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Abstract 

 
Snow is indispensible to the water resources and economy of the western United States, 

making it essential to accurately predict snowmelt volume, timing, and rate. However, 

uncertainties in snowpack processes, the effects of climate change, and spatial variability in 

precipitation phase partitioning all complicate efforts to simulate snow accumulation and melt. 

With those three issues in mind, this work clarifies seasonal snow cover evolution in a changing 

climate by utilizing ground observations and validated output from a physics-based snow model.  

The first project focuses on how snowpacks develop cold content, the internal energy 

deficit that must be satisfied before snowmelt can begin. Previously it was unknown whether 

cold content developed primarily through meteorological or energy balance processes. Using 

snow pit data and model output, I show that new snowfall exerts the primary control on cold 

content development in the snowpacks at an alpine and subalpine site in the Colorado Rocky 

Mountains. Additionally, model output indicates that cold content damps snowmelt rate and 

delays snowmelt onset at time scales one month and shorter, but has little correlation to those 

quantities at seasonal time scales. 

The second project evaluates the physical processes controlling the response of the alpine 

and subalpine snowpacks to increases in air temperature and changes to precipitation total and 

seasonality. The increased sensitivity of the subalpine snowpack to climate warming is primarily 

a result of decreases to snowpack cold content and increases in positive energy fluxes. As 

opposed to the differential response to warming, the two snowpacks exhibited fairly consistent 
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responses to changes in total precipitation with later melt onset and faster snowmelt rates being 

associated with increased precipitation. Changes to precipitation seasonality had a near-

negligible impact on snow cover properties at both sites. 

The final project expands on the spatial scope of the first two by simulating snow 

accumulation and melt at sites in the western United States that span a climatic gradient from 

warm maritime to cold continental. Previous research had shown spatial variability in rain-snow 

partitioning, but little was known about how this variability affected snow model simulations. 

The results from this project indicate that the selection of a method to partition rain and snow 

leads to the greatest divergence in seasonal snow cover evolution at the lower elevation maritime 

sites. Peak snow water equivalent and snowmelt timing simulated by the different methods 

varied by several hundred millimeters and over one month, respectively, at the warmest sites, 

and typically less than 20 mm and one week at the two coldest sites. Overall, this dissertation 

highlights how snow models and ground observations can be used to better understand snow 

accumulation and melt processes in a changing climate. 
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Chapter 1 

1 Introduction 
1.1 Motivation 

Snowmelt serves as a critical water resource for nearly 2 billion people globally (Barnett et al., 

2005; Mankin et al., 2015). Mountain snowpacks function as in situ reservoirs, storing water 

during the winter months when human and environmental demand are low and then releasing it 

in spring and summer as demand increases (Viviroli et al., 2007). In the western United States, 

greater than 50% of streamflow in a given year is derived from mountain snowmelt (Li et al., 

2017; United States Geological Survey, 2005), providing approximately 60 million people with 

the water they need for domestic use, irrigated agriculture, and industrial purposes (Bales et al., 

2006). In financial terms, snow provides more than a $1 trillion benefit to the economy of the 

western United States through its streamflow, reservoir, and recreation services (Sturm et al., 

2017).  

In addition to satisfying human demand, snow serves a myriad of other hydrologic, 

ecologic, cryospheric, and climatic roles. From the beginning of the snow accumulation season 

in the fall and winter, through the melt period in spring and summer, snow fundamentally alters 

its surroundings. For one, snow cover is an efficient insulator, keeping the ground temperature 

warmer than it would be in the absence of snow (Groffman et al., 2001). In general, the 

insulating properties of snow reach a maximum at a snow depth near 50 cm (Slater et al., 2017), 

below which diurnal soil temperature ranges are typically low (Burns et al., 2014; Jennings et al., 

2018a). Snow cover therefore affects microbial respiration rates as well as carbon dioxide fluxes 

from the land surface to the atmosphere (Blanken et al., 2009; Brooks and Williams, 1999; 

Monson et al., 2006). Snow cover also exerts a strong control on land surface albedo given its 
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high reflectivity relative to that of bare ground. In this context, seasonal snow cover at the mid- 

and high-latitudes influences the global climate system by reflecting a high proportion of 

incoming solar radiation to space (Flanner et al., 2011; Groisman et al., 1994). 

 As the snow season progresses towards spring and summer, insolation increases and air 

temperature warms, the snow cover evolves and snowmelt begins. The onset of snowmelt is 

associated with increases in soil moisture (Harpold and Molotch, 2015) as well as with the 

uptake of carbon by vegetation (Blanken et al., 2009; Winchell et al., 2016) and landscape 

greening (Knowles et al., 2018; Trujillo et al., 2012). The spring snowmelt pulse also drives 

increases in streamflow (Cayan and Peterson, 1989), shaping the annual hydrograph and peak 

flow timing in snow-dominated basins (Berghuijs et al., 2016). In turn, both aquatic fauna and 

streamside vegetation are adapted to the annual snowmelt freshet (Lytle and Poff, 2004). Thus, 

the availability of meltwater in terms of both timing and volume are critical to humans, 

ecosystems, and global hydroclimate. 

1.2 General background material 

The rate and timing of snowmelt are controlled by the snowpack energy balance. Throughout 

this dissertation, it will take the following form: 

 
𝑑𝑈
𝑑𝑡 + 𝑄! = 𝑄!" + 𝑄!" + 𝑄! + 𝑄!" + 𝑄! + 𝑄! (1.1) 

 

where !"
!"

 is the simulated rate of change in internal snowpack energy, 𝑄! is the energy available 

for melt once the snowpack becomes isothermal, 𝑄!" is net shortwave radiation, 𝑄!" is net 

longwave radiation, 𝑄!  is sensible heat flux, 𝑄!" is latent heat flux, 𝑄!  is ground heat flux, and 

𝑄! is the heat advected by precipitation (all W m-2). Together, 𝑄!" and 𝑄!" comprise the 

radiative fluxes, while 𝑄! and 𝑄!" represent the turbulent fluxes. Fluxes are positive when they 
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are directed towards the snowpack (i.e., the snowpack’s internal temperature rises) and negative 

when they are directed away from the snowpack (i.e., the snowpack’s internal temperature 

decreases).  

 In order to simulate seasonal snow cover evolution, computer models use various 

formulations and abstractions of the snowpack energy balance. This ranges from simple 

temperature index models where air temperature is used as a proxy for the radiative fluxes, to 

complex, physics-based snow models that provide a full treatment of the snowpack energy 

balance. While temperature index models can accurately simulate snow water equivalent, model 

parameters (e.g., the degree day factor that relates air temperature to melt) are often not 

transferrable in space and time (Hock, 2003). Thus, such models are often calibrated for a 

specific location and time of year and offer limited information about physical snowpack 

processes. To that end, more advanced models leverage known physical relationships that are 

transferrable in space and time. That means well validated physics-based models can be used to 

evaluate snowpack processes in different areas, a changing climate, and throughout the snow 

cover season. 

 However, despite their considerable utility, physics-based models are not without their 

drawbacks. Although models that better represent physical processes typically outperform 

simplified models, model comparison work consistently shows that no model performs best in all 

locations at all times (Essery et al., 2013; Etchevers et al., 2004; Rutter et al., 2009). In addition 

to the uncertainty introduced by model structure and physics, errors in forcing data can cause 

divergence in simulated snow cover evolution (Lapo et al., 2015; Raleigh et al., 2016, 2015).  In 

that context, it is essential to have proper validation data for various snow cover properties. For 

example, Lapo et al. (2015) showed that modeled snow water equivalent (SWE) and energy 
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balance partitioning between the turbulent and radiative fluxes are improved when validation is 

performed on more than one snow cover metric. Thus, it is essential that model physics 

accurately represent snowpack processes, that meteorological observations be quality controlled, 

and that model output be validated to the greatest extent possible. 

1.3 Project introductions 

The three projects within this dissertation utilize various permutations of the advanced, physics-

based SNOWPACK model (Bartelt and Lehning, 2002; Lehning et al., 2002b, 2002a), which 

was forced with quality controlled meteorological observations and validated on multiple 

snowpack measurements. With the importance of snow cover and snowmelt to the economy and 

hydroclimate of the western United States in mind, the overarching goal was to improve 

understanding of how snow cover evolves through the accumulation and melt seasons. The 

research presented herein can be broadly divided into two categories: 1) Evaluation of snowpack 

processes in historic and future climates, and 2) A critical examination of how precipitation 

phase affects simulated snow cover evolution.  

The first two projects focus on the Niwot Ridge Long Term Ecological Research (LTER) 

site, which has hourly meteorological and snow pit observations dating back to 1990 and 1995, 

respectively. Project 1 uses both observational and simulation data to investigate how the 

snowpack acquires energy deficits, a previously unknown process. Project 2 then leverages the 

baseline simulations from Project 1 to evaluate the differential response of the snowpack at the 

Niwot Ridge LTER alpine and subalpine sites to changes in climate. Finally, Project 3 expands 

the spatial scope to include sites that span a climatic gradient across the western Unites States in 

order to analyze how the choice of a precipitation phase method leads to uncertainty in simulated 

snow cover evolution.   
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1.3.1 Project 1 (Chapter 2): Observations and simulations of the seasonal evolution of 
snowpack cold content and its relation to snowmelt and the snowpack energy 
budget 

Equation 1.1 shows that !"
!"

 and 𝑄! are balanced by the fluxes to and from the snowpack. 

Critically, little to no energy goes towards 𝑄! until the snowpack warms from sub-freezing to an 

isothermal 0°C. If the snowpack is not isothermal, then surface melt can be refrozen in the colder 

lower layers of the snowpack. First principles therefore dictate that snowmelt onset and rate 

should at least be partially controlled by the internal energy of the snowpack. Despite this 

fundamental physical relationship, little research has been done on how cold content (i.e., the 

snowpack’s energy deficit) develops in seasonal snowpacks. This is likely due to the fact that 

cold content is a linear function of snowpack mass and depth-weighted mean temperature, and 

that measurements of the latter are rare relative to those of the former. Thus, it remained 

unknown whether snowpacks developed energy deficits through meteorological (e.g., air 

temperature and snowfall) or energy balance processes. 

 Chapter 2 uses observational snow pit and meteorological data as well as validated output 

from the SNOWPACK model to quantify how new snowfall and negative energy fluxes 

contribute to cold content development at an alpine and subalpine site at the Niwot Ridge LTER. 

At the two sites, new snowfall was the dominant pathway for cold content development, while 

negative energy fluxes—primarily 𝑄!" and 𝑄!"—contributed a lesser amount of cold content on 

a daily basis. In the alpine, snowfall was responsible for 84.4% of simulated cold content gains 

and 73.0% in the subalpine. These results were somewhat surprising given the high potential of 

the snowpack energy balance to drive snowpack cooling at both sites through high wind speeds, 

cold air temperatures, and low relative humidity (i.e., low atmospheric emissivity). Results from 

Project 1 also showed that cold content magnitude exerted little control on snowmelt rate and 
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timing at seasonal time scales. However, non-zero cold content values did delay snowmelt onset 

and damp snowmelt rates at daily to monthly time scales, suggesting that observations or 

simulations of cold content have more predictive capacity over shorter time periods (Jennings et 

al., 2018a). 

