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Long radio waves in the very low frequency (VLF) radio band propagate great distances

in the space between Earth’s surface and the base of the ionosphere. This characteristic has

led to the use of VLF radio for resilient strategic communication and positioning, navigation,

and timing (PNT) systems. Unlike the propagation of high frequency (HF) radio waves, which

refract high in the ionosphere, VLF waves are guided by the surface and D-region boundaries

of the Earth-ionosphere waveguide (EIWG). Propagation is affected by the electromagnetic

characteristics of both boundaries, and although ground conductivity is relatively stable, the

ionosphere is constantly changing. Understanding how the lower ionosphere influences the

propagation of low frequency signals is essential for the operation of reliable VLF systems.

Observing subionospheric VLF signals also provides an opportunity to remotely sense the

conductivity profile of the D-region ionosphere. The D-region responds to a large number of

phenomena, yet is difficult to measure because of its very low electron density and its location

above aircraft and below satellites. Snapshots of the D-region produced from subionospheric

VLF signals over a large area would not only improve knowledge of typical conditions in the

lower ionosphere, but may also provide insight into external perturbing events.

This dissertation examines VLF propagation in the Earth-ionosphere waveguide through

realistic models of the ionosphere. It then uses simulated observation experiments to demon-

strate two methods for combining observations across an array of VLF receivers to “image” the

D-region. The problem of estimating an ionosphere perturbed by energetic particle precipitation

(EPP) is also analyzed. The results indicate that two-dimensional estimates of the D-region may

be possible with real VLF data in the near future.
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Chapter 1

Introduction

1.1 VLF propagation and the D-region ionosphere

It has been recognized from the early days of practical radio experimentation that long

radio waves can efficiently propagate for thousands of kilometers over Earth’s surface (P. Hansen,

2016). Commercial broadcasters, ships at sea, aviators, and militaries are just some of those

who have utilized extremely low frequency (ELF), very low frequency (VLF), and low frequency

(LF) radio systems since the beginning of the 20th century (Watt, 1967; Gebhard, 1979). Except

for a few select systems, modern applications are limited by large antennas, very low data rates,

and limited spectrum. One example of current VLF use is communication with submarines by

global navies, but there is also renewed interest in using VLF for positioning, navigation, and

timing (PNT) to augment global satellite navigation systems (GNSS) (Burke, 2019; Navigation

Innovation and Support Programme (NAVISP), 2020; Naval Sea Systems Command (NAVSEA),

2021).

VLF radio waves propagate efficiently over great distances because they reflect off the

ionosphere—the charged region of Earth’s upper atmosphere. The VLF radio band covers

wavelengths of 10 to 100 km, so the base of the ionosphere is only a small number of wavelengths

distance above Earth’s surface; together they form the boundaries of the “Earth-ionosphere

waveguide” (EIWG). The propagation of long radio waves through this naturally occurring

waveguide is affected by the electromagnetic characteristics of both the ground and ionosphere.

Although ground conductivity is relatively stable, the lower ionosphere is constantly changing.
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Understanding how the ionosphere influences low frequency signals propagating through the

EIWG is essential for operating accurate and reliable PNT systems and planning low frequency

communication links.

Despite indirectly interacting with the lower ionosphere through longwave radio transmis-

sions for a century, our understanding of the D-region ionosphere, where the wave reflection

occurs, is limited by the difficulty in measuring it directly. The D-region is between 50 to 90 km

altitude, so it is above aircraft and high-altitude balloons, but below satellites. A limited number

of sounding rockets have made measurements in the D-region, but these have been sparse

in space and time. The electron density is extremely low so it only reflects long radio waves;

higher frequencies are absorbed or pass through. We lack a comprehensive “snapshot” of the

D-region to understand its spatial characteristics as it responds to a great number of external

factors.

1.2 D-region interactions

The D-region ionosphere is an important interaction region between the neutral atmo-

sphere and ionospheric plasma above. It responds to a large number of external influences

which makes remote sensing and understanding the D-region both challenging and rewarding.

In some cases, observations of the D-region are actually a diagnostic for understanding external

perturbing phenomenon. For example, improved knowledge of the D-region has consequences

for our understanding of ozone production and models of atomic oxygen (Verronen et al.,

2005; Siskind et al., 2013), initiation of atmospheric electrical phenomena (Marshall et al.,

2006; Qin et al., 2014; NaitAmor et al., 2017), monitoring of climate change (Laštovička et al.,

2006; Clilverd et al., 2017a), and forecasting absorption along medium and high frequency

(MF/HF) communication links (Siskind et al., 2017). Although the D-region is primarily driven

by the apparent motion of the sun, it responds to a large number of phenomena: solar X-ray

flares (Šulić et al., 2016), solar eclipses (Clilverd et al., 2001; Guha et al., 2010), astronomical

gamma-ray bursts (Tanaka et al., 2010), atmospheric waves (Marshall & Snively, 2014), earth-
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quakes (Phanikumar et al., 2018), direct heating with radio transmitters (Inan, 1990), nuclear

detonations (Zmuda et al., 1964), lightning (Marshall, 2012), energetic particle precipitation

from the radiation belts as a result of solar storms (Clilverd et al., 2009) and induced by radio

transmitters (Imhof et al., 1983; Cohen et al., 2012), and meteorology (Rozhnoi et al., 2014).

Simões et al. (2012) and Silber and Price (2017) describe an even greater number of the

D-region’s interactions with the neutral atmosphere.

As VLF waves propagate subionospherically from a transmitter to a receiver, the otherwise

stable amplitude and phase of the signal will change—sometimes rapidly, sometimes slowly—

when one of the above phenomena occur along the propagation path. Because the distance

between a transmitter and receiver is often thousands of kilometers, different conditions usually

exist at different locations along the propagation path. Interpreting the received signal is

difficult because of the number of phenomenon that can affect the observations and, ironically,

because VLF is sensitive to very small changes in electron density. For example, Bainbridge and

Inan (2003) report sensitivity to a change from 55 e–/cm3 to 79 e–/cm3 at 80 km altitude.

1.3 Inverting VLF observations

In any waveguide, the reflectivity of the upper and lower boundaries and the distance

between them determines the field distribution of propagating waves in the free space of the

waveguide. Therefore, the average ionosphere height and reflectivity over a propagation path

can be estimated by monitoring the amplitude and phase of a VLF transmitter signal at a fixed

receiver. The relationship between the EIWG parameters and the signal amplitude and phase

is highly nonlinear; a computer model is required to compute the ionosphere reflectivity and

reproduce observations for known ground and ionosphere conductivity profiles. Thomson

(1993), McRae and Thomson (2000), and many others have used receivers to monitor the

amplitude and/or phase of VLF signals of opportunity in order to retrieve the path-average

conductivity profile by iteratively fitting the data to computer-modeled observations.

Estimating the electron density profile of the D-region with subionospheric VLF is an
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ill-posed, nonlinear inverse problem. Estimates of the electron density are non-unique for a

given observation, particularly if the profile is assumed to vary along the propagation path. The

problem is underdetermined because the electron density must be estimated in more locations

than there are observations. Complicating the solution is the nonlinear relationship between

the states being estimated and the observations, and the fact that the observations are non-local.

Each observation contains integrated information on the ionosphere and ground along the entire

propagation path and the weighting function of the integration has a nonlinear relationship

with the estimated states. That is, the response of an observation to a local perturbation in the

ionosphere depends on the location of the perturbation, the intensity of the perturbation, and

the unperturbed background ionosphere along the rest of the propagation path—all of which

are unknown in the general estimation problem.

1.4 Contributions

The great majority of D-region estimates using subionospheric VLF are path-average

estimates or investigations into localized perturbations using relative change in amplitude or

phase. There is recent work on simultaneous estimation of the D-region using networks of

receiver observations (McCormick & Cohen, 2018; Gross & Cohen, 2020), but the community

still lacks maps of D-region electron density like those that exist for the upper ionosphere, e.g. in

the form of GNSS-derived total electron content (TEC). This work aims to expand the capability

of subionospheric VLF receiver arrays by exploring techniques to generate geographically

varying electron density profiles. Improved estimates of typical D-region ionospheres benefit

both scientific modeling and practical applications of longwave radio. Techniques capable

of estimating spatially varying D-region electron density profiles are particularly useful for

understanding the spatial and temporal extents of D-region disturbances and the phenomena

that cause them. This work has also resulted in the creation of a new mode-theory computer

program to model longwave propagation in the EIWG. The contributions can be summarized

as:
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• A simpler and more robust computer code has been created for modeling the propagation

of VLF waves in the Earth-ionosphere waveguide;

• A sensitivity analysis of the VLF amplitude and phase response to different EIWG

conditions has been performed.

• An ensemble Kalman filter technique for estimating the spatially-varying D-region has

been developed and assessed.

• An iterative cost-function minimization approach for estimating the spatially-varying

D-region with poor a priori information has been developed and assessed.

• The feasibility of imaging an energetic particle precipitation (EPP) patch has been

investigated.

1.5 Organization

This dissertation contains seven chapters and two appendices. The contents of each of

the following chapters is described below.

Chapter 2 provides background for the rest of the dissertation. It begins by characterizing

the D-region ionosphere and introduces models used to describe typical electron density profiles.

The chapter then discusses various methods for observing the D-region and compares propaga-

tion models that have been used by previous researchers as the forward model in estimates of

the D-region.

Chapter 3 is a mathematical overview of the mode theory of longwave propagation in

the Earth-ionosphere waveguide. A high level understanding of this theory helps explain the

complexity of the propagation and inverse problem, as well as the restrictions it places on the

choice of estimation technique. Appendix A provides a more extensive discussion of the theory

suitable for those interested in a detailed understanding of mode theory propagation codes.
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Chapter 4 introduces the Longwave Mode Propagator (LMP) model developed for this

dissertation. It discusses the motivation for creating this model and how the model is different

from the Long-Wavelength Propagation Capability (LWPC). Accuracy is verified by comparing

the model results against LWPC and a finite difference propagation model. A collection of model

results for a variety of Earth-ionosphere waveguide conditions are then presented that indicate

the sensitivity of subionospheric VLF observations. Appendix B presents the results of tests that

were used to determine default parameters used by LongwaveModePropagator.jl.

Chapter 5 formally introduces the D-region estimation problem, presents the common

receiver array scheme used to generate the estimate maps, and discusses the mathematics

of the estimation techniques used in this dissertation. The results of simulated observation

experiments demonstrating the effectiveness of these estimation techniques, including in the

presence of model errors, are presented in Chapter 6. Chapter 6 also discusses challenges with

imaging an ionosphere perturbed by an energetic particle precipitation (EPP) event.

Finally, Chapter 7 summarizes the conclusions made in the previous chapters and suggests

areas for improvement and future work.



Chapter 2

Background

2.1 The D-region ionosphere

Solar radiation ionizes gasses in Earth’s upper atmosphere, forming a region of weakly

ionized plasma known as the ionosphere. This region extends from about 50 km to over 800 km

above Earth’s surface. The intensity of solar radiation increases exponentially with height while

the neutral atmospheric density decreases exponentially with height. The resulting charge

density profile is a simple model ionosphere attributed to Chapman (1931). Details of the

photo-chemistry, however, produce a more complicated distribution of free electrons in the real

ionosphere. There are three primary layers of locally higher electron density at night (F, E, and

D) and four at day (F2, F1, E, and D), listed in order of decreasing altitude. Figure 2.1 displays

these layers for typical conditions according to the International Reference Ionosphere (IRI)

model (Bilitza et al., 2017). The F layer (150 to 800 km) contains the bulk of the ionization

and is relatively well understood by scientists. The E layer (100 to 150 km) is best known for

sporadic and significant increases in electron density, a phenomenon that remains under study.

At the base of the ionosphere is the D-region (50 to 100 km), characterized by free electron

densities of only 1 to 1000 e–/cm3 (Mitra, 1978).
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Figure 2.1: Electron density profiles for typical daytime and nighttime ionospheres for 4 April
2020 over Boulder, CO, as generated by the International Reference Ionosphere (Bilitza et al.,
2017).

2.1.1 Characteristics

The electron density of the D-region is so low that it can be safely ignored for many

ionospheric studies and applications. The plasma frequency1 often does not exceed 300 kHz

in this region, so propagation is not affected for the great majority of modern radio systems.

However, users of medium frequency (MF, 0.3 to 3 MHz) and high frequency (HF, 3 to 30 MHz)

systems, including military, aviation, maritime communications, and shortwave broadcasters,

can experience signal attenuation due to the D-region. This occurs because the electron-ion

collision frequency is comparable to the wave frequency. Sudden ionospheric disturbances

(SIDs) or polar cap absorption (PCA) events can enhance the D-region electron density to the

point of causing HF radio blackouts because the attenuation is so great (Smirnova et al., 1988).

In fact, the only regularly published D-region forecasts are the D-region absorption predictions

1 Electron plasma frequency is the frequency of electrostatic oscillation of electrons if slightly displaced from
the background collection of ions in a plasma. It is fp = (Nee

2/4π2ε0m)1/2 for electron density Ne, charge e, and
mass m. Radio waves of lower frequency than the plasma frequency are reflected from the plasma.
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Figure 2.2: MSIS density profiles for the major neutral constituents at D-region altitudes pictured
alongside the FIRI electron density (Picone et al., 2002; Friedrich et al., 2018). The profiles are
for daytime, 2020-03-01, at 60° N.

(D-RAP) to explain degraded HF propagation conditions (Space Weather Prediction Center,

2020).

The primary ionization source for the daytime D-region is solar radiation. Short wave-

length X-rays, Lyman-α, and ultraviolet light ionize the atmospheric constituents N2, O2, and

smaller amounts of NO, H2O, O, O3, Na, and Ca (Nicolet & Aikin, 1960; Mitra, 1978). Because

of its relatively low altitude, D-region chemistry is particularly complicated and the minor con-

stituents play an important role (Friedrich & Rapp, 2009; Siskind et al., 2017). The high density

of neutrals at 50 to 90 km altitude, depicted in Fig. 2.2, results in frequent ion-neutral collisions

and recombination is rapid. At night the D-region might be expected to disappear without solar

radiation to continuously ionize the region. In fact, many scientists do not consider the D-region

to be present at nighttime, e.g. (Kelley, 2009), but as we will later see, long radio waves continue

to reflect from heights below the typical altitude of the E-region at night. Scattered Lyman-α,

galactic cosmic rays, meteors, and even starlight may each be partly responsible for maintaining

some ionization in this region throughout the night (Nicolet & Aikin, 1960; Torkar & Friedrich,

1983).

Beyond the complicated chemistry and variety of ionization sources that produce a tenuous
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and difficult-to-predict D-region density profile, there are several external influences: neutral

atmosphere temperature variations and acoustic and gravity waves may carry localized variations

in the electron density profile (Lay & Shao, 2011; Marshall & Snively, 2014; Pal & Hobara, 2016);

changes in D-region conductivity as a result of atmospheric electrical phenomena, including

lightning and sprites, has been observed (Inan et al., 1995; Cheng & Cummer, 2005; Marshall

et al., 2006; Inan et al., 2010; Qin et al., 2014); after solar storms, precipitation of energetic

electrons from Earth’s radiation belts enhances high-latitude regions of the D-region (Imhof

et al., 1983); and anthropomorphic phenomena such as atmospheric nuclear detonations and

the operation of high power transmitters also influence the region (Crain & Tamarkin, 1961;

Koons et al., 1980; Graf et al., 2013).

2.1.2 Models

A number of models, varying in complexity and spanning from purely empirical to de-

tailed photo-chemistry, have been developed specifically to describe the D-region ionosphere.

The major models of the upper atmosphere and ionosphere, including the International Refer-

ence Ionosphere (IRI), Whole Atmosphere Community Climate Model (WACCM), the Global

Ionosphere-Thermosphere Model (GITM), and Sami2 is Another Model of the Ionosphere

(SAMI2) do not provide reliable coverage into the D-region (Huba et al., 2000; Ridley et al.,

2006; Bilitza et al., 2011; Marsh et al., 2013). WACCM-D extends WACCM by including 307

reactions of 20 positive ions and 21 negative ions relevant to the D-region (up from five ions

and 15 reactions in WACCM) (Verronen et al., 2016). Similarly, the Faraday-International

Reference Ionosphere (FIRI), discussed in detail below, extends the IRI model into the D-region

by blending sounding rocket measurements with a simple ion-chemical model of the lower

ionosphere (Friedrich & Torkar, 2001).

Models have also been developed that exclusively cover the D-region. The Originally

Austrian Study of the Ionosphere (OASIS) is a steady-state ion-chemical model with about 55

reactions that simplifies the negative ion chemistry into either O2
– , O– , or all other negative
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ions X– (Torkar & Friedrich, 1983; Siskind et al., 2015). The state of the art is the Sodankylä Ion

and Neutral Chemistry (SIC) model. It is a comprehensive one-dimensional chemistry model

including more than 400 reactions between 41 positive ions, 29 negative ions, and 34 neutral

species and takes into account external forcing from solar radiation, particle precipitation, and

galactic cosmic rays (Verronen et al., 2005; Turunen et al., 2009; Verronen et al., 2016).

A few simple models are used in this dissertation or are otherwise particularly relevant. A

discussion of each follows.

2.1.2.1 GPI

Glukhov et al. (1992) introduces a basic chemical model consisting of only four kinds of

charged particles: electrons, negative ions (e.g. O2
– , CO3

– , NO2
– ), light positive ions (e.g. O2

+,

NO+), and heavy positive ion clusters (e.g. H+(H2O)n), where the number densities of each

are referred to as Ne, N−, N+, and N+x , respectively. This model is referred to as the Glukhov,

Pasko, and Inan (GPI) model. Accuracy at heights below ∼50km was improved in an update by

separating negative ions into light negative ions, e.g. O2
– , and heavy negative ions, e.g. NO3

– ,

denoted by number densities N− and N−x (Lehtinen & Inan, 2007).

The evolution of the species in the GPI model is given by

dNe/dt =Q− βNe + γN− + γx N−x − (αd N+ +αc
d N+x )Ne (2.1)

dN−
�

dt = βNe − γN− −αi(N
+ + N+x )N

− − AN− (2.2)

dN−x
�

dt = −γx N−x −αi(N
+ + N+x )N

−
x + AN− (2.3)

dN+
�

dt =Q−αd NeN
+ −αi(N

− + N−x )N
+ − BN+ (2.4)

dN+x
�

dt = −αc
d NeN

+
x −αi(N

− + N−x )N
+
x + BN+ (2.5)

but because of the neutrality condition N+ + N+x = Ne + N− + N−x , one of the equations can be

eliminated. The ionization source Q is calculated as the source necessary to produce a steady

state solution of the equations from initial background density profiles of e– , O, O2, and N2,

which are provided from other models e.g. MSIS (Picone et al., 2002). The coefficients α,
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β , and γ describe neutralization and recombination, attachment rate, and detachment rate,

respectively, which are provided by a variety of sources (Lehtinen & Inan, 2007). Although it

requires far fewer computations, the five-species GPI model results in electron density profiles

that agree to within about 40 % of the SIC model and can also be used to model disturbed

D-region profiles by providing an ionization source in addition to the equilibrium source profile

Q (Marshall & Cully, 2020). Figure 2.3 shows the charge profiles resulting from GPI given

neutral species and temperature profiles from MSIS and electron density from FIRI at daytime

in the northern hemisphere.
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Figure 2.3: GPI density profiles for electrons and light and heavy negative and positive ions.
The input neutral density and temperature profiles are from MSIS for 2020-03-01 2000 UTC
and 60° N, 102° W. The original electron density profile is an FIRI-2018 profile interpolated
for the appropriate month, solar zenith angle, latitude, and F10.7 index, and exponentially
extrapolated to the ground.

A custom implementation of GPI has been programmed for this dissertation using default

values of the coefficients. Equations (2.1) to (2.3) and (2.5) are integrated using the Rodas4

4th-order stiffly stable Rosenbrock solver from DifferentialEquations.jl and N+ is solved from the

neutrality condition (Rackauckas & Nie, 2017). As in version 5.4 of the implementation from

Lehtinen and Inan (2007), charge equilibrium is established by performing a binary search for
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the ionization source Q that satisfies steady-state equilibrium of the equations at each height

of the profile. An additional ionization source, such as energetic particle precipitation, can be

added to the equilibrium source and the equations solved at each height once more.

2.1.2.2 FIRI

The Faraday International Reference Ionosphere (FIRI) is a semi-empirical model of the

undisturbed ionosphere based on an ion-chemical model adjusted to satisfy in situ sounding

rocket profiles (Torkar & Friedrich, 1983; Friedrich & Torkar, 2001; Friedrich et al., 2018). The

model was generated using a total of 120 profiles using the Faraday rotation technique and

a further 207 profiles from Langmuir probe measurements—all collected from the literature.

The published FIRI-2018 model is in tabular form and consists of 1980 electron density profiles

for 11 solar zenith angles between 0° and 130°, latitudes 0°, 15°, 30°, 45°, and 60° N, and three

solar activity levels for the middle of each month of the year. The model is claimed to be valid

for altitudes above 60 km and densities over 106 e–/m3.

To apply the model to scenarios requiring profiles at arbitrary solar zenith angle and

latitude, a tool for interpolating across the published tabular profiles has been developed for this

dissertation.2 Additionally, the tabular profiles can either be averaged across the unspecified

fields or quantiles can be obtained. Although the model is only expected to be valid for altitudes

down to about 60 km, an exponential extrapolation can be performed to lower altitudes.3

Examples of the FIRI profiles interpolated across latitude and solar zenith angle and extrapolated

down to 40 km are shown in Fig. 2.4.

2.1.2.3 Exponential parameterization

One of the oldest yet most common ways to describe the electron density of the lower

ionosphere derives from Wait and Spies (1964) and is commonly referred to as the “Wait and

2 github.com/fgasdia/FIRITools.jl
3 There is some evidence that the electron density at and below 60 km altitude is sufficient to affect the

propagation of long radio waves (Siskind et al., 2018; Xu et al., 2019).

github.com/fgasdia/FIRITools.jl
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Figure 2.4: Left: Published FIRI-2018 electron density profiles (solid lines) averaged over all
12 months and F10.7 indices at a solar zenith angle of 45° and interpolated at latitudes every
5° (thin dashed lines). Right: Published average FIRI-2018 profiles (solid lines) at 45° N and
interpolated between 0° and 130° solar zenith angle (thin dashed lines). Interpolation between
solar zenith angles of 80° and 100° are every 1° to better resolve the terminator. All other angles
are interpolated in 5° increments.

Spies” or “Wait” profile. To characterize the propagation of VLF radio waves in the Earth-

ionosphere waveguide, Wait and Spies found it convenient to define a “conductivity parameter”

ωr =ω
2
p/ν (2.6)

where ωp is the angular plasma frequency and ν is the effective electron-neutral collision

frequency. Laboratory data from Phelps and Pack (1959) compared favorably to partial reflection

and sounding rocket observations of collision frequency in the lower ionosphere and was used

to fit the curve

ν(z) = 5× 106 exp
�

−0.15(z − 70)
�

(s−1) (2.7)

for height z in kilometers.

Wait and Spies (1964) fits the profile

ωr = (2.5× 105)exp
�

β(z − h′)
�

(rad s−1) (2.8)
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parameterized by a reference height h′ (km) and constant β (km−1) to VLF propagation data

assuming the collision frequency profile in Eq. (2.7). To obtain an expression for the electron

density profile, we substitute the expressions for ω2
p and ν into Eq. (2.8) and solve for Ne,

resulting in

Ne(z)≈ 1.43× 1013 exp
�

−0.15h′
�

exp
�

(β − 0.15)(z − h′)
�

(2.9)

or some equivalent form. It can be shown that, neglecting Earth’s magnetic field, reflection occurs

approximately at the height at which ω2
p/ω

2 = ν/ω (Ratcliffe, 1959).4 This is an equivalent

statement to ωr =ω. Therefore, noting that h′ is the height at which ωr = 2.5× 105 rad s−1, h′

is the reflection height for a 40 kHz radio wave.

It is extremely common in the VLF community to describe the D-region electron density

profile by the h′ and β parameters which best fit observations. It is important to remember that

the Wait profile inherently assumes the collision frequency profile Eq. (2.7) and was derived

using fits to VLF propagation data. Others have used similar exponential profiles. Jacobson

et al. (2009) uses the exponential parameterization from Volland (1995), which uses a different

reference density for Ne than Wait and Spies (1964). Bainbridge and Inan (2003) found the

best fit to their phase observations was achieved with an interpolation between the profiles

of Wait and Spies (1964) and the non-exponential profile from Reagan et al. (1981). Others

have used multiple Wait profiles as a function of height to better match observations (Xu et al.,

2019).

As we will see later, VLF has limited sensitivity above the height where most of the

reflection occurs. Therefore, Wait’s exponential profile does not directly describe a true electron

density profile throughout the D-region, rather it is an effective profile for VLF applications.

Figure 2.5 compares the best-fit Wait profiles for day and night midlatitude GPI profiles. Also

plotted are several sounding rocket profiles from Siskind et al. (2018) which contain a knee

captured by GPI but not the exponential Wait model.

4 The reflection condition with no magnetic field is X = Z using the URSI symbols for magnetoionic theory.
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Figure 2.5: The GPI model does a good job capturing the daytime knee of the electron density
profile measured by sounding rockets (Siskind et al., 2018). The h′ and β of Wait’s model
on this plot were adjusted to fit the VLF amplitude resulting from the GPI profiles along a
2000 km path from a 24 kHz transmitter. Wait’s exponential ionosphere inherently lacks the
ability to capture features in the more realistic GPI profile. The Wait profiles are dashed above
the approximate reflection height at which ωr =ω.

Ferguson ionosphere

Ferguson (1980) fit exponential Wait profiles to 570 electron density profiles from the

literature. Ferguson then performed a multiple linear regression analysis over solar zenith angle

χ, geographic latitude φ, Zurich smoothed sunspot number SSN, month number m, and quiet

(0) or disturbed (1) conditions M . The resulting expressions for h′ and β are:

h′ = 74.37− 8.097cosχ + 5.779 cosφ − 1.213cos
�

2π(m− 1/2)/12
�

− 0.044 SSN− 6.038M
(2.10)

β = 0.3849− 0.1658cosχ − 0.08584cosφ + 0.1296cos
�

2π(m− 1/2)/12
�

(2.11)

Ferguson (1980) also analyzed data from 28 aircraft flights that recorded radial profiles of

the field strength amplitude and found differences from his model in the nighttime field strength
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Day Night

Frequency (kHz) h′ (km) β (km−1) h′ (km) β (km−1)

10 74 0.3 87 0.3
60 74 0.3 87 0.8

Table 2.1: D-region electron density exponential profile parameters used in the Long-Wavelength
Propagation Capability (LWPC). A linear fit is assumed in frequency for nighttime β such that
β = 0.4 km−1 for a 20 kHz signal. REPRODUCED FROM Ferguson (1995).

suggesting errors of 2 to 4 km. The model does not contain the level of variability observed in

the flight data, and there was a significant difference in h′ between the data and model at high

latitudes. Additionally, the Ferguson model predicts a much smoother variation with solar zenith

angle than likely exists. It does a particularly poor job of capturing the terminator (Marshall

et al., 2017). Nonetheless, the model is trivial to compute and only requires knowledge of the

current time if the sunspot number and conditions flag are ignored, as they often are.

LWPC ionosphere

Data from Morfitt (1977) and Ferguson (1980) were used to build a subjectively deter-

mined best fit Wait ionosphere for the U.S. Navy’s Long-Wavelength Propagation Capability

(LWPC), described in detail below. The h′ and β parameters, shown in Table 2.1, were reana-

lyzed in Ferguson (1995) against the original data and found to generally agree to ∼6 dB in

amplitude. The LWPC model simply has daytime (solar zenith angle χ < 90°) and nighttime

(χ > 99°) because there was insufficient data to accurately model the influence of solar zenith

angle. A linear step model is used for the transition between day and night. At nighttime,

the geomagnetic dip angle dictates another linear step transition that adjusts h′ between the

midlatitude and polar nighttime ionosphere (Ferguson, 1998).

2.2 Observing the D-region

The D-region is notoriously difficult to measure. Its very low electron density means HF

ionosondes are not sensitive to the region. In situ measurements are not possible using aircraft,



18

balloons, or satellites because none operate in the D-region’s altitude range. Sounding rockets

pass through the region, but most sounding rockets do not deploy their instruments as low

as the D-region. Nonetheless, several methods of directly or indirectly sensing the D-region

ionosphere have been used over the past 100 years. In this section we will briefly review those

measurement techniques and place extra emphasis on previous work indirectly observing the

D-region using long radio waves.

2.2.1 Measurement techniques

Several methods somewhat similar to traditional ionosondes have been used in past

studies of the D-region. Appleton and Piggott (1954) present a study of lower ionosphere

absorption measurements over a period of 18 years. The studies were conducted by launching

a 4 MHz radio wave pulse into the ionosphere and measuring the effective reflection coefficient

ρ by comparing the amplitude of the series of echoes from sequential reflections of the wave

between the ground and ionosphere; absorption is then | logρ|. Appleton and Piggott (1954)

were able to study seasonal variations, relationship to the sunspot number, variation with

frequency,5 the degree of day-to-day variability, and sudden ionospheric disturbances, but care

had to be taken in the analysis to separate D-region effects from the E- and F-regions. Riometers

continue to be used today to measure HF absorption due to the D-region in order to improve

absorption prediction models (Rogers & Honary, 2014).

Belrose and Burke (1964) discuss a similar technique using partial reflection to more

directly measure electron density and collision frequency in the D-region. Partial reflection uses

measurements of the reflected amplitude of both ordinary and extraordinary waves pulsed at

two lower HF frequencies to infer the absorption and reflection profiles and hence collision

frequency and electron density profiles. Because the D-region reflections are weak compared

to reflections that occur off the F-region, it is necessary to perform the experiment at a low-

noise site with large antenna arrays and use very high transmitter power levels; Belrose and

5 Measurements were carried out later in the study at frequencies other than 4 MHz.
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Burke (1964) used a 1 MW transmitter at 2.66 MHz and 100 kW transmitter at 6.275 MHz. This

technique can observe reflections from altitudes below 50 km, but the equipment requirements

are those of a major experiment. It may be possible using modern digital receivers to reduce

the necessary transmitter power levels, but I am not aware of these types of measurements

being made in the past three decades.

