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A highly sensitive, continuous, in-situ, remotely reporting fluorescence sensor coupled with a

machine learning model to predict high-risk fecal contamination was evaluated. The sensor behavior

was characterized to multiple fluorescence quenching parameters through lab bench top analysis.

The sensor’s minimum detection limit of powdered tryptophan dissolved in deionized water was

found to be 0.05 ppb, its minimum detection limit of E. coli present in wastewater effluent was 10

CFU/100 mL, and its minimum detection limit of lab grown E. coli in DI water was 33 CFU/100

mL. A correction factor was calculated to correct for the decline in fluorescence response to water

temperature. Inner filter effects were shown to have negligible impact in an operational context. It

was established that the fluorescence signal increases by approximately 82% with the formation of

biofilm, while the sensitivity of the sensor is reduced by approximately 5% with the formation of

mineral scaling. Four sensors were installed on Boulder Creek in Colorado and over the course of

88 days 298 ground truth samples were enumerated for E. coli through membrane filtration. This

data built the training and validation data set for a machine learning model. The performance of

this model was improved by incorporating a proxy feature for biofouling that was based on time

since cleaning the cuvette. This model has the ability to predict high risk fecal contamination with

83% accuracy, has a sensitivity (true positive rate) of 80%, specificity (true negative rate) of 86%,

and can distinguish between all risk categories established by the World Health Organization 64%

accuracy. This sensor, combined with the highly skilled machine learning model, has the ability to

provide a more consistent informative data set about fecal contamination risk in drinking water to

water service providers and individual consumers.
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Chapter 1

Background Information

Reliable and affordable access to safe drinking water is essential to human health. However,

it is estimated that worldwide around two billion people use a drinking water source that has been

contaminated with feces, which can cause severe diarrheal infections (86). This contamination is one

of the leading causes of disease and death, particularly among children in low- and middle-income

communities (LMICs). While more incidences of diarrhea are associated with contaminated drink-

ing water in LMICs, there are still outbreaks in high-income communities (62). A recent study

found that nearly half a million households in the United States do not have access to reliable

sanitation services, over a thousand community water systems are in serious violation of the Safe

Drinking Water Act, and over 20,000 permittees were in significant noncompliance with the Clean

Water Act (53). These numbers do not include those experiencing homelessness or the over 40

million households in the United States (U.S.) who use domestic wells, natural water sources, or

other types of drinking water supplies that are not regulated by the U.S. Environmental Protec-

tion Agency (EPA) (36). Low-income and non-White people, particularly Black and indigenous

populations that continue to be plagued by injustices stemming from the legacies of colonialism,

are disproportionately affected by these inadequacies in water and sanitation services (52). This

inadequate access to water, sanitation, and hygiene (WASH) services is a public health crisis. 30%

of all waterborne illnesses in the U.S. were associated with drinking untreated groundwater between

1971 and 2008 (19).
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1.1 Water Quality Monitoring

To improve public health, it is important for water service providers and in some cases

households to monitor fecal contamination in the drinking water, but that can be expensive and

time-consuming. Traditionally, in order to test water for fecal contamination, one must retrieve a

sample from the water point, take it to a lab, plate this sample, and then incubate the plated sample

for 18-24 hours. Consumers may already be exposed by the time contamination in the water source

is detected. These tests on average cost 21 dollars per sample including consumables, equipment,

lab access, and logistics (11; 20). Challenges such as these have prompted the United Nations Inter-

national Children’s Emergency Fund (UNICEF) to ask researchers to develop a real-time, in-situ

Escherichia coli (E.coli) detection product (81). E. coli is the World Health Organization’s (WHO)

recommended indicator for fecal contamination of drinking water and is the only coliform that is

almost exclusively associated with feces (76). UNICEF set minimum performance requirements in

the target product profile (TPP) to include the following: being battery-based, requiring minimal

processing, not needing reagent mixing or incubation, having qualitative output ranges of fecal con-

taminations, being able to sample multiple water sources, being able to detect 10 colony forming

units (CFUs) per 100 mL with the false positives and negatives below 10%, having a detection time

of less than 3 hr, having a minimum life span of two years, and being portable.

1.2 Tryptophan-like Fluorescence

While there are other potential methods to detect E. coli, using spectroscopy to measure

tryptophan-like fluorescence (TLF) in drinking water systems offers an opportunity to meet the

requirements identified for UNICEF’s TPP for a real-time, in-situ E.coli detection product. Mea-

suring TLF, or Peak T1 relies on the fluorescence of tryptophan whose presence can indicate it

as its own free molecule or in proteins, peptides, humic structures, or in the presence of microbial

activity (34; 29; 35). This phenomenon is even more apparent in E.coli, which has the highest TLF

per occurrence compared to other bacteria because it produces indole from lactose and tryptophan
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(74). TLF has an emission wavelength of around 360 nm and an excitation wavelength of 275 nm

(17). It is important to note that there is some uncertainty over what is actually being measured

when using this method, but, recently, multiple studies have shown promising data that measuring

TLF can be used as a risk assessment tool in place of or in addition to microbial testing in drink-

ing water systems (7)(72). Tryptophan is a free molecule and, when bound to structures where

microbial activity is occurring, can be intracellular or extracellular. As intracellular molecules,

tryptophan is found in bacteria as structural and functional proteins used in endospore formation;

metabolic pathways, and byproducts. If occurring as extracellular molecules, it is found as secreted

signaling molecules, exotoxins, metabolic byproducts, and cellular debris (29). Tryptophan con-

tains an amine group, a carboxylic acid group, and a side chain indole group. As microbial activity

converts tryptophan to a side chain indole group fluorescence enhances at a 33% greater intensity

(29). It is important to note that while indole occurs in many natural phenomena, it is even more

apparent in mammalian digestive systems and feces and it can be measured in concentrations as

high as 0.5 mM in E. coli cultures (46). Previous studies have been conducted that conclude the

intracellular or extracellular occurrence of TLF depends on the type of water source such as surface

water or ground water. In natural water sources, it is more likely to have extracellular TLF and in

lab-grown settings, it is more likely to have intercellular TLF (75)(29).

1.3 Sensor Design

Since 2018, the development, demonstration, and optimization of a low-cost fluorescence

sensor that meets the requirements of UNICEF’s TPP have been ongoing at the University of

Colorado Boulder. These efforts have led to the first publication of this work, as well as a patent

application on the design of the prototype and machine learning algorithms that will improve the

sensitivity and specificity of the sensor (10). Since the last publication updates have been made to

the design of the sensor to be autonomous, highly sensitive to tryptophan concentrations, simple

to maintain and clean, able to detect and measure proxies for biofouling through machine learning,

and have range and gain levels that are applicable to natural and treated water.
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In the design used for the experiments described is shown in Figure 1.1, the sensor used a

UV quartz flow-through cuvette from FireFlySci (www.fireflysci.com). This cuvette has a path

length of 1 cm. LEDs and the SiPM PCB boards were mounted onto a 3D printed sleeve that slid

directly onto the cuvette. A bandpass filter was mounted on the sleeve between the SiPM and the

cuvette which was centered around 357 +/-22 nm (23). Rubber tubing connected the cuvette to

a peristaltic pump. The main PCB board, cuvette sleeve, and pump were mounted in a polycase

waterproof case with a 3D printed mount.

Figure 1.1: The opened enclosure box shows the configuration of the peristaltic pump which pulls
water through a flow through cuvette. UV LED and SiPM driver boards are mounted around the
cuvette and connected to a microcontroller that controls measurements taken by the SiPM, water
temperature sensor, and board temperature sensor. The Particle Boron board then transmits the
data via LTE to an online platform.

1.4 Gaps in Knowledge

While the results from this sensor have been promising, it is important to note that challenges

and barriers concerning parameters that affect the sensitivity of the signal need to be examined

before the sensor can be produced. In this research, I examined how pH, temperature, mineral

scaling, and biofouling affect the sensor’s sensitivity and signal strength in order to improve on the
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current low-cost fluorescence sensor.

1.4.1 pH

Previous studies show that pH affects the intensity of humic, fulvic, and tryptophan-like

fluorescence which would likely affect the sensor signal sensitivity (58) (7). Literature indicates

that the highest loss of TLF occurs in acidic solutions (low pH below 4.5). The most plausible

reasoning for this is due to the deprotonation or protonation of acidic or basic functional groups

that are chemically bound to fluorophores (45). However, in another recent study, this trend

was not observed, and instead, there was a more variable response in fluorescence to pH (7). This

difference could be because this study was conducted on heterogeneous natural water samples while

the previous studies were conducted on humic substances. This only reinforces the need to test

the effects of pH on this sensor to discover the pH range at which this sensor can operate properly,

especially since pH will not be monitored in real-time.

