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Melanoma patients receiving drugs targeting BRAFV600E and MEK1/2 invariably develop

resistance and continue progression. Based on preclinical studies, intermittent treatment involving

alternating periods of drug withdrawal and rechallenge has been proposed as a method to delay the

onset of resistance. The beneficial effect of intermittent treatment has been attributed to drug ad-

diction, where drug withdrawal reduces the viability of resistant cells due to MAP kinase pathway

hyperactivation. However, the mechanistic basis of the intermittent effect is incompletely under-

stood. We show that intermittent treatment with the BRAFV600E inhibitor, LGX818/encorafenib,

suppresses growth compared to continuous treatment in human melanoma cells engineered to ex-

press BRAFV600E, p61-BRAFV600E, or MEK2C125S oncogenes. While drug addiction is clearly ob-

servable, it fails to account for the advantageous effect of intermittent treatment. Instead, growth

suppression is best explained by resensitization during periods of drug removal, followed by cell

death after drug readdition. Continuous treatment leads to transcriptional responses prominently

associated with chemoresistance in melanoma. By contrast, cells treated intermittently reveal a

subset of transcripts that switch between successive cycles of drug removal and rechallenge, and

reverse the expression of some, but not all, mediators of cell invasiveness and the epithelial to

mesenchymal transition. These transcripts change during periods of drug removal by adaptive

phenotype switching, rather than selection pressure. Resensitization occurs against a background

of sustained expression of melanoma resistance genes, producing a transcriptome distinct from

that of the initial drug-näıve cell state. We conclude that phenotypic plasticity leading to drug

resensitization can underlie the beneficial effect of intermittent treatment.

Large-scale biological data sets are often contaminated with noise, which can impede accurate



iii

inferences about the underlying processes. We describe a general method for automatically reducing

noise in large-scale biological data sets. These network filters use an interaction network to identify

groups of correlated or anti-correlated measurements that can be combined to better recover an

underlying biological signal, similar to image denoising. Applied to synthetic and real data sets,

network filters accurately decrease the noise and improve the accuracy of machine learning tasks.

Our results indicate the broad potential utility of network filters to applications in systems biology.
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Chapter 1

Introduction

1.1 Melanoma disease statistics, biology, and disease progression

Cutaneous melanoma is a cancer originating from melanocytes in the skin. This cancer is

relatively less common than other skin cancers, accounting for only 1-4% of all skins cancer cases.

However, it the most deadly form making up 75% of yearly skin cancer deaths [1,2]. Year after year,

cutaneous melanoma diagnoses are becoming more common in the United States. The incidence

rate in 1980 was 10.5 per 100,000, and it has more than doubled in 2018 to 25.3 [3]. While the overall

5-year relative survival of melanoma from 2011-2017 was 93%, the key to surviving melanoma is

early detection. If the cancer has not spread from the primary site, the disease is typically cured

by resecting the nevus with a 99.4% 5-year relative survival rate. Once the cancer metastasizes in

stage later stages, the survival rate sharply drops. Patients with regional lymph node metastases

have a 5-year relative survival is 68%, and with distant metastases it decreases to 29.8% [3].

The typical first step in melanoma neoplastic transformation is ultraviolet radiation induced

mutagenesis. The most frequently transforming mutation is in the BRAF kinase (discussed in

section 1.2.1). Transformed melanocytes clonally expand and form a nevus (Fig. 1.1) [4,5]. However,

the BRAF mutation alone typically does not cause cancer due to oncogene induced senescence.

After a few days of clonal expansion, the negative regulator of the G1-S cell cycle transition p16INK4a

is increased [6]. However, the upregulation of p16INK4a may not be the driving force of oncogene

induced senescence [7, 8]. Inflammatory cytokines IL6 and IL8 may also play a role in activating

senescence pathways [9].
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Figure 1.1: Model of spontaneous melanoma disease progression. Melanomas progress in a step-
like manner from a benign overgrowth of a nevus to distant metastasis. Cells acquire prototypical
mutations at each step, which are associated with UV radiation. Reproduced with permission
from [2], Copyright Massachusetts Medical Society.

The next step in melanoma progression involves mutations in CDKN2A or PTEN. CDKN2A

is the gene that codes for the p16INK4a tumor supressor protein. This gene is mutated in 30-40%

of familial forms of melanoma [10]. On the other hand, PTEN loss of function mutations are much

more common in spontaneous melanomas resulting from sun damage. The PTEN phosphatase

negatively regulates the PI3K/AKT signaling pathway, which is a cell signaling pathway important

for cell survival and proliferation [2]. Loss of function in these genes helps to activate abberant cell

proliferation (Fig. 1.1).
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In the radial growth phase of melanoma, the cells invade farther in the dermal layers of

the skin but they do extend into the subcutaneous fat level. They develop over-expression of

the cell-cycle protein, cyclin D1, which accelerates their proliferation (Fig. 1.1) [11]. Then in the

vertical growth phase, the cells invade deeper into the skin layers and start migrating to the lymph

nodes (Fig. 1.1). The tumor cells in this phase undergo a transition similar to the epithelial to

mesenchymal transition (EMT) seen in epithelial cancers and during normal development. A switch

from the cellular adhesion protein E-cadherin to N-cadherin is a classical step in EMT and is seen in

melanoma [12]. Additionally, expression of the intermediate filament vimentin, a classical marker of

mesenchymal cells, is expressed during this stage [12]. At this stage the signaling ligand WNT5A

becomes highly expressed, which makes melanoma cells more motile and may initiate the EMT

process [13, 14]. Finally, in metastatic melanoma, satellite tumors form in the brain, lungs, and

liver.

1.2 Mitogen activated protein kinase (MAPK) signaling pathway

All cells integrate extracellular signals to respond and adapt to their environment. Perhaps

the most studied mammalian signaling pathway is the mitogen activated protein kinase (MAPK)

pathway [15]. This pathway is highly conserved throughout Eukaryotes, but it is absent in Archaea

and Bacteria. In normal, non-cancerous cells, secreted extracellular proteins bind to membrane

proteins on target cells acting as a signal to enter the cell-cycle and grow. As this pathway is

important for cell proliferation, it is highly dysregulated in many human cancers and a frequent

target of oncogenic mutations [16]. In melanoma specifically, about 90% of cases have an oncogenic

mutation in one of the MAPK pathway proteins [17].

The signal transduction of extracellular cues to the cytoplasm and nucleus have been studied

deeply for decades. One defining characteristic of the pathway architecture is the three-tiered kinase

cascade. This means one kinase phosphorylates and activates a second kinase, which then goes on

to do the same for the third, master kinase. The biochemical details of the proteins and signal

transduction of the MAPK pathway are described in the following sections.
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1.2.1 RAFs

The RAFs lie at the top of the three tiered kinase cascade. Also called MAP3Ks, these

proteins phosphorylate the MEKs. Structurally, there are 3 conserved regions. The N-terminal

conserved region is composed of a RAS-binding domain (RBD) and cysteine rich region [18]. Like

its name indicates, the RBD will bind to Ras at the plasma membrane and release the protein from

its autoinhibited conformation. The protein can also undergo phosphorylation which fully activates

its kinase activity.

There are three isoforms in mammals, called A, B, and C. BRAF is particularly important

in human cancer as it is mutated in about 15% of all types of cancer. In particular, over 50%

of melanomas have a mutation in BRAF. Valine 600 is the most common site of mutagenesis,

with glutamate being the substitution in 80% of tumors [17, 19]. This residue lies in between the

activation loop phosphosites at T599 and S602 [18], and the charged residue likely mimics the effect

of phosphorylation [19].

1.2.2 MEKs

The MAP Kinase Kinases (MEKs, MKKs, or MAP2Ks) are the intermediate step of the

MAPK pathway. These kinases have dual specificity for tyrosine and threonine residues that ac-

tivate the master kinase ERK [20]. RAFs classically activate the MEKs through phosphorylation

on two serine residues, but other proteins like c-MOS can also activate MEK [21,22]. The concen-

tration of MEK in cells is thought to be the key to if cells display graded or switch-like MAPK

pathway activation [23]. Constitutive activation mutations in MEKs are sufficient to transform

cells [24].

1.2.3 ERKs

The final kinase of the MAPK pathway are the MAP kinases themselves. Commonly known as

ERK1/2, these kinases have hundred of phosphorylation targets in the cytoplasm and nucleus [25,

26]. The targets themselves have a broad range of molecular classes from transcription factors,
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cytoskeletal elements, apoptotic proteins, kinases, and phosphatases.

One of the most well known functions is the promotion of cell proliferation through stimulating

transcription of cyclin D1 [27] to enter the cell cycle. The cyclin D1 gene promoter has AP-1 sites

that immediate early ERK targets FOS and JUN can bind [28,29]. Traditionally, MAPK signaling

was only considered important during G1-S phase transition where the restriction-point is, but

more recent evidence shows that cells sense MAPK signaling throughout the whole cell cycle [30]

Another critical function of ERKs is pro-survival cell signaling. ERK regulates the tran-

scription and phosphorylation of some BCL-2 family proteins [31]. In particular, ERK reduces

the transcription of pro-apoptotic protein BIM. ERK phosphorylates and inhibits the transcription

factor FOXO3A, which normally induces BIM transcription. Furthermore, BIM has ERK phos-

phorylation sites, which prevent it from binding other pro-apoptotic proteins and also targets it for

degradation [32].

While ERK is the most important kinase of the MAPK pathway, only a few cancer causing

mutations have been identified. The mutants E322K and D319N in ERK2 occurs in the common

docking (CD) binding motif where ERK binds its substrates and negative regulators [33,34]. Recent

studies have shown that these may inhibit interactions with phosphatases that normally inactivate

ERK [35].

1.2.4 Upstream effectors and oncogenic mutations

Cells with BRAFV600E mutations have constitutive MAPK pathway activation without the

need for external signals. But protein components at the plasma membrane are necessary to start

the signal cascade in BRAFWT cells, and some are these proteins have oncogenic mutations in

melanoma. The first step in MAPK signal transduction is receptor tyrosine kinases (RTK) binding

to growth factors and mitogens on the extracellular side of cells. This binding induces dimerization

and cross-phosphorylation of tyrosine residues [36,37]. The most relevant RTK in many cancer cells

is EGFR, as it can contribute the oncogenesis and malignancy [38]. While oncogenic mutations in

EGFR are not common in melanoma, they are important for lung cancer. Particularly the EGFR
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mutation L858R promotes aggressive late-stage cancer [39].

The phosphorylation on EGFR is recognized by SHC and GRB2 by their SH2 domains [40].

GRB2 interacts through its SH3 domain with the G-protein guanine exchange factor (GEF) SOS

and promotes its localization to the plasma membrane [41]. There, it is able to activate the small

monomeric GTPase RAS by promoting its exchange of GDP for GTP.

RAS is one of the most frequently mutated proteins in human cancer, with estimates between

16% and 27% across all cancers [42]. These are most common in the isoform KRAS, followed by

isoforms NRAS and HRAS. In melanoma, mutations in NRAS accounts for about 25% of cases and

they are frequently somatic [17]. Oncogenic mutations in BRAF and NRAS are largely mutually

exclusive in patients before drug treatment. There are three hotspots for RAS mutations: G12,

G13, and Q61 [42]. Mutations of these residues reduce GTP hydrolysis and/or exchange rate [43].

Hence these mutations create a hyperactive RAS by promoting its association with GTP. Different

cancer types preferentially mutate specific RAS isoforms and hotspot codons. In melanoma, NRAS

is most frequently mutated at glutamine 61 to either arginine, lysine, leucine, or histidine [17].

RAS signaling is regulated through a GTPase activating protein (GAP). These proteins

enhance the GTPase activity of RAS and consequently convert RAS into its inactive GDP bound

form. The relevant RAS GAP in melanoma is called NF1 [44, 45]. This tumor suppressor protein

has loss of function mutations in about 15% of melanoma cases, and it sometimes co-occurs with

BRAF mutations [17]. Thus, NF1 mutant melanomas also have upregulated MAPK signaling

though the suppression of negative pathway regulation.

1.3 MAPK pathway targeted therapies

Until the early 2010s, the treatment options for metastatic melanoma were limited, and

patients did not respond well. The only FDA approved therapies were dacarbazine and interleukin-

2 (IL2) [46]. But therapies targeted to the MAPK pathway have revolutionized treatment and

extended the progression free survival of patients [47]. With about 90% of melanomas harboring

a mutation in the MAPK pathway, the pathway clearly is important for cancer cell fitness and
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inhibiting it has lead to beneficial therapeutic responses.

Vemurafenib was the first FDA approved BRAF inhibitor (BRAFi) for metastatic melanoma [48].

This ATP competitive inhibitor preferentially binds to BRAFV600E and other active mutants over

inactive BRAFWT [49]. Dabrafenib was FDA approved next. This drug has a similar profile to

vemurafenib, but is more selective for BRAFV600E mutants than BRAFWT or CRAF [50]. Enco-

rafenib is the latest FDA approved BRAF inhibitor, and its very slow dissociation rate (half-life ≈

30 h) from BRAFV600E and higher specificity set it apart from vemurafenib and dabrafenib [51].

While these inhibitors show potent activity in BRAFV600E and other activating mutants, they can

actually lead to so called “paradoxical activation” of the MAPK pathway at subsaturating con-

centrations in BRAFWT cells. The inhibitors can bind to BRAFWT and CRAFWT and induce a

conformation that allows dimerization and activation of the non-ligand-bound protomer [52].

Since these BRAF inhibitors are not effective for BRAFWT cancers, MEK inhibitors are used

for RAS mutant cancers and as a double agent therapy with BRAFi. There are three currently FDA

approved MEK inhibitors (MEKi) used to treat metastatic melanoma: Cobimetinib, Trametinib,

and Binimetinib. Unlike the BRAF inhibitors, these are allosteric inhibitors [53]. They bind

to a site adjacent to the ATP nucleotide and favor an inactive conformation [54]. Current first

line of care of metastatic melanoma involves BRAFi and MEKi combination treatment. Patients

receiving encorafenib and binimetinib combination treatment have a median 15 month progression

free survival, and median 33 month overall survival [55].

1.4 Acquired drug resistance to targeted therapies

While many patients will respond to BRAF or MEK inhibition, nearly all patients will develop

resistance and relapse [56]. This acquired drug resistance is distinct from intrinsic resistance,

where about 50% patients do not respond to drug treatment [57]. Acquired resistance to MAPK

pathway inhibitors typically comes in the form of reactivating the MAPK pathway under drug

treatment. A common acquired resistance mechanism is BRAF amplification [58]. The consequence

of amplification is that there is an excess of uninhibited BRAF that can stimulate the pathway.
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Increasing drug concentrations can inhibit MAPK signaling in BRAF amplified cells in vitro but

at dosages too high for patients [58].

A splice variant of BRAFV600E has been identified in patients that can confer resistance to

BRAF inhibitors. Called p61-BRAFV600E, this variant has a truncated C-terminal domain with

loss of the RAS binding domain [59]. Truncation of the RBD promotes homo-dimerization and

subsequent activation of the MAPK pathway. Vemurafenib, Dabrafenib, and Encorafenib can

inhibit monomeric BRAFV600E, but due to negative cooperativity, they do not efficiently inhibit

dimers [60,61].

Mutations in MEK may reactivate the MAPK pathway to confer drug resistance. The C125S

mutation in MEK2 creates a hyperactive mutant that promotes ERK phosphorylation [62, 63].

Introducing MEK mutations to in vitro cell culture models show that MEKC125S cell lines have

at least a 100 fold shift in the drug concentration that inhibits 50% of growth (IC50) for both

Dabrafenib and Trametinib compared to BRAFV600E [63]. However, the MEKC125S mutant cell

line was equally sensitive to downstream interference of the pathway by the ERK1/2 inhibitor

Vertex-11e, indicating the promise of triple agent therapy (BRAFi, MEKi, ERKi) to counter drug

resistance.

While NRAS and BRAF mutations appear mutually exclusive in pre-treatment tumors, pa-

tients with BRAF mutant tumors may acquire NRAS mutations to resist drug treatment [62, 64].

While BRAFV600E may still be inhibited in these tumors, NRAS can signal in parallel through

CRAF to reactivate ERK signaling.

1.5 Non-mutational mechanisms of drug tolerance

Before cells acquire irreversible genomic drug resistance mechanisms, BRAFi and/or MEKi

treatment induces non-mutational changes in melanoma cells that allow them to survive and prolif-

erate. This non-mutational adaption is typically called drug tolerance, while mechanisms involving

genomic changes like mutations, and copy number variants are drug resistance. The time scale of

drug tolerance is much quicker than drug resistance, on the order of hours to weeks. True drug
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resistance is developed within several months [65]. Drug tolerant cells are prone to DNA damage,

which might enhance the acquisition of drug resistance mechanisms [66].

One mechanism of drug tolerance induced very quickly after drug treatment is the relief of

MAPK pathway negative feedback. Under constitutive BRAFV600E signaling, negative regulators

of the pathway are upregulated, such as SPRY, DUSP, and MIG6. Transcription of these genes

is downregulated upon BRAFi. Consequently, cells become responsive to RTK signaling through

NRAS and CRAF and reactivate the pathway [67]. A recent study by Gerosa et al. show in BRAFi

treated melanoma cells ERK activation is pulsitile and driven by secreted paracrine factors [68].

This was evidenced spikes in ERK activation by cells close together spatially, and also treatment

with several different RTK inhibitors. Inhibition of this receptor driven signaling significantly

reduced cell growth compared to BRAFi alone.

In the longer term, melanoma cells undergo transcriptional reprogramming to tolerate drug

treatment. It is now widely accepted that melanoma cells exist in (at least) two different transcrip-

tional states [69, 70]. The “proliferative” state is characterized by high expression of melanocytic

differentiation transcription factors SOX10 and MITF and downstream target genes MLANA and

TYR. The “invasive” cell state is de-differentiated and expresses neural crest lineage marker NGFR,

high RTK expression like AXL, EGFR, and high WNT5A. The proliferative/invasive state distinc-

tion has repeatedly been shown to be be predictive of drug tolerance in melanoma cells [71–77].

This phenotype switching is similar to the epithelial to mesenchymal transtion seen in other cancers

and is a drug tolerance mechanism [78–80].