More recently, measurements of the upper D-region have been obtained using incoherent

scatter radar (ISR). At least one observation with the ALTAIR radar was conducted coincident

with a rocket-born Faraday rotation experiment and the two were in good agreement (Friedrich

et al., 2006). Unfortunately, the sensitivity of ISR to the low electron densities in the D-region

limits their applicability to daytime altitudes of above 85km except in cases of very strong

disturbances. During storms, the electron density is enhanced to lower altitudes; during a

recent pulsating aurora event the EISCAT radar observed down to 68 km (Miyoshi et al., 2015).

The most direct means of measuring the D-region is by sounding rocket. A relatively

small number have been launched by the United States specifically to study the D-region.

Langmuir probes can be used to make in situ measurements of the electron density (Smith,

1965), but the aerodynamic flow around the rocket body can alter the plasma density from the

undisturbed ionosphere, even when the probes are deployed on booms (Friedrich et al., 2018).

An alternative approach is to place a radio transmitter on the rocket and measure the Faraday

rotation resulting from propagation through the ionosphere with a fixed receiver on the ground

(Jacobsen & Friedrich, 1979). Both of these techniques were used to build the FIRI D-region

model (Section 2.1.2.2). Unfortunately, sounding rocket flights for the D-region are sparse in

space and time, limiting our understanding of the region under varying conditions.

2.2.2 Longwave observations and estimation

Long radio waves in the ELF through LF bands (0.3 to 100 kHz) are sensitive to the very

low electron densities in the D-region. The electron density profile can be estimated from these

signals as a result of the fact that the radio field measured at a fixed point responds to changes
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in the electromagnetic properties of a waveguide’s boundaries. Therefore, the propagating

electromagnetic field measured at a distant receiver can be used to infer properties of the

Earth-ionosphere waveguide as they change over the course of a day or in response to external

sources. We are interested in the ionosphere so we assume we have perfect knowledge of the

ground conductivity,6 although in practice this can be a source of error.

Long radio waves can be generated naturally by lightning or by man-made transmitters.7

For the most part, longwave estimation techniques observe the D-region indirectly. It is

necessary to invert the measurements through a nonlinear process to estimate the D-region

conductivity profile that reproduces the measurements. Below we discuss some techniques first

using lightning-generated longwave signals and then using narrowband man-made transmitters.

2.2.2.1 Lightning atmospherics

Lightning discharges emit most of their radio frequency energy in the ELF and VLF

radio bands (Cummer et al., 1998). This energy is “guided” by the ground and D-region

ionosphere which act as reflecting boundaries in a naturally occurring waveguide for the

efficient propagation of long radio waves over thousands of kilometers, a scenario depicted in

Fig. 2.6. Cummer (1997) outlines in detail how lightning atmospherics (“sferics”) can be used

to infer the average D-region electron density along the propagation path to a receiver. The

major difference between lightning and man-made transmitter signals is that lightning contains

rich frequency information; it is a wideband signal as opposed to narrowband. The receiver

amplitude need not be absolutely calibrated. Instead, the observed frequency spectra over tens

of kilohertz is compared to the spectrum obtained by a forward propagation model. A table

of different exponential h′ and β parameters are modeled and the closest matching spectrum

determines the ionosphere. One difficulty with using lightning sferics as a radio source is that

6 VLF is also used to remotely sense electrical properties of the ground, e.g. Pedersen et al. (2009) or Mogensen
et al. (2014).

7 VLF waves have even been generated directly in the D-region by modulated HF heating using a high power
steerable transmitter (Cohen et al., 2010a).
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Figure 2.6: A notional diagram of the Earth-ionosphere waveguide. Long radio waves generated
by lightning discharge or man-made transmitters propagate between the conductive ground and
ionosphere. The energy is partitioned into resonant modes that are subject to the electromagnetic
boundary conditions set up by the conductivity profile of the ionosphere and ground.

the radio source location must be approximately known for comparison of a real observation

with a forward model. Cummer et al. (1998) obtained the source location using the National

Lightning Detection Network (NLDN). Another issue is that the lightning or thunderstorm

might perturb the ionosphere, affecting the electron density estimate (Cheng & Cummer, 2005;

Marshall et al., 2008).

Lay et al. (2014) present a technique using lightning sferics to locally observe the D-

region rather than obtain the average electron density profile along the propagation path from

lightning to receiver. The technique compares time domain lightning waveforms between 1 to

160 kHz from direct ground wave propagation to first-hop ionospheric reflections. The results

are compared to a propagation model and are sensitive to the ionosphere at the midpoint of

the signal-receiver path. There were several differences between the exponential h′ and β

parameters obtained by Lay et al. (2014) and typical guided wave estimates of the D-region,

even when the midpoint was located away from a thunderstorm. In particular, quiet nighttime



22

profiles were found to have very high β values of 2.8 km−1 compared to 0.5 to 0.6 km−1 for

path-average techniques.

2.2.2.2 Narrowband signals

Radio transmitters in the early 20th century operated at low frequencies and played a

significant role in the development of early models of the lower ionosphere (Watson & Nicholson,

1918; 1919). Although radio research and applications quickly moved to higher frequencies for

practical reasons, interest in long waves returned after World War II at the beginning of the

Cold War when high power VLF transmitters were built for near-global strategic communication

and navigation. Prior to the Global Positioning System (GPS), the United States operated the

Omega navigation system which relied on a global network of phase-synchronized transmitters

which could be used by ships and aircraft to determine their position through multiranging or

hyperbolic navigation modes (Morris et al., 1994). Russia continues to operate their “Alpha”

navigation system today. Several navies operate VLF communication transmitters because of

their resiliency and ability to communicate with submerged submarines due to the relatively

great skin-depth of sea water at long radio wavelengths. Although the bandwidth of VLF

transmitters is too narrow for voice communication, one-way encoded data is transmitted nearly

continuously from high power VLF transmitters around the globe.

The U.S. Navy operates several transmitters across United States territory using minimum-

shift keying (MSK) modulation at 200 baud. These are signals of opportunity for estimating

the D-region ionosphere. Because MSK is phase-continuous, the phase trellis can be estimated

and unwrapped to obtain an effectively continuous-wave (CW) signal (Cohen et al., 2010b).

Although the instantaneous transmitted signal amplitude and phase is unknown, the receiver

can be calibrated to receive absolute amplitudes and the phase can be referenced to a stable

local oscillator coordinated with GPS. Three days of phase data from the NML transmitter

in North Dakota observed at a receiver in Colorado is shown in Fig. 2.7. Some processing

difficulties result from these transmitters being used for military communication rather than
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Figure 2.7: Phase of the NML transmitter measured at Table Mountain in Colorado for three
summer days in 2017. The relatively smooth phase occurs during daytime and the highly
variable segment is at night. Each phase curve has been shifted so all three days correspond.

for safety-of-life navigation. They have unscheduled maintenance time off and lose phase

continuity during these periods, and although some sources consider the transmitters highly

phase stable (McRae & Thomson, 2000), carrier phase instabilities have been observed (Gross

et al., 2018).

The typical VLF D-region estimation experiment includes several magnetic loop antennae

and radio receivers placed across a region of several hundred to several thousand kilometers.

A computer continuously records the observed amplitude and/or phase of signals at known

transmitter frequencies. Transmitter-receiver paths are examined one at a time and candidate

ionospheres are run through a forward propagation model.8 The modeled amplitude and/or

phase is compared to the observed amplitude and/or phase and the candidate ionosphere is

adjusted until the difference between the modeled and observed signals match to within some

tolerance (Thomson, 1993; McRae & Thomson, 2000; Thomson, 2010). Early experiments

benefited from knowledge of the Omega transmitter’s predictable signals, but later experiments

using Navy transmitter signals require a reference to (relatively stable) midday phase or multiple

8 The complicated nonlinear relationship between the ground, Earth’s magnetic field, and the ionosphere’s
collision frequency and charge density profiles on the observed field requires the use of computer codes (usually
LWPC) for the forward model.
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simultaneous receiver measurements across different paths (Thomson et al., 2017). Careful

processing of the signal using the polarization ellipse can be used to circumvent the problem of

unknown transmitter phase (Gross et al., 2018). Although most published work has taken a

fairly brute force approach to estimating h′ and β , Gross and Cohen (2020) applied an artificial

neural network (ANN) to amplitude and carrier phase data from across an array of receivers to

simultaneously estimate the average parameters along each path.

Narrowband VLF observations have also been used in other ways for more targeted

experiments. Rather than using the absolute values, changes in amplitude and/or phase have

been directly correlated to changes in the ionosphere conductivity profile, frequently for studying

solar eclipses (Clilverd et al., 2001; Guha et al., 2010; Cohen et al., 2018; Xu et al., 2019), but

older experiments applied this technique to monitor atmospheric nuclear detonations (Zmuda

et al., 1963). Temporal spacing of amplitude minima observed by a receiver is used by Marshall

and Snively (2014) to study atmospheric gravity waves and by Samanes et al. (2015) to study

modal interference across the terminator. Rapid changes in the VLF signal, known as “early/fast”

events, have been correlated with sprites (Marshall et al., 2006). Bainbridge and Inan (2003)

used a relatively dense linear array of phase-coherent receivers to decompose the VLF signal

into its constituent waveguide modes to infer a non-exponential electron density profile.

Although VLF receivers are usually stationary on the ground, the U.S. Navy conducted

several experiments with receivers placed on high-speed aircraft with the goal of producing

improved models of the ionosphere. By placing receivers on aircraft, an amplitude curve could

be observed over a great distance in a period of time for which the ionosphere is relatively

constant. These experiments also used oblique multi-frequency VLF sounders located on the

ground to provided additional information about the ionosphere through the multiple wave

frequencies (Pappert & Morfitt, 1975; Morfitt, 1976; 1977). The sounder system appears to

have operated in the 1960s and 1970s, and no doubt a similar system would provide deep

insight into the D-region today. Unfortunately, technical and licensing issues related to VLF

spectrum usage would need to be overcome to operate such a transmitter.
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2.3 Longwave propagation models

To estimate the D-region using subionospheric field measurements of narrowband VLF

transmitters, it is necessary to use a forward model that mathematically propagates the trans-

mitted signal through the Earth-ionosphere waveguide to a distant receiver. As alluded to in

the previous section, the model observation is iteratively compared to the real observation,

adjusting the candidate ionosphere with each step to produce a better match between the

modeled and real observations. The forward model is thus an integral part of the nonlinear

estimation process.

The relationship between the state of the ionosphere along a propagation path and the

observed amplitude and phase of a transmitted field is complicated and highly nonlinear.9

A large number of variables contribute to the observed field: the conductivity profile of

the ionosphere, the ground conductivity, and Earth’s magnetic field all vary spatially within

the Earth-ionosphere waveguide, and the transmitter and receiver antennae orientations and

positions must also be considered. To capture all of these influences, the forward model for this

problem is expressed as a computer program.

Several computer codes have been developed to model the propagation of long waves in

the Earth-ionosphere waveguide using ray, modal, or finite difference approaches. Less than a

wavelength (∼ 5km) from the transmitter, the field is strongly reactive and best calculated as a

direct radiation field. Beyond that distance, both a direct ground wave and ionosphere-reflected

sky wave can be distinguished and a ray model is usually applied. Far from the transmitter

(¦ 1000 km) the field is best represented as the Earth-ionosphere guided field and is commonly

modeled using mode theory. Finite difference approaches do not favor one regime over the

other except for the fact that the compute time increases with the size of the model domain.

9 The estimation problem is nonlinear in the sense that the relationship between the states being estimated
(parameterizations of the ionosphere’s conductivity profile) and the observations are nonlinear. The propagation
problem can be formulated as the solution of Maxwell’s linear differential equations with particular boundary
conditions. The system is complicated by the ionosphere being a spatially varying, dispersive, and anisotropic
medium, and nonlinear phenomena such as transmitter heating could also be modeled.
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Regardless of the model, “full wave” solutions using fairly accurate representations of Maxwell’s

equations must be applied because VLF waves are partially-reflected, partially-transmitted,

and partially-absorbed in the lower ionosphere. Whereas geometric optics approaches can be

applied to the propagation of high frequency (HF) radio waves under the assumption that the

ionosphere changes relatively slowly compared to the wavelength (10 to 100 m), this is violated

at VLF (10 to 30 km).

Ray theory is favored over short distances from the transmitter because the field can be

calculated from just a few ray “hops” between the ground and ionosphere. More and more

hops must be considered to accurately compute the field at greater distances. Ray approaches

are relatively uncommon, but have been compared to mode theory (Volland, 1961) and have

recently been applied to D-region estimation using lightning sferic sources (Jacobson et al.,

2009). To reiterate, these are not ray optics approaches. Jacobson et al. (2009) solves Maxwell’s

equations for a plane wave by integrating four simultaneous complex differential equations

through the anisotropic, collisional, horizontally stratified ionosphere using the method of

Pitteway (1965).10 Wavefront curvature is approximated using a summation over an angular

spectrum of plane waves. Although all angles contribute to the field at the receiver, those angles

near the specular angle of ray optics have the greatest influence.

At great distances from the transmitter it is more efficient to represent the field with a

sum over a small number of waveguide modes rather than a large number of ray hops. Mode

theory is the most commonly used forward model for D-region estimation, and it is the method

implemented in the Long-Wavelength Propagation Capability (LWPC), the de facto standard

for modeling VLF propagation. LWPC was the culmination of several decades of effort by the

U.S. Naval Electronics Laboratory Center (NELC, now Naval Information Warfare Systems

Command—NAVWAR)11 to develop longwave propagation models for signal coverage analysis

10 In the Longwave Mode Propagator developed for this dissertation (see Chapter 4), the method of Pitteway
(1965) is used to integrate wavefields for mode conversion.

11 The U.S. Naval Electronics Laboratory Center (NELC) merged into the Naval Ocean Systems Center (NOSC)
and then the Space and Naval Warfare Systems Command (SPAWAR) during development of the program that
became LWPC. In 2019 SPAWAR was renamed to Naval Information Warfare Systems Command (NAVWAR).
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(Sheddy et al., 1968; Pappert et al., 1970; Morfitt & Shellman, 1976; Ferguson & Snyder, 1980;

1987; Ferguson, 1998). Application of mode theory to the Earth-ionosphere waveguide was

solved in a way amenable to computer solution by Budden (1955) and Budden (1962) and is

detailed in Chapter 3. In mode theory, the Earth-ionosphere system is modeled explicitly as a

waveguide consisting of a series of horizontally homogeneous segments along the propagation

path. Reflection coefficients are computed for the ground and ionosphere in each segment and

resonant eigenangles corresponding to waveguide modes are identified. The fields radiated from

the transmit antenna are summed over the eigenangles and carried into the next waveguide

segment through a mode conversion algorithm. Mode theory models can compute the field at a

distant receiver in just seconds on a modern computer.

The final category is finite difference propagation models. The simplest forms include

finite-difference frequency-domain (FDFD) and finite-difference time-domain (FDTD) models,

which directly solve a discretized form of Maxwell’s equations on a spatial grid (Chevalier & Inan,

2006). Both two- and three-dimensional variants of FDTD have been applied to propagation

in the Earth-ionosphere waveguide (Simpson & Taflove, 2007; Marshall et al., 2017). These

models compute the electric and magnetic fields at high resolution across the model grid

and are capable of incorporating complicated structures in the EIWG (Marshall, 2012). Two

slightly different models are the recursive finite element model known as the Stanford Full-wave

Method (FWM) (Lehtinen & Inan, 2008; Lehtinen & Inan, 2009) and the method from Nagano

et al. (2003) which applies a matrix method to compute the full wave solution between thin

layers of the horizontally stratified ionosphere. All four of these methods require considerable

computational resources. FDFD requires large matrix inversions, FDTD has a numerical stability

requirement to resolve the wave propagation in space and time over great distances (Courant

et al., 1928), and FWM has a step size requirement that scales its number of integrations with

the distance of interest from the transmitter squared. The Nagano method requires computing

full wave solutions for over one billion plane waves. Although some of these have been used

as forward models for D-region estimation, e.g. (Han et al., 2011; Xu et al., 2019), they are
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prohibitively expensive for the imaging problem that is the focus of this dissertation. Therefore,

we focus on mode theory models because of the large number of forward model runs required

to perform the nonlinear estimate of the D-region from observations of VLF signals.



Chapter 3

Mode theory of propagation

The structure formed by Earth’s conductive surface and the ionosphere above acts as a

naturally occurring waveguide for long radio waves in the ELF through LF radio bands. The

“height” of the D-region ionosphere is approximately 75 km, so the distance between ground and

the ionosphere is only on the order of 1 to 10 free space wavelengths. This chapter describes

how the Earth-ionosphere waveguide (EIWG) can be mathematically modeled using waveguide

mode theory to determine the electric field strength of a dipole transmitter signal measured at a

distant receiver in the waveguide. The resulting model is then used as the forward propagation

model in the D-region estimation problem.

Explanations of longwave propagation assumed a concentric conducting shell around

Earth at a time when formal waveguide theory was still in its infancy, but it did not take long for

the theory of guided waves to appear as a plausible explanation for phenomena being observed

on radio signals (Watson & Nicholson, 1919; Hollingworth et al., 1926). By 1936, observations

of interference patterns as a function of distance from the transmitter were well known and

already being used to approximate the height of the ionosphere (Best et al., 1936). Much of the

theory presented here, and employed by both LWPC and the Longwave Mode Propagator (LMP,

Chapter 4), was developed by K. G. Budden in the 1950s and 60s. Budden (1955) presented

an approach to compute the reflection coefficient of the anisotropic ionosphere as though it

were a sharp boundary, and in 1962 he presented the mode theory necessary to calculate the

electromagnetic fields from a known exciter in the waveguide. Others, especially James R. Wait,
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contributed significantly to our understanding of longwave propagation (Wait, 1957; 1958;

1963), but it was Budden’s method that was best suited to numerical solution of general EIWG

scenarios with a computer. By 1968, Sheddy et al. published results from a FORTRAN 63

computer program developed at the U.S. Naval Electronics Laboratory Center using Budden’s

model (Sheddy et al., 1968). This group would continue developing the methods and computer

program that would become LWPC over the next few decades. Ultimately, the model that will

be discussed here allows for:

• multiple species in the ionosphere (electrons, positive and negative ions)

• general (continuous) number density profiles N(z) as a function of height z for each

species

• general (continuous) species-neutral collision frequency profiles ν(z) as a function of

height

• the curvature of Earth

• the effect of Earth’s magnetic field

• the effect of Earth’s ground conductivity and permittivity

• varying of the magnetic field, ground, and ionosphere profiles as a sequence of horizon-

tally homogeneous slabs along the propagation path.

The system is modeled with Earth’s surface and the ionosphere forming two walls of a

waveguide with free space in between. A radio source placed in the waveguide will excite

discrete modes that propagate a great distance. The total field observed by a receiver in the

waveguide is the sum of the fields corresponding to each propagating mode. The propagation

model can therefore be broken down into three main problems: 1) identify resonant modes of

a homogeneous waveguide segment, 2) calculate the electromagnetic fields associated with

each mode, and, if necessary, 3) propagate the fields from one waveguide segment into the next

waveguide segment. An overview of the process is shown in Fig. 3.2. Step 3 refers to mode
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Figure 3.1: The Earth-ionosphere waveguide as modeled with mode theory. There is a ground
reflection coefficient R0, ionosphere reflection coefficient Rh, and free space in between.

conversion and is usually required to model realistic scenarios over long propagation paths

where it is inevitable that at least one of the ionosphere, ground, or magnetic field will change

significantly along the path. This segmented waveguide model is depicted in Fig. 3.1.

Readers seeking additional explanation of each of the steps presented in this section are

strongly encouraged to read Appendix A. No single book captures all of the background and

methods necessary to explain EIWG mode theory. Budden (1961b) presents his work on general

waveguide modes. Budden (1988) is a treatise on electromagnetic propagation through the

ionosphere, but has relatively little to say about longwave propagation in the EIWG. Watt (1967)

discusses many of the practical aspects of transmitting and receiving VLF radio signals. Much

of the published theory and discussion of modeling methods is spread across several decades

of U.S. Navy technical reports written during the development of LWPC (Morfitt & Shellman,

1976; Ferguson & Morfitt, 1981; Pappert & Ferguson, 1986; Shellman, 1986). This chapter

and the appendices of this dissertation make an attempt to explain much of EIWG mode theory

in one place at a level appropriate for first year graduate students. At the same time, gaps
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Figure 3.2: Steps used by mode theory to compute the electric field E observed by a receiver
in the Earth-ionosphere waveguide. The diagram is read primarily from top to bottom. It
begins with a search for the resonant modes in a homogeneous segment of the waveguide. This
requires solving the mode equation for the eigenangle associated with each mode, which in turn
requires computation of the ground and ionosphere reflection coefficients. After the dominant
waveguide modes are identified for every waveguide segment along the propagation path, the
wavefield profile can be computed in each segment and used to compute the mode conversion
coefficients at each transition between segments. The fields at the transmitter are propagated
through each segment until they’re eventually computed at the receiver. Variables are defined
in the text.
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remain in a thorough derivation of waveguide excitation, to which the reader is pointed largely

to Budden (1961b) and the results of Pappert in e.g. Pappert et al. (1967) and Pappert et al.

(1970).

Before beginning, we assume that all fields vary harmonically with time t so that e.g. E,

H , D, P oscillate with angular frequency ω. If some real (measurable) field component is F(t),

then

F(t) = Acos(ωt +φ) = Re
�

Aexp(iφ)exp(iωt)
�

. (3.1)

The exp(iωt) will be implicitly multiplied onto every field—not explicitly written. For example,

the electric field vector E(t) = Re(E0 exp(iωt)) will be written as E. Conveniently, the time

derivative ∂/∂ t of a field is equivalent to multiplication by iω.

The Earth-ionosphere waveguide coordinate system, shown in Fig. 3.3, has z directed

vertically upward into the ionosphere, x is horizontal along the waveguide propagation path,

and y completes the right-handed coordinate system. This is a two-dimensional model with

invariance in y . To be concise, we will frequently use the notation S = sinθ and C = cosθ .

3.1 Maxwell’s equations in the ionosphere

In this section we derive a special form of Maxwell’s equations for radio wavefields in the

cold, magnetized, collisional ionosphere. As these are fundamental equations, it should not be

surprising that they are needed both for the derivation of the ionosphere reflection coefficient

and for calculation of the mode conversion coefficients.

A radio wave propagating in the ionosphere generates a current density J which arises

from the motion of charges. If r is the average vector displacement of an electron from the

position it would have occupied if there were no radio field, then the average electron velocity

is ∂r/∂ t and the current density generated by a volume of electrons with density N is

J = Ne ∂r/∂ t . (3.2)
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Figure 3.3: The wave propagates within the x–z plane. The long vector represents the wave
normal of an upgoing wave. The vectors marked ‖ and ⊥ represent electric field components
parallel and perpendicular to the plane of incidence, respectively. A variety of coordinate
systems are used throughout the literature and for specific derivations, although this is the most
common and simplifying.

The electric polarization can be defined

P = Ner (3.3)

so that

J = ∂P/∂ t . (3.4)

Maxwell’s equations for an electromagnetic field are given by

div D = 0

div B = 0

curl E = −µ0 ∂H/∂ t = −iωµ0H

curl H = ∂D/∂ t = iωD

(3.5)

where we make use of the time derivative of the implicit exp(iωt) time variation.

To simplify the equations it is common to define

H = Z0H (3.6)
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where Z0 is the impedance of free space (µ0/ε0)1/2. H measures the magnetic field in terms

of the electric field that would be associated with it in a progressive plane wave in free space

(Budden, 1988, p. 31). E andH have the same units.

The latter two of Maxwell’s equations can also be written1

curl E = −ikH , curlH = ikε−1
0 D. (3.7)

Expanding the curls, these are

∂Ez

∂ y
−
∂Ey

∂z
= −ikHx ,

∂Hz

∂ y
−
∂Hy

∂z
= ikε−1

0 Dx

∂Ex

∂z
−
∂Ez

∂x
= −ikHy ,

∂Hx

∂z
−
∂Hz

∂x
= ikε−1

0 Dy (3.8)

∂Ey

∂x
−
∂Ex

∂ y
= −ikHz,

∂Hy

∂x
−
∂Hx

∂ y
= ikε−1

0 Dz

We assume that the ionosphere is stratified along the z-axis only. A plane wave of generally

elliptical polarization is incident from below the ionosphere in the x–z plane at an oblique

angle θ to the vertical. x and y dependence of all field components is through exp(−ikSx) (see

Appendix A.2.4, Clemmow and Heading, 1954, p. 323, or Budden, 1988, p. 181). Consequently,

∂/∂x = −ikS, ∂/∂ y = 0. (3.9)

Substituting these directly into Maxwell’s equations:

∂Ex

∂z
= −ik(Hy + SEz),

∂Ey

∂z
= ikHx , SEy =Hz (3.10)

∂Hx

∂z
= ik(ε−1

0 Dy − SHz),
∂Hy

∂z
= −ikε−1

0 Dx , SHy = ε
−1
0 Dz (3.11)

We are interested in E andH , so it is necessary to determine the electric displacement

vector D in terms of E. Banerjea and Saha (1947), summarizing the work of previous authors,

show that for propagation in the ionosphere we can use the polarization vector P obtained from

the susceptibility tensor M as

P = ε0ME. (3.12)
1 Work backwards from Eq. (3.7) with the definition of k and Z0 to arrive at the equivalent forms in Eq. (3.5).
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The electric displacement contains the polarization vector through

D = ε0E + P. (3.13)

Section 3.2.4 discusses the construction of M , but for now it is only necessary to know that the

3×3 susceptibility tensor of the ionosphere can be calculated. These steps are also summarized

in Clemmow and Heading (1954), who were the first to present the next step of the derivation

using our coordinate system.

The only components that appear in derivatives in Eq. (3.10) or Eq. (3.11) are Ex , Ey ,Hx ,

andHy . We may use the last equations in (3.10) and (3.11) to eliminate Ez andHz, leaving us

with four first-order differential equations, consistent with the existence of four characteristic

waves in the ionosphere. Let e be a column vector with the four components2 :

e =
�

Ex ,−Ey ,Hx ,Hy

�>
. (3.14)

Then we can write the differential equations for the ionosphere, Eqs. (3.10) and (3.11), in

matrix-vector form as
de
dz
= −ikTe (3.15)

where (Clemmow and Heading, 1954, p. 323; Budden, 1961a, ch. 18)3

T =









































−
SM31

1+M33

SM32

1+M33
0

C2 +M33

1+M33

0 0 1 0

M23M31

1+M33

−M21 C2 +M22 −
M23M32

1+M33
0

SM23

1+M33

1+M11 −
M13M31

1+M33

M32M13

1+M33
−M12 0 −

SM13

1+M33









































. (3.16)

2 The minus sign on −Ey results in nice properties for the matrix T (Budden, 1988, sec. 7.14).
3 Budden (1988, p. 182) notes that Eq. (3.16) can be made even more general by replacing M with the electric

permittivity tensor ε (Budden, 1988, eq. 3.55).
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Equation (3.15) is the key result of this section and allows us to compute the wavefields

of a radio wave in the ionosphere at any height as long as we know the fields at some other

height. The integration of Eq. (3.15) is required to compute the mode conversion coefficients in

Section 3.4. Equation (3.15) is also used to derive the differential equation for the ionosphere

reflection coefficient (Appendix A.4.1) and for computing the Booker quartic, which is used to

determine starting values for the wavefields and reflection coefficients.

3.2 Mode search

The first task of a mode theory propagation model is to identify resonant modes of

a horizontally homogeneous segment of the Earth-ionosphere waveguide. By horizontally

homogeneous we mean the ground conductivity, background magnetic field, and density

and collision frequency profiles of the ionosphere are constant in the x direction along the

propagation path. The number density and collision frequency profiles still vary with height

along z.

In this section we introduce: 1) the fundamental equation of mode theory, 2) calculation

of the reflection coefficient for the ionosphere, and 3) calculation of the ground reflection

coefficient. The fundamental equation of mode theory describes the condition for modes to

propagate in the waveguide and depends on the reflection coefficients of ground and the

ionosphere, which are themselves functions of the wave angle of incidence. Each angle that

satisfies the fundamental equation represents a waveguide mode for which we can later compute

the electric field in the waveguide.

3.2.1 The fundamental equation of mode theory

We begin by considering a waveguide bounded by reflecting planes at z = 0 and z = h

with reflection coefficients R0(θ) and Rh(θ), respectively. A plane wave is incident on the

boundary at z = h with its normal at an angle θ from the z-axis. For detailed background,
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θ
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Figure 3.4: For a field to propagate down the waveguide, the twice reflected wave F3 must be
identical to the original upgoing wave F1.

read Appendix A.2 for an explanation of reflection coefficients and Appendix A.3 for a brief

introduction to waveguides before continuing with this section.

Let some field component F of the incident wave be given by

F1 = F0 exp
�

−ik(Sx + Cz)
�

(3.17)

where S = sinθ and C = cosθ . When the wave meets the boundary at z = h, it generates a

reflected wave in which the field is

F2 = Rh(θ )F0 exp
�

−ik(Sx − Cz)
�

exp(−2ikCh). (3.18)

The second exponential ensures that the ratio F2/F1 = Rh at z = h, as in Eq. (A.13). This second

wave travels downwards and is reflected from the boundary at z = 0 and gives a third wave in

which F is

F3 = R0(θ )Rh(θ )F0 exp
�

−ik(Sx + Cz)
�

exp(−2ikCh). (3.19)

This scenario is depicted in Fig. 3.4.

