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In Brief

Tian et al. present a cell-tracking pipeline

called EllipTrack that is optimized for

modern, multi-day, high-throughput 2D

fluorescent time-lapse movies. EllipTrack

produces nearly error-free cell lineages

for the cell lines tested and represents an

improvement over existing tools for hard-

to-track cells such as cancer cells.
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SUMMARY
Time-lapse microscopy provides an unprecedented opportunity to monitor single-cell dynamics. However,
tracking cells for long periods remains a technical challenge, especially for multi-day, large-scale movies
with rapid cell migration, high cell density, and drug treatments that alter cell morphology/behavior. Here,
we present EllipTrack, a global-local cell-tracking pipeline optimized for tracking suchmovies. EllipTrack first
implements a global track-linking algorithm to construct tracks that maximize the probability of cell lineages.
Tracking mistakes are then corrected with a local track-correction module in which tracks generated by the
global algorithm are systematically examined and amended if a more probable alternative can be found.
Through benchmarking, we show that EllipTrack outperforms state-of-the-art cell trackers and generates
nearly error-free cell lineages for multiple large-scale movies. In addition, EllipTrack can adapt to time-
and cell-density-dependent changes in cell migration speeds and requires minimal training datasets.
EllipTrack is available at https://github.com/tianchengzhe/EllipTrack.
INTRODUCTION

Biological processes are highly dynamic and display varying de-

grees of cell-to-cell heterogeneity. Time-lapse imaging enables

analysis of single-cell dynamics, providing longitudinal informa-

tion that is not readily accessible by other single-cell methods. In

a typical 2D fluorescence time-lapse microscopy experiment,

cells are labeled with fluorescent markers for the signals of inter-

est and imaged periodically under a microscope to generate a

movie. A computational tool (hereafter referred to as a ‘‘cell

tracker’’) is then applied to the movie to track cells over time

and extract signals from each cell (Kudo et al., 2018). Because

of its ability to visualize molecular activities in living cells in real

time, time-lapse microscopy has been used to study a wide

range of biological questions.

A classical cell tracker typically consists of three steps (Fig-

ure 1A). First, in segmentation, cell nuclei are identified from the

images with a fluorescent nuclear marker, such as histone 2B

(H2B). Then, in track linking, nuclei are mapped between neigh-

boring frames and biological events, such as mitosis and

apoptosis, are identified. Finally, in signal extraction, signals are

extracted from the regions of interest in each cell to gain biological

insights. During the past decade, enormous effort has beenmade

to improve the accuracy of each step (He et al., 2017; Hernandez

et al., 2018; Ma�ska et al., 2014; Moen et al., 2019; Ulman et al.,

2017). Some cell trackers also attempt to perform segmentation

and track linking jointly, such that the properties of cell tracks
This is an open access article under the CC BY-N
from previous frames can be used as prior information to track

later frames (Amat et al., 2014; Arbelle et al., 2018; Cappell

et al., 2016). Despite these efforts, cell tracking remains a bottle-

neck in the field of time-lapse microscopy because of the neces-

sity of achieving extremely high accuracy at each frame (Skylaki

et al., 2016). Consequently, manual verification and correction is

often required (Han et al., 2019; Hilsenbeck et al., 2016), which

limits the scale of experiments and results in large amounts of

data remaining unextracted and unquantified.

A major breakthrough in cell tracking was the creation of the

global track-linking algorithm by Magnusson et al. (2015), which

aims to construct cell tracks by maximizing the overall probabil-

ity of cell lineages. Here, a cell track maps a cell in every movie

frame from its appearance to its disappearance, and a cell line-

age is a tree of cell tracks representingmother/daughter relation-

ships. To do so, this algorithm first usesmachine learning tools to

infer the probability of cell overlapping, cell migration, and other

biological events (mitosis, apoptosis, etc.). It then uses the Vi-

terbi algorithm to iteratively search for and assemble the cell

track that results in the greatest increase in the probability of ex-

isting cell lineages, until this probability can no longer be

improved. Because of its consideration of the entire movie,

rather than only two neighboring frames, this algorithm has

been consistently rated as a top performer in the Cell Tracking

Challenge (Ma�ska et al., 2014; Ulman et al., 2017) and has

been implemented in several cell trackers (Cooper et al., 2017;

Hernandez et al., 2018; Magnusson et al., 2015).
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However, the use of the Viterbi algorithm is also amajor source

of tracking mistakes. Consider two neighboring cells between

two neighboring frames (frame i and i + 1) in which the first cell’s

track before frame i contributes a much greater increase to the

overall probability of cell lineages than the second cell’s track,

but its track after frame i + 1 contributes less (Figure 1B).

Because the aim is to find the cell track leading to the greatest

increase in the overall probability, this algorithm will map the first

cell in frame i to the second cell in frame i + 1, despite the sub-

optimal probability between these two frames. Subsequently,

the second cell in frame i will be forced to map to the first cell

in frame i + 1. To fix that mistake, Magnusson et al. (2015) intro-

duces a swap operation: when constructing a new cell track for

cell 2, the algorithm will swap this cell track with an existing one

(cell 1) if it leads to an increase in the overall probability of cell lin-

eages (Figure 1B). Although this operation works well for small-

scale movies, such as those in the Cell Tracking Challenge in

which cells are sparsely populated (or more precisely, in which

cells migrate significantly slower than the average distance be-

tween cells), it is ineffective for modern terabyte-scale movies

at the forefront of the time-lapse microscopy field in which cells

are continuously imaged on a multi-well plate for many days. In

these movies, cells undergo multiple rounds of mitoses, such

that the last frame contains up to thousands of cells, and that

high cell density often results in multiple neighboring cells being

mis-tracked by the Viterbi algorithm at the same frame. Because

the swap operation only allows the newly constructed cell track

to be swapped with one existing track, it can only correct a frac-

tion of the mistakes. For example, consider the scenario with

three neighboring cells in which the first cell in frame i is mapped

to the second cell in frame i + 1, and the second cell is mapped to

the third cell (Figure 1C). When tracking the third cell, no matter

which existing track it swaps with, the algorithm will only be able

to fix at most one mistake, and the resulting cell lineages are still

erroneous (Figure 1C). Therefore, developing an optimized swap

operation that corrects mistakes in the densely populated re-

gions is necessary.

Here, we present EllipTrack, a global-local hybrid cell-tracking

pipeline. The key innovation of EllipTrack is the user-friendly

packaging of the best existing algorithms combined with new

local track-swapping algorithms that are executed after the

Magnusson et al. (2015) global track-linking algorithm. Our local

track-correction algorithms (hereafter called the ‘‘local track-

correction module’’) optimize the Magnusson et al. (2015)

swap operation and offer a significantly higher capacity to cor-

rect tracking mistakes, especially for modern multi-day, large-
Figure 1. The EllipTrack Pipeline

(A) Workflow of cell trackers. Red text indicates the methods implemented in Ell

(B) Schematic illustration of the Magnusson et al. (2015) swap operation.

(C) Schematic illustration of the limitation of the Magnusson et al. (2015) swap o

(D) Correction of the tracking mistakes of the BaxterAlgorithm by the local track-c

(incorrect mapping) or blue (undetected mitosis) arrows. Fixed errors are indicate

later iterations. Track IDs of EllipTrack are adjusted such that unmodified cell trac

same ellipse. Dataset: MCF10A-1.