Besides a switch in MITF mediated transcription, another mechanism driving this tran-

scriptional state and drug sensitivity is a change is a switch in transcription factors LEF1 and

TCF4 [81]. These transcription factors are associated with the WNT signalling, and are differen-

tially expressed in the proliferative and invasive states. LEF1 is higher in the proliferative state,

and has been shown to be down regulated in patients with BRAFi refractory tumors [82]. This is

associated with signaling through the cannonical WNT/β-catenin pathway, which enhances BRAFi

induced apoptosis [83, 84]. The non-cannonical WNT pathway, driven by WNT5A, drives down-
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regulation of LEF1 and increased expression of TCF4 [81]. Signaling through WNT5A has a long

standing association with drug resistance and invasion in melanoma [72,85]

1.6 Intermittent drug treatment in melanoma

In a landmark study, Das Thakur et al. show that alternating periods of drug removal and

drug addition of melanoma patient derived xenograph (PDX) mice lead to delayed resistance to the

BRAF inhibitor vemurafenib [86]. These melanoma tumors had a BRAF amplification that made

the tumors resistant to continuous drug treatment, but still susceptible to intermittent treatment

where mice were dosed 4 weeks on drug followed by a 2-week drug holiday (i.e. no drug treatment).

The researchers found that these cells had a bi-phasic growth response to vemurafenib. At very

high and very low concentrations of vemurafenib, the cells showed reduced fitness compared to

intermediate concentrations of drug. The resistant cells also showed higher phosphoERK levels

compared to the parental sensitive tumor cells.

Through these observations, the study proposed a model to explain why intermittent treat-

ment was more beneficial than continuous treatment. Drug treatment selects for cells that can

re-activate the MAPK pathway under drug treatment. These cells out grow under continuous

inhibitor treatment, allowing the disease to progress. When drug is removed from drug resistant

cells, this creates a selection pressure against them and they lose fitness. Drug removal also creates

a positive selection for drug sensitive cells to re-emerge, making the tumor once again sensitive to

drug treatment. This alternating selection between drug sensitive and drug resistant cells continues

with the alternating periods of drug treatment and drug withdrawal.

The phenomenon that drug resistant melanoma cells show hampered fitness in the absence

of inhibitor, compared to intermediate inhibitor concentrations has been termed “drug addiction”.

Other studies have further characterized the molecular mechanisms of melanoma drug addiction.

Through an unbiased CRISPR-Cas9 screen, Kong et al. found that knockout of ERK2, but not

ERK1, rescued the drug addiction phenotype [87]. Knocking out the AP-1 transcription factors

JUNB and FRA1 (encoded by FOSL1) also rescued drug addiction. This is supported by another
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study that found JUNB and FRA1 were increased in drug addicted cells upon drug removal [88].

Kong et al. further show that cells undergo a phenotype switch from a melanocytic, proliferative

state to a neural-crest like invasive state upon drug removal. This observation is relatively surprising

because most drug resistant melanoma cells are already in an undifferentiated, invasive state. In

another study by Leung et al., the researchers performed an shRNA screen against 7,800 genes

and found that only shRNAs targeting BRAF and MEK1 significantly reduced the drug addiction

phenotype [89]. This lead them to conclude that not one single downstream target of ERK is

necessary for drug addiction in contrast with Kong et al. They also found that hyperactive ERK1

and ERK2 can lead to drug addiction. Thus, these contrasting studies demonstrate that different

cellular contexts manifest drug addiction in divergent ways. A key piece missing from these studies

is how patients’ tumors respond after drug withdrawal and rechallenge.

Intermittent dosing has become a promising strategy that may lead to longer responses to

targeted therapies. However, there are conflicting studies on whether such a strategy would be

widely applicable. Most notably, a phase II clinical trial of metastaic melanoma patients showed

that continuous treatment had better progression free survival and intermittent treatment with

dabrafenib and trametinib. The study also reported that overall survival was not different between

the groups [90]. Despite the disappointing results from this clinical trial, may retrospective and

prospective clinical case studies have shown the promise of intermittent dosing. About one third of

the total patients in these studies have shown a response to a second rechallenge with drugs after

a drug holiday [91–96].

The main project of this thesis is to understand the molecular and cellular mechanisms

underlying the beneficial response to intermittent drug treatment. The results from my study may

lead to important advances for optimizing patients’ responses to intermittent drug treatment.

1.7 Outline of thesis

In Chapter 2 of this thesis, I will describe the work I’ve done on elucidating the mechanisms

of intermittent drug treatment in BRAFV600E melanoma cells. This was done jointly with Scott
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Stuart, a former postdoctoral fellow in the lab, and under the mentorship of Natalie Ahn. This work

is currently under review at Proc. Natl. Acad. Sci. USA. Chapter 3 consists of a computational

project to denoise large-scale biological data through network based methods, which has been

published (Kavran, A.J., Clauset, A. Denoising large-scale biological data using network filters.

BMC Bioinformatics 2021;22:157). All computational experiments and coding was done by myself

under the mentorship of Aaron Clauset. I will discuss implications of the results of these projects

and future directions in Chapter 4.



Chapter 2

Intermittent drug treatment of BRAFV600E melanoma cells delays resistance by

adaptive resensitization to drug rechallenge

2.1 Background

The discovery that nearly half of melanomas harbor activating mutations in the protein kinase

BRAF led to a breakthrough in the treatment of metastatic melanoma [19, 97]. Inhibitors target-

ing the most prevalent BRAF mutations, BRAFV600E/K, or its downstream targets, MAP kinase

kinases 1 and 2 (MEK1/2), show clinical benefit in about 65% of BRAFV600E/K-positive melanoma

patients when administered continuously [98–100]. However, resistance invariably develops, lim-

iting median overall survival to approximately 2 years [101, 102]. Many resistance mechanisms

reactivate the MAP kinase (MAPK) pathway providing a growth advantage in the presence of in-

hibitor. Known mechanisms include BRAFV600E amplification, alternative splicing of BRAFV600E,

and other oncogenic mutations (e.g. MEK2C125S, NRASQ61K) [58, 59, 64, 101–105]. Adaptive re-

sistance also occurs in the absence of genomic alterations and can involve transcriptional changes

through epigenetic mechanisms that promote the epithelial-mesenchymal transition, melanocyte

de-differentiation, and neural crest stem cell-like reemergence [73,74,76,77,82,106–112].

An emerging body of evidence has suggested that intermittent dosing schedules, in which

periods of treatment with targeted therapeutics are interrupted by periods of drug removal, might

have advantages over continuous treatment [91, 97, 113]. Preclinical studies with patient-derived

xenograft (PDX) melanomas or xenografts from established human melanoma cell lines showed

that intermittent dosing can delay drug resistance and tumor growth compared to continuous



14

dosing [75,86,88,114,114]. Clinical reports and a phase 2 clinical trial have shown dozens of cases

where melanoma patients develop resistance and progress when treated with BRAF or MEK1/2

inhibitors, but then show further response when retreated after a drug holiday period [75, 92–96].

By contrast, a phase 2 trial of intermittent dosing with dabrafenib and trametinib showed worse

progression free survival and no difference in overall survival compared to continuous treatment [90].

The reasons for variability in patient responses and trial outcomes is unknown, and may reflect an

incomplete understanding of mechanisms underlying the response to intermittent treatment.

The current model explaining the beneficial response to intermittent treatment postulates the

importance of drug addiction. Here, the viability of resistant cells decreases upon drug removal, due

to the hyperactivation of MAPK signaling which promotes apoptosis or cell cycle arrest [86–88,97,

114–116]. Intermittent scheduling is thought to alternate between selection pressure against drug-

sensitive cells during periods of drug treatment, and selection against drug-resistant cells during

periods of drug withdrawal. However, there is limited evidence that patient or xenograft tumors

significantly regress when drug is withdrawn, as predicted by the drug addiction model. Instead,

xenograft tumors usually increase in volume with drug withdrawal and decrease volume after drug

rechallenge [86, 117,118]. This raises the possibility that other mechanisms besides drug addiction

may contribute to improved outcomes seen with intermittent treatment.

Here we use an in vitro strategy to examine cell autonomous responses of metastatic melanoma

cells to intermittent treatment with the BRAF inhibitor, LGX818/encorafenib. We report that

an intermittent schedule with LGX818 substantially lowers cell viability compared to continuous

treatment, in a manner that correlates with the degree of MAPK pathway activation. Both drug

addiction following prolonged LGX818 treatment, and drug resensitization following withdrawal

can be observed over the multicycle time course. However, cell loss is greatest during periods of

drug rechallenge, indicating that resensitization is the dominant mechanism underlying the efficacy

of the intermittent schedule. Transcriptome profiling through cycles of drug treatment and with-

drawal reveal that resensitization is a reversible process that involves adaptive switching between

states of drug resistance and drug sensitivity. Importantly, the transcriptome of the resensitized
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state can be distinguished from that of the initial, drug-sensitive state of näıve cells, and occurs

against a background of sustained elevation of MAPK signaling and known resistance mechanisms.

Genes controlling adaptive switching between cell states may be useful targets to delay the onset

of resistance in melanoma.

2.2 Results

2.2.1 BRAFV600E amplification confers resistance to BRAFV600E and MEK1/2

inhibitors

In order to generate cells with amplified BRAF/MAPK signaling, BRAFV600E was over-

expressed in a human metastatic melanoma cell line (WM239A) under the control of a cumate-

inducible promoter (Fig. 2.1A). The oncogene was engineered as a fusion with green fluorescent

protein (GFP), used to confirm expression across the stable cell population after optimizing induc-

tion time and cumate concentration (Fig. 2.1B-D). A self-cleaving T2A sequence ensured complete

separation of GFP from BRAFV600E following expression (Fig. 2.1E).

Induction of BRAFV600E increased the levels of active, phosphorylated ERK1/2 (ppERK), as

measured by anti-ppERK immunoreactivity and gel mobility retardation (Fig. 2.2A,B). Elevated

MAPK signaling was confirmed by phosphorylation of the ERK substrate, RPS6KA (ppRSK,

Fig. 2.2B). Both ERK and RSK phosphorylation were completely blocked by 500 nM LGX818

(Fig. 2.2C). Partial BRAFV600E expression and pathway activation was apparent even in the absence

of cumate (Fig. 2.2A, 2.1B,D).

Dose response experiments were used to measure the effect of BRAFV600E overexpression on

drug tolerance. Cells with amplified BRAFV600E increased IC50 by 50-fold over control cells har-

boring empty vector (Fig. 2.2D). Similar increases in IC50 were seen in dose response measurements

with MEK162/binimetinib (Fig. 2.5B). Thus, BRAFV600E overexpression strongly increased cells’

tolerance towards BRAFV600E and MEK inhibitors.
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Figure 2.1: Design of inducible oncogene expression vectors and characterization of expression.A.
Oncogenes were expressed from stably integrated cumate-inducible PiggyBac vectors as fusion
proteins with fluorescent proteins (FP) separated by a self-cleaving T2A sequence. B. WM239A
cells stably transfected with vectors for expression of BRAFV600E were induced for 72 h with
serial 2-fold dilutions of cumate, starting with a maximal concentration of 60 µg /mL. C. Flow
cytometry analysis of GFP as a reporter for BRAFV600E expression, before or after cumate for 72
h. D. Cells with the BRAFV600E vector were induced with 30 µg/mL cumate for up to 8 days, after
which cumate was removed and cells were cultured in absence of cumate for up to 6 days. Cells
were collected on the indicated days with or without cumate. E. Immunoblot showing a single
band corresponding to the cleaved FP in each cell line, confirming complete cleavage of the fusion
protein after induction.
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Figure 2.2: Characterization of melanoma cells with BRAFV600E amplification. A. WM239A
metastatic melanoma cells stably overexpressing BRAFV600E or empty vector were either un-
treated or induced with cumate for 72 h, monitoring phosphorylated ERK1/2, total ERK1/2,
BRAF and GAPDH by Western blotting. B. Western blots of cell lysates separated by low bisacry-
lamide SDS-PAGE to resolve different phosphoforms of ERK1/2 and phosphorylated p90RSK. C.
WM239A cells overexpressing BRAFV600E or empty vector were cumate-induced for 72 h and
then treated with 500 nM LGX818 or DMSO carrier for 2 h. Lysates were separated by low-bis
SDS-PAGE. Full blots are available in Figure ref. D. WM239A-BRAFV600E cells were induced
with cumate for 72 h, reseeded into 96 wells, and treated for 72 h with varying concentrations of
LGX818. Cell numbers were measured using the CellTiter-Glo 2.0 assay, plotting mean ± s.e.m.
(n=4) in dark symbols and individual measurements in light symbols.
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2.2.2 Comparison of intermittent and continuous treatment

In order to compare intermittent vs continuous treatment schedules, cells were seeded in 96

well dishes and cultured for four weeks, monitoring cell viability at the end of each week (Fig. 2.3A).

Intermittent timecourses followed a schedule of 7 days on drug followed by 7 days off drug. Thus,

cells were treated with 500 nM LGX818 during weeks 1 and 3 and drug was removed in weeks 2

and 4. In parallel, cells were treated continuously with 500 nM LGX818 over the entire four-week

period.
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Figure 2.3: Intermittent treatment inhibits cell expansion compared to continuous treatment. A.
Cells were cumate-induced for 72 h, reseeded in 96 wells, and cultured for 28 days under contin-
uous or intermittent treatment conditions with 500 nM LGX818. The intermittently treated cells
followed a schedule with 7 days on LGX818 and 7 days off, changing media on days 3, 5, and 7
of each week. At the end of each week, cell numbers were quantified using CellTiter-Glo assays
and normalized to the initial number of cells seeded. Cell numbers (mean ± s.e.m) measured at
each time point for B. WM239A-BRAFV600E cells (n = 5 or 6) and C. WM239A empty vector
cells (n = 6) are shown for continuous and intermittent treatments. D. Western blots of lysates
separated by low-bis SDS-PAGE show ERK phosphorylation in cells expressing empty vector (lane
1); BRAFV600E (lane 2); and BRAFV600E cells treated continuously “C” or intermittently “I”
across the 4 weeks with 500 nM LGX818.

Cells treated continuously grew slowly for the first two weeks after which a drug tolerant

population emerged (Fig. 2.3B). By contrast, cells treated intermittently yielded cell numbers that

were initially similar to the continuous experiment for the first two weeks, but then declined after
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drug rechallenge in week 3 (Fig. 2.3B). Thus, intermittent treatment inhibited the cell expansion

seen with continuous treatment. Control cells expressing empty vector were strongly suppressed

with either treatment schedule (Fig. 2.3C).

In order to compare responses to BRAFV600E against other oncogenes associated with resis-

tance in melanoma, cells were engineered to individually express MEK2C125S, EGFRL858R, NRASQ61K

or the p61-BRAFV600E splice variant [59,103,104]. Like BRAFV600E, cells expressing p61-BRAFV600E

or MEK2C125S substantially increased the phosphorylation of ERK and RSK as well as IC50 with

LGX818 or MEK162 (Figs. 2.4, 2.5). Cells expressing p61-BRAFV600E displayed the greatest re-

sistance to LGX818, with 10-fold higher IC50 than that of BRAFV600E or MEK2C125S. By con-

trast, EGFRL858R or NRASQ61K only modestly increased ERK or RSK phosphorylation and IC50

(Figs. 2.4, 2.5). ERK and RSK phosphorylation were suppressed in all cells by 500 nM LGX818,

MEK162 or the inhibitor combination (Fig. 2.6).

During continuous treatment with LGX818, cells expressing MEK2C125S or p61-BRAFV600E

remained static for the first week, after which a resistant population emerged (Fig. 2.7A,B). Like

BRAFV600E, cells expressing MEK2C125S declined with intermittent treatment and remained in-

hibited for the duration of the time course (Fig. 2.7A). Intermittent treatment with LGX818 or

MEK162 only partially inhibited growth of cells expressing p61-BRAFV600E compared to continu-

ous treatment (Fig. 2.7B,C). However, cells were substantially reduced by intermittent treatment

with a combination of LGX818 + MEK162 (Fig. 2.7D), indicating that strong inhibition of the

MAPK pathway during periods of drug addition is important for maximal efficacy. Cells ex-

pressing EGFRL858R or NRASQ61K were strongly repressed by either intermittent and continuous

treatment, both which effectively inhibited expansion over the 4 week time course (Fig. 2.7E,F).

Thus, intermittent treatment showed greater efficacy compared to continuous treatment, but only

in cells with the highest levels of ERK activation and the strongest resistance to inhibitor.

Studies invoking the drug addiction model for intermittent dosing have reported pronounced

elevation of ppERK with BRAFV600E amplification [86]. Therefore, we characterized the corre-

sponding responses to continuous or intermittent treatment in our BRAFV600E cell system. West-
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Figure 2.4: Effects of oncogene expression on ppERK signaling. A. WM239A cells with integrated
constructs of different oncogenes were untreated or cumate-induced for 72 h prior to harvesting
lysates for Western blotting of the indicated proteins. B. The same lysates were separated by
low-bisacrylamide SDS-PAGE to resolve different phosphoforms of ERK1/2 and phosphorylated
p90RSK (pS380).

ern blots showed that ppERK increased with BRAFV600E induction and decreased after the first

week of continuous treatment (Fig. 2.3D, lanes 2,3). Subsequently, ppERK was elevated compared

to continuous treatment after weeks 2 and 4 of drug removal (Fig. 2.3D lanes 5 and 9), decreasing

when drug was added back during week 3 (Fig 2.3D, lane 7). Thus, while continuous treatment

with LGX818 maintained lower levels of ERK activation, intermittent treatment elevated ERK

during periods of drug removal to a degree equal to or greater than seen with the initial induction

of BRAFV600E (Fig 2.3D, lanes 2,5,9).
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Figure 2.5: Effects of oncogene expression on drug tolerance. A. WM239A cells were cumate-
induced for 72 h, then seeded in 96 wells and treated with varying amounts of LGX818 (n = 4).
B. Cells were induced as in A but treated with MEK162 for 72 h (n = 4).

2.2.3 Intermittent treatment reverses drug addiction and resensitizes cells to

LGX818

To better understand the effect of the intermittent treatment schedule on drug sensitivity

and drug addiction, we characterized the LGX818 dose response of BRAFV600E cells collected at

the end of each week of a continuous or intermittent time course. In this experiment, cells were

cumate-induced to express BRAFV600E showed greater drug tolerance ( IC50 = 130 nM) than cells
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Figure 2.6: Supression of ppERK signaling by drugs in oncogene expressing WM239A cells.
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B. 500 nM MEK162, or C. 500 nM LGX818 + 500 nM MEK162. Lysates were separated by
low-bisacrylamide SDS-PAGE to monitor phosphorylation of ERK (pTpY) and p90RSK(pS380).

with empty vector ( IC50 = 5 nM) (Fig. 2.8A). After continuous treatment with 500 nM LGX818

for 7 days, the IC50 increased to 860 nM, and remained sustained at 1000-1200 nM over successive

weeks (Fig. 2.8A). Continuous treatment also resulted in drug addiction, as evidenced by a 30-45%

reduction in cell numbers at 0 nM LGX818 relative to their maximum levels at 100 nM (Fig. 2.8A).

Thus, drug addiction accompanied tolerance to LGX818 in our experimental system, consistent

with previous models of resistance to MAPK pathway inhibitors [86,88,115–117].

