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Abstract
Chemical stabilization of microbial-derived products such as extracellular enzymes (EE) onto
mineral surfaces has gained attention as a possibly important mechanism leading to the persistence
of soil organic carbon (SOC). While the controls on EE activities and their stabilization in the
surface soil are reasonably well-understood, how these activities change with soil depth and
possibly diverge from those at the soil surface due to distinct physical, chemical, and biotic
conditions remains unclear. We assessed EE activity to a depth of 1 m (10 cm increments) in 19 soil
profiles across the Critical Zone Observatory Network, which represents a wide range of climates,
soil orders, and vegetation types. For all EEs, activities per mass of soil correlated positively with
microbial biomass (MB) and SOC, and all three of these variables decreased logarithmically with
depth (p < 0.05). Across all sites, over half of the potential EE activities per mass soil consistently
occurred below 20 cm for all measured EEs. Activities per unit MB or SOC were substantially
higher at depth (soils below 20 cm accounted for 80% of whole-profile EE activity), suggesting an
accumulation of stabilized (i.e. mineral sorbed) EEs in subsoil horizons. The pronounced enzyme
stabilization in subsurface horizons was corroborated by mixed-effects models that showed a
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significant, positive relationship between clay concentration and MB-normalized EE activities in
the subsoil. Furthermore, the negative relationships between soil C, N, and P and C-, N-, and
P-acquiring EEs found in the surface soil decoupled below 20 cm, which could have also been
caused by EE stabilization. This finding suggests that EEs may not reflect soil nutrient availabilities
deeper in the soil profile. Taken together, our results suggest that deeper soil horizons hold a
significant reservoir of EEs, and that the controls of subsoil EEs differ from their surface soil
counterparts.

1. Introduction

Globally, soils store approximately 1500 Pg of soil
organic carbon (SOC) in the upper meter of the
soil profile, with 50%–67% of SOC occurring below
20 cm (Jobbágy and Jackson 2000). The persistence
of this C pool is, in part, controlled by extracellular
enzymes (EEs) primarily released by soil microorgan-
isms that decompose soil organic matter (Burns et al
2013). However, even though the majority of SOC
occurs in the subsoil, most studies of soil microor-
ganisms and the EEs they secrete focus on the upper
soil layers (Yost and Hartemink 2020). While the
age (and thus persistence) of SOC increases with
depth (Trumbore et al 1996, Paul et al 1997, Rumpel
et al 2002), recent studies have shown that subsoil
(>20 cmdepth)C is still vulnerable to decomposition.
Indeed, subsoil microbial communities have resource
demands that rival those of surface soils when nor-
malized to amicrobial biomass (MB) basis (Jones et al
2018). Understanding subsurface processes is critical
in an age of global change because vulnerability of
SOC to EE attack could be enhanced by increased
temperatures or wetting/drying cycles (Schimel et al
2011, Hicks Pries et al 2017). Hence, if subsoils are
disturbed (either physically or through altered envir-
onmental conditions), portions of the soil organic
matter pool at depth could become accessible to EEs,
resulting in the mineralization of significant quant-
ities of C and nutrients. Therefore, increased under-
standing of EE patterns at depth could help elucid-
ate the mechanisms of subsoil organic matter decom-
position and aid in predicting how pools of SOC and
nutrients will be affected by ongoing global change
factors.

Because EEs both respond to and influence soil
properties, the study of EEs has led to greater insights
into soil C persistence (Billings and Ballantyne 2013,
Birge et al 2015, Dove et al 2019), nitrogen (N)
and phosphorus (P) mineralization (Weintraub and
Schimel 2003, Waring et al 2014, Chen et al 2018),
ecosystem development (Olander and Vitousek 2000,
Selmants and Hart 2010, Turner et al 2014), and
microbial metabolism (Sinsabaugh and Shah 2011,
2012, Sinsabaugh et al 2013). Given that the meth-
ods for measuring EE activity in soils are relat-
ively high-throughput, inexpensive, and reproducible
across laboratories (Dick et al 2018), it is one of the
most common soil biogeochemical measurements

(‘soil extracellular enzyme activity’ resulted in 2013
records using Clarivate Analytics Web of Science as
of Jan. 28, 2020). However, despite the widespread
measurement of soil EEs, most studies have focused
on EE activities in surface horizons, with few studies
exploring EE activity patterns in soil horizons below
20 cm (but see Taylor et al 2002, Kramer et al 2013,
Stone et al 2014, Taş et al 2014, Schnecker et al 2015,
Loeppmann et al 2016, Jing et al 2017).

Numerous soil physical and biogeochemical
properties change with depth. As organic matter
(both SOC and organically bound nutrients) moves
into the subsoil, it becomes increasingly more micro-
bially processed and sorbed onto charged mineral
surfaces (Rumpel and Kögel-Knabner 2010), which
concomitantly increase with depth. Soil pH may also
increase with depth in instances where the parent
material is enriched in so-called ‘base’ cations (i.e. cal-
cium, magnesium, potassium, and sodium; Brubaker
et al 1993). These gradients in soil properties result
in subsoil microbial communities that are vastly dif-
ferent than their surface soil counterparts (Eilers et al
2012, Brewer et al 2019). Soil pH (Sinsabaugh et al
2008, Kivlin and Treseder 2014), substrate availability
and demand (Olander and Vitousek 2000, Dove et al
2019), and microbial community composition (Sch-
necker et al 2015) influence EE activities in surface
soils. Because these factors change along soil pro-
files, EE activities should also change with soil depth.
Twomain generalizations have emerged from the few
studies that have investigated EE activities in subsoils:
(1) EE activities declinewith depth in associationwith
decreases in soil organic matter concentrations and
decreases in MB (Taylor et al 2002, Stone et al 2014,
Loeppmann et al 2016); and (2) EE activities at depth
are less responsive to surface conditions, manipula-
tions, and management practices (Kramer et al 2013,
Jing et al 2017, Yao et al 2019). However, our ability to
quantify the total EE pool and elucidate the controls
on EEs in subsoils has been hindered by unstandard-
ized ancillary measurements, assay parameters, and
depths of sampling across studies (Nannipieri et al
2018).

Systematic, continental- and global-scale assess-
ments and meta-analyses of EEs in surface soils have
begun to clarify controls and correlates of EE activ-
ity (Sinsabaugh et al 2008, 2009, Xiao et al 2018).
For instance, EE stoichiometry (the ratio of C-,
N-, and P-acquiring enzymes), which can represent
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the relative C, N, and P demand (Sinsabaugh and
Shah 2012), scales at 1:1:1 (C:N:P) globally across
soil, freshwater, and saltwater ecosystems, suggesting
that the plasticity of microbial resource demand is
somewhat constrained (Sinsabaugh et al 2008, 2009).
These large-scale assessments also confirm that pH,
substrate availability, and microbial demand influ-
ence EE activity in surface soils (Sinsabaugh et al
2008, 2009, Xiao et al 2018). However, it is cur-
rently unknown if these controls in surface soils
extend into the subsoil. We posit that EE activit-
ies at depth may follow different patterns than in
the surface horizons given that EEs at depth are less
responsive to environmental perturbations (Jing et al
2017), subsoils have greater spatial heterogeneity of
organic substrates than at the surface (Salomé et al
2010), and the microbial communities at depth are
dominated by oligotrophic microorganisms (Brewer
et al 2019).