In order for the two crossing waves F1 and F2 to propagate down the waveguide, F3 must

be identical with F1. This requires that

R0(θ )Rh(θ )exp(−2ikCh) = 1 (3.20)
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which is the fundamental equation of mode theory.4 Each discrete θ for which this criteria is

met is known as an eigenangle and represents a waveguide mode. To satisfy the equation when

the boundaries are not perfect reflectors, θ must be complex-valued. Equation (3.20) applies

for any boundaries of reflection with a known R, even if the boundary is a stratified medium

like the ionosphere. We can choose any plane z = h as the boundary and use R(θ) = F2/F1

at this plane. This seemingly toy concept is critical for the development of much of the mode

theory of the propagation of long waves in the Earth-ionosphere waveguide.

3.2.2 Mode equation with change in polarization

As discussed in Appendix A.2.3, in an anisotropic ionosphere the reflection coefficient is

actually a complex matrix R(θ ). The mode equation, Eq. (3.20), was derived from the condition

that a plane wave which makes a double passage from ground to the ionosphere and back,

undergoing two reflections, gives rise to a wave which is in phase with the original wave. If the

wave also undergoes a change in polarization on reflection, we add the condition that the twice

reflected wave must also match the original wave in polarization (Budden, 1961b, p. 150).

If the column vector e contains the electric field components parallel and perpendicular

to the plane of incidence, then

R(θ )R(θ )e = Ie, (3.21)

where R is the reflection matrix looking down at the ground, R is the reflection matrix looking

up at the ionosphere, and I is the 2× 2 identity matrix
�

1 0
0 1

�

, is the condition that the twice

reflected wave be identical to the original upgoing wave. This is equivalent to

�

R(θ )R(θ )− I
�

e = 0. (3.22)

For a nontrivial eigenvector e to exist, the square matrix RR − I must be singular (Budden,

1962, p. 541; Martin, 1965, p. 998). Thus, reintroducing the explicit height term, the modal

4 Eq. (3.20) satisfies Eq. (A.36) when the boundaries are perfectly reflecting: exp(−2ikh cosθ ) = exp(−2inπ) =
cos(2nπ)− i sin(2nπ) = 1.
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Figure 3.5: Complex phase map of the mode equation f (θ) (Eq. (3.24)) for the ionosphere
profiles shown in Fig. 3.6 and ocean-like ground conductivity. Roots and poles of the function
are marked with ◦ and ×, respectively.

equation is

det
�

R(θ )Rh(θ )exp(−2ikCh)− I
�

= 0 (3.23)

where Rh is the ionosphere reflection matrix at height h. The effect of the exponential multiplied

onto the ionosphere reflection matrix is to reference it to the ground (Budden, 1962, p. 541). If

both reflection matrices are already referenced to the ground (z = 0), then the matrix mode

equation is equal to

det
�

R(θ )R(θ )− I
�

= 0. (3.24)

A phase map of the left side of Eq. (3.24) is shown in Fig. 3.5. The mode finder must

identify each of the eigenangles θ that are complex roots (zeros) of the left side of Eq. (3.24).

Eigenangles with large real components and small imaginary components are the lowest order

modes and have the most significant influence on the waveguide fields.

3.2.3 Ionosphere reflection coefficients

Budden (1955) presents two methods for obtaining numerical solutions of the differential

equations which describe the reflection of long radio waves from the ionosphere. Both methods

require integration of differential equations from an initial solution of R at the top of the

ionosphere downwards to the space below the ionosphere where the reflection coefficients are
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directly available. We proceed with Budden’s second method, described by Budden as “greatly

superior” to the first because it reduces by half the number of required integrations and reduces

the risk of floating point overflow (Budden, 1955, pp. 517, 528). A detailed derivation of the

differential equations for R with respect to height is provided in Appendix A.4.1.

The components of the ionosphere reflection coefficient matrix R are

R =





R‖ ‖ R⊥ ‖

R‖ ⊥ R⊥ ⊥



 (3.25)

where the notation Ra b means subscript a is the incident component and subscript b is the

reflected component. The symbol “‖” indicates the electric field is parallel to the plane of inci-

dence and “⊥” indicates the electric field is perpendicular to the plane of incidence. Additionally,

in free space

R‖ ‖ =H
R
y /H

I
y , R‖ ⊥ = ER

y/H
I
y (3.26)

R⊥ ‖ =H
R
y /E

I
y , R⊥ ⊥ = ER

y/E
I
y (3.27)

where superscript R and I represent the reflected and incident fields, respectively.

The differential equations dR/dz are derived using the definition of a reflection coefficient

and the matrix differential equation for the wave fields, Eq. (3.15). The four elements of e

fully describe the total electromagnetic field of the radio wave in the horizontally stratified

ionosphere. Budden assumes that there is a very thin slice of vacuum (thin enough so it doesn’t

make a difference to the fields) in the ionosphere which allows us to describe the wave fields

as if they are in free space. They are resolved into upgoing and downgoing elliptical waves,

each of which are further resolved into plane wave components aligned to the x , y, z coordinate

frame. If S is a transformation matrix to resolve e into these component waves f , such that

e = S f , then we can rewrite Eq. (3.15) as

d f
dz
= −iS−1TS f = −

1
2

iW f . (3.28)

Budden (1955) then makes use of the definition of the reflection coefficient matrix through

d = Ru for downgoing wavefields d = ( f3, f4)> and upgoing wavefields u = ( f1, f2)> to derive
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Figure 3.6: Magnetoionic parameters X , Y , and Z directly track with Ne, B, and ν. Wait’s
conductivity parameter ωr is also shown (Wait & Spies, 1964). The profiles are for Wait’s
exponential density profile parameters h′ = 72km, β = 0.3km−1, vertical |B|= 50000 nT, and
a 24 kHz radio wave at real angle of incidence θ = 75° from the vertical. The off-diagonal
components of the ionosphere reflection coefficient matrix are identical because of the vertical
magnetic field.

the nonlinear matrix differential equation

2i
k

dR
dz
= W21 +W22R−RW11 −RW12R (3.29)

for the four 2× 2 submatrices of W .

An initial R can be computed at a point high in the ionosphere from the Booker quartic

(see Appendix A.4.2 and Appendix A.4.3), then Eq. (3.29) can be integrated downwards through

the ionosphere into free space below. At any height where the integration stops, R at that height

is the reflection coefficient of the ionosphere as though it were sharply bounded by free space

below. Profiles of the components of R as it is integrated downwards through an ionosphere

with exponential density and collision frequency profiles are shown in Fig. 3.6.

3.2.4 Constitutive relations and susceptibility

So far we have assumed the existence of the ionosphere susceptibility tensor M , but in

this section we will briefly explain what the susceptibility tensor physically describes. Within
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the whole of EIWG mode theory, nearly all of the magnetoionic physics appears through the

susceptibility tensor.

Looking back to Maxwell’s equations, Eq. (3.8), we would like to express the displacement

D and, by extension, the electric polarization P, in terms of the electric intensity E. The resulting

expressions are known as the constitutive relations where the relation between P and E is

through the susceptibility matrix M:

P = ε0ME. (3.30)

In Appendix A.5 we build up the net electric polarization resulting from the influence of an

imposed electric field, electron-neutral collisions, and a background magnetic field. We assume

electrons move over a background grid of infinitely massive positively charged particles such that

the overall collection of particles is homogeneous and neutrally charged. It is straightforward

to derive the equations of motion of a single electron subject to each of the above three external

forces and extend the results to a collection of electrons.

The resulting susceptibility tensor is:

M = −
X

U(U2 − Y 2)











U2 − l2
x Y 2 −ilzY U − lx l y Y 2 il y Y U − lx lzY 2

ilzY U − lx l y Y 2 U2 − l2
y Y 2 −ilx Y U − l y lzY 2

−il y Y U − lx lzY 2 ilx Y U − l y lzY 2 U2 − l2
z Y 2











(3.31)

where X = Ne2/ε0mω2 = ω2
n/ω

2, Y = |eB/mω| = ωH/ω, Z = ν/ω, and U = 1 − iZ for

angular wave frequency ω, angular plasma frequency ωn, and angular gyrofrequency ωH . lx ,

l y , and lz are direction cosines of the magnetic field vector with respect to the EIWG coordinate

system. Thus, the susceptibility is determined by the species density, collision frequency, and

background magnetic field.

The influence of multiple ionospheric species, e.g. electrons and negative and positive ions

of arbitrary mass and charge, can be considered by computing a susceptibility tensor for each

species individually and summing them (Budden, 1988). In practice, only the magnetoionic

parameters X , Y , and Z need to be computed for each species before forming the total M . The
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derivation of M assumed charge neutrality and that should be maintained when using multiple

species, i.e.
∑

Ne,−i =
∑

N+i for ions charged ±i.

There are some limitations to the derived susceptibility tensor. First, we neglect the effect

of the radio wave’s magnetic field on the motion of electrons. Budden (1988, ch. 3.7) examines

this scenario for typical radio transmitters and finds the relative influence of the magnetic

field is usually less than 10−4 times the influence of the electric field and is reasonable to

neglect. Nonetheless, ionospheric heating experiments and lightning may generate significant

magnetic fields that influence the propagation of the radio wave through its interaction with

the ionosphere. Another simplifying assumption used to derive Eq. (3.31) is that the electron-

neutral collision frequency ν is independent of the electron velocity v. The collision frequency

above is an averaged effective collision frequency, but collision frequency is actually a function of

velocity, which in turn is a function of temperature (Budden, 1988, ch. 3.12). Finally, although

electron-electron collisions are unlikely to have a meaningful impact on the propagation of radio

waves in the ionosphere, there may be higher order effects from electron-ion collisions that

occur for radio frequencies near the ion gyro-frequency (Budden, 1988, p. 62). Each of these

are neglected in the susceptibility tensor above, but have minimal influence on the propagation

of typical communication or navigation radio signals.

Although not directly related to the ionosphere, one way to include the effect of Earth’s

curvature is by means of a fictitious medium in the free space of the Earth-ionosphere waveguide.

This medium has an index of refraction n that varies as a function of height such that it mimics

the path of a plane wave propagating through free space over a surface curving out from under

it. This correction can be applied directly as a modification to the diagonal elements of the

susceptibility tensor, which is related to n2. For details, see Appendix A.5.4.

At this point, all of the steps necessary to compute the ionosphere reflection coefficient R

over a curved Earth have been introduced.
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3.2.5 Ground reflection coefficients

The second half of the fundamental equation of mode theory requires computation of the

ground reflection coefficient matrix. We consider the ground to be a simple isotropic boundary

with a reflection coefficient R that can be described by the Fresnel reflection equations,5 derived

in Appendix A.6.

The resulting ground reflection coefficient matrix is

R =





R‖ ‖ 0

0 R⊥ ⊥



 (3.32)

where

R‖ ‖ =
Cn2

g −
�

n2
g − S2

�

Cn2
g +

�

n2
g − S2

� (3.33)

R⊥ ⊥ =
C −

�

n2
g − S2

�1/2

C +
�

n2
g − S2

�1/2
(3.34)

and n2
g is the squared refractive index of the ground (see Appendix A.6.3)

n2
g = εr − i

σ

ωε0
. (3.35)

3.3 Waveguide excitation and field strengths

This section is arguably both the most important and mathematically complicated. Up

to this point we have established much of the formalism for reflection coefficients, waveguide

propagation, and magnetoionic physics. In this section we answer the question we are ultimately

interested in: for a particular VLF radio source located in the waveguide, what electromagnetic

fields would we measure at a point elsewhere in the waveguide? The theory used here is largely

credited to Budden (1962) and his use of complex residue theory to solve some of the integrals

associated with fields radiated from the source. Wait (1970a, ch. 6 and 7) develops the theory

5 Galejs (1972) examines the effect of a more realistic multi-layer, anisotropic ground.
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analytically in cylindrical and spherical coordinates. Readers are encouraged to seek out these

sources, as well as Budden (1961b), for details on the derivation of the theory; familiarity with

complex analysis as well as some antenna theory is necessary for understanding the details.

The interested reader should see Appendix A.7 for some of the intermediate mathematics used

to describe EIWG mode theory.

Qualitatively, it is easy to imagine that a line quadrupole source placed in free space will

emit fields which can be represented as an angular spectrum of plane waves. If the source is

located in a waveguide, the field measured at a distant point in the waveguide is the result

of summing the up- and downgoing waves as a result of reflecting off the lower and upper

waveguide boundaries, integrated over the complex angular spectrum emitted by the source.

The waveguide boundaries will filter out a discrete set of these waves that satisfy the mode

equation. Budden (1962) rigorously works through this process and finds that complex poles

crossed by the contour of integration of the field sum are the waveguide modes and the residues

are excitation factors that describe how a given field component is excited by this particular

waveguide. Geometric spreading due to Earth’s spherical shape is considered, as are height gain

functions, describing the vertical field distribution, to model elevated transmitters or receivers.

Over time, the expression for the total waveguide field of a dipolar radio source has been

distilled into a practical form. An arbitrarily oriented transmitting antenna is modeled as the

geometrically-weighted sum of fields emitted from a vertical, end-on, and broadside oriented

dipole. The total j component of the E-field in the waveguide is then:

E j(x) =
Q

�

sin(x/Re)
�1/2

∑

n

�

λv,n cos(γ) f1,n(zt)

+λb,n sin(γ) sin(φ) f3,n(zt)

+λe,n sin(γ) cos(φ) f2,n(zt)
�

f j,n(zr)exp
�

−ik(Sn − 1)x
�

(3.36)
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for

mode n
electric field component j x

y
z

excitation factor λ v vertical source
b broadside
e end-on

source orientation γ dipole moment angle from vertical
φ angle from x

height gain function f 1= x component
2= y
3= z

height z r receiver
t transmitter

great circle distance from t to r x
sine of ground-referenced eigenangle S
source amplitude scalar Q

The factor to the left of the summation corrects for the radiated power of the transmitter

and spreading due to the spherical shape of the Earth. The terms grouped by the large paren-

theses collectively model the transmitter excitation of the waveguide. The height gain function

evaluated at zr models the receiver by selecting a specified field component at a particular

height in the waveguide. Finally, the exponential is a propagation factor that describes the

propagation of the mode in the horizontal direction along the waveguide.

This formulation can be attributed to Pappert, who over a series of papers calculated

the height gains and excitation factors for the Ex , Ey , and Ez fields and arbitrarily positioned

and oriented antennas in the guide (Pappert, 1968; 1970; Pappert & Bickel, 1970; Pappert

& Shockey, 1971; Pappert & Shockey, 1976). Multiple formulations have been used in the

waveguide propagation codes developed by the U.S. Navy. It is important that the height gain

and excitation factors used are self-consistent. In addition, most formulations, including this

one, assume the reflection coefficient is referenced to the ground. The excitation factors λ and

height gain functions f are presented in Appendix A.7.
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3.4 Mode conversion

Up to this point we have assumed the waveguide is homogeneous—that the electro-

magnetic properties of the ground and ionosphere are constant in the horizontal axis of the

waveguide. In reality, both the ground and ionosphere change over a propagation path; for the

ground, this might be a sharp transition from soil to ocean water, and for the ionosphere, this

might be a day/night transition. The terminator transition is relatively slow compared to the

soil/ocean transition; nonetheless, a stepped model with several homogeneous segments of

waveguide can be used to represent the true smooth transition.

Crombie (1964) observed periodic fading of VLF signals received over paths during sunset

and sunrise. To explain his observations, he suggests that a mode propagating with a phase

velocity determined by the conditions on the day side are converted into two waveguide modes

supported by the night side waveguide. This is largely considered to be an accurate description

of the process (Walker, 1965; Clilverd et al., 1999; Chand & Kumar, 2017). Therefore, to model

VLF propagation in inhomogeneous waveguides, we model conversion of energy scattered from

each mode into other modes at every sharp transition in the waveguide, as shown in Fig. 3.1.

Assume a mode of unit amplitude is incident upon a discontinuity in the waveguide. This

mode can be described by its height gain function
−→
f j,1(z), which is a vector of electromagnetic

fields at each height in the waveguide. Subscript j denotes the jth mode and subscript 1 denotes

it is in waveguide segment 1. The overarrow denotes the direction of propagation. The sharp

impedance discontinuity in the waveguide generates both reflected, back-propagating modes,

as well as transmitted, forward-propagating modes. Discontinuities that might exist further

down the guide generate additional backward-propagating modes. Continuity yields

−→
f j,1 +

∑

m

Rmj
←−
f m,1 =

∑

n

Tn j
−→
f n,2 +

∑

l

Rl j
←−
f l,2 (3.37)

where every height gain function is a function of z. Rab and Tab are reflection and transmission

coefficients describing conversion of mode b into mode a for modes j, l, and m. Note that
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R here is not the reflection coefficient of the ionosphere, but a reflection coefficient between

waveguide segments.

One problem with using Eq. (3.37) to implement mode conversion is the requirement

to know the future propagation history—the term with Rl j. By assuming that no significant

reflection occurs, then we can set Rl j and Rmj to 0. This is known as Kirchoff’s approximation

and is used throughout the literature (Wait, 1970b). Equation (3.37) then simplifies to

−→
f j,1 =

∑

n

Tn j
−→
f n,2. (3.38)

Clearly, if we can solve for Tn j, then we can describe the scattering of energy from each

incident mode j into each transmitted mode n. The method we follow is known as FULLMC for

“full mode conversion” because it explicitly integrates the wavefields in the neighboring segments

in order to establish the mode conversion coefficients (Pappert & Smith, 1972). Appendix A.8

explains the process to compute the conversion coefficients in greater detail. Ultimately, the

mode sum equation for an inhomogeneous waveguide is

E j,p(x) =
Q

�

sin(x/Re)
�1/2

∑

m

∑

n

am,n,p

�

λv,n cos(γ) f1,n(zt)

+λb,n sin(γ) sin(φ) f3,n(zt)

+λe,n sin(γ) cos(φ) f2,n(zt)
�

f j,m(zr)

· exp
�

−ik
�

Sn,tx xtx+1 + Sm,p(x − xp)
��

.

(3.39)

where am,n,p is the mode conversion coefficient from mode m to n in the pth segment. The

homogeneous mode sum, Eq. (3.36), should be used within the transmitter slab. Equation (3.39)

should be used in waveguide segment p where p occurs after the transmitter segment. The

excitation factors making up the transmitter term are all defined within the transmitter segment

and the other terms of Eq. (3.39) carry the fields into segment p.
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3.5 Amplitude and phase of the field

The amplitude and phase of the electric field is usually specified rather than the complex

field. The amplitude is defined as

A= 20 log10(|E|) (3.40)

and the phase, relative to free space, is

φ = arg(E). (3.41)

The phase-distance curve is unwrapped in such a way that it accumulates the remainder of

φi −φi−1 after division by 2π. It is not unusual for phase profiles to cycle through 2π rad.



Chapter 4

Implementation and validation of the Longwave Mode Propagator

The mode theory model presented in Chapter 3 is an analytical solution for the electric

field strength in the Earth-ionosphere waveguide aided by numerical integration of differential

equations and iterative root finders. For several decades, the standard propagation model in

the VLF community has been the mode theory model called the Long-Wavelength Propagation

Capability (LWPC). LWPC was developed in the early days of modern computers and significant

effort was devoted to maximizing compute efficiency and minimizing runtime. From then

to now, computer processing power has increased by several orders of magnitude (Schaller,

1997). Sheddy et al. (1968) states that a predecessor code to LWPC took 10 minutes to find one

solution of the mode equation—a process that takes less than 1 second on a personal computer

today.

The speed enabled by mode theory to simulate longwave propagation makes it an obvious

choice as forward model for estimation of the ionosphere or for communication or navigation

link planning over a large geographic region. Unfortunately, LWPC has several shortcomings.

Its mode finder, described in Morfitt and Shellman (1976) and Shellman (1986), interpolates

R across the complex plane in what is described as the “weakest link” in the model. The root

finding algorithm assumes there are no poles in the region of the complex plane being searched

for roots. Therefore, to improve the likelihood that this criteria is met, the mode equation and

equations for R and R are modified. Numerical difficulties can occur in the LF band (Pappert,

1981) and I have observed numerical problems or program failure for ionosphere profiles with
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low Wait β parameter. Additional downsides to LWPC are mentioned in Gasdia and Marshall

(2021).

A new implementation of EIWG mode theory called LongwaveModePropagator.jl1 (LMP)

has been constructed for this dissertation in the Julia programming language (Bezanson et al.,

2017; Gasdia & Marshall, 2021). The most significant difference between LWPC and LMP is the

use of the global complex roots and poles finding (GRPF) algorithm to identify the eigenangles

(Kowalczyk, 2018). GRPF allows LMP to directly solve the physical mode equations shown in

the previous chapter because it differentiates between complex roots and poles. LWPC uses

modified forms of the fundamental mode equation, ground reflection, and differential equation

for the ionosphere reflection coefficients. Using the physical equations and identifying the

complex poles greatly simplifies the code base of LMP, as does the use of external libraries and

Julia’s native linear algebra capabilities. Mode finding with GRPF is also significantly more

robust than LWPC’s mode finder; R is computed explicitly rather than interpolating across the

complex plane. Although this helps ensure accuracy, it is more computationally expensive than

interpolation.

This chapter discusses the implementation of mode theory in LongwaveModePropagator.jl,

validates the model against LWPC and a two-dimensional finite difference time domain (FDTD)

code, and presents examples of longwave propagation in different EIWG scenarios.

4.1 Implementation

There are three steps involved in simulating the propagation of longwaves in the EIWG

with LongwaveModePropagator.jl: 1) the user defines the scenario, 2) waveguide modes are

identified for all homogeneous segments in the scenario, and 3) the desired field is summed

over each mode, including mode conversion between homogeneous segments if the receiver is

not located in the same segment as the transmitter.

1 github.com/fgasdia/LongwaveModePropagator.jl

github.com/fgasdia/LongwaveModePropagator.jl
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Every EIWG scenario in LMP consists of a Transmitter, Receiver, and Waveguide.2

The Transmitter is defined by a dipole antenna with specified orientation, transmit frequency,

and radiated power, and the Receiver specifies a field component and is located some distance

from the transmitter. Two Waveguide types are currently supported. A HomogeneousWaveguide

defines the BField magnitude and direction, conductivity and relative permittivity of the

Ground, and one or more Species that make up the ionosphere. Each Species has a defined

charge, mass, number density profile, and collision frequency profile. A SegmentedWaveguide

simply consists of a series of HomogeneousWaveguides, each beginning a specified distance from

the transmitter.

The Transmitter, Receiver, and Waveguide are passed to LMP’s propagate function

which returns the complex electric field, amplitude, and phase that would be observed by the

Receiver. A brief outline of the mode search and field sum computation performed internally

by propagate follows.

4.1.1 Mode search

A theoretical discussion of the waveguide mode equation has already been presented in

Chapter 3 with further detail in Appendix A. Because of the global complex root and pole finding

(GRPF) algorithm, LMP’s mode search follows very closely to theory (Gasdia & Marshall, 2021).

The GRPF algorithm is implemented in RootsAndPoles.jl (Gasdia, 2020). The algorithm

works by sampling the mode function (the left side of Eq. (3.24)) at the nodes of a triangular

mesh grid. The complex phase of the function is analyzed and a discretized version of Cauchy’s

argument principle is applied to the phase map to detect the presence of roots and/or poles

in regions of the mesh. The argument principle relates the difference between the number of

roots and poles of a function f to the contour integral

q =
1

2πi

∮

C

f ′(z)
f (z)

dz (4.1)

2 See the LongwaveModePropagator.jl documentation at https://fgasdia.github.io/LongwaveModePropagator.
jl/stable/ for similar types with special characteristics.

https://fgasdia.github.io/LongwaveModePropagator.jl/stable/
https://fgasdia.github.io/LongwaveModePropagator.jl/stable/
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Figure 4.1: The final mesh grid used by the global complex root and pole finding (GRPF)
algorithm applied to an Earth-ionosphere waveguide scenario. Roots of the mode equation are
identified with ◦ and poles with ×. This figure is the GRPF counterpart to Fig. 3.5, which shows
the mode equation phase map on a fine dense grid.

where q is the number of roots minus the number of poles contained within the contour.3

Kowalczyk (2018) discretizes Eq. (4.1) to use the difference in quadrant of the complex phase

along a contour of mesh nodes. If q is zero, there are either no roots or poles contained in the

contour or there are an equal number of roots and poles, in which case the initial mesh grid was

too coarsely sampled for the problem. However, for non-zero q, the mesh grid is automatically

refined by Delaunay triangulation to obtain a better estimate of the location of the root or pole.

This refinement may split a pair of a closely spaced root and pole. The sign of q identifies

whether a root or a pole has been located. LongwaveModePropagator.jl assigns each root as an

EigenAngle and simply ignores the poles that have been identified.

An example of GRPF applied to the same waveguide as Fig. 3.5 is shown in Fig. 4.1. The

top right quadrant of the search region uses a denser initial mesh to identify closely spaced root

and pole pairs that often appear in this region of the complex plane. These are the lowest order

modes, so it is particularly important that they be identified. The lower right triangular region

is not included in the initial mesh because no roots occur here.

The mode equation itself is a single line of code; the ground reflection coefficient R is also

3 Technically, q represents the difference of the sum of multiplicities of the roots and of the poles. See any
textbook on complex analysis for further details.
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trivial to compute. However, computing the ionosphere reflection coefficient is extremely costly

because each evaluation requires an integration of four differential equations (one for each

entry of the matrix). Because dR/dz is complex valued, it is as if we are actually integrating

eight differential equations to compute R for a single complex angle θ . During the mode search,

R is calculated at every mesh node—usually tens of thousands of θs are searched for every

homogeneous segment of ionosphere. The time required for this search represents much more

than 90 % of the total LongwaveModePropagator.jl runtime. Reducing the runtime of the mode

search without sacrificing robustness of the current implementation remains one of the most

lucrative areas for improvement.

The starting solution for the ionosphere reflection coefficient R is computed at 110 km

altitude from the upgoing Booker wavefields. The Booker quartic is solved from the susceptibility

tensor at 110 km using the root finder package PolynomialRoots.jl (Skowron & Gould, 2012).

dR/dz is integrated down to the ground (z = 0) using the Vern7 7/6 Runge-Kutta method from

OrdinaryDiffEq.jl (Verner, 2010; Rackauckas & Nie, 2017). Comparisons of different solvers

and tolerances are shown in Appendix B.1. Unlike LWPC, LongwaveModePropagator.jl always

integrates to the ground; there is no need to determine an optimal height below the ionosphere

at which to reference the reflection coefficients to minimize the presence of complex poles,

and there is little benefit to stop the integration early and use modified Hankel functions to

re-reference the reflection coefficients (as is done by LWPC) because the solver is very efficient

when the electron density is low.

4.1.2 Mode field sum

Unlike the mode search, the mode field sum in LongwaveModePropagator.jl is very

similar to LWPC because they both use Pappert’s derivations of excitation factor and height

gain functions. Due to the presence of d f /dθ in the excitation factor, where f is the modal

equation, LongwaveModePropagator.jl also includes explicit analytical derivatives with respect

to θ for many of the functions involved in computing the mode equation. These were largely
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computed using a computer algebra system and are checked against finite difference solutions in

LongwaveModePropagator.jl’s test suite. The excitation factors and height gains are formulated

such that there is a transmitter term and a receiver term. This makes extension to inhomogeneous

SegmentedWaveguides simpler. As shown mathematically in Appendix A.7 and Appendix A.8,

the transmittedHy field is simply the transmitter term in the transmitter slab, and it is carried

into the following slabs by applying the mode conversion coefficients. The receiver term is the

height gain function for the receiver multiplied by the appropriate correction factor fromHy to

the field component measured by the receiver.

Mode conversion coefficients for segmented waveguides are calculated using the FULLMC

theory (Pappert & Smith, 1972). For each homogeneous segment, waveguide modes are

first identified and then the wavefields and adjoint wavefields4 are integrated using the

orthonormalization method suggested by Pitteway (1965). This integration occurs downwards

from a great height in the ionosphere where there are only upgoing waves. Equation (3.15) is

integrated simultaneously for wavefield vectors e for both upgoing waves. Unfortunately, naïve

integration of these fields results in numerical issues as the values representing the wavefields

increase with the downwards integration. Both an evanescent and travelling wave are present,

but the evanescent wave grows by so many orders of magnitude more than the travelling wave

as to exceed the machine precision of IEEE 64-bit floating point operations. This is known

as “numerical swamping” of the travelling wave solution. To overcome this, Pitteway (1965)

repeatedly constrains the second wavefield to be orthogonal to the first. After completing the

integration, each orthonormalizing correction must be undone to reveal the correct wavefields.

An example of the wavefields scaled and with scaling removed is shown in Fig. 4.2.

The Tsit5 4/5 Runge Kutta solver is used to integrate de/dz and the fields are scaled to

the waveguide boundary conditions identically to LWPC. Various differential equation solvers

were compared for integration of the wavefields and are shown in Appendix B.2.

4 The adjoint waveguide is identical to the original waveguide except for a change of sign of the x component
of the magnetic field.
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Figure 4.2: A sample of one of each of the upgoing wavefields for the ionosphere shown
in Fig. 3.6, but at a real angle of incidence of 60°. The orthonormalization procedure from
Pitteway (1965) is applied to the “Scaled only” curve during downwards integration through
the ionosphere and then “Corrected” on the way back up from the ground.

4.2 Validation

LongwaveModePropagator.jl was validated against LWPC and the EMP2D finite difference

time domain (FDTD) model described in Marshall et al. (2017). Results are shown in Gasdia and

Marshall (2021), but some highlights are presented here. First, it is important to note that these

are comparisons and not necessarily a measure of correctness of the LongwaveModePropagator.jl

model. There are limitations that manifest as errors in all three models.

