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Equitable access to reliable, affordable, and safe drinking water is essential to human health and

livelihood. Globally, two billion people use a drinking water source that is contaminated with feces.

Low-cost, field-deployable, near-time methods for assessing water quality are not available when and

where waterborne infection risks are greatest. In this dissertation, I describe the development and

testing of a novel device for the measurement of online, in-situ, and remotely reporting tryptophan-

like fluorescence (TLF), making use of recent advances in deep-ultraviolet light emitting diodes

(UV-LEDs) and sensitive silicon photomultipliers. TLF is an emerging indicator of microbial water

quality that is associated with members of the coliform group of bacteria and therefore potential fecal

contamination. After optimizing the sensor’s sensitivity to 0.05 ppb tryptophan, I demonstrated the

close correlation between TLF and E. coli in model waters and proof of principle with sensitivity of

33 CFU/100mL for lab grown E. coli and 10 CFU/100mL for E. coli in wastewater.

I characterized the sensor’s behavior to multiple fluorescence quenching parameters through

benchtop analysis. Fluorescence response declined with water temperature and a correction factor

was calculated. Inner filter effects were shown to have negligible impact in an operational context.

Biofouling was demonstrated to increase the fluorescence signal by approximately 82%, while mineral

scaling reduced the sensitivity of the sensor by approximately 5%. A training and validation data

set for a machine learning model was built by installing four sensors on Boulder Creek, Colorado

for 88 days and enumerating 298 grab samples for E. coli with membrane filtration. The machine

learning model incorporated a proxy feature for fouling (time since last cleaning) which improved

model performance. The model was able to predict high risk fecal contamination with 83% accuracy
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(95% CI: 78% - 87%), sensitivity of 80%, and specificity of 86%. A model distinguishing between

all World Health Organization established risk categories performed with an overall accuracy of

64%. The sensor design combined with the highly skilled model has the ability to provide water

service providers as well as individual consumers more reliable and informative data about fecal

contamination risk in their drinking water. Findings to date suggest that this device represents

a scalable solution for remote monitoring of drinking water supplies to identify high-risk fecal

contamination in drinking water in near-time. Such information can be immediately actionable to

reduce risks and would reduce cost of microbial testing greatly, improving health and wellness of

consumers and enabling water service providers more access to funds that can be used to increase

access to clean water.
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Chapter 1

Introduction

Equitable access to clean drinking water is a human right essential for human health and

livelihood. Globally, the extent and impact of lack of access to clean drinking water, free of pathogens

and chemicals, is unclear. As many as two billion people worldwide use a drinking water source

that is contaminated with feces (Bain et al., 2014a; WHO, 2019; UNICEF/WHO, 2021). Drinking

fecally contaminated water causes adverse health effects including diarrhea and stunting, particularly

among children under 5 in low- and middle-income countries (Goddard et al., 2020; Clasen et al.,

2007; Pickering et al., 2019). Diarrheal diseases are the fifth leading cause of morbidity for people of

all ages and the third leading cause for children ages 0-9 (Abbafati, 2020). Approximately 60% of

all diarrheal deaths are related to water quality globally (Prüss-Ustün et al., 2019).

Although there is a much higher incidence of diarrhea associated with an unsafe drinking

water source in low- and middle-income countries, outbreaks are common in high-income countries

as well (DeFlorio-Barker et al., 2021). At least 40 million people in the United States rely on

domestic wells for their drinking water supply, which are not regulated by the U.S. Environmental

Protection Agency (EPA) (Johnson et al., 2019). Between 1971 and 2008, 30% of all waterborne

outbreaks in the U.S. were associated with the consumption of untreated groundwater (Craun et al.,

2010). The EPA estimates that approximately 16.4 million cases of acute gastrointestinal illness are

due to unsafe drinking water in the United States annually (Messner, 2006).

Presently, fecal contamination in drinking water poses large threats to public health, globally.

Moving forward, these threats may become more severe as extreme whether events increase in
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intensity and frequency with climate change (Coumou and Rahmstorf, 2012). Both flooding and

drought have the potential to cause disease outbreaks related to drinking water quality (Nichols

et al., 2018). Power outages resulting from extreme weather events leading to failure in existing

treatment or lack of treatment is a leading cause of waterborne outbreaks in Canada and the United

States (Pons et al., 2015).

1.1 Microbial Water Quality Monitoring

Microbial contamination is an enormous challenge for water service providers for which rapid

detection is critical to prevent microbial outbreaks. A majority of findings and studies on the extent

of fecal contamination in drinking water and it’s impact on human health share a common conclusion:

there is an enormous lack of data. In both academic research and professional practice, estimates of

contamination are mostly based on infrequent point measurements with small sample sizes (Bain

et al., 2014a). Current methods to detect microbial contamination fall into two categories. The

first is counting the number of unspecific bacteria in the water, referred to as heterotrophic plate

counts (HPC). The second principle is to use indicator microorganisms. Fecal indicator organisms

are microorganisms that exist together with pathogens, originate in the mammalian intestinal

tract, are specific to this environment, and are proportional to the amount of fecal contamination

(Skovhus and Højris, 2018). The indicator organisms for drinking water quality preferred by the

WHO are thermotolerant coliforms (TTCs). One thermotolerant species, Escherichia coli (E. coli),

has been identified as the best indicator for fecal matter because of its nearly exclusive residence in

the mammalian intestinal system and consistent presence in fecally contaminated sewage, natural

waters, and soils (WHO, 2017). In freshwater, at least 80% of the total TTCs enumerated are E.

coli and the two are sometimes used interchangeably in water quality monitoring (Hachich et al.,

2012). However, indicator organisms are not necessarily pathogenic and, instead, are usually only a

gauge of the likelihood of fecal contamination, and thereby, the presence of other enteric pathogens.

The products currently available for E. coli enumeration fall under three categories: Pres-

ence–Absence, Most Probable Number (MPN), and Colony Counting (Bain et al., 2012). All of these
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tests require retrieving a sample, typically from a point of water collection or household consumption,

along with follow-up laboratory analyses. Microbial enumeration tests, on average, cost approxi-

mately $21 to conduct including consumables, equipment, lab, and logistics (Delaire et al., 2017).

All of these tests also require 18–48 hours of incubation before the results can be analyzed. This

limitation is potentially dangerous: by the time contamination is detected, consumers may already

be exposed (Besner et al., 2011). Other important barriers of traditional testing methods include

high initial costs, extensive training requirements, inability to provide information on the source

of contamination, and a high probability of missed contamination events (Sorensen et al., 2018a).

These constraints often prevent service providers from maintaining accurate and precise measures of

microbial contamination, further harming their ability to validate their treatment processes, assess

the quality of source waters, perform operational and routine monitoring, and provide verification of

the quality of their end product (WHO/OECD, 2002). Since fecal contamination of water sources

is highly variable temporally, seasonally, and associated with extreme weather events, studies and

water service providers often underestimate contamination and exposure rates (Kostyla et al., 2015).

These limitations not only cause unknown exposure to fecal contamination, but also erroneous

predictions of contaminated water’s effect on diarreal incidence globally (Bain et al., 2014b).

The desire to detect fecal contamination in drinking water should have one primary goal: to

reduce risk of outbreaks that are harmful to human health. The World Health Organization (WHO)

has grouped E. coli contamination concentrations into five risk categories: low (1-9 CFU/100 mL),

intermediate (10–99 CFU/100 mL), high (100–999 CFU/100 mL), and very high (>1000 CFU/100

mL) (WHO, 2017). These risk categories are not a measurement of health risk, but instead a risk

that the water actually contains fecal contamination. E. coli is not a perfect indicator of fecal

contamination and its use to predict pathogenic contamination has been debated for decades. Not

all E. coli strains are pathogenic or harmful to human health. E. coli has low specificity (ability to

detect only pathogenic contamination) and sensitivity (ability to detect any amount of pathogenic

contamination) and does not assess whether pathogenic contaminates that are present are viable

Krewski et al. (2004). The association between E. coli counts in drinking water and diarreal
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disease is often weak and variable Gruber et al. (2014); Brown et al. (2008). Nevertheless, there is

evidence that exposure to E. coli is associated with negative health outcomes (Gruber et al., 2014).

Quantitative microbial risk assessment (QMRA) has been used widely as a tool for estimating

the risks associated with exposures to pathogens in the environment. QMRA generally uses a

dose-response model that predicts the probability of infection given a dose exposure magnitude

(Haas et al., 2014). Studies on the association between TTCs in drinking water and diarrhea

show a dose-response effect consistent with the WHO risk categories (Hodge et al., 2016). There

is very little evidence of increased odds of diarrhea with contamination levels between 1 and 10

CFU/100mL E. coli, the category designated as ”low-risk” Hodge et al. (2016). This fact, combined

with the fact that concentrations of indicator organisms can be highly variable in surface waters,

makes establishing a fecal contamination risk level, in terms of health, extremely complex. Large

spikes of contamination can be due to rainfall, defecation directly into source waters, or washing

of contaminated items like diapers (Levy et al., 2009). The size and frequency of these spikes

in contamination can be highly variable and will often be missed by traditional microbial water

testing (Enger et al., 2013). Multiple studies show that compared to consistent low risk levels of

fecal contamination, highly concentrated spikes of fecal contamination are of highest risk to human

health, yet there is currently no way to detect them in real-time (Daly and Harris, 2021; Brown and

Clasen, 2012; Haas and Betz, 1996).

Instrumentation used to identify other potential indicators of fecal contamination, including

residual chlorine or turbidity, also have significant limitations. Residual chlorine presence in drinking

water is used to indicate an absence of most disease-causing organisms. For detecting residual

chlorine, amperometric and colorimetric sensors have been widely used in water treatment and

distribution systems. Amperometric sensors use electrodes to measure a change in current caused

by the chemical reduction of hypochlorous acid. These sensors are very sensitive to changes in the

water’s pH and thus require frequent recalibration, which has an impact on the sensor’s accuracy

over time (Malkov, 2009). Colorimetric sensors rely on chemical reagents to react with the residual

chlorine in the water, and quantify the amount of residual chlorine using a spectrophotometer.
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The requirement of constant dosing with reagents makes these sensors difficult to employ remotely

and autonomously Mohtasebi et al. (2017). Turbidity is the measurement of cloudiness of water.

Multiple studies have shown a correlation between turbidity and E. coli“ measurements (Vidon

et al., 2008; Dorner et al.; Money et al., 2009). There are various methods and instrumentation

for measuring turbidity and they do not often produce comparable results. Depending on the size

and make-up of the particles in the water, different measurement methods may produce conflicting

results (?). The turbidity sensors that are available for in-line, continuous monitoring are expensive

and require site- and device-specific calibration, limiting their potential for low-cost, remote use

(Gillett and Marchiori, 2019).

1.2 Tryptophan-like Fluorescence

Using fluorescence spectroscopy to measure tryptophan-like fluorescence (TLF) in drinking

water has shown potential to address many of the challenges presented by traditional fecal contami-

nation monitoring methods. Fluorescence occurs when a molecule absorbs a photon from light at a

specific wavelength, known as the excitation wavelength. The absorbed photon causes a fluorophore

to jump to a higher energy state (S2), then rapidly relaxes to the lowest vibrational state (S1) (Fig.

1.1) . Once the fluorophore drops back down to its ground electronic state (S0), it emits a photon

at another, higher, specific wavelength, known as the emission wavelength (Lakowicz). TLF has an

excitation wavelength (λex) of 275 nm and an emission wavelength (λem) around 260 nm (Coble et al.,

1991). TLF measurements rely on the intrinsic fluorescence of the aromatic amino acid, tryptophan,

whose presence is often related to microbial activity (Fox et al., 2017). Compared to the other two

aromatic amino acids (phenylalanine and tyrosine), tryptophan is the dominant intrinsic fluorophore,

absorbs light at the longest wavelength, and displays the largest extinction coefficient. Microbial

activity also converts tryptophan to indole which enhances its fluorescence output because indole

exhibits a similar fluorescent signature to tryptophan and fluoresces at approximately 33% greater

intensity (Lakowicz; Sorensen et al., 2018b). E. coli produces indole from lactose and tryptophan

causing it to have the highest TLF per occurrence compared to other bacteria (Cumberland et al.,
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2012). A major challenge with associating TLF with bacterial concentrations in drinking water is

the presence of multiple compounds emitting TLF. TLF can be contained within bacterial cells as

well as be associated with particles or entirely freely dissolved (Baker et al., 2007; Sorensen et al.,

2016). This leaves uncertainty over what is actually being measured.

Electronic Ground State 

Absorption

Incoming photon
@ 275 nm

S0

S1

Fluorescence

Emission 
photon @ 360 

nm 

Internal conversion

En
er

gy

Excited State S2

Figure 1.1: Jablonski Diagram diagram demonstrating tryptophan-like fluorescence with an excitation
wavelength of 275 nm and an emission wavelength of 360 nm

The presence of TLF in water can indicate that tryptophan is present on its own as ’free’

molecules or bound in proteins, peptides, or humic structures where microbial activity is occur-

ring(Hudson et al., 2008). Tryptophan and its derivatives may be intracellular or extracellular,

both of which will display TLF. If intracellular, they are expected in bacteria as structural and

functional proteins used in metabolic pathways, metabolic byproducts, and endospore formation. As

extracellular molecules, they would be found as secreted signaling molecules, metabolic byproducts,

exotoxins, and cellular debris (Fox et al., 2017). Tryptophan contains an amine group, a carboxylic

acid group, and a side chain indole group. The indole moiety allows tryptophan to fluoresce,

making it one of three known amino acids (in addition to tyrosine and phenylalanine) with this

property(Hudson et al., 2007). While indole is widespread in nature, high concentrations are found
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in mammalian intestinal tracts and wastes (feces). Extracellular indole concentrations have been

measured as high as 0.5 mM in suspended cultures of E. coli(Lee et al., 2015). The intracellular

and/or extracellular nature of TLF seems to depend on the type and source of the water. Sorensen

et al. (2020) found that TLF in groundwater was predominately extracellular (96%) after measuring

TLF levels before and after filtration at 0.22 µm Sorensen et al. (2020). Fox et al. (2017) found that

the majority of TLF signal (75%) is intracellular in origin from lab grown bacteria inoculated in

media (Fox et al., 2017). Since the yield of indole depends on the amount of exogenous tryptophan,

it’s logical that in natural waters where extracellular tryptophan is more available, TLF would be

more extracellular than in lab grown settings Li and Young (2013).

