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Prior research has shown that during development, there is increased segregation
between, and increased integration within, prototypical resting-state functional brain
networks. Functional networks are typically defined by static functional connectivity over
extended periods of rest. However, little is known about how time-varying properties of
functional networks change with age. Likewise, a comparison of standard approaches
to functional connectivity may provide a nuanced view of how network integration and
segregation are reflected across the lifespan. Therefore, this exploratory study evaluated
common approaches to static and dynamic functional network connectivity in a publicly
available dataset of subjects ranging from 8 to 75 years of age. Analyses evaluated
relationships between age and static resting-state functional connectivity, variability
(standard deviation) of connectivity, and mean dwell time of functional network states
defined by recurring patterns of whole-brain connectivity. Results showed that older age
was associated with decreased static connectivity between nodes of different canonical
networks, particularly between the visual system and nodes in other networks. Age was
not significantly related to variability of connectivity. Mean dwell time of a network state
reflecting high connectivity between visual regions decreased with age, but older age
was also associated with increased mean dwell time of a network state reflecting high
connectivity within and between canonical sensorimotor and visual networks. Results
support a model of increased network segregation over the lifespan and also highlight
potential pathways of top-down regulation among networks.

Keywords: development, resting state networks, functional connectivity, brain dynamics, brain imaging

INTRODUCTION

The organization of the human brain includes distinct functional brain networks that are implicated
in different cognitive functions (Fox et al., 2005). Prior work has demonstrated that resting-
state functional connectivity (rsFC) can be used to identify several canonical brain networks that
are reliably observed within and between individual subjects (Damoiseaux et al., 2006). Studies
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of functional neurodevelopment have since examined how the
brain’s functional connections change over the course of aging,
as these changes may be especially relevant to psychopathology,
neurodegeneration, or normative cognitive decline.

Two dimensions of rsFC may contain complementary
information about intrinsic properties of network functioning:
static rsFC and dynamic rsFC. The most basic distinction
between these terms is that static rsFC refers to properties that
do not vary over time, whereas dynamic rsFC refers to properties
that vary over time or capture variance in static rsFC over time
(although other definitions of dynamic rsFC reserve this term
only for properties that capture the temporal sequence of data-
points; see Liégeois et al., 2017). Although there is considerable
debate regarding how best to disentangle meaningful dynamic
signal from measurement noise (Hindriks et al., 2016), dynamic
properties may represent the processes by which network form,
dissolve, and interact with one another over time (Hutchison
et al., 2013; Kaiser et al., 2016).

Within the static rsFC literature, prior research has suggested
a pattern of neurodevelopment characterized by network
“segregation,” wherein short-range connections between
separable canonical resting-state networks (RSNs) become
less coordinated, as well as network “integration,” wherein
long-range connections within canonical RSNs tend to become
more coordinated, particularly along the anterior-posterior
axis (Dosenbach et al., 2010; Grayson and Fair, 2017). While
adolescence has been identified as a crucial period concerning
the development of functional integration and segregation
(Stevens, 2016), functional segregation appears to decrease later
in adulthood (Betzel et al., 2014; Chan et al., 2014).

In addition to the general patterns of RSN development
described above, changes in particular RSNs have been
highlighted in prior research on neurodevelopment, particularly
among nodes of the prototypical default-mode (DN),
frontoparietal (FN), salience (SN), and sensory networks.
Broadly, static connectivity between nodes of different RSNs
appears to decrease with aging, with some of the most
pronounced changes involve sensorimotor regions and the
precuneus (a structure spanning the FN and DN) (Allen et al.,
2011). However, many changes in static connectivity have been
highlighted within specific developmental periods. For instance,
while segregation of sensorimotor regions appears to occur in
childhood, segregation of task-positive networks such as the FN
and SN continues throughout the transition from childhood into
adulthood (Gu et al., 2015). Convergent findings further indicate
that static connectivity specifically within the DN decreases
over the course of advanced aging (Andrews-Hanna et al., 2007;
Damoiseaux et al., 2007; Koch et al., 2010), whereas connectivity
among regions of the DN, FN, and SN appears to strengthen
from childhood into adulthood (Uddin et al., 2011; Gu et al.,
2015), and then decrease in strength from early to late adulthood
(He et al., 2013).

The extant literature relating development to dynamic
rsFC within and between prototypical RSNs is far more
limited, but early studies have provided insight into emerging
directions in the field. For instance, while functional networks
are generally preserved across the lifespan, young adults

compared with children tend to show higher variability in
rsFC, but lower variability in task-related functional connectivity
during cognitive tasks (Hutchison and Morton, 2015). One
interpretation is that these developmental changes in rsFC
variability reflect either continued exploration of various brain
states during early development (Deco et al., 2013), or the
capacity for adult brains to suppress dynamic fluctuations when
engaging in a cognitive task (Cohen, 2018). Interestingly, prior
evidence also indicates that older adults tend to exhibit weaker
connections throughout the brain, but this difference is primarily
attributable to decreases in absolute rsFC rather than increases in
rsFC variability (Tian et al., 2018). As these studies demonstrate,
dynamic measures of functional connectivity can provide unique
information about neurodevelopment over and above static
connectivity measures.