The mean absolute deviation (MAD) of Ez amplitude between each combination of the

three models are shown in Fig. 4.3 over a path between 400 to 3000 km from the transmitter

for different combinations of Wait ionosphere profiles. The scenarios all use homogeneous

waveguides having an ocean-like ground of εr = 4, σ = 81Sm−1 and a vertical magnetic field of

50 000 nT. The transmit frequency is 24 kHz. The source used in EMP2D was not calibrated to

produce the same radiated power as LWPC and LMP, so was shifted to the level where the MAD

is minimized to LWPC or LMP in their respective plots. Thus, EMP2D is useful for characterizing
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Figure 4.3: Mean absolute deviation of amplitude along a propagation path 400 to 3000 km
from the transmitter for Wait ionospheres between each combination of pairs of the LMP, LWPC,
and EMP2D models. Note that the β values are not evenly distributed. LWPC failed for one of
the scenarios with β = 0.15 km−1.

relative changes in amplitude or phase along the propagation path, but not for establishing the

true field amplitude.

All three models are in good agreement for “typical” Wait ionospheres (Section 2.1.2.3)

between β = 0.4 to 0.8 km−1 and the entire h′ range plotted, from 62 to 90 km. The mode

theory models are a better match to EMP2D at lower h′ than higher h′ for high β values. The

greatest discrepancies occur for low β ionospheres, but in general LMP is a better match to

EMP2D than LWPC is. This can be seen in Fig. 4.4, where the slope of the amplitude decay in

LMP is closer to the slope of the EMP2D curve despite missing a significant null at 500 km. An

expanded mode search region and finer initial mesh grid were not able to identify any “missing”

modes from the plotted results.

Another interesting model comparison is for a segmented ionosphere that coarsely models

a transition from a daytime to nighttime ionosphere using Wait’s parameters. The Ez amplitude

curves are shown in Fig. 4.5. All three models are in excellent agreement along the path.

This not only validates the mode conversion implementation of LMP, but demonstrates that

neglecting backwards reflecting waves (an assumption made by FULLMC) is a valid assumption
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Figure 4.4: Top: Ez amplitude curves for the mode theory and EMP2D FDTD models for a Wait
ionosphere with h′ = 70km and β = 0.15 km−1. The EMP2D model is shifted to minimize its
mean absolute deviation from the LMP curve. Even if it was shifted to minimize the distance to
the LWPC curve, the slope of the LMP curve is a better match to EMP2D. Bottom: The amplitude
difference curves between LWPC and EMP2D compared to LMP. MODIFIED FROM GASDIA AND

MARSHALL (2021), ©IEEE 2021.

for reasonable changes in h′ and β along the path. EMP2D includes the effect of backward

propagating waves automatically through the FDTD solution of Maxwell’s equations.
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Figure 4.5: Top: Ez amplitude along the ground for a day-to-night segmented ionosphere over
an ocean-like ground. The h′ and β parameters for each segment are marked along the figure
with four segments shaded in increasingly darker gray for the transition from day to night.
Bottom: The amplitude difference from LWPC and EMP2D to LMP. MODIFIED FROM GASDIA AND

MARSHALL (2021), ©IEEE 2021.
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4.3 Propagation examples

It can be instructive to examine how each parameter of the EIWG scenario influences

propagation along the path. In this section we present a collection of amplitude and phase curves

for changes in h′, β , transmitter frequency, collision frequency profile, magnetic field direction,

ground conductivity, the presence of multiple ionospheric species, and density perturbations

vertically and along the propagation path. True ionospheres include combinations of these effects

and vary along the path, but the following plots indicate the sensitivity of the measurements to

each parameter and illustrate the nonlinear nature of some of these effects.

Each example modifies the same underlying homogeneous exponential daytime scenario

with the parameters:

• 24 kHz transmitter

• vertical 50 µT magnetic field

• ground with σ = 0.001Sm−1, εr = 15

• h′ = 75 km

• β = 0.35 km−1
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Change in h′

Using Wait’s exponential ionosphere profiles, h′ correlates closely with the effective height

of the waveguide (the dominant reflection height of the wave). Figure 4.6 shows that as h′

increases, the field strength pattern moves outward from the transmitter. A change in h′ of

just ∼ 2km changes the phase by 45° across much of the plotted range. The typical phase

measurement noise is 1°.
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Figure 4.6: Amplitude and phase along the ground using the standard parameters (β =
0.35km−1) and adjusting h′ in steps from 70 km to 80 km.
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Change in β

Changes in β , shown in Fig. 4.7, are more difficult to describe. This plot covers the

entire typical day to night range of β values, with day from 0.2 to 0.4 km−1 and night from 0.5

to 0.7 km−1 (McRae & Thomson, 2000; Thomson et al., 2007). In general we see that as β

increases, the influence of β on amplitude and phase decreases. We also see that the amplitude

is higher on average for high β ionospheres, which corresponds with a “sharper” waveguide

boundary. There is very little sensitivity of subionospheric VLF to β above 1.0km−1. Higher β

also tends to result in deeper nulls.
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Figure 4.7: Amplitude and phase along the ground using the standard parameters (h′ = 75 km)
and adjusting β in unequal steps from 0.2 km−1 to 2 km−1.
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Change in frequency

The effect of transmitter frequency, shown in Fig. 4.8, is very similar to the effect of h′ on

amplitude and phase. This is logical given that the physics of waveguides is largely determined

by the guide height relative to the wavelength. Increasing frequency (decreasing wavelength)

is similar to increasing h′.
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Figure 4.8: Amplitude and phase along the ground for transmitter frequencies between 5 kHz
and 60 kHz. Each amplitude curve is shifted by 10 dB so the field strength pattern is easier to
see.
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Change in collision frequency

Wait’s number density profiles were derived assuming a particular exponential collision

frequency profile (Section 2.1.2.3). The amplitude and phase curves resulting from scaling the

collision frequency up or down by a factor of 5 and changing the slope of the exponential profile

by ±0.01 are shown in Fig. 4.9. The collision frequency profile is assumed to be fairly stable,

but may vary in the presence of storms. Even small differences in the true profile will result

in recovering different h′ and β values when estimating the ionosphere using subionospheric

VLF signals. Increasing the collision frequency has an effect similar to increasing h′. This is

expected given the relationship between h′ and collision frequency through Wait’s conductivity

parameter.
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Figure 4.9: Amplitude and phase along the ground for several different exponential collision
frequency profiles. The Wait collision frequency profile is ν0 exp(−0.15z).
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Change in magnetic field

The influence of Earth’s magnetic field on the propagation of VLF waves has been observed

from the early days of longwave radio experiments (Crombie, 1958). The effect manifests as

a difference in propagation between the east and west directions. At day there is very little

difference, but at night when the reflection occurs at higher altitudes, the influence of the

magnetic field is more pronounced. Both are shown in Fig. 4.10. There is no simple way

to generalize the effect of the magnetic field on the amplitude and phase, but the difference

between eastward and westward propagation is easily measured. This demonstrates why it is

important to consider the magnetic field direction in propagation models.
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Figure 4.10: Top: With the daytime ionosphere h′ = 75 km, β = 0.35 km−1, magnetic field
direction has a relatively small but measurable influence on the Ez field along the ground.
Bottom: Magnetic field has a stronger effect on nighttime propagation; here the ionosphere has
h′ = 82 km, β = 0.6km−1.
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Change in ground

The electrical parameters of the ground have a significant affect on the attenuation

of longwaves in the Earth-ionosphere waveguide. Figure 4.11 shows that the field strength

over very low conductivity icy polar regions and dry soil are roughly 30 dB down from high

conductivity sea water over much of the path. Although ground conductivity is assumed known

from VLF ground conductivity maps for D-region estimation, the maps are several decades old

and do not capture changes in urban areas or soil moisture (Fan & van den Dool, 2004). It

is unknown to what extent this might affect VLF measurements. Some researchers attempt

to use all-sea paths to reduce ionosphere estimation error from errors in the assumed ground

conductivity (Thomson et al., 2007).
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Figure 4.11: Amplitude and phase curves for the 10 standard grounds used in LWPC and the
Morgan (1968) VLF ground conductivity maps.
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Multiple ionosphere species

LongwaveModePropagator.jl allows any number of species to be included in the iono-

sphere. LWPC has limited support for a positive and negative ion to be included with electrons.

Figure 4.13 shows amplitude and phase curves for an electrons-only ionosphere and an iono-

sphere with electrons, light positive and negative ions, and heavy positive and negative ions

with masses of 58 000 me and 120 000 me, respectively. The number density profiles for all of

these species are shown in Fig. 4.12. These are profiles generated using MSIS and GPI. The

presence of ions in the ionosphere has very little influence on the amplitude and phase. After a

null near 750 km from the transmitter there is a constant offset of about 0.3 dB and 0.3°. The

difference in amplitude is above the typical VLF receiver noise floor and could effectively bias

the ionosphere estimate during an inversion process that uses an electrons-only ionosphere,

but it would be difficult to measure the influence of the ions directly because uncertainty is

dominated by the electrons.
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Figure 4.12: Density profiles of the five ionospheric species used to produce the amplitude and
phase curves in Fig. 4.13. The curves are computed using the GPI model with neutral species
from MSIS and an electron density profile from FIRI.
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Figure 4.13: Amplitude and phase curves for an electrons-only and five-species ionosphere
using the profiles in Fig. 4.12. There is a small, nearly constant bias in amplitude and phase
over much of the path between the two ionospheres.
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Localized perturbation

So far, all of the ionospheres examined have been homogeneous. In reality, most iono-

sphere perturbations occur in a localized region along the propagation path. Here, a Gaussian

perturbation having a peak amplitude of 100 times the background electron density and a half

width of 5 km is placed on a background Wait profile at different locations in the waveguide.

Profiles are plotted in Fig. 4.14. The perturbation is located at 40, 50, 60, 70, or 80 km altitude

and 0 through 2500 km along the propagation path in 500 km increments. The disturbed

waveguide segment is 300 km long and the surrounding ionosphere is homogeneous daytime

with h′ = 75km, β = 0.35km−1 or homogeneous nighttime with h′ = 82 km, β = 0.6km−1.
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Figure 4.14: Gaussian disturbance profiles with a peak amplitude of 100 times the electron
density at the center height and a half width of 5 km.

Figure 4.15 shows the amplitude curves for the different disturbance positions with

background daytime and nighttime ionospheres. The dark blue colors are the curves associated

with disturbances that occur for the first 300 km and are located sequentially at 40 through

80 km altitude and the reddish curves are for the disturbances that occur furthest from the

transmitter. The amplitude response to a given disturbance is complicated—there are both

short- and long-range affects. Although this may not be true in general, long-range effects for

these perturbations are less for the nighttime ionosphere.
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Figure 4.15: Amplitude curves along the ground for disturbed ionospheres with a Gaussian per-
turbation that is shifted up in altitude and out in distance from the transmitter for a background
daytime ionosphere (top) and nighttime ionosphere (bottom).

Figure 4.16 shows cross sections of the amplitude difference between the disturbed

and undisturbed ionospheres at 2000 km, 2500 km, and 3000 km from the transmitter. The

variability suggests that for an observed change in amplitude at a single receiver, it is difficult

to know where the perturbation causing the deviation is located along the propagation path

without additional information. The electron density of the background nighttime ionosphere

is sufficiently low that the perturbation only begins to affect the amplitude at 60 km altitude,

but there are small differences for perturbations as low as 40 km in the daytime. Although not

presented here, the magnitude of the perturbation also influences the measurement.
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Figure 4.16: Cross-sections of the difference in amplitude between the disturbed and undisturbed
daytime (top) and nighttime (bottom) ionospheres at 2000 km, 2500 km, and 3000 km from
the transmitter. The heatmap axes specify the altitude of the perturbation and its distance from
the transmitter.



Chapter 5

D-region imaging techniques

5.1 Problem description

Although constant path-average estimates of the D-region have been produced using

subionospheric VLF for decades, the goal of this work is to leverage arrays of VLF receivers to

produce a spatially varying estimate of electron density in the D-region. This estimate can be

represented as a geographic map or “image” of electron density at a set altitude. Imaging the

D-region is a nonlinear, underdetermined, and ill-posed inverse problem. It is underdetermined

because the number of states x being estimated (electron density at each point in space) greatly

exceeds the number of observations y (usually fewer than 100). In reality, the electron density

varies smoothly across space, so it is necessary to discretize the state representation. The

problem is ill-posed because there are potentially a near-infinite number of combinations of

electron density along a path that produce the same observation at a receiver. Conventional

D-region estimation techniques (Section 2.2.2) circumvent this problem by discretizing the

electron density so there is only one density profile used for the entire path—this is the “path

average” estimate.

Localization of the observations is also complicated. Theoretically, receivers are sensitive

to conductivity at any height in the waveguide, but the sensitivity of the observation varies

nonlinearly based on the relative positions of the transmitter, local ionosphere, receiver, and

the surrounding waveguide conductivity. The sensitivity of an observation to electron density

perturbations at different locations in the waveguide was demonstrated in Section 4.3.
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Figure 5.1: Propagation paths from the NML and NLK VLF transmitters (Î) in North Dakota
and Washington to receivers (•) across Canada. The great circle propagation paths (black lines)
appear as straight lines because the map is drawn using a Lambert conformal conic projection.

In the horizontal plane (in latitude/longitude) the receivers observe the states sparsely.

Assuming stationary transmitters and receivers, as shown in Fig. 5.1, the observations are only

sensitive to electron density along or immediately near the propagation path.1 Therefore,

the solution method must not only constrain the estimate along each path, but fill in the gaps

between paths.

5.2 Solution scheme

The basic approach to solving this nonlinear estimation problems is to: 1) begin with a

best-guess ionosphere, 2) apply a forward propagation model to the initial estimate, 3) compare

the model and real observations, 4) adjust the ionosphere estimate, and 5) repeat steps 2)–4)

until the difference between the forward modeled and real observations is within some threshold.

In particular, once the residuals between the model and real ionosphere are comparable to

the measurement noise, no further information can be extracted from the observations and

the iterations can stop. Given the non-uniqueness of the problem, it is not necessarily true

1 Density perturbations in the ionosphere can cause the radio wave to scatter so that a measurement at the
receiver may be affected by the ionosphere off the great circle propagation path (Poulsen, 1991; Burns et al.,
2021).



76

that the final estimate is the “correct” ionosphere or even the global minimum in some sense

of the estimate fit. To paraphrase the geophysicist Albert Tarantola, “observations can only

reject models, not suggest them” (Tarantola, 2006). The solution we choose should not only

satisfy the observations, but have physical characteristics that we encode in some way based on

our preexisting knowledge of the ionosphere. Practically, this means the estimated ionosphere

should have a spatial correlation that reasonably represents the D-region, and we may want it

to be similar to a prior estimate of the ionosphere as well. It is not hard to produce an estimate

of the D-region with acceptable measurement residuals but completely implausible variations

of the ionosphere. In this section we will define some common characteristics of our solution

scheme and briefly discuss several estimation and optimization techniques before presenting

details of two methods we applied to this problem.

5.2.1 State representation

To reduce the dimensionality of the problem we follow the usual practice of parameterizing

the electron density in the vertical direction by assuming Wait’s exponential profile (Eq. (2.9)).

Therefore, the final ionosphere estimate can be represented as a pair of geographic maps: one

for h′ and one for β . The state vector x is then just a stacked vector of h′ and β values for each

geographic location. As usual with Wait’s profile, we inherently assume the collision frequency

profile in Eq. (2.7) and additionally we assume an electrons-only ionosphere. Because of this

parameterization in the vertical direction, although it’s technically three-dimensional, we often

describe our solution as a two-dimensional estimate, as opposed to the “one-dimensional” path

average estimates that are produced when assuming a constant ionosphere profile along the

propagation path.

Two different approaches have been used to reduce dimensionality in the horizontal

plane. In Gasdia and Marshall (2019), h′ and β were estimated on a latitude/longitude grid.

A spherical spline interpolation (Dierckx, 1993) was used to interpolate from the grid onto

latitude/longitude points every 120 km along each propagation path to determine the h′ and β



77

values for each waveguide segment in the propagation model. At higher latitudes this scheme

resulted in northern regions of the grid having significantly denser estimates than the southern

portion of the estimation region.

A new scheme performs the estimation on a grid defined on a projected plane. The North

America Equidistant Conic (ESRI:102010) projection is used for the simulated observation

experiments in this dissertation2 and is compared to lat/lon coordinates in Fig. 5.2. As an

equidistant projection, distances along meridians are proportionally correct and distances along

the 20° N and 60° N latitudes are also correct (Snyder, 1987).3 Latitude/longitude points every

100 km are extracted along each propagation path, projected into the plane, and then h′ and β

is interpolated from the grid control points onto the propagation path. This scheme means the

ionosphere is estimated with equal spatial density over the estimation region, and because the

interpolation occurs on a plane grid, a greater number of interpolation methods are available.

The error from applying a spherical interpolation method to coordinates defined on the WGS84

ellipsoid is also eliminated.

5.2.2 Observations

The receiver observations and forward model outputs have been thoroughly discussed

earlier in this dissertation. For the simulated observation experiments in Chapter 6, both

vertical electric field Ez amplitude (dB · µV/m) and phase (deg) are measured at every receiver

so y is a stacked vector of amplitudes and phases for each propagation path. In Gasdia and

Marshall (2019) we used only phase measurements, and although we have found that using

both amplitude and phase measurements outperforms either alone, it is not usually a necessity

to use both. The typical amplitude measurement noise is σA = 0.1 dB and phase noise is

σφ = 1°. VLF receivers are capable of sampling tens of times per second, much faster than the

2 In PROJ notation (Evenden, 1990) this is: +proj=eqdc +lat_0=0 +lon_0=0 +lat_1=20 +lat_2=60
+x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs.

3 Distances on the equidistant conic projection are proportionally correct with respect to the WGS84 ellipsoid,
but are not equivalent to the great circle distances between points.



78

La
ti

tu
de

(d
eg

)

Longitude (deg)

30

35

40

45

50

55

60

65

70

75

−140 −130 −120 −110 −100 −90

y
(m

)

x (m)

500000

1× 106

1.5× 106

2× 106

2.5× 106

3× 106

−2× 106 −1× 106 0

Figure 5.2: The great circle propagation path from the NML transmitter (Î) to a receiver
(•) in Whitehorse, Yukon. The ionosphere is segmented every 100 km along the path (+) for
the forward model. Estimate control points (◦) are also plotted. The plot on the left is in
latitude/longitude and the plot on the right uses the ESRI:102010 projection.

time it takes to make the estimate, so the effective measurement noise can be reduced further

by averaging samples over several seconds. However, the measurement noise is already very

low compared to other uncertainties in the problem. Unlike most previous D-region estimates

using subionospheric VLF, we assume that the observations are calibrated to the transmitter,

i.e. we assume the radiated power is known and that phase measurements are coherent with the

transmitter. This is a significant assumption because we have little insight into the operation of

the U.S. Navy VLF communication transmitters. One way to achieve an instantaneous reference

field for the transmitter is to place a receiver in its immediate vicinity, but further research into

this technique is required. It would also be beneficial to study the ability of the estimation

methods to cope with a bias between the real and modeled observations.

Several research groups operate networks of VLF receivers (Clilverd et al., 2009; Samanes

et al., 2015; Pal & Hobara, 2016; Gross & Cohen, 2020), and it is typical that some propagation

paths between transmitters and receivers will criss-cross (pass through the same geographic

point). Example paths were shown in Fig. 5.1. This constrains the ionosphere estimate because

the estimate at the crossing point must be consistent with both path measurements. However,
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if we assume that the ionosphere is spatially correlated, then the ionosphere estimate off of any

propagation path is statistically related to the estimate along a propagation path. This means

that measurements from paths that are close together but not crossing can both contribute

information to the estimate in the region near both paths. We expect the correlation between

the ionosphere from one point to another to decrease with distance until the ionosphere at the

second point can no longer be meaningfully predicted from the first. Intuition tells us that a

receiver in Florida measuring the signal from the NAA transmitter in Maine should probably

not be used to estimate the ionosphere over California. This is because the spatial correlation

length of the ionosphere is shorter than the distance from the east coast to the west coast of the

United States.

Each observation from the receiver array needs to be localized so that it is only used

to update a subset of states across the map. Several localization schemes have been tested,

all based on the great circle distance from the path to the estimate control points. This is

complicated by the indirect relationship between the ionosphere and receiver: the measurement

is nonlinearly sensitive to the ionosphere along the propagation path, it is not clear how off-path

control points should be localized, and the two-dimensional forward models do not consider

the off-path estimate. Other indirect observations like those produced from satellite-borne

microwave radiometers use weighting functions to localize the observations (Fertig et al., 2007),

but for our problem we do not have a fast way to establish what the weights should be for

a given estimate. In Gasdia and Marshall (2019) we use a localization region around each

propagation path that circles the transmitter, spreads outwards toward the midpoint of the

propagation path, then converges inwards until circling the receiver. Any estimation points

within this region are given a weight of 1 and any points outside of this region have a weight of

0. In Chapter 6, any estimate control point within ground range r from a propagation path is

given a weight of 1 and all others a weight of 0. Localization for one path is shown in Fig. 5.3.

Additional points are removed from around the edges of the estimation region to reduce the

number of points which must be estimated.
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Figure 5.3: Localization of the estimate control points (•) for the propagation path from the
NML transmitter to a receiver in the Yukon. The control points not localized to this path are
labeled with ◦. Additional filtering of points by a latitude/longitude boundary box occurs in the
simulated observation experiments.

The width of the localization for the path shown in Fig. 5.3 may appear very large; it

includes control points up to 600 km from the propagation path. Choosing an appropriate

localization region is a balance between a physically plausible region of measurement sensitivity

and the estimate grid spacing. Too small a localization region around each path and no

information is shared between the paths. Depending on the estimation method, there may even

be holes in the map.

5.2.3 Methods for optimization or estimation

Numerous approaches have been developed to solve nonlinear estimation or optimization

problems, so we will briefly discuss a few of them before detailing the methods we have applied.

One way to characterize these methods is by whether or not they converge to a local or global

solution. Local methods usually begin from an initial estimate and use a method-specific formula

to generate a new estimate that reduces the error compared to the previous estimate. This is

repeated until any change of the estimate increases the error. Local methods are susceptible to

being trapped with an estimate that is locally good, but not necessarily the best estimate (or the
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correct estimate). Global methods explicitly sample a wide range of states so that they do not

get trapped with the solution nearest to the starting estimate. In the extreme, every possible

combination of states could be tried until the combination with the lowest error is identified.

Unfortunately, this is often prohibitively expensive when the forward model is slow or there are

a large number of states. Instead, information about the probability distribution of the error

surface can be utilized so time is not wasted sampling states that are not likely to contain the

minimum error. We can build this information using techniques like Markov chain Monte Carlo

(MCMC) or Hamiltonian Monte Carlo (HMC) (Mosegaard & Tarantola, 1995; Tromp, 2020).

When less interested in characterizing the probability distribution than locating the best global

fit, variants like simulated annealing (SA) can be applied (Ingber, 1989). For very expensive

forward models, Bayesian optimization assumes an underlying distribution for the objective

function, e.g. a Gaussian process, which is used to determine what estimate should be tried

next in order to provide useful information about the global best estimate (Galuzzi et al., 2018).

Many generic global optimization methods do not easily fit into our grid interpolation scheme

because most interpolators become ill-conditioned or behave poorly when values vary wildly

from grid point to grid point.

When a reasonable initial estimate is available, the most efficient methods are local

methods that leverage the model gradient (and sometimes Hessian) to rapidly converge to the

solution. This is a technique commonly applied to cost functions for imaging problems using

optimization methods like steepest descent or L-BFGS (Modrak & Tromp, 2016). Computing the

gradient of the objective function with a forward finite difference method requires 2n forward

model runs for n states. Not only can this be extremely expensive, but often the finite difference

is a poor approximation to the true gradient and additional iterations of the optimization

method are required to compensate. We have found for the D-region imaging problem that

the error can be so bad that convergence is not possible. Optimization methods have been



82

developed to approximate the gradient with n runs (Spall, 1998), but applied to our problem

these struggled to produce valid β estimates; again, this is likely because poor “gradients” were

obtained.

Other geophysical estimation problems using the gradient for optimization rely heavily

on the adjoint method. An adjoint model linearizes the relationship between perturbations

in the observations and states (Plessix, 2006). For complicated nonlinear systems the adjoint

model is usually a computer code (Naumann, 2019), but the implementation of mode theory is

ill-suited to the development of an adjoint model. The primary difficulty is developing an adjoint

for the complex-valued complex-argument root finder which is responsible for the majority

of the model compute time. The root finder is also an issue for automatic differentiation

tools (Bartholomew-Biggs et al., 2000). Although less efficient, it is necessary to treat the

D-region imaging problem with derivative-free optimization methods. The best-known of these

is Nelder-Mead (Nelder & Mead, 1965), which “crawls” a simplex of n+ 1 estimates towards a

local solution. The method has been successfully applied to many problems despite the lack of

rigorous theory supporting it (Powell, 2007).

5.3 Ensemble Kalman filter

The Kalman filter is an estimation method originally derived for linear dynamic systems

with Gaussian noise processes (Kalman, 1960). If these assumptions are met, then the filter

generates the minimum mean square error estimate from a sequence of noisy measurements.

Because of the Gaussian process assumption, the state estimate is represented by a mean x and

variance, or covariance matrix for multiple states, P. Two steps are iterated as measurements

become available. First, the state estimate and covariance are propagated using a forecast

model from the time of the last estimate to the current time. Second, the measurement residual

is used to update the state estimate and covariance. There is no forecast model for the D-region

and we are interested in large spatial scales that change slowly relative to the measurement
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rate, so we focus on the measurement update step. The update equations are

K = PbH>(HPbH> +R)−1 (5.1)

xa = xb + K(yo −Hxb) (5.2)

Pa = (I − KH)Pb (5.3)

where subscript b indicates “background” representing the previous (prior) values and a

indicates “analysis” representing the new values. The process is depicted at a high level in

Fig. 5.4. These equations are written assuming a linearized forward model H such that the noisy

observations can be modeled by y = Hx + ε with a Gaussian measurement noise realization ε

sampled from the covariance matrix R. yo are real observations; y without subscript o indicates

forward model “observations”. Equation (5.2) clearly describes the basic procedure of updating

the previous state estimate xb based on how close the forward model observation is to the

real observation. The Kalman gain K provides the optimal weighting between the previous

estimate and the measurements based on the confidence in the previous estimate Pb and the

measurement noise R.

5.3.1 LETKF

Several variations on the Kalman filter have been developed so that it can be applied

to problems with a nonlinear forward model H(xb). Although these are no longer optimal

filters, they have been applied successfully to numerous problems (Budhiraja et al., 2007). One

way to incorporate a nonlinear forward model is to represent the state mean and covariance

by an ensemble population of states—the sample ensemble mean is the state mean and the

sample covariance is the state covariance. The forward model can be applied to each member

of the ensemble individually. There are several ensemble Kalman filter (EnKF) algorithms

(Evensen, 2003), but we have implemented the measurement update step of the deterministic

local ensemble transform Kalman filter (LETKF) because it has a simple implementation while
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Figure 5.4: Schematic of the Kalman filter measurement update as applied to the D-region
estimation problem. The Kalman gain is computed independent of the observations because a
fixed measurement noise is assumed. The cycle repeats for a sequence of array observations
over time.

supporting measurement localization and covariance inflation (Hunt et al., 2007).4 In the

LETKF, Eqs. (5.1) to (5.3) become

ePa =
�

(k− 1)I + Y>b R−1Yb

�−1
(5.4)

xa = xb + Xb
ePaY>b R−1 (yo −H(xb)) (5.5)

Pa = Xb
ePaX>b (5.6)

where ePa is the representation of Pa in the space spanned by the ensemble perturbations and

capital Xb and Yb are the zero-mean vectors xb− xb and yb− yb over the ensemble (Fertig et al.,

2007). Gasdia and Marshall (2019) list the implementation steps for this problem. Where we

say “LETKF” throughout the rest of this dissertation we are referring only to the measurement

update step or a few iterations of the measurement update. The full LETKF algorithm includes

a forecast step that is commonly used in other data assimilation applications.

4 The LETKF was designed to be computationally efficient by performing most operations in the ensemble space,
but the size of the D-region estimation problem is small compared to most applications of ensemble Kalman filters.
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5.3.2 Prior state ensemble

The Kalman filter needs an initial state estimate and covariance to get started. This is

called the prior distribution and contains all available information about the states before a

measurement has been made. Solving our problem with an ensemble Kalman filter, we construct

k initial ionospheres that together have a mean that we believe to be close to the truth, a variance

that represents our uncertainty in the prior, and that individually have a physically realistic

spatial correlation. This is accomplished using a multivariate Gaussian distribution. Each of

the scenarios in Chapter 6 use different prior means, and in general they could come from

previously published “typical” h′ and β values for day or night, a simple model like Ferguson

Eqs. (2.10) and (2.11), or even an exponential fit to a more complicated chemical model.

We then use equation (4.10) from Gaspari and Cohn (1999) to compute a covariance matrix

between estimate control points with Gaussian-like spatial correlation:

C0(z, 1/2, c) =
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(5.7)

We assume that the D-region has a spatial length scale of σ = 1200 km, which is converted

to length scale c for Gaspari and Cohn equation (4.10). As the length scale decreases, the

LETKF performance in the simulated observation experiments degrades. One result of applying

two-dimensional estimate to the D-region would be improved knowledge of the real spatial

correlation length.

The covariance matrix is multiplied by constants for the variance in h′ and β to scale

each to an appropriate uncertainty. In Gasdia and Marshall (2019) we found that performance

plateaus after an ensemble size of about k = 100 ionospheres. Three ensemble members are

shown in Fig. 5.5. Note that h′ and β are independent (not correlated), although we have also

experimented with them partially correlated. Correlating may improve the filter convergence
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as long as the correlation realistically models the true ionosphere. This is not always easy to

achieve because although typical ionospheres have a positive correlation between h′ and β ,

perturbations may have a negative correlation between h′ and β (as h′ decreases, β increases).

Because each prior ensemble ionosphere is smooth and the filter tends to retain relatively

smooth estimates, we are able to use a stiff thin plate spline to interpolate directly between the

estimate control points onto the propagation paths for the forward model waveguide segments.