(E) Schematic illustration of classifying cell-cycle phases based on CDK2 activity

(F) Comparison of identified cell lineages with different cell trackers. Cell lineage

colored by CDK2 activity. Track IDs are plotted next to the births of their respectiv

tracking mistakes, as explained in the legend. The ‘‘density’’ option was used to
scale movies with densely populated cells. Through

benchmarking, we show that EllipTrack outperforms current

state-of-the-art methods. We also demonstrate the practical as-

pects of EllipTrack, such as the ability to infer time- or cell-den-

sity-dependent migration speeds and the small amount of

training data required.

RESULTS

The EllipTrack Pipeline
EllipTrack implements the traditional three-step procedure, but

introduces multiple advanced features (Figures 1A and S1A).

During segmentation, EllipTrack approximates the shapes of

cell nuclei as ellipses and segments cells by applying an el-

lipse-fitting algorithm to the nuclear contours (Zafari et al.,

2015). This method shows improved performance in separating

overlapping nuclei and has been implemented in other cell

trackers (Turetken et al., 2017) (Figure S1B). In track linking, Ellip-

Track first constructs cell lineages with the Magnusson et al.

(2015) global track-linking algorithm and then executes our local

track-correction module to correct tracking mistakes (detailed

below). Finally, during signal extraction, EllipTrack calculates

the signals from the nuclear and cytoplasmic ring regions of

each ellipse. Signals are extracted only from the pixels that do

not overlap with those of other cells to avoid interference from

neighboring cells (Figures S1C and S1D).

The local track-correction module consists of multiple steps,

each addressing a different aspect of tracking mistakes. The

core step optimizes the Magnusson et al. (2015) swap operation

to fix the mistakes in densely populated regions, illustrated in

Figure 1C. Because of combinatorial explosion, it is difficult to

correct all erroneous cell tracks simultaneously. Instead, we

use an iterative strategy in which tracking mistakes are progres-

sively fixed. In each iteration, the core step examines every two

cell tracks between every two neighboring frames (i.e., a local al-

gorithm) and determineswhether there exists an alternative track

configuration that will increase the probability of cell lineages

over a pre-defined threshold fold-change (Figure S1E). If so,

the alternative with the greatest fold-change will replace the ex-

isting configuration. Because the threshold is oftenmuch greater

than one, the main features of the Magnusson et al. (2015) global

track-linking algorithm will be kept and only the significant mis-

takes will be corrected, thus achieving a balance between the

global track-linking algorithm and the local track-correction

module (i.e., a global-local algorithm). This process will then

repeat until no more changes to the cell lineages can be made.
ipTrack.

peration for cells in densely populated regions.

orrection module of EllipTrack. Tracking mistakes are indicated by the orange

d by the white arrows at the iteration in which they are fixed and are removed in

ks always receive the same ID. For EllipTrack, tracks 241 and 228 map to the

.

s are visualized in heatmaps as described previously (Wolff et al., 2018) and

e cells, except in the final frames because of space constraints. Arrows indicate

infer cell migration speeds over time. Dataset: MCF10A-1.

Cell Reports 32, 107984, August 4, 2020 3
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In addition to the core step, the local track-correction module

also fixes tracking mistakes related to under-segmentation,

over-segmentation, and undetected mitosis events, as detailed

in the STAR Methods.

EllipTrack Identifies Nearly Error-Free Cell Lineages
To test the power of our local track-correction module, we

selected a cell tracker called BaxterAlgorithm as the sample im-

plementation of the Magnusson et al. (2015) global track-linking

algorithm and applied it to a 48-hr sample movie of untreated

MCF10A mammary epithelial cells expressing a nuclear marker

(H2B) and a cell-cycle marker (CDK2 sensor) (Spencer et al.,

2013). We then imported the tracking results to EllipTrack and

examined whether our local track-correction module could fix

the mistakes made by BaxterAlgorithm. As shown in Figure 1D,

we visualized the segmentation outcomes by plotting the con-

tours of identified nuclei on top of the image of the H2B channel.

We also displayed the numeric identifiers (IDs) of selected cell

tracks next to the nuclei to which they mapped. Track IDs for

interphase cells are green, whereas a blue or red track ID indi-

cates that the corresponding cell undergoes mitosis or

apoptosis, respectively. As shown in the first column, the Baxter-

Algorithm incorrectly tracked multiple neighboring cells,

including not detecting the mitosis event of track 23, and map-

ping tracks 228, 229, 164, and 64 to the incorrect neighboring

cells. This is a typical example of tracking mistakes in densely

populated regions in which the Magnusson et al. (2015) swap

operation is ineffective. In comparison, EllipTrack fixed all those

mistakes with its local track-correction module within four itera-

tions (Figure 1D, columns 2–5). In the first iteration, the mitosis

event of track 23was correctly detected, and track 64was termi-

nated at frame 35. Next, track 164 and 64 were swapped at

frame 35 such that track 64 was now correctly tracked and track

164 was terminated. This process was repeated in the last two

iterations to fix all mistakes. Thus, our local track-correction

module is capable of correcting mistakes that were overlooked

by the BaxterAlgorithm.

We next examined the ability of the entire EllipTrack pipeline to

identify error-free cell lineages. To that end, we applied Ellip-

Track (both with and without local track-correction) and the Bax-

terAlgorithm to the previously mentioned MCF10A movie and

visualized the identified cell lineages on signal-based heatmaps.

Here, we selected CDK2 activity as the signal of interest with

CDK2 activity calculated as the ratio of the cytoplasmic ring

signal relative to the nuclear signal of the DNA helicase B

(DHB)-based sensor (Spencer et al., 2013) (Figure S1F). This

sensor is a widely used indicator of cell-cycle progression

because CDK2 activity is absent in quiescent (G0) cells and

gradually increases throughout G1, S, and G2 phases of the

cell cycle. Mitosis can be marked by a rapid drop in CDK2 activ-

ity (Spencer et al., 2013) (Figure 1E). Therefore, it is possible to

evaluate the quality of identified cell lineages by examining

whether they match the expected CDK2 activity. As shown in

Figure 1F, with tracking results of this lineage visualized in Video

S1, both the BaxterAlgorithm and EllipTrack before local track

correction made numerous mistakes. For example, both

trackers assigned multiple incorrect mitosis events (green ar-

row), as visualized by a split of cell lineages without the charac-
4 Cell Reports 32, 107984, August 4, 2020
teristic rise and fall of CDK2 activity. In comparison, the cell line-

age identified by EllipTrack after local track correction matched

the ground truth established via manual tracking.

Finally, we performed a systematic benchmark of EllipTrack

against the BaxterAlgorithm and two other popular cell trackers:

iLastik (Berg et al., 2019; Sommer et al., 2011) and a cell tracker

fromCappell et al. (2016, 2018) (also refer to Chung et al., (2019))

(Table S1). We evaluated their performance on six different

movies from multiple sources that well represent current real-

world cell-tracking problems, including three movies of cancer

cells (HeLa and A375), one movie of cells under drug treatment

(A375), and three multi-day, large-scale movies with up to five

mitoses per lineage (MCF10A, A375, and RPE-hTERT) (STAR

Methods; Table S2). We benchmarked the cell trackers on six

criteria (STAR Methods). Two criteria were adopted from the

Cell Tracking Challenge: SEG, a measure of segmentation qual-

ity based on the pixel match (Jaccard similarity index) between

segmented nuclei and manual annotation; and TRA, a measure

of tracking accuracy based on the similarity (normalized

acyclic-oriented graph-matching measure) between identified

cell lineages and manual annotation. We also included four

criteria from the perspective of biologists: %CORR_S, the per-

centage of cell nuclei that were correctly segmented before track

linking, as evaluated by manual inspection; #COMP, the number

of complete tracks in which cells were continuously tracked

throughout the movie; #MIS_T, the average number of mistakes

among the complete tracks; and %CORR_T, the percentage of

complete tracks that were correctly tracked.

