb

0
βb(τ)dτ, (6.13)

which is the value obtained for the category-mixed case with the key difference that the exposure

is now the average exposure with respect to the distribution of infectious rate functions.
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6.2.6 Numerical experiments

We compare the time dynamics of the SIR model with that of the VL model with different

infectious rate functions. For the following figures, we fixed N = 104, R0 = 3, τR = 21 days, and

arg maxτ β(τ) = 4 days, unless otherwise noted. We considered the configuration model with a

power-law degree distribution p(k) ∝ k−3 on [10, 1000] and the activity model with activity rates

p(a) ∝ k−3 on [0.01, 1], m = 10, and ∆t = 1. We used the following contagion models: the VL

model with βΓ(τ) ∝ τ exp(−τ/4) as in Ref. [40], the VL model with a constant-valued infectious

rate function, βconst(τ) = ⟨βΓ(τ)⟩, and the SIR model with a single infectious rate of β = ⟨βΓ(τ)⟩

for the configuration model and β = 2m⟨a⟩⟨βΓ(τ)⟩ for the activity model. These relations were

chosen such that the reproductive numbers are the same for each infection model.
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Figure 6.3: Time response of the fraction of infected individuals for different contagion models
for (a) the configuration model and (b) the activity model. For both (a) and (b), the dash-dot,
dashed, and solid lines indicate the VL model with βΓ(τ) ∝ τ exp(−τ/4), the VL model with
βconst(τ) = ⟨βΓ(τ)⟩, and the SIR model with a single infection rate of β respectively. β = ⟨βΓ(τ)⟩
and β = 2m⟨a⟩⟨βΓ(τ)⟩ for the configuration and activity models respectively. R0 = 3 for each
infection curve.
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We simulated all the contagion models described in discrete time with ∆t = ∆τ = 1. We

simulated the SIR model as a discrete time Markov process using the parameters γ = 1/τR and

β = ⟨βΓ(τ)⟩ and β = 2m⟨a⟩⟨βΓ(τ)⟩ for the configuration and activity models respectively. For the

viral load model, we store the time at which node i has been infected as t∗i and at time t, the rate

of infection of that node is β(t− t∗i ), for example, and when t− t∗i ≥ τR, the node recovers. When

simulating on temporal networks, we store the temporal network as an array, where each entry is

a static network corresponding to a particular snapshot in time.

From Fig. 6.3 we see that the peak of the SIR model is delayed relative to both viral load

models. For the static case the epidemic peak is significantly less pronounced. We comment that

the viral load model fundamentally changes the time scale of the epidemic when compared to the

SIR model. Not all infectious compartments are created equal, however; someone at their peak

infectiousness contributes much more to the spread of an epidemic than someone who has just

gotten infected or almost recovered. For this reason, we now plot the number of individuals in

each infectious stage over time. We now relax the assumption that βΓ(τ) and τR are identical

for each member of the population. We assume that arg maxτ β(τ) ∼ Uniform(2, 6) and that

τR ∼ Uniform(16, 26) similar to Ref. [123]. At given times t, we plot the number of individuals as

a function of the infectious duration τi = t− t∗i and t.
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Figure 6.4: The number of individuals infected for duration τ at time t for the configuration model
(top) and the activity model (middle). The line plots (bottom) denote the probability distribution
of τ at times 40, 60, and 80, which correspond to normalized vertical cross-sections of I(t, τ).

We see traveling wave behavior as described in Section 6.2.3 for both static and temporal

networks. The amplitude of this wave varies in response to the introduction of new infected indi-

viduals, but the distribution shows a clear transition to the latter infectious stages as the epidemic

progresses. This behavior is corroborated by the three normalized vertical cross-sections, showing

the probability distribution at selected times. We notice that, despite identical values of βi(τ) and

τRi for every node, the temporal behavior is different for static and temporal networks. For the

temporal network, it seems evident that individuals with the longest infection duration seem to be

driving the epidemic based on the minimal decrease in individuals for large τ in comparison to the

static network case.

We also plot the epidemic extent for different values of R0 in Fig. 6.5 to validate our predic-

tions of the reproductive number. For each data point, we averaged over 100 simulations but use
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the same network realization for all simulations for both the configuration and activity models. We

ran each simulation until there were no longer any infected individuals.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.00

0.05

0.10

0.15

0.20

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
R0

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n 

in
fe

ct
ed

(b)

SIR (Simulation)
VL ( const) (Simulation)
VL ( ) (Simulation)

Figure 6.5: The epidemic extent plotted as a function of the predicted reproductive number for
different contagion models for (a) the configuration model and (b) the activity model.

We see that for both static and temporal networks, the predictions from our theory do as

well as the predictions for the SIR model in Refs. [30] and [132]. The gradual transition is due to

the heterogeneity of the networks and agrees with prior results on power-law networks [133].

6.3 Discussion

In our analysis, we theoretically derived and numerically validated predictions of the popu-

lation reproductive number for static and temporal networks for a contagion model accounting for

time-dependent infectiousness. We see that time-dependent infectiousness causes a fundamental

change in the time dynamics compared to the dynamics of the SIR model, despite an epidemic

threshold matching classical theory.
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Although time-dependent infectiousness does not affect predictions on whether an epidemic

will initially grow or die out, it has strong implications on how the epidemic progresses in time. In

the continuum limit, the viral load model can be written as the transport equation PDE with an

infectious boundary condition, which indicates that the distribution of infectious durations changes

in time similar to the propagation of a traveling wave. This prediction is validated with numerical

simulations.

In this study, we have only considered the population reproductive number, although it is

well known that merely studying the population reproductive number without examining the het-

erogeneity in the number of secondary infections leaves out key information [125]. Superspreading

events are the result of this stochasticity and can often be responsible for the transmission of an epi-

demic. The VL framework could be used to model the distribution of secondary infections resulting

from a combination of contact-based and infectiousness-based heterogeneity.

Data Availability

All code used in this study can be found at https://github.com/nwlandry/time-dependent-

infectiousness [134].

https://github.com/nwlandry/time-dependent-infectiousness
https://github.com/nwlandry/time-dependent-infectiousness


Chapter 7

On limitations of uniplex networks for modeling multiplex contagion

Studies of contagion on networks regularly rely on data that only represent one type of

relationship at a time. These sorts of data can be helpful for understanding contagion dynamics on

relationships of that type. However, when the underlying contagion processes are multiplex, they

are less well suited for understanding the ultimate extent over a population and the timescale over

which these processes occur.

As an example, consider research aiming to model an epidemic of a particular sexually trans-

mitted infection such as HIV. HIV is transmissible via sexual contact, shared needles, and other

exposures to blood or other bodily fluids. In network terms, this means that any spread of HIV

through the population requires an unbroken chain of susceptible cases exposed to those who are

currently infectious [135]. That chain of exposure could be contained within relationships of a par-

ticular type (e.g., could be completely composed of sexual contacts), or could combine relationships

of multiple types (i.e., sexual and needle-sharing contacts).

In many populations, members have active contacts of both types, and they are not directly

overlapping — for example, not all needle-sharing contacts are with the same partners involving

sexual contacts [136]. In that case, studying only one type of relationship at a time could sub-

stantially distort any predictions of epidemic extent within the population. As a simple example,

suppose person 1 in Figure 7.1 is currently infected, and we want to know the likelihood of person

4 becoming infected. If we examine only sexual relationships (denoted by solid lines), both 1 and 4

are sexually active with a single partner (2 and 3, respectively) and those direct relationships would
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Figure 7.1: A simple multiplex network. The line style corresponds with the relationship type. The
node color represents its current status: infected (red), susceptible (white), and unknown (black).

be accurately represented with data on the sexual network along with any models using those data.

However, the potential infection-carrying relationship between 2 and 3 providing an indirect route

of transmission between 1 and 4 would not be observed, because it stems from a needle-sharing

relationship (dashed line). With only data on sexual relationships, we would be underestimating 1’s

likelihood of indirectly infecting 4, and even misunderstanding how these nodes’ sexual partnerships

contribute to that possible route of transmission. We see that even in this simple example, only

considering one tie type can lead to very different predictions of the likelihood of infection and the

resulting epidemic extent.

Similarly, there has been a recent proliferation of studies examining propagation of memes,

ideas, even voting behavior across social media sites like Facebook or Twitter [137, 138, 139].