To quantify EE activities and elucidate their con-
trols throughout the soil profile, we sampled the
upper meter of mineral soil at 10 cm increments in 19
soil pits across the 10 United States National Science
Foundation-supported Critical Zone Observatories
(CZOs; http://criticalzone.org/national/). We hypo-
thesized that EE activities per mass of soil would
decline with depth due to decreased SOC and MB
concentrations; however, a significant proportion of
EE activity in the top meter of soil would occur below
20 cm depth. We also hypothesized that the funda-
mental controls on EE activities would differ between
surface and subsoil horizons due to shifting bio-
logical, chemical, and physical conditions through-
out the soil profile. Specifically, as organically bound
microbial resources decrease with depth, mineral
sorption of both substrates and EEs will become a
more dominant control of potential EE activity. Our
overall goal was to quantify potential EE activity in
the subsoil over a diverse set of soils, ecosystems, and
climates to elucidate how EE activity mediates subsoil
C and limiting nutrient availabilities.

2. Methods

2.1. Site selection and sampling
Samples were collected from the network of ten CZOs
(http://criticalzone.org) across the USA, which rep-
resents awide range of hydrogeological provinces, soil
orders, and vegetation types as described in Brewer
et al (2019). Soils were collected at peak greenness (as
estimated from NASA’s MODerate-resolution Ima-
ging Spectroradiometer, or MODIS) between April
2016 and November 2016, with the exception of
the Eel River CZO samples, which were collected in
May 2017 (also at peak-greenness). At each CZO, we
excavated two separate soil profiles (‘sites’) selected to
represent distinct soil types and landscape positions
(table 1). Any organic horizon was first removed, and

then mineral soils were sampled in 10 cm increments
with a sterile hand trowel dug into the face of each
soil pit to a depth of at least 100 cm or to refusal (e.g.
bedrock, hardpan, coarse regolith).

All soil samples were shipped overnight at 4 ◦C to
the University of California, Riverside for processing.
A portion of each field sample was sieved (<2 mm),
homogenized, divided into subsamples for further
analyses, and frozen (−20 ◦C). For some soils (par-
ticularly some wet, finely textured depth intervals),
sieving was impractical. These samples were homo-
genized and larger root and rock fragments were
removed by hand. In addition, as samples from SHAL
(70–100 cm depth; see table 1 for site abbreviations)
consisted almost entirely of medium-sized weathered
bedrock (Cr material), soil was collected by manually
crushing weathered bedrock with a ceramic mortar
and pestle with this material then passed through a
2 mm sieve.

2.2. Soil physiochemical measurements
Soil pH, gravimetric water content, and clay con-
centration were measured using modified long-term
ecological research protocols (Robertson et al 1999).
Briefly, soil pH was determined in a 1:2 (weight to
volume) solution using 5 g of oven-dried soil and
10 ml of Milli-Q water (Millipore Sigma, Burling-
ton, MA, USA). The solution was measured on an
Orion DUAL STAR pH meter and an epoxy com-
bination electrode (Orion 9165BNWP Combination
Sure-Flow pH Electrode; Thermo Fisher Scientific,
Waltham, MA, USA). For determining gravimetric
water content, approximately 7 g field-moist soil was
dried at 105 ◦C for a minimum of 24 h. Soil texture
was measured on oven-dried and sieved soil using
the hydrometer method following Gee and Bauder
(2018).

Prior to soil total organic C and N analysis, soils
were freeze-dried using a Savant Novalyphe-NL500
freezer dryer (Savant, Farmingdale, NY, USA) and
ground to a fine powder using a roller mill. If effer-
vescence occurred when a drop of 1MHCl was added
to a subsample of each soil sample, then inorganic C
was removed from 2 g of the soil sample by twice-
washingwith 30ml 0.1NHCl (allowing the soil slurry
to stand for 1 h during each wash), twice-washing
with 30mlDI, and then freeze-dried. The soil samples
were analyzed for total organic C and total N by
continuous-flow, direct combustion using a Vario
Micro Cube elemental analyzer (Elementar, Hanau,
Germany).

Microbially available orthophosphate, referred
hereafter as Olsen P, was estimated by extracting 1 g
of soil with 200 ml of 0.5 M NaHCO3 at pH 8.5
(Olsen et al 1954). This measurement includes both
directly available phosphate and phosphate bound
to calcium minerals that could become potentially
available to microbes. Briefly, slurries were shaken for

3
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30 min and filtered through Whatman No. 42 filters.
Orthophosphate was measured colormetrically using
a Lachat AE Flow Injection Auto Analyzer (Method
12-115-01-1-Q, Lachat Instruments, Inc. Milwaukee,
WI, USA).

2.3. Phospholipid fatty acid analysis
We used phospholipid fatty acids (PLFAs) to determ-
ine differences in the MB and the ratios of fungal to
bacterial biomass. Briefly, total lipids were extrac-
ted using 10 ml of methanol, 5 ml chloroform, and
4 ml of a 50 mM phosphate buffer (pH = 7.4) from
5 g of lyophilized soil (White et al 1979, Deforest
et al 2004). To determine analytical recovery, phos-
pholipid 19:0 (1,2-dinonadecanoyl-sn-glycero-3-
phosphocholine) and 21:0 (1,2-diheneicosanoyl-sn-
glycero-3-phosphocholine) standards (Avanti Polar
Lipids, Inc. Alabaster, AL, USA) were added dur-
ing the extraction phase (Deforest et al 2012). Polar
lipids were separated from other lipids using silicic
acid solid-phase chromatography columns (500 mg
6 ml−1; Thermo Scientific, Waltham, MA, USA),
and the separated polar lipids were converted to
fatty acid methyl esters (FAME) through methan-
olysis (Guckert et al 1985). The resulting FAMEs were
separated using a HP GC-FID (HP6890 series, Agi-
lent Technologies, Inc. Santa Clara, CA, USA) gas
chromatograph, and peaks/biomarkers were iden-
tified using the Sherlock System (v. 6.1, MIDI, Inc.
Newark, DE, USA). External FAME standards (K104
FAME mix, Grace, Deerfield, IL, USA) were used to
determine concentrations. The sum of all detected
14–19 C-length PLFAs was used to calculate MB
because longer PLFAs can be indicators of mosses
and higher plants (Zelles 1999). Ratios of fungal
to bacterial biomass (fungi:bacteria) were calcu-
lated by dividing the amount (mol) of the fungal
biomarker 18:2ω6c by the sum of all other micro-
bial biomarkers (i.e. mol 18:2ω6c/(mol MB—mol
18:2ω6 c)).