1.3 Technology Development Opportunities

In 2017, the United Nations Children’s Fund (UNICEF) identified real-time, in situ E. coli

detection as a “target product” for research, development and ultimately UNICEF procurement.

The Target Product Profile (TPP) presents minimum performance requirements for such a product

which include being battery-based, minimal processing requirements, no need for reagent mixing or

incubation, qualitative output based on quantifiable ranges of fecal contamination, the ability to

sample a variety of water sources, and sensitivity and specificity goals equating to the ability to

detect 10 colony forming units (CFUs) per 100 mL, with false positives and negatives below 10%.

The product is required to have a detection time of less than 6 hours, a two-year minimum lifespan,

and must be portable (UNICEF, 2019). More specific requirements are shown in Table 1.1.

Table 1.1: UNICEF Target Product Profile Requirements

Attribute Acceptable Performance Ideal Performance

Key Function Detection of fecal contamination equivalent to E. coli in water

Power Requirements Portable power source or no power requirement

Performance FPR <10%, FNR <10%, over range of concentrations

Life Span 2 years minimum, no cold chain required
Continued on next page
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Table 1.1: UNICEF Target Product Profile – continued from previous page

Attribute Acceptable Performance Ideal Performance

Performance Requirements

Level of detection Difference between pres-
ence/absence as well
as low/moderate (1-100
CFU/100mL) and high levels
(>100 per 100 mL)

Differentiation across four risk
levels (0, 1-10, 11-100, >100
CFU per 100 mL)

User Requirements

Testing methodology Minimum number of process
steps, rapid incubation allowed,
preferred at room/body temper-
ature

Minimum number of process
steps, no reagent mixing re-
quired, no incubation required

Materials Used Waterproof as a packaged product and durable for transportation

Validation Requirements

Time to Result Less than 6 hours Less than 30 minutes

Core Requirements

Target Unit Price Between $1,001 and $6,000 Up to or below $1,000

Field Test Requirements

Number of samples in a day 5-10 More than 10

Presentation of results Qualitative through clear visual
cues or text based on quantifi-
able ranges

Quantified results as num-
ber/text or allow for simple
quantification

The UNICEF TPP offers stringent design constraints, but they are generally for a portable

detection device or kit, not a device that is continuously monitoring. An online sensor offers much

higher sampling frequency, possibly continuous monitoring, provides an opportunity to detect short

term or pulse contamination. Grab samples often miss these contamination events because they

only last a short period, but they can still cause disease in people drinking the contaminated water

(US EPA, 2017). Sensors can provide a more rapid response to contamination which will allow water

service providers to be more proactive and less reactive in response to contamination. Another

benefit is the strategic placement of sensors for locations that are critical or indicative of problems

within a distribution system or treatment plant. Placing sensors in the distribution system near

sensitive consumers like hospitals or food production plants could also be beneficial (Skovhus and
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Højris, 2018).

Several highly sensitive, portable TLF sensors are available, but they are not designed or

marketed for autonomous, in-situ, continuous operation. Their output is either in arbitrary units

(AU) or ppb of tryptophan values. One challenge facing these in-situ TLF sensors is their sensitivity

to parameters outside of those they are attempting to measure, which can impact their output.

Temperature, pH, and turbidity can all influence a TLF signal, although these impacts are most

significant outside of typical target detection ranges. Increasing water temperature will reduce

fluorescence intensity, signal quenching can be up to 15% in waters with low pH (below 4.5), and

turbidity may have varying impacts on the signal depending on the contents of the water (Baker

et al., 2007; Guilbault, 1973; Reynolds, 2003). Another limit to reading absolute value outputs from a

TLF sensor is background noise in aquatic environments, which is highly variable, potentially causing

a high number of false-positives. In addition, proteins in organic waste, xenobiotic compounds, and

diesel pollution have all been shown to fluoresce in the TLF region (Sorensen et al., 2018b). In

drinking water, there are multiple peaks of fluorescent dissolved organic matter (DOM) that overlap

with TLF and could give rise to an apparent TLF signal. Humic-like fluorescence (HLF) can raise

the baseline TLF for samples with low TLF, also increasing false positives (Ward et al., 2020).

Other challenges to continuous monitoring with a TLF sensor primarily include biofouling,

mineral scaling, and baseline drift that attenuate and ambiguate the signal. The extent of biofouling

varies as a function of the type and contents of water. Typically, frequent cleaning and calibration

must be performed at each sample site to mitigate any buildup of biofouling or scaling on sensor

lenses or windows. Common anti-biofouling mechanisms include the use of shutters, plates, and

wipers which all require frequent maintenance (Coble et al., 2014).

Another approach to reduce signal drift, false positive rates, and false negative rates is through

machine learning (ML) based synthetic calibration to enact noise-reduction and anomaly detection

that enables alarm-threshold detection (Joslyn and Lipor, 2018). Through a combination of low-cost,

robust hardware design and ML, it may be possible to address the signal drift limitations as well

as improve upon the sensitivity (true positive rate) and specificity (true negative rate) of a sensor
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system by leveraging a combination of in-situ and remotely sensed data, trained and validated with

manually collected ground-truth data. ML would allow for the integration of site and sensor-specific

baseline calibration and the detection of sudden and large changes in TLF rather than relying

on a universal threshold for all sensors, as well as input from other important data sources like

seasonality, nearby sensor data, and data features serving as proxies for fouling.

In this dissertation, I design and validate an in-situ, near-time, remotely reporting TLF sensor

system coupled with an ML model for the detection of fecal contamination risk in drinking water.

Following suggestions and thresholds established in the literature, the sensor system was designed to

differentiate among WHO designated risk levels correlated to FIB concentration. The risk categories

are low (1-9 CFU/100 mL), intermediate (10–99 CFU/100 mL), high (100–999 CFU/100 mL), and

very high (>1000 CFU/100 mL) (WHO, 2017). TLF measurements are best utilized to distinguish

between these risk categories rather than providing a direct enumeration of microbial contamination

(Ward et al., 2020). Sorensen et al. 2017 showed that a dissolved tryptophan concentration of 1.3

ppb could predict the presence of FIBs with a false-positive error rate of 18% and a false-negative

error rate of 15%, thus the design limit of detection was set to 1 ppb dissolved tryptophan (Sorensen

et al., 2018b). A schematic is shown in Fig. 1.2 to demonstrate the work needed to complete this

dissertation including the design of the sensor, characterization of possible signal interference, and

development of a machine learning model.

Along with the design and validation of the sensor system, I report on the characterization

of multiple potential fluorescence quenching and interference parameters that may influence the

operational limits of a continuous TLF sensor system. We also examine the impact of chlorine on

the sensor signal when dosed in both contaminated and uncontaminated waters to provide some

insight into whether the sensor is detecting live or dead cells. This study also investigates how

the the sensor was integrated with a ML data system to compensate for biofouling, scaling, and

background fluorescence noise. Finally, the sensor and ML system were deployed and validated in a

field implementation.
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Figure 1.2: Flow chart displaying the overall goals of this research. The design of a sensor coupled
with a machine learning model that can detect anomalies and reduce noise caused by interferents in
an online, continuously reporting TLF sensor to detect fecal contamination risk in drinking water

1.4 Dissertation Synopsis

In Chapter 1, I provide an overview of the motivation and background for the research,

technology development, and field deployment. In Chapter 2, I describe the technology development

and prototype iterations for optimizing sensitivity of the sensor along with sensitivity validation in a

lab setting. In Chapter 3, I present results of lab characterization of varying water quality’s impact

on the sensor’s signal as well as how the sensor reacts to biofouling and mineral scaling. In Chapter

4, I present the results of a field validation of the sensor’s functionality along with development of a

machine learning model. In Chapter 5, I summarize the study insights and conclusions.

Figure 1.3 presents a summary and flow chart of the research. The figure shows the design

aspects, design requirements, experiments, output, publications, and timeline for each research

question.
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Figure 1.3: Dissertation work flowchart: Design, Characterization, and Field Validation of a
continuous, in-situ, near-time fluorescence sensor coupled with a machine learning model for highly
accurate detection of fecal contamination in drinking water.

1.5 Research Goals and Methods

This work evaluates the functionality and ability of an in-situ, continuously reporting fluo-

rescence sensor to monitor fecal contamination in water. The design of the sensor, impacts to the

sensor’s signal from quenchers and interferents, limit of detection of the sensor, field validation, and
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development of a machine learning model is described.

Research Objective 1: Design and test a fluorescence sensor capable of detecting 1

ppb tryptophan

To investigate this question, fluorescence optimization was performed in order to achieve a

measurable emission of 1 ppb of tryptophan. This output was optimized by sourcing high power

LEDs and highly sensitive light detectors as well as optimizing optical components like lenses,

bandpass filters, and windows. A robust and reliable electrical design was built to maximize the

signal to noise ratio (SNR). The design aspects, fluorescence output, electrical, and mechanical,

were considered individually and together as a whole in order to achieve optimization of sensitivity

along with minimization of cost. The detection limits of the sensor in terms of lab grown E. coli

and E.coli present in wastewater were determined.

RQ1.1: Can an optical TLF sensor be designed at much lower cost than currently available on the

market to achieve a minimum detection limit (MDL) sufficient to reliably detect high risk

fecal contamination in drinking water?

Hypothesis: Yes, with the appropriate combination of high-powered UV LEDs pulsing at a

high frequency, a high sensitivity photomultiplier, and a voltage amplifier

RQ1.2: What is the detection limit of the sensor in terms of lab grown E. coli and wastewater

dilutions?

Hypothesis: The detection limit for E. coli will be around 10 CFU/100 ml in wastewater

dilutions, and around 103 CFU/100mL of lab grown E. coli.
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Research Objective 2: Determine the sensor’s feasibility in regard to variability in

water quality, and determine how biofilms and mineral scaling impact the sensor’s

signal

To investigate this research objective, the sensor was subjected to various changes in water

quality including temperature, pH, turbidity, and chlorine. A study was conducted on biofilm

formation, mineral scaling, background noise variability and the subsequent impact on sensitivity

and detection limits.

RQ2.1: How will pH, temperature, and turbidity affect the fluorescence output? What correction

factors or operational limits will need to be set?

Hypothesis: Increasing temperature will reduce the fluorescence signal, low pH (below 4.5)

will reduce the fluorescence signal, turbidity will have varying impacts depending on the

content of the water. A temperature sensor will be added to the system. The sensor will

not perform adequately for water with turbidity ¿ 10 NTUs or pH outside of the range 5-9.

RQ2.2: How does the formation of biofilms and mineral scaling impact the sensor’s signal?

Hypothesis: Biofilms will interfere with both excitation and emission intensity causing the

signal to increase, mineral scaling will cause the signal to decrease.

Research Objective 3: Develop a machine learning model to mitigate signal drift as

well as improve on the sensor’s sensitivity and specificity

A training set was built by monitoring four sensors on Boulder Creek for 13 weeks. This data

was used to building a machine learning model to predict fecal contamination risk level with the

sensor output as the primary informer.

RQ3.1: Can ML be implemented to mitigate the effects biofilms and increase the sensitivity and

specificity of the sensor?
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Hypothesis: Ensemble ML will be developed to predict contamination events and improve

sensor’s overall ability to detect contamination.



Chapter 2

Sensor Design and Limit of Detection Validation

Part of this chapter appears in Sustainability, with the following authorship

attribution: Emily Bedell, Taylor Sharpe, Timothy Pruvis, Joe Brown, and Evan

Thomas

2.1 Introduction

The Joint Monitoring Program for Water Supply and Sanitation (JMP) estimates that globally,

at least 2 billion people use a drinking water source that is contaminated with fecal matter (WHO,

2019). Drinking water containing fecal contamination is a leading cause of preventable diseases and

higher mortality, particularly through diarrheal infections, which overwhelmingly affect children

under five in low- and middle-income countries (WHO, 2005). Monitoring fecal contamination in

drinking water supplies is a critical function of water service providers. In low- and middle-income

countries, service providers often cannot afford the monitoring technologies proven to provide robust

data. While the World Health Organization’s (WHO) Guidelines for Drinking Water Quality have

been adopted by most water service providers globally, microbial water quality testing needed to

analyze the fecal contamination risk is conducted infrequently (Delaire et al., 2017). This is because

testing routines are time-consuming, expensive, require trained personnel and consumables, and

compete for resources.

Multiple recent studies have shown TLF measurements can be used as an alternative or

additive risk assessment tool to traditional microbial testing methods. Strong correlations are shown
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between the presence of TLF and that of heterotrophic bacteria, E. coli, and total coliforms in

drinking water (Sorensen et al., 2015; Baker et al., 2015; Nowicki et al., 2019). Nowicki et al. (2019)

showed that TLF is “precise, rapid, and practical for groundwater sampling”, but that it should not

act as a proxy for E. coli measurements (Nowicki et al., 2019). The ability of the instruments tested

to produce exact correlation to traditionally used plate counts is limited because of noise in the

output signal as well as the detection limit of the sensor. TLF is shown to have greater success

distinguishing between the established WHO microbial risk levels (Sorensen et al., 2018b). The

WHO has established decimal categories of potential health risk related to E. coli or thermotolerant

coliform (TTCs) concentrations. These risk categories are low (1-10 CFU/100 mL), intermediate

(10–100 CFU/100 mL), high (100–1000 CFU/100 mL), and very high (>1000 CFU/100 mL) WHO

(2017). This approach has the potential to improve risk assessment of microbial contamination in

drinking water, especially when coupled with traditional methods.

Most established literature only examines and demonstrates these theories with submersible

or cuvette-based, portable fluorimeters that are currently available on the market. Sorensen et al.

(2018) compiled data from recent studies analyzing the ability of both submersible (the UviLux

from Chelsea Technologies Group Ltd., UK) and cuvette-based (the SMF4 from STS Instrument

Ltd., UK) fluorimeters to indicate fecal contamination risk in drinking water. The study found

that TLF had the ability to classify high-risk sources containing ¿10 CFUs/100 mL. This coliform

threshold was correlated with a tryptophan concentration of 1.3 parts per billion (ppb) (Sorensen

et al., 2018b). The sensors analyzed were not intended for long-term, autonomous operation and

were expensive, ranging from $4000–$10,000. Recent advances in the semiconductor industry are

quickly driving down the costs of high sensitivity and high-power components included within these

sensors, namely deep-UV light emitting diodes (LEDs) and sensitive semiconductor photodiodes and

photomultipliers. The only attempt at the design of a low-cost, flow-through fluorimeter sensor for

fecal contamination detection in drinking water was conducted by Simões and Dong (2018) (Simões

et al., 2021). In that study, a sensor design was presented with a limit of detection of 1.4 x 103

CFU/mL E. coli.
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All fluorescence signal can be subjected to inner filter effects (IFE) at high organic matter

(OM) concentrations. IFE occurs when a portion of the excitation light is absorbed before it reaches

the point in the sample where fluorescence occurs, this is known as primary IFE. Re-absorption

can also occur with a portion of the light emitted from the fluorophore before it reaches a detector,

known as secondary IFE (Kubista et al., 1994). IFEs result in a attenuation of fluorescence signal. If

quantitative results of concentration are desired, corrections must be made for IFEs, if a qualitative

result of risk level of concentration is desired, corrections may not be necessary.