5.3.3 Comments

The LETKF appears to be a relatively efficient estimator, requiring k× p× t forward model

runs for ensemble size k, p propagation paths, and t iterations. We iterate fewer than 10 times

and the filter tends to converge in just a few iterations. The filter also produces an estimate of

uncertainty computed from the variance of the ensemble. Unfortunately, because the D-region

estimation problem is ill-conditioned, it is possible given a poor prior that the filter converges to

the wrong ionosphere with high confidence. The requirement for the prior mean to be not more

than about two standard deviations from the true ionosphere (and ideally closer) significantly

limits the ability of the LETKF to estimate perturbed ionospheres when the perturbation is not

known a priori. The EnKF is essentially a local (as opposed to global) estimation method. The

standard deviation of the prior cannot be simply increased to accommodate high uncertainty

because the problem is sufficiently nonlinear that the distribution of residuals will be highly non-

Gaussian and the ensemble will likely diverge (Gasdia & Marshall, 2019). A second downside

to the technique is the need to explicitly define the localization of each path measurement to

the states: this is currently ad hoc, as described in Section 5.2.2.
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Figure 5.5: Three prior ionospheres selected from the ensemble for the daytime scenario of
Chapter 6. The ensemble mean has h′ = 75 km and β = 0.4 km−1 and standard deviation
σh′ = 1.8 km and σβ = 0.04 km−1. h′ and β are independent, although we could have chosen
them to be correlated.
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5.4 Nonlinear optimization

Approaching D-region imaging as a bounded optimization problem, we can define a cost

function J to be minimized such that

xest = arg min
x∈(xmin,xmax)

J(x ) (5.8)

where the subscript a notation for the analysis has been dropped in favor of “est” for the estimate

because it is a point estimate rather than statistical distribution. The “prior” for this method is

similarly an initial vector x rather than a distribution. The cost function is

J(x ) = Φd +λΦm (5.9)

= ‖yo −H(x )‖H +λ‖∇x‖TV (5.10)

which has been partitioned into data cost Φd and model (estimate) cost Φm. The model cost

regularizes the solution—it penalizes estimates that do not have the properties we want in

the ionosphere. Because the problem is ill-conditioned, minimizing Φd alone may result in an

ionosphere estimate that happens to produce small measurement residuals, but is unphysical.

5.4.1 Data cost

We compute data cost using the pseudo-Huber norm ‖·‖H of the measurement residuals.

The Huber norm is an l2-norm near 0 and an l1-norm outside of ± some value ε. Although the

l2-norm has nice properties for optimization, large residuals produce very high cost and thus the

l2-norm is not robust to outliers. The l1-norm is the sum of absolute values of the residuals, so

it’s robust, but it is not differentiable at zero. The Huber norm provides the quadratic properties

of l2 near the solution and the robustness of l1 when far from it (Guitton & Symes, 2003). The

pseudo-Huber loss

LH(d) = ε
2
�Æ

1+ (d/ε)2 − 1
�

(5.11)
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Figure 5.6: Loss functions of the l1, l2, and pseudo-Huber norms. The pseudo-Huber loss is
approximately quadratic within ±3 and approximately linear outside of ±3.

is a smooth approximation of the Huber norm loss (Hartley & Zisserman, 2004) for value d.

Figure 5.6 compares the loss functions for these three norms. The norm is the sum of this loss

over each element of vector d.

Before applying Eq. (5.11) to the measurement residuals, we divide them by the typical

measurement noise figures:

d =
yo −H(x )

σ
(5.12)

where σ = 0.1 dB for amplitude and σ = 1° for phase. When both amplitude and phase are

observed, separate ds are computed for each and then stacked into a single vector. Dividing by

the measurement noise effectively normalizes the measurements so that amplitude and phase

are approximately equally weighted in the data cost. We set ε= 3 so that outside of ±3σ the

residuals are penalized with an l1-norm and inside they are penalized with an l2-norm.

5.4.2 Model cost

The model cost is the total variation (TV) of the spatial gradient of the ionosphere estimate.

Unlike Tikhonov regularization, which imposes a quadratic penalty and results in very smooth

model estimates, TV imposes an l1 penalty on the model gradient. This allows TV-regularized
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estimates to retain sharp gradients that may exist in real perturbed ionospheres (Vogel & Oman,

1998). We compute the TV regularization separately for h′ and β . The entire scaled model cost

is

λh′

∑

i, j

Ç

∆u2
h′:i, j +∆v2

h′:i, j +α
2
h′ +λβ

∑

i, j

Ç

∆u2
β:i, j +∆v2

β:i, j +α
2
β

(5.13)

where ∆u and ∆v represent the horizontal and vertical gradients, respectively, across the h′

and β maps in the plane projection.5 The gradients are discrete approximations using the

Prewitt operator (Burger & Burge, 2016). α is a small term that ensures that the expression

is differentiable at zero. As α gets larger, the estimated model becomes smoother (Anagaw &

Sacchi, 2012). The square root expression is summed over every estimate control point in the

grid.

λ is sometimes called the regularization parameter. It scales the relative influence of the

data cost and model cost. Unlike the Kalman gain, there is no optimal formula to compute what

value it should have. For uncorrelated zero-mean Gaussian measurement noise of standard

deviation σ, the squared l2-norm data cost is a χ2 random variable with an expectation equal to

the number of observations N . The discrepancy principle states that the regularization parameter

should result in an estimate for which the final data misfit Φd ≈ N (Constable et al., 1987).

This is a formal way of saying that the estimate should proceed until the measurement residuals

have decreased to the measurement noise. In practice the optimization is often performed for

several values of λ (Farquharson & Oldenburg, 2004). A plot of the final data cost against a

Tikhonov regularization model cost for several λ has the general appearance of an “L” and is

referred to as an L-curve. It is often the case that the λ value corresponding to the maximum

curvature point of the L-curve represents a good solution (P. C. Hansen, 1992; P. C. Hansen &

O’Leary, 1993). However, there is no guarantee with total variation (TV) regularization that the

curve will be L-shaped with a corner containing the optimal regularization parameter (Mead,

2020). The “L-curve” for the terminator scenario of Chapter 6, shown on the left of Fig. 5.7, is

5 Although it does not immediately appear similar to the l1-norm, the absolute value of a gradient is the square
root of the sum of squares of the individual gradients (in u and v).
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Figure 5.7: Left: “L-curve” plot of model Φm against data Φd cost for different regularization
parameter values λ. Right: Mean absolute error of h′ and β at the final estimate control points.

constructed using the final estimate and does not look like the typical L-shape. On the right

of Fig. 5.7, the mean absolute deviation of the h′ and β estimates from the true values at the

control points is plotted as a function of λ. The error essentially plateaus for λ ® 1, which

indicates the estimate is limited by the data cost Φd .

I found that λ = 1 worked well for our simulated observation experiments, although 5 or

10 would have also been reasonable. Several different λ values should be tried when applying

the method to real data. It’s also not unreasonable to use different λ values for different

ionosphere conditions. To give appropriate weighting to the β model cost, we scaled λh′ = λ to

λβ = 10λ because β has values roughly an order of magnitude less than h′.

5.4.3 COBYLA

Although a local and/or global method could be applied to this problem, we have had

good results using a local method on unperturbed ionospheres. It is difficult to predict the

performance of gradient-free nonlinear optimization methods on a particular problem without

trying them. After applying very fast simulated annealing (VFSA, Ingber, 1989), covariance

matrix adaptation evolution strategy (CMA-ES, N. Hansen and Ostermeier, 2001), differential
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evolution (Storn and Price, 1997), locally-biased dividing rectangles (DIRECT-L, Gablonsky and

Kelley, 2001), controlled random search (CRS, Kaelo and Ali, 2006), constrained optimization by

linear approximations (COBYLA, Powell, 1994), bound optimization by quadratic approximation

(BOBYQA, Powell, 2009), a variant of Subplex (Sbplx, Rowan, 1990), and others as my own

implementations and across several libraries including Feldt (2018) and Johnson (2021), the

most consistently effective method was COBYLA. Given the number of variables in designing the

solution scheme and tuning each algorithm, it is possible that another algorithm might perform

more efficiently under the right conditions, but COBYLA has been very robust for our problem.

The algorithm is similar to Nelder-Mead except it constructs linear polynomial approx-

imations to the cost function by interpolation at the n + 1 vertices of the simplex. At each

iteration, the worst simplex vertex is replaced by one that minimizes the linear polynomial

within an automatically calculated trust region. The algorithm also attempts to keep the simplex

in a regular shape. Because it incrementally “crawls” its way to the solution with step size

limited by a trust region, the estimate tends to remain relatively smooth, which is easy on

the grid interpolator. Although it supports constrained minimization, we had greater success

applying our algorithm directly to the cost function, Eq. (5.9), without constraints except for

bounds on h′ and β . Compared to the LETKF, the algorithm has a greater number of steps and

includes several logic branches, but it has already been implemented in several software libraries

including NLopt (Johnson, 2021), which was used for the results in Chapter 6. Unfortunately,

like Nelder-Mead, Powell (1994) remarks that it is difficult to formulate meaningful theoretical

bounds on the efficiency of COBYLA. Depending on the shape of the cost function surface it

could converge more quickly because of the linear approximation of the cost function, or it

could converge more slowly if it is difficult for the algorithm to maintain a regularly shaped

simplex (SAS Institute Inc., 2021).
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5.4.4 Multiscale interpolation

As the problem size (number of estimated states) increases, it becomes increasingly

difficult for any method to find the cost function minimum. COBYLA uses n+ 1 vertices in a

simplex and only changes a single vertex per iteration. Therefore, n cost function evaluations

(n× p paths total propagation model runs) must occur to change each state once. For a dense

grid of estimate control points this would be very inefficient. Instead, we apply COBYLA several

times from large to small spatial scales. First, we use a sparse estimate grid with n≈ 10 control

points. COBYLA is able to make relatively large changes to the initial estimate in order to capture

major trends in the ionosphere. We iterate COBYLA until the forward model has been run

approximately 600 times (600p propagation model runs). Then, we interpolate the resulting

ionosphere onto a new, slightly denser grid, and run COBYLA for another 600 iterations. Our

current scheme uses four spatial scales with grid spacings of 900 km, 600 km, 300 km, and

100 km. n increases at each scale and COBYLA is not able to move the simplex as far within 600

iterations, but at each step the estimate does not need to move as far to approach the minimum.

The ionospheres defined on the coarse grids were often not suitable for rigid spline

interpolation. Instead, we apply a locally weighted regression (LWR, Cleveland, 1979) to

interpolate from the control points to the propagation paths and control points at the next

spatial scale. LWR is also known as loess when applied to smoothing points on a scatter plot. To

interpolate across our two-dimensional estimation grid, we apply a Gaussian weighting function

w= exp
�

−
r2

2τ2

�

(5.14)

for distance r and “bandwidth” τ. We use the implementation from Hoffimann (2018) which

scales distances relative to the dimensions of the grid. We found that τ= l × 10−7 for length

scale l was able to produce reasonably accurate interpolations of the truth. As τ increases,

the interpolation becomes smoother and sharp transitions in the real ionosphere cannot be

accurately represented by even the 100 km grid. Table 5.1 shows l for each grid spacing used
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Figure 5.8: Estimate control points (◦) at the four spatial scales using projected spacings of 900,
600, 300, and 100 km. The estimate begins at 900 km and is then interpolated onto each finder
scale after 600 iterations of COBYLA.

in the simulated observation experiments of Chapter 6. A statistically rigorous interpolator like

kriging could encode the physical correlation length of the ionosphere into the interpolation,

but most kriging implementations are not monotonic. The kriging interpolation has significant

unphysical oscillations at transitions in the ionosphere as expected at the terminator and at

perturbations.

5.4.5 Comments

This multiscale estimation technique is less efficient than the LETKF, requiring 2400p

forward model runs compared to 1000p for ten iterations of the LETKF and p propagation

paths. However, it is robust to poor initial estimates and does not require explicit encoding
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Grid spacing (km) Length-scale l (km)

900 1000
600 800
300 600
100 400

Table 5.1: Estimation grid spacing in projected kilometers and the length scale used for in-
terpolation bandwidth and localization in WGS84 kilometers. The projected distances are
proportional to the WGS84 distances, but they are not exactly the same. However, over much
of the map they are within ∼ 1 %.

of localization—it happens implicitly through the LWR interpolator. It may also be possible

to increase the efficiency of this method by adjusting the 600 iterations to a smaller value,

stopping early if some condition on the model or data cost is met, or using a different number of

iterations for the different spatial scales. We found 600 to be a reasonable compromise between

estimate accuracy and run time, but maximizing efficiency of the method was not an explicit

goal.

Although this method does not provide a measure of estimate confidence, the robustness

of the estimate can be tested by restarting the method with a different initial ionosphere. The

method should converge to approximately the same ionosphere. The measurement residuals

indicate if the estimate is valid, but the estimate itself is subjective because of the ill-conditioned

nature of the problem.



Chapter 6

Simulated observation experiments

Simulated observation experiments use artificial observations to test the estimation meth-

ods against known “truth” ionospheres. To decrease dependence on the forward propagation

model, the estimation methods use LWPC as the forward model and the simulated observations

are generated using LMP with independent Gaussian noise added to each observation. Although

Chapter 4 showed that the two models are in good agreement, in some scenarios the difference

between the models can build to a measurable level for ionospheres with a large number of

segments (every 100 km along the path). Both models use identical ground conductivity maps

and magnetic field vectors from the International Geomagnetic Reference Field (IGRF)-13

(Thébault et al., 2015).

The truth ionospheres are defined as continuous functions of latitude/longitude, not

confined to the estimate grid. This places a lower bound on the estimate accuracy that can be

obtained due to error in the interpolation scheme from the grid points, i.e. even if the ionosphere

is perfectly estimated at all of the control points, the interpolated surface differs somewhat

from the continuous truth ionosphere.

Because the estimate maps are produced from interpolating or extrapolating from the

non-rectangular grid of control points, it is necessary to define a region where we believe the

estimate is reasonably confident. The LETKF variance at each control point can be interpolated

across the map, but instead we explicitly use the 100 km path segments to construct a map of

kriging variance. Kriging is an interpolation method commonly used in geophysics that uses
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Figure 6.1: Kriging variance assuming “measurements” every 100 km along each propagation
path with a Gaussian variogram having range 600 km and a sill of 1. The dashed line represents
the σ2 = 0.22 threshold used to mask the interpolation boundary in the following maps.

Gaussian processes to make the best linear unbiased prediction of a sampled field at a new

point (Krige, 1951; Matheron, 1963). Like the Kalman filter, it also provides an estimate of the

variance at that point. If we assume our “measurements” really occur at the 100 km intervals

over which the interpolated h′ and β surfaces are sampled for the forward model, then those

regions of the map with dense paths (and ionosphere segments) have lower variance than those

that are sparsely sampled. We set up an ordinary kriging (OK) problem with a variogram range

of 600 km (equal to the localization range) and sill of 1. Whereas the previously mentioned

scale lengths correspond to standard deviations, the variogram range indicates the maximum

range at which the field at one point is correlated to another. The “sill” represents the variance

of the field beyond the variogram range. We mask the regions of the estimate maps where

the kriging variance is greater than σ2 = 0.22, shown in Fig. 6.1, although we could choose a

different value depending on what we consider an acceptable level of uncertainty.
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Figure 6.2: Daytime truth ionosphere defined using the Ferguson model at 2020-03-01 2000
UTC. Transmitters at the south of the map are marked with Î and receivers are marked with •.
Although experiments in real life may require receivers placed near each of the transmitters, no
such receivers were used in these simulated observation experiments.

6.1 Daytime scenario

6.1.1 Truth model

This section shows the results of a simulated observation experiment for a “typical” daytime

ionosphere defined using the Ferguson model (Section 2.1.2.3) at 2020-03-01 2000 UTC. The

true h′ and β maps (without interpolation) are shown in Fig. 6.2. The ionosphere is very slowly

varying—it’s nearly homogeneous.

6.1.2 Prior model

With real data, Ferguson could be used as the prior mean (for LETKF) or initial estimate

(for the cost function minimization), but here we use a constant ionosphere with h′ = 75 km and

β = 0.4 km−1. The standard deviation of the LETKF prior is σh′ = 1.8 km and σβ = 0.04 km−1.

As previously mentioned, the LETKF uses a Gaussian-like spatial covariance with a length scale
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Figure 6.3: Top: Initial ionosphere for the day scenario (mean of the ensemble prior for the
LETKF). Bottom: Difference between the prior mean and true ionosphere.

of 1200 km to generate the prior (Fig. 5.5).

For easier comparison to the estimates, the prior h′ and β (ensemble mean for LETKF)

and error between the prior and true ionosphere is shown in Fig. 6.3. Both h′ and β are biased

high compared to the truth.
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6.1.3 Estimates

To avoid having pages and pages of plots, I will often show sequences of plots for h′ only.

β usually follows a similar trend.

Figure 6.4 shows the h′ error over six iterations of the LETKF. Note that the result of the

first iteration is a large change from the prior error. We often observe that the first iteration

makes the largest change in the states and removes much of the bias from the prior ionosphere

model. The next five iterations have relatively little change.

Figure 6.5 shows the h′ error at each step of the multiscale optimization of the cost function

as minimized by COBYLA. Because the daytime scenario is smooth and very slowly varying,

the lowest order spatial scale already captures much of the true ionosphere. At smaller spatial

scales there is some local error, but the overall region within ±0.5km of the truth increases, as

shown by the dotted contour lines. One downside to the smaller spatial scales is that with real

data it could be difficult to determine if local changes in h′ are real or artifacts of the estimate.

It may be necessary to continue running the final estimate until some convergence criteria on

change in the states is reached rather than always stopping after 600 iterations. The particular

configuration in iteration 4 of Fig. 6.5 may also be a local minimum of the cost function and

we are effectively overfitting the data at this scale. Nonetheless, note that in iteration 3 the

control points are identical to those used by the LETKF and this method has resulted in a better

estimate.

Figure 6.6 shows the actual estimated h′ and β ionosphere parameters using the LETKF.

Below them are the ensemble standard deviations at each control point interpolated across

the map. This indication of the uncertainty in the estimate has a reasonable match to areas of

locally high error—where there is high error, the LETKF has also indicated higher uncertainty.

Figure 6.7 is the final h′ and β estimate from the multiscale estimation. Overall h′ closer

to the truth than the LETKF, but the regions of locally high h′ are evident near the center of the

map. β is slightly worse. The mean absolute deviation from the true ionosphere is 0.41 km in
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Figure 6.4: h′ error at each of six iterations of the LETKF for the daytime scenario. The fine
dotted line is a ±0.5km error contour.
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Figure 6.5: Difference between the estimated and true ionosphere at each step of the multiscale
optimization of the cost function for the daytime scenario. In iteration 4 the control points (◦)
are lightly colored so it is easier to see the error map.
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Figure 6.6: Top: Final LETKF estimate of the daytime ionosphere. Bottom: Standard deviation
of the LETKF ensemble indicates the uncertainty in the estimate.
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Figure 6.7: Estimated daytime h′ (left) and β (right) from the multiscale optimization method.

h′ and 0.007 km−1 in β for the LETKF estimate and 0.30 km in h′ and 0.016 km−1 in β for the

COBYLA estimate.

Besides the standard deviation map in Fig. 6.6, the LETKF ensemble distributions can

be plotted to indicate how the filter converges at specific points. We choose the grid points

labelled 1, 2, and 3, shown in Fig. 6.8, to analyze the ensemble. Figure 6.9 plots the h′ and β

error of each member of the ensemble at those three points as well as the Gaussian fit to the

ensemble. The estimate confidence increases significantly from the prior to the first iteration

and by the second iteration the estimate at each of these points is near the correct value.

Even when the truth ionosphere is unknown, the final estimate can be checked for consis-

tency with the observations by comparing the real observations to the modeled observations

through the estimated ionosphere. If these residuals are approximately equal to the measure-

ment noise, than the estimate cannot be rejected by the observations. Figure 6.10 shows the

prior and estimated amplitude and phase residuals for both techniques. The horizontal gray

colored line indicates the 1- and 2-σ noise bounds about zero. The final estimates of both

the LETKF and COBYLA-minimized cost function are consistent with the observations. The
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Figure 6.8: Select control points 1, 2, and 3 used for analysis of the LETKF ensemble members.
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Figure 6.9: Daytime ensemble error in h′ (left) and β (right) at the prior and after each iteration
of the LETKF for select grid control points 1, 2, and 3 from Fig. 6.8. Point 3 has higher variance
because of the lower path density in its region, i.e. point 3 is localized by fewer paths than
points 1 and 2.
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Figure 6.10: Measurement residuals for the prior and estimated daytime ionospheres using
both estimation methods. The y-axis of the plot is linear between the horizontal dotted lines
and logarithmic outside of those lines. The tiered solid gray bars about zero indicate the first
2σ of measurement noise.

small differences in the prior residuals between the LETKF and COBYLA are due to the different

interpolation methods used for each method.

6.2 Terminator scenario

6.2.1 Truth model

The terminator scenario uses a coarse model for the terminator ionosphere that transitions

from a constant daytime ionosphere to a constant nighttime ionosphere through a logistic curve

in solar zenith angle χ:

h′(χ) =
h′night − h′day

1+ exp
�

−0.7(χ − 95°)
� + h′day (6.1)

where h′day = 74 km and h′night = 86 km. This curve is shown in Fig. 6.11. The β ionosphere

follows an identical curve using βday = 0.3km and βnight = 0.5 km in place of h′day and h′night.

This scenario occurs at 2020-03-01 0200 UTC. The truth map is shown in Fig. 6.13. The
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Figure 6.11: h′ model for the terminator scenario. β follows the same logistic curve adjusted
for typical day and night values of β .

scenario is challenging because the terminator transition occurs over only two columns of the

300 km control point grid for the LETKF method.

6.2.2 Prior model

The prior ionosphere for both methods is the Ferguson ionosphere (Section 2.1.2.3) at

2020-03-01 0200 UTC. As evident from Fig. 6.13, the Ferguson ionosphere does not capture

the rapid day/night transition of the truth ionosphere. Additionally note that the prior error

map in Fig. 6.13 is scaled differently than most of the other error maps. The h′ prior is biased

from the truth by nearly −6 km on the eastern side of the map and by 2 km on the western side.

To compensate for this, the prior ensemble variance for the LETKF is increased to σh′ = 3km

and σβ = 0.05km−1.

6.2.3 Estimates

Figure 6.14 shows the h′ and β estimates and standard deviations from the LETKF method.

Clearly this is a better estimate of the truth than the prior, but there is some local structure

on the map. The standard deviation map resembles the standard deviation for the daytime
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Figure 6.12: True h′ and β ionosphere parameters for the terminator scenario.

scenario because the paths and the measurement noise for each path are the same.

Figure 6.15 shows the multiscale COBYLA estimate and estimate error. The COBYLA

estimate is closer to the truth and has fewer local perturbations compared to the LETKF estimate.

The mean absolute deviation from the true ionosphere is 0.85 km in h′ and 0.024 km−1 in β

for the LETKF estimate and 0.41 km in h′ and 0.017 km−1 in β for the COBYLA estimate.

Both methods are compared at the 300 km control point spacing (step 3 for the multiscale

optimization) in Fig. 6.16. COBYLA is closer to the truth at this stage of the optimization as

well.

The LETKF h′ and β ensemble members at control points 1, 2, and 3 from Fig. 6.8 are

shown in Fig. 6.17. Although the prior ensemble is wider than the prior used for the daytime

scenario and is farther from the truth, the ensemble has similar characteristics over the six

iterations. The confidence greatly increases and approaches the truth at the first iteration and

changes relatively little over the next six iterations.

The measurement residuals for the terminator scenario are shown in Fig. 6.18. The esti-

mate residuals are slightly worse for this scenario than for daytime, especially for the multiscale
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Figure 6.13: Top: Ferguson prior ionosphere for the terminator scenario. Bottom: Difference
between the prior and true ionosphere. Note that the h′ difference plot uses a much wider scale
than the corresponding plot for the daytime scenario.
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Figure 6.14: Estimated terminator ionosphere (top) and standard deviation (bottom) using the
LETKF method.
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Figure 6.15: Final estimated terminator ionosphere (top) and error from the truth (bottom)
using the multiscale COBYLA optimization method.
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Figure 6.16: Terminator error in the h′ (left) and β (right) ionosphere parameters for LETKF
(top) and the third scale of the COBYLA multiscale optimization (bottom). Both of these
estimates occur using the same 300 km control point spacing.



113
h′ est− true (km)

1

Grid #

2

3

β est− true (km−1)

-10
-5
0
5

10

-10
-5
0
5

10

Iteration

-10
-5
0
5

10

0 1 2 3 4 5 6

-0.2
-0.1

0
0.1
0.2

-0.2
-0.1

0
0.1
0.2

Iteration

-0.2
-0.1

0
0.1
0.2

0 1 2 3 4 5 6

Figure 6.17: h′ (left) and β (right) ensemble distributions for grid control points 1, 2, and 3
from Fig. 6.8 in the terminator scenario. The h′ scale in this plot is wider than the scale used
for the daytime scenario in order to accommodate the wide prior estimate of the ionosphere.

COBYLA method. Although LETKF had better measurement residuals, COBYLA actually had

the better final estimated ionosphere. This underscores the difficulty of ill-conditioned inverse

problems. With real data and an unknown truth, it would be difficult to know which of these

methods produced the better estimate.

6.3 Sensitivity to model errors

There are several sources contributing to the error in the electron density estimate. There

is error in calibrating the received amplitude and phase to each transmitter and in calibrating

the forward propagation model amplitude and phase to the transmitters. There are errors due

to the discretization and representation of the truth in the estimation scheme, e.g. interpolation

between the control points. There are also errors that result from the use of a two-dimensional
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Figure 6.18: Amplitude (left) and phase (right) measurement residuals for the terminator
ionosphere scenario using both methods. The y-axis of the plot is linear between the horizontal
dotted lines and logarithmic outside of those lines. The tiered solid gray bars about zero
indicate the first 2σ of measurement noise. Although the LETKF method has lower residuals,
the multiscale COBYLA method actually produced the better estimate of the ionosphere.

forward model and that result from uncertainty in the forward propagation model parameters

that are not estimated, e.g. ground conductivity. It is important that we understand the response

of the estimation methods to these errors when evaluating real estimates. In this section, we

examine how each of the two estimation methods respond to errors in the magnetic field, ground

conductivity map, and conductivity profile for the daytime scenario shown above. Although

this is not an exhaustive investigation, it gives some indication of how robust each estimation

method is to these errors.

6.3.1 Magnetic field

In the day and terminator scenarios above, the IGRF-13 (Thébault et al., 2015) magnetic

field model was used to model the simulated truth observations and by the estimation forward

model, i.e. the magnetic field was perfectly known. The real magnetic field in the ionosphere

is more complicated than the baseline reference model provided by IGRF. One intermediate-
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fidelity geomagnetic field model is CHAOS-7 (Finlay et al., 2020), which consists of static

and time-dependent internal fields, and a model of the magnetospheric field and its induced

counterpart. CHAOS-7 is derived from ground and satellite-borne geomagnetic measurements.

The difference between the CHAOS-7 and IGRF-13 fields at 60 km altitude at the date and time

of the daytime scenario is shown in Fig. 6.19.

The difference in field strength over the northern regions of the map reaches 300 nT;

however, the difference in the observed VLF transmitter signals is on the order of the typical

measurement noise, as shown in Fig. 6.20. Therefore, the estimation results (Fig. 6.21) are

similar to the daytime results already shown. Based on this, the IGRF-13 model is sufficient to

describe real world propagation. As we will later see, this magnetic field experiment has the

lowest effect on observations compared to the collision frequency and ground error experiments

that follow this section. The influence of the magnetic field on the observations would be

greater for a nighttime scenario (see Section 4.3) and should be investigated if performing

nighttime ionosphere estimates.

6.3.2 Collision frequency

In the original daytime scenario the collision frequency profile assumed by Wait and

Spies (1964) was used both in the estimate forward model and to generate the simulated truth

observations. The real-world collision frequency profile is a function of the background number

density and temperature profiles (Beharrell & Honary, 2008; Ieda, 2020). In this section we

generate simulated truth observations using three different collision frequency maps that scale

the exponential collision frequency profile used by Wait and Spies (1964). All three center a

Gaussian collision frequency disturbance region at 54.238° N, 104.392° W and use the profile

ν(z) = 1.816× 1011(1+Wρ)exp(−0.15z) (6.2)

where height z is in kilometers, W is a maximum weighting term and ρ is a weight that varies

between 0 and 1 to capture the Gaussian shape of the disturbance region. The first experiment
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Figure 6.19: The difference in magnitude (top), dip angle (middle), and azimuth (bottom)
between the CHAOS-7 and IGRF-13 magnetic field models at 60 km altitude.
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Figure 6.20: Difference in amplitude and phase observed on each propagation path between
the IGRF-13 and CHAOS-7 magnetic field models for the daytime scenario.

(a) uses a disturbance width (spatial standard deviation) of 800 km and W = 0.2. In other

words, the peak disturbance collision frequency is 120 % of the undisturbed collision frequency.

The second experiment (b) increases W to 0.5. The third experiment (c) uses a much larger

disturbance width of 1800 km, effectively covering the entire map, and W = 0.1. A map of

the difference in collision frequency at 75 km for these three experiments compared to the

background profile is shown in Fig. 6.22.

The difference in observations between these three experiments and the undisturbed

daytime scenario is shown in Fig. 6.23. There are some significant changes to the observations,

well outside of the typical measurement noise. Unsurprisingly, experiment b) has a larger effect

than a). Experiment c) has a slightly lower change than experiment a) and is biased similarly

to the other experiments despite the fact that the entire map is affected by the disturbance.