However, while people mix their social media usage and have non-overlapping connectivity patterns

across platforms [140], these studies overwhelmingly focus on modeling contagion over a single

platform at a time. It is reasonable to expect this approach could potentially give a limited picture

of the complete contagion potential across the population, as in the sex/needle example for STIs

above.1 For example, people may primarily use one platform with their friends and family (ties

between {1, 2} and {3, 4} in Figure 7.1), while using another with their professional contacts (tie

{2, 3} in Figure 7.1). In that case, studies that rely on detailed data from a single platform at a

time would miss important cross-platform linkages that are vital to understanding the contagion

dynamics across the population of interest.

In this Chapter, we demonstrate the potential limitations of inference about population con-

tagion potential and timescale from networks of a single relationship type (uniplex networks), when

1 Moreover, simply increasing the coverage of the sample used will not overcome these potential sampling biases
[141].
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contagion processes realistically involve spreading over relationships of multiple types (multiplex

networks).

We proceed as follows: first, we motivate the importance of these limitations on contagion

modeling; second, we discuss the data sets and contagion processes considered; third, we discuss

our approach in quantifying discrepancies in the epidemic response for different choices of data;

fourth, we present numerical results validating our premise; and lastly, we discuss limitations and

interpretations of our model.

7.1 Motivation

Our central aim is to show that modeling capacity in contagion research is strongly con-

strained by choices in the data collection and representation. Many studies consider a single risk

behavior or platform for potential idea spread. This choice can result from simple limitations of

data availability, or may draw on the recognition that domain expertise often improves our capac-

ity to collect high quality data on particular topics (e.g., drug sharing networks have considerable

barriers to data elicitation [142]). It is important to understand the limitations introduced by

these choices when predicting the extent to which behaviors or diseases will spread. We draw on

two simple case studies to explore the discrepancies between the contagion extent resulting from

spreading over a single relationship type compared to a model with two different relationship types.

Many studies have presented theoretical approaches for describing contagion spread on mul-

tiplex networks [143, 144, 145, 146]. These studies have been crucial in understanding of dynamics

on multiplex networks, but take a fundamentally different approach to ours. This study focuses

not on predicting the behavior of a multiplex network, but rather exploring the effect of the un-

derlying data representation on the limitations that arise when modeling contagion processes from

data representing a single relationship type. This is similar to the approach in Ref. [147] where

the authors examine how well networks constructed from different data types effectively capture

transmission potential. We show that one cannot generate accurate expectations of epidemic extent

from uniplex data, even if combining results across layers to reconstruct the multiplex reality, as
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an estimate of their potential combined effects.

7.2 Data

We use two data sets to represent multiplex networks. For each, we examine (1) the entire

multiplex network and (2) the multiplex network constructed with nodes that are members of the

largest connected component of the network when considering both relationship types.

The first data set comes from “Project 90” in Colorado Springs, which studied a network of

commercial sex workers, people who inject drugs, and their sex and needle-sharing partners between

1988-1992 [148]. Here we use the complete network of 7,677 individuals representing all respondents

and the ‘risk behavior’ partners they nominated as well as the largest connected component of 4,385

individuals. Although these data were collected over five different waves, we aggregated them into a

single network for our purposes. The other data set represents a multiplex network of on-line social

network site interactions among a sample of 1,672 Twitter and Foursquare users [149] hereafter,

‘JOAAP’ as well as the largest connected component of 1,564 individuals. 2

In the Project 90 data, we considered sexual ties as one type of tie and drug or needle-

sharing ties as a second tie type. When we refer to the multiplexed data, we aggregate these uniplex

layers by forming a link between two individuals if they have a sexual relationship or a drug or

needle-sharing relationship, whereas the uniplex networks are formed from each tie type separately.

The JOAPP data, which are much higher density, representing Foursquare co-check-ins (fre-

quenting the same locales) as one type of tie and “follower” links on Twitter as a second type of tie.

We symmetrized the Twitter data for consistent analysis, even though these data are inherently

directional.

Analyses begin with the observed multiplex Project 90 and JOAAP data sets [151, 148]. We

then decompose each of these multiplex networks into their respective uniplex networks with each

tie-type representing a unique network. For each data set, this produces three networks. For the

2 These data sets are available for download from https://doi.org/10.3886/ICPSR22140.v1 [150] and https:

//doi.org/10.6084/m9.figshare.4585270.v1 [151], respectively.

https://doi.org/10.3886/ICPSR22140.v1
https://doi.org/10.6084/m9.figshare.4585270.v1
https://doi.org/10.6084/m9.figshare.4585270.v1
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Data set N average degree

Full data set
1. Project 90 7677 1.70
2a. Project 90 - Sex 7677 0.85
2b. Project 90 - Drugs 7677 1.17
3. JOAPP 1672 45.7
4a. JOAPP - Foursquare 1672 35.22
4b. JOAPP - Twitter 1672 16.85

Largest component of multiplexed data
1. Project 90 4375 2.46
2a. Project 90 - Sex 4375 1.22
2b. Project 90 - Drugs 4375 1.71
3. JOAPP 1564 36.21
4a. JOAPP - Foursquare 1564 24.67
4b. JOAPP - Twitter 1564 18.02

Table 7.1: Statistics of the chosen networks

Project 90 data set, this produces (1) the multiplex composite risk behavior network, (2a) the

sexual contact uniplex network, and (2b) the needle-sharing uniplex network. For the JOAAP data

set, this produces (3) the multiplex composite online network, (4a) the Foursquare uniplex network,

and (4b) the Twitter uniplex network. All analyses described below are then conducted on each

of these networks separately, and the results compared between the multiplex networks (1 and 3)

and the union of the uniplex layers (2a and 2b, and 4a and 4b, respectively).

For each data set, we extract the list of node labels by tabulating all the nodes that are

connected to either link type. For each type of network (uniplex or multiplex), we start with this

node list and then add the links corresponding to the desired tie types. Although in principle one

could weight the links according to the frequency of their occurrence, for simplicity, we consider

unweighted uniplex and multiplex networks, even if two ties of different types connect the same

node pairs, accounting for why the average degree of the two uniplex networks do not sum to the

average degree of the multiplexed network.

In our study, we use the Project 90 data as a model of a behavioral network over which

epidemics can spread and the JOAPP data as a model of online networks for behavior adoption.

Table 7.1 presents descriptive statistics for each data set.
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7.3 Contagion processes

In this study, we considered two models of contagion: the susceptible – infected (SI) model

representing a epidemiological simple contagion model and the threshold model representing a

complex contagion process, which represent two common model forms of contagion processes.

For the SI model, we define two states: susceptible (S) and infected (I). A susceptible node

can be infected by one of its infected neighbors with probability β∆t, where β is the infection rate

and ∆t is the interval at which the node states are updated [152]. In this study, ∆t = 1 day and

we update the nodes at the next time synchronously. Once a susceptible node is infected, it will

remain infected. Thus, for a connected network, given enough time, every node will eventually

become infected.

The threshold model (also known as “complex contagion”) is a common model for behavior

adoption on networks [22, 24]. For the threshold model, we define, as above, two states: non-

adopting (S) and adopting (I). We fix an adoption threshold τ between 0 and 1. A non-adopting

node adopts the opinion if the fraction of its neighbors who have already adopted is larger than

τ . Once a node has adopted it will not change its state to become non-adopting. We update the

opinions of all the nodes at the next state synchronously; the threshold model is deterministic once

the initial state is specified. Unlike the SI model, a contagion spreading via the threshold process

may not reach the entirety of a network, even if it is connected [153].

For both models, we select seed nodes uniformly at random to infect and this defines the

initial state of our system. We run these contagion processes for a sufficient duration to ensure the

epidemic extents have reached equilibrium.

7.4 Approach

We demonstrate how network data representation choices alter the epidemic extent and rate

of contagion spread. The data sets described above are inherently multiplex in nature and serve as

case studies in answering our central question.
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We start by constructing networks from the data sets as described above. For each data set,

we produce the observed multiplex network containing both tie types and two constituent uniplex

networks from each dataset.

For each simulation run, we fix a single seed node for each of the four settings of interest. We

begin by running these respective contagion processes (the SI model on the Project 90 dataset and

the threshold model on the JOAPP dataset) for the following: (1) the respective multiplex network

data, (2) and (3) each of the constituent uniplex layers decomposed from those multiplex networks

(as described above), and (4) the union of the infected nodes in each layer of (2) and (3) for each

time step in the simulated contagion processes. We present results for the proportion of infected

network members at each time step and final epidemic extent. For each setting combination, we

generate many realizations of these simulations to form an ensemble of time series.