In this chapter, I describe the design and validation process of a flow-through, in-situ,

continuously monitoring TLF sensor. In order to achieve high sensitivity from the sensor, careful

attention had to be paid to each design aspect including: electrical, mechanical, and optical

component optimization. The sensor also needed the capability to operate remotely and send data

through cellular networks to an online database.

2.2 Methods

2.2.1 Initial Designs

An iterative design approach was conducted in order to initially meet the design criteria of

significant sensor signal sensitivity to 1 ppb tryptophan. The sensitivity of the instrument was

optimized by completing successive experiments with differing components and placement. First, a

static system was designed and optimized using a UV quartz cuvette (FireflySci) containing the

sample water. Components were held in place by 3D printed parts designed in Autodesk’s Fusion360

and printed on a Formlabs Form2 stereolithography printer. The initial prototype components

include a UV-LED centered around 280 nm (Marktech Optoelectronics) with no secondary optical

bandpass filter; a UV Photodiode centered around 350–360nm (Marktech Optoelectronics), a double

converging lens with UV transmission coating (Edmund Optics), and an emission bandpass filter

(Edmund Optics). This initial design is shown in Fig 2.1.

The sensitivity was initially tested by mixing solutions of 1, 10, 100, 10000, 100000 ppb
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Figure 2.1: Initial prototype design assembly. A stand alone, cuvette-based unit was designed to
compare to the bench top unit. Components were held in place by 3D printed parts.

L-tryptophan in deionized (DI) water. The concentrations were mixed using serial dilutions and

measured on the same day of mixing. Each concentration was pipetted into the quartz cuvette,

placed in the prototype, the LED was powered using a regulated power supply and 100 readings

were taken from the photodiode by a Keithley 6485 Picoammeter. The magnitude of outputs from

the picoammeter were on the order of 10−12 amps. Readings were averaged and the noise level

(reading at DI water) was subtracted from each measurement. Signal optimization was attempted

by successive experiments with differing components and placement.

The first component and configuration tests included four different iterations. First, the

original prototype, second, moving the emitter back to its focal length, third, placing a concave

mirror across from the emitter, and fourth, placing a concave mirror across from the detector.

The prototype did not consistently produce a significant change in signal at the desired

sensitivity in the 1–10 ppb range. A hypothesis was formed that increasing the number of emitters

would increase the sensitivity by increasing the signal-to-noise ratio (SNR). Experiments were then

run using 1, 2, and 4 LEDs of the same type and the SNR was compared at 100 ppb L-tryptophan

measurements. These results were also compared to the SNR produced using two high-powered

(100mA) LED’s along with a higher sensitivity photodiode (Table 2.1).
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Table 2.1: Signal to Noise Ratio (SNR) for different LED configurations and combined with a higher
sensitivity photodiode

One LED Two LEDs Four LEDs
2 High Power
SMD LEDs

2 High Power SMD LEDs,
Higher Sensitivity Photodiode

SNR for 100 ppb
tryptophan

2.24 3.87 6.48 8.04 10.04

Using two high-powered LEDs consistently showed the sensitivity needed at lower concen-

trations - 1, 3, and 10 ppb of tryptophan – sufficient to move forward with the flow-through

design.

Once the desired sensitivity was achieved on a static, cuvette-utilized setup, a flow-through

unit was designed (Fig. 2.2). The preliminary flow-through design used three 12.5 mm diameter

quartz windows for the LEDs and photodiode to fluoresce and detect the sample. The design

incorporates O-rings to seal the sample flowing through a 12 mm x 12 mm cavity. The flow-through

prototype was further developed by adding a femtoampere input bias current electrometer amplifier

(Analog Devices) to convert the output signal from the photodiode from picoamps to millivolts.

Water was pumped through the prototype using a peristaltic pump at a flow-rate of 10 mL/s and

the sensitivity of the design was tested using 1, 3, 10, 100 ppb L-tryptophan solution.

The device configuration with 2 UV LEDs and a high sensitivity photodiode combined with

an amplifier greatly increased the sensitivity, giving a significant signal change between DI water

and 1 ppb tryptophan (Fig. 2.3. There are significant differences (p<0.01) between DI and 1 ppb

and DI and 3 ppb, but not between 1 ppb and 3 ppb. This lab setup is modeled in Fig 2.4.

At this stage, the sensor’s output was compared to a Horiba FluoroMax-4 benchtop fluorimeter

(Fig. 2.5). An emission scan was performed on the FluoroMax-4 with an excitation wavelength of

275 nm and emission wavelengths from 300-400. The emission counts per second (CPS) at 340 nm

were compared to the prototype output voltage from the prototype.

Multiple challenges arose with the flow through design. The windows weren’t able to apply

enough pressure to the o-rings to create a good seal, causing multiple leaks. The electromagnetic
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Figure 2.2: Flow-through prototype design. A flow-through design was constructed to test the
potential of continuous and autonomous monitoring. Components were assembled using 3D printed
parts and fasteners. A water-tight seal was provided by applying pressure on O-rings with a UV
coated quartz window.

Figure 2.3: First flow through prototype response from tryptophan dissolved in deionized water.
Boxes indicate the interquartile range and median, whiskers indicate maximum and minimum values
except where outliers are indicated. Bars indicate the significant differences between indicated
concentrations calculated by a Students t-test. Analysis of Variance (ANOVA) p-value shows the
difference from DI to 1 ppb, DI to 3 ppb, 1 ppb to 3 ppb, and 3 ppb to 10 ppb.

sensitivity of the photodiode also caused very high noise in the signal. For these two reasons,

the next prototype design consisted of a flow through cuvette and a silicone photomultiplier. A

Broadcom silicon photomultiplier (SiPM) (www.broadcom.com) was used to detect the fluorescence
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Figure 2.4: Lab setup flow through design. Piping shown where water flows in and out of the sensor.
Two high powered UV LEDs excite the fluorophore and its emission is read by a high sensitivity
photodiode. The signal is converted from current to voltage using an op-amp with high gain.

Figure 2.5: Prototype comparison to Horiba FluoroMax 4 benchtop fluorimeter

emissions. An SiPM is a highly sensitive, solid state photodetector made of an array of single-photon
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avalanche diodes (SPADs) connected in parallel. Compared to photomultiplier tubes or photodiodes,

which are used in most high sensitive TLF sensors, SiPMs are less vulnerable to magnetic fields,

more robust and compact, and require low bias voltage and power (Broadcom, 2019).SiPMs are

capable of very high (105 − 107) internal gain (µ).

Once lab testing was done on the flow through cuvette, SiPM configuration, printed circuit

board (PCB) design began to move the sensor from a lab based unit powered by a bench-top

powersupply to a field based unit that could operate autonomously. The following design goals were

set for the lab based unit:

(1) Autonomous, in-situ functionality

(2) High sensitivity to tryptophan concentrations

(3) Simple maintenance and cleaning of optics

(4) Range and gain levels applicable to different natural and treated waters

(5) Detect and measure proxies for fouling as features for the machine learning model

2.2.1.1 Electrical Design of Field Unit

An amplifier board was built in order to read and report the fluorescence signal from the

SiPM. The high gain of an SiPM is directly related to the input bias voltage or, more specifically,

the overvoltage, which is the voltage in excess of the breakdown voltage. Small changes in the bias

voltage can potentially create significant changes in measurements, thus in the electrical design, the

bias voltage was measured by the analog to digital converter (ADC).

The original Broadcom amplifier test kit contains GHz bandwidth op-amps designed for sensing

very low light levels. The pulsing and sensing requirements needed to achieve TLF sensitivity design

goals were significantly relaxed, thus the SiPM detector was operated in a mode that can be modeled

as a very sensitive photodiode device. A transimpedance amplifier (TIA) was used to amplify the

measured current output into usable voltage.
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The two high-powered UV LEDs (Seoul Viosys) with outputs centered around 275 (+/- 10) nm

were set perpendicular to the SiPM. These LEDs were chosen for their high power and wavelength

precision around 275 nm (Seoul Viosys, 2018). The precision around 275 nm ensures the measured

fluorescence is in the TLF region.

A Particle Boron from Particle Industries, Inc. was used as the main microcontroller. Boron

has an integrated LTE modem, which allows for upgrades in the field and real-time data feedback,

without physical access. The Boron controlled signal measurement from a water temperature sensor

(SparkFun Electronics), ambient enclosure temperature (via 1-wire sensor located on the main PCB),

SiPM bias voltage, SiPM output, and DAC reference voltage. Also controlled by the Boron was

pulsing the two UV LEDs, a 12V peristaltic pump to pull water through the sensor, charging of a

3.7V lithium ion battery via 10W solar panel (Voltaic Systems), and data storage to a MicroSD

card for backup and buffering if the LTE connection got lost. Fig. 2.6 shows system diagram for

the PCB boards, including inputs and outputs into the Particle Boron microcontroller.
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DC/DC Boost

Input: 3.3V

Output: 12V


Sensor
Bias


DC/DC Boost

Input: 3.3V


Output: 28 - 36V
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Output
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Figure 2.6: Electrical System Diagram for main PCB board on the field unit prototype. The Particle
Boron microcontroller controls when and how measurements are taken and transmits the data via
LTE cellular connection
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The fluorescent light levels present in even low concentration tryptophan solutions were higher

than what the Broadcom SiPM is intended for, thus it is functionally acting like a highly sensitive,

highly efficient photodiode. A transimpedance circuit is used to convert the SiPM current to a

voltage that the ADC in the Boron can sample. This circuit also has an inverting gain, set by a

feedback resistor. A filtered DC bias of 3.2V (just below the ADC maximum voltage of 3.3V) is

applied since a positive current causes the TIA output to go down.

A bias of approximately 32V is required for the SiPM sensor to be used. This bias voltage

influences the sensor output. The actual bias voltage is sampled by the ADC during each measure-

ment. This signal is buffered through a resistor divider and op-amp to reduce loading on the main

measurement. The circuit and circuit block diagram for the SiPM sensor and amplifier are shown in

Fig. 2.7.

The UV LED driver is designed to drive the LED to a constant current, pulsed in the

millisecond (ms) range. It is important for the LED current to be very stable when on, since any

variation in the current will couple into the output measurement. Furthermore, since different water

samples may have very different levels of fluorescent response and noise, the LED current setpoint is

variable instead of fixed. The setpoint voltage given to the LED driver circuit to follow is provided

by a DAC. The UV LED driver circuit is composed of an op-amp constant current source using a

MOSFET and a sense resistor for current feedback. Gain between the input voltage and the output

current is set by this feedback resistor. The LED circuit diagram and circuit block diagram are

shown in Fig. 2.8.

Firmware was developed in order to control the number of measurements taken, the length of

LED pulses, the number of samples averaged for one measurement, and the current levels provided

to the LEDs. Measurements from the sensor were sent through the LTE gateway to an online

database. The parameters collected from the sensor are shown in Table 2.2.
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a

b

Figure 2.7: SiPM circuit diagrams; a. Circuit diagram illustrating the SiPM sensor, amplifier,
resistors, and capacitors; b. Block diagram illustrating inputs and outputs to the for the SiPM
sensor

2.2.1.2 Mechanical design of field unit

The sensor was enclosed in a water proof IP66 rated Polycase enclosure measuring 7.71 x 7.71

x 5.90 inches. Inputs into the enclosure were the 10W solar panel, water input, water output, and

water temperature sensor. The solar panel charged a 3.7V, 6600mAh lithium ion battery. They

system diagram for the mechanical design is shown in Fig. 2.9.

The sensor uses a UV quartz flow through cuvette from FireFlySci (www.fireflysci.com). The

pathlength of the cuvette is 1 cm. The LEDs and SiPM PCB boards are mounted orthogonal onto
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a

b

Figure 2.8: LED circuit diagrams; a. Circuit diagram illustrating input current and control; b.
Block diagram illustrating current feedback for control

a high precision 3D printed sleeve that slides onto the cuvette. Mounted on the sleeve between

the SiPM and the cuvette is a bandpass filter centered around 357 +/-22 nm (Edmund Optics).

Abrasion-resistant rubber tubing is used to connect the cuvette to the peristaltic pump. The main

PCB board, cuvette sleeve, and pump are mounted in a Polycase waterproof enclosure with a custom

3D printed mount. The enclosure is mounted on a universal camera stake with tamper resistant

screws so it can be easily and securely staked into the ground. Sensor and mounting design is shown

in Fig. 2.10. The bill of materials (BOM) for the sensor is shown in Table 2.3, the total material

cost came to $1,150.61.
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Table 2.2: Parameters measured by the sensor and sent to an online database

Parameter Units Description
Timestamp Seconds since epoch Date and Time when data was

sent (seconds precision)
Group ID Group designation by sample (all

measurements for a cycle share a
Group ID)

Time Start Seconds since epoch Time the measurement started
Pulse Time Milliseconds LED pulse time (ms)
LED Current Setpoint Milliamps LED current setpoint requested

for this measurement
LED 1 & 2 Raw Current Counts (oversampled) Raw ADC measurement of LED

currents
SiPM Raw Output Counts (oversampled) Raw ADC measurement of SiPM

detector circuit output voltage
while LEDS are on

SiPM Raw Offset Counts (oversampled) Raw ADC measurement of SiPM
detector circuit output voltage
while LEDs are off

Raw Bias Voltage Counts (oversampled) Raw ADC measurement of the
bias voltage feedback signal

Raw Reference Voltage Counts (oversampled) Raw ADC measurement of DAC
reference voltage

SiPM Voltage Volts SiPM detector signal Offset - Sig-
nal

Bias Voltage Volts Bias voltage input to the SiPM,
corrected for resistor divider

LED Current 1 & 2 Milliamps Currents received by the LEDs
Reference Voltage Volts Measured voltage at ADC of the

DAC’s internal reference voltage
Internal Temperature Degrees C Temperature measured on the

PCB inside the enclosure
Water Temperature Degrees C Temperature of the water at time

of measurement

2.2.2 Lab Validation

Lab validation was conducted to measure the signal sensitivity of the sensor to parameter

changes in water. All results from lab validation experiments (Tryptophan sensitivity, E. coli

sensitivity, wastewater sensitivity) were analyzed in R version 4.0.5. Analysis of Variance (ANOVA)

as well as t-tests were conducted on the outputs to examine the statistical significance of experimental

effects.
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Figure 2.9: System Diagram showing inputs and outputs to the waterproof enclosure

2.2.2.1 Tryptophan Sensitivity

Standard L-tryptophan solutions (made with Sigma-Aldrich reagent grade L-tryptophan) were

made by mixing 1000 mL of deionized (DI) water and 0.1 g powdered tryptophan for 30 min to

create a solution of 100 ppm tryptophan. This stock solution was used to prepare serial dilutions of

0.05, 0.1, 0.5, 1, 3, 10, 30, 70 ppb L-tryptophan standards. Each solution was kept for a maximum

of 72 hours. Before testing, the sensor was rinsed by pumping DI water through for 60 seconds. To

collect data for each solution, starting with the lowest concentration (DI water) and ending with
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Figure 2.10: The sensor model shows the configuration of the peristaltic pump which pulls water
through a flow through cuvette. UV LED and SiPM driver boards are mounted around the
cuvette and connected to a microcontroller that controls measurements taken by the SiPM, water
temperature sensor, and board temperature sensor. The Particle Boron board then transmits the
data via LTE to an online platform. The sensor is also shown fully set-up with the solar panel
mounted, next to the Boulder Creek.

the highest concentration (100 ppb), the inlet tube was placed in the solution and the outlet tube

placed in a waste container. Ten TLF measurements from the sensor, with 80 samples averaged per

measurement were taken for each solution. The sensor was rinsed between each solution by running

DI water through for 30 seconds.

