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Abstract—Residential electric load shaping is often implemented 
as infrequent, utility-initiated, short-duration deferral of peak 
demand through direct load control. In contrast, investigated 
herein is the potential for frequent, transactive, intraday, 
consumer-configurable load shaping for storage-capable 
thermostatically controlled electric loads (TCLs) including 
refrigerators, freezers, and hot water heaters. Unique to this 
study are 28 months of 15-minute-interval observations of usage 
in 101 homes in the Pacific Northwest United States that specify 
start, duration, and usage patterns of approximately 25 
submetered loads per home. The magnitudes of the load shift 
from voluntarily-participating TCL appliances are aggregated 
to form hourly upper and lower load-shaping limits for the 
coordination of electrical generation, transmission, distribution, 
storage, and demand. Empirical data are statistically analyzed 
to define metrics that help quantify load-shaping opportunities. 

Index Terms—demand response, load management, load 
modeling, price response, transactive energy. 

I. INTRODUCTION 
To minimize the cost of generation, transmission, and 

distribution, increasing numbers of smart home Internet of 
things can transition from autonomous operation to 
orchestrated operation. Instead of local start and stop control, 
thermostatically controlled electric loads (TCLs) such as 
refrigerators, freezers, and hot water heaters can be networked 
to efficiently harmonize with fixed and mobile (vehicle) 
batteries and solar photovoltaic panels to save consumers 
money by continuously updating and implementing least-cost 
operating strategies. In this fashion, instead of electrical 
supply meeting demand, incentive signals become 
increasingly important in encouraging demand to help meet 
supply, thereby reducing greenhouse gas emissions and the 
curtailment of clean energy.  

Despite ever-increasing complexity, the evolving electric 

grid is highly reliable and capable [1]. To accommodate vast 
spatiotemporal changes in net load, expensive marginal 
generation and reserve capacity are dispatched as needed. Due 
to declining costs, variable and uncertain renewable energy 
sources (RES) are becoming more prevalent and will likely 
dominate worldwide electricity supply [2]. Several states and 
nations aspire to high penetrations of RES—e.g., as high as 
100% by 2050 [3]. Because RES are often much less 
dispatchable, a significant challenge in maximizing the use of 
clean energy is the continuous shaping of electrical load 
among all users via demand response strategies, including 
real-time pricing. This load shaping supports efficient grid 
operation and can be unnoticeable to consumers while 
providing cost savings to all supply and end-use stakeholders.  

A recent review of this research area [4] suggests the 
following goals: (1) identify state-of-the-art, system-level 
price response models involving time-elastic end uses in 
residential buildings, (2) identify price-response-modeling 
gaps, (3) identify price-response human behavioral issues, and 
(4) provide recommendations for future price-response 
research. The review primarily reveals an overall scarcity of 
system-level models and a plethora of subsystem models with 
limited or unspecified spatiotemporal resolutions. Although 
models of the impact of demand response on end-to-end 
system performance have been developed, the extent to which 
existing models provide comprehensive answers in a rapidly 
evolving grid is debatable. The review suggests that further 
empirical, bottom-up, end-to-end system models are needed to 
simulate and optimize the impact of demand response on 
maximizing the efficient use of RES. Reference [5] suggested 
that demand response measures will no longer need to simply 
decrease the electric load during easily predictable, high-price, 
load-peak periods and/or increase it during low-price, load-
valley periods. In the future, significantly less predictable and 
more volatile net load after renewable generation (i.e., the 
consumed load less the generation from RES [6], [7]) will 
need to be smoothed by demand response. As such, the 
novelty of this work is the preliminary evaluation of empirical 
(in-home metering) measurements as potential seeds for the 

This work is supported in part by the U.S Department of Energy (DOE) 
under Contract No. DE-AC36-08GO28308 with the National Renewable 
Energy Laboratory. Funding provided by the DOE Office of Energy 
Efficiency and Renewable Energy Building Energy Technologies Program. 
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future creation and scaling of realistic residential demand 
profiles to help quantify the demand response impact of 
automatic residential load shaping (ARLS) on the grid. 