By contrast, cells treated intermittently varied in their dose response to LGX818, depending

on whether they were collected after periods of drug addition or drug removal. Removing LGX818
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Figure 2.7: Growth curves of WM239A cells engineered to express different inducible oncogenes.
WM239A cells were cumate-induced for 72 h, seeded in 96 wells, and cultured for 4 weeks under
continuous or intermittent treatment conditions. The intermittent treatment cycle was 7 days on
drug and 7 days off drug. Cells individually expressed A. MEK2C125S, (B-D) BRAF-p61V600E, (E)
NRASQ61K, or (F) EGFRL858R. The inhibitors used were A, B, E, F 500 nM LGX818, C 500 nM
MEK162, or D 500 nM LGX818 + 500 nM MEK162.

in week 2 reduced the IC50 to 300 nM, a 3-fold decrease from cells treated with drug in week 1

(Fig. 2.8B). At the same time, removing LGX818 a decreased the extent of drug addiction, as

shown by the recovery of cell viability at 0 nM LGX818 (Fig. 2.8B). Rechallenge with LGX818

in week 3 reversed this behavior, increasing both IC50 and drug addiction back to the levels seen

with continuous treatment. Removing LGX818 in week 4 decreased the IC50 and decreased drug
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Figure 2.8: Intermittent treatment resensitizes cells to LGX818. WM239A-BRAFV600E cells were
cumate-induced for 72 h and seeded in 10 cm dishes followed by A. continuous or B. intermittent
treatments with 500 nM LGX818. At the end of each week, cells were trypsinized, reseeded into 96
wells, and treated for 72 h with varying concentrations of LGX818 (n = 4). Cells with empty vector
or BRAFV600E were also assayed for their dose response to LGX818. Both panels A and B display
the same data for empty vector, BRAFV600E, and week 1-continuous, for ease of comparison.
The gray dotted vertical line indicates 500 nM LGX818. C. Cell death across continuous and
intermittent schedules was measured on days 3 and 7 of each week for five weeks. Adherent and
nonadherent cells were collected together, stained with propidium iodide (PI), and analyzed by
flow cytometry. The media was changed on days 3, 5, and 7 of each week. During the media
change on day 5, nonadherent cells were collected by centrifugation of the conditioned media and
returned to the dish for flow cytometry analysis on day 7. Measurements report average percentage
of PI-positive cells (n=2 independent experiments), and error bars represent the range.

addiction back to levels comparable with week 2. Thus, each cycle of drug removal switched cells

to a state with resensitization to BRAF inhibitor and each cycle of drug addition increased the

extent of drug addiction.
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2.2.4 Cell loss during intermittent treatment primarily involves resensitization

after drug removal

Conceivably, either drug addiction or drug resensitization could account for the loss of cell

viability observed with intermittent treatment. In order to explore the contribution from each

mechanism, we quantified cell death at different times during periods of drug addition or removal.

On one hand, if drug addiction were the dominant mechanism, cell loss should be highest during

drug-off weeks when ERK hyperactivation would be predicted to promote cell death. On the other

hand, if drug resensitization were more important, cell loss should be highest during drug-on weeks

when cells would be susceptible to rechallenge with LGX818.

To examine this, cells were seeded in 10 cm dishes and treated with continuous or intermittent

schedules over 5 weeks. Samples were taken on days 3 and 7 of each week, collecting all adherent

and floating cells for analysis of cell viability by propidium iodide (PI) staining using and flow

cytometry (Fig. 2.8C). Continuous treatment led to substantial cell loss during week 1, which fell

to lower levels over successive weeks (Fig. 2.8C) with the expansion of cells able to persist or grow

in the presence of LGX818 (Fig. 2.3B). Parallel flow cytometry measurements showed BRAFV600E

expression increaseding over the first two weeks of continuous treatment, then maintained over

successive weeks (Fig. 2.9).

In cells treated intermittently, the percentages of PI-positive cells during drug-off periods

(days 10, 14 and 24, 28) were comparable to those in cells treated continuously (days 10-28).

However, cell death dramatically increased during periods of drug rechallenge (days 17, 21 and

31, 34) where the percentage of PI-positive cells reached levels as high as 60% (Fig. 2.8C). These

results indicate that the reduction in cell fitness with intermittent treatment is best explained by

the occurrence of resensitization during periods of drug withdrawal, followed by cell loss when cells

are rechallenged with LGX818. This was consistent with the measurements of cell numbers during

intermittent treatment, which decreased only when drug was readded in week 3 (Fig. 2.3B).
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Figure 2.9: Continuous treatment with LGX818 enriches cells with elevated BRAFV600E expression.
Cells were treated with 30 µg /mL cumate for 72 h to induce expression of BRAFV600E, then
cultured with 500 nM LGX818 for 4 weeks. Cells were collected at the end of each week and
analyzed by flow cytometry using GFP as a reporter for BRAFV600E expression.

2.2.5 Transcriptomic responses to continuous and intermittent treatment

In order to explore gene expression changes that accompany drug resensitization, RNA-seq

was used to examine cells expressing BRAFV600E after each week of intermittent or continuous

treatment with LGX818 (Fig. 2.10A). Cell viability measurements conducted in parallel matched

those observed previously, where resistant cells emerged after 2 weeks of continuous treatment with

LGX818 and intermittent treatment delayed outgrowth (Fig. 2.11). Datasets were also collected

on cells with empty vector, BRAFV600E induced for 72 h, and BRAFV600E induced for 72 h then

treated with 500 nM LGX818 for 20 h. These were performed as controls to measure gene expression

responses to acute activation or inhibition of the MAPK pathway without long-term selection. Each

condition was analyzed in triplicate, except for duplicates of the week 4-continuous condition.

Principal component analysis showed that nearly 70% of the variance across the samples

could be accounted for by the first two principal components. Plotting PC1 against PC2 distribut-

edseparated each the samples into one of three easily identifiable groups (Fig. 2.10B). One group

included cells with empty vector, 72 h induced BRAFV600E, and 72 h BRAFV600E + 20 h LGX818

(Fig. 2.10B, Group 1). A second group contained all cells that were continuously treated (weeks
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Figure 2.10: Transcriptomic profiling of continuous and intermittently treated cells. A. Schematic
of RNA samples collected from WM239A-BRAFV600E cells comparing continuous and intermittent
drug treatment with 500 nM LGX818. Each condition was collected in biological triplicates, except
for week 4-continous (sample 7) which was collected in duplicates, for a total of 29 samples. B.
Principal component analysis (PCA) of the 6000 highest variance genes. PC1 and PC2 account
for almost 70% of the variance of in these genes. The 10 different experimental conditions visibly
cluster into 3 separate groups. C. Heatmap of the 400 genes most positively or negatively associated
with PC1 or with PC2. Each row is mean centered and scaled to unit variance.

1-4), as well as cells from intermittent week 3, when drug was reintroduced (Fig. 2.10B, Group 2).

The third group included cells treated intermittently in weeks 2 and 4, when drug was removed

(Fig. 2.10B, Group 3). Thus, thise analysis revealed a striking effect of intermittent treatment, in

which cells with drug removed in weeks 2 and 4 were grouped together and were well separated

from cells with drug readded in week 3.

Significantly, the separation between Groups 1 and 2 mainly occurred along the PC1 axis,

suggesting transcriptomic changes resulting from long-term treatment with LGX818. The separa-
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Figure 2.11: Growth curves of WM239A-BRAFV600E cells during the RNA-seq experiment. Cells
were plated in 10 cm dishes in parallel with cells harvested for RNA-seq, quantifying cell numbers
for continuous and intermittent RNA-seq experiments using the Cell Titer-Glo assay (n=1).

tion between cells collected in successive weeks of intermittent treatment occurred primarily along

the PC2 axis, corresponding to reversible movement between Groups 2 and 3 (Fig. 2.10B). This

suggested that PC2 largely reflects reversible transcriptomic changes accompanying drug removal

and drug readdition. A heatmap of the genes highly contributing to either principal component

showed that most PC1 gene expression changes after week 1 were sustained in subsequent weeks

with either continuous or intermittent treatment (Fig. 2.10C). In contrast, PC2 transcripts re-

versibly switched in expression between the drug-on and drug-off periods during the intermittent

time course (Fig. 2.10C). Analysis of the complete gene expression datasets showed strong corre-

lations between cells with drug readded during week 3 and those continuously treated throughout

weeks 1-4 (Fig. 2.12). This confirmed that rechallenging cells with LGX818 recapitulates the

transcriptomic state of continuously treated cells. Thus, reversible changes in the transcriptome

accompany the ability of cells to switch between drug-resistant and -resensitized states during the

intermittent time course.

2.2.6 Transcriptome changes associated with drug tolerance

We asked if the transcripts altered in response to continuous LGX818 treatment might re-

flect genes that function in cancer drug tolerance, using gene set enrichment analysis [119, 120].
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Figure 2.12: Correlation matrix of RNA-seq datasets. The normalized counts for each sample were
log2 transformed and mean-centered per gene. Pearson’s correlation coefficient r was calculated for
all pairwise comparisons of samples. The matrix was clustered using hierarchical clustering.

The PC1 genes that increased expression with prolonged treatment were enriched in molecular

signatures associated with resistance to BRAFV600E and MEK inhibitors, including markers of

the epithelial-mesenchymal transition (EMT), NFkB signaling, inflammatory markers, and hy-

poxia, while genes that decreased expression were enriched in gene sets associated with a prolifer-

ative, melanocytic phenotype (Fig. 2.13A). These signatures are characteristic of the invasive, de-

differentiated melanoma phenotype associated with melanoma malignancy [73,74,76,77]. The PC2

genes that reversibly decreased upon drug removal were negatively associated with gene signatures
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characteristic of the invasive phenotype, suggesting partial reversal of invasion/EMT processes.

We next assessed how the expression levels of genes responsive to continuous LGX818 treat-

ment correlated with drug tolerance across human melanoma cell lines. RNA-seq data from 34

BRAFV600 mutant melanoma cell lines available from the cancer cell line encyclopedia (CCLE) [121]

were used to perform hierarchical clustering based on the expression levels of transcripts highly as-

sociated with PC1. These cell lines formed two main clusters, denoted A and B in Fig. 2.13B. The

gene expression patterns of cell lines in Cluster A resembled transcript levels in our drug-näıve cells

(Group 1 in Fig. 2.10B), while cell lines in Cluster B showed greater similarly to our cell system

after long term treatment with LGX818 (Groups 2 & 3, Fig 2.10B). The degree of tolerance among

CCLE cell lines, measured by IC50 for the BRAF inhibitor, PLX4720, correlated well with cluster

membership, largely separating drug-sensitive cells in Cluster A from drug-resistant cells in Cluster

B. The analysis reveals that the transcript changes associated with LGX818 resistance in WM239A

cells can explain the variance in baseline drug tolerance across many other BRAFV600 mutant cell

lines. Therefore, the transcriptome responses to continuous treatment in our experimental model

are consistent with the those associated with drug tolerance across melanoma systems.

It was noteworthy that the transcriptomes of cells in Group 3, characterized by drug removal,

were distinct from those of cells with empty vector or induced BRAFV600E in Group 1 (Fig. 2.10B,

C). This implies that the resensitized cell state generated by LGX818 removal differs from the initial

sensitive state of drug-näıve cells. Prominent among the PC2 transcripts that switched reversibly

following drug removal and subsequent rechallenge were those that were weakly or in some cases

non-responsive to BRAFV600E induction in drug-näıve cells (Fig. 2.10C). This implies that many

PC2 genes normally respond weakly to MAPK signaling, but acquire greater responsiveness to this

pathway after a week of continuous exposure to drug. Thus, the resensitized cell state includes new

transcriptional responses that only occur after MAPK signaling is activated by drug removal.

We also compared transcript changes corresponding to known resistance genes in melanoma.

To do this, we curated a list of 71 genes that were reported to control tolerance towards BRAFV600E

and/or MEK inhibitors in melanoma cell lines and tumors (genes and references in Table S4). These
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Figure 2.13: Reversible transcriptome changes are associated with EMT. Continued on next page.
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Figure 2.13: A. Gene set enrichment analysis (GSEA) was performed on genes associated with
PC1 and PC2. The gene loadings for each PC were used as the ranks. Shown are the normalized
enrichment scores (NES) for selected gene sets matched to PC1 with significant FDR adjusted p-
values (q< 0.002). The NES for the same gene sets matched to PC2 are shown for cases where the
FDR adjusted p-value is less than q < 0.05. Gene sets were from Molecular Signature Database for
Hallmark “H”, Chemical and Genetic Perturbations “CGP”, or derived from the literature “LIT”.
B. Clustered heatmap of RNA-seq data of BRAFV600 mutant melanomas in the cancer cell line
encyclopedia (CCLE). Only the 800 genes identified as PC1 associated in Fig. 4 are shown and
used to cluster the cell lines. Cluster A mostly contained cell lines that were sensitive to BRAF
inhibitor (lower IC50), PLX4720, while Cluster B mostly contained cell lines with greater drug tol-
erance (higher IC50). The two clusters show differential expression of genes that either increased or
decreased with continuous treatment in our RNA-seq dataset. textbfC.-E. Heatmaps of RNA-seq
data corresponding to literature-curated genes that have been implicated in melanoma drug resis-
tance or sensitivity. C Known resistance genes that changed in response to continuous treatment
and did not change with drug removal, predicting sustained resistance over the intermittent time
course. D Resistance genes showing reversible expression between drug-on and drug-off weeks, that
changed in a manner predicting resensitization upon drug removal. E Resistance genes showing
reversible expression between drug-on and drug-off weeks, but predicting higher resistance during
weeks of drug removal in the intermittent time course.

included signaling effectors, transcription factors, and mediators and markers of EMT, neural crest

specification, and melanocyte differentiation. Forty-eight of the curated genes were significantly al-

tered with continuous drug treatment, consistent with the emergence of resistant cell populations.

For example, growth factor receptors and ligands, EMT and neural crest markers known to pro-

mote resistance (e.g. PDGFRB, EGFR, AXL, NGFR, WNT5A) [64,71,72,108,116] increased with

continuous drug treatment, while genes associated with differentiation to the melanocyte lineage

(e.g. MITF, TYR, MLANA, SOX10) [74,108] decreased (Fig. 2.13C).

Among the curated genes associated with drug resistance in melanoma, some transcripts

changed reversibly with LGX818 removal in a manner consistent with resensitization (Fig. 2.13D).

For example, growth factors NGF and GAS6 decreased during drug-off weeks, which might predict

lower signaling through their respective receptors, NGFR and AXL. Likewise, the transcription

factor ID3, which promotes resistance to BRAF inhibitor [122], decreased after drug removal,

while LEF1, which associated with greater sensitivity [82, 112, 116], increased. Negative feedback

regulators of growth factor signaling, DUSP4/6 and SPRY2/4, reversibly increased after drug
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removal, consistent with MAPK pathway reactivation [67,123].

However, the majority of resistance genes from our curated list were inconsistent with resen-

sitization, and in fact predicted sustained resistance with intermittent scheduling. These included

growth factor receptors/ligands (AXL, NGFR, EGFR, PDGFRB, PDGFB, WNT5A) and tran-

scription factors (JUN, FOSL1/FRA1, ZEB1) which remained elevated following drug removal,

and differentiation markers (MLANA/MART1, TYR, MITF, SOX10) which remained repressed

(Fig. 2.13C). Paradoxically, other responsive transcripts predicted increased resistance upon drug

removal. For example, FGFR1, MET, AREG, TGFB1, IL1B and CSPG4 were all upregulated

during drug-off weeks (Fig. 2.13E), which would be expected to increase receptor signaling and

diminish sensitivity to BRAF inhibitors [116, 124–128]. Also included in this group were the tran-

scription factors TWIST1, SNAI1 and RELA, which promote EMT via epigenetic repression of

histone marks [129,130], but increased when drug was removed (Fig. 2.13C, E), and SNAI2, which

promotes the dedifferentiated, non-invasive phenotype [129] but increased with drug removal.

Taken together, our gene expression analyses revealed distinct molecular responses to the

continuous and intermittent treatment regimens. Many transcripts altered by prolonged drug

treatment corresponded to genes implicated in drug resistance in melanoma and were regulated

in a manner consistent with the drug tolerant state observed with continuous treatment. Other

transcripts switched expression between states of resistance and sensitivity, but only a subset of

known resistance genes reversed in a manner consistent with resensitization upon drug removal.

2.2.7 Adaptive responses to intermittent treatment

As noted above, many transcript changes that were significant after the first 7 days of LGX818

exposure were sustained when drug was removed in weeks 2 and 4 (Fig. 2.13B). Their irreversibility

may be due to slow rates of reversal, or to an initial selection for drug-tolerant cell subpopulations.

On the other hand, nearly all genes that changed reversibly during the course of intermittent

treatment were found to recover the transcriptome of continuously treated cells during week 3,

when drug was readded. This implies an adaptive mechanism, responsive to epigenetic regulation.
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However, bulk RNA-seq cannot distinguish between mechanisms involving adaptive transitions in

cells switching from drug-resistant to drug-sensitive states, and mechanisms for selection pressure

for sensitive cell subpopulations within a resistant majority.

To investigate these possibilities, we examined the dynamics of expression of the neural cell

adhesion protein, L1CAM. Bulk transcript levels of L1CAM were elevated in cells treated for

prolonged periods with LGX818, consistent with its role in promoting EMT and as a marker for

melanoma drug resistance [106, 131, 132]. Its expression decreased following drug removal in a

manner that was reversible in subsequent weeks of drug rechallenge and withdrawal (Fig. 2.13D).

The changes in L1CAM protein expression at the single cell level were measured by flow cytometry

at several timepoints during continuous and intermittent treatment using a fluorescently labeled

primary antibody (Fig. 2.14A). We selected these timepoints in order to capture the cell population

dynamics corresponding to reversal of expression during early stages of drug withdrawal. In drug

näıve cells (Day 0), many cells expressed low levels of L1CAM, some overlapping with the nonspecific

isotype control (Fig. 2.14B). After treating cells with LGX818 for 7 days, the median expression

level increased by more than 10-fold over that of drug-näıve cells and remained high for 14 days

of continuous drug treatment. In the intermittent schedule, L1CAM expression during the first

three days of drug withdrawal gradually decreased in a unimodal fashion (Fig. 2.14B). The cells

transiently expressed intermediate levels of L1CAM, which then decreased further to match the

drug-näıve population by the end of the week. The unimodal populations with intermediate L1CAM

were inconsistent with selection pressure against a subpopulation of drug-addicted cells, which

would have predicted bimodal cell populations shifting from high to low L1CAM. Therefore, the

transcript responses following drug withdrawal largely follows an adaptive mechanism for transcript

switching, instead of selective depletion of drug-addicted cells.