2.2.2.2 Lab Grown E. coli Sensitivity

Lab grown E. coli dilutions were prepared using E. coli (K-12 strain) stored in individual

tubes in a freezer at -80◦C. The cell culture was prepared overnight in standard nutrient broth

(Difco) at 121 rpm and 37°C. The culture was then centrifuged at 3000 rpm for 10 minutes and

washed in a phosphate buffered (PBS) solution to remove the growth medium and dead cell material.

This step was repeated two times. The growth medium will fluoresce, thus it must be removed.

PBS was tested for it’s fluoresce properties and they were found to be null at TLF wavelengths.

The working culture was used to make 8 dilutions, reducing each one by a power of 10. The E. coli

concentrations present in the dilutions were verified by membrane filtration following EPA Approved

Hach Co.: 10029 method. m-ColiBlue24 broth indicates E. coli colonies by blue coloration resulting
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Table 2.3: Bill of materials for the final design of the field Sensor

Qty Item Unit Cost Subtotal

1 Water pump $44.79 $44.79
1 Main PCB $15.50 $15.50
1 Main PCB components $89.55 $89.55
1 Detector PCB $12.07 $12.07
1 Detector PCB components $69.35 $69.35
2 UV LED PCB $8.55 $17.10
2 UV LED PCB components $26.83 $53.66
1 LiPoly battery, 6600mAh $29.50 $29.50
1 Solar panel, USB output, 10W $65.00 $65.00
1 Solar panel cable extension with flying leads $4.00 $4.00
1 Enclosure, IP67 $46.39 $46.39
1 Cable gland - temp sensor $4.03 $4.03
1 Cable gland - PV panel $11.25 $11.25
2 Water fittings $7.37 $14.74
1 Micro SD card, 8 GB $5.90 $5.90
1 Temperature probe $12.00 $12.00
13 Clikmate pre-crimped wire, 150mm $0.86 $11.18
4 Clikmate 4 pos housing $0.25 $1.00
2 Clikmate 5 pos housing $0.30 $0.60
1 Cuvette $387.00 $387.00
1 Bandpass filter $215.00 $215.00
1 Tubing $1.00 $1.00
1 Stand $40.00 $40.00

Total $1,150.61

from specific activity of β -glucuronidase and TC by red coloration resulting from specific activity

of β -galactosidase (Tallon et al.). Samples were plated in triplicates and incubated at 35°C for

20-24 hours. The E. coli solutions were made right before each test and kept for a maximum of 48

hrs. Sensor data for each solution, starting with the lowest concentration (DI) and ending with the

highest concentration was collected and analyzed using the same method that was used to collect

the tryptophan data.

2.2.2.3 Wastewater Sensitivity

Wastewater effluent was collected from the Boulder Wastewater Treatment Facility and stored

at 4°C until it was used for testing for a maximum of 5 days. Standard dilutions were made by
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mixing DI water and wastewater effluent to prepare 10%, 12.5%, 25%, 50%, and 100% dilutions

of wastewater effluent. Each solution was made right before testing and kept for a maximum of

48 hours. Sensor data for each dilution, starting with the lowest concentration (DI) and ending

with the highest concentration (100% wastewater effluent dilutions), was collected and analyzed

using the same method that was used to collect the tryptophan data. Membrane filtration was

used to enumerate E. coli and total coliforms (TC) present in each dilution by plating a filter with

m-ColiBlue24 broth (EPA Approved Hach Co.: 10029 method). Samples were plated in triplicates

and incubated at 35◦C for 20-24 hours.

2.2.2.4 Inner Filter Effects

Samples from the wastewater sensitivity experiment were collected from the dilutions made

and set aside. Each dilution was run on a UV-visible spectrophotometer (Agilent Cary 400) to

collect absorbance data for 200 to 800 nm at 1 nm increments using a 1 cm path length cuvette.

The spectrophotometer used had a maximum absorbance of 1 and a scan rate of 600 nm/min. The

absorbance data was used to calculate the impact of possible inner filter effects (IFE) on the sensor’s

output (Kubista et al., 1994). IFE corrected measurements were then calculated using Eq. (2.1).

Fcorr = Fobs ∗ 10(Aλex+Aλem)/2 (2.1)

Where Fcorr is the sensor’s corrected fluorescence signal, Fobs is the sensor’s observed fluo-

rescence signal, Aλex is the absorbance at the excitation wavelength, and Aλem is the fluorescence

observed at the emission wavelength.
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2.3 Results

2.3.1 Laboratory Characterization

2.3.1.1 Varying Gain Levels

Varying the gain levels by varying the current levels to the LEDs showed that the sensor could

achieve both high sensitivity and high range in a single measurement if needed. With low current

to the LEDs, 5 or 10mA, the sensor could read levels up to 100 ppm tryptophan concentration. The

highest current supplied to the LEDs, 200mA, showed extremely high sensitivity at low tryptophan

levels, but saturated at 70 ppb tryptophan (Fig. 2.11).

Figure 2.11: Sensor’s output from varying both current levels to the LEDs and tryptophan concen-
trations in DI water. A zoomed in portion of the graph is shown for the lower levels of tryptophan.
Water glasses are shown to signify that higher sensitivity would be used for water with less back-
ground noise, and lower sensitivity would be used for water with more background noise, where a
higher range is needed

2.3.1.2 Tryptophan sensitivity

The sensor was able to significantly detect a difference between DI water and 0.05 ppb

tryptophan (p <0.01 according to EPA Method Detection Limit Procedure) at a range of current

inputs to the LEDs (EPA, 2016) (Fig. 2.12). Thus, the design goal of 1 ppb tryptophan (signifying
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high risk contamination) was met and exceeded. As the current to the LEDs increases, the sensitivity

at low concentrations of tryptophan increases; as the current decreases, a higher range of tryptophan

concentrations is detectable.

Figure 2.12: Sensor response from tryptophan dissolved in deionized water at four different current
levels powering the LEDs, indicated at the top of each graph. Boxes indicate the interquartile range
and median, whiskers indicate maximum and minimum values except where outliers are indicated.
Bars indicate the significant differences between indicated concentrations calculated by a Students
t-test. Analysis of Variance (ANOVA) p-value shows the difference across all concentrations.

2.3.1.3 Lab Grown E. coli Sensitivity

Lab grown E. coli K-12 increased the sensor response with a significant sensitivity to 33

CFU/100mL (Fig. 2.13). Above 33 CFU/100mL, the higher concentrations are also significantly

different from the signal output at DI water, but the mean of the measurements fluctuates up

and down until 1.5x103 CFU/100 mL. This could be either due to IFE or inconsistencies in the

concentration of cells in each sensor measurement. Since water is flowing through the sensor, it is

possible that with each reading, the concentration present in the cuvette varies. Nonetheless, a
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significant change from DI water to each concentration is demonstrated, so even if the sensor output

varies above DI water, the difference in contamination vs no contamination is shown by the sensor.

Figure 2.13: Sensor response to lab grown E. coli. Boxes indicate the interquartile range and median,
whiskers indicate maximum and minimum values except where outliers are indicated. The bar
between 0 and 10 CFU/100mL indicate the significant differences between indicated concentrations
calculated by a Students t-test.

Table 2.4: Mean of sensor measurements at each lab grown E. coli concentration

E. coli Concentration [CFU/100mL] Mean Output Voltage
0 0.833
33 0.841
67 0.845
133 0.841
367 0.845
1533 0.855
2000 0.878
19767 1.15
1278650 2.79
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2.3.1.4 E. coli Sensitivity in Wastewater

The sensor was able to significantly detect (p <0.01) E. coli concentrations in wastewater

effluent above 10 CFU/100mL, which signifies intermediate risk contamination (Fig. 2.14). The R2

between E. coli present in the wastewater and sensor output was 0.93. There was a drop in sensor

output in the range of 1000 CFU/100mL. The drop in sensor output could be attributed partly to

IFE, but could also be a result of light scatter from particles or inconsistancies in concentrations

flowing through the sensor. The absorbance data collected on the benchtop spectrophotometer

shows increasing absorbance as the concentrations increase. The calculated corrected fluorescence

due to IFE increases the R2 between E. coli and sensor output to 0.95 (Table 2.5).

p = 0.00011 

r2 = 0.93

Figure 2.14: Sensor response from wastewater effluent dilutions graphed continuously. Boxes indicate
the interquartile range and median, whiskers indicate maximum and minimum values except where
outliers are indicated. The bar between 0 and 10 CFU/100mL indicate the significant differences
between indicated concentrations calculated by a Students t-test.
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Table 2.5: Corrected fluorescence based on Inner Filter Effects

E.coli
Concentration
[CFU/100mL]

Measured
Fluorescence

[V]
Aλex Aλem

Corrected
Fluorescence

[V]

0 0.06 0.00 0.00 0.06
10 0.07 0.01 0.00 0.07
67 0.14 0.01 0.00 0.14
287 0.23 0.03 0.01 0.24
483 0.31 0.05 0.02 0.34
600 0.40 0.07 0.03 0.44
800 0.53 0.10 0.04 0.62
950 0.46 0.11 0.04 0.55
1333 0.57 0.13 0.05 0.70

2.4 Conclusion

In this work, I explored the initial development of a low-cost, continuously monitoring TLF

sensor to remotely report fecal contamination risk in drinking water. Through many iterations, I

was able to design a highly sensitive, in-situ, autonomous, remotely reporting TLF sensor for a

relatively low cost. The overall bill of materials for the sensor is approximately $1,000. This price

reflects ordering supplies in small batches, if we were to produce these sensors at scale, the BOM

would reduce significantly. Similar, probe style sensors designed for in-situ, but not autonomous

use, can be purchased at prices ranging from $5,000 - $6,000 (Sorensen et al., 2018b).

Using high powered LEDs and a SiPM showed a significant sensitivity to tryptophan of 0.05

ppb tryptophan. This sensitivity is currently better than high sensitivity sensors on the market,

which range from 0.1 ppb to 0.17 ppb (Simões and Dong, 2018; Khamis et al., 2015).

These design approaches also successfully demonstrated a correlation between TLF and E. coli.

The sensor showed a sensitivity to lab grown E. coli of 33 CFU/100mL and to E. coli in WWE of 10

CFU/100mL. A lower sensitivity is possible in WWE compared to lab grown E. coli because there

is more extracellular material that contains fluorophores in WWE, where most of the TLF signal is

coming from. This presents evidence of the current potential to quantify TLF instantaneously at a
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sensitivity that is meaningful for monitoring drinking water quality. This sensitivity limit will not

allow for presence/absence detection of contamination or detection of low or intermediate risk, but

can provide information and data on sources containing high risk contamination. Since E. coli is

an indicator of fecal contamination, this prototype design proved the potential for TLF to detect

potentially harmful pathogens in drinking water, even with the cheapest available technology. The

flow through design proves that a TLF product capable of continuous detection is a viable option

for real or near-time detection of fecal contaminated in drinking water, which is currently being

consumed by approximately 2 billion people globally.

The variable gain option integrated into the firmware of the sensor allows for the user to

decide between higher sensitivity or higher range of output. These options allow the sensor to be

useful in a variety of different environments from surface water to groundwater to tap water.

Laboratory experiments showed that IFE and possible light scattering impact the sensor’s

signal significantly. The sensor’s signal may be attenuated from absorption of either the excitation

or emission wavelengths and/or light scattering from particles. Since IFE becomes noticeable at

high concentrations of contamination, it’s impacts on the signal may not present a problem for

differentiating between high risk and not high risk contamination. Light scattering occurring in the

sensor’s cuvette may increase it’s signal along side TLF.

The design presented in this paper has the potential to respond the majority of UNICEF’s

needs for a novel, real-time, in-situ E. coli detection device. The device is battery based, has a

processing time requirement of milliseconds, eliminates the need for a reagent or incubation, and

presents qualitative output based on fecal contamination ranges greater than 10 CFUs/100 mL.

Further testing will need to be conducted to determine the sensor’s false positive and false negative

error rates.

The novelty of this work lies in the sensor cost and its ability to monitor water contamination

risk continuously. The prototype sensor is envisioned to be an order of magnitude more affordable

than currently available on the market by employing newly available semiconductor technologies.

Current sensors available for TLF measurements are portable and handheld, the sensor presented
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in this paper will have the ability to be installed in-line in drinking water distribution systems

and report remotely in near-time. This has the potential to provide water service providers with

actionable fecal contamination risk data that will positively impact important decision making,

leading to improved health and livelihood of consumers.

Moving forward, interference in the current design’s signal from physicochemical parameters

will need to be determined. Temperature, pH, and turbidity, though typically outside of typical

natural ranges, can all impact TLF signal. The current configuration has a water temperature sensor

integrated, but corrections to the signal for water temperature need to be determined and limits

may need to be set on specific use cases of the sensor. Some of these challenges can be addressed by

advanced signal processing utilizing data from large sensor networks deployed in one geographical

area.