2.4. EE activity
We measured potential EE activity (i.e. activity not
limited by substrate concentrations) ofα-glucosidase
(AG), β-glucosidase (BG), cellobiohydrolase (CB),
β-xylosidase (BX), N-acetylglucosaminidase (NAG),
leucine aminopeptidase (LAP), and acid phosphatase
(AP) fluorometrically following Bell et al (2013).
Briefly, an 800 µl soil slurry consisting of 2.75 g of
field-moist soil in 91 ml of 50 mM sodium acet-
ate buffer (pH = 5.5) was incubated with 200 µl of
each of the 100 µM 4-methylumbelliferone (MUB)-
linked or 7-amido-4-methylcoumarin (AMC)-linked
substrates (only LAP was AMC-linked) in 96-deep
well plates. After a 3 h incubation at 20 ◦C, plates
were centrifuged, and the supernatantwas transferred
to black, flat-bottom 96-well plates. Fluorescence
was measured on a Tecan M200 Pro (Tecan Group

Ltd., Männedorf, Switzerland) using an excitation
wavelength of 365 nm and an emission wavelength of
450 nm.

The choice of buffer pH in EE activity assays
depends on the research question (Burns et al 2013)
and, as such, we decided to use a consistent pH
of 5.5 for all soils assayed similar to other cross-
site soil EE studies (Deforest 2009, Dick et al 2018).
The intensity of florescence of MUB is pH depend-
ent (Mead et al 1955), therefore comparisons across
sites must be done at a consistent pH to avoid
attributing biological phenomena to the chemistry
of the florescent substrate. A buffer pH of 5.5 was
chosen because this is within the range of soil pH
for most of our sites (table 1) and the range of
pH optima for our enzymes (4.0–6.5, as determ-
ined in a variety of biomes; Parham and Deng 2000,
Niemi and Vepsäläinen 2005, Turner 2010, Min et al
2014). Nevertheless, we recognize that our buffer
pH may not be indicative of the native soil pH (or
pH within the microsites in which EEs operate),
which may reduce our ability to quantify in situ EE
activity.

The enzymes, AG, BG, BX, and CB are involved in
the degradation of organic C, and total C-acquiring
enzyme activity (Csum) was operationally defined as
the sum of these four enzyme activities. The enzyme,
NAG is involved in releasing N-acetylglucosamine
from aminopolysaccharides such as chitin and pep-
tidoglycan, and LAP catalyzes the hydrolysis of leu-
cine residues at the N-terminus of peptides and pro-
teins. Both NAG and LAP are considered N-acquiring
enzymes and were similarly summed to define the
variable Nsum, which we use as a proxy for N acquisi-
tion by decomposition. Acid phosphatase is involved
in releasing phosphate from monoester bonds, rep-
resenting a P-mineralizing enzyme (Burns et al 2013).
This suite of EEs, while not inclusive of all relevant
enzymatic substrates, represents many of the most
frequent hydrolytic reactions during decomposition
of organic matter (Sinsabaugh and Shah 2012). Fur-
thermore, these EEs have been extensively studied
across numerous surface soils (Sinsabaugh et al 2008,
2009) to which we can compare with our deep-soil
measurements.

Extracellular enzyme activities were expressed per
soil mass (mmol EE activity kg−1 soil h−1), SOC
(mmol EE activity kg−1 SOCh−1), andMB (mmol EE
activity kg−1 MB h−1). These latter two variables are
called SOC-normalized andMB-normalized, respect-
ively, in this paper. We also measured the ratio of C-,
N-, and P-acquiring enzymes. Because EEs mediate
nutrient acquisition for soilmicroorganisms, they can
be used to determine relative nutrient demand (Olan-
der and Vitousek 2000, Sinsabaugh and Shah 2012).
Hence, we used Csum:Nsum, Csum:AP, and Nsum:AP as
proxies for C:N, C:P, and N:P relative demand ratios,
respectively.
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Figure 1. Distribution of activity of α-glucosidase (AG), β-glucosidase (BG), β-xylosidase (BX), cellobiohydrolase (CB),
N-acetylglucosaminidase (NAG), leucine aminopeptidase (LAP), and acid phosphatase (AP) per soil mass as a function of depth
throughout the top meter of soil across sites. See table 1 for site abbreviations.

2.5. Statistical analysis
All statistical tests and visualizations were conduc-
ted in R (R Development Core Team 2008) using the
lme4 (Bates et al 2015) and MuMin (Barton 2020)
packages. We used mixed-effects models with site as
a random effect to examine the relationship between
depth, SOC, MB, clay, and fungi:bacteria and EE
activity (expressed on soil mass, SOC, andMB bases).
We similarly used mixed-effects models with site as
a random effect to examine the effect of soil stoi-
chiometry (using ratios of SOC, total N, and avail-
able P) on enzyme stoichiometry. These models were
conducted on the complete dataset, the surface soil
dataset (depth ≤ 20 cm), and the subsoil dataset

(depth > 20 cm) to determine differences in the con-
trols of EE activities between the surface and sub-
soils. Because we did not characterize the horizon-
ation of the sampling pits, we a priori chose 20 cm
to represent the subsoil because most EE studies do
not sample below this depth. However, we also con-
ducted our analysis using a 30 cm threshold, and
the overall interpretation remained unchanged (see
appendix A). Therefore, for clarity, we report res-
ults using only the 20 cm threshold for the subsoil.
To denote the variance explained by the models, we
report the marginal R2 value, which expresses the
increase in explained variance by including the fixed
effect(s) (Nakagawa and Schielzeth 2013). We also
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used ANOVA and Pearson’s correlation to determ-
ine if the fraction of EE activity below 20 cm differed
by soil order and if the aggregate surface and subsoil
EE activities were correlated, respectively.We assessed
significance at the α = 0.05 level and marginal sig-
nificance at α = 0.10. If significant differences were
detected, we used Tukey’s Test of Honest Significant
Differences to determine which soil orders were sig-
nificantly different.

We used QQ-plots and scale-location plots to
inspect normality and homoscedasticity, respectively.
Because many of the mixed-effects models failed
to meet parametric assumptions, all dependent and
independent continuous variables were natural log-
transformed and re-analyzed. The resulting models,
along with the ANOVAs, met the assumptions of
parametric tests. For visualization purposes, data are
left untransformed unless otherwise stated.

3. Results

3.1. Whole profile soil properties among sites
Soil organic C, total N, available P, and
fungi:bacteria decreased while clay percentage
increased with depth across the CZO network (all:
p < 0.001, figures S1(A)–(E) (available online at
stacks.iop.org/ERL/15/1040a1/mmedia)). Across all
sites, soil pH increased slightly with depth (on average
0.1 pH units over 1 m, p= 0.028, figure S1(F)).

3.2. Distribution of EE activity is related toMB and
organic carbon throughout the topmeter of soil
For all assayed EEs, EE activity per mass of soil
declined logarithmically with depth (p < 0.001, fig-
ures 1 and S2), with the strongest decline for NAG
(β = −0.223) and the weakest for AG (β = −0.109).
However, about 50% of the total-profile EE activity
kg−1 soil in the top meter occurred below 20 cm (fig-
ure 2(A)). The proportion of the EE activity below
20 cm differed by the soil order for many of the
assayed EEs (tables S1 and S2). Mollisols had about
a 1.5 times greater percentage of the sum of C- and
N-acquiring EE activity kg−1 soil below 20 cm than
Inceptisols or Ultisols (p < 0.05 for all comparis-
ons, figure 2(B)). For AP, the 39% higher proportion
in the subsoil for Mollisols compared to Inceptisols
was only marginally significant (p = 0.063). Neither
mean annual temperature (MAT) nor precipitation
(MAP) significantly correlated with the proportion of
EE activity below 20 cm (p > 0.05, figures S3 and S4).