2.3 Discussion

Our study demonstrates that adaptive mechanisms for cell switching from drug-tolerant to

drug-resensitized states can explain the growth suppressive effects of treating melanoma cells inter-
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Figure 2.14: Cell resensitization is accompanied by adaptive gene expression changes in single cells,
not by counterselection. A. WM239A-BRAFV600E cells were cumate-induced for 72 h, seeded in 10
cm dishes, and cultured under continuous or intermittent treatment with 500 nM LGX818. At the
indicated time points, cells were fixed and stained with a fluorescently labeled primary antibody
for L1CAM and then analyzed by flow cytometry. B. Smoothed histograms of single cell L1CAM
expression by flow cytometry at the different timepoints. Controls using a fluorescently labeled
non-specific isotype control antibody confirmed specificity of binding to the target protein.

mittently with LGX818. The BRAFV600E amplified cell model used in our study showed transcripts

responsive to drug that corresponded well with resistance genes known to function across melanoma

cell lines and tumors. Importantly, when drug tolerance was induced by prolonged treatment, the

cells displayed both a drug addiction response after treatment and a drug resensitization response

after drug withdrawal. Cell death was highest during periods of rechallenge, showing that cell via-

bility was affected most by the resensitization to kinase inhibitor. Transcriptome analyses showed

many gene expression changes that were readily reversible over the intermittent time course, nearly

all which returned to levels seen in continuously treated cells when drug was reintroduced. This

indicated that the responses to intermittent treatment were not due to selection pressure, as sup-

ported by the expression dynamics of L1CAM in single cell populations.

Previous studies have shown that drug addiction is caused by resistance mechanisms that

maintain MAPK pathway signaling at submaximal levels in the presence of BRAF inhibitor, and

hyperactivate MAPK signaling when drug is removed, thereby triggering apoptosis or cell ar-
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rest [86–88, 115, 116]. Thus, it has been theorized that the intermittent treatment effect arises by

alternating selection against drug-sensitive cells in the presence of BRAF inhibitor and counterse-

lection against drug-addicted cells in the absence of inhibitor [97]. In our system, MAPK signaling

was maximally activated following LGX818 withdrawal, based on increased phospho-ERK1/2 and

the expression of downstream pathway targets such as DUSP and SPRY. But while drug addiction

was evident, it clearly played a secondary role in the response to intermittent treatment. In cells

treated continuously, cell viability was highest at 100 nM LGX818 and at 500 nM fell to levels less

than or equal to that in the absence of drug (Fig. 2.8A). This explains why drug addiction did

not contribute significantly to growth suppression with intermittent treatment in our experiments,

because it would have had the largest effect at drug concentrations lower than we used. In patients,

plasma concentrations of BRAF inhibitors approach or exceed micromolar levels [133,134]. There-

fore, drug addiction might also play a minor role in these settings, consistent with the observation

that patient tumors do not regress upon drug removal.

Our findings are consistent with a role for phenotypic plasticity in drug tolerance, which

has been well documented in BRAFV600E melanomas as well as other cancers [74, 76, 77]. Current

models postulate elevated expression of resistance genes in rare cell populations, which in response

to BRAF inhibitor, enhance resistance by promoting epigenetic pathways for dedifferentiation and

transcriptional reprogramming [73, 82, 106–112]. Classes of transcripts that promote resistance

include drivers of EMT and invasion (AXLhigh, WNT5Ahigh, TGFBhigh, TWISThigh, SNAI1high)

as well as markers of lineage development from differentiated melanocytes to neural crest stem

cells (NGFRhigh, MITFlow, SOX10low) [73, 107–112]. Exploiting the reversibility of these adaptive

regulatory events during early, non-mutational phases of drug tolerance has been proposed as a

treatment strategy for cancer. Our findings concur and further show that adaptive mechanisms

can underlie the beneficial response to an intermittent schedule.

Significantly, transcriptome profiling of our system revealed many resistance genes that

changed with continuous drug treatment but were irreversible during the intermittent time course.

These reflect adaptive responses to drug and/or the selection of cell populations able to persist



37

and survive during the first week of LGX818 treatment. This set included most genes character-

istic of the invasive, neural crest phenotype and EMT. This means that resensitization after drug

removal occurred in spite ofdespite a large number of resistance genes that did not reverse. Al-

together, only a few genes implicated in resistance both displayed reversibility and changed in a

direction consistent with resensitization. Leading candidates included LEF1, which is repressed in

drug resistance melanoma and strongly associated with phenotype switching to the proliferative,

non-invasive state [81,82,112], and ID3, which is elevated in resistant cells and whose depletion in

resistant cells confers resensitization [122]. They did not include genes reported to regulate drug

addiction in melanomas, such as JUNB, FOSL1, or CDKN1A [87, 115], consistent with a minimal

influence of drug addiction on the intermittent treatment effect.

Interestingly, many transcripts that responded reversibly with each cycle of drug removal were

elevated to levels well above those seen in drug-näıve cells. In fact, many reversible transcripts

showed little or no response to short term induction of BRAFV600E. This suggests that genes

that were not normally downstream of MAPK signaling became pathway targets after 7 days of

drug treatment. Conceivably, drug treatment may have enriched a subpopulation of cells with an

expanded range of transcriptional responses. Alternatively, new targets may have been triggered

by the hyperactivated MAPK signaling that followed drug withdrawal. Further definition of the

cellular mechanisms involved in reversible resensitization may lead to novel targets and the potential

contribution of MAPK signaling thresholds to the resensitized cell state.

The partial reversal of resistance gene expression upon drug removal helped explain the partial

resensitization response of only a 3-fold decrease in IC50 . Therefore, the drug tolerant state in our

hands appears to represent an intermediate to late stage in transcriptome reprogramming, with

a few rapidly reversible and many slowly reversible resistance genes [108]. Conceivably, a longer

period of drug withdrawal might have eventually returned cells to the initial transcriptome and

sensitivity level of drug-näıve cells, as observed in other studies of transcriptome dynamics [111].

However, in order for intermittent treatment to block cell expansion, the amount of time needed

for resensitization must be balanced against the faster cell doubling time during the period of drug
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removal. Therefore, partial resensitization may be a practical condition needed for a successful

intermittent treatment schedule.

So far, intermittent treatment of melanoma has been unproven, with clinical outcomes arguing

for and against its potential effectiveness. On one hand, a recent phase II trial revealed worse

progression-free survival in melanoma patients treated intermittently with dabrafenib + trametinib

compared to those treated with continuous therapy (PFS 5.5 months on a 5-week on, 3-week off

schedule vs 9.0 months continuous) [90]. On the other hand, retrospective and prospective studies

of dozens of patients who progress on BRAF or MEK inhibitor have reported that more than one-

third show a second clinical response after a drug holiday period [91–96]. Preclinical studies using

xenografts have been mixed as well. While some have reported delayed emergence or complete

suppression of resistant tumors using intermittent scheduling [75, 86, 88, 114] others have observed

more rapid outgrowth of tumors [117, 118]. A notable report showed a substantial benefit of

intermittent treatment in xenografts from a drug-resistant melanoma cell line, but only when the

dosing schedule was tailored individually for each mouse [75]. Optimal scheduling was established

using a predator-prey model for adaptive drug therapy which postulates expansion and loss of

sensitive cells during drug-off and drug-on periods, respectively [135, 136]. Early stage clinical

trials are ongoing to test these intriguing concepts for melanoma, breast and prostate cancer, and

the possibility that personalized scheduling may be optimized by dynamic measurements of cancer

blood markers [136–138].

In summary, our findings show that intermittent treatment can suppress cell growth and

delay the emergence of drug resistance by transitioning from a drug-resistant state to a more sen-

sitive state through adaptive transcriptional mechanisms. Significantly, this can occur against a

background of many resistance genes that either fail to reverse when drug is removed or change in a

manner that would paradoxically predict increased resistance. Thus, we propose that intermittent

treatment generates a distinct cellular state that accompanies resensitization, which may include

transcripts not normally regulated by MAPK signaling and are triggered by higher signaling thresh-

olds. Genes controlling resensitization may be useful targets to augment or improve the response
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duration of current treatment strategies for melanoma.

2.4 Materials and Methods

2.4.1 Cell Culture

The human metastatic melanoma cell line, WM239A, was a kind gift of Dr. Meenhard

Herlyn, Wistar Institute and cells were expanded and stored in liquid nitrogen at passage 8. These

cells harbor a heterozygous BRAFV600D mutation, confirmed by RNA-seq analysis. Cells were

grown in RPMI1640 media supplemented with 10% fetal bovine serum (Gemini,# 100-500) and 1%

penicillin/streptomycin (Gibco, # 15140163) and were maintained at 37°C and 5% CO2. Stable

cell lines were made from WM239A cells at passage 20 and all experiments were performed within 5

passages of thawing cells. Inhibitors of BRAFV600E (LGX818/encorafenib, # S7108) and MKK1/2

(MEK162/binimetinib, # S7007) were from Selleck Chemicals. Long term cell cultures were seeded

in 96-well plates at 500 cells per well or in 10 cm dishes at 86,000 cells per dish and growth media

with or without drug were refreshed every Monday, Wednesday and Friday. Cell viability was

measured using the CellTiter-Glo 2.0 Assay (Promega, # G9242) according to the manufacturer’s

protocol and calibrated against a standard curve of cells seeded at 2-fold dilutions between 125-

64,000 cells per well. For dose response measurements, cells were seeded in 96-well plates at 2,500

cells per well and cell viability data were collected 72 h afterwards.

2.4.2 Plasmids and Cell Lines

Plasmids for expression of each resistance oncogene were constructed by Boulder Genetics.

Briefly, open reading frames for human BRAFV600E, p61-BRAFV600E, MEK2C125S, EGFRL858R,

and NRASQ61K were inserted into an inducible PiggyBac vector (Systems Biosciences, # PBQM800

A-1). Plasmids and PiggyBac transposase (Systems Biosciences, # PB210PA-1) were electropo-

rated into WM239A cells using the Neon transfection system (Invitrogen, # MPK10096) with 2

pulses x 20 ms pulse width at 1200 V. Stably transfected cells were selected for by addition of 1µg
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/ ml puromycin to growth media for 7 days. Resistance genes were induced with 30 µg /ml cumate

(Systems Biosciences, # QM150A-1) for 72 h, followed by treatment with LGX818 or MEK162.

2.4.3 Immunoblotting/Gel Shift Assays

Cells were lysed in RIPA buffer [10 mM Tris pH 8.0, 140 mM NaCl, 1% (v/v) Triton X100,

0.1% (w/v) SDS, 1 mM EDTA, 0.25% (w/v) sodium deoxycholate, 1 mM NaF, 1X EDTA-free

protease inhibitors (Roche, # 11873580001) and 1X PhosStop phosphatase inhibitors (Roche, #

4906845001)] and sonicated at low power using a needle homogenizer. Protein concentrations were

determined using the DC protein assay (Bio-Rad, # 5000111). Protein samples (10 µg/lane) were

separated on Tris-glycine gels or 4-20% protean-TGX precast gradient gels (Bio-Rad, # 4561094)

and proteins were transferred to PVDF-SQ membranes (Millipore, # ISEQ00010) for 1 h at 100

V. Membranes were incubated in primary antibody for 2 h at room temperature or overnight at 4

°C and in secondary antibody for 1 h at room temperature. Low-bis SDS-PAGE gels (10% acry-

lamide/0.13% bis-acrylamide) were used to separate unphosphorylated and phosphorylated forms

of ERK1/2 (28). Antibodies for immunoblotting were from Cell Signaling Technology unless oth-

erwise noted: ERK2 (# 4696), phospho-p44/p42 ERK1/2-pThr202/pTyr204 (# 4370), MKK1/2

(# 9122), phospho-MKK1/2-pSer217/pSer221 (# 9121), EGFR (# 4267), pan-Ras (Millipore, #

OP40), BRAF (Santa Cruz Biotechnology, # sc-166), GFP (Santa Cruz Biotechnology, # sc-9996),

mCherry (GeneTex, # GTX59788), GAPDH (# 5174), phospho-RSK (# 9335), and beta-tubulin

(# 2146).

2.4.4 Propidium Iodide Assay for Cell Death

Cells were collected for flow cytometry by trypsinization and resuspension in PBS. In order to

assess cell viability, cells grown in 10 cm plates were trypsinized from the plate and collected together

with cells floating in media by centrifugation. Cells were then resuspended in PBS + 2 µg /ml

propidium iodide (Sigma-Aldrich, # P4170), incubated for 20 min, and analyzed on a FACSCelesta

flow cytometer (BD Biosciences). Flow cytometry was also used to quantify oncogene expression
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by monitoring GFP, CFP or mCherry. For long term experiments, GFP calibration beads (Takara

Bio, # 632594) were used to confirm consistency of the GFP signal over successive weeks. Flow

cytometry data analysis was performed using Flowing Software 2 (http://flowingsoftware.btk.fi/)

and FCSalyzer (https://sourceforge.net/projects/fcsalyzer/).

2.4.5 Flow cytometry analysis of L1CAM protein expression

Cells grown in 10 cm dishes were washed with twice with PBS and harvested by incubation

in 0.5 mM EDTA in PBS at room temperature. Cells were centrifuged and resuspended in 50 µL

PBS. Then the cells were fixed by diluting 4% PFA in PBS to the tube for a final concentration

of 2% PFA. This incubated at 37°C for 5 minutes, and the PFA was quenched by adding 2.5 M

glycine in PBS for a final concentration of 125mM. The cells were spun down at 300 rcf and washed

once with 125 mM glycine in PBS. The cells were resuspended in ice cold 0.5% BSA in PBS and

stored at 4°C. Once all the samples were collected, 150,000 cells per sample were aliquoted into

tubes, centrifuged, and resuspended in 100 uL of 0.5% BSA in PBS and 2.5 µL of either L1CAM

antibody conjugated to BV421 fluorescent dye (BD Horizon cat# 565733) or isotype control (BD

Horizon # 562439). Cells were mixed by gentle vortexing and incubated in the dark on an orbital

shaker for 1 hour at room temperature. The cells were washed twice and then resuspended in 0.5%

BSA in PBS and analyzed on a FACSCelesta flow cytometer (BD Biosceinces). Data analysis was

performed using custom scripts in R (v.4.0.3).

2.4.6 Gene Expression Profiling

Cells were rinsed with PBS, trypsinized, and centrifuged for 5 min at 300xg, then washed with

1 mL PBS and centrifuged again. After aspirating away PBS, cells were immediately frozen in liquid

nitrogen and stored at -80ºC. At the end of the timecourse, all samples were thawed on ice and total

RNA was purified using the Quick-RNA microprep kit (Zymo Research, # R1050) according to the

manufacturer’s protocol. RNA-seq was conducted by the Functional Genomics Shared Resource

at the University of Colorado Cancer Center, Aurora CO. RNA quality was assessed using a 4200
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TapeStation System (Agilent Technologies) and 100 ng RNA was used to prepare mRNA libraries

using the Universal Plus mRNA-seq kit (NuGEN). Sequencing was performed on a HiSeq4000

System (Illumina) with 150 bp reads and 30 million reads per sample.

Adapter sequences and low quality base reads were removed using Trimmomatic (v.0.32,

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36) (1). Reads were then mapped

to the Homo sapiens genome (GRCh38) using the alignment software, HISAT2 (v.2.0.3-beta, –dta

–rna-strandness F) (2). The resulting SAM file was converted to a sorted BAM file using SAMtools

(v.0.1.18) (3). Reads that mapped to genes in the GRCh38.84.gtf annotation file were counted using

the htseq-count script in HTSeq (v.0.6.1, -f bam -r pos -s yes -t exon -m union -i gene id) (4). All

downstream analyses were performed using R (v.4.0.3) and R Studio (v. 1.3.1093). Data were pre-

filtered for genes that had at least 60 reads. The DESeq2 package (v.1.30.1) was used to normalize

samples by library size and estimate dispersion factors (5). For visualizations and statistical learning

methods, counts were log2 transformed using the vst (variance stabilizing transform log2) function

in DESeq2. Principal component analysis was performed using the prcomp function on the vst

transformed data that was mean centered and set to unit variance for the 6000 genes with the

highest variance across the 29 samples. The top 400 genes with the most negative or positive

loadings per principal component were assigned to that PC for visualization in a heatmap.

2.4.7 Analysis of melanoma cell lines in cancer cell line encyclopedia (CCLE)

RNA-seq unnormalized count data (version 18Q1) and drug sensitivity data (NP24.3009)

were downloaded from the cancer cell line encyclopedia (CCLE) website. There were 34 BRAFV600

mutant melanoma cell lines with both RNA-seq data and IC50 data for PLX4720. The RNA-seq

data for these cell lines was normalized to library size using DESeq2, and log2 transformed using

the vst function, and each gene was mean centered and scaled to unit variance. This dataset was

filtered for the 800 genes corresponding to PC1 in our dataset (Table S3), and the cell lines were

clustered by hierarchical clustering.
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2.5 Code and Data Availability

The RNA-seq data from this study can be accessed on NCBI GEO using the accession

number GSE117123. The code used in this study is available at https://github.com/andykavran/

Intermittent_Drug_Treatment.

https://github.com/andykavran/Intermittent_Drug_Treatment
https://github.com/andykavran/Intermittent_Drug_Treatment


Chapter 3

Denoising large-scale biological data using network filters

3.1 Background

System-wide molecular profiling data are often contaminated by noise, which can obscure

biological signals of interest. Such noise can arise from both endogenous biological factors and

exogenous technical factors. These factors include reagent and protocol variability, researcher

technique, passage number effects, stochastic gene expression, and cell cycle asynchronicity. This

variability can mask underlying biological signals when measuring cell state and how it changes

under different conditions, e.g., in development [139, 140], cancer progression [141], and adaptive

drug resistance [82,142]. Noise has also been implicated in the appearance of false signals and in the

non-replicability of some studies [143, 144]. Identifying and correcting noisy measurements before

analysis is likely to improve the detection of subtle biological signals and enable more accurate

predictions in systems biology.

If correlations between related molecular signals are stronger than correlations among sources

of noise, then distinct but related signals can be combined to denoise biological measurements, at

the expense of a smaller effective sample size. There are three common approaches to identifying

related signals: gene sets, subspace embedding, and networks. In the first category, methods like

GSEA [120, 145] use the enrichment of genes within curated sets to project the data onto biologi-

cally relevant features. While gene sets can increase the power to identify differentially regulated

processes, they are inherently coarse, and can themselves be noisy, incomplete, or biased, and thus

may not generalize to novel processes. Subspace embedding techniques include PCA [146], cluster-
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ing [147], and neural network autoencoders [148,149]. These methods can capture novel gene-gene

correlations, but they rarely incorporate biological information into the feature extraction, which

can limit both interpretability and generalizability.