Benchmarked results are summarized in Table 1. For segmen-

tation, EllipTrack did not achieve a high pixel match with the

manual annotation (low SEG score) because of the approximate

nature of ellipse fitting, although it correctly segmented most

cells in the movies, as evidenced by top scores for %CORR_S.

This result suggests that EllipTrack is suitable for biological

research in which cells are hard to identify and the identification

of perfect nuclear contours is not absolutely necessary. For track

linking, benchmarking shows that the local track-correction

module of EllipTrack corrected a substantial number of tracking

mistakes, such that the tracking results after correction achieved

one of the top track-linking scores across almost all movies. The

improvement was especially significant for the three large-scale

datasets in which cells were more crowded. Other cell trackers

may have higher scores in some criteria. For example, for the

MCF10A movie (‘‘MCF10A-1’’), Cappell et al. (2016, 2018)

tracked very few cells but with high accuracy, whereas BaxterAl-

gorithm and iLastik tracked more cells but made many more er-

rors. However, the former would correspondingly have a very

limited coverage of the diverse cell behaviors in the movie,

whereas the latter two would require significant manual effort

to correct mistakes before downstream analysis could be per-

formed. In comparison, EllipTrack achieved a proper balance

between coverage and accuracy because it obtained more

than 70% of all possible complete tracks and more than half of

the identified complete tracks were completely error free.

Together, this benchmarking effort indicates that EllipTrack out-

performed the other state-of-the-art cell trackers and demon-

strates the power of the local track-correction module to obtain

nearly error-free cell lineages.



Table 1. Results of Cell Tracker Benchmark

Movie (GT #COMP) Cell Tracker

Segmentation Track Linking

SEG %CORR_S TRA #COMP #MIS_T %CORR_T

MCF10A-1 (453) large scale EllipTrack w/ corr 0.7148 96* 0.9367* 324* 0.63* 55*

EllipTrack w/o corra 0.7168 96* 0.9336 105 7.68 1

BaxterAlgorithm 0.8473* 97* 0.9311 383* 2.66 12

Cappell et al. (2016, 2018) 0.8304* 93 0.9111 40 0.15* 90*

iLastik 0.7758 88 0.9376* 457 2.25 23

A375-1 (281) large scale EllipTrack w/ corr 0.6204 84* 0.9660* 140* 0.57* 61*

EllipTrack w/o corr 0.6202 84* 0.9622 110 1.35 25

BaxterAlgorithm 0.8619* 90* 0.9644 38 1.00 29

Cappell et al. (2016, 2018) 0.7143 76 0.8353 34 0.88* 35*

iLastik 0.7577* 50 0.9669* 254* 2.08 23

RPE-hTERT (60) large scale EllipTrack w/ corr 0.6575 93* 0.9382* 15 3.80* 0

EllipTrack w/o corr 0.6575 93* 0.9301* 19* 14.21 0

BaxterAlgorithm 0.7845* 94* 0.9168 56* 7.55* 0

Cappell et al. (2016, 2018) 0.7836 82 0.8720 0 N/A N/A

iLastik 0.8228* 65 0.9175 119 13.13 0

HeLab (199.5) EllipTrack w/ corr 0.7110 93* 0.9676* 189* 0.43* 66

EllipTrack w/o corr 0.7172 93* 0.9669 185.5* 1.04 45

BaxterAlgorithmc 0.8320* 93* 0.9821* 225 0.44 70*

Cappell et al. (2016, 2018) 0.7001 73 0.8693 88.5 0.18* 85*

iLastik 0.7574* 75 0.9639 253 1.33 40

BJ5TA (265) EllipTrack w/ corr 0.7397 97* 0.9252 189* 0.03* 97

EllipTrack w/o corr 0.7416 97* 0.9285* 186 0.03* 98*

BaxterAlgorithm 0.7092 82 0.8027 201* 0.09 91

Cappell et al. (2016, 2018) 0.7729* 89 0.8845 189* 0.01* 99*

iLastik 0.7651* 91* 0.9363* 267 0.42 71

Good tracking performance ismarked by a low #MIS_T score and high scores for other criteria. For each criterion, the best and second-best scores are

highlighted with an asterisk (*). The three multi-day, large-scale movies are indicated with text ‘‘large-scale’’ under the ‘‘Movie’’ column. The ground-

truth number of complete tracks (GT #COMP) was extracted from themanually annotated cell lineages and is shown under the Movie column. #COMP

scores greater than the ground-truth value have a strike-through because the extra complete tracksmust contain trackingmistakes. Abbreviations: w/,

with; corr, correction; w/o, without; hTERT, human telomerase reverse transcriptase; N/A, not available.
aBecause of a slightly different implementation of the Magnusson et al. (2015) global track-linking algorithm, EllipTrack without local track correction

may perform worse than the BaxterAlgorithm. Refer to the STAR Methods for more information.
bTwo HeLa movies were independently benchmarked, and the average results are shown.
cFor HeLa movies, the parameter values provided with the BaxterAlgorithm were used. These values were fine tuned to maximize the SEG and TRA

scores. Therefore, the tracking performance may be over-estimated.
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EllipTrack Can Infer Time- and Density-Dependent Cell
Migration Speed
Cells often adjust their migration speed in response to environ-

mental changes (Ridley et al., 2003). For example, examination

of a typical cell in the previously mentioned MCF10A movie re-

vealed a clear inverse relationship between the migration speed

(the number of pixels traveled per frame) and the number of cells

in the local neighborhood (Figure 2A). However, current cell

trackers implementing the Magnusson et al. (2015) global

track-linking algorithm assume a constant migration speed

over the entire movie. When tracking the cell in Figure 2A, those

cell trackers are likely to terminate the cell track prematurely and

re-initiate a new one in the next frame in the region of low cell

density because the probability for track termination and re-initi-

ation is likely greater than the probability for migration of a cell
with an underestimated speed. Meanwhile, when the local den-

sity is high, those trackers may map the cell track to an incorrect

neighboring cell. Consequently, the identified cell lineages will

contain numerous mistakes.

To account for that variable cell behavior, EllipTrack imple-

ments an option to perform time- and local cell-density-depen-

dent inference of cell migration speeds from the training

datasets. Users can select the best option based on whether

there exists a clear trend between the migration speeds and

time/density values. As a demonstration, we performed a den-

sity-dependent inference (denoted as the ‘‘density’’ option) on

the training datasets from the MC10A movie and indeed found

a clear dependency between migration distances and local cell

densities (Figure 2B, black line). In contrast, assuming a constant

migration speed over time (denoted as the ‘‘global’’ option),
Cell Reports 32, 107984, August 4, 2020 5
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Figure 2. Inference of Cell Migration Speeds and Characterization of Training Datasets

(A) Cell migration speeds are density dependent. Top: comparison of migration speed (Euclidean distance per frame in pixels) and the number of cells in the local

neighborhood at each frame for a single cell. Bottom: images of the cell at the sparsely (left) and densely (right) populated regions. Images from three consecutive

frames are shown. White arrows indicate the cell plotted in the top panel. Dataset: MCF10A-1.

(B) Inference of cell migration speed from training datasets. Dots represent the migration of cells from one frame to the next: one dot is plotted for the number of

pixels traveled in the x direction, and a second dot is plotted for the number of pixels traveled in the y direction. Black and gray lines indicate the inferred cell-

migration speeds with the ‘‘density’’ and ‘‘global’’ option, respectively. Dataset: MCF10A-1.