7.5 Results

For all contagion processes and each parameter value, we set the time step to a week, i.e.,

∆t = 1 and infected a single node at random initially (although we present additional results in the

Supplement using different numbers of seed nodes). We ran 1000 simulations to form an ensemble

for robustness.

For the SI process, we used the following infection rates (which, because ∆t = 1, are also

infection probabilities): β = 1/75, 1/50, 1/30, 1/20 (simulations for wider parameter ranges in the

Supplement provide a robustness check). We simulated up until a time of tmax = 250 (i.e., 5 years;

although we present longer simulations in the Supplement as a robustness check). For the threshold

process, we used the following adoption thresholds: τ = 1/8, 1/10, 1/12, 1/15 (simulations for wider

parameter ranges in the Supplement provide a robustness check). We simulated until tmax = 30

(although we present longer simulations in the Supplement as a robustness check).
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(a) Network visualization of the Project 90 data set. The
dashed lines are not exhaustive, but illustrate that the nodes
in each layer are identical. The lightly colored nodes in each
layer are disconnected from the largest connected component
in that layer. One can see that each layer in this multiplex
network has different contact structure.
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(b) The SI model simulated on the Project
90 data. The left column displays a plot of
the epidemic extent with respect to time for
the uniplex sex network (blue), uniplex drug
and needle network (red), the union of uniplex
networks (green), and the multiplexed data
(black). The thick lines indicate the average
epidemic extent and the thin lines are indi-
vidual realizations of this model. The center
column illustrates the histogram of epidemic
extents for the number of nodes solely accessed
from the sex network (blue), the drug network
(red), and both (magenta). The right column
illustrates the distribution of epidemic extents
for the multiplexed data.

Figure 7.2: Comparing the epidemic extent for different choices of network data for the Project 90
data set.

To examine our central question, we draw the reader’s attention to comparisons between the

black and green curves in Figs. 7.2b and 7.3b. For the SI model, Fig. 7.2b shows that the multiplex

data leads to a larger epidemic extent than when we consider the union of the separate uniplex

processes. This result demonstrates that to capture the “true” potential of the contagion process on

the multiplex network, it is not enough to simply combine the results from their constituent uniplex
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layers. As shown in Fig. 7.1, simply considering relationships of one type ignores how contagion

can rely on the complementarities across relationships of different types. These uniplex networks,

when combined into the multiplex nature of reality, unlock connection patterns that reach more of

the population than can be accessed by the combination of the two independently. This indicates,

as illustrated in Fig. 7.1, that there is “leap-frog” behavior occurring, where a contagion must pass

through connections of alternating types to reach certain nodes.

Looking at the histogram of final extents, we see that for the multiplexed data, by construc-

tion, the contagion will spread to the entire population given enough time. The uniplex data sets

do not reach the entirety of the population indicating that the uniplex networks have components

that are smaller than those of the full multiplex networks.
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(a) Network visualization of the JOAPP data set. The
dashed lines are not exhaustive, but illustrate that the nodes
in each layer are identical. The light colored nodes in each
layer are disconnected from the largest connected component
in that layer.
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(b) The threshold model on the JOAPP data.
As in Fig. 7.3b the left column displays a plot
of the epidemic extent with respect to time
for the uniplex Twitter network (blue), uni-
plex Foursquare network (red), the union of
uniplex networks (green), and the multiplexed
data (black). The thick lines indicate the av-
erage epidemic extent and the thin lines are
individual realizations of this model. The cen-
ter column illustrates the histogram of epi-
demic extents for the number of nodes solely
accessed from the Twitter network (blue),
the Foursquare network (red), and both (ma-
genta). The right column illustrates the distri-
bution of epidemic extents for the multiplexed
data.

Figure 7.3: Comparing the epidemic extent for different choices of network data for the JOAPP
data set.

For the threshold model, the situation is a bit less straightforward. In particular, here the

results are more bimodal in that the ultimate contagion extent typically either (a) stalls before

taking off at all or (b) reaches the vast majority of the population. This result reflects that

both the connectedness and the density of the network determine the epidemic extent (see for

example, Ref. [153]). This result again demonstrates that understanding contagion processes on
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uniplex data representation, even when combining them, does not straightforwardly translate to

account for contagion on the related multiplex network. Indeed, in Fig. 7.3b, we see that for each

parameter value the epidemic extent for the multiplexed data may be lower than that of both the

uniplex network (τ = 1/10, 1/12), larger than that of the Twitter uniplex network but smaller

than that of the Foursquare uniplex network (τ = 1/15), and larger than that of the Foursquare

uniplex network but smaller than that of the Twitter uniplex network (τ = 1/15). This is likely

a complicated interplay between the connectedness and density of these networks. On the one

hand, the uniplex networks are more disconnected than the multiplexed network. On the other

hand, the multiplexed network is denser than each of the uniplex networks, which discourages the

spread of contagion for a given threshold value. If we set τ = 0, this removes the first of these two

factors and the relations between the epidemic extents becomes the same as for the SI model. By

definition, the epidemic extent for the union of these is larger and we see that considering both

types of relationships separately may be a worse estimate than simply considering a single uniplex

network (for example τ = 1/10, 1/12 in Fig. 7.3b).

7.6 Discussion

In this Chapter, we have drawn on two cases to show how modeling inherently multiplex

contagion processes with uniplex network representations can misrepresent the predicted fraction

of the population that a contagion process will reach. We illustrate this limitation separately for

models of epidemiological and behavioral contagion to highlight the effect of the data representation

on the resulting epidemic behavior. For simplicity, within each model we used the same transmission

parameters for each link type. Contagion on empirical networks may have different rates of spread

depending on the type of link through which contagion is transmitted (e.g., needle sharing transmits

most STIs more efficiently than sexual contacts). In addition, contagion spread can be modeled by

different processes spreading on each layer. For example, one might model the spread of awareness

as a behavioral process on one network layer and the spread of disease on another network layer

[154].
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In the case of the SI model, the multiplex epidemic extent was consistently larger than that

of the union of the two constituent uniplex layers. The magnitude of this discrepancy depends

on the way that the connected components in each uniplex layer overlap. The case where each

uniplex network has the same connected components will lead to the same epidemic extent. This

is a trivial case where one link type may be a proxy for another link type, which may limit the

usefulness of a multiplex representation, although is likely to be uncommon empirically. For the

threshold process, gaps remain, but differ in their nature. Whether the union of the constituent

uniplex data underestimates or overestimates the true contagion extent depends upon the threshold

levels, and these results depend on combinations of network structural characteristics in ways that

are important to examine further.

It may be fruitful to estimate how the magnitude of the under or overestimates seen here

differ when examining datasets with different structural features. Along the same lines, reproducing

these results on synthetic datasets and predicting them may offer additional insight to the behavior

that we observe.

Our results offer evidence supporting our premise that uniplex data is inadequate for modeling

inherently multiplex processes. We offer this study as a cautionary tale for researchers modeling the

spread of contagion: the choice of network data is an important assumption baked into contagion

models and should be carefully considered. As a more positive recommendation, a primary takeaway

of our results is that future data collection efforts should prioritize faithfully capturing the multiplex

realities of the underlying processes intended to be examined as in Ref. [147], rather than relying

solely on data of a single type.



Chapter 8

Open-source software

In this Chapter, we discuss software that has been developed to support the projects in

Chapters 3 to 5.

8.1 CompleX Group Interactions (XGI)

The accessibility and inclusivity of a scientific community rests, in part, on its commitment to

share resources. For the pairwise network community, packages such as NetworkX [155], graph-tool

[156], and igraph have provided a common language and tools allowing cross-disciplinary researchers

to more easily collaborate and contribute to the field of network science.

The sub-field of higher-order network science has grown rapidly over the past few years,

garnering wide attention for its ability to offer additional insights for machine learning, the structure

of complex systems, the dynamics of complex systems, and many other applications. This topic is

relevant to many different fields such as computer science, infectious diseases, dynamical systems,

behavioral science, and many others. Open-source code is available for hypergraph dynamics [11,

13, 12], inference [54, 113, 157], generative models [3, 12, 158], algorithms [159, 73], and data [75]

written in languages such as Python, Julia, C++, and Matlab, but these resources are relatively

piecemeal. We have developed the CompleX Group Interactions (XGI) Python library to provide

an open-source resource for this community [160].