Figure 6.24 shows the h′ estimate error for each experiment. One feature to point out is

that the “error” is higher in the region where the disturbance is centered. This is most obvious

in the LETKF estimate of experiment b). It is logical that a large collision frequency disturbance

would be captured because the ionosphere conductivity is affected by both the electron density

and collision frequency. A change in the collision frequency profile can be represented by
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Figure 6.21: Top: The final h′ estimate error of the original daytime scenario using LETKF (left)
and COBYLA (right), reprinted here to make visual comparison of the results easier. Bottom: h′

estimate error when the simulated truth observations use the CHAOS-7 magnetic field model
and the estimation uses the IGRF-13 field model.
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Figure 6.22: Percentage difference in collision frequency at 75 km altitude between disturbance
experiments a) (top), b) (middle), and c) (bottom) and the exponential collision frequency
profile assumed by Wait and Spies (1964).
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Figure 6.23: Difference in amplitude and phase observed on each propagation path between dis-
turbed collision frequency profile experiments a), b), and c) (see Fig. 6.22) and the background
exponential profile from Wait and Spies (1964).

a corresponding change in the Wait parameters for the electron density (Section 2.1.2.3).

More accurate collision frequency profiles may be obtained from MSIS neutral density and

temperature profiles using the work of Ieda (2020), but care must be taken when comparing the

estimated h′ and β values to the work of others who assume an exponential collision frequency

profile.

6.3.3 Ground conductivity

Real-world ground conductivity has changed since the ground conductivity map distributed

with LWPC was produced; sea water and polar ice boundaries have moved and industrial areas

have grown. The conductivity of each of these grounds have a particularly strong influence on

the propagation of VLF waves in the EIWG (see Section 4.3). Real-world ground conductivity

is also more complicated than the representation in the ground conductivity map distributed

with LWPC. In this section we add random errors and noise to the ground conductivity map

used to build the simulated observation experiments. Figure 6.25 shows the original relative

permittivity and conductivity of the ground as well as the modified versions used to generate the
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Figure 6.24: h′ estimate error maps for disturbed collision frequency experiments a), b), and c)
(see Fig. 6.22) for LETKF (left) and COBYLA (right).
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simulated truth observations. The ground conductivity map uses 10 “classes” of ground, each

having different combinations of permittivity and conductivity. Ground modification experiment

a) weights the original class at each point with a weight of 200 and weights all other classes

with a weight of 1. The ground in a) is randomly chosen using this weighting scheme and then

a 1 % Gaussian noise is applied to the conductivity. Experiment b) is similar but sets the original

class weight to a value of 100 (so that it is roughly half as likely to use the original class at each

geographic point). Experiment c) uses an original class weight of 100, the two nearest classes

(more and less conductive) use a weight of 5 and all other classes use a weight of 1. Therefore,

there is a higher probability of the ground map being off at a given point by one ground class.

Finally, a 5 % Gaussian noise is added to the ground conductivity in experiment c).

The amplitude and phase difference from the original daytime scenario observed on

each propagation path to each experiment is shown in Fig. 6.26. Of the three model errors

examined here (magnetic field, collision frequency profile, and ground), the ground errors have

the largest effect on the observations. As seen in Fig. 6.27, this translates to high h′ estimate

errors. Unlike the previous investigations, the ground errors are randomly distributed across

the map. On one hand, real-world errors in the ground conductivity map are probably mostly

along transitions between different ground classes. On the other hand, industrial areas and

cities are located sporadically around the map. It is difficult to evaluate how realistically the

randomly distributed errors in experiments a), b), and c) capture the true errors in the map

without building or obtaining a new ground conductivity map from modern Earth conductivity

measurements (Kelbert et al., 2006). Given that the ground has the greatest effect on the

ionosphere estimates of the model errors examined here, further work should be performed to

establish a modern ground conductivity map for VLF use. Although the geophysics community

has recently made great efforts to map Earth conductivity (Kelbert, 2019), their methods are

very different from the methods historically used to model effective VLF ground conductivity.
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Figure 6.25: Relative permittivity (left) and conductivity (right) of the original (top) and ground
error experiments a), b), and c). Only ground along each propagation path affects the simulated
observations; modifications to the sea and along the outside regions of the map do not.
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Figure 6.26: Amplitude and phase difference on each propagation path between the original
ground map and modified ground experiments a), b), and c).

Otherwise, given that ground conductivity changes slowly compared to ionosphere conductivity,

it may be possible to establish baseline VLF observations against which new observations are

compared.

6.3.4 Comments

In each of the above experiments, COBYLA continued to outperform the LETKF in terms

of the estimate error. The primary explanation for this consistent difference is that the cost

function being minimized by COBYLA includes an explicit model cost in addition to the data

cost while the LETKF measurement update is made in response only to a data cost (residual).

Although the estimate covariance is inflated between each set of observations assimilated into

the LETKF estimate, the filter is still prone to overfitting the data over repeated iterations. This

is one explanation for why the LETKF has slightly better residuals than COBYLA in Fig. 6.18,

even though COBYLA produced the lower error estimate. However, the downside to COBYLA

is that the regularization parameter must be chosen by the investigator. Although we used

a regularization parameter of λh′ = 1 and λβ = 10 for every experiment here, in practice

the COBYLA estimate should be produced using several different regularization parameters.
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Figure 6.27: h′ estimate error for modified ground experiments a), b), and c), shown in Fig. 6.25,
for LETKF (left) and COBYLA (right).
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Not only does this greatly increase the time required to produce the final estimate, but the

selection of the final estimate depends upon the opinion of the investigator. If the regularization

parameter is too low, COBYLA can overfit just like the LETKF.

Given the number of uncertainties involved with forward modeling longwave propagation

in the EIWG, COBYLA provides the more robust estimate of the two methods. The model cost

penalizes changes in the estimate and produces the simpler model. Observation errors that

increase the data cost due to forward model errors are counteracted by the model cost. The

LETKF estimate includes the effect of model errors and biases that are inevitable in this problem.

6.4 Energetic particle precipitation

6.4.1 Background

One application of a two-dimensional D-region estimation technique is imaging the spatial

and temporal extent of energetic particle precipitation (EPP) from the radiation belts. Charged

particles trapped by Earth’s magnetic field collectively form regions known as the Van Allen

radiation belts (Van Allen, 1959). The inner belt, extending from 0.2 to 2 Re, consists of energetic

ions and electrons, and the outer belt, extending from 3 to 10Re, consists primarily of energetic

electrons (Blum & Breneman, 2020). Every particle travels along a magnetic field line yet has

velocity components both parallel v‖ and perpendicular v⊥ to the magnetic field. This causes

the particle to have a helical trajectory as it moves along the field line. The magnetic field gets

stronger near the poles and causes the particle to be repelled back towards space. This results

in a particle “bouncing” between the north and south poles while traveling along a field line.

The mirror point at which a particle is repelled is determined by the particle’s pitch angle α

α= arctan
�

v⊥
v‖

�

. (6.3)

Particles with equatorial pitch angle near 90° are mirrored before particles with small pitch

angles. Particles with very small pitch angles travel so far before mirroring that they may collide
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with neutral species in Earth’s atmosphere and are effectively lost from the radiation belt. The

range of pitch angles for which collisions are expected to occur is known as the loss cone.

Electrons with energies of tens of keV or higher that are in the loss cone and collide with a

neutral are capable of producing ionization in the D-region ionosphere. This is called energetic

particle precipitation (EPP) and is detectable with subionospheric VLF (Clilverd et al., 2009;

Clilverd et al., 2017b).

6.4.2 Simulation

Using the tabulated EPP ionization profiles from Xu et al. (2020), we are able to construct

charge density profiles for the D-region using a similar process to that shown in Marshall and

Cully (2020). The process, depicted in Fig. 6.28, allows us to construct an electron density

profile with EPP as a function of latitude, longitude, and date/time. Neutral density and

temperature profiles are obtained from NRLMSISE-00 (Picone et al., 2002; Chagas et al., 2019)

and my FIRITools.jl package is used to interpolate FIRI-2018 profiles (Friedrich et al., 2018) to

the correct time, location and nearest F10.7 index over a three day window.

Whittaker et al. (2013) analyzed the energy spectra of electron precipitation measured

by the DEMETER satellite and found that most distributions in the 100 keV–2.2 MeV range fit

exponential or power-law energy distributions

f (E) = Ce exp(−E/βe) or f (E) = CpE−βp (6.4)

where βe and βp characterize the shape of the distribution. We assume precipitating electrons

can be described by an exponential energy distribution of 90 keV to 2.2 MeV in 10 keV steps with

βe = 200 keV. They have a uniform pitch angle distribution from 0° to 90°. The ionization profile

obtained from the EPP lookup table is multiplied by the precipitating flux, 105 e−/cm2/ sec, say,

and input to the GPI model (Lehtinen & Inan, 2007) as an external ionization source. GPI outputs

the perturbed charge density profiles which can then be input to LongwaveModePropagator.jl

(Gasdia & Marshall, 2021) to produce simulated observations at each receiver.
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Figure 6.28: Steps used to generate the simulated receiver observations. The black dashed
boxes are executed when there is precipitating electron flux. The GPI model uses a custom
implementation and the FIRI and EPP ionization models are interpolated as necessary. MSIS,
IGRF, and the F10.7 index is obtained from the SatelliteToolbox.jl package (Chagas et al., 2019).

An example of the background and perturbed charged profiles modeled by GPI is shown

in Fig. 6.29 for an EPP flux of 105 e−/cm2/ sec. The perturbed electron density profile has a

sharp shelf and is effectively 20 km lower in altitude than the background. Unlike the day and

terminator scenarios, the simulated EPP observations include ions. The presence of ions has a

very small effect on the observations, but increases the realism of the simulated observations.

A large EPP patch may have the appearance shown in Fig. 6.30. This patch of precipitating

flux is centered on 55° N, 120° W, has a width of σw = 3.5°, height of σh = 0.4°, and a peak flux

of 105 e–/cm2/s. It is rotated by 1.5° from its line of latitude and has a Gaussian taper on all

sides. As usual, each propagation path samples the precipitating flux from the map in Fig. 6.30

every 100 km for simulating observations using the process described above.
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Figure 6.30: A simulated EPP patch with peak precipitating flux of 105 e–/cm2/s and Gaussian
taper on all sides.
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Figure 6.31: Amplitude and phase curves for the path from the NML transmitter in North
Dakota to a receiver in Whitehorse, Yukon through the precipitation patch in Fig. 6.30 and
through the realistic background ionosphere only. The region of peak flux occurs halfway along
the propagation path, but interestingly the Ez amplitude measured at the receiver (circles) is
nearly identical for the EPP and no-EPP scenarios, while the phase difference is about 90°.

6.4.3 Analysis

A sample of the amplitude and phase curve from the NML transmitter in North Dakota to

the receiver in Whitehorse, Yukon (the path also used in Figs. 5.2 and 5.3) is shown in Fig. 6.31

for both a realistic background ionosphere and the EPP patch shown in Fig. 6.30. The amplitude

and phase curves both begin to diverge in the precipitating region, but the amplitude measured

at the receiver is nearly identical between the EPP and no-EPP scenarios, while the phase has a

90° difference. If the receiver had been just a few hundred kilometers closer to the receiver,

the amplitude could have had a difference of ∼ 10 dB. This demonstrates why observing both

amplitude and phase is useful for the estimation problem.
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Figure 6.32: Observed amplitude and phase for each propagation path with a realistic back-
ground ionosphere and the EPP patch from Fig. 6.30. Lines connect the same path for both
scenarios, showing that some do not pass through the precipitation region (horizontal lines)
and others do (slanted lines).

The difference in amplitude and phase for all of the paths between EPP and no-EPP sce-

narios is shown in Fig. 6.32. There is considerably more spread in the observations through the

perturbed ionosphere, and it is also clear that some paths do not pass through the precipitating

patch while others do. The difference in observations across the network of propagation paths

between the background and perturbed ionospheres is significant enough that it is unlikely for

an estimation technique to confuse the two ionospheres—they have two very different minima

on the cost function surface.

Figure 6.33 shows the mean absolute difference in amplitude and phase along a 3000 km

propagation path between different Wait ionospheres, a realistic nighttime background iono-

sphere, and a 105 e–/cm2/s precipitating flux. Unlike the plots above, Fig. 6.33 uses a single

homogeneous ionosphere along the path. Although that’s unrealistic, it indicates the subiono-

spheric VLF best-fit Wait profile to represent the background and perturbed ionospheres in a

local segment of the waveguide.

Across the different combinations of h′ and β , there is a single global minimum for each

of the scenarios. In fact, only the nighttime background ionosphere has a plausible second
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Figure 6.33: Mean absolute deviation for amplitude (top) and phase (bottom) between different
Wait profiles and a realistic background ionosphere (left) and an EPP-perturbed ionosphere
(right) measured over a 3000 km path with “receivers” every 5 km. The ionosphere profiles are
homogeneous along the path, which has an ocean-like ground conductivity and 50 µT vertical
magnetic field. Thin gray contour lines mark 1 dB error amplitude and 6° for phase.
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local minimum at low h′. The amplitude and phase fits are approximately the same, which is

why it is probably only necessary to measure one of them across the receiver array. The β fit

for both scenarios does not change from about 0.45 km−1. In fact, there is poor sensitivity to

high β values that begins as low as 0.5 km−1, much lower than typically assumed. However,

h′ decreases by nearly 20 km. This is so large that it becomes difficult to have intuition for

how the observation at the receiver should change compared to the background ionosphere.

In Fig. 4.6 we showed how the amplitude and phase responds to changes in h′ over ∆10 km,

and although that trend continues to lower h′, no local estimation method would be able to

move from an unperturbed prior estimate to this perturbed ionosphere. As h′ is decreased from

the background best-fit h′, the measurement residuals increase before decreasing again. On a

single homogeneous path, a 90° change in phase can be obtained for a decrease in h′ of only

4 km, yet for those receivers with a ∼ 90° phase change in Fig. 6.32, the cause is a localized

EPP patch with a much larger change in effective h′.

It is interesting to compare these subionospheric VLF best-fit Wait profiles to the perturbed

electron density profiles for different precipitating fluxes. Figure 6.34 compares the electron

density profiles under both realistic daytime and nighttime background ionospheres and with

precipitating flux from 103 to 106 e–/cm2/s. The best-fit Wait profiles are determined using the

brute force mean absolute deviation grid of Fig. 6.33. Although there is a slight increase in β

as the precipitating flux increases, it may be difficult in practice to measure this given the poor

sensitivity of these observations to high β . In general the β value is consistently ∼ 0.5km−1

across the different scenarios. This also fits a typical nighttime ionosphere, but is high for

daytime. However, there is a significant decrease in h′ as the precipitating flux increases. The

daytime scenario with a flux of 106 e−/cm2/s has an h′ fit of 56 km! A heatmap of the fit for this

scenario is shown in Fig. 6.35. It is also important to recognize that these fits only capture a

portion of the lower shelf of the perturbed profiles and do not capture the true electron density

profile.
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above the approximate reflection height at which ωr =ω.
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6.4.4 Comments

Both of the methods detailed in Chapter 5 fail to identify the precipitation patch of

Fig. 6.30 (see Fig. 6.36). The LETKF diverges, even when using a prior with a mean shifted

down to h′ = 70km and σh′ increased to 2.2 km for latitudes between 50° N and 60° N. The

true perturbed ionosphere for moderate to high precipitating flux is far outside of the prior

ensemble for the expected (unperturbed) ionosphere—up to about 10σ from the mean h′. In

an ensemble Kalman filter, the nonlinear relationship between the states and observations is

not captured when the truth is outside of the ensemble. At first it may seem that increasing σh′

would solve the problem, but in practice the filter continues to diverge. Over a wide range of

states the likelihood function is highly non-Gaussian and the computed Kalman gain does not

generate a valid update.

We have previously demonstrated that the LETKF can converge to scenarios having local

geographic regions with irregular exponential electron density profiles similar to an EPP patch

(Gasdia & Marshall, 2018), but the filter prior was prompted to expect the perturbed region.

This previous work only modeled changes in h′ of −10 km, representing a low precipitating

flux, and did not have to contend with additional error from the use of a realistic (as opposed

to exponential) truth profile. One way the LETKF might be used to estimate EPP is to use a

prior that includes the EPP. This information must come from external measurements and to

some extent this removes the need for imaging EPP with VLF in the first place.

The multiscale optimization approach fails because the truth is simply too far from the

prior ionosphere on the cost function surface and COBYLA is a local optimization method. The

resulting ionosphere estimate looks like a typical nighttime ionosphere (Fig. 6.36) with no

indication that precipitation is present. Moving the states to the correct perturbed values incurs

a large model cost. COBYLA gets stuck in a local minimum near the initial estimate and never

tries to change the states as much as necessary because both the model and data costs increase

as the cost function surface is traversed between the initial estimate and the correct states. On
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Figure 6.36: Final COBYLA multiscale estimate of the EPP ionosphere from Fig. 6.30. The
method fails to capture the precipitation and moves very little from the Ferguson prior.

the upside, the failure of the method is obvious by inspecting the measurement residuals, which

are very high (Fig. 6.37). This indicates that COBYLA was not able to move the estimate into a

low minima of the cost function. A second factor contributing to the method’s failure is that the

precipitation region is not captured by the control points at the largest spatial scale. However,

the method fails even when additional iterations are performed at shorter spatial scales.

Several additional approaches specific to the EPP problem have been attempted but remain

active research. No matter the method, it seems most important that it explicitly test strongly

perturbed states. The problem is more difficult than imaging an unperturbed ionosphere because

the problem space is much larger. The challenge is to identify a method that searches the space

efficiently. There are at least three ways to do this. As already mentioned, it may be possible to

use external information to specify a prior that already captures a precipitation patch or other

disturbance. This is the least interesting approach because it doesn’t leverage the continuous,

wide coverage monitoring capability of a VLF network. A second approach is to use a global cost

function minimization algorithm. Unlike local algorithms, such as COBYLA, global algorithms
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Figure 6.37: Measurement residuals of the COBYLA multiscale estimate of the EPP scenario.
The method did little to improve the residuals so if this were real data and not a simulation, it
would be obvious that the estimate is not correct.

compute the cost function value across the domain of states. Unfortunately, these methods

require a great number of forward model evaluations as they traverse the search space. Finally,

a third approach is to avoid blindly estimating a strongly perturbed ionosphere. Instead, make

incremental estimates as the perturbation grows. If we begin with a good estimate of the

unperturbed ionosphere, it is feasible that the full LETKF algorithm, incorporating both the

forecast and measurement update steps, could be used to make estimates of the perturbation

growing over time. To do this, one would need to carefully design a forecast model that captures

the localized changes in the ionosphere that are associated with precipitation.



Chapter 7

Conclusions and future work

This dissertation has presented methods for imaging the D-region ionosphere using a

network of VLF receivers, explored the response of VLF observations to different conditions

in the Earth-ionosphere waveguide, and developed tools for quickly simulating observations

with realistic ionospheric profiles. This chapter will summarize the conclusions of the previous

chapters and provide suggestions for future work.

Chapter 2 provided background on the D-region ionosphere and VLF propagation, and

introduced a tool for interpolating FIRI profiles. It also introduced profile results from our

implementation of the GPI model. Chapter 3, coupled with Appendix A, is a comprehensive

introduction to mode theory, with a focus on implementation, suitable for first year graduate

students and others new to VLF propagation.

The Longwave Mode Propagator model is discussed and validated in Chapter 4. The

model is more robust than LWPC, easier to understand because it solves the physical equations,

and contains fewer lines of code. The project is open source on GitHub, thoroughly documented,

has tagged versions and a test suite, yet there are a list of improvements still to be made. Here

are a few:

• The code can continue to be simplified, particularly replacing some of the harder-to-

understand functions containing algebraic solutions with simpler methods that may be

made fast by low level (single instruction, multiple data: SIMD) vectorization.

• It may be possible to replace modified Hankel functions of order one third with the
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integrated wavefields for the height gains used to compute the fields at the receiver. The

integrated height gain functions are more accurate than the modified Hankel functions

because they do not assume vacuum between ground and the eigenangle reference

height.

• With the previous point implemented, the program could be made capable of com-

puting the field in the ionosphere up to satellite heights. Similar extensions to LWPC

predecessor codes have been made by others (Pappert, 1973; Pappert & Hitney, 1981).

• Numerical issues can arise due to the large imaginary part of the eigenangle at extremely

low transmitter frequencies. ELF support can be improved by explicitly including flat

Earth implementations of the algorithms and switching to them when necessary.

• Because the magnetic field is usually measured directly, the program should compute

the transmitted magnetic field components at the receiver.

However, the highest priority improvement that should be made to the Longwave Mode

Propagator is to reduce its runtime, which is dominated by computation of the ionosphere

reflection in the mode finder. Morfitt and Shellman (1976) and Shellman (1986) designed

the mode finder in LWPC to use interpolated values of the ionosphere reflection coefficient.

Although this reduces the compute time (gaining an order of magnitude in speed), it reduces

the robustness of the mode finder (modes may be missed). There are numerous ways this could

be improved: the reflection coefficient could be interpolated across the complex plane using

a function approximator, e.g. expansion of the function for the reflection coefficient using a

Chebyshev series; a neural network could be trained for a large number of EIWG scenarios

and used to interpolate eigenangles or ionosphere reflection coefficients; or, a new complex

root finder could be developed combining aspects of the LWPC mode finder with the Cauchy

argument principle for robustness to complex poles without searching a dense grid. Ideally, the

new method would be automatically differentiable. This would allow faster and more accurate



141

D-region estimation because a change in the observation could be explicitly related to a change

of the ionosphere.

Chapter 4 also examined the amplitude and phase response to a number of changes in the

Earth-ionosphere waveguide, including: h′ and β , transmitter frequency, collision frequency

profile, magnetic field direction, and ground conductivity. These are classical results, but

such comparison plots are not often published. An electrons-only ionosphere is compared to

an ionosphere with multiple species and it is found that ions might produce a small bias to

observations relative to the electrons-only assumption. Finally, the variability of observations at

a fixed receiver due to changing the location of a perturbation in the ionosphere is demonstrated.

Chapter 5 and Chapter 6 discussed the D-region imaging problem and demonstrated

the use of an ensemble Kalman filter and cost function minimization method to estimate

typical daytime and terminator ionospheres using a VLF receiver array. Although the Kalman

filter approach is more efficient in terms of forward model runs, the prior estimate of the

ionosphere must be relatively close to the true ionosphere. The second approach minimized

a cost function for the problem over large to small spatial scales and produced slightly more

accurate ionosphere estimates than the Kalman filter using four times the number of forward

model runs. Unfortunately, neither approach successfully estimated an ionosphere perturbed

by energetic particle precipitation (EPP). Nonetheless, a process for simulating realistic VLF

observations through an EPP perturbed ionosphere was developed and it was found that the

Wait profile fit can have a decrease in h′ of more than 20 km compared to the background

ionosphere. This is such a large change from the unperturbed ionosphere that successfully

estimating the perturbation requires the estimation method to explicitly test for it.

Although not previously discussed, a number of methods were developed and applied to

the precipitation scenario. So far, none produce results that we think would be both convincing

and useful to characterize the precipitation. All of the methods attempt to roughly identify

the precipitation region by testing the measurement residuals or full cost function of strongly

perturbed ionospheres. A local method could then be used to produce a final estimate. The
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number of combinations of ionospheres that could be tested assuming coarsely defined h′ from

54 to 90 km in 2 km steps, β from 0.2 to 0.8 km−1 in 0.05 km−1 steps, and the 60 control points

in the 300 km grid is infeasibly large. A successful estimation method must reduce this search

space by leveraging knowledge of the ionosphere and the geometry of the propagation paths.

One of the more promising methods shaped a covariance matrix used to generate a random

perturbation map. Control points localized by paths with higher residuals were assigned higher

variance than paths with lower residuals. Because all paths add some positive uncertainty

to the estimate, the variance is weighted by the density of paths near each control point. A

Gaussian perturbation surface, similar to those used to generate the LETKF prior ionospheres, is

generated and added to the prior ionosphere estimate. If the data cost Φd decreases, then this

new ionosphere is accepted and the process is iterated until convergence. A second promising

method recognizes two or three unperturbed local ionospheres and two or three perturbed

local ionospheres that can exist at each control point. These are sequentially tested at each

control point and accepted if the total cost function J is less than the current value. Multiple

passes over the grid are required to stabilize the estimate. One can think of new methods and

variations all day.

It is important to point out that applying any of these estimation methods to real data will

present additional challenges. There are several systematic errors that have not been simulated,

including ground conductivity, terrain, and local Earth curvature. Nighttime estimation will

likely be more difficult than daytime given the high temporal variability of the observations.

If the structures creating this variability are small, it will be difficult to estimate them. An

interesting issue common to inversion under all conditions is calibration of the transmitters.

Both the measurements and the forward model must be calibrated to the transmitter amplitude

and phase. This could be explicit, or maybe the estimation method could simultaneously

estimate correction terms for each transmitter. How robust are the methods to a transmitter

bias in phase and/or amplitude? That has yet to be explored.

This dissertation provides guidance and inspiration to those interested in VLF propagation
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and the D-region ionosphere. Numerous simulated observation experiments, the results of only

a small number shown here, demonstrate that two-dimensional estimates of the D-region using

networks of VLF receivers are in the near future.
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Appendix A

Mode theory

This appendix provides additional background on mode theory for the Earth-ionosphere

waveguide as implemented in the Longwave Mode Propagator (LMP). It supports Chapter 3,

which walks through the components of mode theory at a higher level. This appendix begins

by deriving the wave equation in Appendix A.1. With the solution to the wave equation, we

formalize reflection in Appendix A.2. Appendix A.3 then introduces general waveguide concepts.

Appendix A.4 is specific to the ionosphere and includes derivations of the ionosphere reflection

coefficient and the Booker quartic. Appendix A.5 is devoted entirely to a derivation of the

ionosphere susceptibility tensor, M , and how we modify it to account for Earth curvature. The

next section, Appendix A.6, derives the Fresnel reflection equations used to describe the ground

reflection coefficients. Appendix A.7 provides a high level description of the mode theory

provided by Budden (1962), as well as practical formulations for height gain functions and

excitation factors introduced over a series of papers by Pappert (Pappert, 1968; 1970; Pappert

& Bickel, 1970; Pappert & Shockey, 1971; Pappert & Shockey, 1976). Finally, Appendix A.8

presents a high level description of mode conversion between horizontally homogeneous

segments of waveguide.

A.1 Wave equation

In a homogeneous, isotropic medium

D = ε0n
2E. (A.1)
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Assuming a plane wave is normal to the z-axis,

∂

∂x
= 0,

∂

∂ y
= 0 (A.2)

and Maxwell’s equations (Eq. (3.8)) become

∂Ey

∂z
= ikHx ,

∂Hy

∂z
= −ikε−1

0 Dx (A.3)

∂Ex

∂z
= −ikHy ,

∂Hx

∂z
= ikε−1

0 Dy (A.4)

Hz = 0, Dz = 0 (A.5)

Substituting Eq. (A.1) into Eqs. (A.3) and (A.4) results in two sets of equations involving only

Ey andHx and two sets involving only Ex andHy . These sets are independent.

Working with the set

∂Ex

∂z
= −ikHy ,

∂Hy

∂z
= −ikn2Ex (A.6)

we can eliminateHy

∂2Ex

∂z2
= −ik

∂Hy

∂z

= −ik(−ikn2Ex)

∂2Ex

∂z2
+ k2n2Ex = 0 (A.7)

Equation (A.7) is known as the wave equation. Two independent solutions of Eq. (A.7) are

Ex = Ex ,1 exp(−iknz) (A.8)

Ex = Ex ,2 exp(+iknz) (A.9)

which are two waves travelling in the positive and negative z directions, respectively.

A.2 Defining reflection coefficients

Reflection coefficients express the ratio of the reflected to incident amplitude of an

electromagnetic wave upon reflection from an impedance discontinuity. A model of reflection is
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necessary to describe propagation of waves in a waveguide as they reflect off the waveguide

boundaries. In Appendices A.2 and A.3 the model is geometric and the following sections detail

electromagnetic wave propagation and reflection in the ionosphere.

We assume a homogeneous plane wave in the x–z plane, which we refer to as the plane

of incidence. As stated in Chapter 3, all fields are assumed to have an implicit harmonic time

variation.

A.2.1 Vertical incidence

Assume a wave (field component) F is launched vertically from the ground at z = 0 into

free space above. The field can be expressed by F1 exp(−ikz) as it travels vertically upward. At

some height, the wave is reflected from a sharp boundary and begins traveling downward as

F2 exp(ikz). As we saw in Appendix A.1, the exponential is a solution to the wave equation. This

scenario is graphically depicted in Fig. A.1. F1 and F2 are generally complex-valued amplitudes

of the waves.

The reflection coefficient of the boundary is equal to the ratio of the downgoing wave to

the upgoing wave. Measured at the ground, this ratio is

R0 =
F2 exp(ikz)

F1 exp(−ikz)
=

F2 exp(0)
F1 exp(0)

=
F2

F1
. (A.10)

If instead the fields are measured at some height z1, the reflection coefficient R1 is simply

R1 =
F2 exp(ikz1)

F1 exp(−ikz1)
=

F2

F1
exp(2ikz1) = R0 exp(2ikz1). (A.11)

The rule for referring the reflection height at one altitude to another is then (Budden, 1961b,

p. 107)

R2 = R0 exp(2ikz2) = R1 exp
�

2ik(z2 − z1)
�

. (A.12)

Interestingly, even if the height at which the reflection coefficient is referred is within a

medium of conductivity which varies with height, it is calculated in the same way—as though this

level were in free space (Budden, 1988, p. 296). This allows us to reference reflection coefficients
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z = 0

z1

z2

z = h

F1 exp(−ikz)

F2 exp(+ikz)

F1

R2 = R1 exp
�

2ik(z2 − z1)
�

R1 = R0 exp(2ikz1)

R0 = F2/F1

x

z

Figure A.1: A wave is launched vertically with complex amplitude F1 into free space. The wave
is reflected from an imperfect boundary at height h. The reflection coefficient R is the ratio of
downgoing to upgoing fields and can be referenced to any height in the guide.

to different heights for an ionosphere in which the electron density N varies gradually with

height, even though the fields are not truly described by exp(−ikz) and exp(ikz).