(C) Visualization of identified cell lineage, as in Figure 1F, but by EllipTrack with the ‘‘global’’ option.

(D) Comparison of the tracking performance between the ‘‘density’’ and ‘‘global’’ options. The highest score in each criterion is highlighted in bold green. Dataset:

MCF10A-1. Scores of the density option are reproduced from Table 1.

(E) Relationship between the number of training samples and the tracking performance. Down-sampling was performed by randomly selecting a subset of the

original training datasets. Means ± SD (n = 3) are shown for each down-sampling scheme. Scores that have no significant difference (p > 0.05, one-sided t test)

from the ‘‘no down-sampling’’ scheme are highlighted in bold green. Scores without down-sampling are reproduced from Table 1.

(F) Applicability of training datasets to the tracking of untrained movies. Scores with less than 10% difference are highlighted in bold green.
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inferred from the training datasets without consideration of time

or density values, does not reflect the distribution of cell migra-

tion speeds (Figure 2B, gray line).
6 Cell Reports 32, 107984, August 4, 2020
To demonstrate how the density option improves tracking per-

formance, we tracked the MCF10A movie with both the density

(used in the previous benchmark) and the global options.
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Visualization of the same cell lineage in Figure 1F on CDK2-activ-

ity-based heatmaps revealed that the density option tracked the

entire lineage without errors (Figure 1F), whereas the global op-

tion incorrectly swapped two cell tracks (Figure 2C). Further-

more, we systematically benchmarked those two options and

found that the density option outperformed the global option in

all track-linking criteria (Figure 2D). It is worth mentioning that

even with the global option, half of the identified complete tracks

were error free, which further demonstrates the power of the

local track-correction module. In summary, the time- and

density-dependent inference option complements the local

track-correction module and allows users to achieve an even

better tracking performance for appropriate movies.

EllipTrack Requires Minimal Training
EllipTrack relies on user-provided training samples to construct

cell tracks. A training sample describes a cell event (e.g., mitosis,

apoptosis) or migration and can be constructed with a user-

friendly graphical user interface (GUI) application with two

mouse clicks (STAR Methods; Figure S2). When benchmarking

the MCF10A and A375 movies, we constructed 2,922 and

2,136 samples for cell events, and labeled 37 and 55 cells for

cell migration, respectively. To determine howmany samples El-

lipTrack requires for accurate cell tracking, we down-sampled

the training datasets to various degrees and examined the

change in tracking performance. As shown in Figure 2E, Ellip-

Track displays a consistent performance when down-sampled

5-fold. With further down-sampling, tracking performance wors-

ened and a marginally greater number of tracking errors

occurred. This analysis suggests that creating �500 training

samples and labeling �10 cells that are representative of cell

events and migration are sufficient for high-accuracy tracking.

To determine whether training datasets from one movie could

be used to track other movies, we created two additional movies

of MCF10A (untreated) and A375 cells (treated with 1 mMof dab-

rafenib) by imaging cells under identical conditions. We then

compared the tracking performance using the previously gener-

ated training datasets versus using training datasets generated

from the newmovies. In all four movies, EllipTrack demonstrated

comparable tracking in both scenarios (Figure 2F), indicating the

good predictive power of the training datasets for tracking un-

trained movies of the same cell line under the same imaging

conditions. This brings substantial time savings because each

cell line only needs to be trained once.

DISCUSSION

Time-lapse microscopy provides an unprecedented opportunity

to observe single-cell dynamics in real time. However, existing

computational tools often track cells with limited accuracy and

extensive human labor can be required to correct cell tracks

manually, both of which prevent efficient high-throughput moni-

toring of cells over long periods. This work describes EllipTrack,

a new cell-tracking pipeline that combines the best features of

previous segmentation and tracking algorithms and also imple-

ments a new local track-correction module to generate nearly er-

ror-free cell lineages. We also demonstrate EllipTrack’s ability to

perform a time- and density-dependent migration-speed infer-
ence and characterize the amount of training data required for

successful tracking. EllipTrack offers two user-friendly GUI ap-

plications that allow users to set up parameter values and to

create training datasets with minimal actions (STAR Methods;

Figure S2). EllipTrack can be applied to address a wide range

of biological questions and is especially suitable for drug screens

and systems pharmacology because it can handle large-scale

movies with time-dependent changes in migration that occur

upon drug treatment. EllipTrack has already proved essential in

two projects from our laboratory, enabling new discoveries

about proliferation in both normal and cancer cells (Min et al.,

2020; Yang et al., 2020).

Despite its better performance, EllipTrack has a few limita-

tions. First, because of the comprehensiveness of local track

correction, EllipTrack requires at least a 2-fold-longer run time

compared with other benchmarked cell trackers, and it is often

necessary to track multiple movies in parallel on a computing

cluster. Second, cells with kidney-shaped or other non-elliptical

nuclei are often over-segmented, although we find that signals

can still be reliably extracted. Third, EllipTrack does not consider

unusual cell behaviors, such as multipolar mitoses and cell-cell

fusion, although those behaviors can be incorporated if needed.

Similarly, whole-cell segmentation could also be incorporated

via the use of whole-cell markers, if needed. In summary, Ellip-

Track extends our current capacity of tracking multi-day,

large-scale movies, and the plethora of single-cell traces identi-

fied by EllipTrack can accelerate the discovery of heterogeneous

cell behaviors over long periods.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Dabrafenib (GSK2118436) Selleckchem Cat#S2807

Sodium Bicarbonate Fisher Chemical Cat#S233-500

DMEM Phenol red free Corning Cat#90-013-PB

DMEM/F12 Phenol red free Thermo Fisher Cat#11330-021

Horse Serum Thermo Fisher Cat#16050-122

Epidermal Growth Factor Peprotech Cat#AF-100-15

Hydrocortisone Sigma Cat#H0888-1g

Insulin Sigma Cat#I1882-200mg

Cholera Toxin Sigma Cat#C8052-2mg

PBS Thermo Fisher Cat#14190-144

Collagen Advanced BioMatrix Cat#5005-100ML

Deposited Data

Raw and analyzed data This manuscript https://drive.google.com/drive/folders/

1dEW-cDIwZLrgA-yPLljuB2Ok2DHV2qQS

Experimental Models: Cell Lines

A375 cell line ATCC Cat# CRL-1619, RRID:CVCL_0132

A375 H2B-mIFP DHB-mCherry, FIRE-

mVenus

This manuscript N/A

MCF10A H2B-mTurquoise, DHB-mCherry,

endogenously tagged mCitrine-Cyclin D1

(Gookin et al., 2017) N/A

Software and Algorithms

MATLAB Mathworks R2017a-R2019b

EllipTrack This manuscript https://github.com/tianchengzhe/elliptrack

Other

96 well glass bottom plate Cellvis Cat# P96-1.5H-N
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Sabrina

Leigh Spencer (sabrina.spencer@colorado.edu).

Materials Availability
The cell lines generated in this study are available upon request.