This library alleviates many difficulties in hypergraph research. It does so by providing an

efficient data structure for hypergraphs, standard algorithms, conversions between data represen-
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tations, and functions to read and write from different file formats.

8.1.1 Data structure

The data structure employed by XGI leverages the bipartite representation of a hypergraph

[4] which allows users to efficiently query the hyperedges of which a specified node is a part and the

nodes that are members of a specified hyperedge. Each hyperedge is assigned an ID which allows

for multi-hyperedges. In addition, the members of a hyperedge and the hyperedges to which a node

belongs are stored as multisets which allows for loopy hyperedges.

In addition, the core data structure provided by XGI offers methods for easily getting the

following:

• The number of nodes

• The number of hyperedges

• The degree sequence

• The hyperedge size sequence

• The singleton edges

• Subhypergraphs

• Attributes of nodes and hyperedges (Such as weights, names, etc.)

8.1.2 Conversion between hypergraph representations

A hypergraph may be represented in a variety of ways including an incidence matrix, a

bipartite network, a list of hyperedges, and many others [4]. Different applications require different

hypergraph representations for efficient computation. For example, when modeling contagion, a

node’s infection status may change dependent on the statuses of its neighbors, indicating that a

representation allowing efficient access to the node’s edge neighbors is desirable. Likewise, when



98

one is interested in computing properties of a hypergraph that is averaged over the hyperedges such

as assortativity or modularity, it may be most efficient to represent a hypergraph by a list of its

hyperedges.

XGI provides methods for users to convert between a hypergraph and the following formats:

• A list of hyperedges

• An adjacency list

• An incidence matrix

• A bipartite network

8.1.3 Algorithms

There are two types of algorithms that XGI supports: generative random models and meth-

ods for analyzing the connectedness of a hypergraph. Generative models are important for the

generation of synthetic datasets, which are useful as null models to compare empirical datasets,

create datasets with similar characteristics as another dataset, or control structural properties such

as assortative mixing or degree heterogeneity. XGI currently implements several different generative

models:

• The Chung-Lu model for hypergraphs

• The Degree-Corrected Stochastic Block Model (DCSBM) model for hypergraphs

• The Erdös-Rényi model for hypergraphs

• The configuration model for uniform hypergraphs

Measuring connectedness in hypergraphs is important as a data exploration tool because

many theoretical frameworks assume that a hypergraph is connected and this may not be the case.

XGI currently provides the following functionality for users:

• Determining whether or not a hypergraph is connected
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• Finding the connected components of a hypergraph

• Finding the component of which a specified node is a part

8.1.4 Read/write functionality

There are many sources of hypergraph data [75, 161, 162], often in very different formats

which is a significant overhead cost for researchers. XGI alleviates this cost in two ways: first, by

implementing methods for importing and writing hypergraphs from several different formats and

second, by implementing a standard for hypergraph data in JSON format, described in more detail

in Section 8.3.

The XGI library offers 4 main types of file input and output:

• A list of hyperedges, where each line of the file is a hyperedge

• A list of bipartite edges, where each line is a (node, edge) entry

• An incidence matrix, where each column corresponds to a particular hyperedge, and the

non-zero entries correspond to the nodes that participate in that hyperedge.

• A JSON file, the structure of which is described in more detail in Section 8.3.

8.2 HyperContagion

Just as there are limited open-source libraries for the representation and analysis of higher-

order interaction networks, similarly, there are no standardized libraries for the simulation of con-

tagion processes on higher-order interaction networks. There are specialized repositories for the

hypergraph SIS model both discrete [12, 11] and continuous [163], hypergraph bounded confidence

models [35], and others. All of these models, however, rely on different data structures and imple-

mentation.

HyperContagion is a library for the efficient and standardized simulation of hypergraph con-

tagion models. Currently the package implements two basic classes of models: epidemiological
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models and behavioral models. The epidemiological models are discrete and continuous time com-

partment models (such as the SIS or SIR models). The behavioral models are based on a node’s

ideology, whether a continuous or discrete variable. Although these different classes of models

were developed with different applications in mind, epidemiological models can inform ideological

processes [164] and behavioral models contribute to our understanding of how diseases spread [154].

8.2.1 Epidemiological models

There are many choices of epidemiological models in the literature, but for simplicity’s sake,

we solely implement the SIS and SIR models. We implement 4 different contagion models in this

module: the discrete SIR model, the discrete SIS model, the Gillespie SIR model, and the Gillespie

SIS model. For more details on the discrete-time algorithm, see Appendix A.1 and for more details

on the Gillespie algorithm, see Appendix B.3.

Unlike epidemic spreading on pairwise networks, one must make rules for when contagion

spreads on hyperedges with greater than two members. These rules are expressed as contagion

functions G (as presented in Eqs. (3.1)-(3.2)) and may take a variety of forms. In the exact

process, these functions act as indicator functions and several examples are the following:

• Collective contagion:

G(x, x1, . . . , xm−1) =
m−1∏
i=1

Ixi=‘I′

• Individual contagion:

G(x, x1, . . . , xm−1) = max{Ixi=‘I′ | i = 1, . . . ,m− 1}

• Threshold contagion:

G(x, x1, . . . , xm−1, τ) = I|{Ixi=‘I′ | i=1,...,m−1}|/m≥τ

• Majority vote:

G(x, x1, . . . , xm−1) = I|{Ixi=‘I′ | i=1,...,m−1}|/m≥1/2
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The choice of contagion function can have strong effects on the dynamical behavior (for

example, individual vs. collective contagion as presented in Ref. [12]). When the contagion function

is non-linear (like all of the examples presented above), the resulting dynamics cannot be represented

as a simple pairwise contagion process as shown in Ref. [34]. When considering a pairwise network,

all these contagion functions reduce to what one would expect from classical network epidemic

models. In HyperContagion, the above functions are implemented as standard functions, with the

option for users to define custom contagion functions.
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Figure 8.1: Comparing the continuous time algorithms to the discrete-time algorithms for the
epidemiological models on a Chung-Lu hypergraph of size 1000.

In the limit that ∆t→ 0 the expected dynamics of the discrete models approach that of their

continuous counterparts.

8.2.2 Behavioral models

The space of behavioral models is vast, each model seeking to incorporate a specific reality-

informed mechanisms for behavior adoption. Researchers have looked at voter models [6], bounded

confidence models [35, 103], threshold models [24, 22], and many others. It would be a vast un-

dertaking to consider all possible models, so instead we implement four general classes of models:

continuous opinions with random hyperedge updates, continuous opinions with synchronous up-
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dates to node states, discrete opinions with hyperedge updates, discrete opinions with synchronous

updates to node states.
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(a) A simulation of the Deffuant-
Weisbuch model on a Chung-Lu hy-
pergraph of size 1000. This model
is characterized by large jumps in
opinions [35].
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(b) A simulation of the
Hegselmann-Krause model on
a Chung-Lu hypergraph of size
1000.
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Figure 8.2: Examples of hypergraph opinion formation models.

Opinion formation models with continuous opinions and random hyperedge updates describe

the formation of consensus as a process driven by random group interactions, where one, some, or

all of the nodes in that group update their opinion based on the opinions present in that group. A

common example of this model class is the Deffuant-Weisbuch model, a type of bounded confidence

model where all of the nodes in the hyperedge update their state if their opinions are close enough

together [35, 165].

Opinion formation models with continuous opinions and synchronous node updates assume

perfect information amongst a node’s neighborhood; a node instantaneously is aware of all of its

neighbors’ states through the interactions it participates in. A common example of this class

of opinion model is the Hegselmann-Krause model [166] which adopts the average opinion of its

neighbors if their opinions are close enough.

Opinion formation models with discrete opinions and random hyperedge updates, like the

continuous opinion case, assume that the formation of consensus is driven by random group in-

teractions, where one, some, or all of the nodes in that group update their opinion based on the

opinions present in that group. Unlike a continuous opinion spectrum, this class of model assumes
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that there are only two meaningful positions to adopt: for or against. A common example of this

class of opinion model is the voter model (for example, see Ref. [6] for the voter model on simplicial

complexes).

Lastly, opinion formation models with discrete states and synchronous node updates, like

the continuous opinion spectrum case, assume perfect information between a given node and its

neighbors. In the pairwise network case, a common example is the threshold model [24], where

nodes hold one of two opinions and all the groups to which a node belongs affect whether that node

updates its opinion.