A.2.2 Oblique incidence

Now assume the wavefront is obliquely incident on the ionosphere boundary at an angle

θ measured clockwise from the z direction, as depicted in Fig. A.2. The upgoing wave is now

expressed as F1 exp(−ik(Sx + Cz)) and the downgoing reflected wave is F2 exp(−ik(Sx − Cz))

where C = cosθ and S = sinθ .

Both the incident and reflected wave fields depend on x through exp(−ikSx) (also see

Appendix A.2.4). The reflection coefficient is defined such that both upgoing and downgoing

wave fields must be measured at the same point (x , z1) in space. The reflection coefficient at

height z1 is

R1 =
F2

F1
exp(2ikCz1) (A.13)

so that R1 is effectively independent of x .
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z = 0

z1

z2

z = h

F1 exp
�

− ik(Sx + Cz)
�

F2 exp
�

− ik(Sx − Cz)
�

R2 = R1 exp
�

2ikC(z2 − z1)
�

R1 =
F2

F1
exp(2ikCz1)

R0 = F2/F1

θ

x

z

Figure A.2: A wave is launched vertically from z = 0 at an oblique angle to a sharp boundary at
height z = h. A reflected wave travels downwards. Both waves have the same dependence on
x such that the ratio of the wavefields, i.e. the reflection coefficient R, effectively only depends
on z.

As before, we can refer the reflection coefficient from one height to another through

R2 = R1 exp
�

2ikC(z2 − z1)
�

. (A.14)

A.2.3 Anisotropic media and elliptical polarization

When at least one boundary is anisotropic, energy is exchanged between field components

in and perpendicular to the plane of incidence. Thus, the incident and reflected waves are

generally elliptically polarized, but can be resolved into two linearly polarized components that

are oriented with their electric vectors parallel and perpendicular to the plane of incidence (the

x–z plane). It then becomes convenient to introduce four reflection coefficients that describe

the ratio of each reflected component to each incident component.

We use the notation Ra b where subscript a is the incident component and subscript b is

the reflected component. Subscript symbol “‖” indicates the electric field is parallel to the plane

of incidence and “⊥” indicates the electric field is perpendicular to the plane of incidence.1

1 Budden (1988) suggests that the 1,2 notation should be preferred in modern works, but I find the explicit
‖,⊥ notation more meaningful.
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The total reflection matrix is

R =





R11 R12

R21 R22



=





R‖ ‖ R⊥ ‖

R‖ ⊥ R⊥ ⊥



 . (A.15)

In free space below the ionosphere,2

(E‖, E⊥) = (Hy , Ey) (A.16)

as depicted in Fig. A.3. Therefore, we will often useHy instead of the electric field in the plane

of incidence. Letting E I
y =H

I
x = 0,

R‖ ‖ =H
R
y /H

I
y , R‖ ⊥ = ER

y/H
I
y (A.17)

and letting E I
x =H

I
y = 0,

R⊥ ‖ =H
R
y /E

I
y , R⊥ ⊥ = ER

y/E
I
y (A.18)

where superscript R and I represent the reflected and incident fields, respectively.

z

y

x E

H

‖

⊥

Figure A.3: Geometric rela-
tionship between the E and
H fields with respect to the
x , y and ‖, ⊥ axes.

Following Budden (1988, p. 299) we express the fields as

e I =





H I
y

E I
y



 , eR =





H R
y

ER
y



 (A.19)

so that the reflected components are related to the incident com-

ponents through

eR = Re I . (A.20)

After two successive reflections from boundaries with reflection

coefficients Ra and Rb, the fields are (Budden, 1962, pp. 541–

542)

RbRae
I . (A.21)

2 These relations only hold in a vacuum. The relation between fields in an anisotropic plasma is complicated
(Walsh, 1967).
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A.2.4 Reflection from stratified media

The real ionosphere is not a sharp boundary with free space below it, but rather a region

with continuously varying refractive index as a function of height z. Reflection of radio waves

in this medium occurs over a range of heights as the wave is gradually bent.

Assume the index of refraction of the medium can be expressed as n(z). We can break the

medium up into infinitely thin homogeneous slices of refractive index n1, n2, . . ., nn along the z

axis. As before, we have a plane wave with its wave normal in the x–z plane at an angle to the

z-axis which we now call ψn and which may be complex valued.3 The field component F in

this wave at slice n is given by

F = Fn exp
�

−iknn(x sinψn + z cosψn)
�

(A.22)

Assuming the slices are infinitesimally thin and nn ≈ nn+1, there is only a very small reflection

from the next strata. The wave in that stratum is

F = Fn+1 exp
�

−iknn+1(x sinψn+1 + z cosψn+1)
�

. (A.23)

Snell’s law applies at the boundary. Hence

nn sinψn = nn+1 sinψn+1. (A.24)

If n and ψ are only functions of z, then Eq. (A.24) shows that the product n sinψ is con-

stant (Budden, 1961b, p. 103).

If the wave originates in free space (i.e. n = 1) withψ = θ and we callψ in the ionosphere

θh, then

sinθ = n sinθh (A.25)

which is an extension of Snell’s law to a continuously varying medium. θ is the incident angle

and n and θh are associated with a wave transmitted through the boundary.

3 Rather than trying to interpret a complex angle as a geometric angle, it is simplest to acknowledge that the
sine function is meaningfully defined across the complex plane. Physically, complex angles often manifest as an
evanescent wave in propagation problems.
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qn

sinθ

ψ

Figure A.4: q may be re-
garded as the vertical com-
ponent of n.

n and θ may be unknown, but their product is not. We now

introduce the variable q where

nn cosθh,n = qn (A.26)

so that the wave field can be expressed as

F = Fn exp
�

−ik(x sinθ + qnz)
�

. (A.27)

This means that for all values of z, the wave varies with x in the

same way through

exp(−ikx sinθ ). (A.28)

The variable q plays a major part in the theory of reflection from stratified media. In

particular, we note that

n2 = q2 + sin2 θ (A.29)

and that in general all angles and q may be complex valued (Budden, 1961a, p. 121).

A.3 Waveguides

Waveguide physics can be partially understood by examining what happens when a plane

electromagnetic wave reflects off a single perfectly conducting boundary, as shown in Fig. A.5.

The incident wave interferes with the reflected wave, forming a pattern of maxima and minima.

Along the perfectly conducting boundary the transverse electric fields are zero. They are also

zero at a distance a from the boundary. If a second perfectly conducting plane were placed at

a, the fields in the space between a and the original boundary would be unaffected. Such a

scenario is called a waveguide.

There is a net propagation to the right in Fig. A.5. Each of the “packets” in the imaginary

guide has an effective wavelength λg of

λg =
λ0

sinθ
. (A.30)
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λ0

λgθ a

Figure A.5: A plane wave incident on a perfectly conducting boundary will interfere with
its reflection. The boundary condition that the field be zero along the perfectly conducting
boundary is also met at a distance a from the boundary, such that if a second perfectly conducting
boundary were placed there the two boundaries would form a waveguide.

If the angle of incidence θ changes, so does a in order to maintain the boundary conditions

a =
λ0

2cosθ
. (A.31)

Clearly the free space wavelength also affects the values of a and θ that meet the boundary

conditions. Each waveguide has a cutoff frequency fc

cosθ =
λ0

2a
=

c
2a f

=
fc

f
, fc =

c
2a

(A.32)

below which propagation does not occur. Waves can exist for frequencies below the cutoff

frequency at complex angles of incidence, but they are heavily attenuated and do not contribute

to the field at appreciable distances from the source. They are known as evanescent waves.

A.3.1 TM modes with perfectly reflecting boundaries

TM modes are waveguide modes in which the magnetic intensity vector is everywhere

transverse to the direction of propagation, i.e. Hz = 0. Because of anisotropy in the real

ionosphere, pure TM modes cannot exist in the Earth-ionosphere waveguide. Nonetheless, the
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x
z

y
θ

E
θ
Ex

Ez

Hy

x
z

y

θ
E

θ
Ex

Ez

Hy

Figure A.6: Field geometry of the upgoing (left) and downgoing (right) plane waves described
by Eq. (A.33) and Eq. (A.34), respectively.

real EIWG modes often resemble TM modes and are called quasi-TM. Here we assume both

waveguide boundaries are perfect reflectors.

A plane electromagnetic wave travelling obliquely upwards in the waveguide with its

electric vector in the x–z plane has field components

E I
x = −E0 cosθ exp

�

−ik(Sx − Cz)
�

E I
z = E0 sinθ exp

�

−ik(Sx − Cz)
�

H I
y = −E0 exp

�

−ik(Sx − Cz)
�

(A.33)

With reflection off a perfectly conducting boundary at z = h, Ex must be 0, giving the downgoing

fields as

ER
x = E0 cosθ exp

�

−ik(Sx + Cz)
�

ER
z = E0 sinθ exp

�

−ik(Sx + Cz)
�

H R
y = −E0 exp

�

−ik(Sx + Cz)
�

(A.34)

The total fields are the sum of Eq. (A.33) and Eq. (A.34).

Ex = −2iE0 cosθ sin(kz cosθ )exp(−ikSx)

Ez = 2E0 sinθ cos(kz cosθ )exp(−ikSx)

Hy = −2E0 cos(kz cosθ )exp(−ikSx)

(A.35)

Suppose there also exists a perfectly conducting boundary at z = 0, such that

kh cosθ = nπ (A.36)
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Ex

n= 0
θ = 90°

Ez Hy

n= 1
θ = 84.3°

n= 2
θ = 78.5°

z

xy

Figure A.7: Zeroth, first, and second modes for Ex , Ez, andHy fields within a TM waveguide
with perfectly reflecting boundaries. The field frequency is 20 kHz and waveguide height 75 km.

is satisfied. At this plane the condition Ex = 0 is also met, so that Eq. (A.35) are a solution

of Maxwell’s equations for the fields in free space between two parallel perfect conductors at

z = 0 and z = h (Budden, 1961b, p. 29). An example of the field patterns in the waveguide for

the first three modes are shown in Fig. A.7.

A.3.2 The complex θ plane

For waveguides with perfectly reflecting walls, the value of θ for a given mode are either

on the real θ -axis (propagated modes) or on the line Re(θ ) = 0 (evanescent modes). When the

walls are not perfect reflectors, this is no longer true. For an imperfect reflector |R(θ)| is less

than 1 for real angles of incidence. Thus, the mode equation, Eq. (3.20), cannot be satisfied.

To compensate for this, C = cosθ must have an imaginary component, which means the mode

is partially attenuated. When the waveguide boundaries are poor reflectors, solutions of the

mode equation on the complex θ plane move away from the lines Im(θ) = 0 and Re(θ) = 0,

as shown in Fig. A.8. The modes associated with θ having large imaginary part are highly
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R= 1.0, Rg = 1.0 R= 0.3, Rg = 1.0 R= 0.05, Rg = 0.5 arg f (θ )

Im(θ )

Re(θ )

−π/2

0

π/2

−π/2 0 π/2
Re(θ )

−π/2 0 π/2
Re(θ )

−π/2 0 π/2
−π

−π/2

0

π/2

π

roots

Figure A.8: When waveguide boundaries are imperfectly reflecting, solutions (“roots” or “zeros”)
to the fundamental equation of mode theory (Eq. (3.20)) require complex angles of incidence.
Modes associated with angles having large imaginary parts are highly attenuated and make little
contribution to the total field. Points representing −Re(θ) provide no additional information
and can be thought of as the corresponding “downgoing” wave to the +Re(θ ) upgoing waves
(Budden, 1961b, p. 28). They may also be associated with modes of negative order which
cannot be excited by a real source in the waveguide (Budden, 1961b, pp. 121–123).

attenuated; only the least attenuated modes make a significant contribution to the total field at

a great distance from the radio source.

A.4 Ionosphere reflection coefficients

A.4.1 Differential of R with respect to height

To compute the ionosphere reflection coefficient matrix we first derive the differential

equations for R with respect to height. These equations come out of the definition of the

reflection coefficients from Appendix A.2.3 and the matrix differential equation for the wave

fields, Eq. (3.15).

The four elements of e fully describe the total electromagnetic field of the wave. Budden

assumes that there is a very thin slice of vacuum (thin enough so it doesn’t make a difference

to the fields) parallel to the z plane in the ionosphere which allows us to describe the wave

fields as if they are in free space. The horizontal field components Ex , −Ey ,Hx , andHy of e
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can be resolved into four component waves in any chosen way, as was done in Appendix A.2.3.

We choose to resolve them into two upgoing and two downgoing plane waves, each with one

electric field component and one magnetic field component in the plane of incidence (the

x–z plane).

Using the notation from Budden (1988, p. 303), for fields of the upgoing (incident) waves

let

H I
y = f1, E I

y = f2, so E I
x = C f1, H I

x = −C f2 (A.37)

and for the downgoing (reflected) waves

H R
y = f3, ER

y = f4, so ER
x = −C f3 H R

x = C f4 (A.38)

where f1, f2, f3, and f4 are four complex amplitudes and C = cosθ . This form is equivalent to

Budden (1955, p. 529).4 Figure A.9 graphically depicts the relationship betweenHy and Ex .

The total wave fields in free space is the sum of these four component waves

e =

















Ex

−Ey

Hx

Hy

















= f1

















C

0

0

1

















+ f2

















0

−1

−C

0

















+ f3

















−C

0

0

1

















+ f4

















0

−1

C

0

















(A.39)

In matrix form,

e = S f (A.40)

where

S =

















C 0 −C 0

0 −1 0 −1

0 −C 0 C

1 0 1 0

















(A.41)

and f = ( f1, f2, f3, f4)>.

4 The notation varies considerably between texts over time. Translating from the notation used here to Budden
(1955): S→ L, f → q , and W → S.
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x

y

z
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H I

E I

H R

ER
Ex
θ

Hy

Ex

θ

Hy

Figure A.9: Electric and magnetic intensity vectors of incident and reflected waves whereH is
aligned perpendicular to the plane of propagation. The x and y components are marked to
demonstrate how the total Ex = cosθ (H I

y −H
R
y ) in the free space of the waveguide given that

E andH are equal magnitude. The identity holds when the intensity vectors are rotated about
the wave propagation vector, but a diagram of the situation becomes difficult to interpret. The
relationship between the totalHx field and Ey can be similarly found.

Substituting Eq. (A.40) into Eq. (3.15) gives the differential equation satisfied by f

d f
dz
= −iS−1TS f = −

1
2

iW f (A.42)

where

W =

















T11 + T44 + T14/C + C T41 −T12/C − T42 −T11 + T44 + T14/C − C T41 −T12/C − T42

−T31 − T34/C C + T32/C T31 − T34/C −C + T32/C

−T11 + T44 − T14/C + C T41 T12/C − T42 T11 + T44 − T14/C − C T41 T12/C − T42

T31 + T34/C C − T32/C −T31 + T34/C −C − T32/C

















(A.43)

and T is a matrix that operates on e to describe the differential equations for the wavefields

de/dz.
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In Appendix A.2.3 we defined R in terms of electric and magnetic field components. We

also noted that eR = Re I . We can apply this exactly again as




f3

f4



= R





f1

f2



 or d = Ru (A.44)

Then




f1

f2





′

= u ′ and





f3

f4





′

= d ′ (A.45)

where ′ means 1
k

d
dz .

We combine this with the differential equation satisfied by f , Eq. (A.42), where we

partition W , Eq. (A.43), into four 2× 2 components

W =





W11 W12

W21 W22



 (A.46)

(A.47)

This implies

d ′ = −
1
2

i(W21u +W22d) (A.48)

u ′ = −
1
2

i(W11u +W12d) (A.49)

From the product rule, the derivative of d is

d ′ = Ru ′ +R′u. (A.50)

Therefore

−
1
2

i(W21u +W22d) = Ru ′ +R′u

−
1
2

i(W21u +W22Ru) = R
�

−
1
2

i(W11u +W12Ru)
�

+R′u

Because every term has a u on the right side, we can omit it (Budden, 1988, p. 570).

−
1
2

iW21 −
1
2

iW22R = −
1
2

iRW11 −
1
2

iRW12R+R′
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Rearranging we get
2i
k

dR
dz
=W21 +W22R−RW11 −RW12R (A.51)

which is our differential equation for R.

Remember that from the beginning, our definition of R and Eq. (A.44) has been in free

space. Thus, the reflection coefficient obtained here is for the vacuum modes but not for the

upgoing and downgoing characteristic waves of magnetoionic theory (Budden, 1988, p. 570).

If the integration is stopped at some level in the ionosphere, this is equivalent to terminating

the ionosphere by a sharp boundary at that level and the value of R that has been reached is

the reflection coefficient for that boundary.

No component of R could ever have its complex norm reach or exceed unit amplitude, so

there can be no failure of the integration.

A.4.2 Booker quartic

The 4th-order equation for wave fields in a fully homogeneous ionosphere is known as the

Booker quartic (Yabroff, 1957). If the differential equation for the wavefields Eq. (3.15) is studied

in a fully homogeneous ionosphere, the elements of T are independent of z (Budden, 1988,

p. 183). All field components of the wave should depend on z only through a factor exp(−ikqz),

as in Eq. (A.27). Combined with the differential equations for wavefields, Eq. (3.15), we get

the eigenvalue problem

Te = qe (A.52)

or equivalently

(T − qI)e = 0 (A.53)

for each eigenvalue q. The condition for a non-trivial solution is that

det(T − qI) = 0. (A.54)
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Writing out the determinant gives
�

�

�

�

�

�

�

�

�

�

�

�

�

T11 − q T12 0 T14

0 −q 1 0

T31 T32 −q T34

T41 T42 0 T44 − q

�

�

�

�

�

�

�

�

�

�

�

�

�

= 0 (A.55)

↓

q4 − q3(T11 + T44) + q2(T11T44 − T32 − T14T41) +

q(T11T32 + T32T44 − T12T31 − T34T42) +

T14T32T41 − T12T34T41 − T14T31T42 +

T11T34T42 + T12T31T44 − T11T32T44 = 0

(A.56)

which is a fourth degree equation for q and is one form of the Booker quartic.

The wavefields e are the eigenvectors of the equation (T − qI)e = 0. These can be

determined by substituting an eigenvalue q into the equation and solving directly for e. This

can be done numerically by singular value decomposition. However, we can also generate a

surprisingly simple analytical solution. We have the four equations

(T11 − q)e1 + T12e2 + T14e4 = 0 (A.57)

−qe2 + e3 = 0 (A.58)

T31e1 + T32e2 − qe3 + T34e4 = 0 (A.59)

T41e1 + T42e2 + (T44 − q)e4 = 0 (A.60)

If we choose e2 = 1, then it immediately follows from Eq. (A.58) that e3 = q. We then have

three equations and only two unknowns. Any two of the three equations can be used to solve
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the system in the usual way, leading to

e1 =
�

T12(T44 − q)− T14T42

�

/d (A.61)

e2 = 1 (A.62)

e3 = q (A.63)

e4 =
�

−T12T41 + T42(T11 − q)
�

/d (A.64)

where d = T14T41 − (T11 − q)(T44 − q). (A.65)

A.4.3 Reflection from a sharply bounded ionosphere

First, it is interesting to note that if Eq. (3.29) were integrated for a great distance through

a fully—horizontally and vertically—homogeneous ionosphere and the integration stopped

when dR/dz = 0, then the resulting R is the reflection coefficient for a homogeneous medium

with a sharp lower free space boundary. This is precisely the solution we’re looking for, and

Budden (1988, p. 571) points out it is equivalent to finding the solution of

W21 +W22R−RW11 −RW12R = 0 (A.66)

which can be solved by iterative methods.

The approach used to compute the starting value of R in LongwaveModePropagator.jl is

based on an approach in Budden (1988, ch. 18.7) that is very similar to the derivation of the

differential equation dR/dz. First, solve the Booker quartic, Eq. (A.56), using a polynomial root

finder. Then sort the four q’s to select the two associated with upgoing waves (Pitteway, 1965).

From Eq. (A.27), it is evident that the two complex q’s lying closest to the positive real and

negative imaginary axis correspond to the two upgoing waves. The other two q’s correspond to

the downgoing waves. Solve for the field component vectors associated with each, ea and eb,

from Eqs. (A.61) to (A.64). We extract the vacuum plane wave components fa and fb using
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Eq. (A.40) and Eq. (A.41). With this transformation we have

fa =





ua

da



 , fb =





u b

d b



 . (A.67)

From the definition of the reflection coefficient matrix, d = Ru for both a and b. Letting

U = (ua, u b), D = (da,d b) (A.68)

leads to

D = RU (A.69)

which can be solved as R = DU−1. The solution does not depend on scaling of ea or eb because

it will cancel out in u, d.

There are other approaches from the perspective of M rather than T . Budden (1988, ch. 6)

discusses stratified media and the Booker quartic in detail using a general x-y-z coordinate

system. Sheddy (1968) outlines an analytic solution for the reflection coefficient matrix from a

sharply bounded ionosphere using a simplified coordinate system in which wave propagation is

restricted to the x–z plane. Using the simplified coordinates,

∂

∂x
= −ikS,

∂

∂ y
= 0,

∂

∂z
= −ikq (A.70)

As usual, the last two of Maxwell’s equations (eq. 3.7) describe the wave in the ionosphere.

Beginning with the form Eq. (3.8) and making the substitutions for the partials above gives

qEy = −Hx , qHy = ε
−1
0 Dx (A.71)

−qEx + SEz = −Hy , −qHx + SHz = ε
−1
0 Dy (A.72)

−SEy = −Hz, −SHy = ε
−1
0 Dz (A.73)

Again we want E rather than D. From the definition of electric displacement and polarization,

D = ε0εrE = ε0E + ε0M · E = ε0(I +M)E (A.74)
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Therefore, using the notation from Budden (1988, p. 145), we can write Eqs. (A.71) to (A.73)

in matrix form as

ΓE =H , ΓH = −(I +M)E (A.75)

where

Γ =











0 −q 0

q 0 −S

0 S 0











(A.76)

It is then trivial to removeH

ΓH = −(I +M)E

Γ ΓE = −(I +M)E

(Γ 2 + I +M)E = 0 (A.77)

Johler and Walters (1960) and Crombie (1961) derive the equivalent of Eq. (A.77) in their own

ways. Sheddy (1968) provides no derivation, but his L is equivalent to our Γ 2.

For a self-consistent solution E, the determinant of the term in parentheses of Eq. (A.77)

must be 0:

det











1− q2 +M11 M12 Sq+M13

M21 1− q2 − S2 +M22 M23

Sq+M31 M32 C2 +M33











= 0 (A.78)

When this is multiplied out, we end up with a 4th-order equation in q, the Booker quartic (Booker

& Appleton, 1938, eq. 7),

B4q4 + B3q3 + B2q2 + B1q+ B0 = 0 (A.79)
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where

B4 = 1+M33 (A.80)

B3 = S(M13 +M31) (A.81)

B2 = −(C2 +M33)(1+M11) +M13M31 −

(1+M33)(C
2 +M22) +M23M32 (A.82)

B1 = S
�

M12M23 +M21M32 − (C2 +M22)(M13 +M31)
�

(A.83)

B0 = (1+M11)(C
2 +M22)(C

2 +M33) +

M12M23M31 +M13M21M32 −

M13(C
2 +M22)M31 − (1+M11)M23M32 −

M12M21(C
2 +M33) (A.84)

is in the form given by Sheddy (1968, eq. 3a).

From the first two of Maxwell’s equations, at the boundary of vacuum and the ionosphere

the total tangential fields (i.e. in x and y) must be continuous. For upgoing waves “1” and “2”

and making use of the relationships established for incident and reflected waves in Eqs. (A.37)

and (A.38), we can define the boundary equations5

Ex ,1 + Ex ,2 = CH I
y − CH R

y (A.85)

Ey,1 + Ey,2 = E I
y + ER

y (A.86)

Hx ,1 +Hx ,2 = −C E I
y + C ER

y (A.87)

Hy,1 +Hy,2 =H I
y +H

R
y (A.88)

This system of equations above is extremely cumbersome to solve. The left hand side

of Eqs. (A.85) to (A.88) can be found from Eq. (A.77) using both q’s. Then by definition

(eq. A.17 and A.18) the components of R are ratios of terms on the right hand side of Eqs. (A.85)

to (A.88). We have four equations and we need four field components for the reflection

5 Although usingH and slightly different notation, this is equivalent to Sheddy (1968, p. 794).
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coefficients. Fortunately, Crombie (1961, pp. 457–460) has already solved them for us. Sheddy

(1968) uses Crombie’s solution for propagation along a line of magnetic latitude almost exactly,

with a couple of sign corrections for the coordinate system. We include Sheddy’s (1968) solution

here for completeness:

a) Let G = Γ 2 + I +M

b) Let

∆ j = G11, jG33 − G13, jG31, j (A.89)

Pj = (−G12G33 + G13, jG32)/∆ j (A.90)

T j = q j Pj − S(−G11, jG32 + G12G31, j)/∆ j (A.91)

where j = 1,2 for the two upgoing waves

c) Let ∆= (T1C + P1)(C + q2)− (T2C + P2)(C + q1)

d) Then,

R‖ ‖ =
�

(T1C − P1)(C + q2)− (T2C − P2)(C + q1)
�

/∆ (A.92)

R⊥ ⊥ =
�

(T1C + P1)(C − q2)− (T2C + P2)(C − q1)
�

/∆ (A.93)

R⊥ ‖ = −2C(T1P2 − T2P1)/∆ (A.94)

R‖ ⊥ = −2C(q1 − q2)/∆ (A.95)

An alternate approach may be to solve for E from Γ 2+ I+M using both q’s, then Eq. (A.75)

can be used to determineH . Equations (A.85) to (A.88) may be solved as the matrix system6

















C 0 −C 0

0 1 0 1

0 −C 0 C

1 0 1 0

































H I
y

E I
y

H R
y

ER
y

















=

















Ex ,1 + Ex ,2

Ey,1 + Ey,2

Hx ,1 +Hx ,2

Hy,1 +Hy,2

















(A.96)

6 This 4× 4 matrix is similar to S in Eq. (A.41), except here it is formulated for +Ey .
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using e.g. LU decomposition, although such a method was not implemented and the previous

analytical solutions are more efficient.

A.5 Ionosphere susceptibility tensor

The derivation of the ionosphere susceptibility tensor M is largely based on Budden (1988,

p. 39), although previous authors, e.g. Banerjea and Saha (1947), have outlined similar steps.

At each step we write the equation of motion of an electron in the ionosphere subject to an

external force and then compute the overall electric polarization.

A.5.1 Free, undamped electrons

In a large volume of plasma with a uniform electric intensity E, every electron experiences

the same electric force Ee. If r is the average vector displacement of an electron from the

position it would occupy without the electric field, then its motion is harmonically varying as

r = r0 exp(iωt) (A.97)

The constitutive relation is derived through the equation of motion of one electron:

Ee = m ∂2r
�

∂ t2 (A.98)

where m is the mass of an electron. First multiplying both sides by Ne and then using Eq. (A.97)

and Eq. (3.3):

ENe2 = Nem ∂2r
�

∂ t2

= −ω2Nemr

= −ω2mP (A.99)

so that the constitutive relation is

P = −ε0X E (A.100)
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where

X =
Ne2

ε0mω2
=
ω2

n

ω2
(A.101)

is the squared ratio of the angular plasma frequency to the angular wave frequency.

A.5.2 Electron collisions

When electrons are moved by the field of a radio wave, they experience an average force

caused by collisions with other particles. We assume that each electron makes ν instantaneous

collisions per second with other particles. Now adding the effect of collisions to Eq. (A.98)

Ee = m ∂2r
�

∂ t2 +mν ∂r/∂ t . (A.102)

Again multiplying both sides by Ne (effectively this means that all the electrons experience the

same collision frequency)

Ee = −ω2mP + iωmνNer (A.103)

= −ω2m(1− iν/ω)P. (A.104)

Therefore, the constitutive relation is

P = −ε0
X

1− iZ
E (A.105)

where Z = ν/ω. We will also define U = 1− iZ to be used later.

A.5.3 Earth’s magnetic field

Assuming B is the magnetic induction of Earth’s magnetic field, then a charge e moving

with velocity ∂r/∂ t experiences a force e ∂r/∂ t×B. The equation of motion of a single electron

is now

Ee+ e ∂r/∂ t × B = m ∂2r
�

∂ t2 +mν ∂r/∂ t . (A.106)

Multiplying both sides by Ne/mω2 and computing ∂/∂ t as multiplication by iω results in

Ne2

mω2
E +

ie
mω

P × B = −P(1− iZ). (A.107)
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We introduce the variable

Y =
eB
mω

=
ωH

ω
(A.108)

where ωH is the angular gyrofrequency. Rearranging Eq. (A.107) we have

−ε0X E = UP + iP × Y . (A.109)

Equation (A.109) is the constitutive relation used in longwave propagation mode theory. Written

out as a matrix equation

−ε0X











Ex

Ey

Ez











=











U iY lz −iY l y

−Y lz U iY lx

iY l y −iY lx U





















Px

Py

Pz











(A.110)

where lx , l y , lz are direction cosines.

We can invert the matrix equation to solve for P. This gives

1
ε0











Px

Py

Pz











= M











Ex

Ey

Ez











(A.111)

where the 3× 3 matrix here is known as the susceptibility tensor M (Budden, 1988, p. 49)

M =











M11 M12 M13

M21 M22 M23

M31 M32 M33











= −
X

U(U2 − Y 2)











U2 − l2
x Y 2 −ilzY U − lx l y Y 2 il y Y U − lx lzY 2

ilzY U − lx l y Y 2 U2 − l2
y Y 2 −ilx Y U − l y lzY 2

−il y Y U − lx lzY 2 ilx Y U − l y lzY 2 U2 − l2
z Y 2











. (A.112)

A.5.4 Earth curvature

So far we have developed the theory assuming a waveguide with flat reflecting boundaries.

Of course Earth’s surface is curved, and this affects the fields in the waveguide. Rather than
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rewriting the problem in spherical coordinates, we model the influence of Earth curvature

by means of a fictitious media in the free space of the waveguide—a technique described by

Booker and Walkinshaw (1946) for modeling tropospheric refraction and ducting and depicted

in Fig. A.10. Richter (1966) applies conformal mapping to the Earth-ionosphere waveguide

problem and Spies and Wait (1961) develops analytical solutions for spherical geometry as a

check on the validity of the fictitious refractive index method.