Data and Code Availability
EllipTrack is available at https://github.com/tianchengzhe/EllipTrack. Documentation is available at https://elliptrack.readthedocs.

io/en/latest/. Scripts and movies used in this study are available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
MCF10A human mammary epithelial cells were obtained from Gookin et al. (2017) and maintained in DMEM/F12 supplemented with

5% horse serum, 20ng/mL epidermal growth factor, 0.5 mg/mL hydrocortisone, 100ng/mL cholera toxin, 10 mg/mL insulin, and 1X

penicillin/streptomycin. A375 melanoma cells were purchased from the American Type Culture Collection, transduced with H2B-

mIFP (Yu et al., 2015), DHB-mCherry (Spencer et al., 2013), and FIRE-mVenus (Gillies et al., 2017) lentivirus, and were maintained
Cell Reports 32, 107984, August 4, 2020 e1
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in DMEM supplemented with 10% FBS, 1.5g/L sodium bicarbonate and 1X penicillin/streptomycin. Both cell lines were cultured at

37�C in a 5% CO2 humidified incubator.

METHOD DETAILS

Time-Lapse Microscopy
Time-lapse microscopy was performed as previously described (Arora et al., 2017). In brief, cells were plated on a 96-well plate

coated with collagen (1:50 dilution in water) in phenol red-free full growth medium. Approximately 24 hr later, cells were transferred

to a Ti-E PFS (Nikon) with a humidified, 37�C chamber with 5%CO2, and imaged periodically with a 10X 0.45 NA objective. Drug was

added to the medium by pausing the movie, exchanging 50% of the medium in the well with medium containing 2X drug concentra-

tion, and restarting the movie. Movie-specific parameters are described below.

A375 Movie

A375 cells expressing H2B-mIFP (Yu et al., 2015), DHB-mCherry, and FIRE-mVenus were plated with a density of 1000 cells/well.

Images were taken every 15 min with the following exposure times: mIFP 300 ms, mCherry 50 ms, and YFP 100 ms. Data from

the mCherry and YFP channels was not used in this study. Cells were first imaged in full growth medium for 24 hr (96 frames).

The BRAF inhibitor dabrafenib was then added to the well as described above and cells were imaged for a further 96.5 hr (386

frames). Drug was refreshed 30 hr after drug addition.

MCF10A Movie

MCF10A cells expressing H2B-mTurquoise, DHB-mCherry, and endogenously tagged mCitrine-Cyclin D1 (Gookin et al., 2017) were

plated with a density of 1000 cells/well and cultured in full growth medium. Cells were imaged every 10min for 48 hr (288 frames) with

the following exposure times: CFP 20 ms, and mCherry 100 ms. The YFP channel was not imaged.

Implementation of EllipTrack
A schematic diagram of EllipTrack is shown in Figure S1A. In brief, EllipTrack first segments the cell nuclei in the images of the nuclear

marker and fits them with ellipses (Segmentation). Then, displacement between every two images in neighboring frames (called ‘‘jit-

ters’’) is calculated and the positional information of ellipses are corrected (Jitter Correction). Next, EllipTrack constructs cell tracks

based on the ellipse information (Track Linking). Tracking results can be optionally visualized by creating the ‘‘vistrack’’ movies (Visu-

alize Tracking). Finally, EllipTrack extracts signals from each ellipse and constructs time series for each cell track (Signal Extraction).

Segmentation

In Segmentation, an image of the nuclear channel is first background subtracted and binarized (‘‘Image Binarization’’) such that pixels

within a nucleus are assigned a value of 1 (foreground pixels) and pixels in the image background are assigned a value of 0 (back-

ground pixels). The binary image is then optimized by the active contour (‘‘Active Contour’’) and Watershed (‘‘Watershed’’) algo-

rithms. Next, ellipses are fit to the contours of foreground pixels in the optimized binary image (‘‘Ellipse Fitting’’) and corrected

with user-provided training datasets (‘‘Correction with Training Datasets’’). Finally, EllipTrack extracts features from each ellipse

that will be used in Track Linking (‘‘Feature Extraction’’). ‘‘Image Binarization,’’ ‘‘Ellipse Fitting,’’ and ‘‘Feature Extraction’’ are

required.

In Image Binarization, two options are provided to binarize images: thresholding and blob detection. For thresholding, a threshold

is applied to the intensities of the nuclear image. Pixels with intensities greater than the threshold are assigned as foreground pixels

while other pixels are assigned as background pixels. For blob detection, the hessian matrix of the nuclear image is computed and a

threshold is applied to the hessian matrix. Pixels with values less than the threshold are assigned as foreground pixels and other

pixels are assigned as background pixels. A set of connected foreground pixels is called a component.

In Active Contour, the exact boundaries of components in the binary image are searched with the active contour algorithm. Ellip-

Track provides two options. The ‘‘global’’ option applies the active contour algorithm to the entire image, while the ‘‘local’’ option

applies the algorithm to the local neighborhood of every component and the outputs from each local neighborhood are then assem-

bled. The ‘‘global’’ option is computationally efficient, while the ‘‘local’’ option detects the boundaries more accurately, especially for

dim nuclei.

In Watershed, multiple nuclei within a component are separated with the Watershed algorithm. To improve the robustness of the

algorithm, the ‘‘peaks’’ of watershed are not defined by the pixels with local maximal distances to the background. Instead, they are

defined by small components constructed by repeatedly eroding the binary image.

In Ellipse Fitting, contours of components in the binary image are fit with ellipses with a previously published algorithm (Zafari et al.,

2015). In brief, the algorithm first searches for a characteristic point (called ‘‘seedpoint’’) for each nucleus. The contours of compo-

nents are then assigned to the seedpoints. Finally, the contour assigned to each seedpoint is fit with an ellipse.

In Correction with Training Datasets, EllipTrack constructs a linear discriminant classifier with user-provided training datasets (see

‘‘Construct Training Data’’ of ‘‘Track Linking’’) and predicts the number of nuclei each ellipse contains. Ellipses with a high probability

of containing no nucleus are removed, while ellipses with a high probability of containing two ormore nuclei are split into two using the

k-means algorithm. To ensure the robustness of splitting, two runs of the k-means algorithm are performed and the ellipse is only split

if these two runs show a high level of agreement.
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Finally in Feature Extraction, a predefined set of 26 features is extracted from each ellipse (Table S3). Features include themorpho-

logical parameters of the fitted ellipses and the distribution of nuclear marker intensities within the ellipses.

Jitter Correction

EllipTrack offers two options to perform jitter correction: local and global. With the local option, EllipTrack computes the jitters be-

tween every two neighboring frames (called ‘‘local jitters’’) by image registration (as in Cappell et al., 2016), and then corrects the

positional information of ellipses by subtracting the jitters from their original positions on the images. Movies are corrected indepen-

dently, even if they are captured on the same plate.

Meanwhile, formovies captured on the samemulti-well plate, jitters are often correlated because they are subject to the same plate

motion. It is therefore possible to infer the plate motion from this correlation and use it to compute the jitters for each movie based on

its position on the plate, an approach that can significantly reduce the errors of calculation. EllipTrack implements this approach with

the global option, where the plate motion between every two frames is inferred from the local jitters, and the jitters calculated from the

plate motion (called ‘‘global jitters’’) are then used to correct the positions of ellipses.

Mathematically: denote the position of well (i, j) in frame t as ðxi;j t ; yi;j t Þ and the distances between two rows and two columns as v

and h, respectively, as below
�
xi;j

t ; yi;j
t
�
=
�
x1;1

t ; y1;1
t
�
+ ððj� 1Þh; ði� 1ÞvÞ

Assume that the plate motion between frame t and frame t+1 causes a whole-plate shift of ðDx; DyÞ and a plate rotation of angle q.