Although research into neurodevelopment of functional
networks has revealed promising insights, a number of important
gaps remain. First, few prior studies have considered rsFC
across the lifespan, instead tending to focus on specific periods
of development. By leveraging data across a range of ages
from childhood through late adulthood, it may be possible to
detect age-related differences that occur on a longer timescale.
Likewise, using such an approach may also highlight specific
developmental periods most strongly associated with these
changes. Second, the majority of rsFC studies focus on static or
dynamic connectivity, rather than integrating multiple analytical
methods into a common framework. As a result, the overlapping
and distinct contributions of static and dynamic rsFC strategies
remain largely understudied.

This exploratory project aimed to evaluate the relationships
between age and static and dynamic rsFC in healthy individuals
from the publicly available Human Connectome Project (HCP)
Lifespan dataset (Van Essen et al., 2013). Strengths of this
dataset include the broad age range, the high quality of data
acquisition (functional neuroimaging data were collected at
high temporal resolution, supporting dynamic analytic methods),
and public availability of data (supporting open science goals
and replication). Because data were drawn from an existing
dataset, there are also some limitations (addressed further in
the Discussion). Therefore, we emphasize the exploratory nature
of these analyses. Analyses used complementary methods for
interrogating rsFC: static rsFC, which we define as average
connectivity across the scans, as well as dynamic rsFC, which
we define as metrics of connectivity stability over time (e.g.,
variability in connectivity, persistence of network connectivity
“states”). This study specifically aimed to compare the effects
of age on functional network properties across these validated
approaches. In light of the above discussion, we predicted
that (1) older age would be related to higher static rsFC
among regions within canonical RSNs and (2) older age would
be related to lower static rsFC among regions in different
canonical RSNs, particularly along the anterior-posterior axis.
In addition, we hypothesized that (3) older age would be
related to differences in rsFC variability and functional network
dwell time. The latter dynamic hypotheses do not predict the
direction of effects, because these methods are relatively new and
there is mixed evidence regarding the direction of age-related
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effects on network dynamics. Because sex (Biswal et al., 2010;
Allen et al., 2011; Zhang et al., 2018) and working memory
task performance (Damoiseaux et al., 2007; Sala-Llonch et al.,
2012) have been previously implicated in studies of rsFC, we
included these variables as covariates in all analyses. Additional
analyses evaluated the extent to which sex and working memory
task performance moderate observed differences in static and
dynamic rsFC across the lifespan.

MATERIALS AND METHODS

Participants
Original data collection was approved by the Washington
University Institutional Review Board. The HCP Lifespan Pilot
(Van Essen et al., 2013) includes eight functional magnetic
resonance imaging (fMRI) scans during eyes-open rest for 27
healthy individuals (15 female, 12 male) ranging from 8 to 75
years of age, organized into one of five age bins (8–9; 14–15;
25–35; 45–55; 65–75).

Data Acquisition Parameters
Data were acquired on a 3-Tesla Siemens Connectome MRI
scanner at Washington University in St. Louis, MO. Functional
runs were acquired with a voxel resolution of 2 mm × 2 mm ×
2 mm, 72 slices, using an 810 mm × 936 mm field of view. Each
run was comprised of 420 frames using a repetition time (TR)
of 0.72 s and an echo time (TE) of 33.2 ms. For each individual
subject, the runs alternated phase encoding directions, such that
the odd runs were in the left-to-right direction, whereas the even
runs were in the right-to-left direction.

Data Pre-processing
Unprocessed functional and structural MRI data corrected for
gradient distortion were downloaded directly from the HCP
website (Marcus et al., 2011). Our pre-processing pipeline was
implemented in SPM12. Images were realigned using the default
least squares approach in SPM12. Due to the rapid acquisition
parameters (TR = 0.72 s, multi-band factor = 8) of these data,
slice-timing correction was not applied (Glasser et al., 2013).
Data were then spatially normalized into the standard Montreal
Neurological Institute (MNI) space (Friston et al., 1994), resliced
to 2 mm × 2 mm × 2 mm voxels, and smoothed using a
Gaussian kernel with a full-width at half-maximum (FWHM) of
6mm. At the first-level of analysis, outlier volumes were censored
and motion regressors were included as first-level covariates. To
further reduce spurious correlations in rsFC due to subject head
motion (Power et al., 2013), the Artifact Detection Tools (ART)1

software was used to identify and statistically censor volumes of
significant movement or signal spikes from individual fMRI runs,
also on the first level of analysis.

The total number of outlier motion volumes was also
calculated in ART to identify if individual subjects lost an
excessive amount of data due to censoring, thereby warranting
exclusion from statistical analysis. Using a threshold of ≥15%

1http://www.nitrc.org/projects/artifact_detect

volumes censored across the four fMRI runs, no subjects
were identified as motion outliers. To account for the effects
of frame-by-frame head displacement on rsFC (Power et al.,
2012), estimates of total framewise displacement from ART were
averaged across the four runs and included as a covariate in
the group level of analysis. As gray matter volume is known
to change across the lifespan (Ge et al., 2002), it is possible
that changes in gray matter could influence the results of the
present study. Unfortunately, it was not possible to disentangle
effects of age from effects of gray matter volume, given high
collinearity between these variables in prior studies (Walhovd
et al., 2011) and in the present sample (r = 0.9497, p < 0.0001)
(see Supplement 1). However, this is an intriguing question for
future research.