Further, I will display an attempt to address signal drift through machine-learning based

synthetic calibration to enable alarm-threshold detection. Through a combination of low-cost, robust

hardware design and machine learning, I attempt to address the signal drift limitations through

long-term characterization of in-situ water quality, and identify potential microbial contamination

through alarm-based event detection. This will allow for site-sensor specific baseline calibration and

the detection of sudden and large changes in TLF rather than relying on a universal threshold for

all sensors.



Chapter 3

Evaluating signal interference on an in-situ TLF sensor including variation in

water quality, temperature, biofilm and scaling formation

Part of this chapter appears in a paper submitted for publication in Water

Research, with the following authorship attribution: Emily Bedell, Olivia Harmon,

Katie Fankhauser, Zachery Shivers, and Evan Thomas

3.1 Introduction

The need for a rapid and reliable detection method of microbial contamination in water

treatment and monitoring is well known. In order to achieve real time detection, online monitoring

is required. Sensors designed for online monitoring with autonomous operation must take into

account multiple factors that will influence their signal and output. Most probe type fluorescence

sensors that have been proven to be able to predict microbial water quality health risk have not

taken varying water quality into account. Since these sensors do not perform online monitoring,

they also don’t have to consider biofouling or mineral scaling impacts.

The main inhibitor of accuracy and longevity of online fluorescence measurements has long

been considered to be biofouling. Biofouling occurs when biofilms form on a sensor’s lenses. Biofilm

formation happens in four main stages:

(1) Bacterial attachment to a surface

(2) Microcolony formation
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(3) Biofilm maturation

(4) Detachment and dispersal of bacteria that may colonize new areas

All aquatic sensors will biofoul if given enough time deployed in natural water settings. The

extent of biofouling varies as a function of the environment and contents of the water (Coble et al.,

2014). Biofouling can impact fluorescence data by either decreasing or increasing the signal. The

fouling material can physically block both excitation or emission light to decrease the signal. If the

fouling material fluoresces at the same wavelength measured by the sensor it can increase the signal

(Delauney et al., 2010). In order to utilize a fluorescence sensor that will be impacted by biofouling,

some form of mitigation needs to take place. Current anti-biofouling techniques include shutters,

plates, and whipers for open faced sensors. Copper tubing and tubing covered with foil or black

tape to block light has been used for flow through instruments (Manov et al.). Other techniques

include pressured air to clean surfaces, nanocoating technologies, or nano-treated plastics to prevent

biofilm adhesion. All of these techniques contain limitations. Mechanical systems can easily brake

or cause obstruction in light paths and coatings can interfere with excitation or emission intensity.

Hard water with excess calcium and magnesium may cause mineral scaling on a sensor’s

optical windows. The taste threshold set by WHO for the calcium ion is in the range of 100-300

mg/l and lower for magnesium. Hardness of water is the combined mineral concentratioin. Hardness

above 200 mg/l may cause scale deposition over time on any hardware which interacts with the

water. When hardness falls below 100mg/l it tends to have a low buffering capacity and can be

more corrosive to pipes (WHO, 2017). Calcium carbonate (CaCO3) has a high refractive index.

Transmitted light decreases as a function of increasing refractive index, leading sensor signals to

decrease as minerals begin to scale. Minerals also have high reflectivity which can cause scattering

or higher signal output, but a lower overall sensitivity of a sensor (Okazaki et al., 2017).

Other varying water quality parameters may impact the sensor’s signal. Water temperature,

pH, and turbidity have all been shown to impact TLF signals. Rising water temperature can cause

TLF to quench up to 35%. Rising temperature increases the likelihood that electrons fall back to
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their ground state without emitting a photon. The impact of thermal quenching is related to the

amount of exposure the fluorophore gets from the energy source. This exposure can vary between

free amino acids, tryptophan within a protein, and tryptophan or other tryptophan-like fluorophores

present in molecules (Baker, 2005).

pH is known to interfere with fluorescence measurements outside of natural ranges. This

interference is due to influence of either deprotonation or protonation of acidic or basic functional

groups bound directly to fluorophores. Depending on contents in water, pH outside of neutral ranges

can either increase or decrease fluorescence (Coble et al., 2014). Spencer et al. 2007 studied the

impact of pH on fluorescence over a range of 2-10 and found that within natural pH levels typically

observed in freshwaters, the response of fluorescence signals was limited, but outside of natural pH

levels fluorescence properties were quite sensitive to pH (Spencer et al., 2007). Literature shows

varying impacts on DOM fluorescence with variation of pH, this can be attributed to the unknown

structures associated with DOM and humic substances. There is general agreement throughout the

literature that for pH between 6 and 8 there is no adjustment needed for flourescence measurements.

Turbidity is the cloudiness of water caused by a large number of individual particles. Inorganic

or organic particles in natural waters can be problematic for any in-situ optical measurement.

Particles can increase light scattering within a sample volume and depending on their make up,

either increase or decrease the signal output. Measuring a sensor’s response to turbidity is complex

in that particles may absorb excitation or emission light or scatter light directly back into the

sensor’s detector. Particles in natural systems will not be homogeneous and will not interact with

the sensor in a predictable manner (Coble et al., 2014).

It is unclear whether TLF sensors are detecting live, inactivated, or dead cell material

that fluoresces in the region of interest. The main interest in microbial contamination is living

mircroorganisms because of the risk of disease. Ideally a sensor can distinguish between live, dead,

and inactivated cells. Varying treatment processes impact cells differently, so it is important to

establish the impact of each treatment process on a sensor’s response. Live, viable cells have

metabolic activity and are capable of multiplying. Inactivated cells are still alive and have some
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metabolic activity, but are not capable of multiplying. Cells are typically inactivated by UV

treatment. Dead cells are incapable of multiplying and they eventually degrade as their cell

membranes lyse open. Disinfection by chlorination will lyse open and kill cells. Sorensen et al. 2020

showed TLF is measuring predominately extracellular material that fluoresces in groundwater, not

bacterial cells. This study monitored TLF before and after filtration (Sorensen et al., 2020). Related

to the extracellular manner of TLF is the impact chlorine has on TLF signals. Multiple studies

have evaluated the effect of chlorine addition in wastewater, all showing reduction of fluorescence

intensities after disinfection (Hambly et al., 2010; Murphy et al., 2011). Hambly et al. 2010 shows

fluorescence change throughout different steps of a wastewater treatment plant. Chlorination was

shown to reduce fluorescence intensities the most out of the different treatment methods. Li et al.

(2019) measured fluorescence intensity before and after UV disinfection and found that for the first

minute of UV dose, the intensity increased, but for any dose longer, the intensity decreased. This can

be attributed to initial protein unfolding when the cells are first exposed to UV radiation, exposing

more amino acids to direct UV. Tryptophan and its derivatives are then denatured by continuous

UV radiation, and the fluorescence intensity decreases (Li et al., 2019). From this literature, it

seems that TLF is not sensing live cells, but microbial activity present in water.

In this chapter, I will characterize the sensor’s response to interference from these various

environmental parameters. It is key to understand how the TLF sensor designed in chapter 1 will

be impacted by different contents and makeup of treated and untreated waters. In order to develop

a sensor system that can operate autonomously, it is important to characterize how different factors

will impact the signal in order to optimize response time and decision making around a possible

contamination event.
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3.2 Methodology

3.2.1 pH Variation

A single tryptophan solution of 50ppb was mixed following the methods described above. A

0.1 M solution of HNO3 and a 0.1 M solution of NaOH was created to vary the pH of DI, 50 ppb

tryptophan with DI water, tap water, and 50 ppb tryptophan with tap water from pH 3 to 11 in 0.5

increments. Increments of 1 mL of HNO3 or NaOH were added to each dilution and mixed on a stir

plate for 4 min until a steady state of the pH-adjusted solution was reached. After 4 min, a pH

meter (Vernier Software Technology) was used to record the pH before water was pumped through

the sensor for 10 seconds then a measurement was taken.

3.2.2 Turbidity Variation

In order to characterize the sensor’s response to one type of particle, different amounts of

sediment were added to DI water and their turbidity monitored along with the fluoresce measurements.

The sediment chosen for this experiment was a clay called Fuller’s Earth (D50 = 11.9 µm). All

sediment used in this experiment was treated with hydrogen peroxide to remove organic matter then

rinsed with DI water and dried in an oven at 65 °C for 24 hrs. Turbidity was evaluated for DI and

50 ppb tryptophan. The treated sediment was weighted and added incrementally to each standard

to collect data for 0, 20, 50, 100, 150, 200 NTUs. Before testing each dilution, the inlet tube was

placed in a separate DI bottle used for flushing out the tubes and cuvette and the outlet tube in a

separate waste bottle then water was pumped through for 60 seconds. Measured treated sediment

was added to the dilution and mixed for 5 min. Water with varying turbidity levels was pumped

through the sensor for 10s and a measurement was taken. 50 mL of the dilution was collected to

measure turbidity on the turbidimeter. The sensor data collected was evaluated in RStudio to

create a line graph that was used to show the difference between each tryptophan concentration as

turbidity varied.
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3.2.3 Water Temperature Variation and Correction

Tryptophan solutions were made following the methods described above. Each solution (DI

water, 1, 3, 10, 30, 70, 100, 200 ppb) was refrigerated overnight at 4°C. Solutions were removed from

the refrigerator one at a time and tested in ascending concentration. Solutions were placed on a

hotplate stirrer and stirred during the entirety of the test, heat was applied when the solution began

to reach room temperature. The temperature of the water was monitored using a thermocouple

from 7°C to 35°C. Measurements were taken by the sensor at least three times per degree Celsius.

3.2.4 Chlorination Impacts

To determine the impact of chlorine on the sensor’s output and whether the sensor is detecting

live, inactive, or dead cells, 0.24 mL of bleach was added to 1000 mL wastewater effluent, a 50 ppb

tryptophan solution, and DI water and mixed for 30 minutes. Total chlorine present was measured

at minute 1 and 30. Free chlorine was measured at minute 30. 10 measurements with the sensor

were taken for each solution (wastewater effluent, wastewater effluent + bleach, 50 ppb tryptophan,

50 ppb tryptophan + bleach, DI water, DI + bleach). The concentration of E. coli and TC was

enumerated by membrane filtration using the method described above.

3.2.5 Biofouling Estimation

To establish biofilm growth and estimate its impact on sensor signal, two sensors sampled

tap water that was occasionally spiked with wastewater effluent continuously for four weeks. Grab

samples were taken three times a day and enumerated for E. coli and total coliforms by membrane

filtration using the methods described above. Biofilm growth was inferred through proxy markers

that estimated their existence or absence. The general assumption was that the proxy substance

being measured was directly related to biofilm existence on the cuvette walls (Azeredo et al., 2017).

In each sensor, the cuvette was cleaned periodically. Before cleaning, the biofilm growth was qualified

with spectral analysis to create excitation-emission matrices (EEMs) and quantified with membrane

filtration. Fluorescence of the biofilm growth was collected using a fluorescence spectrofluorimeter
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(Fluoromax-4). Emission wavelengths were measured from 300 to 400 nm in 2 nm increments,

excitation wavelengths from 300 to 240 nm in 10 nm increments, and the excitation and emission

bandpass was set to 5 nm and a 0.25 sec integration time.

Absorbance data were collected using an ultraviolet-visible spectrophotometer (Agilent Cary

4000) which has a maximum absorbance of 1 and a scan rate of 600 nm/min. Absorbance spectra

were measured from a wavelength of 200 to 800 nm at 1 nm intervals.

After fluorescence and absorbance data was collected, the EEMs were corrected using staRdom

(R package version 1.1.14) (Pucher et al., 2019). The R package staRdom corrects inner filtering,

Rayleigh and Raman scattering, and then subtracts background and baseline signal using data from

a cuvette containing only DI water.

The biofilm that formed in the cuvette was enumerated through membrane filtration using

the methods described above. The cuvette was filled with a solution of PBS and water, shaken for

30 secs to detach biofilm. This was performed 15 times. 10 mL of this solution was passed through

a membrane filter.

3.2.6 Mineral Scaling

Mineral scaling experiments were conducted using a scaling model solution mimicking the

composition of the Colorado River consisting of calcium chloride dihydrate (0.0167 M), magnesium

sulfate (0.0105 M), and sodium sulfate (0.0145 M) (Rahardianto et al., 2006).

Before each experiment, DI water was cycled through the cuvette in the sensor for 2 hours.

Then the scaling model solution was added and cycled through the cuvette for 24 hours to form

scaling on the cuvette walls.

To analyze the impact of mineral scaling on the sensor’s signal, the mean sensitivity of the

sensor’s signal to 50 ppb tryptophan was compared before and after the scaling experiment.
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3.3 Results

3.3.1 pH Impact

The effects of pH on the sensor’s signal in varying tryptophan solutions were greater at high

and low pH (Fig. 3.1). For low concentrations of tryptophan, the sensor response increased at both

low and high pH, causing lower sensitivity at low pH. For 10 and 30 ppb tryptophan, the sensor

response increased significantly at pH greater than 9. For 100 ppb tryptophan, the sensor’s signal

increased slightly below a pH of 6 and greatly above a pH of 9, causing the sensor to saturate at

a pH of 9.5. This experiment showed that for neutral pH levels, between 6 and 8, the sensor’s

response is not significantly impacted at varying levels of tryptophan concentrations.

Figure 3.1: Sensor response to varying pH levels in varying tryptophan solutions

3.3.2 Turbidity Impact

The sensor’s signal increased with increasing Fuller’s Earth turbidity (Fig. 3.2). Multiple

tests were run and each time, even with strict disinfection procedures of the clay, turbidity increased
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the sensor’s response.

Figure 3.2: Sensor response to varying turbidity levels in DI and 50 ppb tryptophan

3.3.3 Chlorination Impact

Adding bleach to solutions of DI water, 50 ppb of tryptophan and to wastewater effluent

significantly lowered the signal from the sensor (Fig. 3.3). The free chlorine present after 30 minutes

in each solution was 5.9, 5.5, and 5.6 mg/L for the DI, 50 ppb tryptophan, and wastewater effluent,

respectively.