There were also differences in the percentage of
MB and SOC in the subsoil among soil orders (MB:
p < 0.001, SOC: p = 0.013), with Mollisols having
an almost two times greater proportion of MB and
SOC below 20 cm than Inceptisols (MB: p = 0.006,
SOC: p = 0.013; figure 2(B)). While the proportion
of MB below 20 cm was significantly higher in Mol-
lisols compared to Ultisols (about 1.5 times greater,
p = 0.001), the difference in the proportion of SOC

Figure 2. Percentage of α-glucosidase (AG), β-glucosidase
(BG), cellobiohydrolase (CB), β-xylosidase (BX),
N-acetylglucosamine (NAG), leucine aminopeptidase
(LAP), and acid phosphatase (AP) activity below 20 cm in
the top meter (A); and proportion of soil organic carbon
(SOC), microbial biomass (MB), sum of C-degrading
enzymes (Csum = AG+ BG+ CB+ BX), sum of
nitrogen-mineralizing enzymes (Nsum = NAG+ LAP), and
acid phosphatase (AP) below 20 cm in the top meter of soil
among soil orders (B). Error bars show± one standard
error of the mean (Figure panel A: n= 19; Figure panel B:
Inceptisol: n= 5, Mollisol: n= 5, Ultisol: n= 4).

below 20 cm between Mollisols and Ultisols was only
marginally significant (p= 0.057).

Microbial biomass-normalized EE activity
increased with depth for all enzymes (figure S5; all:
p < 0.05). The strongest increases were for LAP and
AP, which increased six- and seven-fold, respectively,
from the 0–10 cm to the 90–100 cm depth, while
NAG and BG increased by 85% and 103%, respect-
ively. Throughout the top meter, over 80% of MB-
normalized EE activity occurred below 20 cm (fig-
ure S6(A)). However, because the proportion of MB
below 20 cm also varied among soil orders, the pro-
portion of MB-normalized EE activity below 20 cm
was consistent among soil orders for most assayed
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EEs (AG: p = 0.333, BG: p = 0.175, CB: p = 0.278,
BX: p = 0.211, NAG: p = 0.027, LAP: p = 0.537, AP:
p = 0.048; figure S6(A)). Nevertheless, the propor-
tion of MB-normalized NAG activity below 20 cm
was 15% greater in Ultisols compared to Inceptisols
(p = 0.025), and the proportion of MB-normalized
AP activity below 20 cm was 17% greater in Ultisols
compared to Mollisols (p= 0.042).

There were inconsistent patterns of EE
activity normalized by SOC with depth. N-
acetylglucosaminidase normalized by SOC decreased
with depth (p = 0.004); AG, LAP, and AP increased
with depth (AG: p = 0.016, LAP: p = 0.002, AP:
p < 0.001); and BG, CB, and BX did not change
with depth (BG: p = 0.322, CB: p = 0.344, BX:
p = 0.198; figure S7). Similar to the proportion of
MB-normalized EE activity below 20 cm, the propor-
tion of EE activity normalized by SOC below 20 cm
averaged about 80% and did not differ among soil
orders (all: p > 0.1; figure S8).

With a few exceptions, aggregate EE activity (per
mass of soil, MB, and SOC) below 20 cm correlated
with the aggregated activity in the upper 20 cm (table
S3). On average, these correlations were strongest for
SOC-normalized EE activities and weakest for MB-
normalized EE activities. As such, aggregate surface
soil AG, CB, and BX activity normalized by MB was
not correlated with respective aggregate activities in
the subsoil (p > 0.05).

3.3. Controls on EE activity throughout the top
meter of soil
Consistently, MB, SOC, and fungi:bacteria were bet-
ter predictors of EE activities per mass of soil than pH
or clay concentrations (table S4). This was generally
consistent among surface soil- and subsoil-only data-
sets except for fungi:bacteria, which was only a strong
predictor in the surface soil (table S5).

Normalized by MB, soil pH was generally not a
significant predictor of the assayed EE activities (table
S6). This pattern was mostly consistent among sur-
face soil- and subsoil-only datasets, with the excep-
tion of surface soil CB (p = 0.023) and subsoil LAP
(p= 0.042, table 2). In contrast, normalized by SOC,
soil pH had a variable effect on EE activities. In the
surface soil, pH was positively correlated with BG
(p = 0.001), CB (p = 0.002), BX (p = 0.042), and
LAP (p= 0.004, table 2). However, in the subsoil, pH
was negatively correlated with CB (p = 0.025) and
AP (p < 0.001), and positively correlated with LAP
(p < 0.001, table 2).

When EE activities were normalized per unit
MB, clay concentrations and fungi:bacteria were gen-
erally correlated positively with EE activities (table
S6). When surface and subsoil EE data were ana-
lyzed separately, the effect of clay concentrations and
fungi:bacteria on MB-normalized EE activities was
more often significant in the subsoil (table 2).

3.4. Relating soil and EE stoichiometries
throughout the topmeter of soil
When considering soils from all depth incre-
ments, only soilC:N and EEC:N were correlated (C:N:
p = 0.013, C:P: p = 0.292, N:P: p = 0.276), but
this negative correlation between soilC:N and EEC:N
was relatively weak (marginal R2 = 0.038; figure
S9). However, using the surface soil-only dataset,
all soil and EE stoichiometries were negatively cor-
related (C:N: p = 0.003, marginal R2 = 0.268; C:P:
p= 0.002, marginal R2 = 0.193; N:P: p= 0.004, mar-
ginalR2= 0.260; figure 3). In the subsoil, these correl-
ations decoupled such that none of the stoichiomet-
ries were significantly correlated (C:N: p= 0.288, C:P:
p = 0.358, N:P: p = 0.282; figure 3). Split amongst
10 cm increment sample depths, negative correlations
between soil and enzyme stoichiometry were gener-
ally significant (p < 0.05) only in the upper soil layers
(figure S10).

4. Discussion

Our continental-scale sampling efforts show that
microbial activity at depth is non-negligible, and the
relative proportion of EE activity (kg−1 soil) at depth
depends predominately on soil development (i.e. soil
order; figure 2(B)). Although replication of each soil
order was relatively small (n = 4–5), this finding was
strikingly consistent despite large gradients in MAT
and MAP for each soil order (e.g. MAP spanned an
order of magnitude for Inceptisols; table 1). Our ana-
lysis shows that climate is an unlikely driver of the rel-
ative vertical distribution of EE activity. Instead, this
phenomenon is likely due to changes in the vertical
distribution of substrate (organic C) and MB among
these soil orders (Batjes 1996; figure 2(B)), which
strongly correlate with EE activity (Sinsabaugh et al
2008; table S4). Hence, we show that SOC and MB
are the strongest controls of EE activities throughout
the soil profile.