1.4.2 Temperature

Temperature has been shown to affect a TLF signal. Higher temperatures increase collisional

quenching, which increases the likelihood of an excited electron to return to the ground state en-

ergy through a radiationless pathway (6). Collisional quenching is when a fluorophore deactivates

through contact with another molecule, leading to a decrease in fluorescence activity without a

chemical reaction occurring (78). A recent study on how temperature affects tryptophan-like flu-

orometers shows that TLF is negatively correlated to temperature (38). These results emphasize

the importance of adding a correction model based on temperature to improve the accuracy of the

results. While the trends of temperature affecting TLF have been fairly well documented to be

reproducible, it is still important that a correction model be sensor-specific. Our sensor configura-

tion includes the addition of a thermocouple to monitor temperature and correct measurements in

real time. It is also important to test the effects of temperature on this specific sensor to set an

optimal temperature range for operation.
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1.4.3 Turbidity

Turbidity is the measurement of the clarity of a liquid and is an common test of water quality.

Clarity is influenced by suspended particles in the water which can cause increased scattering and

excitation of light (38). A study of in-situ Chromophoric Dissolved Organic Matter fluorometers

indicated that at greater than 400 NTU (the units in which turbidity is measured) the fluorescence

signal is reduced by 80% when the excitation wavelength is 370 +/-10 nm (22). While this finding is

significant to consider, it does not indicate anything about TLF. Studies concerning how turbidity

influences TLF sensors are uncommon; however, a recent study shows an increase in TLF intensity

at low to moderate turbidity (70). These results do not agree with other findings which reported

more fluorescence intensity at low and high turbidity (22). However, they were pronounced, non-

linear, and repeatable between tryptophan concentrations (38). These trends were more apparent

when comparing sediment types as opposed to sensor types examined in this study. This discrepancy

could be due to increased stray light reaching the fluorometer photodiode in silt when compared to

clay, or the fact that clay might have higher attenuance than silt. Furthermore, it could be due to

the fact that in this study, the sediment was treated to remove organic matter, which could have

increased the ratio of soft to hard scatters, thus reducing absorption. After examining previous

studies, it was discovered that there is a clear need to monitor turbidity for this sensor specifically

and recognize a turbidity range for optimal operation.

1.4.4 Mineral Scaling

Mineral scaling is the deposition of minerals on the interior surfaces of water lines and con-

tainers. This most often occurs when water contains carbonates or bicarbonates and the calcium,

sulfates, and magnesium in those components are heated. There have not been many studies on how

mineral scaling affects fluorescence sensor signals directly but several studies teach how to quantify

or monitor CaCO3 scale formation using evanescent field spectroscopy (61) (12) (55). Another

study focused on the development of a novel fiber optic sensor for real-time sensing of silica scale
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formation (57). Each of these studies has a component where water with a known concentration

of chemicals is pumped through the sensor to promote mineral scaling. To quantify this scaling,

the transmittance responses were measured. These responses indicated that the transmittances

decreased to a constant value over time (57) (55). With these results, one can make a reasonable

assumption that as mineral scaling occurs, the transmittance will decrease causing fluorescence to

decrease as well. When less light is able to pass through the cuvette for this sensor, there is less

light to fluoresce.

1.4.5 Biofouling

Biofouling, or the accumulation of biofilm, is the undesired deposition of microorganisms and

sticky extracellular polymeric substances on surfaces (26). Biofilms are made in 5 stages: 1) plank-

tonic cells attach to the surface, 2) the attached cells divide and extracellular polymeric substances

are formed, 3) then the extracellular polymeric substance expands, 4) the biofilm matures, and

5) the mature biofilm releases planktonic bacteria back into the environment (27). The degree to

which biofouling occurs varies as a function of the environment. Anti-biofouling mechanisms are

put in place to make sure the surfaces of the tools that are growing biofilms are working properly.

Research shows that as biofilms accumulate on the surface of the cuvette in a sensor, a higher rate

of false positives and signal drift will occur (74).

Biofouling has been shown to affect fluorescence sensor signals in the field and interferes with

the otherwise reliable sensors (24). One potential method toward addressing these challenges with-

out regular maintenance and calibration is through machine learning based synthetic calibration

that has been validated with ground truth data that has been collected manually (37).

1.5 Experimental Setup

Each experiment done in this study was conducted with the sensor that is described in

Figure 1.1. However, different configurations of the sensor’s setup were developed for context of

the experiment being conducted. Three different setups were designed for field testing, lab testing,
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and biofouling and mineral scaling testing and are described below.

1.5.1 Field Testing

Figure 1.2 depicts the setup for one of the sensors installed on Boulder Creek near 55th Street.

Adaptations made to the setup for field testing include a camera stake with adjustable screws that

the enclosure of the sensor is mounted on to easily and securely stake it into the ground near the

testing site. Also, the sensor’s inlet and outlet tubes were secured to a ceramic brick so they would

remain submerged under the water, but above the creek floor.

Figure 1.2: Photograph and Flowchart of the Field Testing Setup 9315 on Boulder Creek near 55th
Street

The three other sensors were placed in various other locations, but the setup for each of the

field sensors are fairly similar.

1.5.2 Lab Testing

Figure 1.3 depicts the setup used for all the tests conducted in chapter 2 (tryptophan, wastew-

ater, and E. coli sensitivity and the viable cell test) and chapter 3 (pH, turbidity, and temperature).

The box containing the sensor rested on a lap bench top stand while in use. The testing bottle
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containing the solution being pumped through the sensor at that particular test was set on a com-

bination heat and stir plate. A laptop was set up to run Particle, which was the program used to

call on the sensor to pump and/or measure each sample.

Figure 1.3: Photograph and Flowchart of the Lab Testing Setup

Many of the in-lab experiments required other equipment such as a pH meter that are not

pictured in Figure 1.3 but other than that the setup remained constant. Details of the analytical

methods will be discussed in detail in chapter 2 and 3.

1.5.3 Biofouling and Mineral Scaling Testing

Figure 1.4 depicts the setup used for the biofouling and mineral scaling experiments. Since the

senors used in these experiments were the ones pulled from the field, the box containing the sensor

remained on the camera stake with adjustable screws. A 5 gallon bucket was fitted with a cooling

jacket to better mimic temperature changes in typical drinking water systems. The thermocouple,

inlet, and outlet tubes were placed inside the 5 gallon bucket.

The contents of the bucket would vary based on the experiment, but the setup remained the

same nonetheless.
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Figure 1.4: Photograph and Flowchart of the Biofouling and Mineral Scaling Lab Testing Setup
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1.6 Contributions

Successful research is inherently collaborative, and my thesis is no exception, as I was able

to work closely with Emily Bedell and Katie Fankhauser on this project. While there was a lot

of overlap in the contents of our work, as seen in Figure 1.5, it is important to give credit to

everybody’s individual contributions.

Figure 1.5: Venn Diagram of the Contributions from Emily Bedell, Olivia Harmon, and Katie
Fankhauser

I took the lead on the characterization of this sensor which led me to ask and explore the

following research questions:

(1) What is the detection limit of E. coli and total coliforms in terms of tryptophan, lab grown

E. coli, and wastewater effluent? Explored in chapter 2.

(2) How will the fluorescence output be affected by pH, temperature, and turbidity? What

operational limits for pH and turbidity and correction factors for temperature will need to

be set to account for this difference? Explored in chapter 3.
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(3) How does the formation of biofilms and mineral scaling inside the flow through cuvette

impact the sensor’s signal? Explored in chapter 4.

(4) Can a machine learning model be designed and implemented to attenuate the effects of

biofilms and increase the specificity and sensitivity of the sensor? Explored in chapter 5.