Molecular profiling data alone does not directly inform which measurements should be more

or less related to each other. Networks that represent a molecular system’s functional structure can

provide this missing information. For example, protein-protein interaction, metabolic reaction, and

gene regulation networks each encode precise and biologically meaningful information about which

groups of measured protein expression levels, metabolite concentrations, or transcript levels are

functionally related, and hence which measurements should be combined to filter out independent

noise. Current network approaches use computationally intensive methods to identify which entities

are most related, which can limit their utility for large networks and general usability [150,151]

Among neighboring elements in the network, the underlying signals may be correlated (as-

sortative) or anti-correlated (disassortative) [152]. For example, differential expression tends to

correlate between neighboring genes in a regulatory network [153]. In contrast, inhibitory or com-

pensatory interactions [154,155] will tend to produce a disassortative relationship. Beyond pairs of

measurements, networks can also exhibit large-scale mixing patterns among these interactions, such

that a network may be more or less assortative in some regions and disassortative in others [156].

Existing network-based methods typically do not exploit this variability, and instead assume glob-

ally assortative mixing by applying a single filter to the whole network [150,151,157]. Mismatching

the filter and the relationship type, e.g., an assortative filter with anti-correlated measurements,

can further obscure the underlying biological signals. Here, we describe a general network-based

method that can automatically detect large-scale mixing patterns and account for both assortative

and disassortative relationships.

These network filters are closely related to kernel-based methods in image processing [158],

in which groups of related pixels are transformed together to improve their underlying visual sig-

nal. Most such techniques leverage an image’s underlying grid geometry to choose which pixels

have related signals for denoising. Networks lack this geometry because a node’s interactions are
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inherently unordered, whereas the left- and right-hand neighbors of a pixel are clearly defined.

This connection between network filters and image processing is rich with potentially useful ideas

that could be adapted to process large-scale biological data. For instance, community detection in

networks is a clear analog of the common “segmentation” step in image analysis, in which pixels are

first partitioned into groups that represent the large-scale structure of an image, e.g., to separate

foreground and background, or a car from the street, and then different filters are applied to each

segment (module).

We first describe two classes of network filters, which combine measurement values from

neighboring nodes to calculate an assortative or disassortative denoised value, and we describe

a general algorithm that decomposes the network into structural modules and then automatically

applies the most appropriate filter to the nodes and connections within each module. When applied

to synthetic data where the true values and network structure are known, these filters substantially

reduce errors relative to a baseline. In addition, we show how applying the wrong filter with respect

to the underlying biological relationship can lead to increased errors. Finally, to test the practical

utility of these methods in a more realistic setting, we investigate the impact of network filtering

on a machine learning task in which we predict changes in human protein expression data when a

healthy tissue becomes cancerous. Using the network filters to denoise the expression data before

model training increases the subsequent prediction accuracy up to 43% compared to training on

unfiltered data.

3.2 Methods

3.2.1 Synthetic data with known noise and structure

In the first experiment we generate simple non-modular random graphs using the Chung-

Lu (CL) model [159–161] with n = 100 nodes and a degree distribution that, in expectation,

follows a power law distribution Pr(k) ∝ k−α with parameter α = 3 for k ≥ 1. If the generated

degree sequence included a node with degree k > 17, a new degree sequence was sampled. This
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choice ensured that no star-like subgraphs were created. In our analysis, only nodes in the largest

connected component were included. This choice mitigates the bias experienced by low degree

nodes, which are the most likely nodes to exist outside the largest component.

For each CL synthetic network, we generate node values using the procedure described below.

We vary the assortativity coefficient r ∈ [−0.8, 0.8] while drawing values from a Normal distribution

with mean and variance µ = σ2 = 100. We simulate measurement noise by taking a random

permutation of a uniformly random 25% of the node values. We then apply each of the networks

filters (mean, median, sharp) to these noisy values, and calculate the mean absolute error (MAE)

of the original and denoised values. We also apply netSmooth and Laplacian exponential kernel

methods varying smoothing parameter values to this data, and calculate the MAE of original and

denoised values. Results are averaged over 5000 repetition of this process.

To create noisy non-modular networks, we performed a random rewiring procedure previously

described [162]. After generating a non-modular random graph using the CL model and generating

metadata, we select a given proportion of edges to remove from the graph. Then, we placed the

same number of new edges between any two nodes chosen uniformly at random, while ensuring

that there were no multi-edges in the graph. Then the filters were applied to the noisy network as

normal.

In the second experiment, we generate simple modular random graphs using the degree-

corrected stochastic block model (DC-SBM) [163], with κ = 5 communities of nr = 100 nodes each

(n = 500 nodes total), and the same degree distribution as the non-modular case. The network’s

modular structure is specified using the standard “planted partition” model [163], in which the

community mixing matrix ωrs is given by a linear combination of a perfectly modular graph and a

random graph, and has the form ωrs = λωplanted
rs + (1− λ)ωrandom

rs , with λ = 0.85.

For each DC-SBM network, we generate node values with the following properties: (i) the

distribution of values within each module are drawn from a module-specific Normal distribution

with mean µ = {110, 80, 60, 40, 20} and variance σ2 = 25, (ii) κ′ ∈ [0, 5] communities are assigned

to have negative assorativity coefficients, and (iii) the within-community assortativity coefficients
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are chosen uniformly at random on the interval |r| ∈ [0.4, 0.7]. These choices construct a hard test

in which a filter’s accuracy is effectively penalized if it uses nodes outside a given community to

denoise a particular value. For the patchwork filter, we partition the network using three different

classes of community detection algorithms. The “metadata-aware” DC-SBM [164] and spectral

algorithm [165] partitioned the graph in κ̂ = 5 communities. Modularity maximization partitioned

the graph into the number of clusters that maximizes the modularity function [166]. Noise is

induced and accuracy is assessed as in the non-modular case, except that the nodes are randomly

permuted within each module rather than the whole network.

3.2.2 Generating synthetic correlated measurements

We generate node values with a specified assortativity coefficient r∗, for a specified adjacency

matrix A, using Markov chain Monte Carlo (MCMC). The assortativity coefficient r is defined as

r =

∑
ij (Aij − kikj/2m)xixj∑
ij (kiδij − kikj/2m)xixj

where ki is the degree of node i, xi is the value associated with node i, 2m =
∑

ij Aij is twice the

number of edges in the network, Aij is the entry in the adjacency matrix for nodes i and j, and δij

is the Kronecker delta function.

Given a network A, a desired assortativity coefficient r∗, and a node value distribution Pr(x), we

generate a set of node values as follows.

(1) Assign each node a value drawn iid from Pr(x).

(2) Calculate the current assortativity coefficient r0.

(3) Set t = 1.

(4) While the difference between the desired and current assortativity coefficient ∆ = |rt−r∗| >

β, a specified tolerance, do:

� Pick a node i uniformly at random and assign it a new value x′i drawn iid rom Pr(x).
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� Calculate the corresponding assortativity coefficient rt and difference ∆′ = |rt − r∗|.

� If the new value does not improve the assortativity, i.e., ∆′ > ∆ restore xi. Otherwise,

increment t.

(5) Return the node values x with the desired assortativity coefficient, r∗.

In our experiments, we set β = 0.009.

3.2.3 Diffusion-based denoising methods

We benchmark the network filters against two comparison methods that weight nodes based

on different diffusion kernels. The Laplacian exponential diffusion kernel [151] Sβ is defined as

Sβ = e−βL

where β is a real valued smoothing parameter, and L is the graph Laplacian. The denoised data

vector is found by multiplying the matrix and noisy data vector

xLaplacian,β = Sβx .

The netSmooth method [150] uses the personalized Pagerank [167] vector to weight each node.

This kernel K is defined as

Kα = (1− α)(I− αB)−1

where B is a adjacency matrix that is degree normalized by column such that Bij = 1
kj

if there exists

and edge between i and j, α is the smoothing parameter (also known as the restart probability),

and I is the identity matrix. The denoised data vector is found by multiplying this kernel and the

noisy kernel as such

xnetSmooth,α = Kαx .

For simplicity, we call both β and α “smoothing parameter” throughout as they have a similar

function for their respective methods.
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3.2.4 Human protein expression and interaction

Protein expression data were drawn from the Human Protein Atlas (HPA) version 16 [168],

which details protein expression in human tissues by large scale immunohistochemistry (IHC), for

over 12,000 proteins in 20 tissue types, each in a healthy and cancerous state. We represented the

IHC scores of not detected, low, medium, and high as numerical values of 0, 1, 2, and 3, respectively.

In cases where a protein had scores from multiple patients, the numerical values were averaged

together. Human protein interaction (PPIN) data were drawn from the HINT database [169],

which combines data from several interactome databases and is curated for biological interactions

with high levels of evidence. The HINT network contains n = 12,864 proteins and m = 62,435

undirected, unweighted edges.

To construct the network filter, we first map the data from the HPA to the PPIN. HPA

proteins are indexed by their Ensembl IDs, while HINT proteins are indexed by their Uniprot IDs.

A map from Ensembl IDs to Uniprot IDs was constructed using the HGNC BioMart tool. If a node

had multiple mapped expression values, we averaged them. We allow protein expression values

from HPA to map to multiple nodes if the Ensembl ID maps to multiple nodes in the PPIN. If the

gene expression value does not map to any nodes in the PPIN, we discard these as they cannot be

de-noised by the network filters. There is one protein in the cancer dataset and 283 proteins in

the healthy tissue dataset missing protein expression values in no more than 2 cancers or healthy

tissues. For these cases, we impute the missing data from the same protein in another cancer or

healthy tissue uniformly at random (impute healthy from healthy, and cancer from cancer).

After keeping the largest connected component of nodes with associated HPA data values,

these preprocessing steps produce a network with n = 8,199 proteins with IHC expression infor-

mation across all 20 tissue types and both healthy and cancerous states, and m = 37,607 edges.

The included healthy-cancerous tissue pairs are: breast, glioma, cervix, colorectal, endometrial,

testicular, thyroid, renal, liver, lung, lymphoma, pancreas, prostate, skin, stomach, melanocyte,

urinary, head and neck, ovary, carcinoid. For the healthy tissues, the protein expression values of
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specific cells types that can give rise to the corresponding cancer were averaged together to form

one vector (Table 3.1).

3.2.5 Predicting expression changes in human cancer

The machine learning task is to predict the changes in protein expression levels when a human

tissue changes types from healthy to cancerous. We use K-nearest neighbors regression to learn a

model that can predict these changes when given the expression levels of a healthy tissue (Fig. 3.1).

We train and evaluate the model using leave-one-out cross validation, in which the model is trained

on the observed changes in 19 healthy-cancerous tissue pairs, and is tested on one unobserved pair.

We first train and evaluate the model on unfiltered data, and then compare its accuracy to a model

where we apply a network filter to the expression data prior to training.

First, we applied principal component analysis (PCA) on the training set of 19 healthy tissue

protein vectors as a feature extraction method. Next, using the embedded PCA space learned

from the training set, we project the held-out healthy sample into the same PCA space. We then

determine the K-nearest neighbors of the held-out healthy tissue by calculating the Euclidean

distance of the first four principal components between this point and all other healthy tissues.

Given this identification of which healthy tissues are most similar to the left-out healthy

tissue, we predict the protein expression changes for the held-out observation. We calculate the

expression changes between cancerous and healthy tissues, which we call a “delta” vector. Then,

we perform PCA on the 19 delta vectors to extract features. The weighted average of the delta

vectors corresponding to the K-nearest neighbors learned from the healthy tissues are averaged

together, where the weight is proportional to the inverse of the Euclidean distance to the held-out

healthy tissue. Finally, we project the predicted delta vector from four principal components back

to the n = 8,199 proteins and calculate the mean absolute error (MAE) of this vector and the

actual delta vector.

The basic networks filters evaluated in this task have the form given in the main text. For the

patchwork filter, the DC-SBM or spectral algorithms partition the PPIN into κ = 10 communities,
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Table 3.1: Cell types from the Human Protein Atlas dataset averaged together to form a single
healthy tissue vector

Healthy Tissue Cell Types Averaged

Breast Breast Adipocytes, Breast Glandular Cells

Glia Cerebral Cortex Glial Cells, Hippocampus Glial Cells, Caudate Glial Cells

Cervix Cervix Uterine Glandular Cells, Cervix Uterine Squamous Epithelial Cells

Colorectal Colon Endothelial Cells, Colon Glandular Cells, Rectum Glandular Cells

Endometrium Endometrium Cells in Endometrial Stroma, Endometrium Glandular
Cells

Testes Epididymis Glandular Cells, Seminal Vesicle Glandular Cells, Testis Cells
in Seminiferous Ducts, Testis Leydig Cells

Thyroid Thyroid Glandular Cells

Kidney Kidney Cells in Glomeruli, Kidney Cells in Tubules

Liver Liver Bile Duct Cells, Liver Hepatocytes

Lung Lung Pneumocytes

Lymph Lymph Node Germinal Center Cells, Lymph Node Non-Germinal Center
Cells

Pancreas Pancreas Exocrine Glandular Cells, Pancreas Islets of Langerhans

Prostate Prostate Glandular Cells

Skin Skin Fibroblasts, Skin Keratinocytes, Skin Epidermal Cells

Melanocyte Skin Melanocytes

Stomach Stomach Glandular Cells

Urinary Urinary Bladder Urothelial Cells
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Figure 3.1: Schematic of K-nearest neighbors regression framework. We designed a weighted K-
nearest neighbors regression framework to predict the protein expression changes a healthy tissue
would undergo when becoming cancerous, given a vector of protein expression profile of a healthy
tissue. First, we extract features from the training set of 19 healthy tissue protein expression vectors
by PCA. Second, we project the left out healthy vector down to the same PCA space, and third,
determine K-nearest neighbors to use for the prediction task. Fourth, we extract the features from
the 19 delta vectors by PCA, and fifth, predict the delta vector for the left-out healthy sample by
taking the weighted average of the K-nearest neighbor’s delta vectors. Finally, sixth, we project the
predicted delta vector from PCA space back to a vector of protein expression values to calculate
the error.
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and modularity maximization automatically chooses the number of communities that maximizes

the modularity function. Then, we apply the mean filter within each community.

For the diffusion-based methods, we choose optimized smoothing parameters for the human

protein expression data set using a method described by the netSmooth authors [150] to maximize

the entropy of a 2D embedding of the data. As the healthy data and delta vectors have different

data distributions, we choose optimized smoothing parameters for each data set separately. Briefly,

the healthy tissue protein expression or delta vectors were embedded in a PCA space with the first

two principal components. This space was discreteized into a four by four grid, equally spaced from

the data points at the minimum and maximum of each PC. We calculated the Shannon entropy,

H(x) = −
∑

i P (xi) logP (xi), of this discretized embedding, and chose the smallest smoothing

parameter that maximized the entropy. For netSmooth, the smoothing parameter was 0.2 for the

healthy tissues and 0.3 for the delta vectors. And for the Laplacian exponential diffusion kernel, it

was 0.2 and 0.1 for healthy tissues and delta vectors, respectively.

3.3 Results

3.3.1 Network filters

A network filter is specified by a function f [i,x, G], which takes as input the index of the

measurement (node) to be denoised, the list of all measurements x, and the network structure G

among those measurements. The output is the denoised value x̂i. Here, we consider only local

network filters, which use the measurement values of i’s immediate neighbors in G, denoted by the

node set νi, which are likely to be the most biologically relevant for denoising. Each filter is applied

synchronously, so that all denoised values are obtained simultaneously to prevent feedback within

the denoising process.

We note that the idea of a network filter can naturally generalize to exploit information, if

available, about the sign or strength of interactions in G. This information can be encoded by an

edge weight wij , which can capture inhibitory or excitatory interactions that are strong or weak.
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Below, we focus on the case in which this information is not available.

When a measurement xi correlates with the values of its neighbors xνi in the network (assor-

tativity), a network filter should adjust xi to be more similar to the measured values of its neighbors

(Fig. 3.2A). Among the many choices of functions with this qualitative behavior, the mean and

median have useful mathematical properties, and connect with past work [157]. This setting is

analogous to a smoothing operation in image processing, in which a pixel’s value is replaced by the

mean or median of its value and its neighbors’ values. In the context of a network, the mean and

median “smoothing” filters have the forms:

f•,1[i,x, G] =
1

1 + ki

xi +
∑
jενi

xjwij

 , (3.1)

where wij =1 and ki is the degree of node i, reflecting unweighted interactions, and

f•,2[i,x, G] = median[{xi, xνi}] . (3.2)

When a measurement xi anti-correlates with the values of its neighboring nodes, a network

filter should adjust xi to be more distant from its neighbors (Fig. 3.2A). This setting is analogous

to enhancing the contrast in an image, e.g., when using the technique of unsharp masking to

enhance the high frequency signal in an image to make it sharper. In the context of a network, this

“sharpening” filter has the form:

f◦[i,x, G] = α(xi − f•,1[i,x, G]) + x̄ (3.3)

where α is a constant scaling factor, and x̄ = n−1
∑

i xi is the global mean. Because α is a free

parameter, its value should be determined de novo for each data set. For the data sets in this study,

we empirically determined the optimal α = 0.8 using cross validation.

When a system exhibits large-scale mixing patterns of assortative and disassortative relation-

ships, a network should first be partitioned into structural modules using a community detection

algorithm, so that relationships within each module are more homogeneous. Let ~s = A(G) denote

the result of applying a community detection algorithm A to network G, and say that Gsi denotes
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Figure 3.2: Schematics of network filters. Network filters are tools that denoise real-valued bi-
ological data using a biologically meaningful network to exploit the correlation (“smoothing”)or
anti-correlation (“sharpening”) among neighboring measurements. A. A measurement xi and its
neighboring values in network, where the color intensity is proportional to the measured value. In
applying the smooth filter, xi is adjusted to be more similar to its neighbors; in applying the sharp
filter, xi is adjusted to be more distant from its neighbors. B. Measurements can also first be
partitioned into groups (dashed line) by detecting structural modules within the network, and then
different filters applied to different modules, ignoring between-module edges, e.g., if the signals are
assortative in some communities and disassortative in others.
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the subgraph of nodes and connections within the module si that contains node i. Given such

a modular decomposition ~s, a filter can then be applied to only the subgraph Gsi that contains

measurement i. As a result, relationships that span the boundary between two modules will have

no influence on the filtered values (Fig. 3.2B).

After partitioning, the same filter can be applied to every community, or sharp and smooth

filters can be applied to communities with more or less assortative values, respectively. We define

such a “patchwork filter” as:

f [i,x, Gsi ] =


f◦[i,x, Gsi ], if rsi < 0

f•,1[i,x, Gsi ], if rsi ≥ 0

, (3.4)

where rsi is the standard assortativity coefficient calculated over observed values within com-

munity si [152]. While any community detection algorithm can be used for A, here we use methods

from three classes of algorithms: modularity maximization [166], spectral partitioning [165], and

statistical inference. For community detection by statistical inference, we use the degree-corrected

stochastic block model or DC-SBM [163] or the “metadata-aware” version of DC-SBM [164], which

are considered state-of-the-art methods [170].