In free space between ground and the ionosphere a ray travels in a straight line, yet if an

observer saw the Earth as flat, the ray would appear to bend upward. If the ray is inclined at an

angle ψ to the flat Earth, then the ray has an upward curvature of cos(ψ)/Re. This path could

be described by a medium with an index of refraction that varies with height. Budden (1961b,

p. 140) supposes that we continue to assume the Earth is flat, while imagining a ray launched

into a medium with real index of refraction n(z). Here we’ll assume Earth is a sphere.

From Appendix A.2.4 Snell’s law requires that n cosψ equals some constant u. Therefore,

dn
dψ
= u tanψ secψ= n tanψ (A.113)

If s is distance along the ray, then curvature of the ray through the medium is

dψ
ds
=

dn/ds
dn/dψ

=
dn
dz

sinψ
n tanψ

=
1
n

dn
dz

cosψ (A.114)

where dn/ds = dn
dz sinψ. Equating the two curvatures gives

1
n

dn
dz

cosψ=
cosψ

Re
(A.115)

so

n= exp
�

z −H
Re

�

(A.116)

where H is a constant. The exponential expands into a power series

n= 1+
z −H

Re
+

1
2

�

z −H
Re

�2

+ . . . (A.117)

Because |z −H| � Re, we drop the higher powers of (z −H)/Re. Out of convenience we work

with n2:

n2 = 1−α(H − z) (A.118)
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Re

ψ

n(z)
ψ

Figure A.10: Equivalence of a straight ray over curved earth with a curved ray over flat earth.

where α= 2/Re.

The effect of Earth curvature can be included in, e.g. the calculation of the ionosphere

reflection coefficients, by modifying the susceptibility matrix (Pappert et al., 1967, p. 398). The

modification is to add the curvature term to the diagonal of M:

M ← M +











−α(H − z) 0 0

0 −α(H − z) 0

0 0 −α(H − z)











. (A.119)

This modification makes sense given that n2 ≈ εr and εr = I +M .

Choice of the reference height H is somewhat arbitrary. It is the height at which n = 1

and represents true free space. H is often chosen just below the ionosphere boundary (Budden,

1961b, p. 140; Pappert et al., 1967, p. 391). By definition, H is the height at which the

eigenangles are referenced,7 but it is necessary to reference the eigenangles to the ground

for use in excitation factors. For isotropic ionospheres, the first-order Earth curvature theory

used here predicts that the ground eigenangles are invariant with H (Richter, 1966). Pappert

et al. (1967, p. 392) concludes that variance in the ground eigenangles with H is mostly due

to higher order curvature effects and confirms in Pappert (1968, p. 223) that the results are

adequate even for strongly anisotropic ionospheres.

To change the reference height of θ from H to ground or vice-versa, look back at Eq. (A.25).

Now the situation is slightly different. Because of our use of the fictitious free space media, we

7 The modal equation is solved with reflection coefficients defined in free space.
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have n0 = (1−αH)1/2 and nH = 1, by definition.

nH sinθH = n0 sinθ0 (A.120)

sinθH = (1−αH)1/2 sinθ0 (A.121)

A.6 Ground reflection coefficients

The ground reflection is described by Fresnel reflection equations. The derivation of

these reflection coefficients makes use of the law of reflection, that θR = θ I , and Snell’s law

of refraction. We have spoken at length about reflection, but have yet to explicitly mention

transmission. In general, some incident energy will be transmitted through the boundary

between two different media. We will denote the angle from normal of the transmitted wave as

θ T .

The reflection matrix for the ground, Eq. (3.32), is diagonal because we treat it as isotropic.

Recalling our definition of the reflection coefficients,

R‖ ‖ =H
R
y /H

I
y , R⊥ ⊥ = ER

y/E
I
y (A.122)

so it is necessary to develop the Fresnel reflection equations for both transverse electric and

transverse magnetic cases. Maxwell’s equations specify the boundary conditions:

(1) the perpendicular component of B is continuous across the boundary

(2) the parallel component of E is continuous across the boundary

A.6.1 Transverse electric Fresnel equations

Boundary conditions for the transverse electric case give:

E I + ER = ET (A.123)

B I C I − BRCR = BT C T (A.124)
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B I BR

BT

E I ER

ET

θR θ I

θ T
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n2

TM

E I ER

ET

B I BR

BT

θR θ I

θ T

x

z

y

Figure A.11: Reflection and transmission geometry for transverse electric (TE) and transverse
magnetic (TM) waves.

where C I and C T are cosθ I and cosθ T , respectively.

We can eliminate the magnetic field through

B =
k
ω

E. (A.125)

Because ω does not change between the media it cancels out. Additionally, because of the law

of reflection we can replace θR with θ I

k1(E
I − ER)C I = k2ET C T . (A.126)

Practically, we prefer to work with the index of refraction of a material, so we make the

substitution

n1(E
I − ER)C I = n2ET C T (A.127)

where n= ck/ω.

Next we apply the boundary condition for E to remove ET .

E I(n1C I − n2C T ) = ER(n1C I + n2C T ) (A.128)

It immediately follows that the ratio of the field amplitudes is

ER

E I
=

n1C I − n2C T

n1C I + n2C T
. (A.129)
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We remove C T through Snell’s law, n1S I = n2ST , so

C T =
�

1− (ST )2
�1/2
=

�

1−
n2

1

n2
2

(S I)2
�1/2

. (A.130)

Just above the ground of our waveguide n1 = 1; n2 = ng where ng is the refractive index

of ground. Therefore, the ratio simplifies to

ER

E I
= R⊥ ⊥ =

C −
�

n2
g − S2

�1/2

C +
�

n2
g − S2

�1/2
(A.131)

where we used n(1− S I2
/n2)1/2 ≡ (n2 − S I2

)1/2 for positive n.

A.6.2 Transverse magnetic Fresnel equations

The derivation of the transverse magnetic equation is very similar to the transverse electric.

This time the boundary conditions result in

B I + BR = BT (A.132)

E I C I − ERCR = ET C T (A.133)

We eliminate the electric field through

E =
ω

k
B (A.134)

resulting in the second boundary condition becoming

1
k1
(B I − BR)C I =

1
k2

BT C T . (A.135)

The index of refraction is substituted in through 1/k = c/(nω)

1
n1
(B I − BR)C I =

1
n2

BT C T . (A.136)

Application of the boundary condition for B allows us to remove BT

1
n1
(B I − BR)C I =

1
n2
(B I + BR)C T (A.137)

B I
�

C I

n1
−

C T

n2

�

= BR
�

C I

n1
+

C T

n2

�

(A.138)
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So that the field ratio is
BR

B I
=

C I/n1 − C T/n2

C I/n1 + C T/n2
(A.139)

Substituting n1 = 1 and n2 = ng and multiplying the top and bottom of the fraction by ng

results in
BR

B I
=

C Ing − C T

C Ing + C T
(A.140)

Applying Snell’s law and the same trigonometry identity as before gives

BR

B I
=

C Ing −
�

1− (S I)2/n2
g

�

C Ing +
�

1− (S I)2/n2
g

� (A.141)

Multiplying both the numerator and denominator by ng gives

BR

B I
=
H R

H I
= R‖ ‖ =

Cn2
g −

�

n2
g − S2

�

Cn2
g +

�

n2
g − S2

� (A.142)

A.6.3 Refractive index of the ground

We often know the permittivity and conductivity of the ground rather than its refractive

index directly. We can compute the refractive index of the ground, ng , given its conductivity

and relative permittivity here.

In general the refractive index n is

n= (εrµr)
1/2. (A.143)

Assuming µr ≈ 1, this simplifies to

n2 ≈ εr . (A.144)

For lossy media the total complex relative permittivity is

εr = ε
′
r − i

σ

ωε0
(A.145)

where ε′r is the real permittivity. Then the squared refractive index of ground is

n2
g = ε

′
r − i

σ

ωε0
(A.146)

used directly in Eq. (A.131) and Eq. (A.142). Typically ε′r is referred to simply as εr .
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A.7 Excitation of waveguide modes

Budden (1962) treats the excitation of waveguide modes in terms of line sources. We’ll

use notation similar to Ferguson and Snyder (1980, pp. 24–30), who presents a summary of

Budden’s work. To avoid confusion with previous notation, we use ξ to represent the angle

between the wave normal and the horizontal. Budden (1962) uses this angle rather than the

angle θ from the vertical in order to simplify the contour integrals. Budden begins by assuming

the source is a line of quadrupoles at height d parallel to and aligned with the y-axis. If the

line source has unit strength, the y-component of the magnetic field in free space is

Hy =
k3

4πε0

π+i∞
∫

0−i∞

exp
�

ik(x cosξ+ |z − d| sinξ)
�

cos2ξdξ. (A.147)

Imagine the level d is in the free space of a waveguide with boundaries at z = l and z = u

such that l < d < u. Each boundary has an associated reflection coefficient matrix Rl and Ru

referenced to their respective heights. The field integrand in Eq. (A.147) then represents a

plane wave which will undergo reflections at z = u and z = l and these reflected waves must

be summed to obtain the total field. There are four combinations resulting from reflections

of the possible pairs of up- and downgoing waves: 1) initially upgoing to downgoing, 2)

initially upgoing to upgoing, 3) initially downgoing to upgoing, and 4) initially downgoing to

downgoing.8

The total field is written out as Budden (1962, eq. 32) and Ferguson and Snyder (1980,

8 This is often explained using a diffraction grating model; reflected fields can be produced by image sources at
heights x − d, 2uN ± d, and 2lN ± d where N is any positive integer.
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eq. 19):

Hy =
k3

4πε0

∞
∑

N=0

∫

C

exp(−ik cosξ)(RR)N P cos2ξdξ

+
k3

4πε0

∞
∑

N=0

∫

C

exp(−ik cosξ)(RR)NRP cos2ξdξ

+
k3

4πε0

∞
∑

N=0

∫

C

exp(−ik cosξ)(RR)N P cos2ξdξ

+
k3

4πε0

∞
∑

N=0

∫

C

exp(−ik cosξ)(RR)NRP cos2ξdξ

(A.148)

where P is a vector describing the electric and magnetic components of the source. If the second

element of P is zero, it corresponds to a vertical electric dipole. The sum can be computed after

careful selection of the contour of integration (Budden, 1961b; 1962). It is then convenient to

let the width of the free space region tend to zero. So long as l < d < u is maintained, both of

the reflection coefficients are evaluated at d and the subscripts l and u are no longer needed.

The result of summing the fields is

Hy =
k3

4πε0

∫ π+i∞

0−i∞
exp(−ikx cosξ)(I +R)(I −RR)−1(I +R)P cos2ξdξ. (A.149)

Budden (1962, p. 549) employs the theory of residues to deform the contour of the

integral. The new contour crosses several singularities, the most important of which are poles

of the factor (I −RR)−1. The contribution of a single pole at ξn is

Hy,n =
ik3

2ε0
exp(−ikx cosξn)

(I +R)nXn(I +R)nP cos2ξn
�

∂F
∂ξ

�

ξn

(A.150)

where F = det(I −RR) and Xn = limξ→ξn
F(I −RR)−1 (Ferguson & Snyder, 1980, eq. 24). The

reader should recognize F as equivalent to the modal equation Eq. (3.24). Thus, the solution of

the pole condition yields the waveguide modes and the residues at the poles give the excitation

factors. See Budden (1952) or Budden (1961b, ch. 14) for a more thorough description of the

residue series and integration path.

Performing the matrix multiplications and employing the geometrical spreading factor for
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a spherical Earth yields (Ferguson & Snyder, 1980, eq. 26)

Hy,n =
−k5/2 exp(iπ/4) cos3/2ξn

2ε0 (2πRe sin(ρ/Re))
1/2

(I + R‖ ‖)
2(I − R⊥ ⊥ R⊥ ⊥)

R‖ ‖
�

∂F
∂ξ

�

ξn

exp(−ikρ cosξn). (A.151)

For compatibility with the rest of the formulation, it is necessary to substitute ξ for θ . At this

stage, that only requires interchanging sinξ for cosθ = C and cosξ with sinθ = S.

Equation (A.151) assumes both the source and receiver are at the height at which the

reflection coefficients are determined. If the dependence of Hy,n on height z is given by a

function Gn(z), then multiplication of Eq. (A.151) by Gn(zR)/Gn(d) where zR is the receiver

height and d is the reference height for the reflection elements.

A.7.1 Height gain functions

Fundamentally, as we’ve previously seen in Appendix A.3, the total field in the vacuum

waveguide is the sum of the upgoing and downgoing waves associated with each component.

The boundary condition is that the tangential fields are continuous at transitions between free

space and the waveguide boundaries. We know the fields will also satisfy the wave equation,

e.g.
d2Ey

dz2
+ k2q2Ey = 0. (A.152)

From the definition of q, Eq. (A.29), and our use of a modified free-space index of refraction to

simulate curved Earth, Eq. (A.118),

q2 = n2 − S2 (A.153)

= 1−α(H − z)− S2 (A.154)

= C2 −α(H − z) (A.155)

By letting (Morfitt and Shellman, 1976, app. B; Budden and Martin, 1962)

ζ=
�

k
α

�2/3
�

C2 −α(H − z)
�

(A.156)
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we have the simplified form
d2Ey

dζ2
+ ζEy = 0 (A.157)

This equation looks like the Airy function, but is actually called Stokes’ equation. The solution

to Stokes’ equation uses the modified Hankel functions of order one-third,9 which were

described and tabulated by The Staff of the Computation Library (1945). The general solution

to Eq. (A.157) is

Ey(ζ) = a1h1(ζ) + a2h2(ζ) (A.158)

where a1 and a2 are constants and h1 and h2 are the modified Hankel functions of order one-

third. Calculation of the height gain functions and corresponding excitation factors requires

finding ai ’s that are consistent with the waveguide boundary conditions. Using somewhat

older notation, this process is stepped through in Budden and Martin (1962). Over time,

self-consistent forms of the excitation factors and height gain functions were worked out for

the different field components and collected by Pappert.

From Pappert and Shockey (1971, p. 6), the height gain functions are

f1(z) = exp
�

z
Re

�

(F1h1(q) + F2h2(q)) (A.159)

f2(z) =
1
ik

d f1

dz
=

1
ikRe

exp
�

z
Re

�

�

F1h1(q) + F2h2(q) + Re

�

F1h′1(q) + F2h′2(q)
��

(A.160)

f3(z) = F3h1(q) + F4h2(q) (A.161)

where f1 is the height gain for Ez, f2 for Ex and f3 for Ey . They are also often referred to as f‖,

9 Despite their name, these aren’t “Hankel functions” as we currently know them.
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g, and f⊥, respectively. The inner terms are (Pappert & Shockey, 1971, eq. 6–9)

F1 = −H2(q0) + i
n2

0

n2
g

�

kRe

2

�1/3

(n2
g − S2)1/2h2(q0) (A.162)

F2 = H1(q0)− i
n2

0

n2
g

�

kRe

2

�1/3

(n2
g − S2)1/2h1(q0) (A.163)

F3 = −h′2(q0) + i
�

kRe

2

�1/3

(n2
g − S2)1/2h2(q0) (A.164)

F4 = h′1(q0)− i
�

kRe

2

�1/3

(n2
g − S2)1/2h1(q0) (A.165)

using

qz =
�

2
kRe

�−2/3�

C2 −
2
Re
(H − z)

�

(A.166)

H j(q) = h′j(q) +
1
2

�

2
kRe

�2/3

h j(q), j = 1, 2 (A.167)

n2
z = 1−

2
Re
(H − z) (A.168)

n2
g =

ε

ε0
− i

σ

ωε0
(A.169)

(Pappert & Shockey, 1971, eq. 10–13). The subscripts on q and n represent the value of z at

which they are evaluated. Note that C is the cosine of the angle of incidence at height H, the

height at which the modified index of refraction is equal to unity. h1, h2 and their derivatives,

signified by the prime ′, are again the modified Hankel functions of order one-third (The Staff

of the Computation Library, 1945).

Using the excitation factors defined in the next section, the height gain functions for the

receiver must be multiplied by the following factors to convert from Hy to the appropriate

electric field component in the mode sum:

Receiver field component Receiver term in mode sum

Ez −S0 fz(zr)

Ey (Ey/Hy) f y(zr)

Ex − fx(zr)
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Ey/Hy is a polarization ratio that can be computed either as

Ey/Hy =
(1+ R⊥ ⊥)(1− R‖ ‖ R‖ ‖)

(1+ R‖ ‖) R‖ ⊥ R⊥ ⊥

(A.170)

preferred for a principally transverse magnetic mode or

Ey/Hy =
(1+ R⊥ ⊥) R⊥ ‖ R‖ ‖

(1+ R‖ ‖)(1− R⊥ ⊥ R⊥ ⊥)
(A.171)

for a principally transverse electric mode.

A.7.2 Alterations for ELF

The absolute value of the imaginary part of the eigenangle can become very large when

in the ELF band. Pappert et al. (1970, p. 6) suggests that to avoid overflow, the flat earth

analogues of the height gains Eqs. (A.159) to (A.161) should be used

f1(z) =
exp(ikCz) + R‖ ‖ exp(−ikCz + 2ikCd)

exp(ikCd)(1+ R‖ ‖)
(A.172)

f2(z) =
C
�

exp(ikCz)− R‖ ‖ exp(−ikCz + 2ikCd)
�

exp(ikCd)(1+ R‖ ‖)
(A.173)

f3(z) =
exp(ikCz) + R⊥ ⊥ exp(−ikCz + 2ikCd)

exp(ikCd)(1+ R‖ ‖)
(A.174)

A.7.3 Excitation factors

Pappert et al. (1970, pp. 3–4) summarizes the excitation factors associated with both

vertical and horizontal dipole sources and provides citations to their development. In Pappert

et al. (1983, p. 10) they are presented in a convenient form, which we modify so they are defined

for Hy . This modification makes it easier to explicitly split the mode sum into a transmitter

term and a receiver term.

λ=

Dipole orientation

vertical −S0T1

end-on T1

broadside T3T4

(A.175)
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where the T ’s are

T1 =
S1/2(1+ R‖ ‖)

2(1− R⊥ ⊥ R⊥ ⊥)
∂F
∂θ

�

�

θn
R‖ ‖D11

(A.176)

T2 =
S1/2(1+ R⊥ ⊥)

2(1− R‖ ‖ R‖ ‖)
∂F
∂θ

�

�

θn
R⊥ ⊥D22

(A.177)

T3 =
S1/2(1+ R‖ ‖)(1+ R⊥ ⊥) R‖ ⊥

∂F
∂θ

�

�

θn
D12

(A.178)

T4 =
R⊥ ‖

R‖ ⊥
(A.179)

and

D11 = f 2
1 (0) =

�

F1h1(0) + F2h2(0)
�2

(A.180)

D12 = f1 f3(0) =
�

F1h1(0) + F2h2(0)
��

F3h1(0) + F4h2(0)
�

(A.181)

D22 = f 2
3 (0). (A.182)

The S’s here are referenced to the curvature reference height H where the reflection coefficients

are defined and the modal equation solved. S0 is sine of the eigenangle referenced to the

ground. Also, we note T2 and D22 are not needed in our formulation.

A.8 Mode conversion

Pappert and Snyder (1972) discuss the full mode conversion algorithm for carrying

wavefields from one waveguide segment into the next. Assuming a unit amplitude wave in

mode k in the transmitter region (segment M), the y and z components of the electric and

magnetic fields of the wave in segment p is given by

ep
k =

exp(−ikSk,M xM−1)

(sin(x/Re))
1/2

∑

j

ap
jk exp(−ikSp

j (x − xp)) f
p
j (z) (A.183)
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where the height gain function f p
j is

f p
j (z) =

















Ep
y j

Ep
z j

H p
y j

H p
z j

















. (A.184)

We use ap
jk to represent the coefficients associated with conversion from the kth to the jth mode.

Continuity allows us to determine the conversion coefficients ap
jk for the pth slab in terms

of the (p+ 1)th slab.

ap
jk =



























1 (conversion not applicable) p = M

I p,p+1
j,k p = M − 1
∑

m

ap+1
mk exp(−ikSp+1

m (xp − xp+1))I
p,p+1
j,m 1≤ p ≤ M − 1

(A.185)

where I is the integral

I p,p+1
j,m =

∫ ∞

−∞

�

g p
j

�∗>
f p+1
m dz. (A.186)

g is the height gain function for the adjoint waveguide. Equation (A.185) also makes use of the

orthogonality condition between modes

∫ ∞

−∞

�

g p
j

�∗>
f p
m dz =











0 j 6= m

1 j = m
(A.187)

where the superscript ∗
>

denotes the conjugate transpose. To avoid confusion in this section,

the dagger † will be used to identify parameters related to the adjoint waveguide, but does not

act as an operator. Instead, conjugate transpose operations will be marked explicitly with ∗>.

The introduction of an adjoint waveguide may seem sudden, but is an important step

in the solution of the conversion coefficients. Equation (3.38) is multiplied by the conjugate

transpose of the adjoint height gain function for the mth forward-travelling mode in region 2,

followed by integration over all space. This results in
∫ ∞

−∞
g ∗>m

−→
f m,1 dz = Tmj

∫ ∞

−∞
g ∗>m

−→
f m,2 dz (A.188)
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which can be written as

I2,1
m, j = Tmj I

2,2
m,m. (A.189)

This yields the conversion coefficient

Tmj = I2,1
m, j/I

2,2
m,m (A.190)

which, due to the orthogonality condition, is equivalent to

Tmj = I2,1
m, j. (A.191)

A.8.1 Adjoint waveguides and orthogonality

As we’ve already seen, modes can be obtained from fields for which

∂

∂x
= −ikS,

∂

∂ y
= 0,

∂

∂z
= iω (A.192)

where S only takes on discrete values corresponding to each mode n. The field components for

each nth mode are

fn = (Ey,n, Ez,n,Hy,n,Hz,n)
> (A.193)

Equation (A.192) can be applied to Maxwell’s equations. Eliminating Ex andHx , Maxwell’s

equations can be written with the 4× 4 matrix operator L

L

















Ey

Ez

Hy

Hz

















= −
1
ik
∂

∂x

















Ey

Ez

Hy

Hz

















(A.194)

which is equivalent to the eigenvalue equation

L fn = Sn fn (A.195)

There exists an adjoint matrix operator to L denoted L†. The corresponding eigenvalue

equation is

L†gm = λmgm (A.196)
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where λm are the eigenvalues and gm is the eigenfunction of L†, effectively the height gain

function of the adjoint waveguide, similar to f .

We now introduce a property of the adjoint. First, the general definition of the inner

product is

(a, b) =

∫ ∞

−∞
(a∗)>b dz (A.197)

The adjoint satisfies

(L†a, b) = (a, Lb) (A.198)

Thus,

(L†g , f ) = (g , L f ) (A.199)

=

∫

�

L†g
�∗>

f dz =

∫

g ∗>S f dz

=

∫

(λg )∗> f dz = S

∫

g ∗> f dz

= λ∗ (g , f ) = S (g , f )

This yields

(λ∗m − Sn) (gm(z), fn(z)) = 0 (A.200)

which gives the biorthogonality condition

(gm(z), fn(z)) = 0, p 6= q (A.201)

and the relation

λ∗m = Sn. (A.202)

Pappert and Smith (1972) discuss one way to calculate the adjoint height gain function g .

Their method results in

g ∗(z) =

















Hz(−l, z)

−Hy(−l, z)

−Ez(−l, z)

Ey(−l, z)

















(A.203)
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where l refers to the x component of the direction cosine of the geomagnetic field. Therefore,

g (z) can be obtained in the same way as f (z) except assuming an “adjoint waveguide” where

the x component of the geomagnetic field l is replaced by −l and the components of the vector

g ∗ are rearranged as above.10

A.8.2 Integration of wavefields

f and g are determined by full wave numerical integration, as described by Pitteway

(1965). Pitteway sought to determine the wavefields and reflection properties inside a horizon-

tally stratified ionosphere. The technique used to calculate the reflection coefficient in Budden

(1955) does not conveniently describe the wavefields in the ionosphere; further integration

would be necessary to obtain the actual wavefields. Rather than referencing the solutions to

linearly polarized waves parallel ‖ and perpendicular ⊥ to the plane of incidence, Pitteway

(1965) chooses the two solutions which correspond to waves incident on the ionosphere from

below with polarizations chosen to give the greatest and smallest intensity at great heights.

These solutions are for the penetrating and non-penetrating modes (Fig. A.12), and come from

the integration of de/dz, Eq. (3.15).

10 Because Pappert and Smith (1972) solve for g ∗ directly, rather than g , only the transpose of g ∗ needs to be
taken when calculating I .
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Figure A.12: Wavefields in an exponential ionosphere integrated by Pitteway integration. The
two fields on the left are referred to by Pitteway as “non-penetrating” and the fields on the right
are “penetrating”.



Appendix B

LongwaveModePropagator.jl

B.1 Reflection coefficient solvers

Over 90 % of the runtime of LongwaveModePropagator.jl is spent searching for waveguide

modes. The mode search runtime is dominated by integrating dR/dz through the ionosphere

thousands of times for different θ . Therefore, choice of the differential equations solver has a

meaningful impact on the total runtime of the program. There are effectively two parameters

we can choose: the solver algorithm and the tolerance. Efficient solutions are often the result

of an appropriate choice of solver for a particular problem. DifferentialEquations.jl1 has a

large number of solvers specialized for solution of different types of differential equations, as

well as solvers with special characteristics such as energy conservation or better handling of

stiff equations. Fortunately, our equation is non-stiff and only of size 8 (4 complex equations).

Additionally, no entry of R should exceed a complex norm of 1.

A set of non-stiff, low-to-moderate tolerance solvers were evaluated for default use in

LongwaveModePropagator.jl. Thirty random scenarios were generated with

• θ ∈ (π/6,π/2)− (π/18,0)i rad

• f ∈ (10, 60) kHz

• |B| ∈ (30, 60) µT, dip angle ∈ (0,π/2) rad, and azimuth ∈ (0, 2π) rad

• Wait ionosphere with h′ ∈ (69,89) km and β ∈ (0.2, 1.0) km−1

1 https://diffeq.sciml.ai/stable/

https://diffeq.sciml.ai/stable/
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Figure B.1: Accuracy and runtime integrating dR/dz for a set of differential equations solvers.
Left: base 10 logarithm of the maximum absolute difference between R of the solver and R
determined using the RK4 solver at a tolerance of 10−14. Right: average runtime for a single
integration of R. Lower values are better in each plot. A description of the solvers is available
at https://diffeq.sciml.ai/stable/solvers/ode_solve.

Each solver is run for a range of tolerances on each of these ionospheres. The accuracy of the

computed R is evaluated by comparing the maximum absolute difference of each of the elements

of R from the test solver against the RK4 solver using a tolerance of 10−14. To compute the

runtime of each solver and tolerance, the integration is timed for 25 repetitions and averaged.

The results are shown in Fig. B.1.

The tolerance used by the global complex roots and poles finding (GRPF) algorithm

dominates the influence of the tolerance used to compute R when it comes to identifying

the eigenangles. Here the tolerance of GRPF was 10−5 rad (0.0006°). The v0.1 series of

LongwaveModePropagator.jl explicitly filtered out candidate eigenangles based on solution of

the mode equation, but Eq. (3.24) is very sensitive to θ . On average, moving from a solution θ

to θ + (10−3 + 10−3i) changes the value of the mode function by several orders of magnitude.

This made defining an appropriate threshold difficult and the mode finder rejected solutions

that it did not need to. In fact, not a single mode of all the candidate modes in the 30 random

https://diffeq.sciml.ai/stable/solvers/ode_solve
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Figure B.2: Difference in modes identified over 30 random EIWG propagation scenarios for a
series of solver tolerances using Vern7 to integrate dR/dz compared to a tolerance of 10−10.
The arrow points towards a single outlier for 10−3 at −14.3+ 30.9i.

scenarios used to evaluate the differential equations solvers needed to be rejected, although

several would have been rejected using the criteria in v0.1. In v0.2 and onward, used to

produce this dissertation, this unnecessary filtering of eigenangles was removed.

Figure B.1 clearly shows Vern7 has better accuracy relative to the other solvers for all

tested tolerances. Figure B.2 shows the difference in modes identified for all 30 scenarios using

Vern7 at a series of tolerances between 10−3 and 10−9 compared to the results using 10−10. The

tolerance of 10−3 and 10−4 had greater spread,2 but by 10−5, there is little average difference

from 10−10. This suggests that the default solver tolerance can be as low as about 10−5.

B.2 Wavefield solvers

An analysis similar to the analysis of solvers for the ionosphere reflection coefficient in

Appendix B.1 was conducted for integration of the wavefields de/dz. These height gain functions

are simpler than the R(z) curves (see Fig. B.3,) but a similar set of solvers were compared.

Interestingly, setting the tolerance anywhere between 10−3 and 10−10 has no influence on the

2 The solver detected instabilities during some of the scenarios.
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Figure B.3: The real component of the Ex wavefield for the non-penetrating upgoing wave
solution for a Wait daytime and nighttime ionosphere. The day ionosphere has h′ = 75 km and
β = 0.35km−1 and the night ionosphere has h′ = 86km and β = 0.6 km−1. The wave frequency
is 24 kHz and is at a real angle of incidence of 60° from vertical. The background magnetic
field is 50 µT with a dip angle of 68° and azimuth of 111° east of the propagation direction.

accuracy of the solution or a significant affect on the runtime for a given solver algorithm. All

of the solvers have similar accuracy, but vary in average runtimes, as shown in Table B.1. Tsit5

is used by default because it has the lowest runtime.
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Table B.1: Average runtime of differential equation solvers integrating de/dz through a Wait
daytime and nighttime ionosphere with an integration tolerance of 10−6. Smaller is better.

Solver Average runtime (ms)

Tsit5 0.89
BS5 1.0

Vern6 1.1
OwrenZen5 1.1

Vern7 1.3
Vern8 1.5
Vern9 2.2
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