In order to explore research questions 1 and 2, I conducted literature reviews to become

familiar with the background of TLF, the current knowledge of the available TLF sensors, and

how pH, temperature, and turbidity affect the fluorescence output. Using the knowledge I gained

conducting the literature reviews, I figured out how to run each experiment to add to the knowledge

available to answer research questions 1 and 2 using our sensor. After I conducted each experiment

and analyzed the data in RStudio, I made small adjustments to the experimental design before

writing the standard operating procedure for each experiment. Details about these experiments

can be found in the methods section of chapters 2 and 3. I then trained graduate and undergraduate

students on how to successfully conduct each experiment to increase the amount of data that could

be collected. Using an R code that Emily Bedell and I wrote, I analyzed all the data collected and

made recommendations for future work based on those results.

In order to explore research question 3, I conducted literature reviews to become familiar with

the background of how biofilm and mineral scaling forms, how it can impact fluorescence, and how

to enumerate it. I organized meetings with other graduate students, postdoctoral researchers, and

faculty. Using the knowledge I gained from these meetings and conducting the literature reviews,

I planned how to run each experiment that would form biofilm or scaling on the inside of the flow

through cuvette. I worked with Emily to measure how the formation of biofilm or scaling affects the

sensor’s signal. I also figured out how to enumerate the biofilm and scaling that formed on the inside

of the flow through cuvette. Details about these experiments can be found in the methods section

of chapter 4. I trained graduate and undergraduate students on how to conduct the experiment to

aid in the formation of biofilm and monitor contamination events in order to increase the amount

of data that could be collected. I conducted all of the experiments to enumerate the biofilm and
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mineral scaling through membrane filtration and spectral analysis. I designed and 3D printed a

cuvette holder and caps so the cuvette could be filled with DI water and fit into each spectroscopy

machine. Using this data and the R package staRdom I created excitation-emission matrices to

further investigate how the formation of biofilm and mineral scaling affects fluorescence.

For research question 4, I assisted in the formation of the data for the training set for the

machine learning model, which is a set of data that is used to train the model and set hidden figures

and patterns that are in the data. I worked with Emily Bedell to set up four sensors to collect data

for this training set on Boulder Creek. To collect ground truth samples, Emily, 8 other graduate

and undergraduate students, and I took and enumerated 298 samples from the creek where each

sensor was set up. I trained these students on how to properly collect, record, plate, and enumerate

samples from the creek. Details about these methods can be found in the methods section of

chapter 5. I organized weekly meetings with this team to coordinate sample collection.



Chapter 2

Sensor Signal Sensitivity to Changes in Water Composition

2.1 Introduction

Sensitivity of the sensor signal to parameter changes in water was conducted. All of the results

from the Tryptophan, wastewater, and E. coli validation sensitivity experiments were analyzed in

R version 4.0.5. Analysis of Variance (ANOVA) and t-tests were conducted on the outputs of these

experiments to examine the statistical significance.

2.2 Methods

2.2.1 Tryptophan Sensitivity

Standard L-tryptophan solutions (Sigma-Aldrich reagent grade L-tryptophan) were made by

mixing 1000 mL of deionized (DI) water and 0.1 g powdered tryptophan for 30 min to create a

solution of 100 ppm tryptophan. This 100 ppm tryptophan solution was used to prepare 0.05, 0.1,

0.5, 1, 3, 10, 30, 70 ppb L-tryptophan standards. Each solution was tested within 72 hrs after being

made. Before testing, the sensor was rinsed by pumping DI water through for 60 s. To collect data

for each solution, starting with the lowest concentration (DI water) and ending with the highest

concentration (100 ppb), the inlet tube was placed in the solution and the outlet tube placed in

a waste container. For each dilution ten TLF measurements, with the average of 80 samples per

measurement, were taken from the sensor. The sensor was rinsed between each solution by running

DI water through the tubes and cuvette for 30 s.
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2.2.2 Wastewater Sensitivity

Wastewater effluent was collected from the Boulder Wastewater Treatment Facility and stored

in a walk in fridge at 4°C for a maximum of 5 days until it was used for testing. Standard dilutions

were made by mixing DI water and wastewater effluent to prepare 10%, 25%, 40%, 55%, 70%, 85%,

and 100% dilutions of wastewater effluent. Each solution was made right before the beginning of

testing and kept for a maximum of 48 hr refrigerating the dilutions that were not being tested at

the time. Sensor data for each dilution, starting with the lowest concentration (DI) and ending

with the highest concentration (100% wastewater effluent dilutions), was collected and analyzed by

the same method used to collect the tryptophan data. The pH of DI and each wastewater effluent

dilution was measured since DI water exposed to air has the potential to be acidic (65). E. coli

and total coliforms (TC) present in each dilution were enumerated through membrane filtration by

plating a filter with m-ColiBlue24 broth (EPA Approved Hach Co.: 10029 method). m-ColiBlue24

broth indicates E. coli colonies by blue coloration resulting from specific activity of β -glucuronidase

and TC by red coloration resulting from specific activity of β -galactosidase (76). Samples were

plated in triplicates and incubated at 35°C for 18-24 hr.

2.2.3 E. coli Sensitivity

A working culture was prepared using E. coli K-12, the strain of E. coli that researchers

know the most about, stored in individual tubes in a freezer at -80°C (59). To prepare the working

culture, E. coli K-12 was taken from the freezer and placed in a sterilized fume hood to warm up.

While the sample was defrosting, tape, a permanent marker, 25 mL pipette tip, motorized pipette,

25-100 µL pipette tip, 10-100 µL pipette, three Erlenmeyer flasks, and tin foil used to cover the

flask were gathered, sterilized, and placed in the fume hood. Two of the Erlenmeyer flasks were

labeled, one nutrient broth and the other nutrient broth + E. coli, with tape. The third Erlenmeyer

flask was filled with 75 mL of nutrient broth. Nutrient broth was made once a month using 7.2 g of

Gather DifcoTM Nutrient Broth powder and 900 mL of DI water mixed for 30 min then Autoclaved
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at 121°C. Using the 25 mL pipette tip and motorized pipette, 25 mL of the nutrient broth were

transferred to each of the labeled Erlenmeyer flasks. Next, using the 10-100 µL pipette, 25 µL

of E. coli K-12 were transferred from the defrosted sample tube to the Erlenmeyer flask labeled

nutrient broth + E. coli. The top of each Erlenmeyer flask was immediately covered with tin foil

and incubated in the benchtop shaking incubator for at least 15 hr at 37°C and 121 rpm. After 15

hr, both Erlenmeyer flasks were compared to ensure the nutrient broth had not been contaminated

as seen in Figure 2.1.

Figure 2.1: The Erlenmeyer flask on the left contains only Nutrient Broth and the Erlenmeyer flask
on the right contains Nutrient Broth and E. coli K-12. This distinction is made clear when you
compare the cloudiness of the Nutrient Broth on the right to the clearness of the Nutrient Broth
on the left.

Once it was confirmed there was no contamination, a sterilized fume hood was turned on,

and the nutrient broth + E. coli Erlenmeyer flask, an Erlenmeyer flask of 75 mL of PBS, 25 mL

pipette tip, motorized pipette, and one 50 mL centrifuge tube labeled “WC E. coli K-12 Date,

Time” were placed inside to clean the working culture. The working culture (continents of nutrient

broth + E. coli Erlenmeyer flask) was poured in the labeled 50 mL centrifuge tube then placed in

the balanced centrifuge set at 3000 rpm for 10 min. After 10 min in the centrifuge, the working
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culture was returned to the fume hood and the liquid continents of the centrifuge tube was poured

back into the flask labeled nutrient broth + E. coli, and 25 mL of PBS was added to the centrifuge

tube then shaken until all the particles are dissolved. After using this method to clean the working

culture two more times, the liquid content of the centrifuge tube was transferred to the flask labeled

nutrient broth + E. coli for the last time. Then, 10 mL of PBS was added to the centrifuge tube

and shaken until all the particles were dissolved creating the final WC of 109 CFU of E. coli/mL.

Figure 2.2 depicts a flowchart that describes this process.