The following sections describe continuous intra-hour 
ARLS, wherein each individual appliance may autonomously 
execute different on and off set points based on a two-state 
price of electricity. When the price of electricity is high, for 
example, ARLS models the temperature of a domestic hot 
water (DHW) heater as further decaying before starting 
electric resistance heating. Correspondingly, when the price of 
electricity is low, ARLS models heat the water to a higher 
temperature. Unlike direct load control, in ARLS it is 
imagined that a consumer can login to their appliance(s) to 
increase or decrease the impact of pricing. 

II. RESIDENTIAL BUILDING STOCK ANALYSIS 
All data in this study come from the Northwest Energy 

Efficiency Alliance, Residential Building Stock Analysis 
(NEEA RBSA), based on field data from a representative 
random sample of existing homes [8], [9]. The NEEA RBSA 
encompasses 28 months of 15-minute observations in single-
family homes in the Pacific Northwest of the United States. In 
addition to whole-building electricity use, there are typically 
25 submetered loads per home, including various types of 
heating, ventilating, and air-conditioning (HVAC) systems; 
appliances; lighting; entertainment; home office; and plug 
loads. The Pacific Northwest had little precedent for a 
residential field study of this size and nature; thus, it was a 
new standard for residential characterization studies in the 
region. The 2009 International Energy Conservation Code 
(IECC) classifies NEEA RBSA metered homes in IECC 
climate zones 4, 5, and 6 [10]. 

A. NEEA RBSA Reports 
The first NEEA RBSA report [8] contains attributes of 

1,400 single-family homes, as shown in Fig. 1. In addition to 
quantitative building age and envelope measurements, a cross 
section of age and type of appliances is included. 

 
Figure 1.  Homes in 2011 NEEA RBSA Attribute report include all public 

and investor-owned utilities in WA, OR, ID and Western MT. 

The second NEEA RBSA report [9] covers a subset of 101 
homes and submetered loads therein, which are the data used 

in this study. The TCL appliance data reveal how each device 
could act in a demand response capability, and the 15-minute 
sampling interval allows for the creation of detailed load 
shapes. 

B. Overview of NEEA RBSA Submetered Data 
The NEEA RBSA submetered data reflect diversity among 

homes, appliances, occupancy patterns, hour of day, day of 
week, seasons, holidays, shopping cycles, home chore cycles, 
vacations, etc. Vigilance around data hygiene is critical during 
extraction, transformation, and loading of data. Some data are 
out of range (positive and negative), and others are missing; 
data issues bring into question completeness of acquisition, 
accuracy of processing, and the possibility that an appliance 
was set back or turned off for hours, days, weeks, or months. 
Appendix A contains sample data records from one home. 

The bar charts in Fig. 2 show when the appliance is turned 
on in black and off in white. Individual bar width is 15 
minutes, and the height of each bar is the kilowatt-hours of 
energy used in that 15 minutes. A large black region indicates 
a long run time—for example, a refrigerator cooling down 
after a grocery refill.  

 
Figure 2.  Load profile of TCL appliances on July 3–4, 2012, showing kWh 
per each of the 192 15-minute intervals. Note the variability in energy usage 
over time: (a) two refrigerators; (b) two freezers, one with a long run time; 
and (c) two DHW heaters showing typically low run times. Notes: House 

numbers appear after appliance names. The y-axes auto-scale changes reflect 
load diversity within and among houses and appliance types. 

III. METHODOLOGY  
For all types of TCL appliances, a simple generic 

equipment operational model was used to accurately represent 
diversity among start time, frequency of use, duration of use, 
load, energy consumption, and weekday vs. weekend 
operation. To create load-shaping opportunity estimates at 15-
minute intervals throughout the day, NEEA RBSA TCL 
appliances were assumed to have a future ability to 
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automatically execute consumer choices during periods of 
high and low energy costs. In contrast, although dishwashers, 
clothes washers, clothes dryers, etc., are included in NEEA 
RBSA data, these are excluded because pricing alone may not 
automate their participation; humans usually initiate the 
start/stop of such discretionary-start appliances.  