1.3.2 Project 2 (Chapter 3): Evaluating the differential response of an alpine and 
subalpine snowpack to changes in climate 

The hydrologic landscape of the western United States is changing, particularly in areas reliant 

on snowmelt-derived streamflow. Recent estimates attribute approximately 50% or greater of the 

observed change to anthropogenic climate warming (Abatzoglou, 2011; Barnett et al., 2008; 

Pederson et al., 2013), which has been expressed as an increased fraction of precipitation falling 

as rain versus snow (Knowles et al., 2006), decreased snow accumulation and earlier snowmelt 

(Clow, 2010; Harpold et al., 2012; Mote et al., 2005; Pederson et al., 2013, 2011b; Regonda et 

al., 2005), earlier streamflow timing (Cayan et al., 2001; Clow, 2010; Regonda et al., 2005; 

Stewart et al., 2005), and reduced streamflow volume (Barnhart et al., 2016; Berghuijs et al., 

2014). Most work has ascribed the majority of these impacts to increased surface air 

temperatures, with little effect resulting from precipitation changes (Hamlet et al., 2005; Kapnick 

and Hall, 2012; Mote et al., 2018; Pederson et al., 2013; Sospedra-Alfonso et al., 2015). 

Continued climate warming—a near certainty in most climate simulations—is predicted to 

exacerbate and protract these impacts, as well as expand their spatial extent (Barnett and Pierce, 

2009; Christensen et al., 2004; Klos et al., 2014; Nolin and Daly, 2006; Stewart et al., 2004a). 

Increased warming is also predicted to restrict the ability of snow-dominated basins to provide 

reliable water deliveries in the future (Barnett and Pierce, 2009; Christensen et al., 2004; Mankin 

et al., 2015).  
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Although the warming has occurred throughout the western United States, mountain 

snowpacks have exhibited a spatially variable response to air temperature increases. In general, 

areas at middle elevations with winter air temperatures near -5° to 0 °C have been most sensitive 

to warming (Kapnick and Hall, 2012; Knowles et al., 2006; Mote et al., 2018) and are expected 

to remain so with continued warming (Klos et al., 2014; Musselman et al., 2017b). However, the 

relationships between sensitivity and elevation and air temperature are empirical, meaning there 

is a need to investigate the physical processes behind the variable response. For this work, the 

Niwot Ridge LTER again offered an ideal study site as the alpine and subalpine locations span 

the divide of areas that should be hypothetically less and more sensitive, respectively, to the 

impacts of climate warming. Project 2 uses the baseline model runs from Project 1 with warming 

uniformly applied via a delta-change approach in 0.5°C increments from +0.5°C to +4.0°C. For 

the warming scenarios, atmospheric emissivity was held constant, and incoming longwave 

radiation was increased through the effect of air temperature on the calculation of atmospheric 

longwave emission using the Stefan-Boltzmann equation. Our results showed the higher, colder 

alpine site was less sensitive to future warming in terms of snow accumulation and melt due to 

three physical reasons: 1) Snowfall fraction decreased less rapidly with warming than in the 

subalpine; 2) Significant cold content was still added to the alpine snowpack throughout the 

snow season, preventing mid-winter melt events; 3) Changes to snowmelt rate were not 

significant because increases to the turbulent fluxes balanced decreases in the radiative fluxes 

with earlier melt onset. 

While continued warming is a near certainty in the western United States, the changes that 

may occur to total precipitation and precipitation seasonality are less certain (Easterling et al., 

2017; IPCC, 2013). Previous work has shown that changes to precipitation can mitigate warming 
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effects on snow accumulation, so Project 2 also evaluates the impacts of precipitation changes. 

The delta-change approach was again used for total precipitation, with changes to the baseline 

applied in 5% increments from -20% to + 20%. Precipitation seasonality was shifted between 

winter and spring in 10% increments from -30% (spring becomes wetter) to +30% (winter 

becomes wetter) while keeping total precipitation constant. As opposed to the differential 

response to warming, changes to total precipitation led to relatively consistent results at the 

alpine and subalpine sites with later melt onset and faster snowmelt rates being associated with 

increased precipitation. Changes to precipitation seasonality had a near-negligible impact on 

snow cover properties at both sites. 

1.3.3 Project 3 (Chapter 4): The sensitivity of modeled snow accumulation and melt to 
precipitation phase methods across a climatic gradient in the western United States 

The results from Project 2 showed that declines in snowfall fraction were significant at both the 

alpine and subalpine sites with future warming. These sites are not unique in that one of the more 

pronounced effects of climate warming has been a shift from snow to rain in cold and temperate 

regions across the globe (Knowles et al., 2006; Trenberth, 2011). It is predicted that this trend 

will continue with future warming due to the strong temperature dependency of precipitation 

phase (Bintanja and Andry, 2017; Klos et al., 2014; O’Gorman, 2014). Although the shift from 

snow to rain is exceedingly probable, the fact that the temperature at which rain and snow fall in 

roughly equal probability varies spatially is often overlooked. Jennings et al. (2018b) showed 

that snow is more probable at higher temperatures in continental areas than in maritime areas, yet 

precipitation phase partitioning is often simulated using a spatially uniform air temperature 

threshold. This same work also showed that the choice of a precipitation phase method (e.g., the 

air temperature threshold or range used to discriminate between solid and liquid precipitation) 

introduces significant uncertainty to annual snowfall frequency. Concerningly, the mountainous 
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areas with the greatest sensitivity, such as California’s Sierra Nevada, are indispensable to 

regional water resources. This is worrisome because work using land surface models and 

spatially uniform thresholds is progressing rapidly, while little work has been done critically 

examining how the precipitation phase predicted by different methods propagates into other 

changes in model simulations.  

We therefore have the problem of a snow-to-rain shift occurring with climate warming 

but simultaneously knowing little about how precipitation phase methods affect snowpack 

simulations in historic or future climates. To that end, recent research has called into question the 

simplistic way by which many land surface and hydrologic models partition rainfall and snowfall 

(Feiccabrino et al., 2015; A. A. Harpold et al., 2017c). Previous work on the topic has shown 

precipitation phase method can cause uncertainty in simulated SWE and snow cover duration 

(Fassnacht and Soulis, 2002; Harder and Pomeroy, 2014; Mizukami et al., 2013), but those 

projects focused on either a single site or a small selection of sites with similar climatic 

characteristics. Meanwhile, Raleigh et al. (2016) and Harpold et al. (2017a) both indicated that 

the selection of a precipitation phase method leads to a spatially variable response in annual 

snowfall fraction. Thus, besides uncertainty in snowfall fraction, it is unknown how a selection 

of precipitation phase methods would affect simulated snow cover evolution across a climatic 

gradient like the one expressed by the seasonal snow classes of the western United States. 

Project 3 remedies this shortcoming by simulating 8 years of snow cover using 12 

different precipitation phase methods at 11 sites, representing warm maritime to cold continental 

climatic conditions. The three sites with average winter air temperatures less than -5°C expressed 

minimal sensitivity to the different methods, suggesting that method selection matters little at 

cold, high-elevation sites where the vast majority of annual precipitation falls as snow. 
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Conversely, at the warmer sites, precipitation phase method selection introduced significant 

uncertainty with ranges in annual snowfall fraction exceeding 30% and relative differences 

between minimum and maximum snowfall fraction approaching 100%. This significant 

uncertainty propagated into sensitivity in simulated snow cover evolution with peak SWE ranges 

approaching 500 mm and snow cover duration ranges nearing one month or more. Overall, sites 

with warmer winter and spring temperatures and greater precipitation were most sensitive in 

terms of the variability in snow cover evolution. This work has implications for simulations of 

past, present, and future hydroclimatic conditions given the wide ranges in snow cover properties 

produced by the different methods. Variability in simulated peak SWE caused by precipitation 

phase method selection could degrade the estimates of water stored in mountain snowpacks, 

while uncertainty in snow cover duration would affect calculations of land surface albedo and the 

earth’s energy balance.
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Chapter 2 

2 Observations and simulations of the seasonal evolution of 
snowpack cold content and its relation to snowmelt and the 
snowpack energy budget 

 
Chapter 2 was originally published in The Cryosphere with contributions from my co-authors 

Timothy Kittel and Noah Molotch:  

Jennings, K.S., Kittel, T.G. and Molotch, N.P., 2018. Observations and simulations of the 

seasonal evolution of snowpack cold content and its relation to snowmelt and the 

snowpack energy budget. The Cryosphere, 12(5), p.1595. https://doi.org/10.5194/tc-12-

1595-2018.  

 
Abstract 

Cold content is a measure of a snowpack’s energy deficit and is a linear function of snowpack 

mass and temperature. Positive energy fluxes into a snowpack must first satisfy the remaining 

energy deficit before snowmelt runoff begins, making cold content a key component of the 

snowpack energy budget. Nevertheless, uncertainty surrounds cold content development and its 

relationship to snowmelt, likely because of a lack of direct observations. This work clarifies the 

controls exerted by air temperature, precipitation, and negative energy fluxes on cold content 

development and quantifies the relationship between cold content and snowmelt timing and rate 

at daily to seasonal time scales. The analysis presented herein leverages a unique long-term snow 

pit record along with validated output from the SNOWPACK model forced with 23 water years 

(1991–2013) of quality controlled, infilled hourly meteorological data from an alpine and 

subalpine site in the Colorado Rocky Mountains. The results indicated that new precipitation 
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exerted the primary control on cold content development at our two sites with snowfall 

responsible for 84.4% and 73.0% of simulated daily gains in the alpine and subalpine, 

respectively. A negative surface energy balance—primarily driven by sublimation and longwave 

radiation emission from the snowpack—during days without snowfall provided a secondary 

pathway for cold content development, and was responsible for the remaining 15.6% and 27.0% 

of cold content additions. Non-zero cold content values were associated with reduced snowmelt 

rates and delayed snowmelt onset at daily to sub-seasonal time scales, while peak cold content 

magnitude had no significant relationship to seasonal snowmelt timing. These results suggest 

that the information provided by cold content observations and/or simulations is most relevant to 

snowmelt processes at shorter time scales, and may help water resource managers to better 

predict melt onset and rate. 

2.1 Introduction 

Cold content is a key component of the snowpack energy budget as it represents the 

internal energy deficit that must be overcome before snowmelt runoff can begin. It is a linear 

function of snowpack temperature and snow water equivalent (SWE), whereby colder snowpacks 

with greater SWE have increased energy deficits. Until cold content is satisfied, positive energy 

fluxes go towards raising the internal snowpack temperature to an isothermal 0°C and any 

surface melt that is produced may be refrozen in the colder lower layers of the snowpack. In this 

regard, cold content influences the timing and rate of snowmelt runoff, which is of critical 

importance to various ecohydrologic and cryospheric processes, including: streamflow 

generation (Barnhart et al., 2016; Regonda et al., 2005), water resources availability (Barnett et 

al., 2005; Christensen et al., 2004; Mankin et al., 2015; Stewart, 2009), water uptake by 

vegetation (Winchell et al., 2016), soil moisture (Harpold and Molotch, 2015), flooding 
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(Jennings and Jones, 2015; Kampf and Lefsky, 2016), and land surface albedo (Déry and Brown, 

2007), among others. 

Cold content can be estimated using at least one of three primary methods: 1) As an 

empirical function of air temperature (e.g., Anderson, 1976; DeWalle and Rango, 2008; 

Seligman et al., 2014; United States Army Corps of Engineers, 1956); 2) As a function of 

precipitation and air temperature (e.g., Cherkauer et al., 2003; Lehning et al., 2002b; Wigmosta 

et al., 1994) or wet bulb temperature (Anderson, 1968) during precipitation; and 3) As a residual 

of the snowpack energy balance (e,g., Andreadis et al., 2009; Cline, 1997; Lehning et al., 2002b; 

Marks and Winstral, 2001). In general, simple temperature-index models employ method 1, 

while both 2 and 3 are utilized in physics-based snow models. These methods suggest that cold 

content develops through both meteorological and energy balance processes, but few direct 

comparisons to observed cold content exist. This is likely due to the inherent difficulty in 

measuring cold content, which requires either time-intensive snow pits or co-located snow depth, 

density, and temperature measurements (Burns et al., 2014; Helgason and Pomeroy, 2011; Marks 

et al., 1992; Molotch et al., 2016). The lack of validation data introduces significant uncertainty 

into the dominant process by which cold content develops. Thus, it is not known whether cold 

content development is primarily a function of air temperature (method 1), snowfall (method 2), 

or a negative surface energy balance (method 3). 