Independent Components Analysis (ICA)
In preparation for our analyses investigating persistence of
whole-brain functional connectivity states, we first performed
independent components analysis (ICA) implemented in the
Group ICA of fMRI Toolbox v3.0b (GIFT2; Calhoun, 2004) to
create spatial maps of nodes that would be used in subsequent
analysis. Concatenating across the four runs of rsfMRI for each
participant, we used ICA to detect voxels that are temporally
correlated with one another (compared with chance likelihood).
Correlated voxels were then blindly separated using Infomax
(Calhoun et al., 2001), an algorithm that was repeated 10 times
in ICASSO (Himberg and Hyvarinen, 2003) on 200 subject-
specific principal components in order to compile the data into
statistically independent components. We implemented group
information guided independent component analysis (Calhoun
et al., 2001) to perform back-reconstruction, yielding subject-
specific spatial maps and time-courses. Based on prior work
(Allen et al., 2011), we selected 100 components as the final model
order for the present analysis, thresholding each component at
Z >3.5 to enhance spatial specificity.

We were specifically interested in functional networks that
included spatial components overlapping with the AN, DN,
FN, Somatomotor (SM), SN, and Visual (VIS) networks. Based
on visual inspection of the components in MNI space by
two independent raters (Kelly et al., 2010), we identified 38
components for analysis. The other 62 components were omitted
because they either belonged to other RSNs (e.g., auditory) or
they were deemed to reflect motion- or noise-related artifacts.
Of the 38 components included for analysis, we sorted them
into one of the six canonical networks-of-interest. For a visual
representation of how these components compare to a functional
atlas of canonical resting brain networks (Yeo et al., 2011), see
Supplement 2.

Primary and Exploratory Analyses
The HCP protocol includes resting-state fMRI scans following
both structural and task-fMRI paradigms. In order to avoid
contamination effects of task-related activation on subsequent
rsfMRI scans, we included only the resting scans collected prior
to task scanning (i.e., we included four of the eight rsfMRI scans

2https://trendscenter.org/trends/software/gift/
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for each subject) in the primary neuroimaging analyses. Our
group-level variables were mean-centered Age (binned by: 8–9;
14–15; 25–35; 45–55; 65–75), contrast-coded Sex (male; female),
mean-centered WM performance (% accuracy during the neutral
N-Back Task), and Framewise Displacement (average framewise
displacement across the four runs).

Exploratory analyses were conducted to evaluate replication
of findings in the second series of resting data collected
from the same subjects, after completing task neuroimaging.
Although we focus our main analyses on pre-task resting
scans (due to the potential confounding effect of prior task
engagement), replication could support reliability of methods
and age differences. As one subject only completed six of the eight
fMRI runs, this subject was omitted from replication analyses.
Statistically significant results from the primary analyses were
examined for replicability at uncorrected p < 0.05.

Moderating Variables: Sex and Working
Memory (WM) Task Performance
All subjects completed an N-Back task using neutral images
(places, tools, faces, and body parts). Averaging across 2-back
and 0-back trials, mean-centered performance (% accuracy) on
the N-Back task was included as a behavioral regressor in group-
level general linear models investigating static and dynamic rsFC
metrics. Of the 27 subjects included in the analyses, all but one
subject performed at greater than 50% accuracy in the WM task,
so that subject was omitted from analyses. Therefore, the final
dataset included 26 subjects (14 female, 12 male).

Sex, working memory task performance, and framewise
displacement were included as covariates in all models. Unless
noted (see Supplement 6), there were no significant effects of
these covariates on rsFC measures.

Analytical Approaches
Static rsFC Analyses
Static, time-invariant analyses were implemented in the CONN
functional connectivity toolbox (Whitfield-Gabrieli and Nieto-
Castanon, 2012)3. Physiological noise was controlled with
CompCor, an algorithm in which the timeseries of activation
is extracted from subject-specific tissue masks (white matter,
cerebrospinal fluid), and principal components analysis is applied
to estimate physiological noise reflected in these timeseries, after
which the resulting components are included as covariates in
a denoising regression (for additional details on this approach,
see Behzadi et al., 2007; Chai et al., 2012; Whitfield-Gabrieli
and Nieto-Castanon, 2012). Finally, we applied a band-pass
filter of 0.008–0.09 Hz to further remove high-frequency activity
associated with physiological functioning (oscillations at a
frequency higher than expected for functional brain data, e.g.,
respiratory and cardiac noise, see Cordes et al., 2001) and low-
frequency activity associated with scanner drift.

One of the 38 components, centered on bilateral anterior
insula, underwent additional editing in the MarsBaR Toolbox
(Brett et al., 2002) to enhance anatomical specificity by removing

3http://www.nitrc.org/projects/conn

midline structures. To test for lateralized effects among regions of
interest (ROIs), 14 of the 38 components were split in MarsBaR,
yielding separate left and right ROIs for these components.
Therefore, a total of 52 ROIs were used in this analysis.

We then performed a general linear model to investigate main
effects of Age, and effects of Age moderated by Sex, or WM
performance, on static rsFC among the ROIs derived from ICA.
Across all static rsFC models, significance testing in CONN was
thresholded at a false-discovery rate (FDR) p < 0.05 to correct
for multiple comparisons at the analysis-level (Benjamini and
Hochberg, 1995).