Figure 2.2: Flowchart describing the process for preparing the working culture

This WC was used to prepare 107, 106, 105,104, 103, 102, 101, 100, and 10−1 CFU of E.

coli/mL dilutions. These values were validated by plating each dilution 3 times, incubating the

plates at 37°C for 20 hr, then counting the colonies that grew on each plate. The E. coli solutions

were made right before each test and kept for a maximum of 48 hr. Sensor data for each solution,

starting with the lowest concentration (DI) and ending with the highest concentration (107 CFU of

E. coli/mL dilutions), was collected and analyzed using the same method that was used to collect

the tryptophan data.
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2.2.4 Chlorination Impact Test

To determine the impact of chlorine on the sensor’s output 0.24 mL of bleach was added

to 1000 mL wastewater effluent, a 50 ppb tryptophan solution, and DI water. Then, 0.24 mL of

bleach was added to each dilution and mixed for 30 min. The pH of DI water, 50 ppb tryptophan,

and wastewater effluent was measured before bleach was added and after bleach was mixed in each

solution for 30 minutes. Total chlorine present was measured at minute 1 and 30 and free chlorine

was measured at minute 30 using a spectrophotometer. 10 measurements with the sensor were

taken for each solution (wastewater effluent, wastewater effluent + bleach, 50 ppb tryptophan, 50

ppb tryptophan + bleach, DI water, DI + bleach). The concentration of E. coli and TC before

and no more than 60 minutes after the addition of bleach was enumerated by membrane filtration

using the method described above.

2.3 Results and Discussion

2.3.1 Tryptophan Sensitivity

At p <0.01 (according to EPA MDL Procedure) this sensor is able to show a statistically

significant difference between DI water and 0.05 ppb tryptophan at all four current inputs to

the LEDs (28). As seen in Figure 2.3, the design goal of 1 ppb tryptophan (signifying high risk

contamination) was met. As the current increases, the sensitivity at low tryptophan concentrations

increases; as the current decreases, a higher range of tryptophan concentrations can be detected.

2.3.2 Wastewater Sensitivity

The results from examining the sensor response to various dilutions of wastewater effluent

from the Boulder Wastewater Treatment Facility are shown in Figure 2.4 below. From this data,

it is apparent that the sensor can detect 2 CFU/100 mL E. coli in the presence of other microbes

and debris found in wastewater effluent. These findings further support the sensitivity results of

the tryptophan and E. coli testing.
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Figure 2.3: Sensor response from tryptophan dissolved in DI water at four different currents pow-
ering the LEDs, indicated at the top of each graph. Analysis of Variance (ANOVA) p-value shows
the difference across all concentrations.
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The sensor was able to statistically significantly detect (p <0.01) E. coli concentrations in

wastewater effluent above 10 CFU/100mL, which signifies intermediate risk contamination. These

results are seen in the figure below. The R2 between E. coli present in the wastewater and sensor

output was 0.93. There was a drop in sensor output in the range of 1000 CFU/100mL. The drop

in sensor output can be attributed partly to inner filter effect (IFE), but could also be a result

of light scatter from particles. The absorbance data collected on the UV-VIS spectrophotometer

shows increasing absorbance as the concentrations increase. The calculated corrected fluorescence

due to IFE increases the R2 between E. coli and sensor output to 0.95 as seen in Table 2.1.

p = 0.00011 

r2 = 0.93

Figure 2.4: Sensor response from wastewater effluent dilutions graphed continuously. The bar
between 0 and 10 CFU/100mL show the significant differences between indicated concentrations
calculated by a student’s t-test.

There was not a significant change in pH in the various wastewater dilutions as seen in Table

2.2.
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Table 2.1: Corrected Fluorescence Based on Inner Filter Effects

E.coli Concentration Measured Fluorescence Aλex Aλem Corrected Fluorescence
[CFU/100mL] [V] [V]

0 0.06 0.00 0.00 0.06
10 0.07 0.01 0.00 0.07
67 0.14 0.01 0.00 0.14
287 0.23 0.03 0.01 0.24
483 0.31 0.05 0.02 0.34
600 0.40 0.07 0.03 0.44
800 0.53 0.10 0.04 0.62
950 0.46 0.11 0.04 0.55
1333 0.57 0.13 0.05 0.70

Table 2.2: pH of DI Water and Wastewater Effluent Dilutions

Percentage of Wastewater Effluent Measured pH

0% 6.67
10% 6.29
12.5% 6.50
25% 6.75
50% 6.96
100% 7.02
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2.3.3 E. coli Sensitivity

The results from examining the sensor’s response to lab grown E. coli K-12 are shown in Fig-

ure 2.5 below. This test showed the sensor response at 33 CFU/100mL at its lowest. Concentrations

that are higher than 33 CFU/100mL are significantly different from the sensor response to DI water

but average voltage output varies until the E. coli concentration reaches 1533 CFU/100mL. These

varying readings could be due to inconsistencies in concentrations for each dilution measurement

or IFE.

Figure 2.5: Sensor response to lab grown E. coli K-12. The bar between 0 and 10 CFU/100mL
show the significant differences between indicated concentrations calculated by a student’s t-test.

2.3.4 Impact of Chlorination

Adding bleach, a strong oxidant, to solutions of DI water, 50 ppb of tryptophan, and wastew-

ater effluent significantly lowered the signal as seen in Figure 2.6. The pH of DI water, 50 ppb

tryptophan, and wastewater effluent was 6.67, 6.82 and 7.02 before bleach was added and 8.07,

8.21, and 7.32 30 minutes after bleach was added, respectively. The free chlorine present after 30

min in each solution was 5.9, 5.5, and 5.6 mg/L for the DI, 50 ppb tryptophan, and wastewater
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effluent, respectively.

Figure 2.6: Sensor response adding bleach to a DI, a tryptophan solution, and wastewater effluent.

When bleach was added to the tryptophan solutions all of the tryptophan thoroughly de-

graded to the point that the signal from the sensor was lower than the signal observed using DI.

Similar studies have concluded that 0.025% bleach concentration was able to completely degrade

the tryptophan in E. coli that was lab grown through the destruction of the indole ring, cell protein,

and amino acids (3). Pairing these conclusions with the results seen in our experiment one can

conclude that the signal remains once bleach is added to wastewater effluent is due to extracellular

material and not tryptophan.



Chapter 3

Operational Limitations for pH and Temperature

3.1 Introduction

Testing the sensor in the lab continued by assessing the operational limitations for pH, tur-

bidity, and temperature. By conducting the experiments laid out below, the degree to which each

parameter affects the fluorescence output of the sensor was measured. Using the data collected, the

operational limits for pH and turbidity were set and a correction factor for temperature was set.

3.2 Methods

3.2.1 Operational Limitation for pH

The methods described in the sensitivity chapter were followed to make tryptophan dilutions;

the only exception for this experiment was that tryptophan dilutions were made using DI and tap

water and 50 ppb was the only tryptophan dilution tested. A 0.1 M solution of HNO3 and a

0.1 M solution of NaOH were created with DI water to vary the pH of DI, 50 ppb made with

DI, tap water, and 50 ppb made with tap water from 3 to 11 in 0.5 increments. Both the 0.1 M

solution of HNO3 and a 0.1 M solution of NaOH were tested on the lab fluorometer and no inherent

fluoresence was measured. The inlet tube was placed in a separate bottle of DI used for flushing

out the tubes and cuvette and the outlet tube in a separate bottle for waste, then DI water was

pumped through for 60 s before data is recorded. Increments of 1 mL of HNO3 or NaOH were

added to each dilution and mixed on a stir plate for 4 min until the pH-adjusted solution reached
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equilibrium. After 4 min, a pH meter (Sealed, gel-filled, epoxy body, Ag/AgCl pH Sensor from

Vernier Software Technology) was used to record the pH before pumping the solution for 10 s to

flush out the tubes and cuvette with the new acidic or basic solution. After 10 sec, the inlet tube,

thermocouple, and outlet tube were placed in the bottle containing the solution being tested, and

the sensor recorded 10 measurements of voltage outputs at four current levels to the LEDs: 10, 50,

100, and 200 mA. The sensor data collected was evaluated in RStudio to create a line graph that

was used to show the difference between each tryptophan concentration as the pH changes for each

current.

3.2.2 Operational Limitation for Turbidity

The sediment chosen for this experiment was Fuller’s Earth (D50 = 11.9 µm), a clay. All

sediment used in this experiment was treated with hydrogen peroxide to remove organic matter

then rinsed with DI water and dried in an oven at 65 °C for 24 hrs following the method outlined by

Gray et al (31). Turbidity was evaluated for DI water and a 50 ppb tryptophan standard solution.