Early work from California’s Sierra Nevada mountains indicated cold content developed 

in the snowpack mainly through a negative surface energy balance. The reported monthly change 

in snowpack internal energy (i.e., change in cold content) ranged from -34 to -61 W m-2 from 

November through April at an exposed site and -8 to -66 W m-2 from November through 

February at a sheltered site (Marks and Dozier, 1992). However, such negative fluxes would 
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result in physically unrealistic internal snowpack temperature changes. Even persistent slightly 

negative flux values, as reported elsewhere in the literature (Armstrong and Brun, 2008), would 

result in implausibly low snowpack temperatures. It can be inferred that any process producing 

anomalously low snowpack temperatures either misidentifies or overestimates the importance of 

a particular meteorological or energy balance mechanism. 

Furthermore, the degree to which wintertime cold content magnitude controls snowmelt 

timing and rate at daily to seasonal timescales is relatively uncertain. Work from the 

southwestern United States suggests increased cold content may delay seasonal melt timing 

(Molotch et al., 2009) and the inclusion of cold content generally improves meltwater outflow 

predictions in point and distributed snowmelt models of varying degrees of physical complexity 

(Bengtsson, 1982a; Jepsen et al., 2012; Livneh et al., 2010; Mosier et al., 2016; Obled and Rosse, 

1977). However, two empirical studies indicated the energy required to satisfy cold content may 

be relatively small in comparison to the energy required to melt enough snow to fulfill the 

irreducible water content of an already isothermal snowpack (Bengtsson, 1982a; Seligman et al., 

2014). 

Given the above unknowns, we aim to improve understanding of the processes 

controlling cold content development and the relationship between cold content and snowmelt 

timing and rate at a continental, mid-latitude alpine and subalpine site in the Colorado Rocky 

Mountains. Our research utilizes observations from a long-term snow pit record and simulation 

output from a physics-based snow model forced with a quality controlled, serially complete 

meteorological dataset. Analyses performed on the observations and simulation data are focused 

on answering the following research questions: 
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1. What are the meteorological and energy balance controls on cold content development at 

an alpine and subalpine site in the Colorado Rocky Mountains? 

2. How does cold content affect snowmelt timing and rate on seasonal, sub-seasonal, and 

daily time scales? 

2.2 Study site and snow pit and forcing data 

The Niwot Ridge Long Term Ecological Research site (LTER) is located on the eastern 

slope of the Continental Divide in the Rocky Mountains of Colorado, USA (Fig. 2.1). The 

entirety of the LTER is situated above 3000 m with treeline occurring at approximately 3400 m 

(Williams et al., 1998). Dominant vegetation in the subalpine is lodgepole pine, aspen, 

Engelmann spruce, subalpine fir, and limber pine (Burns et al., 2014). The alpine is characterized 

by several tundra vegetation communities of grasses, forbs, and shrubs, whose distribution is 

linked to patterns of snow depth and soil moisture (Walker et al., 1993, 1994).  

There are multiple meteorological stations within the boundaries of the Niwot Ridge 

LTER, but this work focuses on the two sites with long-term snow pit records: alpine (3528 m) 

and subalpine (3022 m), named Saddle and C1, respectively (Fig. 2.1). We employed an 

additional high alpine station (D1, 3739 m) in the meteorological data infilling procedure 

(Appendices 2.1 and 2.2), but did not perform model simulations there due to a lack of snow pit 

validation data. From 2008 to 2012, annual precipitation in the alpine and subalpine averaged 

1071 mm and 752 mm, respectively (Knowles et al., 2015) and the ratio between above- and 

below-treeline precipitation varies annually as a function of upper-air flow regimes (Kittel et al., 

2015). The majority of annual precipitation is snow, with estimates of the proportion of snowfall 

ranging from 63% to 80% of total precipitation in the subalpine and alpine (Caine, 1996; 

Knowles et al., 2015). Over our study period, December, January, February mean air temperature 
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was -10.3°C in the alpine and -6.2°C in the subalpine. Dominant wind direction was westerly, 

but the subalpine site also experienced easterly flow during intermittent upslope events (Blanken 

et al., 2009; Burns et al., 2014). Elevated wind speeds in the alpine, averaging 10 m s-1 to 13 m s-

1 in winter, exert a primary control on patterns of snow erosion and deposition with snow depth 

being highly variable as a result (Erickson et al., 2005; Jepsen et al., 2012; Litaor et al., 2008). 

Snow depths in the alpine can range from 0 m over wind-scoured tundra to upwards of 5 m in 

drifts on the lee side of terrain features or in gullies. Additionally, blowing snow occurs 

frequently during winter months in the alpine due to high winds, reaching a maximum in January 

(Berg, 1986).  

 
Figure 2.1. The location of the Niwot Ridge LTER within the western United States (a) and a topographical 
map showing the meteorological stations and snow pit sites. The dashed line in the LTER inset (b) represents 
approximate treeline (3400 m) and the thin, solid lines are 100 m contours. The snow study focused on the 

W

(a) (b)

(c) (d)
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alpine (c) and subalpine sites (d), the two locations which have co-located snow pit observations and 
meteorological stations. The high alpine site was used as an additional station in the meteorological data 
infilling protocol and the Niwot SNOTEL was used for model validation. 

Regular snow pit measurements began in 1995 in the alpine and 2007 in the subalpine, 

and were taken at weekly to monthly intervals from the middle of January through the end of 

May in most snow seasons (Williams, 2016). A total of 292 alpine and 147 subalpine snow pit 

records were used in this study (Appendix 2.3). The alpine snow pit represents conditions typical 

of the above-treeline snowpack as it is not in an area of pronounced snow erosion or deposition. 

The subalpine snow pit is located in a stand of lodgepole pine, typical of vegetation conditions in 

the below-treeline areas. Measurement protocol follows Williams et al. (1999): Snow density is 

measured for each 10 cm layer using a wedge-shaped 1 L density cutter (10 cm × 10 cm × 20 

cm) and snow temperature is recorded every 10 cm with dial-stem thermometers. Snow pit 

measurements enable per-layer and depth-weighted calculations of SWE and cold content: 

 𝑆𝑊𝐸 = !!
!!
𝑑! (2.1) 

 𝐶𝐶 = 𝑐!𝜌!𝑑!(𝑇! − 𝑇!) (2.2) 

where ρs and ρw are the density of snow and liquid water, respectively (kg m-3), ds is snow depth 

(m), CC is cold content (MJ m-2), ci is the specific heat of ice (2.1 × 10-3 MJ kg-1 °C-1), Ts is the 

snow temperature (°C), and Tm is the melting temperature of snow (0°C). Snow pit analyses 

focused on water years (WY, 1 October from the previous calendar year through 30 September) 

2007 through 2013, the period for which overlapping snow pit data were available. The full 

period of record in the alpine (WY1995–WY2013) was used for model validation. 

Hourly meteorological data have been collected at the LTER since 1990, but the record 

suffers from quality control issues and periods of missing data. Recent research has shown the 

quality of snow model output depends on having accurate forcing data (e.g., Förster et al., 2014; 

Lapo et al., 2015; Raleigh et al., 2015, 2016; Schmucki et al., 2014). Measurements were 
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therefore subjected to an extensive quality control and infilling protocol (Appendices 2.1 and 

2.2) to produce a serially complete, hourly dataset with observations of air temperature, relative 

humidity, incoming solar radiation, wind speed, and precipitation. The dataset also includes 

hourly estimates of downwelling longwave radiation based on air temperature, relative humidity, 

and incoming solar radiation using the methods of Angström (1915), Crawford and Duchon 

(1999) and Dilley and O’Brien (1998) as described in Flerchinger et al. (2009). 

2.3 Methodology 

Observations from the Niwot Ridge LTER snow pit record and validated output data from 

physics-based snow model simulations were employed to answer the two research questions. We 

assessed the meteorological controls on cold content development using measurements of 

cumulative precipitation and the cumulative mean of air temperature for the full period of record 

at both sites. We focused the analysis on snow pit observations and simulations between 1 

December and the date of peak cold content, the main period of cold content development. We 

then tested whether persistent large negative energy fluxes could be responsible for cold content 

development by calculating the rate of change in internal energy between pit observations and 

using the snow model simulations to calculate the snowpack energy budget. Model output was 

also used to assess the effect of cold content magnitude and timing on snowmelt rate and timing 

at daily to seasonal time scales. Additionally, we note that in this paper an “increase” or “gain” 

in cold content refers to the value increasing in absolute magnitude (becoming more negative 

i.e., the energy deficit increases). A “decrease” or “loss” of cold content occurs when the value 

becomes less negative and approaches 0 MJ m-2. 
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2.3.1 Snow pit analysis 

Mean characteristics of and differences between the alpine and subalpine snow pits were 

quantified using data from WY2007–WY2013, the seven years for which there were overlapping 

observations. To assess the control each meteorological quantity exerted on cold content, we 

used the cumulative mean of air temperature and cumulative precipitation between 1 December 

and the date of snow pit observation as the independent variables with observed cold content 

acting as the dependent variable in ordinary least squares regression. The strength of the 

relationship was quantified using the coefficient of determination, r2, while the p-value of the 

regression slope indicated statistical significance. Additionally, in order to evaluate whether 

large persistent negative energy balances were consistent with patterns of cold content 

development, we calculated the rate of change in internal energy between snow pit observations: 

 𝑑𝑈
𝑑𝑡 !"#

=
∆𝐶𝐶

(86,400 ∆𝑡) 
(2.3) 

where !"
!"!"#

 is the pit-observed rate of change in internal energy (W m-2), ∆CC is the change in 

cold content (J m-2) between snow pit observations, 86,400 is the conversion factor between 

days and seconds (s d-1), and ∆t is the number of days between snow pit observations (d). Snow 

pit cold content in this context integrates the effects of incoming and outgoing fluxes, plus the 

cold content added by precipitation, by providing a measure of the change in the internal energy 

of the snowpack independent of any surface flux measurements or estimations. 

2.3.2 Snow model simulations 

2.3.2.1 Model description 

In order to evaluate cold content development processes at a finer temporal resolution and 

quantify components of the energy budget, we employed the complex, physics-based, multi-
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layer, one-dimensional SNOWPACK model (Bartelt and Lehning, 2002; Lehning et al., 2002b, 

2002a). This model was selected because previous studies have shown complex, multi-layer 

models more accurately partition the snowpack energy budget and better represent internal 

processes (Blöschl and Kirnbauer, 1991; Boone and Etchevers, 2001; Essery et al., 2013; 

Etchevers et al., 2004). Additionally, SNOWPACK was utilized in previous work to simulate the 

snowpack energy budget at the Niwot Ridge LTER (Meromy et al., 2015) and it has been 

validated in the Rocky Mountains of Montana (Lundy et al., 2001). SNOWPACK is forced with 

air temperature, relative humidity, wind speed, incoming solar radiation, incoming longwave 

radiation, and precipitation at an hourly or higher temporal resolution. The model discretizes the 

snowpack into a variable number of layers that change with the addition of new snow, mass loss 

through snowmelt and sublimation, and densification via compaction. Each layer is composed of 

water in liquid, solid, and gas phases, all of which are assumed to have the same temperature. 