8.3 CompleX Group Interactions Data (XGI-DATA)

With larger datasets becoming more widely available, it is important to close the gap between

dataset creators and consumers [167] because using data without an underlying knowledge of its

creation and limitations is an incomplete picture. Although there are many excellent collections of

hypergraph datasets [75, 162, 161], the format of each dataset and the information about how and

why it was collected varies widely. Creating a datasheet for each dataset detailing characteristics,

limitations, and surrounding factors that informed the collection of that data is a responsible

practice in the curation of datasets [167]. There is significant work to be done so that researchers

can easily access a summary of the dataset’s statistics, a description of the collection process,

limitations of the dataset, and other relevant information. In addition, a standard format for

storing hypergraph datasets with an accompanying standard will reduce the overhead time and

increase accuracy for researchers working on cross-disciplinary datasets.

The XGI-DATA repository [168] is a collection of openly available hypergraph datasets in

JSON format with documentation more extensively describing the datasets. There is also a rudi-

mentary inspection script for checking that datasets are in the proper format.

An overview of the JSON data structure for all datasets:

• “hypergraph-data”: This tag accesses the attributes of the entire hypergraph dataset such
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as the authors or dataset name.

• “node-data”: This tag accesses the nodes of the hypergraph and their associated properties

as a dictionary where the keys are node IDs and the corresponding values are dictionaries.

If a node doesn’t have any properties, the associated dictionary is empty.

∗ “name”: This tag accesses the node’s name if there is one that is different from the

ID specified in the hyperedges.

∗ Other tags are user-specified based on the particular attributes provided by the dataset.

• “edge-data”: This tag accesses the hyperedges of the hypergraph and their associated

attributes.

∗ “name”: This tag accesses the edge’s name if one is provided.

∗ “timestamp”: This is the tag specifying the time associated with the hyperedge if it

is given. All times are stored according to the ISO8601 standard.

∗ Other tags are user-specified based on the particular attributes provided by the dataset.

• “edge-dict”: This tag associates edge IDs with the nodes that participate in that hyperedge.
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Figure 8.3: An example datasheet for the email-Eu dataset.

In Fig. 8.3, we see an example of a simple datasheet that accompanies a dataset. From this

example, we see that this information sheet provides easy access to the size of the dataset, the

distribution of degrees and edge sizes, a description of the data being represented, and references

that one must cite to use the dataset.



Chapter 9

Conclusion

In this dissertation we have shown that structure in complex systems, particularly those

that include group interactions, can have strong effects, both qualitatively and qualitatively, on

contagion dynamics. This work is important as we seek to understand how empirical systems

behave using simple models incorporating common types of structure.

In the context of hypergraphs, we have shown that the heterogeneity in the contact structure

of complex systems strongly affects when tipping point behavior appears. We have also shown that

degree-degree mixing in hypergraphs can be described in terms of a dynamical system and that

changing the assortativity of a hypergraph may modify when epidemics appear. Lastly, we show

that when community structure is present, in addition to tipping point behavior, stable polarized

states emerge that one would not see in pairwise networks for this contagion model. Empirical

systems often contain group interactions whether that be through social interactions, political

committees, email networks, biological systems and others. Community structure, assortativity,

and heterogeneity are common types of structure that have been examined for pairwise networks

and it is important to understand how these notions of structure affect the dynamical behavior of

a hypergraph.

In the context of pairwise networks, we have explored two important limitations that must

be considered when modeling epidemics. Firstly, one must be careful when using simplified epi-

demic models, when there is intrinsic heterogeneity in the transmission rates of an individual over

the course of their infection. Depending on the model to which one compares, the time scale
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on which the epidemic spreads may be vastly different when considering time-dependent infec-

tiousness. Secondly, empirical networks are often inherently multiplex due to different types of

relationships. Choosing to use a dataset constructed from a single relationship type compared with

one constructed from several relationship types is an important modeling assumption and strongly

affects predictions of the epidemic extent. These considerations are important when seeking to

more accurately model contagion spread on networks.

This work, of course, is limited in scope and primarily looks at contagion from a theoretical

perspective. In Chapters 3 to 5, random models of hypergraphs were almost exclusively used

to validate mean-field predictions. There is a gap in the literature between theoretical research

where one creates simple null models in order to make analytical predictions and data science

oriented research which quantifies structural properties of empirical datasets. Empirical data is far

messier but hopefully these studies help close the gap between structure and dynamical behavior in

hypergraphs. One could incorporate more accurate hypergraph null models and statistical inference

techniques to help close this gap. In addition, in these Chapters, we presented a simple model of

contagion which was not validated against empirical time series. We comment that there may be

models of contagion that more accurately model behavioral adoption in groups. One may also use

statistical inference to determine the best dynamical model to predict the behavior of a particular

system. This may be particularly useful in epidemiology, where many models of contagion are

pairwise or fully-mixed in nature. A study like this could show that incorporating group interactions

may indeed provide additional information about the spread of disease. Another limitation in the

work presented is that almost every project utilized a mean-field model which is well-known to have

limited accuracy. In the future, one may improve our predictions by considering other approaches.

Despite these limitations, this dissertation represents a strong contribution to the fields of

complexity science, higher-order interactions, and dynamical systems. It has presented a novel

hyperdegree-based mean-field approach for analyzing hypergraphs and applied this framework to

study the effect of structure observed in empirical datasets. It has also presented important limi-

tations of modern contagion modeling. Lastly, it has provided several open-source resources in the
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form of software and data which will we hope benefit the field of higher-order interactions for many

years to come.
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[84] Ágnes Bodó, Gyula Y. Katona, and Péter L. Simon. SIS Epidemic Propagation on Hyper-
graphs. Bulletin of Mathematical Biology, 78(4):713–735, April 2016.

[85] Brian Karrer and M. E. J. Newman. Message passing approach for general epidemic models.
Physical Review E, 82(1):016101, July 2010.

[86] Alec Kirkley, George T. Cantwell, and M. E. J. Newman. Belief propagation for networks
with loops. Science Advances, 7(17):eabf1211, April 2021.

[87] Wei Wang, Ming Tang, H. Eugene Stanley, and Lidia A. Braunstein. Unification of theoretical
approaches for epidemic spreading on complex networks. Reports on Progress in Physics,
80(3):036603, February 2017.

[88] A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes. Percolation on correlated networks.
Physical Review E, 78(5):051105, November 2008.



115

[89] Fan Chung, Linyuan Lu, and Van Vu. Spectra of random graphs with given expected degrees.
Proceedings of the National Academy of Sciences, 100(11):6313–6318, May 2003.

[90] Claudio Castellano and Romualdo Pastor-Satorras. Relating Topological Determinants of
Complex Networks to Their Spectral Properties: Structural and Dynamical Effects. Physical
Review X, 7(4):041024, October 2017.

[91] Nicholas Landry. nwlandry/hypergraph-assortativity: v0.6, January 2022.

[92] Paul DiMaggio, John Evans, and Bethany Bryson. Have American’s Social Attitudes Become
More Polarized? American Journal of Sociology, 102(3):690–755, November 1996.

[93] Clio Andris, David Lee, Marcus J. Hamilton, Mauro Martino, Christian E. Gunning, and
John Armistead Selden. The Rise of Partisanship and Super-Cooperators in the U.S. House
of Representatives. PLOS ONE, 10(4):e0123507, April 2015.

[94] Matteo Cinelli, Gianmarco De Francisci Morales, Alessandro Galeazzi, Walter Quattrociocchi,
and Michele Starnini. The echo chamber effect on social media. Proceedings of the National
Academy of Sciences, 118(9), March 2021.

[95] Political Polarization in the American Public, June 2014.

[96] Fabian Baumann, Philipp Lorenz-Spreen, Igor M. Sokolov, and Michele Starnini. Modeling
Echo Chambers and Polarization Dynamics in Social Networks. Physical Review Letters,
124(4):048301, January 2020.

[97] Erik A. Martens, Christian Bick, and Mark J. Panaggio. Chimera states in two populations
with heterogeneous phase-lag. Chaos: An Interdisciplinary Journal of Nonlinear Science,
26(9):094819, September 2016.

[98] Zonghua Liu and Bambi Hu. Epidemic spreading in community networks. Europhysics
Letters, 72(2):315, September 2005.
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Allard, Laurent Hébert-Dufresne, and Hao Hu. Superspreading events in the transmis-
sion dynamics of SARS-CoV-2: Opportunities for interventions and control. PLOS Biology,
18(11):e3000897, November 2020.