Dynamic rsFC Analyses: Variability in rsFC (vFC)
For analysis of dynamic variability in functional connectivity
between individual ROIs, we utilized a sliding-window approach
to measure the variability in ROI-ROI connectivity (vFC) (for
examples, see Kaiser et al., 2016; Pelletier-Baldelli et al., 2018).
To complete vFC, we entered the same 52 ROIs in the CONN
toolbox. Initial denoising (for motion and physiological noise)
was identical to that above, for static rsFC, but the band-pass
filter was set at 0.0224–0.09 Hz to remove high-frequency activity
characteristic of physiological noise and remove low-frequency
activity with a period that is greater than the duration of each
sliding window (Leonardi and Van De Ville, 2015). Sliding
windows were calculated using a window length of 44.64 s and
sliding the onset of each window by 3.6 s for a total of 72
windows (see Supplement 3 for details on how these parameters
were selected; of note, the same sliding window size was used
for GIFT analyses, below). Within each sliding window, we
computed a Pearson’s correlation between individual seeds and
all other seeds, yielding a single 52 × 52 correlation matrix
of Fisher-transformed correlation coefficients (beta values) for
each window and for each participant. To capture dynamic
variability in rsFC over time, we computed the standard deviation
of the beta values (SDb) across matrices for each ROI-to-ROI
correlation coefficient, for each participant. This calculation
yielded a matrix of ROI-to-ROI SDb values for each participant.
We then performed a general linear model to investigate main
effects of Age, and effects of Age moderated by Sex or WM
performance, on these SDb values for each ROI with every other
ROI. Across all dynamic rsFC models, significance testing was
thresholded at a false-discovery rate (FDR) p < 0.05 to correct
for multiple comparisons at the analysis-level (Benjamini and
Hochberg, 1995). These corrections were performed in MATLAB
2015b using the fdr_bh function (written by David Groppe).

Dynamic rsFC Analyses: Intrinsic Functional
Connectivity States
For analysis of dynamic network functioning as operationalized
by functional connectivity states, we implemented the time-
varying approach developed by Allen et al. (2014) and Rashid
et al. (2014, 2016). First, to remove low-frequency noise, such
as scanner drift, motion artifacts, and other sources of variance
that may not be captured during ICA, component time-courses
underwent post-processing using a fifth-order Butterworth low-
pass filter with a high frequency cutoff of 0.15Hz. Outliers
were removed based on the median absolute deviation using

Frontiers in Neuroscience | www.frontiersin.org 4 December 2020 | Volume 14 | Article 561594

http://www.nitrc.org/projects/conn
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-561594 December 2, 2020 Time: 19:45 # 5

Rosenberg et al. Functional Segregation Across the Lifespan

3dDespike in AFNI (Cox, 1996) and were replaced using a third-
order spline fit to the clean time-courses.

After ICA post-processing, the subject-specific spatial maps
were then analyzed using a sliding-window procedure identical
to the steps described in vFC, with a window length of 44.64 s
and sliding the onset of each window by 3.6 s. Next, within each
sliding window, pair-wise Pearson’s correlations were performed
between each spatial component and all other spatial components
from the ICA, yielding a 38 × 38 correlation matrix for each
sliding window.

These correlation matrices (across windows and participants)
were partitioned via k-means clustering, a data-driven method to
cluster the average correlations over time into a discrete number
of categories. Our approach adhered to the standard settings for
k-means clustering within the GIFT Toolbox (Allen et al., 2014;
additional information about the implementation of k-means
clustering can be found in the GIFT Toolbox manual4). At a
given time-point, each correlation matrix was categorized into
one discrete “intrinsic connectivity network state” (ICN state),
which represents a pattern of brain functional connectivity across
ROIs. The present analysis yielded four ICN states (with the
number of clusters (k) determined using the elbow criterion of
the cluster validity index). The categorization of a correlation
matrix into one discrete ICN state was assigned based on the
likelihood that it resembled one ICN state compared to other ICN
states (for details, see Allen et al., 2014; Rashid et al., 2014). For
ease of interpretability, the matrices displaying each network state
have been organized so that spatial components are grouped in
adjacent rows/columns according to prior canonical RSNs.

Next, brain activity was classified into one of the four states
at a given time-point. Then, we calculated the average time spent
in each state before switching to another state (mean dwell time;
MDT). We then performed a general linear model to investigate
main effects of Age, and effects of Age as moderated by Sex and
WM performance, on MDT in a particular ICN state.

Supplementary Analyses
Based on current standards, the three analytical approaches
described above employed slightly different pre-processing
methods to investigate static and dynamic rsFC (specifically with
regard to temporal filtering). Therefore, we repeated the static
and MDT analyses to match the temporal filtering used in the
vFC approach (see Supplements 7, 8 for additional information).

RESULTS

Age was not significantly correlated with Framewise
Displacement (R2 = 0.044, p = 0.295). However, the youngest
(ages 8–9) and oldest (ages 65–75) subjects tended to exhibit
greater movement than did subject from other age bins (see
Table 1 and Figure 1).

Static rsFC Analyses
General linear models first investigated main effects of Age
(controlling for Sex, WM Performance, and Framewise

4https://trendscenter.org/trends/software/gift/docs/v4.0b_gica_manual.pdf

TABLE 1 | Sex, age, and average framewise displacement values for each subject
in the HCP Lifespan dataset.