SNOWPACK is governed by four differential equations that account for the conservation of 

energy, mass, and momentum. Explicit routines are included for heat transfer, water transport, 

and phase changes. In addition, the model features quasi-physical estimations of snow 

microstructure and snow grain metamorphism. These properties, in turn, control the rate of heat 

conduction and settling within the snowpack. SNOWPACK also models the penetration of 

shortwave radiation and wind pumping in the upper layers of the snowpack. 

We increased the standard SNOWPACK rain-snow air temperature threshold from 1.2°C 

to 2.5°C to better represent precipitation phase partitioning at our high-elevation continental 

sites. In general, the Rocky Mountains have some of the warmest rain-snow air temperature 

thresholds in the Northern Hemisphere (Jennings et al., 2018b). To test the effect of our 

threshold selection, we compared the mean annual snow frequency using the 2.5°C threshold 
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(alpine = 76.4%; subalpine = 61.5%) to a bivariate binary logistic regression phase prediction 

model (alpine = 76.7%; subalpine = 62.8%). This model predicts precipitation phase as a 

function of relative humidity and air temperature, and it was shown to be the best precipitation 

phase method in a Northern Hemisphere comparison (Jennings et al., 2018b). 

The bulk Richardson number stability correction was used for computing turbulent fluxes 

in both the alpine and subalpine. Although Monin-Obukhov similarity theory options were 

available, these stability corrections generally performed worse relative to the bulk Richardson 

number in our preliminary simulations as well as in the work of others (Essery et al., 2013). 

Ground heat flux was simulated using the SNOWPACK-default constant soil surface 

temperature of 0.0°C because no long-term soil surface temperature data were available.  

Additionally, the SNOWPACK canopy module was activated for the subalpine site given 

its location in a stand of lodgepole pine. Parameters for the canopy module were calibrated using 

a series of 100 Monte Carlo simulations with parameter ranges bounded by representative 

estimates of leaf area index, vegetation height, direct canopy throughfall, and wind speed 

reduction (Table 2.1). Modeled SWE in the subalpine proved most sensitive to the wind speed 

reduction parameter, likely due to the siting of the anemometer as noted in Appendix 2.1. Using 

un-corrected observed wind speed as a model input led to a physically unrealistic amount of 

snow sublimation. 

Table 2.1. Calibrated SNOWPACK canopy module parameters for the subalpine site. 

 

 LAI 
Vegetation 
height (m) 

Canopy 
direct 

throughfall 

Wind 
scaling 
factor 

Parameter 
value 3.7 7.3 0.25 0.44 
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2.3.2.2 Model simulations, validation, and analysis 

SNOWPACK simulations were performed in the alpine and subalpine for WY1991–WY2013 

and forced with the quality controlled, infilled hourly meteorological data detailed in Appendix 

2.1. This time range included the lowest (WY2002: 178 mm) and second highest (WY1996: 523 

mm) peak SWE observations in the period of record (WY1981–WY2017) at the Niwot 

Snowpack Telemetry (SNOTEL) station (3020 m), which is located within the Niwot Ridge 

LTER boundary, less than 1 km from the subalpine snow pit and meteorological tower. Thus, the 

analysis covered a wide range of feasible snowpack conditions, from pronounced snow drought 

to peak SWE values greater than 150% of average, according to the SNOTEL observations.  

To ensure the simulation output was suitable for in-depth analysis, we validated model 

SWE, snowpack temperature, and cold content values on the snow pit observations. We pursued 

this multi-validation approach because our work focuses on the internal energy of the snowpack 

and recent research has shown the output from snow model simulations (e.g., energy balance 

partitioning, SWE) is more reliable when several variables are used in model evaluation (Lapo et 

al., 2015). Modeled subalpine SWE estimates were also evaluated using observed SWE at the 

Niwot SNOTEL site. For each quantity of interest, we assessed model performance using the 

coefficient of determination and mean bias. To improve model output, we corrected precipitation 

measurements relative to snow pit and SNOTEL SWE observations (Appendix 2.1) and 

optimized the canopy parameters for subalpine simulations (Sect. 2.3.2.1). Additionally, there 

were several times per winter when the simulated cold content spiked rapidly down (∆CC < -0.3 

MJ m-2 h-1), then back up. These data points, which represented less than 0.2% of the simulation 

hours, were filtered from the analysis. 

We then used the validated output from SNOWPACK to quantify the controls on cold 

content development and snowmelt processes at a finer temporal resolution than the weekly to 
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monthly snow pit observations. To evaluate the meteorological processes controlling cold 

content development, we used the same methods employed in the snow pit observations outlined 

above (Sect. 2.3.1). Additionally, we quantified the contributions of the simulated snowpack 

energy balance to cold content development: 

 𝑑𝑈
𝑑𝑡 + 𝑄! = 𝑄!" + 𝑄!" + 𝑄! + 𝑄!" + 𝑄! + 𝑄! 

(2.4) 

where !"
!"

 is the simulated rate of change in internal snowpack energy, 𝑄! is the energy available 

for melt (once cold content equals 0.0 MJ m-2), 𝑄!" is net shortwave radiation, 𝑄!" is net 

longwave radiation, 𝑄! is sensible heat flux, 𝑄!" is latent heat flux, 𝑄!  is ground heat flux, and 

𝑄! is the heat advected by precipitation (all W m-2). This work focuses primarily on 𝑄!", 𝑄!", 

𝑄!, 𝑄!", and 𝑄! , which we will refer to as 𝑄!"# throughout the remainder of this paper. 𝑄! is 

typically negligible because significant rain-on-snow events are rare at the Niwot Ridge LTER. 

Simulation results were also used to quantify the control cold content exerts on snowmelt 

timing and rate at multiple time scales. At the seasonal time scale, we set snowmelt onset to 

correspond to the date of peak SWE and snowmelt rate to the ablation slope, which is the 

average daily snowmelt rate between the date of peak SWE and the date at which SWE first 

equals 0 mm (e.g., Barnhart et al., 2016; Trujillo and Molotch, 2014). At sub-seasonal time 

scales, we calculated snowmelt timing and rate in time windows from 1 d to 30 d, with a 

corresponding cold content value at day zero. Finally, we used the cold content at 6AM local 

time (CC6AM) to evaluate the effect of cold content on snowmelt timing and rate at daily time 

scales. For the sub-seasonal and daily time scales above, we set snowmelt timing to be the first 

instance of simulated snowmelt runoff and snowmelt rate to be the mean rate for the time 

window. 
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2.4 Results 

2.4.1 Snow pit observations of cold content 

Snow pit observations showed daily and peak annual snowpack cold content were consistently 

greater in the alpine than subalpine (Fig. 2.2). From WY2007–WY2013, mean peak cold content 

was 2.6 times greater in the alpine than subalpine, while mean peak SWE was 2.1 times greater 

in the alpine (Table 2.2). On average, peak cold content and peak SWE, respectively, occurred 

33 d and 10 d later in the alpine than subalpine. The average temporal gap between peak cold 

content and peak SWE was also 23 d shorter in the alpine, indicating greater energy exchange 

between the snow and atmosphere at this site during the main time of snowpack ripening. Mean 

!"
!"!"#

 for this period, as estimated using Eq. 2.3, was 1.2 W m-2 and 0.4 W m-2 in the alpine and 

subalpine, respectively. 
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Figure 2.2. Peak annual cold content (a) and individual snow pit observations of cold content (b) for the alpine and 
subalpine from WY2007–WY2013. The dashed horizontal lines in (a) represent the mean peak annual cold content 
values for the two sites. 

Table 2.2. Mean quantities for the alpine and subalpine snow pits from WY2007–WY2013 

Site Peak CC 
(MJ m-2) 

Peak SWE 
(mm) 

Date of Peak 
CC 

Date of Peak 
SWE 

Alpine -6.5 843 19-March 6-May 
Subalpine -2.5 395 14-February 26-April 
 

 From 1 December to the date of snow pit observation, increased cumulative precipitation 

was associated with increased cold content at both sites (Fig. 2.3). Cumulative precipitation 
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explained 55% and 17% of the variance in cold content in the alpine and subalpine, respectively. 

The relationship was statistically significant at the 99% level at both sites despite the low 

coefficient of determination in the subalpine. Conversely, the cumulative mean of air 

temperature had no statistically significant relationship to snowpack cold content, explaining less 

than 1% of the variance at both sites (not shown). Although there may be snowpack energy 

losses during periods of low air temperature, these results indicate that, of the two meteorological 

quantities evaluated here, snowfall exerts the primary control on cold content development. This 

is likely due to the higher variability of winter precipitation, the coefficient of variation of which 

is 2.9 and 2.7 times greater than that of air temperature in the alpine and subalpine, respectively. 

Furthermore, the difference in r2 values between the two sites suggests that precipitation plays a 

more important role in the alpine than subalpine in terms of cold content development. 

 Snow pit observations were also used to calculate !"
!"!"#

 by quantifying the change in cold 

content between two points in time (Eq. 2.3). During periods of SWE accumulation, !"
!"!"#

 was 

typically near 0.0 W m-2 (Fig. 2.4a), indicating a large negative energy balance was not 

responsible for cold content development at our two sites. The average flux in the alpine (-0.8 W 

m-2) was greater in magnitude during this period than in the subalpine (-0.4 W m-2), and both 

distributions were left-skewed as the energy balance was typically negative from snowfall- 

and/or flux-driven cold content increases. Changing the analysis to snow pit observations when 

melt occurred (Fig. 2.4b) led to a pronounced right-skew in the flux distribution with values 

again of a higher magnitude in the alpine. Thus, we found no evidence for highly negative 

internal energy changes at our sites with !"
!"!"#

 values only being large in magnitude during 

snowmelt. 



 27 

 

Figure 2.3. Cold content plotted against cumulative precipitation from 1 December to the date of snow pit 
observation for the alpine and subalpine for the snow season up to and including the date of peak cold content from 
WY2007–WY2013. The dashed lines of best fit were calculated using ordinary least squares linear regression. 
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Figure 2.4. Kernel density estimates of 𝒅𝑼
𝒅𝒕𝒑𝒊𝒕

distributions as calculated from snow pit observations for periods with 

SWE gain (a) and loss (b) in the alpine and subalpine for WY2007–WY2013. The dashed vertical lines represent the 
mean 𝒅𝑼

𝒅𝒕𝒑𝒊𝒕
 for the alpine (a = -0.8 W m-2; b = 62.8 W m-2) and subalpine (a = -0.4 W m-2; b = 23.9 W m-2). 

2.4.2 Model SWE, snowpack temperature, and cold content validation 

SNOWPACK simulations reproduced observed snow pit SWE patterns at both sites, with a 

higher coefficient of determination and lower bias in the subalpine than alpine (Fig. 2.5a,b; Table 

2.3). Subalpine simulations were also in line with daily SWE observations from the Niwot 

SNOTEL (Table 2.3). Simulated depth-weighted snowpack temperature had a slight warm bias 

of 1.1°C in the alpine and 0.6°C in the subalpine (Fig. 2.5c,d, Table 2.3), while cold content was 

overpredicted in the alpine and underpredicted in the subalpine (Fig. 2.5e,f, Table 2.3). In this 

regard, simulated cold content errors integrated the SWE and snowpack temperature biases. 

Overprediction in the alpine was a result of the positive SWE bias having a greater effect on 

simulated cold content than the warm temperature bias. Conversely, underprediction of 

snowpack cold content in the subalpine was primarily due to the warm temperature bias.  