[126] Michael J. Mina, Roy Parker, and Daniel B. Larremore. Rethinking Covid-19 Test Sensitivity
— A Strategy for Containment. New England Journal of Medicine, 383(22):e120, November
2020.

[127] N. Sherborne, K. B. Blyuss, and I. Z. Kiss. Dynamics of Multi-stage Infections on Networks.
Bulletin of Mathematical Biology, 77(10):1909–1933, October 2015.

[128] O. Diekmann, J. a. P. Heesterbeek, and M. G. Roberts. The construction of next-generation
matrices for compartmental epidemic models. Journal of The Royal Society Interface,
7(47):873–885, June 2010.

[129] Dina Mistry, Maria Litvinova, Ana Pastore y Piontti, Matteo Chinazzi, Laura Fumanelli,
Marcelo F. C. Gomes, Syed A. Haque, Quan-Hui Liu, Kunpeng Mu, Xinyue Xiong, M. Eliza-
beth Halloran, Ira M. Longini, Stefano Merler, Marco Ajelli, and Alessandro Vespignani. In-
ferring high-resolution human mixing patterns for disease modeling. Nature Communications,
12(1):323, January 2021.

[130] Bailey K. Fosdick, Daniel B. Larremore, Joel Nishimura, and Johan Ugander. Configuring
Random Graph Models with Fixed Degree Sequences. SIAM Review, 60(2):315–355, January
2018.
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Appendix A

Appendix for Chapter 3

A.1 Microscopic simulation of the hypergraph SIS model

We simulated the stochastic SIS model on a given hypergraph as a discrete-time Markov

process on the nodes with transitions to infected and healthy states through the modalities described

in Section 2.2, a variant of which was simulated in Ref. [84]. We denote the binary states of the

nodes at a time step t by a vector Xt = (Xt
1, X

t
2, . . . , X

t
N ) where Xt

i = 0 if node i is healthy and

Xt
i = 1 if it is infected. In this model, we assume that the events that a hyperedge infects node i and

that a pairwise connection infects node i are independent. Likewise, we assume that an infected

neighbor, whether through a pairwise or group connection, infects a node independently of any

other neighboring node. The probability that a single infected node infects its pairwise neighbor

in the time interval [t, t + ∆t] is β2∆t, and so the probability that no neighboring node infects a

given node is

(1− β2∆t)(AX)i

where A is the adjacency matrix with entries Aij = 1 if nodes i and j are connected by a link and

0 otherwise.

In the collective contagion model, the probability that a triangle infects a node in the time

interval [t, t+ ∆t] is β3∆t provided the other two nodes are infected. Therefore, the probability of

no triangles infecting node i can be written as

(1− β3∆t)
∑

{i1,i2,i}
Xt

i1
Xt

i2
,
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where the sum is over all triangles {i1, i2, i} with node i as a member. Lastly, the rate of healing is

constant and independent of the infection status of any neighboring nodes so the probability that

an infected node heals in a time interval [t, t+ ∆t] is γ∆t.

The Markov process can then be described as

P (Xt+1
i = 1 | Xt

i = 0) = 1− (1− β2∆t)(AXt)i(1− β3∆t)
∑

{i1,i2,i}
Xt

i1
Xt

i2
, (A.1)

P (Xt+1
i = 0 | Xt

i = 1) = γ∆t. (A.2)

In our simulations, we updated the status of the nodes synchronously at times

t = 0, ∆t, 2∆t, . . . , n∆t

where ∆t = 0.1.

Our specific implementation is described in what follows. We note that for all mechanisms of

infection and healing described next, ui ∼ Uniform(0, 1) and this variable is drawn independently

for each modality and each node i. At each time step, we iterate through every node and follow

the following conditional logic. If a node i is already infected, it is healed if ui < γ∆t and remains

infected otherwise. Next, if the node i is currently healthy, it is infected by its pairwise neighbors if

ui < 1− (1− β2∆t)(AX)i and remains healthy otherwise. If node i still remains healthy after being

subjected to pairwise infection, the node is infected by its triangle neighbors if

ui < 1− (1− β3∆t)
∑

{i1,i2,i}
Xt

i1
Xt

i2

and remains healthy otherwise. Note that each infection mechanism is only dependent on the prior

time step so the order of these steps does not matter.

At t = 0, the network is randomly and uniformly seeded with a small fraction (p = 0.001) of

infected nodes and at each subsequent step, the current state is iterated as described above and the

population average, xt =
∑N

i=1X
t
i/N is stored. To avoid the absorbing state Xt = 0, we infect a

single randomly chosen node if the population becomes completely healthy. To mitigate the effect

of variability in the stochastic simulation, we average the time response of xt over a sufficient time
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window (determined from the average infected response curves) after it reached the steady-state.

In this study, we ran the simulation for a fixed set of parameters {γ, β2, β3} for 1000 time steps

and averaged over the last 300 time steps.

To find the bistability index, we initialize the simulation with a small fraction of infected

agents for a fixed β3 value and incrementally increase β2 from a sufficiently small value (typically

βc2/2) to a value above the critical value of β2 (typically 3βc2/2), and then incrementally decrease

the value of β2 down to its original value. As described previously, if the equilibrium value while

increasing the value of β2 is distinct from the equilibrium value while decreasing the value of β2

for the same β2 values, this indicates the presence of bistability. We simulated several equilibrium

curves corresponding to different β3 values to observe the value of β3 at which the response curve

starts to show bistability, and thus infer the value of βc3.

A.2 Network models

We exclusively considered networks generated using the configuration model in order to isolate

the effect of the degree distribution. Although the configuration model has the potential to contain

both self-loops and multi-edges, in practice, the fraction of these types of edges is small[52] and in

our numerical experiments, the number of self-loops was approximately 1% of the total number of

nodes.

We used networks of size N = 104 in the simulation of the hypergraph SIS model because

this was sufficiently large enough to reduce the finite-size effects. Because the network realization

was relatively large, we did not average over an ensemble of these random graphs as in Ref. [11].

We have described in Section 3.1.1 the particular distributions examined.

We generated the triangles in two different ways corresponding to the two separate cases;

degree-correlated and uncorrelated. For the first case, we used the same degree sequence as used

to generate the network using the configuration model and extended the configuration model to

triangles as has been done in prior work[33, 32]. Because this is analogous to the construction of

the network configuration model, there is also the possibility for self-loops and multi-edges, but
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this probability is low. For the independently-distributed triangles, we drew with replacement a

fixed number of triples (enforcing the mean triangle degree) containing node indices and assigned

these nodes to a triangle. Again, as with the standard configuration model, there is the possibility

for self-loops and multi-edges, but the probability of either occurring is small.

A.2.1 The numerical computation of βc3

In Section 3.2, we plotted the numerical solution of βc3 for truncated power law distributions

as a function of the maximum degree and power-law exponent. In this section, we discuss the

specific methodology in generating these results.

First, we describe the process for finding the bistability index accurately from the mean-field

equations (3.10) and (3.15)-(3.16) for the correlated and uncorrelated cases respectively.

Figure A.1: Illustration of the bistability index with respect to the solutions to the mean-field

equation in the bistable regime

Since the V = 0 solution becomes linearly unstable at β2 = βc2 and the stable V > 0 solution

is monotonically increasing with β2, the bistability index B(β3) coincides with the value of the

largest root of Eq. (3.10) for the correlated case [or Eqs. (3.15)-(3.16) for the uncorrelated case] at

β2 = βc2, as shown schematically in Fig. A.1. Therefore, using our analytical knowledge of βc2, we

set B(β3) ≈ V ∗
ϵ , where V ∗

ϵ is the largest root at β2 = βc2 − ϵ with ϵ = 10−5 a small number added
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for numerical robustness. (We verified that this method gives numerically accurate results when

compared with other methods which do not require knowledge of βc2 but are more computationally

intensive.)