The treated sediment was weighed and added incrementally to each tryptophan standard to collect

data for 0, 20, 50, 100, 250, 500, and 1000 NTUs. Before testing, the inlet tube was placed in a

separate bottle of DI used for flushing out the tubes and cuvette and the outlet tube in a separate

bottle for waste, then DI water was pumped through for 60 s before data is recorded. After 60 s,

pre-measured treated sediment was added to the tryptophan dilution and mixed for 5 min. After

5 min, the mixed solution was pumped for 10 s to flush out the tubes and cuvette with the new

turbidity. Then 50 mL of the dilution was collected in a sample tube to measure turbidity on

the turbidimeter (Hach 2100N turbidimeter). The inlet tube, thermocouple, and outlet tube were

placed in the testing dilution and the sensor recorded 10 measurements of voltage outputs at four

current levels to the LEDs: 10, 50, 100, and 200 mA. The sensor data collected was evaluated

in RStudio to create a line graph that was used to show the difference between each tryptophan

concentration as turbidity changes for each of the 4 currents.
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3.2.3 Temperature Variation and Correction

Tryptophan solutions were made following the methods described in the sensitivity chapter.

Each solution (DI water, 1, 3, 10, 30, 70, 100, 200 ppb) was refrigerated overnight (for at least 12

hr) in the walk in refrigerator at 4°C. Solutions were removed from the refrigerator one at a time in

ascending concentration, starting with DI water, and tested. Once removed from the refrigerator,

the solution was pumped through the sensor to flush out the tubes and cuvette from the previous

test. Then solutions were placed on a hotplate stirrer and stirred during the entirety of the test; the

heating element was applied when the solution began to reach room temperature. The temperature

of the water was monitored from 7°C to 35°C using a thermocouple. Measurements were taken at

least three times per degree Celsius by the sensor. The sensor recorded 10 measurements of voltage

outputs at four current levels to the LEDs: 10, 50, 100, and 200 mA. The sensor data collected

was evaluated in RStudio to create a line graph that was used to show the difference between each

tryptophan concentration as turbidity changes for each of the 4 currents.

3.3 Results and Discussion

3.3.1 pH Sensitivity

pH was shown to significantly impact the sensor’s signal outside of the range pH = 6 to 9.

As seen in Figure 3.1, the sensor’s signal varies over 1 volt when the pH ranges from 3 to 6 and

a little less than 1 volt when the pH ranges from 9 to 11. In contrast, when the pH = 6 to 9 the

sensor’s signal varies less than 0.5 volts, which is not significant or outside of natural ranges and

thus would not impact the machine learning output.

Similar effects of pH on the sensor’s signal were observed in varying tryptophan dilutions in

Figure 3.2. For all dilutions but especially 100 ppb the sensor’s signal increases below pH of 6 and

above a pH or 9 until the signal saturates at a pH of 9.5.

The increase of the sensor’s signal with varying pH could be due to the many different

potential sources of TLF in water samples and the direct changes in the behavior of the fluorophore
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Figure 3.1: Sensor response to varying pH at increasing tryptophan concentrations

Figure 3.2: Sensor response to varying pH at increasing tryptophan concentrations
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associated with the folding and unfolding of proteins in acidic solutions (45). The increase in signal

below a pH of 6 seen in Figure 3.2 could be due to changes in protonation states based on the

suggestions made by Chen et al. (44). Similarly the increase in signal above a pH of 9 could be

due to ionization.

3.3.2 Turbidity Sensitivity

Turbidity was shown to significantly impact the sensor’s signal in the range or 0 to 100 NTUs

as seen in Figure 3.3. In fact, the sensor’s signal increases for DI water and 50 ppb tryptophan.

Figure 3.3: Sensor response to varying Turbidity with DI water and 50 ppb Tryptophan

The results are not in line with previous findings presented in the background but these

differences can be explained. Based on the literature review, it was predicted that as turbidity

increased the sensor’s signal would decrease. However, it is possible that the clay that was used

to vary the turbidity to could be contributing to the increase in signal due scattering that could

occur during pulsing. Hydrogen peroxide was used to remove organic matter from the clay before

testing. While this is a procedure used in other turbidity tests, hydrogen peroxide has been known

to cause clumping in the clay which makes it harder for the clay to be evenly distributed through

a solution and raises the signal.To further characterize this sensor future turbidity test with other
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types of sediment and water sources should be conducted.

3.3.3 Temperature Sensitivity

The sensor output was negatively correlated to water temperature. It was also observed that

the impact of water temperature on the signal was higher at higher tryptophan concentrations.

Similarly to Watras et al. 2011, fluorescence declined exponentially with water temperature at

all concentrations tested, thus the methods for temperature correction of a fluorescence sensor

described in that study were followed (85). The data was fitted to the relationship:

TLFm = TLFre
ρ(Tm−Tr) (3.1)

Where T is temperature (°C), the subscripts r and m represent the reference and measured

values, and ρ is the temperature coefficient (C−1). Equation 3.1 was fit to each concentration and

the mean ρ was found to be -0.03. Using -0.03 for the value of ρ in Equation 3.1, the effect of

temperature can almost completely be removed from the raw data. For the lower concentrations,

correcting the data causes a small increase of the sensor output with temperature as seen in Figure

3.4.

Looking at Figure 3.4, it is clear that increasing water temperature attenuates the sensor’s

signal. These impacts are due to an increase in temperature, resulting in an increase in colli-

sional quenching, which increases the likelihood of an electron to return to the ground state energy

through a radiationless pathway. In other words, collisional quenching is when the fluorophore

deactivates through contact with another molecule, leading to a decrease in fluorescence activity

without a chemical reaction occurring (85). A correction factor was established through an expo-

nential fit to the experimental data; this correction factor was incorporated to correct data with

water temperature values to 20°C.
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Figure 3.4: The top figure is the sensor response to increasing temperature at increasing tryptophan
concentrations. The bottom figure is data corrected to temperature at 20°C.



Chapter 4

Evaluation of the Effects Biofouling and Mineral Scaling have on the Sensor

4.1 Introduction

To further improve the accuracy of the sensor, the effects of biofouling and mineral scaling

on the sensor’s signal was evaluated. By conducting the experiments laid out below, biofouling

and mineral scaling was quantified and the degree to which each affects the fluorescence output of

the sensor was measured. Using the data collected, the results were incorporated into a machine

learning model that corrects for these differences in signal.

4.2 Methods

4.2.1 Biofilm Growth

To monitor biofilm growth, the sensors were set up in the lab to automatically collect data

once an hour on the hour. To simulate treated drinking water sources that have contamination

events, these sensors ran with tap water from the lab that was occasionally spiked with wastewater

effluent. Ground truth samples were collected at 10:00 am, 12:00 pm, and 3:00 pm to be plated,

incubated for 24 hr, and then E. coli and total coliforms were counted. Once a month, a flow-

through cuvette from one of the sensors was removed and cleaned.

4.2.2 Estimation of Biofouling and Mineral Scaling Through Spectral Analysis

Before cleaning, the biofilm was enumerated through spectral analysis to create excitation-

emission matrices (EEMs) and by plate counts. For spectral analysis, a cuvette holder and plugs
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were designed, and 3D printed so that the flow-through cuvette fit in each machine and retain

DI water to mimic the conditions that occur when the sensor is pulling a sample. To design the

holder and caps, measurements of the flow-through cuvette and the cuvette holder from the lab

were taken and adaptations were made. With these measurements, a new cuvette holder was drawn

using Autodesk Fusion 360 shown in Figure 4.1 below.

Figure 4.1: Design of Cuvette Holder with Adaptations for a Flow-Through Cuvette

Since the cuvettes will be examined by the spectroscopy instruments filled with DI water,

caps are needed to plug one end of the flow-through cuvette. Using the measurements of the

flow-through cuvettes in the sensors, caps were drawn in Autodesk Fusion 360 as seen in Figure

4.2.

Once the design of the cuvette holder and caps were finalized, they were saved as Mesh in

order to open in PrusaSlicer. In PrusaSlicer, the final adjustments were made for 3D printing and

saved to an SDCX card. The SDCX card was inserted into the 3D printer and the cuvette holder

and caps were created.

Fluorescence data were collected using the lab fluorescence spectrophotometer (Fluoromax-



33

Figure 4.2: Design of a Flow-Through Cuvette Cap

4). Emission wavelengths were measured from 300 to 400 nm in 2 nm increments, excitation

wavelengths from 300 to 240 nm in 10 nm increments, and the excitation and emission bandpass

was set to 5 nm and a 0.25 sec integration time. Absorbance data were collected using an ultraviolet-

visible spectrophotometer (Cary 4000) which has a maximum absorbance of 1 and a scan rate of 600

nm/min. Absorbance spectra were measured from a wavelength of 200 to 800 nm at 1 nm intervals.