0.0

0.1

0.2

0.3

0.4

0.5

−10 −5 0 5

 (W m−2)

D
en

si
ty

(a)

0.000

0.005

0.010

0.015

0.020

0 100 200 300

 (W m−2)

Site
Alpine
Subalpine

(b)

 dU/dtpit  dU/dtpit 



 29 

 
Figure 2.5. Plots of simulated versus snow-pit observed SWE (a,b), snowpack temperature (c,d), and cold content 
(e,f) in the alpine (top, WY1995–WY2013) and subalpine (bottom, WY2007–WY2013). The solid black line is the 
1:1 line and the dashed lines are the lines of best fit as determined by ordinary least squares linear regression. 
Simulation error metrics are presented in Table 2.3. 

Table 2.3. Statistics for SNOWPACK simulations relative to daily and annual observations from the snow pits in 
the alpine and subalpine, and Niwot SNOTEL in the subalpine. There is no SNOTEL station in the alpine and 
SNOTEL does not observe cold content and snowpack temperature. Comparisons are for the water years listed in 
the second column. 

  Daily Annual 

Site WY                     
Range 

SWE 
r2 

SWE 
Mean 
Bias 

(mm) 

Ts r2 

Ts 
Mean 
Bias 
(°C) 

CC 
r2 

CC Mean 
Bias (MJ 

m-2) 

Max 
SWE 
Mean 
Bias 

(mm) 

Max CC 
Mean 

Bias (MJ 
m-2) 

Alpine 1996-2013 0.63 95.8 0.74 1.1 0.63 -0.3 99 .0 -0.7 
Subalpine 
(Snow Pit) 2007-2013 0.85 3.4 0.72  0.6 0.63 0.2 15.0 0.6 

Subalpine 
(SNOTEL) 1991-2013 0.89 -5.4 NA NA NA NA 44.1 NA 
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Modeled annual peak SWE and peak cold content were also similar to the previously 

reported pit values for WY2007 through WY2013 (Table 2.3). Additionally, simulated LTER 

subalpine peak cold content values were within the range of those reported in a simulation of a 

subalpine snowpack (-2.2 MJ m-2 to -1.7 MJ m-2) at the nearby Fraser Experimental Forest 

during NASA’s Cold Land Processes Experiment (Marks et al., 2008). Direct observations of 

snow surface sublimation were not available for comparison, but modeled sublimation rates were 

in line with other values reported in the literature for alpine and subalpine areas in the Colorado 

Rocky Mountains (Berg, 1986; Hood et al., 1999; Knowles et al., 2012; Molotch et al., 2007; 

Sexstone et al., 2016). On average, simulated snow-surface sublimation represented 28.8% (383 

mm) and 11.4% (53 mm) of snow-season precipitation in the alpine and subalpine, respectively. 

2.4.3 Meteorological and energy balance controls on cold content development: 
Simulation results 

2.4.3.1 Primary control: Snowfall 

Similar to the snow pit observations, simulated cold content was strongly related to cumulative 

precipitation in the alpine, indicating cold content developed primarily through the addition of 

new snowfall (Fig. 2.6a). The subalpine snowpack, however, frequently approached an 

isothermal state in the winter with cold content fluctuating between gains during snowfall and 

losses during dry periods (Fig. 2.6b). Due to this effect, cumulative precipitation in the subalpine 

explained less of the variance in cold content than in the alpine. Additionally, the cumulative 

mean of air temperature explained little of the variance in simulated cold content at both sites 

(Fig. 2.6c,d). In general, decreases in air temperature did not produce large increases in cold 

content, meaning periods of below-average air temperature did not significantly contribute to 

cold content development. These simulations support the results of the snow pit observations, 
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namely that of the two main meteorological quantities, precipitation exerts the primary control 

on cold content development. 

 
Figure 2.6. Simulated cold content plotted against cumulative precipitation in the alpine (a) and subalpine (b), and 
the cumulative mean of air temperature in the alpine (c) and subalpine (d). Shading denotes the corresponding water 
year.  

Discretizing snow season days into those with and those without precipitation further 

clarifies the relationship between cold content development and snowfall. Figure 2.7 shows the 

monthly differences between days with and without precipitation in the alpine and subalpine in 

terms of cold content gains and losses. Precipitation days were commonly associated with cold 

content gains, particularly in December, January, and February when precipitation was 

coincident with low air temperatures. Days without precipitation, conversely, were associated 

with decreases in snowpack cold content, indicating a positive surface energy balance warmed 

the snowpack between snowfall events. Magnitudes were typically greater in the alpine where 

colder temperatures and increased precipitation led to greater cold content gains on snowfall 
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days, while higher wind speeds facilitated increased rates of energy transfer and cold content 

losses on days without precipitation.   

 
Figure 2.7. Simulated cold content gain and loss per month in the alpine and subalpine for days without 
precipitation (a) and days with precipitation (b). Values above the zero line correspond to a loss of cold content (i.e., 
cold content approaches zero), while values below correspond to a gain of cold content. 

2.4.3.2 Secondary control: Negative surface energy balance 

Although non-snowfall days were typically associated with cold content losses, flux-driven gains 

did sometimes occur on days without precipitation. On these days, 𝑄!"# was slightly negative, 

averaging -2.9 W m-2 in the alpine and -2.4 W m-2 in the subalpine, with 𝑄!" and 𝑄!" the 

primary negative energy balance terms at both sites (Fig. 2.8a,b). 𝑄!, 𝑄! , and 𝑄!" were 

typically positive, adding energy to the snowpack even during periods of increasing cold content. 

The majority of flux-driven cold content additions took place at night (1800 h through 0600 h), 

while daytime hours were commonly associated with cold content losses (Fig. 2.8c). Cold 

content gains between 0900 h and 1400 h accounted for less than 5% of total gains at both sites 
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(Appendix 2.4). In total, nighttime cold content additions outnumbered daytime additions by a 

2.7:1 ratio in the alpine and 3.7:1 in the subalpine.   

 
Figure 2.8. Simulated snowpack energy balance in the alpine (a) and subalpine (b), plus mean hourly 𝑸𝒏𝒆𝒕 (c) for 
days of cold content gain without precipitation. 

2.4.3.3 Comparing the relative importance of cold content development processes 

Overall, snowfall contributed more cold content to the snowpacks at each site than negative 

energy fluxes, while air temperature showed little relationship to cold content development. The 

number of snowfall days with cold content increases exceeded the number of non-snowfall days 

with increases in the alpine by a 4.2:1 ratio, with snowfall days responsible for 438% more cold 

content additions than non-snowfall days. On an average annual basis in the alpine, snowfall 

days contributed -12.5 MJ m-2 to cold content development and non-snowfall days -2.3 MJ m-2. 

As previously noted, the effect of precipitation was smaller in the subalpine in terms of both the 
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variance explained by cumulative precipitation and the ratio of snowfall-to-non-snowfall cold 

content gains. Snowfall days in the subalpine were responsible for 166% more cold content gains 

than non-snowfall days, generating -4.1 MJ m-2 and -1.5 MJ m-2 of cold content development on 

an annual basis, respectively. 

Although cumulative mean air temperature had little effect on seasonal cold content 

development, air temperature did influence the amount of cold content added to the snowpack 

per snowfall day. Figure 2.9 shows the daily change in cold content in the alpine and subalpine 

relative to daily total precipitation (a,b), and cold content from precipitation (c,d) on days with 

snowfall. Here the cold content from precipitation was calculated as in Eq. 2.2 but 𝑇! was 

replaced with air temperature and 𝑑! was replaced by the depth of precipitation. At both sites, the 

cold content from precipitation explained more of the variance in daily change in cold content 

than daily total precipitation alone, showing air temperature provides a secondary control on cold 

content development during snowfall events. Confirming previous results, the control exerted by 

precipitation on cold content development was stronger in the alpine than subalpine. 
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Figure 2.9. Simulated daily change in cold content plotted against daily precipitation in the alpine (a) and subalpine 
(b), and cold content from precipitation in the alpine (c) and subalpine (d).  

2.4.3.4 The effect of cold content on snowmelt rate and timing 

On seasonal time scales, increased annual peak cold content magnitude had a delaying, but 

statistically non-significant effect on snowmelt onset, according to both observations and 

simulations (not shown). However, using the 23 y of snowpack simulations, we found the date of 

peak cold content and spring precipitation—defined here as the total precipitation between the 

date of peak cold content and peak SWE—accurately predicted melt onset. A multiple linear 

regression (MLR) using the date of peak cold content and spring precipitation as the predictor 

variables explained 84.7% and 61.4% of the variance in snowmelt onset in the alpine and 

subalpine, respectively (Fig. 2.10). At both sites, later peak cold content and increased spring 

precipitation delayed melt onset. In the alpine, the MLR predicted a 1 d delay in snowmelt 
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timing per 1.6 d later in peak cold content timing or 8.8 mm extra spring precipitation. These 

values shifted to 2.3 d and 5.9 mm, respectively, in the subalpine. Furthermore, we found cold 

content exerted no statistically significant control on the seasonal snowmelt rate. Rather, 

statistically significant increases in the ablation slope were associated with later peak SWE 

timing and increased peak SWE magnitude.  

 
Figure 2.10. Annual melt onset as predicted by peak cold content timing and spring precipitation in the alpine (a) 
and subalpine (b). The background gradient in each plot displays the predicted melt onset date as calculated by a 
multiple linear regression, while the shading within each point represents the actual melt onset simulated in a given 
water year at its peak cold content date and spring precipitation value.  

While peak cold content magnitude exerted little control on seasonal snowmelt timing and 

rate, the simulations indicated increased cold content had a damping effect on snowmelt timing 

and rate at sub-seasonal time scales from 1 d to 30 d. Greater initial cold content values were 

associated with decreased snowmelt rates (Fig. 2.11a,b) and longer delays between day zero and 

the day of first snowmelt (Fig. 2.11c,d). All relationships were significant at the 99% level, 

except for the effect of cold content on snowmelt timing for the 1 d time window in the 
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subalpine. Simulated melt rates in the alpine only exceeded 40 mm d-1 when initial cold content 

was between -0.1 MJ m-2 and 0 MJ m-2. The same initial cold content range was responsible for 

all simulated melt rates greater than 15 mm d-1 in the subalpine. Examining only the 30 d 

window for snowmelt timing revealed further patterns at the two sites. Initial cold content 

explained 47.3% of the variance in time to first melt in the alpine and 37.6% in the subalpine 

using ordinary least squares regression. An initial cold content increase of 1.0 MJ m-2 led to a 3.7 

d delay in snowmelt in the alpine and 12.1 d in the subalpine.  

 
Figure 2.11. Simulated sub-seasonal snowmelt rate plotted against initial cold content in the alpine (a) and 
subalpine (b), and time to first melt plotted against initial cold content in the alpine (c) and subalpine (d) for time 
windows from 1 d to 30 d.  

To examine the control of cold content on daily snowmelt rate and timing, we used CC6am 

to represent the energy state of the snowpack at time t = 0 for each day. Figure 2.12a,b shows 

melt rates did not increase until CC6AM neared 0 MJ m-2 in the alpine and subalpine. Both the 

number of melt days and the daily melt rate were greater when CC6AM = 0 MJ m-2. The 
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proportion of daily melt occurring on days when CC6AM = 0 MJ m-2 ranged from 75.0% in the 

alpine to 79.5% in the subalpine. Mean melt rates were also greater when there was no energy 

deficit to satisfy in the alpine (21.1 vs. 14.3 mm d-1) and subalpine (9.7 vs. 6.2 mm d-1). 

Additionally, non-zero CC6AM values were associated with delayed snowmelt onset (Fig. 