HCP ID Sex Age bin Estimate of average framewise
displacement (mm)

LS2001 F 8–9 0.227275

LS2003 M 8–9 0.292575

LS2008 M 8–9 0.45585

LS2009 F 8–9 0.214069

LS2037 M 8–9 0.241275

LS2043 F 8–9 0.143725

LS3017 F 14–15 0.060225

LS3019 M 14–15 0.1583

LS3026 F 14–15 0.129525

LS3029 F 14–15 0.06995

LS3040 F 14–15 0.10705

LS3046 F 14–15 0.0994

LS4025 M 25–35 0.148225

LS4036 M 25–35 0.097575

LS4041 F 25–35 0.08575

LS4043 F 25–35 0.1028

LS4047 F 25–35 0.1752

LS5007 F 45–55 0.1444

LS5038 M 45–55 0.1506

LS5040 M 45–55 0.109475

LS5041 F 45–55 0.13035

LS5049 M 45–55 0.075475

LS6003 M 65–75 0.33965

LS6006 M 65–75 0.118725

LS6009 F 65–75 0.13815

LS6046 M 65–75 0.140525

Displacement) and the moderating effects of Sex and WM
Performance in predicting static rsFC among pairs of the 52
ICA-derived components.

A total of 26 ROI-to-ROI pairs exhibited a significant main
effect of Age. All of these effects were negative, including
decreasing connectivity of AN ROIs with the SN as well as
decreasing connectivity of VIS ROIs with ROIs in the AN,
FN, SM, and SN (see Figure 2 and Table 2 for list of effects,
see Supplementary Table S4a for average connectivity values
within each age bin). Further inspecting these effects, positive
rsFC between these ROIs tended to exhibit a positive-to-negative
change in connectivity over the course of aging, particularly
involving the right inferior occipital gyrus ROIs (see Figure 3A).
However, four ROI-ROI pairs became less positive across the
lifespan (see Figure 3B): the left putamen (of the AN) with the
right anterior insula (of the SN), the right putamen (of the AN)
with the right anterior insula (of the SN), and the right putamen
(of the AN) with the left anterior insula (of the SN, two separate
ROIs). There were no main or interactive effects regarding Sex
and WM Performance.

Dynamic rsFC Analyses: Variability in
rsFC (vFC)
General linear models investigated main effects of
Age (controlling for Sex, WM Performance, and
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FIGURE 1 | Scatterplot of the relationship between Age and Framewise Displacement in the current sample.

FIGURE 2 | Significant effects of Age on static rsFC controlling for Gender, WM Performance, and Framewise Displacement, with resting-state functional
connectivity tending to decrease among ROIs in different canonical functional networks.

Framewise Displacement) and the moderating effects
of Sex and WM Performance in predicting the SDb
for each ROI-to-ROI pair. Significance testing was
thresholded at a false-discovery rate p < 0.05 for each set
of linear models.

No ROI-to-ROI pairs exhibited a significant main effect of
Age in predicting SDb of rsFC across sliding-windows. Several
ROI-to-ROI pairs exhibited non-significant main effects of Age
on SDb that failed to survive FDR correction (see Supplement 5
for details). There were no significant main or interactive effects
of Sex or WM Performance, controlling for other covariates.

Dynamic rsFC Analyses: Intrinsic
Functional Connectivity States
General linear models first investigated the main effects
of Age (controlling for Sex, WM Performance, and
Framewise Displacement) in predicting MDT of the
four GIFT-derived network states. Although Sex and
WM performance were also included as moderators,
no moderated effects emerged across any group-
level analyses (see Supplement 6 for main effects of
these variables). Significance testing was thresholded
at a false-discovery rate p < 0.05 to correct for four
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TABLE 2 | Significant effects of Age in predicting static rsFC between ROIs, grouped by network.

Effects of age on static rsFC of AN ROIs with SN ROIs Resting-state series 1 (Pre-task scans) Resting-state series 2 (Post-task scans)

AN component SN component T-statistic p-value T-statistic p-value

Left putamen Right anterior insula t(21) = −3.94 0.00075 t(20) = −3.92 0.0009

Right putamen Left anterior insula (a) t(21) = −5.29 0.00003 t(20) = −2.86 0.0097

Right putamen Left anterior insula (b) t(21) = −5.46 0.00001 t(20) = −3.26 0.0039

Right putamen Right anterior insula t(21) = −5.12 0.00005 t(20) = −3.06 0.0062

Effects of age on static rsFC of AN ROIs with VIS ROIs Pre-task scans Post-task scans

AN component VIS component T-statistic p-value T-statistic p-value

Left putamen Right calcarine sulcus t(21) = −4.00 0.00065 t(20) = −2.69 0.0140

Left putamen Right inferior occipital gyrus (a) t(21) = −4.53 0.00018 t(20) = −3.75 0.0013

Left putamen Right inferior occipital gyrus (c) t(21) = −4.93 0.00007 t(20) = −5.27 0.00002

Right putamen Right inferior occipital gyrus (a) t(21) = −5.04 0.00003 t(20) = −2.80 0.0111

Right putamen Right inferior occipital gyrus (c) t(21) = −4.37 0.00027 t(20) = −3.42 0.0027

Effects of age on static rsFC of FN ROIs with VIS ROIs Pre-task scans Post-task scans

FN component VIS component T-statistic p-value T-statistic p-value

Left dorsolateral prefrontal cortex Right inferior occipital gyrus (c) t(21) = −4.01 0.00063 t(20) = −0.98 0.3372

Effects of age on static rsFC of SM ROIs with VIS ROIs Pre-task scans Post-task scans

SM component VIS component T-statistic p-value T-statistic p-value

Left postcentral gyrus Right inferior occipital gyrus (c) t(21) = −4.48 0.00021 t(20) = −1.52 0.1436