The position of well (i, j) in frame t+1 can then be expressed as
�
xi;j

t + 1 ; yi;j
t + 1

�
=
�
x1;1

t ; y1;1
t
�
+ ðDx; DyÞ+Rððj� 1Þh; ði� 1ÞvÞ

where R is the rotation matrix for the angle q. Therefore, the motion of the well (i.e., global jitters) follows
�
Dxi;j

t + 1 ; Dyi;j
t + 1

�
=
�
xi;j

t + 1 ; yi;j
t + 1

�
--
�
xi;j

t ; yi;j
t
�
= ðDx; DyÞ+ ðR� IÞððj� 1Þh; ði� 1ÞvÞ (1)

with I being the identity matrix. Local jitters inferred by image registration are equal to the sum of the global jitters and the error terms,

as shown below.

D~xi;j
t + 1

; D~yi;j
t +1

� �
= Dxi;j

t + 1 ; Dyi;j
t + 1

� �
+ ex; ey
� �

;where ex and ey � N 0; s2
� �

EllipTrack uses the local jitters ðD~xi;j t +1 ; D~yi;j
t + 1 Þ and the position (i, j) of each well to infer the unknown variables ðh; v; q; Dx; DyÞ

and then computes the global jitters of each well with Equation 1.

Track Linking

In Track Linking, users first create training datasets with the Training Data Generator GUI attached to EllipTrack (‘‘Construct Training

Data’’) and EllipTrack uses these datasets to predict the behaviors of each ellipse in the movie (‘‘Compute Probabilities’’). Cell tracks

are then generated based on these predictions (‘‘Construct Tracks’’). Finally, errors in cell tracks are fixed by the local track-correc-

tion module (‘‘Local Track Correction’’).

In Construct Training Data, users load ellipse information into theGUI attached to EllipTrack andmanually label the behavior (called

‘‘events’’) of each ellipse. Two types of events are considered: morphological events and motion events. Morphological events

describe the status and behavior of the ellipse in the current frame and include the number of cell nuclei in the ellipse (0, 1, or 2)

as well as whether cells are mitotic, newly born, or apoptotic. Motion events describe cell migration between neighboring frames

and include migration between two ellipses in neighboring frames and migration in/out of the field of view. Motion events are also

used to infer the migration speed of cells. After users label all events of interest, the GUI generates a training dataset which can

be used for computing probabilities.

In Compute Probabilities, EllipTrack constructs linear discriminant classifiers with user-provided training datasets and computes

the probabilities of morphological events for each ellipse. For motion events, EllipTrack models cell migration by random walk (as in

Magnusson et al., 2015), and calculates the probabilities of cell migration with the formula

PðDi;t /Dj;t + 1Þ = PsimðDi;t; Dj;t + 1ÞpmigðDi;t; Dj;t + 1Þ
PsimðDi;t; Dj;t + 1Þ pmigðDi;t; Dj;t + 1Þ+ ½1� PsimðDi;t; Dj;t + 1Þ�pnonmig

Here, Di;t and Dj;t + 1 refers to the i-th ellipse in Frame t and j-th ellipse in Frame t+1; PsimðDi;t; Dj;t +1Þ refers to the probability that

these two ellipses represent the same cell, as predicted by the linear discriminant classifiers constructed from the training data-

sets; pmigðDi;t; Dj;t +1Þ refers to the probability that the cell migrates from the position of Di;t to the position of Dj;t + 1, as computed

by the formula of random walk; and pnonmig refers to the null probability of cell migration (a user-controlled parameter). A key

parameter of a random walk is the standard deviation (i.e., cell migration speed). EllipTrack offers three options to compute

this parameter: global, time, and density. With the global option, EllipTrack uses all training samples and infers a single migration

speed for all cells in all frames. With the other two options, EllipTrack calculates the migration distances and the Frame ID (time) or

the number of cells in the local neighborhood (density) for each training sample, and estimates the curve of migration speed versus
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time/density from these samples. EllipTrack will then apply this curve to the movie and calculate the migration speed for each cell

at each frame.

In Construct Tracks, EllipTrack uses the Magnusson et al. (2015) global track-linking algorithm to construct cell tracks. Note that in

EllipTrack, theMagnusson swap operation only applies to the cell tracks that map to cells at both frames. Cell tracks that map to cells

at only one frame at the frames of interest, such as those associated with appearance, disappearance, mitosis, and apoptosis, are

not considered. In comparison, all cell tracks can be swapped in BaxterAlgorithm. Therefore, BaxterAlgorithm may show a better

performance compared to EllipTrack before local track-correction (Table 1). However, all these overlooked mistakes can be fixed

by the local track-correction module, and the tracking performance of EllipTrack after correction often becomes much better than

BaxterAlgorithm.

Finally, in Local Track Correction, EllipTrack employs a six-step procedure to correct possible tracking mistakes. In the first step,

EllipTrack optimizes the Magnusson swap operation and examines alternative track configurations, as described in the main text.

In the second step, EllipTrack corrects premature termination of cell tracks due to under- and over-segmentation. In the first case,

when two cells are under-segmented by one ellipse and the predicted probabilities of cell overlap are not perfect, one cell might lose

its cell track at the frame of under-segmentation and later be mapped by a new cell track at the frame where segmentation becomes

correct. To fix this type ofmistake, EllipTrack examines every pair of prematurely terminated cell track and newly created one, andwill

connect them if they meet the following requirements: (1) the latter cell track appears at most ‘track_para.critical_length’ (a user-

controlled parameter) frames later than the termination of the former cell track, (2) both cell tracks share the same cell as their closest

neighbor, and (3) the latter cell track does not appear by amitosis event. In the second case, when one cell is over-segmented by two

ellipses, its cell track might map to one of the two ellipses and terminates, while another cell track appears, maps to the other ellipse,

and continues mapping this cell after segmentation becomes correct. To fix this type of mistake, EllipTrack examines every pair of

prematurely terminated cell track and newly created one, and will combine them if they meet the following requirements: (1) the latter

cell track appears at most ‘track_para.critical_length’ frames earlier than the termination of the former cell track, (2) both cell tracks

are the closest neighbor of each other, and (3) the former cell track does not terminate by a mitosis event.

In the third step, EllipTrack corrects mistakes associated with under-segmentation. Due to its memoryless nature, the Magnusson

global track-linking algorithm loses the identities of the cells when two cells are under-segmented and both cell tracks map to the

same ellipse. Consequently, the algorithm randomly maps the cell tracks when cells are no longer under-segmented, which results

in 50% of such mappings being incorrect. To correct these mistakes, EllipTrack compares the ellipse similarity and migration dis-

tances before and after under-segmentation and swaps the two cell tracks after under-segmentation if both quantities improve.

In the fourth step, EllipTrack searches for undetectedmitosis events, which aremarked by a cell trackmapping both themother cell

and one daughter cell, and a second cell track mapping the other daughter cell. To do so, EllipTrack looks for all cell tracks which are

not created by mitosis but have high probabilities of being a newly born cell at their first frame (as predicted in ‘‘Compute Probabil-

ities’’). For each cell track, EllipTrack then examines whether there exists a neighboring cell track that has a high probability of being a

mitotic cell in the previous frame and has a high probability of being a newly born cell in the current frame. If such a cell track is found,

EllipTrack will split themother-and-daughter cell track into two (one for themother cell, and the other for the daughter cell) and create

a mitosis event between the mother cell track and the two daughter cell tracks.

In the fifth step, EllipTrack prunes the cell lineage trees by removing all cell tracks unlikely to represent a cell, such as very short cell

tracks and cell tracks skipping too many frames. Mitosis events associated with these invalid cell tracks will be removed as well.