We hypothesize that increases in the MB-
normalized EE activities at depth suggest an accu-
mulation of EEs chemically stabilized on mineral and
organic surfaces. While MB-normalized EE activ-
ity is often related to the relative activity of the
microbial community or differences in metabolic
strategies among microbial taxa (Boerner et al 2005),
we alternatively hypothesize that the increase in MB-
normalized EE activity is due to EE stabilization,
namely the sorption of the EEs onto clay or organic
matter particles that impedes EE degradation (Sarkar
et al 1989, Burns et al 2013). Because EE activit-
ies are often measured in a salt-buffered soil slurry
that disrupts the stabilization of EEs (as is the case
in our study), EE activity assays generally measure
both active and stabilized EEs (Burns et al 2013). We
hypothesize that higher subsoil MB-normalized EE
activities is primarily a product of EE stabilization
instead of differences in the metabolic capabilities
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Table 2.Marginal R2 values for mixed-effects models with soil clay concentration, pH, or fungi:bacteria ratio as the sole fixed effect, and
soil pit as a random effect on extracellular enzyme (EE) activity normalized by microbial biomass (MB) or soil organic carbon (SOC)
concentration in surface- (≤20 cm) and sub-soils (>20 cm) across all sites. Key: α-glucosidase (AG), β-glucosidase (BG),
cellobiohydrolase (CB), β-xylosidase (BX), N-acetylglucosamine (NAG), leucine aminopeptidase (LAP), and acid phosphatase (AP)
activity. Bolded values represent a significant (α= 0.05) effect and± signifies the direction of the effect (surface soil: n= 29, subsoil:
n= 114).

MB-normalizeda SOC-normalizedb

EE Clay pH fungi:bacteria Clay pH fungi:bacteria

Surface soil
AG <0.001 0.015 0.016 0.002 0.023 0.016
BG <0.001 0.135 0.013 0.001 +0.366 0.008
CB 0.003 +0.119 0.052 0.002 +0.301 0.002
BX 0.004 0.076 0.011 <0.001 +0.161 −0.095
NAG 0.067 <0.001 +0.298 0.011 0.122 +0.146
LAP 0.004 0.024 0.007 +0.020 +0.142 0.039
AP 0.004 0.024 < 0.001 +0.102 0.009 −0.226

Subsoil
AG +0.097 0.013 0.019 0.019 0.073 0.005
BG 0.063 0.017 +0.171 0.001 0.001 0.014
CB 0.043 0.007 +0.037 <0.001 −0.106 0.001
BX +0.094 0.002 +0.146 0.002 0.035 0.001
NAG 0.020 0.005 +0.080 0.032 0.075 0.006
LAP 0.001 +0.088 0.001 0.009 +0.086 <0.001
AP +0.142 0.081 0.002 0.210 −0.455 0.002

aEnzyme activity per unit microbial biomass
bEnzyme activity per unit soil organic carbon

Figure 3. Correlations between soil and extracellular enzyme (EE) stoichiometry (i.e. the ratio of elements by mass and
extracellular enzyme activities that target these same elements) of carbon (C), nitrogen (N), and phosphorus (P) in surface
(≤20 cm depth) and subsoils (>20 cm depth across all sites). Blue lines show significant (α= 0.05) mixed-effects models of the
relationship between soil and EE stoichiometry (site was used as a random effect; lines were not drawn where correlations were
not significant). Gray ribbons show the standard error of the model. Data points represent individual soil samples (depths within
each pit). Note the scales of the axes differ among plots.

of the microbial community for three reasons. First,
MB-normalized respiration (i.e. microbial metabolic
quotient), which is another measure of the relative

activity of the microbial community, generally does
not increase with depth (Dominy and Haynes 2002,
Fang andMoncrieff 2005; but see Lavahun et al 1996).
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Secondly, the relative abundance of fungi, which pro-
duce more EEs per unit MB than bacteria (Romaní
et al 2006), decreased with depth. Finally, the decoup-
ling of soil stoichiometry and EE stoichiometry at
depth suggests that EE activities are not responsive to
altered nutrient availabilities. Taken together, these
results suggest that the physiochemical process of EE
stabilization, a largely abiotic process, is the major
control of EE activity in the subsoil.

Extracellular enzyme stabilization as a major
mechanism in the subsoil is corroborated by our find-
ing that the influence of clay concentration on MB-
normalized EE activity is higher in the subsoil than
the surface soil (table 2). Furthermore, we may have
underestimated EE activity in high clay soils because
clay can increase the pH optima of EEs 1–2 pH units
(Mclaren and Estermann 1957, Ramírez-Martínez
and Mclaren 1966). Whereas many EEs have native
pH optima between 4.0 and 6.5 (Parham and Deng
2000, Niemi and Vepsäläinen 2005, Turner 2010, Min
et al 2014), an increase of two pH units would be
significantly higher than the pH of our assay buffer
(pH= 5.5). Therefore, we conclude that EE stabiliza-
tion is a major process when microbial activity is rel-
atively low and clay concentrations are relatively high,
which is often the case in subsurface soil layers.

Extracellular enzyme stabilization may be par-
tially responsible for the muted treatment effects on
subsoil EE activity commonly found throughout the
literature (e.g. Kramer et al 2013, Jing et al 2017, Yao
et al 2019). When the stabilized EE pool is signific-
antly greater than the active EE pool, the ability to
detect changes in the active pool is decreased. For
example, if we assume that there is negligible EE
stabilization in the surface soil and that the actual-
ized MB-normalized EE activity in situ is constant
throughout the soil profile, our results show that at
least 29%–71% of the assayed MB-normalized EE
activity at depth can be attributed to stabilized EEs
across our study sites, depending on the EE (equation
(1)).

Z= ((Y−X)/Y) ∗ 100 (1)

X = Average MB-normalized EE activity in sur-
face soil

Y = Average MB-normalized EE activity in sub-
soil

Z=PercentMB-normalized EE activity in subsoil
attributed to stabilized EEs

This equation calculates the difference between
MB-normalized EE activity in surface and subsoil as
a percentage of the MB-normalized EE activity in the
subsoil and, adhering to the aforementioned assump-
tions, represents the percentage of MB-normalized
EE activity in the subsoil attributed to EE stabil-
ization. This calculation likely represents the lower
bound of the estimated stabilized MB-normalized EE
activity because any stabilization in the surface soil

Figure 4. Conceptual model of changing controls on
extracellular enzyme activity (EEA) between surface soil
and subsoil. Solid lines represent fluxes and dashed lines
represent moderating controls. Boxes represent pools or
concentrations, and other shapes represent moderating
variables. Blue parameters represent microbial parameters,
and green boxes represent edaphic variables such as
substrate (including carbon [C] and nutrients) and clay
concentrations. The differences in the size of boxes between
the surface and subsoil represent the relative size of the
pool, and differences in the thickness of arrows between the
surface and subsoil represent the hypothesized relative
magnitude of the flux or control. A portion of the substrate
pool is available to microbial biomass (MB) and is
moderated by clay concentration and active EEA. Substrate
availability moderates substrate demand. Bacterial biomass,
fungal biomass, and substrate demand influence active
EEA. Additionally, our conceptual model incorporates
stabilized EEA (i.e. EEs sorbed onto clay particles), which is
primarily influenced by clay concentrations. At depth, the
impact of clay on substrate availability and stabilized EEA
increases, while the absolute impact of substrates and
microbial properties (i.e. microbial biomass and substrate
demand) decreases.