3.3.4 Temperature Sensitivity

The sensor output was negatively correlated to water temperature (Fig. 3.4). The higher the

concentration of tryptophan in the water, the more significant impact water temperature has on the

signal. Similarly to Watras et al. 2011, fluorescence declined exponentially with water temperature

at all concentrations tested, thus the methods for temperature correction of a fluorescence sensor

described in that study were followed (Watras et al., 2011). A linear fit was first attempted with
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Figure 3.3: Sensor response adding bleach to a DI, a tryptophan solution, and wastewater effluent.
Boxes indicate the interquartile range and median, whiskers indicate maximum and minimum values
except where outliers are indicated. Means are displayed above each box for comparison.

the data, but less error was found in a negative exponential relationship. The data was fitted to the

functional relationship:

TLFm = TLFre
ρ(Tm−Tr) (3.1)

Where T is temperature (◦C), ρ is the temperature coefficient (◦C−1), the subscripts r and m

stand for the reference and measured values. Eq. 3.1 was fit to each concentration for each LED

current level. The values for ρ are shown in Table 3.1.

Table 3.1: ρ values calculated for each current level to correct measured fluorescence values for
temperature of the water

ρ Current [mA]

-0.03 10
-0.025 50
-0.02 100
-0.015 200
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Using this value for ρ in Eq. 3.1, the effect of temperature can mostly be removed from the

raw data (Fig. 3.4b) For the lower concentrations, correcting the data causes a small increase of the

sensor output with temperature.

a

b

Figure 3.4: Temperature impact and correction at 10mA supplied to the LEDs a. Sensor response to
increasing temperature at increasing tryptophan concentrations b. Data corrected to temperature
at 20◦C
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3.3.5 Biofouling Sensitivity

As wastewater effluent was introduced to the sensor for extended periods of time, an increase

in the sensors signal was observed even when only sampling DI water (Fig. 3.5a). This signal

increase is assumed to be attributable to biofilm growth on the inside walls of the cuvette. Spectral

EEMs for a biofouled cuvette using the clean cuvette as a blank show an increase in signal in the

TLF range (Fig. 3.5b).

Monitoring absorbance in a cuvette with biofilms present will impact the outcome of the

Beer-Lambert law, as it relies on path length and the concentration of a solution inside the cuvette.

Varying the absorbance path length from 0.01 to 5 cm, impacted scale of the results, but since only

the presence/absence of increased fluorescence was of concern, these impacts were disregarded. Since

the cuvettes were filled only with DI water, the increase in fluorescence in Fig. 3.5b is inferred to be

a proxy for presence of biofilms. E. coli enumeration showed 10 CFU/100mL were present inside

the cuvette after this EEM was taken. The average amount of signal growth between wastewater

spikes was calculated to be 82%.

Spikes in the sensor signal from contamination can be observed through biofouling induced

signal increase. As little as 17 CFU/100mL show a significant increase in signal, even with a heavily

fouled lens. There is an instance of sensor signal spike with no E. coli present in the wastewater

effluent. An instance like this may be characterized as a false positive, but could also indicate that

there was a contamination event at a previous time, but all live FIB had died off.

3.3.6 Mineral Scaling Sensitivity

After exposing the sensor to mineral scaling solution for 24 hours, there was an increase in

the sensor’s signal, but a decrease in the sensor’s sensitivity (Fig. 3.6). Mineral scaling showed a

5% reduction in sensitivity of the sensor’s ability to measure 50 ppb tryptophan.
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Figure 3.5: Biofilm test results: a. Data from two sensors plotted over one month of sampling tap
water spiked with wastewater effluent five times throughout, combined with E. coli data from grab
samples taken before and after wastewater effluent spikes. b. EEM of a cuvette that had been in a
sensor after two weeks of sampling with wastewater effluent spikes in tap water.
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Figure 3.6: Sensor’s response to exposure to mineral scaling solution. ”C” represents a clean cuvette
and ”S” represents after the cuvette was exposed to scaling solution.

3.4 Conclusion

3.4.1 pH Impact

pH had an impact on the sensor’s signal both above and below a pH range of 6 to 8. Since

most natural water samples have a pH between 6 and 8, it is sufficient to measure fluorescence

without monitoring pH. The sensor should not be used for water samples that have a pH outside

of this range. The impact of pH on fluorescence signal can vary based on contents in the water,

so these results may not be replicable when tested with natural waters, but multiple other studies

show similar results with varying waters (Spencer et al., 2007).



54

3.4.2 Turbidity Impact

The increase in sensor output for all levels of turbidity up to 225 NTU does not conform

to the findings of Khamis et al. 2015. In that study they found a rapid increase in readings to

a maxiumum between 25-100 NTU and then a rapid decrease to 600 NTU. They found signal

attenuation at turbidity greater than 200 NTU (Khamis et al., 2015). A possible explanation for our

increased sensor output is possible organic coating left on the particles and not removed completely

prior to running the experiment. Another possible explanation is that a short excitation wavelength

is scattered very efficiently, causing more light scattering. The bandpass filter used in the sensor

is centered around 357 nm with an optical window of +/- 44nm. If some of the clay happens to

fluoresce in that region, it would be picked up by the SiPM. It is also possible that the removal

of organic material using hydrogen peroxide reduced absorption, causing more scattering than

absorption in the sample.

3.4.3 Chlorination Impact

Through adding bleach to DI water, DI with 50 ppb of tryptophan, and wastewater effluent,

this study attempted to examine how chlorine impacts the sensor’s signal as well as exactly what is

fluorescing in these solutions. The experiment showed attenuation of the signal from bleach addition

to DI water. In the tryptophan solution, all of the tryptophan was completely decomposed and the

signal attenuated below that of DI. In a study by Alimova et. al, bleach completely decomposed

tryptophan in lab grown E. coli including the destruction of the indole ring and possibly destroyed

most of the cell’s proteins and amino acids (Alimova et al., 2005). If this is the case, the significant

signal that remains in the wastewater after the addition of bleach must be extracellular material

other than tryptophan and its derivatives. These results support Sorenson et al. in suggesting that

TLF fluorophores are predominately extracellular in groundwater, but more investigation should be

done to determine what is fluorescing once tryptophan and it’s derivatives have been decomposed

(Sorensen et al., 2020). There could be overlap with another fluorophore that is continuing to persist
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despite the bleach.

3.4.4 Temperature correction factor

Increasing water temperature attenuates the sensor’s signal. These impacts are due to an

increase in temperature resulting in an increase in collisional quenching, which increases the likelihood

of an excited electron to return to the ground state energy through a radiationless pathway. In

other words, collisional quenching is when the excited-state fluorophore deactivates through contact

with another molecule, leading to a decrease in fluorescence activity without a chemical reaction

occurring (Watras et al., 2011). A correction factor was established through an exponential fit to

the experimental data, this correction factor was input into the ML model to correct data with

water temperature values to 20◦C.

3.4.5 Fouling

Spiking the sensor with wastewater effluent caused an increase in the sensor’s signal over time,

even when there was no contamination present. This signal is predicted to be biofilm formation on

the lenses of the cuvette, demonstrated by an increase in fluorescence of a cuvette filled with DI

water by a benchtop flourimeter. This suggests that the fluorescence present is because of organic

matter present on the lenses, not in the solution inside the cuvette. Exposing the sensor to a scaling

solution showed a decrease in senstivity of the sensor to tryptophan solutions. Both of these fouling

events show that data analysis

3.4.6 Sensor characterization

In this chapter varying water quality was tested in the sensor and its response was characterized.

A correction factor for water temperature was calculated. That correction factor will be implemented

when analyzing field data from the sensor. It was discovered that increasing turbidity with clay

increased the sensor’s signal. Further testing should be done with differing size and make up of

particles to find the sensor’s true limits with respect to turbidity. The sensor’s response to varying
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pH showed that the operational limits of the sensor are between pH 6-8. Biofouling and scaling

characterization showed that for this TLF sensor to be operated in-situ and monitor real time,

multivariate analysis methods may need to be used for anamoly detection of fecal contamination

risk levels.



Chapter 4

Development and validation of a machine learning model to characterize fecal

contamination risk with a tryptophan-like fluorescence sensor

Part of this chapter appears in a paper submitted for publication in Water

Research, with the following authorship attribution: Emily Bedell, Olivia Harmon,

Katie Fankhauser, Zachery Shivers, and Evan Thomas

4.1 Introduction

As shown in the previous chapter, biofouling and mineral scaling can impact data by decreasing

or increasing fluorescence signal or decreasing sensitivity. Other environmental parameters like

temperature of the water, ambient temperature of the sensor, pH, and turbidity will introduce noise

into the signal. For an in-situ sensor to be able to report data in real or near-time, multivariate

data analysis must be conducted in order to detect anomalies or predict contamination risk levels.

Anomaly detection is a process of discovering patterns in a dataset that do not conform to expected

notions of normal behavior or fit in a dataset (Chandola et al., 2009). Machine learning (ML)

tools have been shown to provide opportunities to overcome many limitations of in-situ, real-time

monitoring sensors (Saboe et al., 2021). With the support of past data, known as training data, ML

can analyze future data trends to offer insights that would not otherwise be available. ML is able to

optimize data collection processes and prediction of parameters by leveraging additional datasets to

decipher trends and signal patterns (Syafrudin et al., 2018). The potential to use ML to interpret
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TLF data from an online sensor that will be subjected to fouling and other interferents has not yet

been investigated despite successful applications for other types of water quality data (Hou et al.,

2013; Jin et al., 2019; Liu et al., 2019).

Although online TLF measurements combined with ML to predict microbial water quality have

not been analyzed, studies have been conducted using online sensors measuring other parameters

combined with ML to predict water quality. Safi el al (2018) showed that water quality could be

estimated using classical machine learning algorithms, Support Vector Machines (SVM), Neural

Networks (NN), Deep Neural Networks (Deep NN), and k Nearest Neighbors (kNN). The highest

accuracy prediction was 93% with Deep NN. In this study, they used sensors monitoring pH,

turbidity, and temperature and classify water sources as safe if the pH is between 6.5 to 8.5 and

the turbidity is below 5 NTU. Their ML models were trained with 667 samples gathered from 11

different water sources in Pakistan (Shafi et al., 2018). Sakizadeh (2016) was able to predict the

water quality index (WQI) using 16 water quality parameters with artificial neural networks (ANN)

with Bayesian regularization. This study showed correlation coefficients between observed and

predicted values of 0.94 and 0.77, respectively (Sakizadeh, 2016). Many studies compare multiple

ML methods to determine the one that predicts their desired outcome the best. One way to combine

the advantages of multiple ML methods is to use Super Learner, a supervised ensemble ML tool.

Super learner uses an ensemble of robust machine learning classification techniques, employing

cross-validation methods to tune model parameters and protect from over-fitting data (van der Laan

et al., 2007). Cross validation masks random sections of the training set and tests the performance

of a learner trained on the remaining data against the masked data (Arlot and Celisse, 2010).

For our use case, it was hypothesized that a binary classification model may be appropriate to

predict fecal contamination levels with the TLF sensor. Binary classification refers to a classification

tast that has two class labels. In our case, each sensor location had two primary real-world conditions

– they were classified as either “Below High Risk Contamination” or ”High Risk Contamination”

where greater than 100CFU/100mL E. coli is present. As a first-order approximation to distinguish

“Not High Risk Contamination” versus “High Risk Contamination” conditions, the TLF sensors
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indicate relative levels of TLF from when the sensor was first installed or cleaned. However, by itself

this approximation is insufficient to reflect the true contamination level of the water. Fluorophores

other than fecal contamination or biofilms could be causing the signal to increase (Fischer et al.,

2012). Therefore, a more sophisticated anomaly classification system is required to distinguish

between “High Risk Contamination”, a true-positive condition, and “Not High Risk Contamination”,

a true-negative condition. In order to build and then validate the ML algorithms, a training set was

built that reflects a ground-truth of contamination conditions.

Supervised ML can be used for a binary classification model to attempt to generate predictions

that closely match outcomes of the training set. This model can then be used to generate predictions

for new observations. In this case, the outcome would be high risk contamination status – “Below

High Risk Contamination” vs “High Risk Contamination”. These outcomes can be predicted with

a number of “features” (covariates). Features are other measured variables that were somewhat

predictive of the outcome. Part of the algorithm will contain “feature selection” where features

that are not predictive of the outcome are ignored (Friedman, 2001). The flow chart in Fig. 4.1

describes the possible operating conditions, features, and hybrid approach used to predict “High

risk contamination” vs ”Below High Risk Contamination” with ML.

4.2 Methodology

4.2.1 Field Validation

In order to validate the sensor’s functionality in the field, four sensors were placed on Boulder

Creek in Boulder, Colorado in the summer of 2021 for 88 days.

4.2.1.1 Study Area

Boulder Creek flows out of the foothills and through Boulder, Colorado. The creek is a

tributary of the South Platte River and its flow is primarily derived from snow melt and minor

springs west of the city. Boulder has a semi-arid climate with an mean rainfall of 21 inches annually
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Sensitivity (True Positive Rate) = True Positive High Risk Contamination / Predicted High Risk Contamination

Specificity (True Negative Rate) = True Below High Risk Contamination / Predicted Below High Risk Contamination

Positive Predictive Value (Precision) = True Positive High Risk Contamination / (True Positive High Risk Contaminaiton + False Positive High Risk 
Contamination) 

Negative Predictive Value = True Below High Risk Contamination / (True Below High Risk Contamination + False Predicted Below High Risk Contamination )

Water

Below High Risk 
Contamination 
(True Negative)

High Risk Contamination 
(True Positive)

TLF Sensor

Sensor indicates elevated 
TLF levels

Sensor indicates no 
change from initial TLF 

levels

Satellite / Cellular data 
transmission

Additional Features for Supervised 
Learning

- TLF trends for both sensor and location
- Relative voltage (percentile)
- Relative voltage (difference from 7 day 

average)
- Relative voltage (z-score)

- Hours since cleaning
- Sensor location
- Water temperature
- Sensor temperature
- Recent rainfall near sensor
- Day of Season

Predicted Below High Risk 
Contamination (N)

Predicted High Risk 
Contamination (P)

Offline
(If gateway is broken or telecom is offline)

No change in TLF levels
(True Negative)

Other input causes TLF to change:
- Biofilm growth
- Change in makeup of water that 

is not fecal contamination

(True Negative)

Figure 4.1: Data system flowchart showing the contamination conditions including the binary
classification by the TLF sensor. Sensor data is transmitted through satellite or cellular gateway to
be processed with additional features in an ML model that outputs predicted high risk contamination
or not high risk contamination of the water.

(Murphy, 2006).

Four sensors were placed on Boulder Creek to monitor the fecal contamination at sites

upstream, within, and downstream of the city (Fig. 4.2). The sensors were strategically placed

where the City of Boulder conducts their monthly monitoring in order to compare results.