3.3.2 Tests using synthetic data

We evaluated the performance of these network filters in two controlled experiments with

either non-modular or modular synthetic networks, and varying structures and levels of noise.

And, we compare the performance of network filters to other network-based denoising methods

that combine values of nodes weighted by a diffusion matrix [150,151].

In the first experiment, we generated simple random graphs with heavy-tailed degree distribu-

tions (see Methods section 3.2.1) and assigned each node a value drawn from a Normal distribution

with mean µ = 100 and standard deviation σ = 10. These values were drawn in such a way that

the assortativity coefficient of the network ranged from r ∈ [−0.8, 0.8] (see Methods section 3.2.2).

As a result, connected values ranged from being highly anticorrelated to highly correlated. To sim-
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ulate independent measurement noise, we permuted the values among a uniformly random 25% of

nodes, and then denoised these “corrupted” values. We find qualitatively similar results for other

choices of the fraction permuted. Results report the mean absolute error (MAE) of a denoised

value, averaged over 5000 replications.

Without a filter, the average error of a “denoised” value is independent of the underlying cor-

relation (assortativity) among connected values, because this nearby information is left unexploited

(Fig. 3.3A). In contrast, applying a network filter to denoise the corrupted values can substantially

improve their accuracy, depending on how strongly coupled a measurement’s true value is with its

neighbors’, and what filter is applied to recover that information. For the particular parameters of

this experiment, filtering can reduce the error by 37–50% over no filter, and by roughly 20% even

in the case of uncorrelated signals (r = 0), due to a regression to the mean effect. Error reductions

are largest when a network “smoothing” filter is applied to strongly assortative signals, and when

a network “sharpening” filter is applied to strongly disassortative signals. That is, denoising works

best when the underlying signal structure is matched with the assumptions of the filter.

When the wrong filter is applied, however, error rates can increase relative to not filtering.

In such a case, the filter creates more errors in the data than it corrects. On the other hand,

this “mismatch” penalty only degrades the overall accuracy at very high levels of correlation (anti-

correlation) among the signals, where its magnitude exceeds the natural benefits of filtering at all

(Fig. 3.3A). When the underlying correlations are moderate (|r| < 0.4), the average benefits of

network filtering will tend to outweigh the average error induced applying the wrong filter.

We also applied two other network methods to these non-modular synthetic graphs. These

methods denoise data by combining node values weighted by a diffusion kernel. In the method called

netSmooth [150], every node is weighted by a personalized PageRank random walk vector [167],

which are linearly combined to create a denoised value. The second method is conceptually similar,

but uses a graph Laplacian exponential diffusion kernel to weight nodes before linearly combining

them to create the new denoised value [151]. Both methods have an adjustable parameter that

determines the smoothness of the resulting denoised values. For greater values of this smoothing
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Figure 3.3: Filter performance on non-modular synthetic networks. Network filter tests on synthetic
graphs with varying structures and known noise. The Mean Absolute Error (MAE) of A. network
filters, B. Laplacian exponential diffusion kernel, and C. netSmooth on the permuted nodes as
a function of the assortativty coefficient of 5,000 instances of noisy non-modular graphs. The
smooth filters (mean and median) perform best on assortative data (r > 0), while the sharp filter
is optimal for disassortative data (r < 0). When data are neither assortative nor disassortative
(r ≈ 0), netSmooth and Laplacian exponential kernels perform best. The shaded areas indicate
99% bootstrapped confidence intervals.
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parameter, the methods place less weight on the node’s original noisy value and more weight on

distant nodes.

We applied both methods to the same synthetic random graphs as the network filters, while

varying the smoothing parameters between low smoothing (parameter = 0.1), and high smoothing

(parameter = 0.9). The Laplacian exponential kernel (Fig. 3.3B) and netSmooth (Fig. 3.3C)

decrease the error of the noisy data as the assortativity increases. Furthermore, both methods

show lower error as the smoothing parameter increases. These diffusion-based methods perform

better than the smoothing network filters at either highly dissassortative or weakly assortative

values. Since these methods will typically use a larger number of node’s values to denoise, their

regression to the mean effect tends to be more accurate than the more localized smoothing network

filters. However, when a node’s value becomes more correlated with its neighbors’ values, the

smoothing network filters decrease the noise more than the diffusion-based methods. And while

the diffusion based methods work better than the smoothing filters on disassortative data, the sharp

filter is the best performing method for weakly to strongly disassortative data.

These tests assume that the network structure itself is not noisy. However, in real biological

networks, there can be both missing and spurious edges [171]. We tested the robustness of network

filters to noise in network structure. After creating a synthetic graph and assigning data to nodes,

we add different levels of noise by replacing true edges with new edges between nodes chosen

uniformly at random [162]. Thus, this process simulates both cases where the network is missing

edges and contains false edges. We find that a noisy network decreases the performance of the

mean filter (Fig. 3.4A) and median filter 3.4B) on graphs with assortative data (r > 0), and the

sharp filter on graphs with disassortative data (r < 0) 3.4C). However, the network filters still

substantially reduce the error compared to the no-filter baseline. When the network is very noisy

(90% rewired edges), applying a filter reduces the error compared to the no-filter baseline. This

pattern is due to a regression to the mean effect, since rewiring the network effectively shrinks the

assortativity coefficient closer to zero.

In the second experiment, we again generated simple random graphs with heavy-tailed degree
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Figure 3.4: Filter performance on rewired synthetic networks. As a test of robustness to incomplete
and noisy network structure, we rewire the synthetic networks to remove real edges and add false
edges. We plot the average MAE of the A. mean filter, B. median filter, and C. sharp filter applied
to the true network and noisy networks. The shaded areas indicate 99% bootstrapped confidence
intervals.
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distributions, but now also with modular structure, which better captures the structure of empirical

biological networks (see Methods 3.2.1). These modules denote groups of nodes that connect

to other groups in statistically similar ways. For instance, protein interaction networks can be

decomposed into groups with similar biological function, and these groups can have distinct types or

levels of signal assortativity [156]. In this situation, applying a single filter to all parts of the network

could introduce bias in the denoised values, by pooling nearby measurements indiscriminately,

compared to filtering modules independently.

Here, we plant κ = 5 modules in the same kind of synthetic network as our first experiment,

set each module to have a different mean value, and then vary the fraction of modules that have

a positive assortativity coefficient |r| ∈ [0.4, 0.7] vs. a negative coefficient (see Methods section

3.2.1). This kind of signal heterogeneity across modules mitigates the denoising benefits of a

simple regression to the mean, and provides a harder test for denoising methods. Given these

choices, we generated values within a module, and simulated measurement noise as in the previous

experiment (see Methods sections 3.2.1 and3.2.2). In addition to the previous filters, we also apply

the “patchwork” filter in this experiment.

As before, the average error of a denoised value with no filter provides a consistent baseline

against which we may assess improvements from filtering (Fig. 3.5D). And similarly, the error for

both the smooth and median filters falls steadily as the fraction of modules with assortative signals

increases. For the particular parameters of this experiment, the median filter performs roughly

20% better than the mean filter, reflecting the median’s well-known robustness to outliers, which

arise here from the planted signal heterogeneity.

The global sharp filter works poorly for all ratios when applied uniformly across the whole

network (Fig. 3.5B). Because each module has a distinct mean value, the global sharp filter generates

errors by assuming the global mean is a good representation of the whole network.

In contrast, the patchwork filter with different community detection algorithms exhibits less

dynamic range in its error(Fig. 3.5D). When paired with the DC-SBM, it is substantially more

accurate than any other filter across different degrees of modular assortativity. For the particular
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Figure 3.5: Filter performance on modular synthetic networks. The mean absolute error (MAE)
of A. network filters (without the sharp filter), B. network filters including the sharp filter, C.
Laplacian exponential diffusion kernel, and D. netSmooth on the permuted nodes as a function of
the fraction of communities with assortative data values for 100 instances of noisy modular graphs.
Each network instance has 5 communities and we vary how many communities have assortative
vs. disassortative data values with a moderate assortativity coefficient |r| ∈ [0.4, 0.7]. The shaded
areas indicate 99% bootstrapped confidence intervals.
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parameters of this experiment, the patchwork filter paired with the DC-SBM reduces the mean

error by 30–41% compared to no filtering and by 3–36% compared to median or mean filtering.

Only when all of the modules are assortative does the median filter come close to the DC-SBM

patchwork filter’s accuracy. This advantage arises because the patchwork filter avoids applying the

same filter to different types of underlying signals, if the structure of those signals correlates with

the structure of the network (as it does here). That is, applying a single filter to a modular network

can introduce errors when denoising, if the local mixing patterns across modules are heterogeneous.

Pairing a community detection algorithm with network filters can avoid this problem by identifying

large groups of nodes that should be filtered together, in much the same way that different image

filters can be applied after first segmenting an image into distinct regions.

However, for the modularity maximization and spectral partitioning algorithms, the patch-

work filter does not perform as well as when paired with the DC-SBM because the algorithms do

not partition the network as closely to the true community structure. Thus, the patchwork filter

uses measurements from outside a single community more often with these algorithms. Despite

imperfect partitioning, the patchwork filter paired with modularity and spectral partitioning al-

gorithms performs 14%-28% better than the mean filter across all levels of modular assortativity.

The median filter outperforms the spectral patchwork (9%) and modularity patchwork (15%) at

the highest level of modular assortativity, but the patchwork filter still outperforms, or matches

the median filter across the rest of the levels of modular assortativity.

We also applied the diffusion-based methods to these synthetic modular networks. The error

for both the Laplacian exponential kernel (Fig. 3.5E) and netSmooth (Fig. 3.5F) only slightly

decreases as the fraction of modules with assortative signals increases. In contrast to the non-

modular case, increasing the smoothing parameter for both methods increases the error across all

settings. This loss of accuracy occurs because increasing the smoothing parameter places greater

weight on more distant nodes which are more likely to be drawn form a different distribution. Hence,

the diffusion kernels are more likely to combine values from nodes from different communities leading

to a higher error rate.
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3.3.3 Denoising protein expression levels in cancer

To evaluate the utility of network filters for denoising biological data in realistic settings,

we construct a machine learning task in which we predict the precise changes in human protein

expression levels when a healthy tissue becomes cancerous (see Methods sections 3.2.4 and 3.2.5).

This task has potential applications to detecting pre-cancerous lesions [172,173]. We then quantify

the improvement in out-of-sample prediction accuracy when using a network filter to denoise the

input expression data before model training, compared to training on unfiltered data.

For this experiment, protein expression data are drawn from the Human Protein Atlas

(HPA) [168], which provides large-scale immunohistochemistry (IHC) measurements for over 12,000

human proteins in 20 tissues, each in both healthy and cancerous states. Antibody based methods

like IHC are known to be noisy and prone to variation from uncontrolled experimental param-

eters [174], which makes this data set a realistic example of noisy molecular profiling data. A

standard principal component analysis (PCA) of the raw HPA expression data reveals that the

first component correlates with variations in tissue type, while the second correlates with differ-

ences between tissue state (healthy vs. cancerous) (Fig. 3.6A). Some tissues, however, change more

than others, and the changes are not always in the same direction. Hence, predicting the pre-

cise changes represents a useful and non-trivial machine learning task that network filtering may

improve.

For the network filters and diffusion-based methods, we use a comprehensive map of the

human protein-protein interaction network (PPIN) [169], which combines data from several inter-

actome databases and is curated for biological interactions with high levels of evidence. While this

network represents a broad collection of authoritative interactome data, the completeness of the

human PPIN is still uncertain [171], and we do not regard this network as itself noise-free. Taking

the intersection of proteins contained in both expression data and interaction network (see Methods

section 3.2.4) yields data on n = 8,199 proteins in a network with m = 37,607 edges.

In the machine learning task, we perform a K-nearest neighbor regression on an embedded
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Figure 3.6: Denoising to predict protein expression changes in healthy and cancerous tissues. Tests
of the network filters on a cancer protein expression prediction task. In this test, we predict the
protein expression changes that occur when a healthy tissue becomes cancerous, quantified by the
out-of-sample prediction accuracy with and without using network filters to preprocess the data
before training. A. The first two principal components of immunohistochemistry data of healthy
and cancerous tissues in the Human Protein Atlas. Arrows connect a healthy tissue (blue) to
the corresponding cancer (red). The first component captures variations across tissues, while the
second captures variation in state (healthy vs. cancerous). Predicting the precise changes between
healthy and cancerous tissues is a non-trivial task. Therefore, we perform a K-Nearest Neighbors
regression on the HPA data, with and without preprocessing with network filters. We evaluate the
model by leave-one-out cross validation, and calculating the MAE of the predicted and actual data
values for the left out healthy-cancerous pair. B. All network filters and diffusion methods improve
the MAE compared to the no-filter baseline. We compare this across different choices of K, as it
is a free parameter. The shaded areas represent 95% bootstrapped confidence intervals.
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representation of the protein expression data to learn how expression levels change with tissue state

(see Methods section 3.2.5). We evaluate the trained model via the MAE between the predicted

and the actual changes in protein expression under leave-one-out cross validation (in which we train

on 19 tissue pairs, and predict on the 20th) with or without denoising the expression data with a

network filter or diffusion-based method prior to model training. Because the number K is a free

parameter that controls the complexity of the learned model, we evaluate the robustness of our

results by systematically varying K. For the patchwork filter, we partitioned the graph into 10

modules using the DC-SBM [163] or spectral algorithm [165], while the modularity maximization

algorithm [166] automatically chooses the number of modules. Then, we apply the mean filter

within each module. In this data, most measured values are weakly assortative across protein

interaction edges, and only a few detected modules exhibit any disassortative signal, and even then

their internal r is relatively close to zero (Fig. 3.7). In this situation, the smooth filter typically

outperforms the sharp filter (Fig. 3.3A).

We used the method proposed by Ronen and Akalin to optimize the smoothing parameter

for the diffusion based methods by maximizing the entropy of points embedded in a 2-dimensional

PCA space [150]. Since the distributions of the healthy tissue and delta vector data are quite

different, we optimized the smoothing parameters of each individually.

Across model complexities, we find that denoising before model training using any type of

network filter or diffusion-based method provides a substantial reduction in prediction error relative

to training on unfiltered data (Fig. 3.6B, Fig. 3.8). The median filter and netSmooth have very

similar performance with around 22% improvement in MAE from no filter. The Laplacian exponen-

tial diffusion kernel, patchwork filter paired with spectral community detection, and mean network

filters have the lowest MAE, improving upon the raw data by 32%, 37%, and 43%, respectively.

Error rates tend to decrease with greater model complexity K, suggesting that more complex

models are better able to capture variations in the precise expression level changes between tissue

states. This decrease in error also occurs without first filtering the expression data. However,

the improvement in prediction accuracy from increasing the model complexity without filtering is
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Figure 3.7: Distribution of assortativity coefficients of network modules with Human Protein Atlas
data. We partition a protein-protein interaction network into 10 modules using the DC-SBM, and
map data from the Human Protein Atlas to this network. Then we calculate the assortativity
coefficient of each module with the protein expression of 40 different tissue types. Most modules
are slightly assortative, while a few are very slightly disassortative.
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Figure 3.8: KNN regression of Human Protein Atlas data with all network filters. We perform a
K-Nearest Neighbors regression on the HPA data, with and without preprocessing with network
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detection algorithms, and diffusion based comparison methods.
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modest (5.2% at K = 6) compared to the improvement from first applying the best network filter

(42% at K = 1, and 43% at K = 6).

We note that in this real-world setting, the patchwork filter, which first partitions the protein

interaction network into protein groups, performs better with the spectral or modularity maxi-

mization algorithms than with the DC-SBM. The patchwork filter paired with these algorithms

performed very well, but the mean filter still performed better than them. This behavior suggests

that the partitions produced by the community detection algorithms did not correlate sufficiently

strongly with the underlying variation in biological signals to correctly localize the most relevant

adjacent measurements, in contrast to our controlled experiments (Fig. 3.3D). Developing commu-

nity detection algorithms that choose more biologically relevant partitions may be a useful direction

of future work.

3.4 Discussion

Large data sets of biological signals, such as system-wide measurements of molecular con-

centrations, are often noisy. However, these measurements are not fully independent because they

reflect the dynamics of a single interconnected system. Using a network to represent the underlying

biological relationships among a set of measurements, we can leverage the size of these data sets

to systematically denoise many measurements at once, improving the data’s utility for understand-

ing the structure and dynamics of complex biological systems or making accurate predictions in

systems biology.

Experiments using synthetic data with realistic biological network structures and a variety

of underlying signals indicates that network filters can substantially reduce noise in large biological

data sets across a broad range of circumstances (Fig. 3.3A, 3.5D, Fig. 3.4). The greatest benefit

is obtained when the type of filter is matched to the underlying relationship among the signals,

e.g., smoothing for assortative signals (correlation) and sharpening for disassortative signals (anti-

correlation). However, for modest levels of correlation, even the wrong kind of filter yields some

benefit because of a regression to the mean effect, in which combining several related signals filters
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out more noise than it introduces through bias. When signal types are heterogeneous across the

network, so that the strength or direction of the correlation differs in different parts of the network,

a “patchwork” filter often performs better. In this approach, we first partition the network into

smaller, more homogeneous modules (groups of interrelated measurements) and then apply filters

independently to the measurements now localized within each module (Fig. 3.3D).

In a more realistic setting, in which we train a machine learning algorithm to predict changes

in human protein expression levels when healthy tissue becomes cancerous, applying a network filter

based on a high-quality protein interaction network before model training substantially improves

prediction accuracy, compared to training on unfiltered data (Fig. 3.6B). In this experiment, the

protein interaction network itself is not noise-free [171], indicating that filtering using an imperfect

network can be better than not filtering at all. Our experiment on rewiring network edges further

supports that network filters still work well on noisy network structures (Fig. 3.4).

In each experiment, we compared our network filters to techniques relying on network diffu-

sion algorithms to weight the nodes before combining them. Both netSmooth and the Laplacian

exponential diffusion kernel have similar characteristics to the smoothing network filters. In the

non-modular synthetic graphs, they perform better with more assortative underlying data. How-

ever, on modular graphs with heterogeneous data values, the performance only slightly increases

as more communities have assortative data values, and decreases when communities have disassor-

tative values.