(X), would increase Z, and the relative proportion
of fungal biomass, which release comparatively more
EEs than bacteria per unit MB (Romaní et al 2006),
decreased with depth. Nevertheless, this implies that
if the stabilized EE pool is resistant to treatment
effects in experiments (e.g. Kramer et al 2013, Jing
et al 2017, Yao et al 2019), the ability to detect sig-
nificant changes in microbial activity at depth using
EE assays is also reduced by at least 29%–71%. In
instances where themagnitude of the treatment effect
is modest, it is unlikely that a significant change in
subsoil EE activity will be detected. However, this
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should not necessarily be interpreted as a lack of
microbial response, and caution should be exercised
in interpreting the effect of a surface manipulation or
treatment on subsoil EE activity.

The discrepancy between soil and EE stoi-
chiometry at depth may also be caused by the
increased discontinuity of substrates in the subsoil
and the reduced ability of the microbial community
to respond to changes in resource availability (Allison
et al 2007). This would prevent subsoil microor-
ganisms altering their EE stoichiometry to different
nutrient conditions. Resource availability is typic-
ally higher in surface soils than in subsoils (Salomé
et al 2010). Recent work in soil enzymography show
that C-degrading EE activities are enriched only 0.5–
2.0 mm from C-rich rhizodeposits (Ma et al 2018).
The EE assays that we and most other researchers
use disrupt the spatial arrangement of EEs and sub-
strates such that our results express bulk EE activities
and bulk resource concentrations, which may not
be representative of more localized heterogeneity in
resources.

Our finding that aggregated surface soil EE activ-
ity (normalized by mass of soil, MB, or SOC) gen-
erally correlates with aggregated activity in the sub-
soil suggests that it may be possible to extrapol-
ate EE measurements at the surface into deeper lay-
ers. Interestingly, MB and SOC, which we demon-
strate correlate with EE activity (per mass of soil),
did not follow these same patterns. It is possible
that high concentrations of EEs in the surface soils
percolated into the subsoil. However, correlation of
surface and deeper EE activities, instead, could be
due to similarities in microbial community compos-
ition throughout the soil profile. Indeed, microbial
community composition assessed by 16S rRNA gene
sequencing of these same soils showed a stronger
effect of soil location than soil depth (Brewer et al
2019). This finding provides further evidence of the
linkages between microbial community composition
and metabolic strategies in soils (e.g. Schnecker et al
2015) and demonstrates association between surface
soils and subsoils.

Discrepancies in the effect of soil pH between
MB-normalized and SOC-normalized EE activities
likely reflects the impact of soil pH on SOC stabil-
ization and how well our bulk MB and SOC meas-
urements correlate with microbial-available SOC.
In numerous ecosystems, low soil pH is associated
with greater SOC stabilization due to an increased
charge of clay minerals and Al- and Fe-oxyhydroxides
resulting in an increase of their sorption capacity
(Rasmussen et al 2018). Therefore, increasing pH
(and decreasing SOC stabilization) likely reflects
greater available SOC as a fraction of total SOC,
which would result in higher SOC-normalized EE
activities. Soil pH was not a significant mediator of

MB-normalized activities possibly because our MB
measurements better reflect the available SOC pool,
given that microbial growth is generally substrate-
limited (Jones et al 2018). These results highlight the
interactions between SOC, MB, and soil stabilization
ofmicrobial substrates and products and provide fur-
ther evidence for the strong effect of soil stabilization
in regulating EE activities throughout the soil profile.

Taken together, our results suggest that the relat-
ive importance of the different controls on EE activ-
ities change with depth. We summarize this in a con-
ceptual model, where the active EE pool is controlled
by microbial EE production (proximately influenced
by MB and resource demand), and the stabilized EE
pool is primarily influenced by EE stabilization onto
clay particles (figure 4). Because MB and resource
demand decrease with depth as C becomes more lim-
iting and clay concentrations increase, the subsoil
total EE pool is maintained because of the relatively
large proportion of stabilized (sorbed on soil colloids)
EEs that decay slower than unstabilized (present in
the bulk soil solution) EEs. Understanding how soil
texture affects EE stabilization and decay dynamics is
a critical knowledge gap in enzyme-explicit microbial
models (e.g. Schimel and Weintraub 2003, Manzoni
et al 2016, Abramoff et al 2017, Sulman et al 2018).
For instance, Schimel et al (2017) estimated EE decay
dynamics in multiple soils by measuring EE activit-
ies for weeks after sterilization. While these soils var-
ied in texture, there did not appear to be a consist-
ent pattern between soil texture and EE decay, pos-
sibly because of changes in other edaphic factors (i.e.
moisture, substrate, etc.). Futurework should system-
atically study EE decay and its relation to multiple
edaphic factors including clay concentration to test
our proposed conceptual model.

Overall, the suite of EEs studied here exhibit
similar patterns with depth across a wide range of
sites and represent a diverse set of biochemical reac-
tions. Hence, we posit that these patterns are robust
and may be applicable to other EEs released by soil
microorganisms. Our findings imply that the vast
majority of EE studies are missing a large portion of
the total EE activity in soils, and that the unmeas-
ured subsoil EE activity varies in its response to envir-
onmental conditions. Nevertheless, if undisturbed,
extrapolating surface soil EE values into the subsoil
may be appropriate. As numerous other experiments
have shown (Blume et al 2002, Taş et al 2014), ignor-
ing subsoils, and exclusively focusing on surface soils,
can limit our ability to understand whole-profile EE-
dynamics and soil C storage.
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Appendix A

In the main text of this study, we use the threshold
of 20 cm to delineate the surface and subsoil. We
provide the following analysis to show that the
same analysis with the same extracellular enzymes
(EEs) (e.g. α-glucosidase [AG], β-glucosidase [BG],
cellobiohydrolase [CB], β-xylosidase [BX], N-
acetylglucosaminidase [NAG], leucine aminopepti-
dase [LAP], and acid phosphatase [AP]) conducted
with a 30 cm threshold to show that the general inter-
pretation remains the same.

Table A1.Mean proportion (and standard error, n= 19) of
extracellular enzyme activity (kg−1 soil) below 30 cm across the
three main soil orders represented in the study. Different
superscript letters represent significant differences among soil
orders for each enzyme (α= 0.05). Key: AG= α-glucosidase,
BG= β-glucosidase, CB= cellobiohydrolase, BX= β-xylosidase,
LAP= leucine aminopeptidase, NAG= N-acetylglucosamine,
AP= acid phosphatase.