4.2.1.2 Sensor Sample Collection

Sensors were set to sample the water in the creek every 10 minutes. The sensor inlet and

outlet tubes were submerged under the water, but above the creek floor by securing them to holes

in a ceramic brick. The sampling sequence of the sensors was as follows:
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Figure 4.2: Sensor and sampling locations along Boulder Creek in Boulder, Colorado, United States

Water was pumped through the sensor for 20 seconds to flush. A wait time was set to 2

seconds after pumping was complete so air bubbles were able to dissipate. To take a measurement,

the LEDs were pulsed on for approximately 1000 ms and 80 readings taken from the SiPM were

averaged. Water was then pumped through again for 5 seconds, and another measurement taken.

This was repeated for a total of three measurements every 10 minutes.

In order to provide a diverse range of gain outputs and decrease saturation events, the current

provided to the LEDs was set to 10, 50, 100, and 200mA. One data point was recorded at each

current level for each measurement. The data was transmitted over cellular networks to an online

database.
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4.2.1.3 Ground Truth Enumeration

A training and validation data set of laboratory enumerated microbial contamination was

developed in order to build and validate the ML model with the sensor data. Water samples were

collected at each sensor site approximately 13 times per week for 13 weeks. Samples were collected

from sensor sites within 1 minute of the sensor taking a fluorescence reading in order to match

ground truth to sensor measurements. A phone based survey tool (www.mWater.co) was used to

log and organize sampling data. Samples were collected in 50 mL sample bottles, put into a cooler,

and transported to the lab for processing within two hours of collection. Membrane filtration was

used to enumerate E. coli and TC. 10 mL of sample water was filtered through a 0.45 micrometer

filter then incubated at 35◦for 18-24 hours.

Plates were enumerated by counting the number of colonies present after incubation. The

data for number of E. coli coliforms and TC was recorded in mWater.

The date and time of sensor installation, removal, replacement, and cleaning were also recorded

in mWater.

4.2.1.4 Machine Learning Model

Two ML models were attempted. First, a binary classification of above and below high risk

contamination and second, detection of contamination was semi-quantified into the five WHO risk

categories.

Supervised ML models empirically find the best model fit by reducing the difference between

the observed and predicted outcome. Ensemble ML (also known as Super Learning) applies multiple

models (”learners”) to the same data and selects the optimal combination of them through cross-

validation (van der Laan et al., 2007). For binary classification of contamination risk, there were 8

candidate learners: logistic regression, LASSO Regression, Random Forest (Pavlov, 2019), gradient

boosted decision tree (XGBoost) (Chen and Guestrin, 2016), three k-Nearest Neighbors (Zhang,

2016) with k equal to 5, 10, or 15, and a null model. Logistic regression fits data to an ”S” shaped
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logistic function in order to classify data, providing the likelihood that a data point fits in one class

or another. LASSO Regression, short for Lease Absolute Shrinkage and Selection Operator, is a

regularization technique that is utilized to reduce complexity of the model. LASSO Regression uses

shrinkage to shrink values towards a central point, like a mean. Random Forest classifier consists

of a large number of individual decision trees that operate as an ensemble. Each tree provides a

class prediction and the class with the most votes becomes the model’s prediction. Gradient boost

decision tree combines a series of weak decision trees that build and learn from the tree before them.

K-Nearest Neighbor uses the idea of similarity, grouping parameters together that exhibit similar

behavior. A null model satisfies a collection of constraints. The null model verifies whether the

object in question displays some non-trivial features. (T Akinsola et al., 2017).

The multinomial classification considered up to 5 learners: LASSO Regression, Random

Forest, XGBoost, independent binomials, and a null model. Binomial learners can be converted into

multinomial learners by using a series of independent binomials. Ensemble learners are proven to

perform as well as or better than any single candidate algorithm and minimizing cross-validated risk

controls for over-fitting of the final ensemble model (van der Laan et al., 2007; Polley and van der

Laan, 2010). Modeling and feature design respected an internal four-fold stratified cross-validation

structure balanced on risk category.

Model features are the independent variables that can predict fecal contamination risk category.

The primary explanatory feature was the retrieved voltage from the in-situ sensor, standardized and

normalized. Relative voltage was explained by the z-score, difference from rolling 7-day average,

and percentile. The signal voltage is dependent on the input bias voltage and this variable was

included as a potential effect modifier.

As biofouling and mineral scaling are likely to impact the sensor signal, the number of hours

since the optical sensor was cleaned was included as a feature in the model as a proxy for fouling

(Coble et al., 2014). An estimate of daily municipal rainfall was retrieved from NOAA Physical

Sciences Laboratory and included as a model feature. It is well known fecal contamination varies

seasonally with rainfall (Kostyla et al., 2015). Water temperature was used as a feature and
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corrected to 20◦C using Eq. (3.1). The temperature of the SiPM will impact it’s output, for this

reason temperature inside the sensor enclosure was included as a feature (Kuznetsov, 2018). Field

experimentation was conducted from June - September, 2021 so a variable of consecutive days since

start of the experiment attempts to capture any remaining unexplained seasonality during this

summer.

The ability to identify instances of high risk contamination from the sensor data and other

input variables is evaluated by a Receiver Operating Characteristic (ROC) curve and area under

the curve (AUC) and cross-validated accuracy and rates of misclassification. The ROC curve is a

graph displaying the performance of a classification model at all classification thresholds. The curve

plots the True Positive Rate (TPR) and True Negative Rate (TNR). AUC measures the area under

the ROC curve. AUC provides an aggregate measure of performance across all possible thresholds

(Mandrekar, 2010). A perfect classifier has an AUC of 1 and a random classifier has an AUC of 0.5.

Past studies have considered AUC values of 0.7 to 0.8, 0.8 to 0.9, and 0.9 and greater as acceptable,

excellent, and outstanding, respectively (Hosmer and Lemeshow, 2013).

Discretized models output the predicted probability of a data point belonging to an outcome

category. Predicted probabilities are assigned to categories based on whether they are above or

below a set threshold. Determining the threshold is a trade-off between sensitivity and specificity.

For the binary classification model, sensitivity is the proportion of correctly identified high risk

events while specificity is the proportion of correctly identified instances of non-high risk. The ROC

curve plots sensitivity by one minus specificity and visually demonstrates the compromise between

sensitivity and specificity. Youden’s J statistic is often used as a threshold value and assumes both

are equally important. The AUC demonstrates how good the model is at discriminating high risk

overall despite the choice of threshold while accuracy is the percent of data points where predicted

and observed high risk agree after implementing the threshold. The null or no information rate is

the expected accuracy based on the prevalence of the outcome.

The false negative rate (FNR) – one minus sensitivity – is relative to the number of underesti-

mated instances of actual high risk. Conversely, one minus specificity is equal to the false positive
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rate (FPR) and is the proportion of wrongly identified cases of high risk use among observed lower

than high risk contamination.

Additionally, a variable importance plot indicates the relative information gained from each

feature. Variable importance was measured by the risk ratio between the full model and a model on

modified data where any dependence between the outcome and the respective feature is removed by

permutation (random sampling without replacement).

The performance of the multinomial model was evaluated with accuracy and true positive

and negative rates.

All data management and analysis was conducted in R statistical computing software (R Core

Team, 2019).

4.3 Results

4.3.1 Field Validation

Measured E. coli in Boulder Creek ranged from 0 to 9580 CFUs/100 mL with a mean of

120 CFUs/100 mL over 298 independent observations. The data was balanced between categories

indicative of less than high risk contamination and high risk or above contamination (Table 4.1).

Few observations were in the low and very high risk categories. The extreme E. coli measurement

of 9580 CFUs/100 mL was after known fecal exposure in the creek.

Table 4.1: Prevalence and distribution of fecal contamination risk categories observed during field
experimentation.

WHO Risk Category E. coli CFUs/100 mL # in Sample % in Sample

Very low 0 - 1 19 6.4%
Low 1 - 10 18 6.0%

Intermediate 11 - 100 103 35%
High 101 - 1000 145 49%

Very high 1000+ 13 4.4%

Total 298 100%

Enumeration of E. coli occurred at 298 independent observations (between 69 and 82 from each

sampling site). The time the E. coli sample was taken was matched with the sensor measurement
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taken contemporaneously. This subset formed the training and testing datasets for modeling.

Categorical E. coli presence in the water was the desired response variable and several inputs were

hypothesized to explain whether contamination was present, namely continuous TLF measurements

from the in-situ sensor.

Raw voltage readings below zero and above 2.8 volts were dropped due to sensor non-

functionality or over saturation, respectively. At each reading, the sensor recorded voltage outputs at

four current levels to the LEDs: 10, 50, 100, and 200 mA. For this context it was discovered that none

of the current input levels performed better than the other, thus to summarize one characteristic

voltage per E. coli enumeration, voltage output normalized by current level was averaged. Voltage

from the in-situ sensor was standardized to 20◦C using water temperature measurements prior to

being normalized. A binary model was developed to predict whether a sample was at least at the

WHO high risk level (≥ 100 CFUs E. coli / 100 mL vs. <100 CFUs / 100 mL). Another model

for multinomial classification investigated performance at predicting the correct of five WHO risk

categories. Thus, continuous E. coli measurements where characterized by number of CFUs per 100

mL of water at very low risk (0 – 1), low risk (1 – 10), intermediate risk (11 – 100), high risk (101 –

1000), and very high risk (≥1000) (WHO, 2017).

4.3.1.1 Dichotomized High Risk (100+ CFUs/100 mL) of Contamination

A machine learning model with TLF from in-situ sensors as the principal feature identified

high risk of fecal contamination in natural waters with impressive skill. The ROC curve (Figure 4.3)

demonstrates that both high sensitivity and specificity were achievable and that, from the AUC, the

model had a probability of 86% of accurately discriminating high contamination risk. The sensitivity

and specificity at the chosen predicted probability threshold were 80% and 86%, respectively.

Accuracy of detection of high risk contamination (Figure 4.4) was 83% (95% CI: 78% - 87%)

and significantly different from the null information rate (53%, p-value < 0.001). True positive and

true negative rates were 80% and 86%, respectively. Therefore, false positive and false negative

rates were correspondingly 20% and 14%. Given the sensor alerted to high risk contamination, it
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Figure 4.3: Receiver Operating Characteristic (ROC) curve. The point on the curve indicates
the predicted probability threshold used to categorize high fecal contamination risk and the test
specificity and sensitivity at Youden’s J statistic. The area under the curve (AUC), a measure of
test discrimination, is stated on the graph.

was 87% likely that the water sample contained E. coli at 100 CFUs/100 mL or greater, i.e. the

positive predictive value.

Figure 4.5 displays the ranking of model variables, from most to least important for predic-

tive performance. The variable importance plot confirms that TLF is highly informative to the

identification of high fecal contamination risk in water when using a remote, in-situ, uninterrupted

monitoring sensor. Randomizing sensor voltage increased model error by nearly 45% compared to a

model preserving the observed sensor reading. The relative importance of cleaning of the sensor to

remove biofilm and scaling (an increase in model risk of about 16%) indicated that these phenomena

also impacted the field experiment. Relative voltage, temperature of the internal sensor board,

seasonality, and the bias voltage demonstrated importance to detection of high risk contamination.

The sensor voltage z-score, amount of rainfall, and water temperature did not appear informative

(a risk ratio close to or less than 1.0). The effect of water temperature was incorporated when

standardizing the sensor voltage to 20◦C.
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Figure 4.4: Two-by-two risk matrix for dichotiomized detection of the high risk of fecal contamination
in water. The downward diagonal (green) indicates instances of accurate detection. The upward
diagonal (red) are cases of over and under estimated risk.

The effect of daily streamflow on E. coli prevalence was investigated, but due to high

missingness (53% in Boulder Creek during the summer of 2021) and the sparsity of this type of data

in many low-resource contexts, it was not retained in the final model. When it was included with an

additional missingness indicator (analysis not shown), accuracy to detect high risk contamination

improved, but not significantly (85% vs. 83%, 95% CI: 78% - 87%).

4.3.1.2 Categorical Risk of Contamination

Overall accuracy of a model detecting one of five contamination risk categories simultaneously

was 64% (95% CI: 58% - 70%) and significantly better than null accuracy (49%, p-value < 0.001).

This model was still best at differentiating the high risk category with a true positive rate of 83% and
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Figure 4.5: Variable importance plot and relative importance of model features in determining
dichotiomized high risk detection.

a true negative rate of 69% (Figure 4.6). It performed moderately well at detecting intermediate risk

with true positive and true negative rates of 65% and 73%, respectively. The combined sensor and

machine learning algorithm system was not able to detect very low, low, or very high contamination.

True positive rates were never greater than 11% and true negative rates were not revealing of actual

performance, despite being very high, because of low sample prevalence of E. coli at these risk levels

(Table 4.1). However, when very high risk was incorrectly specified, it was usually prescribed to the

next closest category: 85% of incidence of E. coli over 1000 CFUs/100 mL was classified as high to

very high risk.

4.4 Conclusion

Despite multiple factors interfering with the TLF signal, an ML model was able to predict

high risk contamination with FPR and FNR of 20% and 14%, respectively. With an AUC of 0.86,
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Figure 4.6: Risk matrix for categorical detection of the risk of fecal contamination in water.

this model would be considered to have outstanding performance. These values are higher than

demonstrated by Sorenson et al. who found a FPR and FNR of 4% and 17%, respectively, but that

study was done using a field portable, submersible fluorimeter that could be cleaned before each use

(Sorensen et al., 2018b). The ability of the sensor to predict high risk contamination is promising

because the relationship between E. coli and disease has exhibited a dose-response relationship.

Fecal contamination’s impact on public health becomes more prevalent at the intermediate, high,

and and very high risk categories Hodge et al. (2016).

An online, in-situ, remotely reporting TLF sensor coupled with a ML model provides an

instantaneous assessment of fecal contamination risk determined by fecal indicator organisms (FIO),

namely E. coli. I have shown that fecal contamination risk can be assessed in near-time with high

accuracy. This information could rapidly be communicated to consumers to prevent exposure,

lowering rates of water quality induced disease. The integration of these sensors into a water system
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should not completely replace traditional FIO detection methods, but exist as an early warning

system to reduce exposure while traditional testing takes place to validate contamination. This

sensor combined with an ML model has the potential to revolutionize the way microbial water

quality testing is conducted. If utilized by utilities, the sensor and data analysis package could assist

them to expand their water quality programs because the data can be collected rapidly with minimal

training requirements and no consumables for additional testing. If utilized by consumers, the sensor

package could empower them to take control of their water quality and treatment system.