In the last step, EllipTrack recursively adjusts the Track IDs such that (1) Track IDs will be sorted by the ellipse positions at the first

frame, and (2) sibling cells (two cells born by the samemother) have consecutive Track IDs. This step significantly reduces themental

burden when examining the ‘‘vistrack’’ movies.

Visualize Tracking

To visualize the cell tracks, EllipTrack generates ‘‘vistrack’’ movies as in Figure 1D.

Signal Extraction

In Signal Extraction, EllipTrack defines the regions of nucleus and cytoplasmic ring for each ellipse as illustrated in Figure S1C and

removes a pixel from the region if it is shared by other regions or cells (Figure S1D). EllipTrack then performs background subtraction

on each fluorescent image, drops the outlier intensities (defined as the top and bottom 5%), and computes the mean, median, and

variance of signal intensities in each region of each ellipse. Finally, the signal time series in each cell track are assembled for plotting.

Graphical User Interfaces
To improve the practical usability of EllipTrack, we developed two user-friendly Graphical User Interfaces (GUIs), Parameter Gener-

ator GUI and Training Data GUI, to help users set up parameter values and construct training datasets (Figure S2). In Parameter

Generator GUI, we classified parameters into two categories: basic and advanced. For most movies, setting the basic parameters

is sufficient. We allow users to view the results of segmentation and migration-speed inference in real-time, thus providing a conve-

nient parameter-tuning process. We also implement substantial hints and sanity-checks to prevent users from setting invalid values.

In Training Data GUI, we simplify the training process such that creating a training sample involves only twomouse clicks and takes a

few seconds. This allows users to generate the required�500 training samples within 1 hr. Together, we expect that these GUIs help

users to become familiar with EllipTrack in a short amount of time.
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Description of Movies
Movie statistics were summarized in Table S2. A detection refers to one nucleus in one frame. Based on the total number of detec-

tions, we classified MCF10A, A375, and RPE-hTERT movies as large-scale.

HeLa

Training movies of the Fluo-N2DL-HeLa dataset from the Cell Tracking Challenge. In each movie, HeLa cells expressing H2B-GFP

were imaged every 30 min for 46 hr (92 frames) (Ma�ska et al., 2014; Ulman et al., 2017). Official ground truth was used. These movies

were among the most challenging datasets from the Cell Tracking Challenge.

BJ5TA

Courtesy of Steven Cappell. BJ5TA cells expressing H2B-mTurquoise and Geminin-mCherry (Sakaue-Sawano et al., 2008) were

treated with control siRNA and then imaged every 12 min for �20 hr (107 frames) (Cappell et al., 2016). Movie jitters were not cor-

rected. 800 cell nuclei from four frames (Frame 23, 44, 81, 105) were annotated for segmentation benchmark and all cell lineages

were annotated for tracking benchmark. The main difficulties include a drastic change of image background due to photobleaching,

strong illumination bias, heterogeneous brightness of nuclei, and interference from other channels.

MCF10A

This movie was generated in this study. Experimental details were described above. Movie jitters were not corrected. 802 cells from

four frames (Frame 41, 133, 217, 273) and all the cell lineages that present in the first frame were annotated. The main difficulties

include rapid cell migration and dense cell distribution.

A375

Thismovie was generated in this study. Experimental details were described above. Movie jitters were corrected by BaxterAlgorithm.

668 cells from six frames (Frame 57, 106, 201, 210, 318, 480) and all cell lineages were annotated. The main difficulties include a

drastic change of image background due to photobleaching, aswell as abnormal cell morphology and strong overlap after drug treat-

ment. Best efforts were made to annotate overlapping cells, though multiple cell lineages were not annotated to the end of the movie

due to severe overlapping.

RPE-hTERT

Courtesy of Tammy Riklin Raviv and Jose Reyes. RPE-hTERT cells expressing H2B-mTurquoise, DDX5-eYFP, and p21-mVenus

were imaged every 15 min for 100 hr (400 frames). Medium was refreshed at Frame 92, 181, 282, and 374 (Arbelle et al., 2018). Movie

jitters were not corrected. For segmentation benchmark, manual annotation fromArbelle et al. were used (502 cells, from Frame 1, 20,

40, 60, 61, 80, 100, 190). For tracking benchmark, additional annotationwas provided such that themajority of cell lineages, including

all lineages that present in the first frame, were annotated. Main difficulties include strong cell overlap, rapid cell migration and dense

cell distribution.

Benchmarking Criteria
Cell Tracking Challenge Criteria (SEG and TRA)

These criteria evaluate the resemblance between tracking results and manually annotated ground truth. Ground truth was obtained

as described above. Official evaluation programs were used to compute the scores. Since EllipTrack and Cappell et al. (2016, 2018)

do not perform post-tracking segmentation, multiple cell tracks might map to the same nuclei, which is incompatible with the official

evaluation programs. We therefore partitioned all such under-segmented nuclei with k-means algorithm and assigned track IDs

based on the positions of nuclear centroids.

Accuracy of Segmentation (%CORR_S)

This criterion examines whether cell nuclei are accurately segmented, without post-tracking segmentation. All cells from five

equidistant frames spanning over the entire movie were examined (> 500 cells). Every cell nucleus was manually classified into

four categories: correctly segmented, under-segmented (contains more than one nucleus), over-segmented (contains less than

one nucleus), and not segmented. The percentage of nuclei that were correctly segmented was reported.

Number of Complete Tracks (#COMP)

This criterion examines the ability of cell trackers to track cells over long time periods. A complete track refers to a cell being tracked

along the lineage tree from the first to the last frame of themovie. Cells migrating in/out of the field of view are excluded, regardless of

whether they are correctly tracked or not. Ground truth of #COMP was derived from the manually annotated cell lineages.

Accuracy of Complete Tracks (#MIS_T and %CORR_T)

These criteria examine the ability of cell trackers to generate error-free cell tracks. Every complete track was manually examined and

all tracking mistakes were annotated. A tracking mistake includes incorrect mapping between frames, incorrectly assigned mitosis

events, and undetected mitosis events, but does not include mistakes due to segmentation. The average number of tracking mis-

takes in the complete tracks was reported as #MIS_T, and the percentage of complete tracks that have no tracking mistakes was

reported as %CORR_T.

Parameters used for Benchmarking
Parameter files of EllipTrack, BaxterAlgorithm, and Cappell et al. can be accessed at https://drive.google.com/drive/folders/

1dEW-cDIwZLrgA-yPLljuB2Ok2DHV2qQS. iLastik files are available upon request.
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EllipTrack

For segmentation, parameters were tuned in Parameter Generator GUI such that cells from all frames were generally well-

segmented. In brief, images were first background subtracted (HeLa only), log-transformed, and binarized (MCF10A and RPE-

hTERT: thresholding, others: blob detection). Components in the binary images were then optimized with Active Contour (all but

A375: log-transforming the raw images, all with the local option) and partitioned withWatershed. Finally, ellipse fitting was performed

to the boundaries of components with the default parameters. For Track Linking, density-dependent migration speed inference was

used for MCF10A and RPE-hTERT, while the global option was used for other movies. Default parameter values were used, except

HeLa and A375 movies where some advanced parameters were tuned to improve the detection of mitosis events.

BaxterAlgorithm

Parameters provided in BaxterAlgorithm were used to track the HeLamovies. For all other movies, the HeLa-movie parameters were

imported and their values were then modified as follows. For Segmentation, the parameter ‘BPSegThreshold’ was fine-tuned to

achieve a good segmentation performance. Additional parameters, such as ‘SegMinArea’, might also be tuned to remove invalid

components. For Track Linking, ‘pDeath’, ‘TrackPAppear’, ‘TrackPDisappear’, and ‘TrackNumNeighbors’ were modified to the

same values as EllipTrack, and ‘TrackXSpeedStd’ was modified to the inferred migration speed by EllipTrack with the Global option.