2.12c,d). The mean time between 6AM and simulated snowmelt onset was 2.3 h in the alpine and 

2.8 h in the subalpine when CC6AM = 0 MJ m-2. These values shifted to 5.7 h and 6.7 h, 

respectively, when CC6AM ≠ 0 MJ m-2. Thus the presence of cold content produced a 3.4 h delay 

in alpine snowmelt onset and 3.9 h in the subalpine. These data indicate that even small energy 

deficits had a damping effect on daily snowmelt rate and timing. 

 
Figure 2.12. Simulated daily melt rates in the alpine (a) and subalpine (b) and time to snowmelt in the alpine (c) and 
subalpine (d) as a function of CC6AM. The dashed line in each figure represents the mean melt rate (a,b) and time to 
melt (c,d) for days when CC6AM = 0 MJ m-2 and the dotted line represents those quantities for days when CC6AM < 0 
MJ m-2. 
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2.5 Discussion 

2.5.1 Representation of cold content development processes in snow models 

In Sect. 2.1 we noted the three main methods by which cold content is represented in snow 

models. Temperature index models typically compute cold content as an empirical function of air 

temperature (method 1), while physical models estimate cold content as a function of 

precipitation and the air temperature during precipitation (method 2) and/or as a residual of the 

snowpack energy balance (method 3). A model comparison is outside of the scope of this work, 

but the results presented above suggest method 2 was the primary pathway through which cold 

content developed at our continental, mid-latitude alpine and subalpine sites. We found air 

temperature had little influence on cold content development except when included as a variable 

in computing the cold content of new snowfall. Prior work from the subalpine site of the Niwot 

Ridge LTER showed a weak relationship between low air temperatures and snowpack cooling 

and that periods of snowpack cooling were generally coincident with clear skies and longwave 

emission from the snowpack (Burns et al., 2014). Thus, method 1 would likely misrepresent cold 

content development processes and incorrectly estimate cold content magnitude at our sites due 

to the irreplaceable role of snowfall in cold content development.  

Based on first principles, method 3 is important in that cold content is an integration of both 

mass (i.e., snowfall) and energy balance processes. Due to high sublimation rates and a dry, cold 

climate, the alpine site should have a high potential to gain cold content through 𝑄!" and 𝑄!". 

However, our results showed that daily energy balance cold content gains were small in 

comparison to those from snowfall. We also found no evidence in either the simulations or 

observations of consistent, large negative energy balances producing cold content. Rather, the 

energy balance was typically near zero before peak SWE and only became significantly positive 
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once melt commenced. Days with a negative surface energy balance were generally associated 

with nighttime cooling from 𝑄!" and 𝑄!", with 𝑄!"# small in magnitude, averaging > -3.0 W m-

2. Marks and Winstral (2001) similarly noted the simulated energy balance in a semi-arid 

mountain basin was generally near 0 W m-2 until the melt season. Overall, these findings imply 

snowpack cold content development at our study locations is primarily a function of method 2 

and that large flux-driven increases in cold content are unlikely, even in areas where the energy 

balance plays a larger relative role (e.g., the subalpine site studied here).  

2.5.2 Sources of model uncertainty  

Recent years have seen an increase in the number of papers leveraging physics-based models to 

quantify snowpack processes. To complement such work, researchers have also evaluated 

sources of snow model errors and biases (Clark et al., 2017; Essery et al., 2013; Lapo et al., 

2015; Raleigh et al., 2016, 2015; Rutter et al., 2009). The preceding literature concludes physics-

based snow models must: 1) Have accurate, quality controlled forcing data; 2) Be validated on at 

least one snowpack state variable, but preferably more; and 3) Have physics that accurately 

reflect snowpack processes. This study has followed these practices through: 1) A rigorous, 

hierarchical quality control and infilling forcing data protocol; 2) SWE, cold content, and 

snowpack temperature validation data from multiple years of snow pit observations; and 3) Use 

of the widely validated, physics-based SNOWPACK model. Despite our adherence to such 

protocols, there are still significant sources of uncertainty inherent to model-based snow studies. 

Snow model intercomparison work has consistently shown there is no one best model and 

that model performance varies between and within sites and water years (e.g., Boone and 

Etchevers, 2001; Essery et al., 2013; Etchevers et al., 2004; Rutter et al., 2009; Slater et al., 

2001). This body of research acknowledges that all models imperfectly represent snow cover 
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evolution and the snowpack energy balance. One example shortcoming of SNOWPACK relevant 

to the work presented herein is that the temperature of new snow is set to be equal to air 

temperature despite the fact that hydrometeor temperature is more accurately estimated as a 

function of the psychrometric energy balance (e.g., Harder and Pomeroy, 2013). Using the 

psychrometric approach gives snowfall a temperature near the wet bulb temperature, which is 

lower than air temperature when relative humidity is under 100% (Harder and Pomeroy, 2013). 

Thus, the temperature of new snow is likely to be overestimated by SNOWPACK, while cold 

content additions are underestimated. This means our computation of the total cold content 

contributed by precipitation is likely on the conservative side as using the wet bulb temperature 

would lead to increased cold content gains during snowfall.  

Another source of uncertainty in our work is the use of an empirical method to estimate 

incoming longwave radiation as a function of air temperature, relative humidity, and incoming 

shortwave radiation (Appendices 2.1 and 2.2). Recent research has shown errors in incoming 

longwave radiation propagate into SWE, snow surface temperature, and energy balance biases 

(Lapo et al., 2015; Raleigh et al., 2016). We aimed to reduce the error in our incoming longwave 

radiation estimates by using the recommended clear sky and cloud correction protocols for 

Niwot Ridge (Flerchinger et al., 2009). At both the alpine and subalpine site, the mean biases 

were within the instrument range of error when compared to shorter-term observations, 

indicating the total estimated amount of incoming longwave radiation was acceptable. However, 

the low r2 of the hourly estimates suggests the sub-daily fluctuations of incoming longwave 

radiation were not well simulated. Despite these issues, model performance was high in terms of 

simulated SWE, depth-weighted snowpack temperature, and cold content (Sect. 2.4.2). This may 

due to compensatory errors in the model (Etchevers et al., 2004; Kirchner, 2006) or because 



 42 

SNOWPACK is relatively insensitive to the choice of incoming longwave radiation estimate 

(Schlögl et al., 2016).  

Additionally, we had no long-term ground surface temperature data to force the model, so 

we used the SNOWPACK default value of 0°C. This produced mean 𝑄!  values of 2.0 W m-2 and 

0.8 W m-2 during periods of SWE > 1 cm in the alpine and subalpine, respectively. Previous 

work from the Niwot Ridge LTER using a heat flux plate indicated 𝑄!  in the alpine to be 

negligible (Cline, 1997a), while other researchers showed the upper layer of alpine soil could 

approach temperatures significantly below freezing during periods of shallow snow cover 

(Brooks and Williams, 1999). Therefore, the SNOWPACK-simulated alpine 𝑄!  is likely an 

overestimate. In the subalpine, the soil temperature at 5 cm below the surface is typically 

between -1°C and 0°C during the winter (Burns et al., 2014), meaning the use of the default 0°C 

ground surface temperature is reasonably in agreement with shorter term observations.  

2.5.3 Differences between cold content development controls in the alpine and subalpine 

Despite only a 506 m elevation difference between the two sites, the role of a negative energy 

balance in developing cold content in the subalpine was approximately double that of the alpine. 

Simulations of snowpack temperature indicated the increased sensitivity was likely due to the 

shallower subalpine snow depth. Diurnal snowpack temperature range generally decreases with 

depth (e.g., Burns et al., 2014; DeWalle and Rango, 2008; Sturm et al., 1995) and our 

simulations showed daily fluctuations to be largest in the snowpack’s upper layers, converging 

towards 1.0°C as depth exceeded 500 mm (Fig. 2.13). This is the same depth at which the 

insulating effects of snow on soil temperature become marginal (Slater et al., 2017). Likely this 

is because the penetration of incoming shortwave radiation and sensible heat transfer through 

windpumping are limited to the top portion of the snowpack (Albert and McGilvary, 1992; 
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Colbeck, 1989a, 1989b; Lehning et al., 2002a), while the low thermal conductivity of snow 

modulates energy transfer below the active upper layers (Sturm et al., 1997). In this case, 

proportionally more of the shallower subalpine snowpack was interacting with surface energy 

exchange, making it more sensitive to positive and negative fluxes. Furthermore, subalpine cold 

content was consistently lower in magnitude, meaning it took less energy input to drive cold 

content to zero and relative fluctuations were larger. Therefore, shallower snowpacks with 

reduced cold content, like those in the subalpine, are more susceptible to relatively rapid changes 

in internal energy from surface energy fluxes. 

 
Figure 2.13. Kernel density estimates of simulated daily snowpack layer temperature ranges in the alpine (a) and 
subalpine (b). Line shading represents the bottom depth of the layer with layers near the top of the snowpack in 
purple and blue and lower layers in green and yellow. 
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2.5.4 Other controls on seasonal snowmelt timing and rate 

Previous research has suggested uncertainty in the degree to which cold content controls 

snowmelt timing at daily to seasonal time scales. In our research, we found no statistically 

significant relationship between peak cold content magnitude and seasonal snowmelt onset using 

data from both observations and simulations. Rather, the majority of the variance in seasonal 

snowmelt onset was explained by the timing of annual peak cold content and total spring 

precipitation. Later peak cold content generally occurred due to cold spring storms depositing 

significant snowfall. If such events were then followed by continued snowfall, then snowmelt 

timing was delayed. Meanwhile, seasonal snowmelt rate, or the ablation slope, was primarily 

controlled by peak SWE magnitude and timing, with greater, later peak SWE corresponding to 

more rapid snowmelt.  

These results all suggest later seasonal snowmelt onset and faster snowmelt rates are 

primarily a function of persistent snowfall. While snowfall events can add significant cold 

content to the snowpack, they also change other fundamental properties that can delay snowmelt 

timing, such as increasing surface albedo (Clow et al., 2016) and adding dry pore space that must 

be saturated (Seligman et al., 2014). Other research shows seasonal snowmelt onset is also 

related to air temperature (Kapnick and Hall, 2012) and snow surface impurities (Painter et al., 

2010; Skiles et al., 2012). Although much work has been done evaluating the empirical controls 

exerted by snowpack and climatic properties on snowmelt rate and timing across large spatial 

extents (e.g., Trujillo and Molotch, 2014), relatively little research has been done at such scales 

on the physical processes (e.g., cold content and the snowpack energy balance). Given the 

importance of seasonal snowmelt timing to water resources management and various hydrologic 

processes, future synthesis work should evaluate the effect of physical processes on snowmelt 
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rate and timing across snow-dominated regions globally, leveraging both field observations and 

physics-based snow model simulations.  