Left precentral gyrus (a) Right inferior occipital gyrus (b) t(21) = −4.78 0.00010 t(20) = −3.34 0.0033

Left precentral gyrus (a) Right inferior occipital gyrus (c) t(21) = −5.82 0.00001 t(20) = −2.78 0.0177

Left precentral gyrus (b) Right intraparietal sulcus t(21) = −4.75 0.00011 t(20) = 0.89 0.3857

Right postcentral gyrus Right inferior occipital Gyrus (a) t(21) = −3.97 0.00070 t(20) = −1.68 0.1094

Right postcentral gyrus Right inferior occipital gyrus (c) t(21) = −4.62 0.00015 t(20) = −2.02 0.0567

Right precentral gyrus Right inferior occipital gyrus (a) t(21) = −4.03 0.00060 t(20) = −2.27 0.0347

Right precentral gyrus Right inferior occipital gyrus (b) t(21) = −5.29 0.00003 t(20) = −2.48 0.0223

Right precentral gyrus Right inferior occipital gyrus (c) t(21) = −4.25 0.00036 t(20) = −1.98 0.0620

Supplementary motor area Right inferior occipital gyrus (c) t(21) = −4.27 0.00034 t(20) = −1.81 0.0858

Effects of age on static rsFC of SN ROIs with VIS ROIs Pre-task scans Post-task scans

SN component VIS component T-statistic p-value T-statistic p-value

Left anterior insula (a) Right inferior occipital gyrus (a) t(21) = −4.16 0.00044 t(20) = −1.86 0.0780

Left anterior insula (a) Right inferior occipital gyrus (c) t(21) = −5.16 0.00004 t(20) = −2.98 0.0074

Left anterior insula (b) Right inferior occipital gyrus (a) t(21) = −4.81 0.00009 t(20) = −2.84 0.0102

Left anterior insula (b) Right inferior occipital gyrus (b) t(21) = −4.89 0.00008 t(20) = −2.00 0.0587

Left anterior insula (b) Right inferior occipital gyrus (c) t(21) = −6.06 0.00001 t(20) = −3.84 0.0010

Right anterior insula Right inferior occipital gyrus (a) t(21) = −3.87 0.00089 t(20) = −3.04 0.0064

AN, Affective Network; DN, Default Network; FN, Frontoparietal Network; SM, Sensorimotor; SN, Salience Network, VIS, Visual. The letters (a), (b), and (c) denote regions
for which multiple ROIs were used. Primary analyses focusing on the pre-task scans were corrected for multiple comparisons at an analysis-level FDR of p < 0.05. For
significant connectivity pathways that survived FDR correction, exploratory analyses examined these pathways in the post-task scans at uncorrected p < 0.05.

comparisons using the same procedure described above
(p-crit = r × 0.05/n).

State 1
Intrinsic connectivity network (ICN) State 1 was characterized
by pronounced coordination among regions of the VIS (see
Figure 4). This ICN state also included positive rsFC between

the dorsomedial prefrontal cortex (of the DN) and the rostral
anterior cingulate cortex (of the FN), the bilateral hippocampus
(of the AN) and the rostral anterior cingulate cortex (of the
FN), and between the superior parietal lobule (of the FN) and
the intraparietal sulcus (of the VIS), as well as negative rsFC
(anticorrelations) between the ventral striatum (of the AN) and
the dorsal anterior cingulate cortex (of the SN) and between
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FIGURE 3 | (A) Age differences in static rsFC between right inferior occipital gyrus and left dorsolateral prefrontal cortex [t(21) = −4.01, p = 0.00063]. Of note, similar
patterns were observed for the effect of age on static rsFC between other ROIs in visual systems and ROIs in other canonical networks. (B) Age differences in static
rsFC between left putamen and right anterior insula [t(21) = −3.92, p = 0.00075]. Similar age effects were detected between other ROIs in the canonical affective
network and ROIs in the canonical salience network.

the bilateral inferior frontal gyrus (of the FN) and the superior
parietal lobule (of the FN).

FDR-corrected regression analyses revealed a significant main
effect of Age predicting MDT of State 1 [t(20) = -3.494, p = 0.002],
such that younger subjects tended to exhibit greater MDT in this
ICN state (see Supplementary Table S4b for average MDT values
within each age bin).

State 2
State 2 was defined by positive rsFC within and between
regions of the Sensorimotor and VIS networks, except for
negative rsFC (anticorrelations) between the bilateral inferior
occipital gyrus (in the VIS) with SM regions (see Figure 4).
This functional network state was also defined by positive rsFC
between regions of the SM and VIS networks with the superior
parietal lobule (of the FN) and by negative rsFC between the
ventral striatum (of the AN) with the bilateral anterior insula (of
the SN).

FDR-corrected regression analyses revealed a significant main
effect of Age predicting MDT of State 2 [t(20) = 3.780, p = 0.001]
such that older subjects tended to exhibit greater MDT of this
ICN state (see Supplementary Table S4b for average MDT values
within each age bin).

State 3
ICN State 3 was defined by positive rsFC within the SM and
within the VIS, as well as a mixture of positive and negative rsFC
among regions of the DN, FN, and SN (see Figure 4).

FDR-corrected regression analyses did not reveal a significant
main effect of Age predicting MDT of State 3 [t(21) = -1.072,
p = 0.296].