Once fluorescence and absorbance data was collected, the excitation-emission matrix (EEM) were

corrected using the staRdom (R package version 1.1.14) (33). The R package staRdom corrects

inner filtering, removes Raman scattering by subtracting a blank EEM (or the data from the clean

cuvette) from the sample EEM (or data from the fouled or scaled cuvette) the raw data using a

blank, and removes Rayleigh scattering.

This code corrects for primary and secondary inner filter effects by using Equation 4.1 Where

Fcorr is the sensor’s corrected fluorescence signal, Fobs is the sensor’s observed fluorescence signal,

Aλex is the absorbance at the excitation wavelength, and Aλem is the fluorescence observed at the

emission wavelength. Primary inner filtering occurs when the excitation’s beam light intensity is

lost entering a sample in the cuvette (80). Secondary inner filtering happens when light that is

emitted as fluorescence is re-absorbed by a sample in the cuvette (80).

Fcorr = Fobs ∗ 10(Aλex+Aλem)/2 (4.1)
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Since there is a correction factor for each specific excitation and emission wavelength, pairing a

matrix of correction factors is multiplied in an element-wise manner with the sample EEM matrix

in the R code.

1st and 2nd order Rayleigh scattering is another correction made in this R code. 1st order

Rayleigh scattering seen in EEMs as a diagonal line of intensities in which the emission and exci-

tation wavelength are equal and 2nd order Rayleigh scattering seen as a diagonal line of intensities

where the emission wavelength is twice the wavelength of excitation (91). This R code masks 1st

and 2nd order Rayleigh scattering by replacing the values for intensities in these regions with zero

since that data does not represent the true fluorescence of a sample.

Furthermore, the fluorescence data from the cuvettes that have not been cleaned for at least

one month, “dirty” cuvette, EEMs were adjusted by subtracting the blank EEMs after inner filter

corrections were made (18). The blank EEMs were made by conducting this spectral analysis on

cuvettes that were cleaned before the sensors were set up for the lab testing. Correcting with the

blank removes Raman scattering and ensures that any fluorescence signal is not due to issues with

the instrument.

4.2.3 Platting Biofilm Through Membrane Filtration

After the spectral analysis was finished, the biofilm that accumulated in the cuvette was

plated. The cuvette was filled with a solution of PBS and DI water, plugges at either end, shaken

for 30 secs to detach biofilm, and then the solution with biofilm was poured into a clean sample tube.

This process was performed 15 times per cuvette. 10 mL of this solution was used for membrane

filtration. This technique was used to enumerate E. coli and total coliforms (TC) present in the

biofilm by plating a filter with m-ColiBlue24 broth (EPA Approved Hach Co.: 10029 method).

Samples were plated in triplicates and incubated at 35°C for 18-24 hr.
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Table 4.1: Composition of the Scaling Model Solution

4.2.4 Mineral Scaling Formation

Mineral scaling experiments were conducted using a scaling model solution at a concentration

factor of eight compared to the composition of the Colorado River consisting of calcium chloride

dihydrate, magnesium sulfate, and sodium sulfate (66) the details of which are found in Table 4.1.

The gypsum saturation index (SI) was calculated in terms of Equation 4.2 with visual MINTEQ

to find the degree of supersaturation of the scaling model solution (32).

SI =
(Ca2+)(SO2−

4 )

Ksp,Ca2SO4

(4.2)

Where (Ca2+) and (SO4
2-) are the activities of each of the ions and Ksp is the solubility

constant for gypsum. The saturation index was found to be 1.01 making it supersaturated. T

Before each experiment, DI water was recycled through the cuvette in the sensor for 2 hr.

A portion of the scaling solution (MgSO4 and Na2SO4 solutions) was added to the DI water and

recycled for another 2 hr. Then the rest of the scaling model solution (CaCl2 solution) was added

and recycled through the cuvette for 24 hr to form scaling. To test the effects that mineral scaling

has on the sensor’s signal, 50 ppb tryptophan dilution and DI water alternated being pumped

through the sensor in 30-min intervals. The impact on the sensor’s signal will be examined by

comparing the results from the same experiment conducted with a clean cuvette.
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4.3 Results and Discussion

4.3.1 Biofouling Sensitivity

As wastewater effluent was introduced to the sensor for extended periods of time, an increase

in the sensor’s signal was observed even when only sampling DI water as seen in Figure 4.3 below.

Figure 4.3: Data from two sensors sampling tap water spiked with wastewater effluent five times
over the course of one month, combined with the E. coli data from samples taken before and after
each spike.

There was an 82% increase calculated for the average amount of signal growth between

wastewater spikes. This signal increase is predicted to be due to biofilm growth on the inside of

the cuvette. This hypothesis is further investigated through spectral analysis and plate counts as

described in the methods section. WWE contamination spikes can be observed in the sensor signal

through signal increased caused by biofouling. For example, contamination events that have 17

CFU/100mL show a significant increase in signal, even with a fouled cuvette. There is an instance

of sensor signal spike with no E. coli present in the wastewater effluent which may be characterized

as a false positive. This could also indicate that there was a contamination event at a previous

time, but all live fecal indicating bacteria had died off. The EEMs for the “dirty” cuvette using
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the clean cuvette as a blank show an increase in signal at the excitation wavelength of 275 nm and

emission wavelength of 340 nm which is the conditions the sensor operates at Figure 4.4.

Figure 4.4: EEM of a cuvette that had been in a sensor after two weeks of sampling with wastewater
effluent spikes in tap water with an absorbance path length of 1 cm.

Monitoring absorbance, with the UV-VIS, in a cuvette with biofilms present will impact the

outcome of the Beer-Lambert law, as it relies on path length and the concentration of a solution

inside the cuvette (47). Also, since the cuvettes contained only DI water, the increase in fluorescence

at the excitation wavelength of 275 nm and emission wavelength of 340 nm is assumed to be due

to a biofilm that has formed. Examining the results from the plate counts from this cuvette, which

show that there is 10 CFU/100 mL of E. coli, further leads to the conclusion that biofilm growth

is contributing to the increasing signal.

In short, when spiking the sensor with wastewater effluent, an increase in the sensor’s signal

occurred over time, even when there was not a contamination event. This increase in signal is

predicted to be due to the formation of biofilm on the faces of the cuvette, further demonstrated

by an increase in fluorescence of a cuvette filled with DI water observed by a benchtop flourimeter
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and UV-VIS. This, paired with the results from platting, suggests that the fluorescence present is

because of organic matter present on the lenses, not in the solution pumped through cuvette.

4.3.2 Mineral Scaling Sensitivity

After the mineral scaling solution was recycled through the sensor, a 50 ppb tryptophan

dilution was pumped through the sensor and compared to data collected when the same dilution

was run through a clean cuvette. When this data was compared it was concluded that a reduced

sensitivity of the sensor by approximately 5% was observed. This decrease in sensitivity is predicted

to be due to mineral scaling forming on the inside of the cuvette which increases attenuation. The

5% reduction in sensitivity was calculated by taking the difference in mean of the sensor’s signal

with a clean cuvette and a cuvette with mineral scaling between 50 ppb Tryptophan dilution and

DI. This hypothesis is further investigated through spectral analysis through the EEM seen in

Figure 4.5.

There is zero fluorescence at the excitation wavelength of 275 nm and emission wavelength

of 340 nm in the EEM of the cuvette pictured in Figure 4.5. This, paired with the raw absorbance

data Figure 4.6, led to the conclusion that when mineral scaling occurs there will be a decrease

in sensitivity. Mineral scaling on the inside of the cuvette showed a 42.4% increase in absorbance

at a wavelength of 275 nm and 38.1% increase at 360 nm. Percent increase was calculated using

absorbance data collected on the UV-VIS before and after scaling occurred.

It is important to note that the EEMs for biofilm and mineral scaling should be seen as qual-

itative data. The intention of these EEMs was to examine the impact of biofouling and mineral

scaling inside the cuvettes had on fluorescence measured by a standard instrument, then compare

those results to the results observed by our sensor. These EEMs should not be used as a measure-

ment to quantify what is present in biofilm or mineral scaling since neither of those are dissolved

organic materials.
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Figure 4.5: EEMs of a cuvette that had been in a sensor after one week of sampling with mineral
scaling solution and DI water with an absorbance path length of 1 cm
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Figure 4.6: Raw absorbance data for a cuvette that had been in a sensor after one week of sampling
with mineral scaling solution and DI water



Chapter 5

Field Validation

5.1 Introduction

In the summer of 2021, four sensors were placed on the Boulder Creek in Boulder, Colorado

for 88 days to validate the sensor’s functionality in the field.