2.5.5 Cold content development processes in other seasonal snow classes and climates 

Despite the research presented here, there are still unanswered questions regarding cold content 

development as well as its effect on snowmelt rate and timing. Firstly, we have only presented 

results from two sites within a single snow-dominated research catchment. Seasonal snow cover 

in the western United States spans a large elevation gradient and includes both maritime (e.g., the 

Cascades and Sierra Nevada) and continental (e.g., the Rocky Mountains) snowpack regimes 

(Armstrong and Armstrong, 1987; Serreze et al., 1999). Globally, seasonal snow cover includes 

an even greater number of classes, including the cold, thin snowpacks of the Arctic and the 

Canadian Prairies (Sturm et al., 1995). Therefore, an avenue for future research is to examine 

differences in cold content development across seasonally snow covered areas, with a particular 

focus on disentangling the effects of precipitation and air temperature during snowfall at sites 

with different snowpack characteristics. For example, snowpacks in California’s Sierra Nevada 

are typically deep, but air temperature is generally near freezing, even during winter storm 

events. Considering the cold content of precipitation is a linear function of air temperature and 

precipitation depth (Eq. 2.2), a given unit of snowfall in the Sierra Nevada should contribute less 

snowpack cold content than that same unit in the colder Rocky Mountains. Therefore, the control 

that precipitation exerts on cold content development is likely different between the two 

locations. Additionally, it is uncertain how our results translate to cold, shallow tundra and taiga 

snowpacks. In this study, we observed marked differences in cold content development processes 

between the alpine and subalpine, with the energy balance exerting greater control in the 
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shallower subalpine snowpack. It may be that the energy balance is of even greater importance in 

tundra and taiga snowpacks, but further work is needed.  

Secondly, a large amount of recent literature has shown unequivocally that, due to climate 

warming, patterns of snow accumulation and melt are changing across the globe with resultant 

effects on myriad hydrologic processes (Barnhart et al., 2016; Berghuijs et al., 2014; Knowles et 

al., 2006; Mote et al., 2005; Musselman et al., 2017a; Pederson et al., 2011b; Stewart, 2009). It is 

uncertain what role, if any, cold content plays in the climate-driven changes on snow processes. 

In our investigations we found pit-observed SWE was a strong predictor of cold content (alpine 

r2 = 0.84; subalpine r2 = 0.50), with subalpine cold content lower per unit SWE due to warmer 

depth-weighted snowpack temperatures. Both sites also exhibited a significant positive linear 

relationship between the cumulative mean of air temperature and snowpack temperature. 

Therefore, a unit of SWE in a warmer location or climate should correspond to reduced cold 

content due to increased snowpack temperature. Our work showed that decreased cold content 

magnitudes corresponded to faster snowmelt rates and earlier snowmelt timing at time scales less 

than 1 month. Therefore, reductions in snowpack cold content due to climate warming have 

implications for meltwater timing and availability, which could impact water resources 

management. 

2.6 Conclusions 

We have presented an analysis of snowpack cold content using data from a long-term snow pit 

record and 23 y of physics-based snow model simulations at an alpine and subalpine site within 

the Niwot Ridge LTER. The research questions were designed to fill important missing gaps in 

the snow hydrology literature, namely the meteorological and energy balance processes behind 

cold content development and how cold content controls snowmelt rate and timing. Observations 
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and simulations showed new snowfall was the primary pathway for cold content development at 

our sites, being responsible for 84.4% and 73.0% of modeled daily cold content gains in the 

alpine and subalpine, respectively. Snowfall days with cold content gains outnumbered non-

snowfall days with gains by a 4.2:1 ratio in the alpine and 2.6:1 in the subalpine. A negative 

energy balance—averaging > -3.0 W m-2 in the alpine and subalpine—was responsible for the 

remainder of cold content gains, primarily due to the cooling effect of sublimation and net 

longwave emissions. At subdaily time scales, dry-period cold content increases occurred 

preferentially at night at both sites. We found no evidence in either the snow pit record or the 

simulation data for large negative energy fluxes generating significant snowpack cold content. 

Additionally, air temperature showed little to no relationship to cold content development at 

either of the sites we studied. 

Seasonal snowmelt timing was not significantly correlated with peak cold content 

magnitude, but rather the timing of peak cold content and total spring precipitation controlled 

snowmelt onset. Later peak cold content and increased spring precipitation delayed snowmelt in 

both the alpine and subalpine, explaining 84.7% and 61.4% of the variance in peak SWE timing. 

Cold content magnitude did affect sub-seasonal snowmelt in that non-zero initial cold content 

values corresponded to delayed snowmelt timing and slower snowmelt rates. At daily time 

scales, the majority of melt events and the fastest melt rates occurred only when CC6AM = 0.0 MJ 

m-2. Any existing energy deficit at 6AM damped daily snowmelt rates.  

The Niwot Ridge LTER provided the ideal study location for the research presented in this 

paper. The site’s unique long-term snow pit and hourly meteorological records facilitated in-

depth analyses into snowpack processes using both observations and physics-based snow model 

simulations. Lacking either data source would have limited the scope of this paper and added 
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further uncertainty. Therefore, we hope this work underlines the utility of long-term in situ 

snowpack and meteorological measurements as they allow for robust analyses on the 

observations themselves and also enable model validation on multiple snowpack properties (e.g., 

mass, depth-weighted temperature, and cold content), which improves the quality of simulated 

output. 

2.7 Appendices 

2.7.1 Appendix 2.1: Meteorological data quality control and infilling 

The quality control routine for all observation types except precipitation followed the three-step 

procedure outlined in Meek and Hatfield (1994) where observations were flagged for removal if: 

1) they fell outside of a prescribed minimum-maximum range for that day of year; 2) their hourly 

rate of change exceeded a given threshold; 3) the same value was recorded in four consecutive 

time steps, indicating a stuck sensor. A full description of the protocol for each variable falls 

outside the scope of this paper, but can be viewed in Meek and Hatfield (1994). The only 

changes made to their schema were applied to better represent climate processes on Niwot 

Ridge, particularly the high variability in hourly air temperature and wind speed common at dry, 

high-elevation, mountainous, continental locations. These modifications allowed more valid 

observations to pass the quality control checks than the original Meek and Hatfield (1994) 

protocol. 

Following the quality control procedure, missing observations were imputed using a 

hierarchical routine based on the work of Liston and Elder (2006), Kittel (2009), and Henn et al. 

(2012), where gaps of 72 h and shorter were infilled using temporal techniques and longer gaps 

were infilled using a multi-station regression. Data gaps of 1 h were filled using a linear 

interpolation between the observations directly preceding and following the missing value. Gaps 
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between 2 h and 24 h were filled using an average of the value recorded 24 h prior and 24 h after 

the missing observation. Gaps between 25 h and 72 h were filled using a forecasted and back-

casted autoregressive integrated moving average (ARIMA) model with imputed values linearly 

weighted by their temporal distance from the beginning/end of gap. Data gaps longer than 72 h, 

plus shorter gaps that could not be filled using the temporal protocol due to missing data, were 

infilled with a one- or two-station regression. We pursued this approach because each station 

collected the same required forcing data for SNOWPACK and the three stations were located 

within 7 km of one another (Fig. 2.1). If the two remaining stations were reporting valid 

observations, then the two-station regression was used. Otherwise, the one-station regression was 

employed. Regression equations were generated for each variable per month and 3 h time block 

where a day is divided into eight 3 h periods (e.g., 00:00–03:00, 03:00–06:00, etc.). Although 

such an approach neglects the spatial variability inherent to meteorological processes in complex 

terrain, the values generated by the regressions reproduce changes in conditions due to frontal 

passages and storm events. For periods when no stations were reporting, data were infilled using 

the mean value for the given station, variable, month, and 3 h time block. 

Quality controlled, gap-filled relative humidity, air temperature, and incoming solar 

radiation measurements were used to generate two estimates of incoming longwave radiation at 

an hourly time step. The equations presented in Angström (1915) and Dilley and O’Brien (1998) 

were used to estimate clear sky atmospheric emissivity based on vapor pressure, which was 

calculated from relative humidity. Flerchinger et al. (2009) noted these two methods performed 

best at the subalpine site on Niwot Ridge relative to observations from the co-located AmeriFlux 

tower. Emissivity was then corrected for estimated cloud cover based on the ratio of observed 

solar radiation to maximum clear sky solar radiation using the approach of Crawford and Duchon 



 50 

(1999). Finally, incoming longwave radiation was calculated using the Stefan-Boltzmann 

equation: 

 𝐿𝑊 ↓= 𝜖𝜎𝑇!! (2.5) 

where 𝐿𝑊 ↓ is incoming longwave radiation (W m-2), 𝜖 is the estimated atmospheric emissivity 

(dimensionless, 0 to 1), 𝜎 is the Stefan-Boltzmann constant (5.67 × 10-8 W m-2 K-4), and 𝑇! is air 

temperature (K).  

Measuring solid precipitation is inherently difficult, particularly at higher wind speeds 

(Rasmussen et al., 2012; Yang et al., 1999) and snowpack simulations are reliant on accurate 

precipitation input to produce reliable output (Raleigh et al., 2015; Schmucki et al., 2014). Thus, 

any snow modeling project has the compounded problem of requiring accurate precipitation 

forcings and sensitivity to said forcings. For this study, two primary precipitation data sources 

were utilized along with site-specific gage corrections as described below.  

Alpine precipitation data came from the quality controlled LTER dataset 

(http://niwot.colorado.edu/index.php/data/data/precipitation-data-for-saddle-chart-recorder-1981-

ongoing). While snowfall undercatch is commonly documented in the literature, Williams et al. 

(1998) showed blowing snow events lead to significant overcatch at the LTER alpine 

precipitation gage from October through May. To correct the overcatch we created monthly 

precipitation reduction factors by comparing cumulative precipitation from the date of each snow 

pit observation to the following snow pit observation to the change in SWE between those 

observation dates when the change in pit SWE was positive. We found overcatch was greatest in 

months where Berg (1986) reported the highest frequency of blowing snow events (January, 

March—average reduction = 0.59) and lowest in months with fewer blowing snow events 

(December, February, April—average reduction = 0.86). 
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Subalpine precipitation data came from the quality controlled, gap-filled Kittel et al. 

(2015) dataset with further corrections applied for snow undercatch relative to the Niwot 

SNOTEL snow pillow during snowfall events, which averaged 2.1 mm per snowfall day. Air 

temperature during precipitation events showed the strongest control on undercatch with 

decreasing air temperature corresponding to increased negative precipitation biases. Notably, 

wind speed was not correlated with undercatch at the subalpine gage, likely due to the siting of 

the anemometer. This instrument is located 5 m above ground level in a roadside clearing and is 

generally unrepresentative of the wind speed magnitude in the dense subalpine forest where the 

snow pit, LTER precipitation gage, and Niwot SNOTEL station are located. Compared to the 

subalpine snow pit, accumulated precipitation in the gage was on average 88.3 mm or 32.3% 

lower than observed maximum SWE.  

Daily precipitation observations from both datasets were temporally disaggregated to the 

hourly time step of SNOWPACK by dividing the daily total by 24 and equally distributing the 

values to each hour of the day. Hourly precipitation observations were not available, and 

therefore a more advanced disaggregation method was not pursued. 

2.7.2 Appendix 2.2: Meteorological data infilling validation 

Missing observations and measurements failing the quality control checks were more 

common in the alpine than subalpine (Table 2.4). The variable with the greatest number of 

missing values was solar radiation in the alpine due to a long instrument outage period in the 

2000s. The multi-station regression was the most utilized infilling technique (temporal infilling 

accounted for, at most, 3.0% of the missing data) and cross-validation statistics are presented in 

Table 2.4. Generally, infilling performance was greater in the alpine due to the close proximity 
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of the high alpine meteorological station. Of the forcing variables, air temperature exhibited the 

highest infilling performance and wind speed the lowest.  

Table 2.4. Cross-validation statistics for the multi-station regression infilling procedure for air temperature (Ta, °C), 
total incoming solar radiation (SWin, MJ m-2), wind speed (VW, m s-1), and dew point temperature (Td, °C). Note: 
Relative humidity values were converted to Td for computing the multi-station regression. 