Enzyme Inceptisols Mollisols Ultisols

AG 26.2% (7.7) 46.3% (6.4) 52.0% (7.0)
BG 31.0% (4.3)a 54.0% (7.0)b 36.8% (2.3)ab

CB 34.5% (10.3) 47.8% (9.8) 28.7% (4.5)
BX 20.8% (5.1)a 51.7% (5.0)b 38.6% (6.7)ab

NAG 23.6% (7.0)a 52.2% (6.2)b 31.7% (2.5)ab

LAP 41.6% (2.7)ab 61.4% (8.0)b 37.3% (4.3)a

AP 35.7% (4.1) 52.9% (5.1) 44.5% (4.3)

Table A2.Means (and standard errors) of the aggregate EE activity
(mmol kg−1 soil h−1) in the upper 30 cm and below 30 cm across
soil orders. Key: AG= α-glucosidase, BG= β-glucosidase,
CB= cellobiohydrolase, BX= β-xylosidase, LAP= leucine
aminopeptidase, NAG= N-acetylglucosamine, AP= acid
phosphatase; Inceptisol: n= 5, Mollisol: n= 5, Ultisol: n= 4.

Inceptisols Mollisols Ultisols

AG ≤30 cm 19.3 (8.3) 16.1 (4.0) 13.7 (5.2)
>30 cm 10.4 (5.4) 16.0 (5.4) 12.2 (1.6)

BG ≤30 cm 269.1 (94.0) 294.2 (35.6) 143.2 (25.6)
>30 cm 129.2 (53.1) 422.7 (118.4) 82.2 (14.2)

CB ≤30 cm 42.4 (12.1) 64.7 (11.1) 39.5 (9.7)
>30 cm 34.4 (20.2) 88.2 (36.5) 14.2 (2.2)

BX ≤30 cm 60.8 (22.2) 50.4 (7.0) 48.6 (18.8)
>30 cm 20.4 (9.8) 57.6 (10.9) 24.3 (4.4)

NAG ≤30 cm 201.6 (110.5) 114.0 (15.0) 98.3 (21.3)
>30 cm 50.2 (21.9) 138.3 (27.3) 46.1 (12.2)

LAP ≤30 cm 19.3 (2.2) 29.4 (10.0) 30.8 (8.9)
>30 cm 13.5 (0.8) 40.7 (5.9) 16.0 (2.7)

AP ≤30 cm 870.4 (292.3) 524.3 (118.3) 582.5 (149.8)
>30 cm 529.0 (234.3) 588.0 (143.6) 430.2 (64.5)

Table A3. Pearson correlations between the aggregated surface
(≤30 cm) and subsoil (>30 cm) extracellular enzyme (EE)
activities per mass soil, microbial biomass (MB), and soil organic
carbon (SOC) across all sites. Bolded values represent a significant
(α= 0.05) positive correlation. Note: these are correlations of
natural-log transformed data.

EE mass−1 soil mass−1 MB mass−1 SOC

AG 0.766 0.276 0.743
BG 0.767 0.465 0.836
CB 0.717 0.377 0.713
BX 0.469 0.478 0.536
NAG 0.584 0.561 0.876
LAP 0.784 0.763 0.947
AP 0.584 0.671 0.735

Distribution of EE activity is related to
microbial biomass and organic carbon
throughout the topmeter of soil

About 40% of the total-profile EE activity kg−1 soil in
the top meter occurred below 30 cm (figure A1(A)).
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Table A4.Marginal r2 values for mixed-effects models with soil microbial biomass (MB), soil organic carbon (SOC) concentration, clay
concentration, pH, or fungi:bacteria as the sole fixed effect, and soil pit as a random effect on extracellular enzyme (EE) activities (kg−1

soil) in surface (≤30 cm) and subsoils (>30 cm) across all sites. Key: α-glucosidase (AG), β-glucosidase (BG), cellobiohydrolase (CB),
β-xylosidase (BX), N-acetylglucosamine (NAG), leucine aminopeptidase (LAP), acid phosphatase (AP), sum of C-degrading enzymes
(Csum = AG+ BG+ CB+ BX), and sum of nitrogen-mineralizing enzymes (Nsum = NAG+ LAP). Bolded values represent a
significant (α= 0.05) effect and± signifies the direction of the effect (surface soil MB, SOC, fungi:bacteria: n= 38, subsoil MB, SOC,
fungi:bacteria: n= 140, surface soil clay & pH: n= 29, subsoil clay and pH: n= 114).

EE MB (mol PLFA) SOC (%) Clay (%) pH (1:2 w v−1 H2O) fungi:bacteria

Surface soil
Csum +0.232 +0.337 −0.235 0.012 +0.270
AG +0.188 +0.325 −0.060 0.008 +0.260
BG +0.257 +0.326 −0.186 0.020 +0.272
CB +0.264 +0.328 −0.153 0.044 +0.261
BX +0.242 +0.296 −0.109 0.001 +0.166
Nsum +0.397 +0.562 −0.188 < 0.001 +0.507
NAG +0.389 +0.542 −0.159 0.001 +0.496
LAP +0.162 +0.173 −0.225 0.072 +0.159
AP +0.500 +0.611 −0.140 −0.262 +0.323

Subsoil
Csum 0.195 0.149 −0.690 0.026 <0.001
AG 0.030 0.043 < 0.001 0.005 0.002
BG 0.300 0.176 0.054 <0.001 0.003
CB 0.071 0.073 < 0.001 0.018 <0.001
BX 0.257 0.211 0.031 0.016 <0.001
Nsum 0.321 0.240 0.057 <0.001 0.002
NAG 0.259 0.131 0.030 0.050 0.003
LAP 0.050 0.243 0.035 +0.276 0.002
AP 0.307 0.165 0.064 −0.208 0.006

Table A5.Marginal R2 values for mixed-effects models with soil clay concentration, pH, or fungi:bacteria as the sole fixed effect, and soil
pit as a random effect on extracellular enzyme (EE) activity normalized by microbial biomass (MB) or soil organic carbon (SOC)
concentration in top- (≤30 cm) and sub-soils (>30 cm) across all sites. Key: α-glucosidase (AG), β-glucosidase (BG), cellobiohydrolase
(CB), β-xylosidase (BX), N-acetylglucosamine (NAG), leucine aminopeptidase (LAP), and acid phosphatase (AP) activity. Bolded
values represent a significant (α= 0.05) effect and± signifies the direction of the effect (surface soil: n= 29, subsoil: n= 114)..

MB-normalizeda SOC-normalizedb

EE Clay pH fungi:bacteria Clay pH fungi:bacteria

Surface soil
AG 0.016 0.041 0.003 −0.003 <0.001 0.029
BG 0.003 +0.131 0.008 0.021 +0.247 0.004
CB 0.027 +0.191 0.044 0.021 +0.247 0.008
BX 0.011 0.032 0.002 0.041 0.107 0.037
NAG −0.022 0.008 +0.196 0.003 0.050 +0.093
LAP < 0.001 0.022 −0.014 +0.021 +0.118 −0.023
AP < 0.001 0.033 −0.004 +0.091 0.046 −0.092

Subsoil
AG +0.079 0.009 0.009 0.028 0.042 0.001
BG 0.041 0.028 0.163 0.001 0.001 0.020
CB 0.038 0.008 0.034 0.001 0.072 0.003
BX +0.077 < 0.001 0.160 0.001 0.046 0.013
NAG 0.002 < 0.001 0.052 0.027 0.059 0.018
LAP < 0.001 0.086 0.004 0.006 +0.072 < 0.001
AP +0.099 0.080 < 0.001 0.011 −0.493 0.002

aEnzyme activity per unit microbial biomass
bEnzyme activity per unit soil organic carbon

The proportion of the EE activity below 30 cm
differed by the soil order for many of the assayed EEs
(tables A1 and A2). Mollisols had about a 1.5 times
greater percentage of the sum of carbon (C)- and
nitrogen (N)-acquiring EE activity kg−1 soil below
30 cm than Inceptisols (p < 0.050 for all comparis-
ons, figure A1(B)). For AP, differences among soil
orders was only marginally significant (p = 0.057).