‘pCnt0’, ‘pCnt1’, and ‘pCnt20 were set to approximately match the proportions of over-, correctly, and under-segmented cells. Three

parameters were tested with multiple values: ‘TrackMaxMigScore’ (0 or Inf), TrackMigLogLikeList (‘MigLogLikeList_uniformClutter’,

or ‘MigLogLikeList_viterbiPaper’), and count/split/death classifiers (‘none’ or the ones created by training a subset of movie images).

Tracking results from all eight parameter combinations were evaluated by the Cell Tracking Challenge evaluation software, and the

combination with the highest (SEG+TRA)/2 score was used for benchmark.

Cappell et al., 2016, 2018

Parameters related to movie specification, such as magnification of objective lens and average nuclear radius, were modified to

match the experiments. Three parameter combinations were tested based on how the first and later frames were segmented: (1)

the first frame with the ‘log’ option while later frames with the ‘apriori’ option; (2) the first frame with the ‘single’ option while later

frames with the ‘apriori’ option; and (3) all frames with the ‘log’ option. The parameter combination with the highest (SEG+TRA)/2

score was used for benchmark.

iLastik

For Segmentation, around 100 typical cells were selected from the entire movie. Pixels within the cell nuclei were trained as ‘‘Label 1’’

while the pixels immediately surrounding the nuclear contours were trained as ‘‘Label 2.’’ Additionally, pixels from image background

were trained as ‘‘Label 2.’’ All features with the default standard deviation values were used for training. For Tracking, probabilities of

segmentation were first smoothed with a sigma of 2x2, and then binarized with a threshold of 0.5. Components with area less than 25

(MCF10A) or 100 pixels (all other movies) were removed. Next, division and object count classifiers were trained on the same cells as

EllipTrack. Training samples might be added or removed to avoid assertion errors. All features except locations were used for

training. Finally, movies were tracked with the default parameters. Three values of border widths (HeLa, RPE-hTERT: 25, 50, 100

pixels, others: 50, 100, 200 pixels) were tested for each movie and the one with the highest (SEG+TRA)/2 score was used for

benchmark.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data in Figure 2E are presented asmean ± std; p valuewas derived from a one-sided t test. Sample number (n) represents the number

of replicates. No other statistical analysis was performed in the study. Data analysis was not blinded.
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SUPPLEMENTAL FIGURES 

 
Figure S1. Implementation of EllipTrack, related to Figure 1. 

(A) Schematic illustration of the EllipTrack workflow. 

(B) Procedure of segmentation in EllipTrack. Raw images of the nuclear marker are first binarized. The binary 

images are then optimized with the Active Contour and Watershed algorithms. Finally, ellipses are fitted to the 

contours of the foreground pixels in the binary images. Dataset: A375-1.  

(C) Schematic illustration of the nuclear and cytoplasmic ring. 

(D) Visualization of the nucleus and cytoplasmic ring of overlapping nuclei. Left: Fitted ellipses plotted on top of 

the image of the nuclear marker (H2B). Middle: Fitted ellipses plotted on top of the CDK2 sensor image. Right: 



Pixels used to define the nuclear and cytoplasmic rings (white). Pixels shared by multiple cells are removed from the 

calculation. 

(E) Schematic illustration of the alternative track configurations for two cell tracks both mapping from one frame to 

the next. Case 1 will swap two cell tracks as done by the Magnusson swap operation. It aims to correct track swaps. 

Cases 2 and 3 will assign one cell track for mitosis and terminate the other one. They aim to detect missed mitosis 

events. Cases 4 and 5 will swap two cell tracks and then break one of them into pieces. They aim to remove unlikely 

migration events. These alternatives are chosen to correct the common tracking mistakes.  

(F) Schematic illustration of the CDK2 sensor. DHB, DNA helicase B, a CDK2 substrate. NLS, Nuclear 

Localization Signal. NES, Nuclear Export Signal. 

 
  



 

 
Figure S2. Graphical User Interfaces, related to STAR Methods. 

(A) Parameter Generator GUI. 

(B) Training Data GUI. 



SUPPLEMENTAL TABLES 
Table S1. Comparison of cell trackers, related to Table 1. 

Cell Tracker Segmentation Track Linking Post-Processing 

EllipTrack Thresholding/blob detection, active 

contour, watershed, ellipse fitting 

Viterbi algorithm Local track 

correction 

Baxter 

Algorithm 

Bandpass filter, watershed Viterbi algorithm Post-tracking 

segmentation  

Cappell et al. Thresholding/blob detection, watershed Nearest neighbor. Terminate 

cell tracks when in doubt. 

N/A 

iLastik Random forest classifiers Flow-based algorithm Post-tracking 

segmentation 

  



Table S2. Statistics of benchmarked movies, related to Table 1. 

A detection refers to one nucleus in one frame. “% Detections Annotated” indicates the percentage of detections that 

were manually annotated for constructing the ground truth cell lineages. 

Movie # Frames 
# Cells in 

First Frame 

# Cells in Last 

Frame 

# Total 

Detections 

Interval 

(min) 

Duration 

(hr) 

% Detections 

Annotated 

HeLa-1 92 43 137 8.6*103 30 46 100 

HeLa-2 92 125 363 2.54*104 30 46 100 

BJ5TA 107 329 332 3.54*104 12 21.4 100 

MCF10A-1 288 156 851 1.17*105 10 48 65 

A375-1 482 50 318 9.9*104 15 120.5 100 

RPE-hTERT 400 30 712 1.05*105 15 100 64 

  



Table S3. List of features, related to STAR Methods. 

Category ID Description Remark 

Ellipse Geometry 1 Area 𝜋𝑎𝑏 

2 Major axis Denote as a 

3 Minor axis Denote as b 

4 Eccentricity 𝑎$ − 𝑏$/𝑎 

5 Equivalent radius Denote as 𝑟 = 𝑎𝑏 

6 Approximate perimeter 𝜋 2(𝑎$ + 𝑏$)	 

7 Adjusted radius 𝑎𝑏/ 𝑎$ + 𝑏$	 

Intensity of 

Ellipse Interior 

8 Mean Denote as 𝜇/ 

9 Standard deviation Denote as 𝜎/ 

10 Kurtosis Denote as 𝜅/ 

11 Median Denote as 𝑚/ 

12 75% percentile Denote as 𝑞/ 

Intensity of 

Ellipse Boundary 

13 Mean Denote as 𝜇4 

14 Standard deviation  

15 Median  

16 Ratio of internal to boundary intensity 𝜇//𝜇4 

17 Approximate gradient (𝜇/ − 𝜇4)/𝑟 

Intensity of 

Ellipse Centroid 

18 Intensity of ellipse centroid Denote as 𝜇5 

19 Ratio of centroid to boundary intensity 𝜇5/𝜇4 

20 Approximate gradient (𝜇5 − 𝜇4)/𝑟 

21 Ratio of centroid to interior intensity 𝜇5/𝜇/ 

22 Approximate gradient (𝜇5 − 𝜇/)/𝑟 

Intensity Ratios 

of Ellipse Interior 

23 Standard deviation / Mean 𝜎//𝜇/ 

24 Kurtosis / Mean 𝜅//𝜇/ 

25 Median / Mean 𝑚//𝜇/ 

26 75% percentile / Mean 𝑞//𝜇/ 
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