Chapter 5

Conclusion

5.1 Summary

This dissertation presents research investigating the design, characterization, and validation

of a tryptophan-like fluorescence sensor coupled with a machine learning model to predict fecal

contamination in water.

In one study, this dissertation presents design iterations to achieve high sensitivity from a

flow through TLF sensor including component selection, electrical design, mechanical design, and

optical optimization.

I investigated the impacts of various components and their placement on the sensor’s sensitivity

to tryptophan concentrations. A design limit of 1 ppb tryptophan in DI water was established as

a design goal. With the integration of a SiPM and high powered LEDs, a sensitivity of 0.05 ppb

tryptophan was achieved. The electrical and firmware systems were designed to provide consistent

current to the LEDs and take a significant number of readings for an accurate measurement. The

sensor was designed to have variable gain and range by allowing variable current inputs to the

LEDs. This way the user can decide if the sensor should be more sensitive or have a higher range

depending on the make up of the water being tested.

The sensor was validated in the lab by testing its sensitivity to lab grown E. coli and E. coli

concentrations in wastewater dilutions. The sensor had a significant sensitivity to 33 CFU/100mL

of lab grown E. coli and 10 CFU/100mL of E. coli in wastewater.

This research shows that a TLF sensor is able to significantly detect at least high risk
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fecal contamination in water when the sensor has been cleaned and is operating in it’s optimal

environment.

Next, I characterized the sensor’s response to various environmental parameter impacts.

Increasing water temperature decreased the signal output due to fluorescence quenching. pH outside

of 6-8 significantly impacted the sensor’s signal. Increasing turbidity increased the sensor’s signal

up to 200 NTU. Turbidity impacts could be due to significant light scattering, however the Fuller’s

Earth clay used in the experiment might not be indicative of turbidity occurring in surface, ground,

or piped water.

Biofilm and mineral scaling impact were also characterized. Running wastewater effluent

through the sensor for extended periods of time increased the sensor’s signal over time even when

contamination in the water was removed. A method was developed to measure the fluorescence on

the surface of the cuvette using a benchtop laboratory fluorimeter. These measurements were used

as a qualitative proxy for biofouling. Increased fluorescence signal in a ”fouled” cuvette with DI

water inside compared to a clean cuvette was inferred to be biofilm growth.

Similarly, running mineral scaling through the sensor for an extended period decreased the

sensor’s sensitivity. Decreased fluorescence output and increased absorbance were measured from

benchtop instruments after scaling had occurred.

In a final study to validate the online functionality of the sensor to report contamination in

real-time, four sensors were installed on Boulder Creek. A machine learning model was developed

using a training set built by sampling the sensor locations and validating with membrane filtration.

The ML model performed with great skill, with an 86% probability of accurately discriminating

high risk contamination, a sensitivity of 80% and a specificity of 86%.

5.2 Key Takeaways

The studies described in this dissertation show that a TLF sensor has the capability to

provide additional information to water service providers and consumers about their microbial water

quality. The sensor developed requires no calibration and no reagents or dyes like many in-situ
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fluoresence sensors on the market. The development of a robust and reliable online TLF sensor

for monitoring fecal contamination risk levels in drinking water has the potential to help avoid

the need for cumbersome, time-consuming, expensive filtration, enumeration, or presence/absence

techniques. It will assist in avoiding challenges with sample storage and coarse sampling designs

with low temporal and spacial resolutions. The sensor can provide the ability to obtain rapid,

high-quality, and highly sensitive measurements. Access to this information can reduce response

times to contamination, provide information about the source of contamination, and help keep water

service providers accountable for providing clean water to their customers.

Utilizing sensing technology to determine microbial water quality in a rapid, reliable, and

robust manner in an indispensable advancement that can revolutionize water quality management

globally. There is no perfect way to monitor microbial water quality, and there never will be, but

lowering the time and cost it takes to discover contamination could save countless lives not only

by reducing exposure to harmful pathogens but also providing extra funds to expand water access.

Many water utilities cannot expand their piped systems because they lack the funds to ensure good

water quality, purely because traditional water quality monitoring methods are so expensive.

5.2.1 Sensor Design

The development of the sensor was made possible by recent advances in silcon technology as

well as miniaturization and power reduction advances in LEDs and photosensing technologies.

The most important factors of the physical sensor design were the integration of an SiPM

and high powered LEDs. These components are relatively cheap, but have a significant impact

on the sensitivity of the sensor to tryptophan concentrations. Using a SiPM as a highly sensitive

photodiode instead of its default mode of photon counting allows for measurements that are sensitive

through a large range of output vales, allowing for sensitivity and saturation control.

The optical components within the sensor, the cuvette and bandpass filter, are the most

expensive and most complex. Both components are specialized for highly sensitive fluorescence

readings. When the sensor is produced in greater quantities, it is assumed that the price of these
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products will drop significantly.

The integration of a signal amplifier also greatly increased the sensitivity of the sensor.

Optimizing the gain of the amplifier to read the range appropriate for fecal contamination in varying

waters was an important step for the functionality of the sensor.

5.2.2 Fluorescence Interferents

Environmental and physical factors have the potential to interfere with the TLF signal from the

sensor. Characterizing these parameters helps us understand the extent to which these parameters

should be monitored or when operational limits need to be set.

Not only did these characterization experiments help to explain noise within the sensor’s field

experiment but also gave input into important covariant inputs for the ML model. Fig. 5.1 shows

the key takeaways from the characterization experiments and how they might impact an online

sensor.

Interferent impacts: 
• Biofilms cause the signal to increase over 

time
• Mineral scaling lowers the sensor’s sensitivity
• pH impacts the signal outside of 6-8
• Inner Filter Effects impact the signal at high 

concentrations
• Increasing water temperature decreases the 
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• Turbidity scatters light and increases the

sensor output
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Figure 5.1: Flow diagram showing how varying physical, chemical, and environmental parameters
may impact the sensor’s real-time signal

There is also still potential for TLF fluorophores to originate from contamination that is not

related to fecal sources such as diesel and fuel derivatives, food waste, paper mills and pesticides
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(Carstea et al., 2020). The assumption is that the ML model will be able to assist in distinguishing

increases related to fecal contamination and those related to other fluorophores, to some degree.

Nevertheless, a certain false positive rate will always exist and an extremely high false positive rate

may be alarm that another form of anthropogenic waste is present.

5.2.3 Machine Learning Capability

Many studies have suggested and implied that a data analysis system is needed to obtain

maximum benefit from TLF outputs. I have shown that utilizing ensemble machine learning enables

the sensor to output fecal contamination risk levels with high accuracy. Without ML, the sensor

data by itself would be unusable for the prediction of fecal contamination. Since the ML model

utilizes relative output from the sensor, an absolute reading from the sensor would be useless in

determining contamination risk. Surface water should theoretically be one of the most challenging

use cases for this sensor technology as it will have the most background fluorescence noise. Utilizing

the sensor combined with the ML model in groundwater or piped, treated water should an even

higher accuracy rate.

The FPR and FNR of 20% and 14%, respectively, was chosen from maximizing the Youden’s

index, corresponding to the point on the ROC curve with the highest vertical distance from the

45◦diagonal line. A different point on the ROC curve could possibly be chosen in increase the

FPR while decreasing the FNR. This circumstance may be of interest if the end user would rather

experience a false positive than a false negative to have more insurance on the quality of water. For

health reasons, users may prefer to be falsely alarmed of contamination than to possibly miss a

contamination event.

5.3 Reflections, Recommendations, and Future work

(1) E. coli’s utility as an indicator of contamination

Recent literature challenges E. coli as the preferred microbial water quality indicator

(Nowicki et al., 2021). Initial findings around E. coli as an indicator for fecal contamination
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relied on the fact that E. coli was mainly associated with the gastrointenstinal tract and thus

associated with feces from humans and animals. The secondary habitat for E. coli, water,

sediment, soil, and flora, was thought to induce a net negative growth rate, which implied

short term host persistence (Savageau, 1983). In the last few decades, this assumption

has been challenged by the increased discovery and characterization of naturalized E. coli

populations (Bergholz et al., 2011). Nowicki et al. 2021 recommends TLF sensors along

side sanitary inspections and traditional water quality monitoring to begin to differentiate

between naturalized E. coli and contamination events (Nowicki et al., 2021). Since the ML

model developed in this dissertation uses E. coli as a training set, this model may not assist

in differentiating between naturalized E. coli and contamination events. Further testing

would need to be conducted to investigate if it would be possible to train the ML model

with other forms of ground truth that may more accurately depict fecal contamination that

would be harmful to human health.

(2) More extensive turbidity testing and filtration

The characterization of the sensor’s response to turbidity was inconclusive. We can conclude

that the sensor responds to a certain type of turbidity (Fuller’s Earth Clay) by increasing

its signal, but since we didn’t take turbidity measurements for the field trial, we cannot

conclude how the sensor responds to environmental turbidity values. More testing should

be conducted with natural and treated waters with varying levels and types of turbidity to

more wholly understand how turbidity impacts the sensor’s signal.

No filtration was used in the field trial to filter out larger particles. This decision was

made to reduce clogging or maintenance needed. In future designs, a course filter should

be integrated into the design to reduce particle interference through light scattering or

absorption in the readings.

(3) Surface water vs. treated drinking water

Validating the sensor’s functionality on surface water is one of the more challenging use cases.
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Attempting to use the sensor on groundwater or treated piped water should theoretically

increase it’s sensitivity, specificity, and overall accuracy. Further studies should be conducted

to analyze the sensor’s capability to predict contamination levels with different types of

waters. The multivariate performance of the sensor to characterize all contamination risk

levels was not ideal for this situation, but the results were encouraging for waters that may

contain less background noise. If piped water is monitored, the model may have a different

number of features. If the sensor is installed inside, rainfall would not be a contributing

feature.

(4) Overall health impacts

Further testing should be conducted to determine health impacts related to predicted

contamination events associated with the sensor. There is some disagreement in the

literature concerning associations between E. coli and thermotolerant coliforms (TTCs) and

diarrheal disease. Gruber et al. (2014) reviewed multiple studies and found that E. coli was

associated with an increased risk of diarrheal disease, but that the presence of TTCs was

not (Gruber et al., 2014). Hodge et al. (2016) analyzed individual-level data from seven

studies and found significant increase in odds of diarrhea with increasing log10 TTC in

drinking water. They found no evidence of increased odds of diarrhea with contamination

levels between 1-10 TTC/100mL (Hodge et al., 2016). Literature studying the impacts

of fecal contamination on human health share a common conclusion: better water quality

characterization is needed to capture the high temporal variability in water quality. With

more data on the temporal variation of fecal contamination, better assessment of exposures

and their effect on human health will be possible (Daly and Harris, 2021). These requests

from multiple studies are encouraging for our sensor’s ability monitor contamination in real

time and to predict high risk spikes of contamination because they are most harmful to

human health. A study on health impacts related to contamination discovered by the sensor

would be an interesting investigation.
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(5) Feedback informed accountability

Just as important as the functionality of the technology is its ease of use and ability to

integrate into current water management practices. Now that the sensor’s functionality in a

certain context has been realized, the integration of the sensor and its data platform into

water systems needs to be considered. Whether the sensor is used for utilities, distribution

systems, or individual consumers, a sensor installation and maintenance procedure needs

to be developed. Along with that, a web-based data interpretation program needs to be

designed to alert water service providers or users of possible contamination in a matter that

is clear and makes sense to the end user. The end goal of the sensor is to be implemented

into a drinking water system to improve the service provider or consumer’s capacity to

detect, manage, and mitigate fecal contamination risk levels. Water quality improvement

based on sensor data requires considerable on-going technical and planning support in order

to maximize the benefits of the investment. However, to achieve this goal, service providers

must be trained on how to read the sensor data and have the ability to understand the

results produced, while also being able to apply that information to decision making around

improvements in the water systems and have sufficient financial and human resources to

carry out repairs, when deemed necessary.

Thomas and Brown (2020) proposed eight Characteristics of Feedback of Greatest Utility in

Environmental Health and Engineering for Global Development. The first of these is that

the feedback should be developed in partnership with communities and service providers.

The design of the sensor feedback mechanism should be developed in partnership with end

users. Their water quality information needs should be assessed and prioritized. These

needs may change based on the use case of the sensor. The other feedback criterion are

that that the usage of the data is incentivized, cost-effective, transparent, actionable, timely,

objective, and relevant (Thomas and Brown, 2020). In all cases an alarm from the TLF

sensor should trigger an action. If the sensor is being used in a water distribution or
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treatment system, the alarm would trigger more extensive, traditional testing to determine

magnitude and origin of contamination. If the sensor is installed in a household system

in combination with treatment technology, the alarm would trigger maintenance or filter

replacement on the treatment technology. Incentives for these actions are clear, mitigating

contamination to continue providing or consuming clean water. Utilization of sensor data

to trigger contamination investigation is extremely cost effective when the costs to conduct

traditional testing on a similar temporal scale is considered. The information provided from

the sensor is clearly relevant, timely, and objective and the mitigation is actionable. The

transparent nature of the sensor data would be up to the water service provider. Keeping

this information transparent and available to consumers would support in incentivizing

action or motivating consumers to treat their own water when needed.

(6) Future work: productizing the sensor for in home well water monitoring

Design work has begun on advancing the product from prototype to product. The next

iteration of the design will be in partnership with a home treatment system. The ideal

customer for this design will be people that utilize well water for their drinking water. Well

water is particularly vulnerable to contamination through septic system malfunction and

proximity to livestock. Private groundwater supplies are not regulated by the US EPA,

putting the responsibly of water testing and treatment onto the homeowners (Murphy et al.,

2020). Many point of use (POU) water treatment technologies have been developed that

are proven to be effective at treating multiple contaminants, are highly commoditized, and

cost effective, but have no way of offering real-time performance monitoring (Wu et al.).

For these reasons, we are designing an in home sensor system to be paired with a treatment

technology. Initial designs of this system have begun (Fig. 5.2). The sensor will be a

miniturized version of the design built in this dissertation, be able to be installed in line with

a houses main water line, and also have a cleaning function, where a user injects cleaning

solution through the sensor when extensive fouling has occurred. The sensor’s data will be
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sent through the user’s wifi to an onine database where the ML model will be applied to

predict risk level. A mobile app (Fig. 5.3) will be developed in order to alert the user if

contamination is detected. Once contamination is detected, a maintenance or replacement

procedure will need to take place with the treatment technology.

Figure 5.2: Next sensor design iteration for an in home system to be coupled with a treatment
technology
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Figure 5.3: Application mock up to alert user if there is fecal contamination risk increases
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