A. Modeling NEEA RBSA Data  
To preserve the diversity in the NEEA RBSA data set, each 
TCL appliance is viewed as a contributor to a desired load 
increase or decrease based on TCL ON or OFF state over 
time. For example, assuming contiguous nonoverlapping 
temperature control set points for a DHW heater, as shown in 
Table I, the ON or OFF state of each appliance is used to 
calculate the load increase or decrease opportunity at any 
point in time given an electricity price change. A second 
assumption is that the TCL appliance is always operating 
within its control differential (dead band), meaning that the 
water temperature is within the ON and OFF limits and never 
in the “Not Available” region of Table I.  

TABLE I.  SAMPLE DHW CONTIGUOUS NONOVERLAPPING SET POINTS 

Temp. (°F) High $/kWh Low $/kWh 
130 Always OFF Turn OFF 
129 Always OFF Stay ON 
128 Always OFF Stay ON 
127 Always OFF Stay ON 
126 Always OFF Stay ON 
125 Turn OFF Turn ON 
124 Stay ON Not Available 
123 Stay ON Not Available 
122 Stay ON Not Available 
121 Stay ON Not Available 
120 Turn ON Not Available 

119 and below Not Available Not Available 
Appendix B contains a simple DHW heater model of contiguous nonoverlapping set points. 

 

Whenever the price of electricity changes, from high to 
low or low to high, TCL appliances react as described in the 
DHW example above and in Fig. 3. This logic is applied to 
every appliance to create a time series of “Load Add” and 
“Load Shed” opportunities, which are summed for a single 
house or group of houses. 

 
Figure 3.  Two-state TCL model showing load additon (in red) or load 

shedding (in green), given high-to-low or low-to-high pricing changes. One 
dollar sign indicates low price; two dollar signs indicate high price. 

At any point in time, an appliance is either ON or OFF. 
Looking ahead over n time steps at an individual appliance’s 
load over time, as shown in Fig. 2, a maximum load, Lmax, can 
be determined. Likewise, at any time, t, the logic sequences 
shown in Fig 3. can be evaluated to calculate the load add or 

shed opportunity, OP, based on the aforementioned 
assumptions. Given a high price of electricity, if an appliance 
is OFF, it is incentivized to turn ON with a low price of 
electricity, and the turning ON results in a load addition, Ladd, 
equal to Lmax, as in: 

 𝐿"##	
"%%&'"()* = 𝑂𝑃"##	&."#

/00	"%%&'"()* = 𝐿123	(5,57()
"%%&'"()*  (1) 

Given a low price of electricity, if an appliance is ON with 
a current load, Lt, it is incentivized to turn OFF with a high 
price of electricity, and the turning OFF results in a load 
shedding, Lshed, equal to negative Lt, as in: 

 𝐿9:*#	
"%%&'"()* = 𝑂𝑃9:*#	&."#

/;	"%%&'"()* = −𝐿5
"%%&'"()* (2) 

In this model, if a partial load is present, then no load 
addition is applied, even though Lt is less than Lmax.  

Summing among TCL appliances in a specific home yields 
upper and lower limits of aggregate load that may be added or 
shed as in (3) and (4): 

 𝐿"##	:.=* = 𝐿>?@	"%%&'"()*9 "##	
"%%&'"()* (3) 

 𝐿9:*#	:.=* = 𝐿>?@	"%%&'"()*9 9:*#	
"%%&'"()* (4) 

Summing among a group of homes yields an aggregate 
load that may be added or shed as in (5) and (6): 

 𝐿"##	:.=*9 = 𝐿:.=*9 "##	
:.=* (5) 

 𝐿9:*#	:.=*9 = 𝐿:.=*9 9:*#	
:.=* (6) 

To simplify the above, the concept of a duty cycle is used 
to describe the ON and OFF behavior of a TCL appliance over 
time. Duty cycle, DC, describes the behavior of a device that 
operates intermittently rather than continuously; it is the 
fraction of time a device is ON divided by the total time, as in: 