State 4
ICN State 4 was defined by positive rsFC within the SM and
within the VIS, as well as a mixture of positive and negative rsFC
among regions of the DN, FN, and SN (see Figure 4).

One subject was omitted from regression analysis because
their MDT for State 4 was a significant outlier (>3 standard
deviations above the mean). FDR-corrected regression analyses

did not reveal a significant main effect of Age predicting MDT
of State 4 [t(20) = −0.700, p = 0.492]. Inclusion or removal of
the outlier subject did not alter the significance of these results
[t(21) =−0.616, p = 0.545].

Exploratory Analyses
As noted above, exploratory analyses were performed to test
replication of age effects in the second series of (post-task)
resting-state scans. Only effects that were significant in the main
experimental analyses (i.e., the first series of pre-task resting-state
scans) were eligible for testing in these exploratory analyses.

Static rsFC Analyses
General linear models investigated main effects of Age
(controlling for Sex, WM Performance, and Framewise
Displacement) in predicting static rsFC among the 26 ROI-ROI
pairs implicated by the primary analysis, in the second series of
resting-state scans.

A total of 18 ROI-ROI pairs exhibited a significant main effect
of Age in the replication dataset (included in Table 2). All of these
effects were negative, as in the primary analysis. An additional
four ROI-ROI pairs exhibited a non-significant trending main
effect of Age, and four ROI-ROI pairs did not exhibit a replication
of effects presented in the primary analysis.

Dynamic rsFC Analyses: Intrinsic Functional
Connectivity States
The replication analysis in the second resting-state series
yielded three ICN states, which showed connectivity profiles
that were highly similar to those in the primary analysis
(see Figure 4). General linear models investigated the main
effects of Age (controlling for Sex, WM Performance, and
Framewise Displacement) in predicting MDT of the three GIFT-
derived network states.

In this exploratory replication analysis a significant main effect
of Age was detected for State 3 [t(19) = 3.326, p = 0.003], an
intrinsic connectivity network that was similar to State 2 from
the primary analysis. As in the primary analysis, older subjects
tended to exhibit greater MDT in this functional network state.
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FIGURE 4 | Each of the intrinsic functional connectivity states are organized into a correlation matrix, with ROIs grouped by functional domain for pre-task (left) and
post-task (right) functional runs. Scatterplots depict the association between Age and Mean Dwell Time for each of the ICN states. State 2 (left) and State 3 (right)
exhibited similar profiles of connectivity, with Mean Dwell Time tending to increase across the lifespan [t(20) = 3.780, p = 0.001; t(19) = 3.326, p = 0.003].

DISCUSSION

The present study leveraged a publicly available dataset to explore
how several different aspects of brain network functioning
may differ across age groups, ranging from childhood to
older adulthood. We first conducted a static rsFC analysis to
evaluate overarching patterns of functional connectivity over
time between ROIs. We then analyzed the standard deviation of
these correlations as a method for evaluating the variability in
functional connectivity patterns over time. Finally, we evaluated
average dwell time in particular functional connectivity “states”
of coordinated brain activity before neural systems switch
to another state. These approaches each provided a different
measure of how brain networks function, which we then linked
to age-related differences across the lifespan.

Considering static rsFC, associations between anterior and
posterior ROIs in different canonical networks tended to exhibit a
positive-to-negative shift across the lifespan. These effects notably
involved correlations between ROIs in the VIS (especially the
right inferior occipital gyrus) and ROIs in the FN, SN, and SM.
Associations between posterior and subcortical ROIs in different
canonical networks exhibited a similar positive-to-negative shift,
notably involving correlations between the right inferior occipital
gyrus and right calcarine sulcus (of the VIS) with the left and
right putamen (of the AN). In contrast to anterior-posterior
and posterior-subcortical findings, associations between anterior

and subcortical ROIs tended to involve positive correlations that
become less positive across the lifespan, rather than shifting from
positive to negative associations. These effects notably involved
correlations between the left and right putamen (of the AN) with
the left and right anterior insula (of the SN).

Several of the static rsFC findings replicated in exploratory
analyses that aimed to reproduce main effects (from resting-
state scan series 1, pre-task) in a second dataset (resting-state
scan series 2, post-task). Of the 26 ROI-ROI pairs that were
significantly associated with Age in the primary analysis, 18 of
these effects replicated and an additional four of these effects
exhibited a (non-significant) trend in the same direction. Effects
that did not replicate included age effects on connectivity between
the right inferior occipital gyrus (of the VIS) the right and left
postcentral gyrus (of the SM), the right intraparietal sulcus (of
the VIS) and the left precentral gyrus (of the SM), and the right
inferior occipital gyrus (of the VIS) with the right inferior frontal
gyrus (of the FN).

There were no significant associations between Age and
vFC, although non-significant associations suggested potential
decreases in variability between anterior and posterior ROIs in
different canonical networks (see Supplement 5). This contrasts
with prior findings of increased rsFC variability in young adults
compared with children and youth (Hutchison and Morton,
2015). However, as the present study assessed vFC differences
across the lifespan, this study is better positioned to evaluate
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overarching lifespan changes in vFC and less suited to detect
subtle changes that emerge during the transitions from childhood
to adolescence and early adulthood. Furthermore, the small
sample size employed in the present study may further limit its
ability to detect such changes. Research aimed at understanding
the precise association between vFC and Age within specific
developmental periods, such as during adolescence, can address
these limitations.