Being able to compute B(β3), we find βc3 = sup{β3 | B(β3) = 0} by bisection: starting

with an interval [βmin,0
3 , βmax,0

3 ] such that B(βmin,0
3 ) = 0, B(βmax,0

3 ) > 0, we recursively define

the interval [βmin,i+1
3 , βmax,i+1

3 ] as [βmin,i
3 , β̃i] if B(β̃i) > 0 and [β̃i, βmax,i

3 ] if B(β̃i) = 0, where

β̃i = (βmin,i
3 + βmax,i

3 )/2. When the length of the interval [βmin,i
3 , βmax,i

3 ] is less that the tolerance

10−4, we set βc3 = βmin,i
3 .
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Appendix for Chapter 4

B.1 More detailed derivation of the perturbed eigenvalue

We start with the expansion of Eq. (2) in the main text to first order (we recall that we are

considering an m-uniform hypergraph), which is

αλ(0)k + ϵλ(0)u
(1)
k + αϵλ(1)k = α

∑
k1,...,km−1

N(k1) . . . N(km−1)
k k1 . . . km−1

(N⟨k⟩)m−1
(k1 + · · ·+ km−1)

+ ϵ
∑

k1,...,km−1

N(k1) . . . N(km−1)
k k1 . . . km−1

(N⟨k⟩)m−1
(u

(1)
k1

+ · · ·+ u
(1)
km−1

)

+ αϵ
∑

k1,...,km−1

N(k1) . . . N(km−1)
k k1 . . . km−1

(N⟨k⟩)m−1

× gm(k, k1, . . . , km−1)(k1 + · · ·+ km−1).

(B.1)

From the 0th order approximation, the first terms on both sides of the equation are equal and

we can cancel them. Secondly, assuming symmetry of fm and gm, we can simplify the right-hand

side as

ϵλ(0)u
(1)
k + αϵλ(1)k = ϵ(m− 1)k

∑
k1

P (k1)
k1u

(1)
k1

⟨k⟩

+ αϵ(m− 1)
∑

k1,...,km−1

N(k1) . . . N(km−1)
k k21 k2 . . . km−1

(N⟨k⟩)m−1
gm(k, k1, . . . , km−1).
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We multiply both sides by k P (k)/⟨k⟩ and sum over k which yields

ϵλ(0)
∑
k

P (k)
k u

(1)
k

⟨k⟩
+ αϵλ(1)

∑
k

P (k)
k2

⟨k⟩
= ϵ(m− 1)

∑
k

P (k)
k2

⟨k⟩
∑
k1

P (k1)
k1u

(1)
k1

⟨k⟩

+ αϵ(m− 1)
∑

k,k1,...,km−1

N(k)N(k1) . . . N(km−1)

× k2 k21 k2 . . . km−1

(N⟨k⟩)m
gm(k, k1, . . . , km−1).

Because λ(0) = (m−1)⟨k2⟩/⟨k⟩, the first terms on both sides are equal and we cancel them, yielding

ϵλ(1) = ϵ(m− 1)
⟨k⟩
⟨k2⟩

∑
k,k1,...,km−1

N(k)N(k1) . . . N(km−1)
k2 k21 . . . km−1

(N⟨k⟩)m
gm(k, k1, . . . , km−1). (B.2)

We can use the relation that

fm(k1, . . . , km) = (m− 1)!k1 . . . km/(N⟨k⟩)m−1 [1 + ϵgm(k1, . . . , km)]

to remove the reference to gm, obtaining

ϵλ(1) =
(m− 1)

(m− 1)!

⟨k⟩
⟨k2⟩

∑
k,k1,...,km−1

N(k)N(k1) . . . N(km−1)
k k1
N⟨k⟩

fm(k, k1, . . . , km−1)

− (m− 1)
⟨k⟩
⟨k2⟩

∑
k,k1

P (k)P (k1)
k2 k21
⟨k⟩2

.

The term

1

2!(m− 2)!

∑
k,k1,...,km−1

N(k)N(k1) . . . N(km−1)kk1fm(k, k1, . . . , km−1)

represents the expected sum of all products of degrees for pairs of nodes belonging to the same

hyperedge (where the factors 2! and (m − 2)! correct for overcounting permutations of k, k1 and

k2, k3, . . . , km−1 respectively). Since the number of possible pairwise products in an m-uniform

hypergraph is given by

∑
e∈E

∑
k,k′∈e,k ̸=k′

1 =

(
m

2

)
|E| =

(
N⟨k⟩
m

)(
m(m− 1)

2

)

=
(m− 1)N⟨k⟩

2
, (B.3)
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letting |E| be the number of edges, we can express λ(1) in terms of

⟨kk1⟩E =
1

(m− 1)!

∑
k,k1,...,km−1

N(k)N(k1) . . . N(km−1)
k k1
N⟨k⟩

fm(k, k1, . . . , km−1),

the average of pairwise degree products over pairs of connected nodes, as

ϵλ(1) = (m− 1)
⟨k⟩⟨kk1⟩E
⟨k2⟩

− λ(0).

Therefore,

λ = λ(0) + ϵλ(1) = (m− 1)
⟨k⟩⟨kk1⟩E
⟨k2⟩

= λ(0)(1 + ρ), (B.4)

where

ρ =
⟨k⟩2⟨kk1⟩E
⟨k2⟩2

− 1. (B.5)

B.2 Suppressing epidemics through preferential rewiring

In this Section, we include additional plots of the effect of disassortative rewiring on the

epidemic extent. We consider the CM and EE datasets described in the main text. The following

plots have the same structure as that in the main text so we omit the legend for simplicity.

In Fig. B.1a, we see the same behavior as that of the CB dataset. We comment that, as we

expect, the epidemic threshold is fairly close to the predicted extinction threshold. In Figs. B.1b

and B.1d, we see behavior that differs from that of the CB dataset, but is consistent with our

theoretical approach. In Fig. B.1b, we see that the epidemic extent is roughly less than 0.25% for

all values of ρ. This does not contradict the bounds we derived because there is no epidemic below

the extinction threshold. The behavior in Fig. B.1d indicates that additional structure is present

in the original hypergraph that seems to be suppressing the epidemic as well and warrants further

study.

As discussed in the text, it is possible that if hyperedge swaps do not bring β3/β
c
3 below 1

as in Fig. B.1d, the process results in an epidemic. While we only see this for the EE dataset, one

should be cautious of rewiring the hypergraph unless one can guarantee that β3/β
c
3 < 1 can be

achieved.
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EPIDEMICS POSSIBLE

NO EPIDEMICS

REWIRING

(a) CM dataset, β3 = 1.78× 10−2

EPIDEMICS POSSIBLE

REWIRING
NO EPIDEMICS

(b) EE dataset, β3 = 1.3× 10−3

EPIDEMICS POSSIBLE

NO EPIDEMICS

REWIRING

(c) EE dataset, β3 = 2.2× 10−3

EPIDEMICS POSSIBLE

NO EPIDEMICS

REWIRING

(d) EE dataset, β3 = 3.2× 10−3

Figure B.1: Additional plots of preferential rewiring and the corresponding epidemic response.

Each subplot corresponds to a particular choice of infectious rate and dataset and follows the same

format as Fig. 4.3.

B.3 Numerical simulations

We model the hypergraph SIS contagion process as a continuous-time discrete-state (CTDS)

Markov process, in contrast to Refs. [11, 12] which assume a discrete-time (DTDS) process. In

Ref. [46], the authors find that discrete-time processes inaccurately model contagion processes due

to higher-order correlations. We note that as the time step in a DTDS process approaches zero, we

recover the dynamics of the continuous time process.
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As described in the main text, we consider a 3-uniform hypergraph of size N . We specify

a spontaneous healing rate γ and an infection rate β3 at which an infected 3-hyperedge infects a

susceptible node. The total rate at which infected nodes recover is given by the number of infected

nodes NI multiplied by the healing rate γ. The rate at which each susceptible node i is infected is

given by the number of infected hyperedges (hyperedges with at least one infected neighbor) of which

it is a member, NE
i , multiplied by the infection rate β3, and the total infection rate is β3

∑N
i=1N

E
i .

The total rate at which these disjoint events occur is their sum, i.e., R = γNI + β3
∑N

i=1N
E
i .

For this CTDS process, the time between events, τ , is drawn from the exponential distribution

with rate R. Once this time has been determined, we must determine which type of event occurred.

The probability that a node recovers is p = γNI/R and the probability that a node becomes infected

is 1−p and so we can draw the event from a Bernoulli distribution with parameter p. Next we must

determine the node for which this event occurred. If an infected node has recovered, we select this

node uniformly at random from the list of infected nodes. If a susceptible node has become infected,

we select a node from the list of infected nodes according to the probabilities pi = NE
i /
(∑N

i=1N
E
i

)
for each node i.