 𝐷𝐶5,57( 	= (𝑂𝑁	𝑡𝑖𝑚𝑒)5,57(	/	(𝑡𝑜𝑡𝑎𝑙	𝑡𝑖𝑚𝑒)5,57( (7) 

Over time, an appliance with a low duty cycle typically 
has a low opportunity to shed load and high opportunity to add 
load. Conversely, an appliance with a high duty cycle 
typically has a high opportunity to shed load and a low 
opportunity to add load. These relationships are shown in (8) 
and (9): 

 𝑂𝑃5,57(
"%%&'"()*	"##	&."# = 1 − 𝐷𝐶5,57(

"%%&'"()* (8) 

 𝑂𝑃5,57(
"%%&'"()*	9:*#	&."# = 𝐷𝐶5,57(

"%%&'"()* (9) 

The opportunity to add and shed load may be summed 
among TCL appliances and homes as in (3), (4), (5), and (6) to 
yield the instantaneous aggregate upward and downward load-
shaping opportunity. It is critically important to note that 
following the instantaneous change, the future operation of a 

OFF ON

$	Load
Add

$$	Load
Shed
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TCL appliance cannot be controlled continuously. Out of 
scope of this paper is determining the resulting load add and 
shed opportunities after a price change, wherein the 
subsequent load shaping opportunities depend on the updated 
state of each individual TCL appliance that participated in the 
load increase or decrease event [11].  

B. Scaling Up NEEA RBSA Data  
Diverse profiles from tens to millions of homes are 

required as part of realistic joint optimization of generation, 
transmission, distribution, storage, and load. In future scaling 
up of NEEA RBSA data, consideration must be given to 
preserving diversity such as consumer usage patterns and 
types and ages of appliances. This is necessary because neither 
the observed nor predicted demand can be adequately 
represented by a simple time-series average of all user 
demands. In scaling up NEEA RBSA loads, the goal is not to 
find singular expected values at points in time but to specify a 
realistic probability distribution function of every appliance 
load over time. By specifying a stochastic model over time, 
the richness of individual NEEA RBSA TCL appliances is 
preserved so that models and simulations most accurately 
reflect future electrical demand along with corresponding load 
increase and reduction opportunities. 

As stated by [12], traditional stochastic methods that are 
crafted to capture measures such as mean, variance, and skew 
may fail to reproduce significant spectral properties of the 
observed data. This failure to reproduce spectral properties can 
lead to inaccurate estimation of load. As such, a wavelet auto-
regressive method (WARM) is being developed to capture and 
recreate nonstationary and quasi-periodic behavior involving 
hour of day, day of week, grocery shopping cycles, timing of 
house chores, seasonal weather patterns, family vacations, and 
varying numbers of occupants.  

As a first step, the NEEA RBSA TCL appliance data is 
decomposed via continuous wavelet transform, and 
components are identified based on peaks in the global (time-
averaged) wavelet spectrum, as shown in Fig. 4. The approach 
decomposes a time series into various components at several 
frequencies via the wavelet transform, thus giving the power 
(or variance) of the original data in the frequency and time 
domains. The continuous wavelet transform for some time 
series, xt, is defined as: 

 X a, b = aP
Q
R χT

7U
PU φ∗ TPX

2
dt (10) 

where a is a scale parameter, b is the shift parameter, and j* is 
the wavelet function [13]. The (*) denotes a complex 
conjugate. The Morlet wavelet is chosen, given by: 

 𝜑 𝜂 = 𝜋P^/_ exp 𝑖𝜔d𝜂 exp	(− eR

f
)	 (11) 

where w0 and h are nondimensional frequency and time 
parameters, respectively [14]. By substituting 5Pg

"
 for h in 

(11), the shifted and dilated form of the mother wavelet is 
given [14]–[17]. Equation (10) can be thought of as a series of 
convolutions between the wavelet function (11) and the 

original time series at all points for a variety of wavelet scales. 
To simplify the process, all convolutions can be completed 
simultaneously at a given scale by the convolution theorem. 
By doing so, the wavelet transform is defined as the inverse 
Fourier transform of the product of the data and the wave 
function in the Fourier space. A contour plot of the wavelet 
transform gives the wavelet spectrum at different frequencies 
over time, and a global wavelet spectrum shows average 
variance strength at each frequency across time. Details on 
wavelet-based time-series estimation can be found in [14]. 