5.2 Methods

5.2.0.1 Study Area

Boulder Creek is east of the Continental Divide in the Front Range of the Colorado Rocky

Mountains. It flows out of the foothills of these Mountains and through Boulder, Colorado. Its

flow is primarily derived from snow melt and minor springs west of the city of Boulder. Boulder

Creek is an important water source for drinking-water supply, recreation, agriculture, and aquatic

life. Boulder, Colorado has a semi-arid climate with an average rainfall of 21 inches annually

(54). Figure 5.1 depicts where four sensors were placed on Boulder Creek to monitor the fecal

contamination at sites upstream, within, and downstream of the city.

5.2.0.2 Sensor Sample Collection

Once in the field, each sensor was set up to sample the water in Boulder Creek every 10 min.

The typical setup for each field sensor is described and pictures in Figure 1.2 in chapter 1. Every

10 min the sensors started the sampling sequence as laid out below:
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Figure 5.1: Sensor and sampling locations along Boulder Creek in Boulder, Colorado, United States
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Creek water was pumped through the sensor for 20 s to flush the cuvette and tubes. A 2

s wait time was set after pumping for 20 s so air bubbles were able to disperse. When taking a

measurement, the LEDs were pulsed on for approximately 1000 ms, and 80 readings taken from the

SiPM were averaged. With each measurement one data point was recorded at each current level.

Creek water was then pumped through for another 5 s, as another measurement was taken. This

sequence was repeated for three times every 10 min.

5.2.0.3 Ground Truth Sample Enumeration

To build and validate a machine learning model with the raw sensor data, a training and

validation data set of laboratory enumerated microbial contamination was collected. Creek water

samples were collected at each of the four sensor sites 13 times per week on average for 13 weeks.

Each of these samples were collected each sensor’s site within 1 min of the sensor collecting a fluo-

rescence reading to appropriately match ground truth samples to sensor measurements. mWater, a

phone based survey tool (www.mWater.co) was used to record and organize sampling data. Sam-

ples were collected in labeled 50 mL sample tubes, put into a cooler containing an ice pack, and

transported to the lab for processing within two hours of collection.

Membrane filtration was used to enumerate E. coli and total coliforms (TC) present in the

biofilm by plating a filter with m-ColiBlue24 broth (EPA Approved Hach Co.: 10029 method).

m-ColiBlue24 broth indicates E. coli colonies by blue coloration resulting from specific activity of

β -glucuronidase and TC by red coloration resulting from specific activity of β -galactosidase (76).

Samples were plated in triplicates and incubated at 35°C for 18-24 hr. 10 mL of sampled creek

water was filtered through a 0.45 micrometer filter then incubated using methods described above.

Plates were enumerated by counting the E. coli coliforms and TC was present after incubation

and that data was recorded in mWater so it could be properly matched with the sample collection

time. Any major event or change to each sensor was also recorded in mWater, such as the date

and time of sensor installation, removal, replacement, and cleaning.
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5.3 Results and Discussion

5.3.1 Field Validation

Ground truth measurements of E. coli in Boulder Creek ranged from 0 CFUs/100 mL to 9580

CFUs/100 mL with an average of 120 CFUs/100 mL over 13 weeks of 298 independent observations

(between 69 and 82 from each sampling site). This data was sorted between WHO risk categories

of very low, low, intermediate, high, and very high risk, which are detailed in Table 5.1. There

were few observations made at the very low and very high risk categories. The highest E. coli

measurement, 9580 CFUs/100 mL, which at the sensor location cloest to main campus.

Table 5.1: Prevalence and distribution of fecal contamination risk categories observed during field
experimentation.

WHO Risk Category E. coli CFUs/100 mL # in Sample % in Sample

Very low 0 - 1 19 6.4%
Low 1 - 10 18 6.0%

Intermediate 11 - 100 103 35%
High 101 - 1000 145 49%

Very high 1000+ 13 4.4%

Total 298 100%

The time the plated creek water samples that contained E. coli were matched with the sensor

measurement taken at that same time as logged in mWater. This subset formed the training and

testing data-sets for the machine learning model. Due to the fact that E. coli presence in the

creek water was the desired response variable for this study, several inputs were hypothesized to

explain whether or not contamination was present at the time of testing. Some of these inputs were

continuous TLF measurements from the sensors that were present in the creek.

As mentioned before, the sensor recorded voltage outputs at four current levels to the LEDs:

10, 50, 100, and 200 mA at each reading. However, in the context of field validation, not one of the

current input levels performed better than any of the the others. Due to this trend, the voltage

output data was normalized by each current level and was averaged so it could be summarized at

one characteristic voltage per E. coli enumeration. Before being normalized, the voltage data from
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the sensor was standardized to 20°C using water temperature measurements.

A binary model was developed to predict if each sample was ≥ 100 CFUs E. coli / 100

mL vs. <100 CFUs / 100 mL, which is at least at the WHO high risk level. Another model

for multinomial classification investigated performance at predicting the correct of five WHO risk

categories described in Table 5.1. Thus, continuous E. coli measurements were characterized by

the number of CFUs per 100 mL of water at very low risk, low risk, intermediate risk, high risk,

and very high risk (86).

The training set of data was paired with features, which are other data that can be predictive

of a certain outcome worked as the foundation of this machine learning model. In the case of this

study the outcome is the ability for this sensor to predict WHO fecal contamination risk categories.

These features, in order of relative importance included: fluorescence emission (sensor voltage),

hours since cuvette was cleaned, relative voltage (percentile), temperature of the sensor, relative

voltage (difference from a 7 day average), day of the season, bias volatage, relative voltage (z-score),

rainfall, and temperature of water.

The feature fluorescence emission is the retrieved voltage from the in-situ sensor, once it

was standardized and normalized. Relative voltage was explained by the z-score, difference from

rolling 7-day average, and percentile. As seen in Chapter 4, biofouling and mineral scaling almost

certainly impact the sensor signal. This is further seen in the field validation data when the number

of hours since cleaning of the cuvette for each sensor was included as one of the features in the

machine learning model as a proxy for fouling (17). An estimate of daily municipal rainfall included

as a feature was collected from NOAA Physical Sciences Laboratory. It is well known that fecal

contamination varies seasonally with rainfall (39). Water temperature corrected to 20°C using

Equation (3.1) was used as a feature. The temperature of the SiPM will impact its output; for this

reason, temperature inside the sensor enclosure was included as a feature (43).
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5.3.2 Machine Learning Model

The machine learning model was developed by Katie Fankhauser and Emily Bedell using

TLF from the sensors along Boulder Creek as the principal feature were able to identify high

risk of fecal contamination in natural waters with outstanding accuracy. The ROC curve (Figure

5.2) demonstrates that both high sensitivity, true positive rate, and specificity, true negative rate,

is achievable. At the chosen predicted probability threshold, the sensitivity and specificity were

respectively 80% and 86%. It also shows, from the area under the curve, the model had a probability

of 86% of accurately discriminating high contamination risk.

Figure 5.2: Receiver Operating Characteristic (ROC) curve. The point on the curve indicate
the probability threshold used to potentially categorize high fecal contamination risk and the test
specificity and sensitivity. The area under the curve, a measure of test discrimination, is stated on
the graph.

This model had a 64% accuracy in distinguishing between the WHO establish risk categiories

that are detailed in Table 5.1.



Chapter 6

Applications and Future Work

6.1 Drinking Water Quality

As of 2019 it is estimated that at least 2 billion people rely on a drinking water source that

is contaminated with fecal matter (86). Exposure to these pathogens can cause diarrhea, which

is the eighth leading cause of death for all ages and the third leading cause of death for children

under 5 years old (87; 88).

The research presented here establishes that a continuous, in-situ, near-time fluorescence

sensor coupled with a machine learning model can detect fecal contamination in water sources

with high accuracy. This TLF sensor is able to reliably predict high risk fecal contamination in

surface water and treated tap water that has been spiked with wastewater effluent, simulating a

contamination event. The device and machine learning model presented display a contribution

to existing research and knowledge through a novel, in-situ, remotely reporting sensor that when

coupled with a machine learning model is highly reliable and accurate in performance.