Neither mean annual temperature nor precipitation
significantly correlated with the proportion of EE
activity below 30 cm (p > 0.05, figures A2 and A3).

There were also differences in the percentage of
microbial biomass (MB) and soil organic C (SOC)
in the subsoil among soil orders (MB: p < 0.001,
SOC: p= 0.009), withMollisols having an almost two
times greater proportion ofMB and SOCbelow 30 cm
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Figure A1. Percentage of α-glucosidase (AG),
β-glucosidase (BG), cellobiohydrolase (CB), β-xylosidase
(BX), N-acetylglucosamine (NAG), leucine aminopeptidase
(LAP), and acid phosphatase (AP) activity below 30 cm in
the top meter (A); and proportion of soil organic carbon
(SOC), microbial biomass (MB), sum of C-degrading
enzymes (Csum = AG+ BG+ CB+ BX), sum of
nitrogen-mineralizing enzymes (Nsum = NAG+ LAP), and
acid phosphatase (AP) below 30 cm in the top meter of soil
among soil orders (B). Error bars show± one standard
error of the mean (Figure panel A: n= 19; Figure panel B:
Inceptisol: n= 5, Mollisol: n= 5, Ultisol: n= 4).

than Inceptisols (MB: p = 0.003, SOC: p = 0.008;
figure A1(B)). While the proportion of MB below
30 cm was significantly higher in Mollisols compared
to Ultisols (about 1.5 times greater, p < 0.001), the
difference in the proportion of SOC below 30 cm
between Mollisols and Ultisols was only marginally
significant (p= 0.059).

Throughout the top meter, about 75% of MB-
normalized EE activity occurred below 30 cm

(figure A4(A)). However, because the proportion
of MB below 30 cm also varied among soil orders,
the proportion of MB-normalized EE activity below
30 cmwas consistent among soil orders for all assayed
EEs (AG: p = 0.251, BG: p = 0.334, CB: p = 0.332,
BX: p = 0.367, NAG: p = 0.081, LAP: p = 0.670, AP:
p= 0.154; figure A4(A)). Similar to the proportion of
MB-normalized EE activity below 30 cm, the propor-
tion of EE normalized by SOC below 30 cm averaged
about 70% and did not differ among soil orders (all:
p > 0.1; figure A5).

With a few exceptions, aggregate EE activity
(per mass of soil, MB, and SOC) below 30 cm cor-
related with the aggregated activity in the upper
30 cm (table A3). On average, these correlations
were strongest for SOC-normalized EE activit-
ies and weakest for MB-normalized EE actives.
As such, aggregate surface soil AG, BG, and CB,
activity normalized by MB was not correlated
with respective aggregate activities in the subsoil
(p > 0.05).

Controls on EE activity throughout the
topmeter of soil

While EE activities (kg−1 soil) were always correlated
with MB and SOC for both the surface and subsoil
datasets, clay concentration and the ratio of fungi-
to-bacteria (fungi:bacteria) were only correlated with
EE activities in the surface soil (table A4). With the
exception of surface- and subsoil AP, which posit-
ively correlated with pH, and subsoil LAP, which neg-
atively correlated with soil pH, pH was not a signi-
ficant predictor of EE activities (table A4). Normal-
ized by SOC or MB, soil pH had a variable effect on
EE activities (table A5). In the surface soil, pH cor-
related positively with BG and CB regardless of the
normalization, while pH positively correlated with

LAP only when normalized by SOC. In the sub-
soil soil pH positively correlated with LAP and neg-

atively correlated with AP only when normalized
by SOC.

Relating soil and EE stoichiometries
throughout the topmeter of soil

Using the surface soil-only dataset, all soil and

EE stoichiometries were negatively correlated (C:N:

p = 0.004, marginal R2 = 0.201; C:P: p = 0.002,
marginal R2 = 0.193; N:P: p = 0.028, marginal
R2 = 0.146; figure A6). In the subsoil, these correl-
ations decoupled such that none of the stoichiomet-
ries were significantly correlated (C:N: p= 0.257, C:P:
p= 0.409, N:P: p= 0.385; figure A6).
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Figure A2. Relationship between mean annual temperature (MAT) and the proportion of α-glucosidase (AG), β-glucosidase
(BG), β-xylosidase (BX), cellobiohydrolase (CB), N-acetylglucosaminidase (NAG), leucine aminopeptidase (LAP), and acid
phosphatase (AP) below 30 cm across all sites. Line represents the best-fit linear regression, and gray ribbon represents the
standard error of the regression.
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Figure A3. Relationship between mean annual precipitation (MAP) and the proportion of α-glucosidase (AG), β-glucosidase
(BG), β-xylosidase (BX), cellobiohydrolase (CB), N-acetylglucosaminidase (NAG), leucine aminopeptidase (LAP), and acid
phosphatase (AP) below 30 cm across all sites. Line represents the best-fit linear regression, and gray ribbon represents the
standard error of the regression. Note: x-axis (i.e. MAP) is on log10 scale.
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Figure A4. Proportion of soil microbial biomass-normalized extracellular enzyme activity below 30 cm in the top meter for
α-glucosidase (AG), β-glucosidase (BG), cellobiohydrolase (CB), β-xylosidase (BX), N-acetylglucosamine (NAG), leucine
aminopeptidase (LAP), and acid phosphatase (AP) across (A) and among (B) soil orders. Error bars show standard error of the
mean (Figure panel A: n= 19; Figure panel B: Inceptisol: n= 5, Mollisol: n= 5, Ultisol: n= 4).
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Figure A5. Proportion of extracellular enzyme activity (kg−1 soil organic carbon [C]) below 30 cm in the top meter for
α-glucosidase (AG), β-glucosidase (BG), cellobiohydrolase (CB), β-xylosidase (BX), N-acetylglucosamine (NAG), leucine
aminopeptidase (LAP), and acid phosphatase (AP) across (A) and among (B) soil orders. Error bars show standard error of the
mean (Figure panel A: n= 19; Figure panel B: Inceptisol: n= 5, Mollisol: n= 5, Ultisol: n= 4).
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Figure A6. Correlations between soil and extracellular enzyme (EE) stoichiometry (i.e. the ratio of elements by mass and
extracellular enzyme activities that target these same elements) of carbon (C), nitrogen (N), and phosphorus (P) in surface
(≤30 cm depth) and subsoils (>30 cm depth across all sites). Blue lines show significant (α= 0.05) mixed-effects models of the
relationship between soil and EE stoichiometry (site was used as a random effect; lines were not drawn where correlations were
not significant). Gray ribbons show the standard error of the model. Data points represent individual soil samples (depths within
each pit). Note the scales of both axes differ among plots.
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