 
Figure 4.  Example diagram of wavelet decomposition as a first step in the 

enhanced WARM. Wavelets are localized in both time and frequency 
whereas the standard Fourier transform is only localized in frequency. 

IV. RESULTS 
In the NEEA RBSA study, 55% of homes have electric 

DHW heating, and there is an average of 1.3 refrigerators per 
home plus 0.53 separate freezers per home. Average energy 
usage by TCL appliance for period 2Q2012–1Q2013 
(inclusive) is shown in Table II, wherein EB is the error bound 
on the mean, N is the number of appliances, and DC is the 
duty cycle. 
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TABLE II.  TCL ANNUAL ENERGY USAGE AND DUTY CYCLE 

Appliance Type Mean 
(kWh/yr) EB N DC 

Electric DHW 3,043 212 44 22% 
Freezer 609 60 46 51% 
Primary refrigerator 604 25 99 75% 
Secondary refrigerator 600 110 21 56% 

Error bounds (EBs) for Mean at the 90% confidence level. 

 

For every 15-minute interval, (1) and (2) are evaluated to 
calculate the ability of each specific TCL appliance to add and 
shed load using a look-ahead interval of 24-hours for Lmax. 
Likewise, for each specific home, results are summed among 
TCL appliances using (3) and (4) to calculate the upper and 
lower limits of load shaping, as shown in Fig. 5 and Table III 
(six-hours chosen for visual clarity of chart). 

 
Figure 5.  Load profile of NEEA RBSA home 13019 at 15-minute intervals. 
The black line is the whole-building electric service, the portion leading up to 

the red line is the instantaneous load that can be added, and the portion 
descending to the green line is the instantaneous load that can be shed. Loads 
of individual TCL appliances in the home appear at the bottom of the graph. 

TABLE III.  LOAD-SHAPING OPPORTUNITIES FOR HOME 13019 BASED 
ON 15-MINUTE INTERVALS DURING FIRST SIX HOURS OF APRIL 1, 2012 

Opportunity Max Min Mean 

Increase load [kW] 0.800 0.360 0.587 

Decrease load [kW] 0.636 0.302 0.442 

 

To evaluate load shaping among groups of homes, results 
from individual homes are summed using (5) and (6). 
Summing whole-building electric service as well as the upper 
and lower limits, among the 14 NEEA RBSA homes 
exhibiting best data quality, yields an aggregate load that may 
be added or shed at any point in time, as shown in Fig. 6.  

 

Figure 6.  Aggregate load profile of 14 NEEA RBSA homes at 15-minute 
inervals. The black line is the sum of all electric use, the portion leading up 

to the red line is the possible load that can be added, and the portion 
descending to the green line is the possible load that can be shed. The red 

spikes indicate opportunities to add load, for example, following completion 
of DHW heating that resulted from early morning widespread synchronized 

use of hot water. Mid-day and evening opportunities are also evident. 

Summing across multiple houses shows that significantly 
more load can be added than shed at any point in time. This is 
mostly attributable to a DHW heater’s low duty cycle (Table 
II) and high instantaneous load, which is on the order of 10 to 
40 times greater than that of refrigerators and freezers (Fig. 2). 

The wavelet visualization for a single DHW heater shown 
in Fig. 7 is based on 2 years of 15-minute intervals from 
2Q2012 through 1Q2014 inclusive. In Figs. 7–9, the left plot 
is the wavelet local power spectrum, the x-axis is the wavelet 
location in time, and the y-axis is the wavelet period in years. 
The blue color indicates the lower power spectra, the red color 
the higher, and the arch is the cone of influence beyond which 
there is limited data confidence. The companion graph at right 
is the global power spectrum; the faint dashed and solid gray 
lines at the 90% and 95% confidence levels are from red noise 
power spectrum weighted toward low frequencies with no 
single preferred period. 