We find an apparent trade-off between the size of the local area of nodes used to denoise a

value and the range of values that can be recovered. The diffusion-based techniques outperform

local smoothing network filters when there is no correlation or anti-correlation between neigh-

boring values. This improvement is caused by a larger regression to the mean effect from using

many more neighbors to denoise any given value. While this effect is beneficial in the experiment

with non-modular synthetic graphs, it strongly hinders their performance on modular graphs with

heterogenous data values because the diffusion-based techniques tend to use values outside their

community, which are drawn from different underlying distributions. Furthermore, increasing the
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smoothing parameter increases the weight of values outside of the community, strongly deteriorat-

ing their performance. Thus, regression to the mean is not beneficial in this experiment since each

community has a different distribution of data values. On the other hand, the mean and median

filters are more localized and hence make fewer errors due to combining neighbors’ values from

different communities.

Network filters are ultimately systems-level tools applied to a group of related biological

measurements to reduce the overall noise in the system of measurements. On balance, applying

network filters reduces the noise in a system of measurements, as evidenced by our tests on synthetic

and real datasets. However, there is no guarantee that every individual node’s measurement is less

noisy after applying a network filter. Furthermore, network filters increase the correlation (or

anti-correlation) between the set of denoised values, which reduces the effective sample size. Thus,

narrowing the focus to individual nodes after filtering the whole dataset is not the intended use

case of network filters. Network filters have the greatest potential for answering questions that take

the dataset as a whole, like our machine learning example, rather than considering data of single

nodes, such as differential gene expression analysis. Such problems will require more specialized

tools specifically suited to the input data.

Network filters could be useful for datasets beyond the ones we describe here, as they only

require that a network explains the causal structure of a system of measurements. But some input

data may not benefit in its raw form by using network filters particularly if it does not make sense

to average together a set of the raw values. For example, in the IHC data from the HPA, each

protein is on the same scale of none, low, medium, or high expression level which we converted

to a numeric value between zero to three. Since the values of each protein are on the same scale,

averaging them together in the smooth filter is reasonable and will produce a value that has shifted

to look more like its neighbor nodes. However, other types of data such as intensities from mass

spectrometry based proteomics or raw read counts from RNA-seq can have wildly different scales

between proteins and transcripts, which is inherent in the measurement platform. Taking the

average of these measurements could create nonsensical values that are largely different from the
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raw values, and thus may not denoise the data very well. In these cases, transformations of the

raw data, like z-score standardization of a node’s values across different samples, may be more

appropriate.

There are a number of potentially valuable directions for future work on network filters, which

may improve their error rates or adapt them to more complicated settings or tasks. Techniques

from image processing, both simple and advanced, represent a particularly promising direction to

explore [175–177]. For instance, here, we only considered the network filters combine measurements

associated with directly adjacent nodes. As a result, the denoised values associated with low degree

nodes in the network derive from a relatively smaller number of measurements, and hence are

likely to have larger residual noise than will higher degree nodes. Modifying the network filter for

low degree nodes to look beyond nearest neighbors, e.g., to ensure a minimum number of pooled

measurements per node, may provide better guarantees on the accuracy of the denoised value. An

example of this type of technique in image processing include the Gaussian filter [178].

Image segmentation, in which an image is first partitioned into visually distinct pieces, e.g.,

separating the foreground from the background, is a common preprocessing step in image analysis.

The patchwork filter considered here is a simple adaptation of this idea, but it relies on off-the-shelf

community detection algorithms to partition the nodes, considers different modules independently,

and ignores connections that run between modules. While this approach should retain the most

informative relationships among the measurements it also serves to reduce the degrees of many

nodes, which may lessen the benefits of filtering, as described above. Furthermore, the patchwork

filter will not work well on networks with disassortative community structure where nodes in the

same community tend to not form edges between each other. In such cases, the patchwork filter

would significantly reduce the degree of all nodes and limit the potential for network filters to denoise

their data. Thus, the patchwork filter may perform best with community detection algorithms that

return assortative community structures and sever the least number of edges within communities.

Developing filters that utilize the edges between modules could mitigate the induced low-

degree effects that come from applying a patchwork filter to account for signal heterogeneity in
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the system. Such between-module edges should likely be considered separately from within-module

edges, e.g., by adjusting their weights wij to more accurately capture the character of the particular

signal relationship between the modules containing nodes i and j.

The benefits of a patchwork filter necessarily depends on how closely the network partition

correlates with the underlying biological structure of the system. Off-the-shelf community detection

algorithms may not always provide such partitions [179]. While the DC-SBM was able to recover

partitions that were good for denoising in the synthetic data task, it did not perform as well as

the modularity maximization and spectral algorithms on the real world data example. Since the

assortativity coefficients for the Human Protein Atlas range from 0 to 0.1, the benefit is dominated

by the regression to the mean effect, which does better on higher degree nodes to reduce the

noise. Thus, the community detection method that finds partitions optimal for denoising may differ

network to network [170]. Trying a few different community detection methods like we did here

should aid in finding network partitions that best correlate with the system’s underlying structure.

In some settings, developing application-specific partitioning algorithms, or algorithms that can

exploit biologically meaningful node attributes [164], may improve the behavior of a patchwork

filter. For data sets where the data is relatively homogenous, a smoothing or sharpening filter

applied to the network as a whole may provide more benefits than the patchwork filter.

Finally, the network filters defined here make few specific assumptions about the underly-

ing noise-generating process itself. In specific applications, much more may be known about the

direction, magnitude, and clustering of errors across large-scale measurements. For instance, in

molecular profiling data, endogenous biological factors like cell cycle effects likely induce distinct

noise patterns compared to exogenous technical factors like sample preparation or instrument vari-

ation. Developing more application specific error models that could be combined with network

filters may provide more powerful denoising techniques than the general filters described here.



Chapter 4

Conclusions and outlook

In Chapter 2, I investigated how intermittent treatment makes melanoma cells sensitive to

rechallenge. In this work, we challenge the prevailing drug addiction model to explain the benefi-

cial response to intermittent treatment compared to continuous treatment. This model proposes

that there is an alternating selection between drug sensitive and drug resistant cells during drug

treatment and drug withdrawal, respectively. While our system shows evidence of drug addiction,

drug resensitization has a much greater contribution to cell death and overall reduced cell numbers

in intermittent treatment compared to continuous treatment.

Using RNA-seq, we discovered that drug treatment induces transcriptomic reprogramming

and an EMT-like phenotype switch resulting in a more drug tolerant population. Drug with-

drawal only partially reverts this transcriptomic shift away from the drug tolerant invasive phe-

notype. Interestingly, some of the highly reported markers of the drug tolerant invasive state

(MITFlow/AXLhigh) do not revert to expression levels seen in the sensitive, melanocytic cell state.

However, our cells clearly regain sensitivity to drug during withdrawal as indicated by a left-shift

in the dose response curve and increased percent of propidium iodide stained cells upon drug

re-addition.

We demonstrated that the reversible gene expression from our bulk RNA-seq data is not due

to selection against a subpopulation. Instead, single cells switch from one transcriptomic state to

another (L1CAMHigh to L1CAMLow). This was evident from the unimodal distribution of L1CAM

expresssion in the early days of drug withdrawal that was at intermediate levels between those seen



76

at Day 7 (resistant L1CAMHigh) or Day 14 (sensitive L1CAMLow). In essence, we see cells that were

caught in the act of reverting from the resistant state to the sensitive state. Our propidium iodide

staining and growth curve experiments also show that there is not much cell growth or cell death

during these timepoints. Certainly not enough to explain a 10-fold decrease in median L1CAM

protein expression.

There are many future directions this project could take to understand intermittent treatment

in more detail. In particular, the most important avenue is to test more melanoma cell lines to

see if they demonstrate a beneficial response to intermittent drug treatment relative to continuous

treatment. In Appendix A, I show results for several other melanoma cell lines I tested for their

responses to intermittent drug treatment. In short, the conditions used for WM239A-BRAFV600E

cells did not show a beneficial intermittent treatment effect in the other cell lines I’ve tested. I have

made changes to drug concentration, intermittent schedule, and seeding density, but have not seen

a beneficial intermittent treatment response in other cell lines. Thus, we don’t quite understand

all the components that make intermittent treatment successful.

Multiple cell lines do show a decrease in cell numbers with drug rechallenge after a period

of drug withdrawal. With more optimization of the conditions, some of these cell lines may show

reduced cell numbers with intermittent treatment compared to continuous treatment. WM239A

cells without an over-expressed oncogene capable of activating the MAPK pathway do not show the

beneficial intermittent response, so perhaps this oncogene overexpression is required in the other

cell types too.

One interesting observation in our RNA-seq dataset was that the some genes do not change

expression levels with oncogene induction, acute drug treatment, or continuous drug treatment.

But somehow these genes somehow acquire responsiveness to MAPK signaling across the drug-

off/drug-on/drug-off intermittent schedule. These are very interesting, and we have not studied

them in much detail. Some of these appear in Fig. 2.13, such as IL1B, AREG, FGFR1, and MET.

Potentially, these genes require a high threshold of ppERK seen in the drug-off intermittent weeks

to activate their transcription. It would be interesting to conduct a phosphoproteomics experiment
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to investigate if there are new ERK target proteins that are only phosphorylated upon pathway

hyperactivation. These new targets may regulate the expression of these genes that seem to acquire

MAPK signaling dependency, and potentially be responsible for drug resensitization.

In Chapter 3, I developed a suite of tools called network filters that can be used to denoise

large scale biological data. Network filters are flexible tools that can exploit a variety of network

data, including networks of molecular binding interactions. We can extend network filters to exploit

information about the sign or strength of interactions or to allow the type of interaction to vary

across different modules within the network. These filters can also be applied to networks of any

size, ranging from local signaling pathways to entire protein interaction networks. While our focus

was on biological data, network filters are truly agnostic to the source of the data. In fact, they

can be applied to any network that correlates with the underlying causal structure of a set of

measured variables. By exploiting these underlying relationships, a network filter pools correlated

information, which mitigates independent noise, in much the same way that image processing

techniques use information from nearby pixels to denoise an image.

A major innovation of this study was paring network filters with community detection algo-

rithms. The patchwork filter can theoretically adapt to networks where there are heterogeneous

patterns of assortativity and disassortativity and apply smoothing or sharpening filters to different

nodes. In tests of synthetic data, the patchwork filter could identify communities with homogeneous

mixing and apply the appropriate network filter within those communities. However, the patchwork

filter did not have optimal performance in the real data machine learning task. Fundamentally, this

means the communities identified from the three different community detection algorithms did not

partition the graph into units that optimally correlate with the underlying biological signals. An

inherent limitation to the patchwork filter that is severing edges between nodes in different com-

munities decreases the degree of the nodes, and low degree nodes are more susceptible to errors.

Isolating communities is good in instances where the patchwork filter applies different filters to

communities with opposite mixing patterns. However, in the case of the protein protein interaction

network where there is not a strong correlation between mixing pattern and community structure,
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reducing the effective node degrees performance decreased the performance of the patchwork filter

more than the benefit of separating communities. This effect was evident since the spectral com-

munity detection algorithm severed fewer edges between nodes and outperformed the DC-SBM,

which across the board severed many more edges.

For the patchwork filter to succeed on a wider variety of networks, it will be important to

use community detection methods that are designed to identify groups of connected nodes with

correlated or anti-correlated data. The DC-SBM, modularity, and spectral community detection

algorithms we used on the Human Protein Atlas dataset were general-off-the shelf implementations

that did not use the associated node data during partitioning. Thus, the communities they identified

were based solely on network structure. Using a metadata-aware version of the DC-SBM in the

synthetic data task partitioned the graph near-opitmally for the patchwork filter performance.

However, this algorithm would not converge on a solution for some of the cancer datasets paired

with protein-protein interaction network. Adapting this community detection algorithm or others

to identify communities with homogenous data mixing patterns would greatly increase the power

of the patchwork filter.
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Appendix A

Intermittent drug treatment of several melanoma cell lines

The focus of this appendix is on intermittent treatment of melanoma cell lines related to

Chapter 2. These cell lines (WM1617, WM115, C32, A375, WM164) did not reproducibly show a

better response to intermittent treatment compared to continuous treatment. While these many of

these data show negative results and are not publication worthy, they should hopefully be a useful

starting point for future research to identify the optimal conditions to see a beneficial intermittent

treatment effect in melanoma cell lines besides WM239A. This work was largely done by myself

with some experiments of WM1617 and PrestoBlue optimization done by former undergraduate

Steven Sloan, and some experiments with A375 were done by former undergraduate Jason Haw.

A.1 WM1617 and WM1617-BRAFV600E

In Chapter 2, we typically used WM239A cells that had a cumate inducible BRAFV600E

construct integrated in the genome. We found that this was important for WM239A cells to show

a beneficial response to intemittent drug treatment compared to continuous treatment. Thus, I

created another metastatic melanoma cell line WM1617 with the BRAFV600E cumate inducible

system. This already has a BRAFV600E mutation, unlike WM239A cells, which are BRAFV600D. I

performed a dose response experiment with LGX818 for 72 hours to compare the level of resistance

this oncogene induced (Fig. A.1). The untransfected (”parental”) WM1617 cells and the non-

induced WM1617-BRAFV600E cells had very similar dose response curves (Fig. A.1A). There may

be a slight right shift for the non-induced cells, indicating a slight leakiness to the vector. For
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cells cumate induced for 72 hours before the dose response, they show about a 10-fold increase

in the apparent IC50. This indicates that the amplified BRAFV600E promoted the resistance to

LGX818 in WM1617 cells. These dose response curves are normallized individually to make an

easy comparison in drug sensitivity, but this transformation erases differences in growth rates

between cell lines. Looking at an absolute scale shows that cumate induced WM1617-BRAFV600E

cells have a loss of cell fitness at low concentrations of drug (Fig. A.1B). This likely indicates that

the cells have hyperactive ERK and are “drug addicted”. Also, at the drug concentration I use for

growth curve experiments (500nM), there is very little difference in absolute cell numbers between

all the cell lines.
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Figure A.1: WM1617 LGX818 Dose Responses. WM1617 cells were seeded in 96 well plates at
2500 cells per well after 72 h of cumate induction or not. Then the cells were treated with various
concentrations of LGX818 for 72 h before CellTiter-Glo 2.0 viability assay. A. Each cell line
is normalized to the mean highest viability LGX818 concentration. WM1617-BRAFV600E cells
induced with cumate have about a 10-fold greater IC50. B. The same data as in A. but shown on
an absolute cell number scale. This shows that cumate induction reduces the proliferation rate of
WM1617-BRAFV600E cells.

Next, I wanted to compare the response to continuous vs intermittent drug treatment in

WM1617 untransfected and WM1617-BRAFV600E cells. To be consistent with the WM239A-

BRAFV600E experiments in Chapter 2, I seeded 96 well plates at 500 or 750 cells per well, and

treated cells with 500 nM LGX818. The intermittent treatment schedule was 7 days-on, 7-days off

drug, and cell viability was measured at the end of each week with the CellTiter-Glo 2.0 assay.
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The continuous drug treatment with 500 nM LGX818 suppressed growth throughout the

four week experiment in all conditions (Figure A.2). The intermittently treated cells substantially

outgrew during the first week off, and then were suppressed again by drug treatment. This sup-

pression was short lived, as the cell numbers in week 4 were consistently higher than in week 2.

There was no major qualitative difference in behavior between the WM1617 untransfected and

WM1617-BRAFV600E cell lines at either 500 cells or 750 cell initial seeding density.

From this experiment it seemed that the 500 nM LGX818 was too high. WM1617, either

BRAFV600E amplified or not, did not outgrow with continuous treatment. However, WM239A

BRAF amplified cells start to significantly outgrow after two weeks of continuous treatment with

500 nM LGX818. This is probably because the BRAF amplification in WM1617 cells increased the

IC50 by only 10-fold, whereas in WM239A cells it was close to 100-fold.

Next, we tried lower drug concentrations of LGX818 when treating WM1617 cells to see if

that would show a beneficial response to intermittent drug treatment. Once again we compared

WM1617 untransfected and 72 hr cumate-induced WM1617-BRAFV600E cells in a continuous vs

intermittent (7 d-on/7 d-off) drug treatment schedule. We see the same behavior with 500 nM

LGX818, repeating the result that continuous treatment suppresses growth compared to intermit-

tent treatment (Fig. A.3A). The growth curves are qualitatively the same with 30 nM LGX818

treatment. But with 3 nM LGX818, cells numbers were repressed at day 21 with intermittent

treatment compared to continuous treatment. Still, there was signficant outgrowth of both in-

termittent and continuously treated cells. At week four, it appears that continuous had growth

repression, but this is likely caused by cells overgrowing the well, which causes cells to detach from

the plate. This was a promising result that suggested that intermittent treatment might suppress

growth more than continuous treatment in another melanoma cell line. We also noted that the

BRAFV600E amplification did not have a major effect on how the WM1617 cell line responded in

these growth curve experiments. Thus we continued with the WM1617 untransfected cell line for

future experiments.

We wanted to see if the growth repression by intermittent treatment was reproducible in an
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Figure A.2: Intermittent vs continuous treatment of WM1617 and WM1617-BRAFV600E cells.
WM1617 and WM1617-BRAFV600E cells were seeded in 96 well plates at 500 or 750 cells per well
after 72 h of cumate induction. Then the cells were treated continuously or intermittently with 500
nM LGX818. The intermittent schedule was 7 days on/7 days off. The intermittently treated cells
outgrew the continuously treated cells in all conditions.
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Figure A.3: Intermittent vs continuous treatment of WM1617 cells with different drug concentra-
tions. A. WM1617 and WM1617-BRAFV600E cells were seeded in 96 well plates at 500 cells per
well after 72 h of cumate induction. Then the cells were treated continuously or intermittently with
3 nM, 30 nM, or 500 nM LGX818. The same as in B., but the cells were WM1617 untransfected,
and 3 nM, 10 nM, or 30 nM LGX818 was used. The intermittent schedule was 7 days on/7 days
off for both panels.
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independent experiment. Also, we wanted to see if an intermediate drug concentration between

3 nM and 30 nM could make the growth suppression of intermittent treatment bigger. Thus, we

conducted a growth curve experiment in WM1617 untransfected cells with 3 nM, 10 nM, and 30 nM

LGX818 with the same continuous and intermittent treatment schedules (Fig. A.3B). Unfortunately,

the results did not match the last experiment. For cells treated with 3 nM drug, the intermittent

cells significantly outgrew in the 7 days off drug during week 2 (day 14 time-point). They then

outgrew the plate and started to come off the plate, which is the reason of the apparent decrease

in cell numbers on days 21 and 28. Thus 3 nM intermittent treatment did not actually reduce

cell numbers compared to continuous treatment in this experiment. The 10 nM showed outgrowth

during week 2, but the cell numbers were repressed during week 3 with drug rechallenge. Then in

week 4 the cells did not significantly out grow continuously treated cells. The 30 nM conditions

showed a similar growth curve, but the intermittently treated cells had consistently higher cell

numbers than continuously treated cells.