Once the time increment, event type, and affected node have been determined, we first

increment the time ti by τ ; second, we increment the number of infected individuals by one and

decrease the number of susceptible individuals by one for an infection event (vice-versa for a recovery

event); and lastly, we update the list of susceptible and infected nodes as well as the rates of each

mechanism. We repeat these steps until either t exceeds a maximum specified time or the number

of infected nodes is zero. We refer to this termination time as T and the corresponding number of

discrete data points as NT . Modeling the SIS contagion process as a CTDS process can be more

efficient than a DTDS process when R is small because the exponential distribution allows the

simulation to take large steps in time when R is small.

To recover the equilibrium from these simulations, we average over the last 10% of the

simulation time, i.e., the interval [T0, T ], where T0 = 0.9T . We calculate an average of the number



131

of infected nodes at each time step, i = 1, . . . , NT , weighted by the interevent time, i.e.,

⟨I⟩ =

[
I1(T − T0)/NT +

NT∑
i=2

Ii(ti − ti−1)

]
/T.
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Appendix for Chapter 5

C.1 An efficient algorithm for sampling m-HSBM hypergraphs

Simply sampling näıvely from the list of all possible hyperedges of size m and accepting them

with probability p≪ 1 is O(Nm) which becomes increasingly inefficient as m increases. We modify

the algorithm presented in Ref. [169] to m-uniform hypergraphs to sample from the m-HSBM with

time complexity O(m(N + |E|)).

Although in Section 5.1.1 we specify that no multiedges or self-loops may occur, given an index

in the list of all possible unique hyperedges, it is expensive to recover the hyperedge corresponding

to that index, particularly for large hyperedges. If instead we allow these artifacts to occur, then

it is O(m) to recover the hyperedge of interest in contrast to iterating through all combinations

which is O(mN). Because of this modification, in practice, we divide every probability derived in

Section 5.1.2 by m! to account for the increase in possible hyperedges because of multiedges and

hyperedges containing self-loops.

Consider an m-uniform hypergraph with N nodes and G groups. As in Section 5.1.1,

Pgi1 ,...,gim
specifies the probability that nodes i1, . . . , im with community labels gi1 , . . . , gim , form a

hyperedge. The function G that returns the members in a group g is defined as

G : g 7→ (i | gi = g, i = 1, . . . , N)T ,

where |G(g)| is the number of nodes with community label g. We iterate through each entry

g1, . . . , gm of the tensor P and for fixed group assignments for the nodes in a hyperedge, g =
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gi1 , . . . , gim , the probability of generating a hyperedge is constant and we generate all the hyperedges

associated with these ordered community assignments. The hyperedges are elements of the set

formed by the Cartesian product of the indices in each partition and the maximum index is given

by the product
∏

g∈g |G(g)|.

Our algorithm is an extension of the algorithm in Ref. [169] and the main idea is this: instead

of iterating through all possible edges and accepting an edge with probability Pgi1 ,...,gim
= p, which

is expensive when p ≪ 1, we simply “skip” the edges that would be rejected by sampling from a

geometric distribution. While the current index is less than the maximum index, we increment the

index with steps s ∼ Geometric(p). For a given index, we convert to a list of m node labels with

Algorithm 1. Because we simulate the community connection probability tensor patch-by-patch,

for a given patch, we specify the community to which each node belongs as an ordered list.

Algorithm 1: Get an m-hyperedge from a specified index, given community sizes (Index-
ToEdge)

Input: i, g, G
Output: e
e = ∅
r = |g|
while r > 0 do

w =
⌊
i/
(∏|g|

p=r+1 |G(gr)|
)⌋

mod |G(gr)|
v = G(gr)w
e← e ∪ v
r ← r − 1

return e

The algorithm for sampling from the m-HSBM is given in Algorithm 2.
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Algorithm 2: Generating the m-uniform stochastic block model for hypergraphs (m-
HSBM)

Input: N , m, P , G, G
Output: E
B = 1, . . . , G
E = ∅
for g ∈ B × · · · ×B do
N = (|G(g1)|, . . . , |G(gm)|)
Mmax =

∏
g∈g |G(g)|

p = Pg1,...,gm

i ∼ Geometric1(p)
while i < Mmax do

e = IndexToEdge(i,g,G)
E ← E ∪ e
i← i+ Geometric1(p)

return E
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Appendix for Chapter 7

D.1 Full datasets

In this section, we show that our results hold for the full datasets, not just the largest

component of the multiplexed data.

In contrast to Figures 2b and 3b in Chapter 7, the multiplexed data set is no longer fully

connected, leading to some epidemic trajectories that reach very few nodes, resulting in the bimodal

distribution of epidemic extents. For the Project 90 dataset, we see in Fig. D.1a that the relative

epidemic extents are preserved when compared with the epidemic extents of the largest connected

component of the multiplexed data. This is not the case with the JOAPP data set in Fig. D.1b,

but as discussed in the Chapter 7, this is to be expected due to the two competing factors that

determine the epidemic extent for the threshold contagion process.

D.2 Larger parameter ranges

In this section, we simulate each contagion process for a wider range of parameters to verify

that our results are not dependent on the choice of parameters.

For the SI model on the Project 90 data set in Fig. D.2a, we notice the same differences in

epidemic extents, albeit on different time scales. This should be anticipated; if we plot the epidemic

extent with respect to βt, the average time series will be roughly identical. For the threshold process

on the JOAPP data set in Fig. D.2b, there are parameter values where the epidemic extents are

trivially the same. First, if we choose a threshold greater than the maximum possible fraction of
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infected neighbors that the network structure and number of seed nodes allow, then contagion will

never occur. Second, if the threshold is low enough and the multiplex and uniplex representations

are all fully connected, then the entire population will be infected no matter the data representation.

D.3 Different number of seeds

In this section, we show that our results hold for 2, 5, and 10 seeds as well as a single seed

node as presented in Chapter 7.

In Fig. D.3, we see that the relative differences in the epidemic extents are preserved. The

largest differences are than with a larger number of seed nodes, the likelihood that there is an

epidemic trajectory that spreads to very few nodes is much smaller as can be seen in the figure.

In Fig. D.4, we see that, like in Fig. D.3, there is a smaller chance of trajectories dying out. In

addition, we see that increasing the number of seed nodes effectively raises the maximum threshold

for which the contagion will spread to the entire network (for example, τ = 1/10 in Fig. D.4) and

lead to trivial results as discussed prior.

D.4 Full temporal extent

This section, we run the simulation for a long enough time to remove any temporal censoring

for larger values of τ for the threshold model and smaller values of β for the SI model.

In Fig. D.5, we see that the epidemic extents are consistent with our results in Chapter 7. For

the SI model, this should be expected as explained prior; rescaling time by the infection probability

should yield very similar epidemic responses in expectation.
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(a) Full Project 90 dataset.
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(b) Full JOAPP dataset.

Figure D.1: Considering the full Project 90 and JOAPP data sets. For more details on these plots,
see Figs. 7.2b and 7.3b.
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(a) Project 90 data set with a wider range of param-
eters.
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(b) JOAPP data set with a wider range of parameters.

Figure D.2: Considering a wider range of contagion parameters. For more details on these plots,
see Figs. 7.2b and 7.3b.
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(b) 5 seed nodes.
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(c) 10 seed nodes

Figure D.3: Varying the number of seed nodes for the SI model on the Project 90 data. For more
details on these plots, see Figs. 7.2b and 7.3b.
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(a) 2 seed nodes.
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(b) 5 seed nodes.
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Figure D.4: Varying the number of seed nodes for the threshold model on the JOAPP data. For
more details on these plots, see Figs. 7.2b and 7.3b.



140

0.0

0.5

1.0
= 1/75

0.0

0.5

1.0
= 1/50

0.0

0.5

1.0
= 1/30

0 500 1000
time

0.0

0.5

1.0

ep
id

em
ic 

ex
te

nt = 1/20

0 2500
trajectories

0 1000
trajectories

(a) Project 90 dataset.

0.0

0.5

1.0

= 1/8

0.0

0.5

1.0

= 1/10

0.0

0.5

1.0

= 1/12

0 50 100
time

0.0

0.5

1.0

ep
id

em
ic 

ex
te

nt

= 1/15

0 2500
trajectories

0 1000
trajectories

(b) JOAPP dataset.

Figure D.5: Simulating contagion models until equilibrium is reached for all parameter values. For
more details on these plots, see Figs. 7.2b and 7.3b.
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