 
Figure 7.   Plots for the DHW heater in NEEA RBSA home 22284. Red 

areas indicate periods of greater hot water usage. Red in the 24-hour period 
indicates daily usage. In the right graph, the peak next the arrow corresponds 

to sustained usage on left graph. Lack of red areas in the 24-hour period at 
far left indicates that less hot water was used on a daily basis in 2Q2012. 

The wavelet visualization for a single refrigerator shown in 
Fig. 8 is based on 1 year of 15-minute interval data from 
2Q2012 through 1Q2013 inclusive. 

 
Figure 8.  Plots for the refrigerator in NEEA RBSA home 23049. Red areas 
indicate greater load around 24-hour periods, particularly during the summer, 

and also around Christmas (note the red vertical spike). As expected, the 
refrigerator turns on more often and at higher loads during the summer. 
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The wavelet visualization for a single freezer shown in 
Fig. 9 is based on 1 year of 15-minute interval data from 
2Q2012 through 1Q2013 inclusive. 

 
Figure 9.  Plots for the freezer in NEEA RBSA home 21143. Two large red 
areas within the cone of influence indicate high-load, long run times in July 
and November. The increased red areas and slight sinusoidal dip (at left) in 
the 24 to 48-hour period together indicate that the freezer load increases at 
shorter intervals in the summer. The solid green period across the bottom 

indicates that the freezer has a unity duty cyle (i.e., is always on). Note that 
when compared over similar periods, a benefit of wavelet visualizations is 

that they convey more comprehensive information than the barplots in Fig. 2. 

V. CONCLUSIONS AND OUTLOOK FOR FUTURE WORK 
Using empirical data, an ARLS model allowing for 

consumer-configurable preferences predicts the upper and 
lower opportunity limits of TCL shaping for individual and 
groups of NEEA RBSA single-family homes in the Pacific 
Northwest of the United States. Empirical data were explored, 
resulting in several interesting statistics and features, including 
the simple relationship between duty cycle and opportunity to 
add or shed load. 

Wavelet analysis was applied to capture and view diverse 
spectral components of load related to conditions such as type 
and age of homes and appliances, potential location of 
appliances in conditioned vs. nonconditioned spaces, 
occupancy patterns, hour of day, day of week, seasons, 
holidays, shopping cycles, home chore cycles and vacations.  

Near-term work will continue the development of the 
generic equipment operational model and WARM simulation 
to faithfully represent NEEA RBSA TCL appliance behavior. 
The ARLS model will be expanded beyond the estimation of 
load increase/decrease opportunities to include estimations of 
TCL appliance future states immediately following a change 
in price. 

In parallel, long-term work will scale the ARLS model to 
thousands and millions of homes while including load-shaping 
contributions from grid-friendly automation that: (1) manages 
optimal charging and discharging of fixed and mobile 
(vehicle) batteries based on price of electricity, expected 
loads, and driving distance; (2) curtails distributed solar 
photovoltaic generation in response to negative electricity 
pricing intended to raise net load; and (3) time-shifts HVAC 
operation to take advantage of the specific heat capacity of 
residential furnishings and building envelopes [18] for all 
IECC zones [10]. 

The future ARLS model will include a broad set of 
dispatchable loads for predicting the upper and lower limits of 
load shaping for all homes in the United States. The 
culminating phases of this work will: (1) include classification 
and clustering of individual residential demand and (2) 
leverage extensive National Renewable Energy Laboratory 
electric grid models to assess the value of ARLS in the joint 
optimization of distribution, transmission, RES and 
conventional generation, storage, and load, while using 
buildings as sensors in optimizing weather and load forecasts. 
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VII. APPENDIX A: THREE SAMPLE NEEA RBSA DATA RECORDS FOR ONE HOME (SITEID 24808). 
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VIII. APPENDIX B: SIMPLE DHW HEATER MODEL WITH CONTIGUOUS NONOVERLAPPING SET POINTS 
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