Converging with static rsFC patterns, the findings related
to persistence of functional connectivity brain states (evaluated
here with MDT) revealed that older subjects tended to spend
more time dwelling in a state characterized by integration within
and between VIS and SM ROIs (State 2). Of note, exploratory
analyses provided evidence of replication in the second dataset
collected from the same subjects (following task administration).
In contrast, younger subjects tended to spend more time in a state
characterized by less substantial integration among specifically
VIS ROIs (State 1). However, these age effects were not replicated
and should be interpreted with caution.

Interestingly, the tendency for older adults to dwell in a state
defined by positive rsFC between SM and VIS ROIs may appear
inconsistent with the results of static rsFC analyses, which showed
decreasing overall rsFC between VIS and SM ROIs. However,
this discrepancy also highlights the differences in age effects on
standard static rsFC (which is based on overarching patterns of
coordination) compared with dynamic measures of dwell time
in transient rsFC networks (which are based on time spent in
a particular state of rsFC, although patterns of rsFC may be
quite different at other times in the scan). For example, these
findings suggest that at older ages, SM and VIS ROIs tend to
become less coordinated on average across an extended period
of scanning; however, older brains also tend to persist longer
in a brain state defined by increased integration among these
systems once that brain state has been entered. These effects
highlight the value of investigating and comparing age differences
in static vs. dynamic properties of rsFC. A next step for this
work may build on this comparative approach by developing
methods that integrate static and dynamic properties in the same
measurement or analyses.

Overall, the present findings support the theory that network
boundaries become sharper across development (Fair et al., 2007;
Grayson and Fair, 2017), evidenced by decreasing static rsFC
among regions of distinct prototypical networks (Tian et al.,
2018). The positive-to-negative shift in static rsFC among many
of these ROIs suggests that network segregation may result in
a qualitative shift in the relationship between regions, such that
correlated regions not only disassociate from one another but
may become anticorrelated later in life. Based on the present
results, this phenomenon may especially emerge between regions
of the visual system and other canonical networks, whereas
regions of the affective and salience systems may simply become
less correlated across the lifespan. Furthermore, age-related
differences in MDT tended to show increased time spent in states
of integration within and between the SM and VIS networks.
Many of these same pathways were implicated in the static
rsFC analysis, suggesting that the combined use of static and
dynamic approaches may reveal subtle features of functional
brain connectivity across the lifespan.

Limitations and Future Directions
We chose to test hypotheses in the HCP Lifespan dataset because
of several notable strengths: e.g., the sample featured a broad
age range, and data were collected at high temporal resolution
(important for dynamic analytic methods). However, there are
also some limitations which restrict the scope and generalizability
of the present study.

First, although the present analyses were conducted to be as
similar as possible in processing steps, it is important to note that
we chose to accept some differences in processing in order to
follow standard conventions for each method (see CONN5 and
GIFT4 manuals). Specifically, this included some differences in
low- and high-pass temporal filtering, differences in the number
of ROIs included (i.e., splitting of bilateral components in the
static and vFC analyses), and differences in artifact detection
and removal (i.e., use of CompCor and ART in CONN, use
of 3dDespike in GIFT). Future research should explore how
differences in standard approaches to physiological denoising
and temporal filtering (such as those implemented in CONN and
GIFT, as well as other toolboxes) may affect estimates of static and
dynamic functional connectivity.

Second, the sample size for this publicly available dataset
is modest, limiting statistical power. As the present study
constitutes an initial step in characterizing patterns of functional
connectivity across the human lifespan, it will be necessary
to replicate and extend these exploratory findings in larger
studies with a lifespan age range. In larger samples, replication
of linear effects may be tested, in addition to exploring non-
linear effects of age that may highlight specific developmental
periods as crucial windows of dynamic network development.
Likewise, a critical next step will be to focus on patterns
of functional connectivity within specific age ranges, utilizing
large datasets from studies such as the HCP Development
(ages 5–21), HCP Aging (ages 36+), and Adolescent Brain
Cognitive Development (a longitudinal study from age 9–20)
initiatives.

Third, in cases where individuals tend to dwell longer in
rare ICN states, it would be especially interesting to understand
the cognitive significance of such a pattern. As the present
study included only one metric of cognitive functioning,
future research should evaluate a wider range of cognitive
tasks to better characterize the psychological correlates of ICN
state persistence, and how these correlates differ across the
lifespan.

Fourth, future research should further clarify the relationship
between static rsFC and MDT approaches, especially considering
findings that diverge across the modalities. Given the rapidly
changing suite of methods for investigating resting-state
functional connectivity (Calhoun et al., 2014), methods
comparison is an important step for evaluating the unique vs.
overlapping information that can be gained with these different
techniques.

Finally, the risk of onset of specific psychiatric
disorders varies over development (Paus et al., 2008), and
may correspond with key changes in functional brain

5https://web.conn-toolbox.org/resources/manual
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networks. Future clinical research may employ a similar
combination of approaches to identify how disruptions in
network integration and segregation relate to the emergence
of psychopathology during development. In sum, we
emphasize the exploratory nature of the present analyses,
and the potential value of future replication and new
directions for this work.

CONCLUSION

In conclusion, the present study supports a framework of
both network segregation and integration across the lifespan,
wherein sensory networks tend to become more integrated with
one another and more segregated from other canonical brain
networks. Likewise, the present study supports the use of multiple
analytical approaches to evaluate static and dynamic trends in
functional connectivity during the resting-state.
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