In many of these intermittent vs continuous treatment assays, the WM1617 cells significantly

outgrew in the 7 days off drug treatment. This could mean that they don’t experience lasting “drug

addiction” during the week off. We thought that shortening the drug holiday would give the cells

less time to grow out and potentially show reduced cell numbers compared to continuously treated

cells.

To efficiently test a different treatment schedule, we used the PrestoBlue HS cell viability

assay instead of the CellTiter Glo 2.0 assay. Unlike CellTiter Glo where cells are lysed during the

assay, PrestoBlue allowed us to re-assay the same 96-well plate seven times across two weeks. This

assay did not show toxicity in the cells, and had linear agreement with CellTiter Glo.

In this experiment, we tested continuous treatment with 3 nM or 10 nM LGX818 to inter-

mittent (4 days on/3 days off). Cells were assayed with the PrestoBlue every 2-3 days for 16 days.

Across the first drug-on drug-off cycle, there was essentially no difference between continuous vs

intermittent for 3 nM or 10 nM. Then in the second cycle, the 3 nM intermittently treated cells

outgrew the continuously treated cells. Unexpectedly, the intermittently treated cells increased
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with cell numbers despite drug re-addition through days 9 and 11. In previous experiments with

an intermittent drug treatment of 7 days on/7 days off, cells typically died upon drug re-addition.

The intermittent and continuous schedules had comparable cell numbers up to day 11, but then

the intermittently treated cells grew out faster than continuous treatment.
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Figure A.4: 4 days on/3 days off intermittent schedule vs continuous treatment in WM1617 with
PrestoBlue. WM1617 cells were seeded in 96 well plates at 500 cells per well. Then the cells were
treated continuously or intermittently with 3 nM or 10 nM LGX818. The intermittent schedule
was 4 days on drug/3 days off drug. The same wells were repeatedly assayed for cell viability using
the PrestoBlue HS assay.

Overall, intermittent drug treatment did not reliably reduce cell fitness compared to contin-

uous treatment in WM1617 cells. While one experiment showed that intermittent treatment may

potentially reduce cell numbers compared to continuous treatment, it was not reproducible in a

follow-up experiment. In experiments with a 7-on/7-off intermittent schedule, the cells grew out

significantly during the drug holidays. In the 4-on/3-off experiment, the cells gradually grew out

faster than continuous and it was delayed by a higher drug concentration. Interestingly, there was

no major difference in growth curves for WM1617 untransfected and WM1617-BRAFV600E cells.

There are multiple avenues of future work that could still be done with WM1617 cells where

they may show a benefit from intermittent drug treatment. The WM1617-BRAFV600E cells I created

showed 10-fold greater IC50 to LGX818 compared to uninduced and untransfected WM1617. They
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also had a slower proliferation rate which we attribute to the detrimental effects of hyperactive

ERK signaling. However, WM239A-BRAFV600E cells I used in Chapter 2 were much more strongly

resistant than their untransfected parental cell line. Perhaps this much stronger induction of

drug resistance is important to see a beneficial response to intermittent treatment. The WM1617-

BRAFV600E were always induced with 30 µg /ml cumate for 72 hours before seeding the experiments

in this appendix. While this concentration and timepoint showed strong BRAFV600E induction in

WM239A cells, it might not have been as strong in WM1617-BRAFV600E cells.

A.2 WM115

We also tested the WM115 melanoma cell line. These were derived from the same patient as

WM239A, but they are from a primary site as opposed to a lymph node metastasis. As an initial

test of this cell line, we grew the cells under several concentrations of LGX818, measuring the cell

viability by PrestoBlue. This assay allowed us to assay the same plate every 2-3 days without

killing the cells. The intermittent schedule was determined in real-time based on if the cells were

growing out during the drug holiday. The schedule ended up being 13 days on/4 days off/6 days

on/6 days off.

Cell under the lower LGX818 concentrations (0.05 nM, 0.5 nM) grew out over the 29 day

experiment (Fig. A.5). The cells treated with 5, 50, 500 nM concentrations did not grow out. After

the initial 13 days on, the cell numbers were increasing in the 5 nM and 50 nM conditions which

triggered our decision to switch to a drug holiday for 4 days. There was not much change in the

cell numbers during this holiday. Then the 5 nM and 50 nM conditions showed major loss of cells

that was not recovered upon a second drug holiday. The cells treated with 500 nM saw major cell

loss within the first few days and never recovered.

Based on the apparent resenstization upon drug holidays for cells treated with 5 nM and

50 nM, we repeated this experiment to test if intermittent treatment would suppress cell numbers

compared to continuous treatment. We changed the intermittent schedule to be 10 days on/4 days

off/7 days on. We thought the shorter initial drug treatment might be better to see a beneficial
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Figure A.5: WM115 Intermittent LGX818 treatment. WM115 cells were treated intermittented
with various concentrations of LGX818, and cell viability was measured repeatedly using Presto-
Blue. Cells treated with 5 nM and 50 nM showed promise for a beneficial intermittent treatment
response.
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intermittent effect compared to continuous treatment. During the drug holiday, the cell numbers

significantly expanded, but showed sensitivity upon drug rechallenge (Fig. A.6). Surprisingly, the

continuously treated WM115 cells did not grow out. There might have been a slight outgrowth

between day 7 and 10, but the cell numbers further declined for the 21 day experiment. On day 21

there was no difference between the intermittent and continuous treatment.
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Figure A.6: WM115 Continuous vs. Intermittent LGX818 treatment. WM115 cells were treated
either continuously or intermittently, and cell viability was measured using the CellTiter-Glo 2.0
assay. Neither 5 nM nor 50 nM showed lower cell numbers with intermittent treatment than
continuous treatment, but the cell numbers were roughly the same on the last time point.

We have not done any follow up experiments with WM115 cells. While it is promising

that the cells numbers decrease upon rechallenge, the continuously treated cells never grew out in

this timeframe. One potential future direction is to increase the length of the experiment to see if

continuously treated cells would out grow the intermittently treated cells. Additionally, transfecting

the BRAFV600E construct in these cells may shorten the time it takes for the continuously treated

cells to grow out.
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A.3 C32

Like WM115 cells, we initially tried several LGX818 concentrations for their response to

intermittent drug treatment. Again, we did not have a pre-defined intermittent schedule, but

decided after each assay whether we would switch to drug-on/drug-off. There were no continuously

treated cells for this experiment. The C32 cells grew out with 0.05 nM or 0.5 nM LGX818 drug

treatment, but significantly regressed with LGX818 treatment at 5 nM and higher (Fig. A.7).

After 13 days it looked like the cells numbers had leveled out, so we switched to drug-off. The cell

numbers for day 15 were not much different than day 13. Two days later on day 17, cell numbers

greatly increased, so the cells were switched back to drug on. Drug re-addition lead to a decrease

in cell numbers over 6 days. We then switched to a drug holiday on day 23. Interestingly, the cells

didn’t expand as quickly in this second drug holiday. There was essentially no regrowth between

days 23 and 29 for 50 nM and 500 nM treated cells. The 5 nM treated cells did show increased cell

numbers 6 days after drug withdrawal on day 29.

We tried this experiment again to compare intermittent vs continuous treatment. We also

used two different intermittent treatment schedules for 5 nM and 50 nM LGX818. Using the

PrestoBlue viability assay allowed us to repeatedly measure the same cells without sacrificing

them.

C32 cells continuously treated cells did not significantly outgrow after 35 days of treatment

with 5 nM or 50 nM LGX818 (Fig. A.8). Some of the continuously treated wells started to show

colony growth, but the overall cell numbers stayed well below confluency.

The wells treated with a 4 days-on/3 days-off schedule on 5nM LGX818 started to regrow on

day 9, which was 2 days after the first drug re-addition (Fig. A.8A). The C32 cells on a 4/3 schedule

only started to regress between days 2 and 4 of drug re-addition. For the last drug-on cycle we

kept the drug on for 7 days. These cells had significantly reduced cell numbers between day 32

and 35. Over the whole course of treatment, the 4/3 schedule out grew cells that only had a single

drug holiday break between days 18-23. During this break they started to significantly outgrow the
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Figure A.7: C32 Intermittent LGX818 treatment. C32 cells were treated intermittented with
various concentrations of LGX818, and cell viability was measured repeatedly using PrestoBlue.
Cells treated with 5 nM, 50 nM, and 500 nM showed promise for a beneficial intermittent treatment
response.
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continuously treated cells, but the drug treatment from days 23-35 reduced their cell numbers to

match the continuous treated cells. The cells treated with 50 nM LGX818 were suppressed during

the whole course of the experiment (Fig. A.8B). Drug holidays did not make the cells grow out.

This is presumably because there were so few cells, and cells will not proliferate quickly at low

cell densities. There was colony growth in a couple wells of 50 nM continuously treated cells, but

not intermittently treated cells. This may be due to random clones, and not anything to do with

continuous vs intermittent treatment.
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Figure A.8: C32 Continuous vs. Intermittent LGX818 treatment. C32 cells were treated contin-
uously or intermittently with 5 nM and 50 nM LGX818. Cell viability was measured repeatedly
with PrestoBlue. The intermittent schedule varied between the two drug concentrations. The solid
line indicates when the cells in each schedule were under drug treament.
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From the 5 nM LGX818 4 days-on/3 days-off, it seems like 4 days on drug was too short

of a period to see significant cell number loss. Extending the drug on period to 7-days lead to

significant loss of cells to approximately match the cell numbers of continuously drug treated cells.

Like WM115s, the continuously treated cells did not grow out. This means that the length of

the experiment may need to be longer to see a beneficial intermittent treatment effect. It is

promising that the C32 cells still responded to drug after drug holidays. This may mean that if

continuously treated cells start to proliferate under drug, intermittent treatment may show reduced

cells numbers. Transfecting the BRAFV600E inducible construct may also speed up the time it takes

for continuously treated cells to outgrow intermittently treated cells.

A.4 A375

We also tested A375 for their growth responses in intermittent vs continuous treatment sched-

ules. These cells grow faster than the other cells lines used, so I thought they might benefit from

a shorter drug-off period to reduce out growth. Thus, we used a 4 days on/3 days off intermittent

schedule vs continuous drug treatment. These were seeded at 250 or 500 cells per well of a 96 well

plate and treated with 500 nM or 1 µM of LGX818. The intermittently treated cells significantly

outgrew the continuous during the 3 day drug holiday (Fig. A.9). Cells treated with a higher

concentration of LGX818 grew out slower during the drug holiday compared to the lower concen-

tration. This might be due to the slow off-rate of LGX818. Upon drug re-addition, the cells did not

die, which typically happens at high cell densities. The continuously treated cells did proliferate

over the 11 days of treatment, indicating that they show adaptive drug tolerance to these drug

concentrations

A.5 WM164

The WM164 is another BRAFV600E melanoma cell line we tested for its response to inter-

mittent drug treatment. Again, we only did an intermittent schedule and not continuous schedule

for this cell line. The cells were assayed every 2-3 days using PrestoBlue. WM164 cells grew very
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Figure A.9: A375 Continuous vs. Intermittent LGX818 treatment. A375 cells wre seeded in 96 well
plates at different initial densities and were treated continuously or intermittently with LGX818 at
0.5 µM or 1 µM. The intermittent schedule was 4 days-on/3 days-off, and CellTiter-Glo 2.0 was
used to measure cell viability. The A375 cells quickly outgrew the continuously treated cells during
drug withdrawal, and did not decrease in cell numbers after drug re-addition.
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fast, similar to the rate of A375 cells. Across all drug concentrations of LGX818 we used, the

WM164 cells significantly grew out (Fig. A.10). The cells numbers did not decline for any drug

concentration upon drug rechallenge. This is not a promising sign that they would ever show an

intermittent treatment response. However, it may be worth trying a shorter drug holiday than 7

days.
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Figure A.10: WM164 Intermittent LGX818 treatment. WM164 cells were treated intermittently
with the indicated concentration of LGX818. These cells were largely unresponsive to drug re-
addition, and grew out significantly.



Appendix B

Investigating the role of neural cell adhesion molecule L1CAM in drug

tolerance of melanoma

In this appendix, I expand on the work I performed to test the role of L1CAM in drug

tolerance. In Chapter 2, I show that L1CAM expression is increased upon drug removal, and it

reverts upon drug withdrawal in an adaptive, non-selection manner. We want to further test if

knocking down L1CAM after 7 days of drug treatment can revert cells to a more sensitive state.

If cells lose fitness with L1CAM knockdown while under continuous LGX818 drug treatment, this

would be evidence that L1CAM expression may be a bona fide marker for the drug tolerant cell

state.

B.1 L1CAM knockdown by siRNA

We first wanted to determine how well siRNAs could knockdown L1CAM expression in our

cell line. We transfected 25 nM control non-targeting siRNAs or L1CAM targeting siRNAs using

Lipofectamine 3000. We used a pool of 4 different L1CAM targeting siRNAs and long with the

individual siRNAs. L1CAM expression was quantified by western blotting. Both the pooled control,

and individual control siRNAs had high L1CAM expression, and there was not much variance

between them (Fig. B.1). All of the L1CAM targeting siRNAs showed knockdown, with the one

labeled “2” being the most efficient. Interestingly, the individual siRNAs had stronger or at least

as strong knockdown as the pool of all 4 siRNAs.

We also tested the transfection efficiency of the siRNA. For this experiment, the pooled
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L1CAM siRNA was transfected at either 25 nM or 50 nM and compared to mock transfection

(no siRNA). After 72 hours, we stained the cells using a fluorescently labeled L1CAM primary

antibody and analyzed protein expression by flow cytometry. Both concentrations knocked down

L1CAM expression in many cells, and the L1CAM signal significantly overlapped with unstained

cells (Fig. B.2). Interestingly, the distribution of L1CAM expression was essentially the same for

both 25 nM and 50 nM siRNA. Thus, for future experiments 25 nM siRNA was typically used.

B.2 Effect of L1CAM knockdown on continuously drug treated cells

We wanted to test if L1CAM knockdown could reverse drug tolerance in WM239A-BRAFV600E

cells. Cells were cumate induced for 72 hours and seeded in 96 well plates at different densities.

The cells were treated with 500 nM LGX818 for 7 days. Based on our Chapter 2 data, this leads

to an increase in the IC50 by about 10-fold. On day 7 of drug treatment, we transfected the cells

with 25 nM pool L1CAM siRNA or control pool siRNA, or didn’t transfect the cells. Cell viability

was assayed by CellTiter-Glo 2.0 on day 10 (3 days post-transfection) and day 14 (7 days post-

transfection). For wells with 500 cells or 1000 cells initial seeding density, the L1CAM knockdown

reduced cell fitness compared to the control siRNA and untransfected (Fig. B.3). However, there

was no effect due to knockdown at the highest seeding density. The conclusion from this experiment

was that L1CAM is necessary for fitness of WM239A-BRAFV600E under the presence of drug, but

the result is density dependent.

To determine if the result is reproducible, I repeated this experiment 3 times, but I did not

see any difference in growth due to L1CAM knockdown. These experiments were done 3-5 months

later than the first due to the COVID-19 stay-at-home orders. We figured the negative results may

be due to siRNA degradation making knockdown less efficient. Thus, we ordered a new batch of

siRNAs. We also wanted to test if the individual siRNAs might inhibit growth better than the

pooled siRNA. We repeated the experiment, seeding 1000 cells per 96 well dish. Cells were treated

for 7 days with LGX818 before the transfection of siRNA, or mock conditions. Cells were kept

under continuous drug treatment for the whole 14 day experiment.
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Figure B.1: L1CAM siRNA knockdown efficiency. WM239A-BRAFV600E cells that have been
grown under drug for several months express high L1CAM. The cells were treated with 25 nM of
the indicated siRNA, and lysates were harvested 72 h later for western blotting. Control siRNAs
were non-targeting (P is Dharmacon SmartPool, # is individual siRNA ID).
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Figure B.2: L1CAM siRNA transfection efficiency. WM239A cells were transfected with the Dhar-
macon SmartPool siRNA for L1CAM or mock treated with just Lipofectamine 3000. After incu-
bating for 72 h, the cells were prepared for flow cytometry with a fluorescently labeled L1CAM
primary antibody.
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Figure B.3: L1CAM knockdown with pooled siRNA reduces fitness with LGX818 treatment.
WM239A-BRAFV600E cells were induced with cumate for 72 h and plated at the indicated densities
in 96 well dishes. Cells were continuously treated over 14 days with 500 nM LGX818. On day 7 of
drug treatment, the cells transfected with 25 nM control or L1CAM Dharmacon SmartPool siRNAs
or not transfected. Cell viability was measured using the CellTiter Glo assay.
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The L1CAM pooled siRNA did show reduced cell numbers compared to the control siRNA

and mock conditions (Fig. B.4). The difference between the control siRNA and pooled L1CAM

siRNA increased over the 7 days of drug treatment. However, the individual siRNAs did not show

the same enhanced reduction in cell numbers. L1CAM siRNA number 2 had similar number to the

control, while L1CAM siRNAs 3 and 4 had higher cell numbers. While the pooled siRNA has all

these individual siRNAs in it, for some reason they didn’t show the same growth defect. Of course,

we didn’t test L1CAM siRNA 1 in this experiment, because it had the least efficient knockdown.

Perhaps, that siRNA could be the reason why the pooled L1CAM siRNA transfected cells showed

the greatest loss of fitness. More simply, it could be an off-target effect that is exaggerated by

multiple siRNAs. This could make sense, as the pooled siRNA had less knockdown efficiency in a

western blot than these individual siRNAs (Fig. B.1). This experiment was done at a much lower cell

density than the conditions for the Western Blot, so the ratio of siRNA to cell is greater. Thus, the

western blot may not show the actual level of knockdown in this particular experiment. The pooled

control siRNA also showed a growth defect to the OptiMEM and OptiMEM + Lipofectamine mock

transfection conditions, which is problematic and could be indicative that the siRNA is stressing

the cells. Since this siRNA experiment has been repeated several times with mixed results, L1CAM

simply may not be important for cell fitness under continuous LGX818 drug treatment.
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Figure B.4: L1CAM knockdown may not affect fitness under LGX818 treatment. 96 well plate
was seeded at 1000 cells per well, and treated with 500 nM LGX818 for 7 days. Then cells were
transfected with pooled control siRNA or A pooled L1CAM siRNA, B L1CAM siRNA # 2, C
L1CAM siRNA # 3, D L1CAM siRNA # 4. Cells were treated continuously with 500 nM LGX818
for 7 more days, and cell viability was measured repeated with the PrestoBlue assay. Note that
the OpiMEM, OptiMEM + Lipofectamine, and siRNA control growth curves are repeated in each
panel for an easier comparison.
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