6.2 Applications of this Sensor in Drinking Water Services

Households globally are served by varying water technologies and service levels. High-tech

systems refer to infrastructure such as centralized pipes where municipalities or private companies

are responsible for the funding and technical support, and certified operators conduct operation

and maintenance, leaving less responsibility to homeowners. Mid-tech refers to solutions that

provide advances in access to water and sanitation services, while making moderate use of resources,
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materials, and technology when compared to high-tech systems. Low-tech systems offer users a

minimum level of service that may not provide all of the health benefits seen when using high or

mid-tech solutions (50).

Over the years, many environmental health and engineering interventions have been intro-

duced to improve health outcomes in communities along this spectrum, but these interventions often

fall short of expectations, lacking resilience as measured by sustained delivery, cost-effectiveness,

positive health outcomes, or other intended impacts (30), (71). There are a plethora of examples

of technology that have failed due to preventable issues, such as lack of operation and mainte-

nance budgets, limited supplies and expertise, lack of supply chains for replacement parts, and

conflicting management priorities (13). Electronic sensors have been developed and applied within

environmental health programs to support health studies and provisioning of basic services (4),

(79). Sensors are most certainly not a comprehensive or sufficient measurement tool on their own,

but they have provided insights that can help monitor and refine interventions, especially when

paired with citizen science (8), (69).

As previously mentioned, it is important for the health of every community for water service

providers or even homeowners to monitor fecal contamination in drinking water, which is tradi-

tionally time consuming and expensive (11). The sensor, coupled with a machine learning model,

proposed and studied in this research showed promising results and could be used as an alternative

to traditional microbiological testing in high-, mid-, and low-tech contexts.

This sensor has the potential to be used anywhere in the world; however, the examples I will

primarily focus on moving forward in my thesis will be communities in the United States. This

focus is due to the wide range of access to clean and reliable drinking water across the nation and

the fact that I have the most experience working and living in the U.S. and would simply feel

uncomfortable speaking for countries where I am unfamiliar with the language, culture, and people

and offering uninformed solutions to challenges of which I do not fully understand the context.
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6.2.1 High-Tech

Those who are fortunate enough to have in-home access to clean and reliable drinking water

in the United States more than likely rely on piped services provided by the local drinking water

treatment plant. Most drinking water is treated by a similar process, but since the testing of this

sensor occurred in Boulder, Colorado, the focus will be on the exact process the City of Boulder uses

to treat drinking water. As raw water comes in, chlorine is added as pre-disinfection at different

locations in the treatment process to kill microorganisms and prevent new ones from growing. Next,

coagulants are added to water to form large collections of suspended particles referred to as ”flocs”.

As heavier flocs settle at the bottom of the basins, Dissolved Air Flotation units are deployed to

produce micro-bubbles that attach to the flocs and float them to the surface so they can form a

removable ”sludge blanket.” After the sludge blanket is removed, water flows to filters that remove

smaller floc particles. After filtration more chlorine is added in post-disinfection to ensure the water

will remain clean in the piping and storage systems. This is also the time that additives such as

fluoride and corrosion controlling chemicals are added (16).

The City of Boulder routinely monitors for contaminants in drinking water following state

and national regulations. However, even with this extensive treatment process and regular water

quality monitoring, there was still 1 sample, of 124 samples, that tested positive for Total Coliform

Bacteria according to the 2021 Drinking Water Quality Report (15). While this is an extremely low

occurrence, it does highlight the importance of monitoring drinking water quality even in high-tech

systems. Another fact to note is that there were 124 samples collected for this annual report. If

this system incorporated the sensor, then there could be a nearly continuous monitoring of the

water quality which would alert operators of a contamination event as soon as it happens.

6.2.2 Mid- and Low-Tech

There is still a significant portion of the population living in the United States that does not

have basic access to safe drinking water and sanitation. In fact, 17% of people living in rural areas
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report having issues with access to safe drinking water. This is even more staggering for Native

American households, which are 19 times more likely to lack complete plumbing when compared to

white households. This statistic stresses that race is the strongest predictor of water and sanitation

access in the United States, a so-called ”developed” or ”first world” country (52).

In response to these shortcomings, mid- and low-tech systems have been introduced in house-

holds and communities that lack piped water.

6.2.2.1 Alaska Native Tribal Health Consortium - Practicum

In rural Alaska there are over 3,000 households rely on low-tech solutions with no access to

piped water or sewer services whatsoever (1). This inadequate access to WASH services is a public

health crisis and as previously mentioned has led to the introduction of mid- and low-tech water

treatment and sanitation systems at the house hold level.

One example of this is the Portable Alternative Sanitation System (PASS) pictured in Figure

6.1 (2). This system was was engineered by The Alaska Native Tribal Health Consortium (ANTHC),

where completed my practicum in the summer of 2021.

Figure 6.1: Diagram of the Portable Alternative Sanitation System
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This system includes a small water treatment system that incorporates two cryptosporidium-

rated filters and disinfection using a chlorine (bleach) injector. Water is pumped through the

treatment system then into the water storage tank elevated on top of the water treatment system.

When needed, this water flows from the water storage tank to the sink by gravity. The PASS

toilet can operate in 3 different modes: urine-diverting drying toilet (UDDT), container mode, or

ventilated honey bucket. If the system is operated as a UDDT, urine is diverted outside of the

home to an underground seepage pit, and feces is disposed of in a honey bucket located inside the

separating dry toilet. If the system is operated in container mode, urine is diverted into a urine

storage container and feces are disposed of in a ventilated honey bucket. When the system is in

ventilated honey bucket mode, both the urine and feces will be disposed of in a honey bucket located

in the separating dry toilet, and, as in all the other modes, the vent is open and a fan is turned on,

eliminating the need for chemicals to mask odor. The seepage pit is a vertically oriented perforated

pipe located 4 feet below the ground surface designed to infiltrate the surrounding soil with only

small amounts of greywater or urine. Recently, mini-PASS was developed. It is essentially the same

as full PASS but only offers ventilated honey bucket mode, so it does not require a seepage pit.

During my practicum, I collaborated with the research and engineering departments at AN-

THC developing materials for homeowners, ANTHC employees, and donors and made improve-

ments on the PASS and mini-PASS. This work led me to a position with ANTHC as a Research

Associate. Where I currently work collaboratively with other ANTHC research and clinical staff to

ensure the successful completion of research projects examining the public health effects of PASS

and mini-PASS.

While Figure 6.1 depicts a rain catchment system, it has been my experience working with

ANTHC that many communities that use PASS rely on many different water sources to fill their

water storage tank. This water may be hauled from a community water treatment plant, rain

catchment systems, local rivers, streams, or from melted ice. Hauling water limits the amount of

water community members use each day to between 3 and 5.4 gallons per capita per day (gpcpd),

due to the time, effort, limited storage, and cost of hauling (51). When water is collected from a
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watering point the water might be considered safe but can be contaminated when hauling or during

storage. By adding the sensor discussed in this study, homeowners would be able to monitor the

quality of water in their PASS system, which could lower the rates of illnesses associated with fecal

contamination in drinking water.

6.2.2.2 Well Water Monitoring in the United States

The rise in exposure to various contaminates in drinking water have led to the increased

popularity of point-of-use (POU) drinking water treatment in the US. Notably over 43 million

people living in the US use private wells as their main drinking water source (89). These domestic

wells are not typically regulated by federal or state laws and homeowners are the ones responsible

for testing their wells for contaminants. Due to this many private wells are not regularly tested

which can lead to many different health risks. With addition of this sensor once adapted could be

installed in wells and the main water pipes in homes to alert homeowners of E. coli contamination

events.

Due to the formations of biofilms and mineral scaling a cleaning procedure will need to be

added to the current and any future designs. The machine learning aspects of this model should

be able to account for some of the biofouling and scaling but overtime a cleaning function will be

necessary. One way the cuvette could be cleaned is by the user injecting a cleaning solution through

the sensor. This would work similarly to the chlorine injection used in PASS.

6.3 Looking Forward

Before these applications can be made, there are further studies that should be conducted.

For example, there is substantial background fluorescence noise in surface water due to natural

organic matter present. The study presented in Boulder, Creek is an example of one of these

more difficult environments, especially when compared to groundwater or treated tap water (84).

Future work would be testing the sensor and machine learning model’s ability to predict various

contamination in other types of drinking water environments.
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