Site Variable 
Missing 

Obs. (%) Mean Bias RMSE r2 

Alpine 

Ta 8.2 2.8 x 10-3 1.6 0.97 
SWin 25.3 -4.4 x 10-2 0.4 0.83 
VW 6.0 -0.5 3.2 0.69 
Td 6.9 -1.3 3.7 0.84 

Subalpine 

Ta 3.8 -6.4 x 10-2 3.5 0.86 
SWin 2.9 -4.8 x 10-2 0.6 0.67 
VW 3.6 -0.3 2.1 0.30 
Td 3.6 -2.9 4.7 0.81 

 

Estimates of incoming longwave radiation exhibited low biases relative to shorter-term 

observations taken near the alpine and subalpine meteorological stations. In the alpine, 

measurements of incoming longwave radiation were taken at the Subnivean Laboratory from 

1996 through 2008 and intermittently in more recent years. Here, the Dilley and O’Brien (1998) 

equation produced the best results relative to the observed data with a mean bias of 4.9 W m-2. In 

the subalpine, the mean bias relative to Ameriflux observations (1999-07-12 through 2013-12-

31) was 10.4 W m-2 with the Angström (1915) estimate providing the best match. The positive 

biases in the alpine and subalpine represented 2.0% and 4.1%, respectively, of the average hourly 

observed incoming longwave radiation, values which were within the manufacturer-reported 

precision range of ±10% for the Kipp and Zonen CG2 net pyrgeometer at the Subnivean 

Laboratory and the CNR1 net radiometer at the AmeriFlux tower. The coefficient of 

determination for hourly and daily incoming longwave values were 0.51 and 0.72, respectively, 

in the alpine and 0.44 and 0.60 in the subalpine. 
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2.7.3 Appendix 2.3: Snow pit observations 

Table 2.5. Information on the time range and number of snow pit observations per water year at the alpine and 
subalpine sites in the Niwot Ridge LTER. 

Site Water year Start End Total 

Alpine 

1995 1995-01-24 1995-07-05 21 
1996 1996-01-19 1996-06-21 20 
1997 1997-01-24 1997-06-30 20 
1998 1998-01-20 1998-06-22 18 
1999 1999-01-20 1999-06-22 15 
2000 2000-01-14 2000-06-06 17 
2001 2001-01-16 2001-06-05 15 
2002 2001-12-10 2002-03-25 10 
2003 2002-11-13 2003-06-18 15 
2004 2003-12-12 2004-06-07 18 
2005 2005-02-01 2005-06-21 12 
2006 2006-01-24 2006-06-06 11 
2007 2007-02-09 2007-05-10 4 
2008 2008-02-22 2008-06-17 7 
2009 2008-12-31 2009-06-25 18 
2010 2010-01-11 2010-06-09 21 
2011 2010-12-07 2011-07-06 21 
2012 2012-01-24 2012-05-23 16 
2013 2013-01-03 2013-06-10 13 

Subalpine 

2007 2007-02-07 2007-05-23 15 
2008 2007-12-20 2008-05-27 18 
2009 2008-12-22 2009-05-07 17 
2010 2009-10-28 2010-06-02 25 
2011 2010-12-15 2011-06-21 28 
2012 2011-11-15 2012-04-25 21 
2013 2012-12-13 2013-05-29 23 
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2.7.4 Appendix 2.4: Negative energy balance temporal distribution 

 
Figure 2.14. Histograms showing the timing of simulated cold content gains without snowfall in the alpine (a) and 
subalpine (b). The vertical dashed lines demarcate day (0600–1800 h) and night (1900–0500 h) at the two sites. Cold 
content gains occurred primarily at night, while daytime gains were concentrated in the early morning and evening 
hours. Less than 5.0% of simulated cold content gains occurred between 0900 and 1400 h at both sites. 
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Chapter 3 

3 Evaluating the differential response of an alpine and subalpine 
snowpack to changes in climate 

 
Abstract 

Although future warming is expected to be widespread, climate change is predicted to have 

spatially variable effects on mountain snowpacks of the western United States. Past work has 

identified the areas likely to be most impacted by air temperature increases, but little is known 

about the physical controls on the differential response. For this study, we focused on two well-

instrumented locations within the Niwot Ridge Long Term Ecological Research site to examine 

how changes to air temperature, total precipitation, and precipitation seasonality affect snow 

cover evolution. For our analysis, we created a 23 y baseline simulation using the SNOWPACK 

model forced by historical hourly meteorological data at an alpine and subalpine site from water 

year 1991 through 2013. We then perturbed air temperature, total precipitation, and precipitation 

seasonality independently to identify physical controls on the response to changes in climate. We 

found the alpine snowpack was less sensitive to increases in air temperature for three primary 

reasons: 1) Snowfall fraction decreased less rapidly with warming than in the subalpine; 2) 

Significant cold content was still added to the snowpack throughout the snow season, preventing 

mid-winter melt events; 3) Changes to snowmelt rate were non-significant because increases to 

the turbulent fluxes balanced decreases in the radiative fluxes with earlier melt onset. 

Additionally, at 3°C of warming and greater, the subalpine site experienced a fundamental shift 

where significant melt could occur throughout the entirety of the winter. Changes to total 

precipitation led to significant, but relatively consistent results at the two sites with later melt 
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onset and faster snowmelt rates being associated with increased precipitation. Changes to 

precipitation seasonality had a near-negligible impact on snow cover properties at both sites.  

3.1 Introduction 

Climate warming has altered patterns of snow accumulation and melt throughout the seasonal 

snow zone in the western United States. Increasing winter air temperatures have led to a reduced 

percentage of precipitation falling as snow (Knowles et al., 2006) and decreased snow water 

equivalent (SWE) accumulation (Clow, 2010; Harpold et al., 2012; Mote et al., 2018, 2005). 

Many areas have also seen a shift to earlier snowmelt onset (Clow, 2010; Regonda et al., 2005; 

Stewart et al., 2004b) and changes to seasonal melt patterns have impacted streamflow 

production (Regonda et al., 2005; Stewart, 2009; Stewart et al., 2005). In addition to the critical 

link between snowmelt and streamflow, there are other impacts of snow cover loss to consider in 

a warming world: the timing and magnitude of soil moisture fluctuations (Harpold and Molotch, 

2015), soil temperature and microbial respiration (Blanken et al., 2009; Brooks and Williams, 

1999; Groffman et al., 2006), forest greenness (Knowles et al., 2018; Trujillo et al., 2012), and 

water uptake and carbon sequestration by vegetation (Winchell et al., 2016), among many others. 

There is therefore considerable concern that future changes to snowpacks will have myriad 

impacts on mountain ecosystems worldwide.   

Complicating the matter is the observation that the response of mountain snowpacks to 

rising air temperatures has been non-linear, although past warming has been prevalent across the 

entire western United States (Abatzoglou, 2011; Harpold et al., 2012; Harpold and Brooks, 2018; 

Kapnick and Hall, 2012; Mote et al., 2018, 2005). This has meant a unit increase in air 

temperature has not been associated with a spatially uniform change in various snowpack metrics 

(e.g., peak SWE, snowmelt onset, and snowmelt rate). Most previous work has ascribed the 
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variability of the snow accumulation and melt response to climate warming to empirical factors 

such as air temperature and/or elevation (Kapnick and Hall, 2012; Knowles et al., 2006; Mote et 

al., 2018). Generally, snowpacks in middle elevations with winter air temperatures between -5°C 

and 0°C have been more sensitive to warming than higher, colder sites. Although air temperature 

and elevation are useful empirical metrics for identifying snow-covered areas susceptible to 

climate warming (e.g., Nolin and Daly, 2006), relatively little work has examined the physical 

controls governing the non-linear response. For example, little is known about how the 

snowpack energy balance and cold content will respond to warming. Musselman et al. (2017a) 

showed that earlier snowmelt is generally associated with a shift to reduced positive energy 

fluxes, but it is uncertain how this finding is applicable to higher, colder sites that are less 

sensitive to warming. Quantifying the physical controls driving the non-linear response is 

therefore essential to better predicting the effect of increased air temperature on seasonal snow 

cover evolution. 

According to the Intergovernmental Panel on Climate Change (IPCC), there is a high 

likelihood of warming continuing through the 21st century (IPCC, 2013). This is predicted to 

have large negative impacts on snow accumulation and melt in areas that rely on mountain 

snowpacks for water resources (Adam et al., 2009; Barnett et al., 2005; Barnett and Pierce, 2009; 

Mankin et al., 2015). In the western United States, where over 60 million people depend on 

meltwater for domestic, industrial, and agricultural purposes (Bales et al., 2006), significant 

temperature increases are likely to occur by century’s end (e.g., Leung et al., 2004; USGCRP, 

2017). This warming is expected to drive large-scale shifts from snow to rain across the region 

(A. A. Harpold et al., 2017a; Klos et al., 2014), which could reduce streamflow volume 

independent of changes to total precipitation (Berghuijs et al., 2014) and alter the spatial extent, 
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frequency, and intensity of rain-on-snow events (Musselman et al., 2018). Furthermore, 

streamflow efficiency is sensitive to snowmelt rate with slower rates producing less streamflow 

per unit of precipitation than faster rates (Barnhart et al., 2016). Therefore, it is possible that 

predicted decreases to snowmelt rate with climate warming (Musselman et al., 2017a) will also 

reduce streamflow in snow-dominated areas.  

In addition to further warming, the western United States is likely to see changes in 

precipitation patterns with resultant impacts on mountain snowpacks (Easterling et al., 2017; 

Leung et al., 2004; Stewart et al., 2004a). Although future changes to precipitation total and 

seasonality are more uncertain than air temperature increases (IPCC, 2013), it is essential to 

evaluate the effect of total precipitation and precipitation seasonality on snow accumulation 

given inextricable link between SWE and precipitation. Past work has also shown that increases 

in precipitation may obscure the effect of warming air temperatures on snow accumulation and 

melt (Beniston et al., 2003; Hamlet et al., 2005; Pederson et al., 2011a; Stewart, 2009; Vincent et 

al., 2007). For example, positive trends in April 1 SWE at several snow course sites in the 

southern Sierra Nevada mountains were shown to caused by increases in precipitation over the 

study period (Mote et al., 2005). Thus, it is important that changes to precipitation be considered 

in simulations of future snowpack conditions.  

Work over large spatial scales suggests that increases in precipitation would have to be 

substantial in order to make up for the effect of future warming air temperatures on snowpack 

accumulation (Adam et al., 2009; Marty et al., 2017) and streamflow (Barnett and Pierce, 2009; 

Udall and Overpeck, 2017). It has also been shown that the non-linear response of mountain 

snowpacks to increasing air temperatures will likely continue with further warming (Cooper et 

al., 2016; Klos et al., 2014; Luce et al., 2014; Musselman et al., 2017a, 2017c). Within this body 
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of previous research, there is still a need to investigate the physical processes controlling the 

differential responses of more/less sensitive snowpacks to changes in climate. In this context, the 

Niwot Ridge Long Term Ecological Research (LTER) site offers a unique opportunity to 

evaluate such processes. The LTER has long-term snow pit and meteorological measurements 

from a subalpine location likely to be more sensitive to warming as well as from a less sensitive 

colder, higher alpine location. This study leveraged the historical data from these sites along with 

a physics-based snow model and a range of likely changes to future climate to answer our two 

research questions: 

1) Do the alpine and subalpine snowpacks exhibit differential responses to changes in air 

temperature, total precipitation, and precipitation seasonality? 

2) How do changes to snowfall fraction, cold content, and the snowpack energy balance 

control the responses to the climate change scenarios? 

3.2 Study site and data 

This study utilized long-term meteorological and snow pit records from two sites within the 

Niwot Ridge LTER on the eastern slope of the Continental Divide in Colorado’s Rocky 

Mountains (Fig. 3.1). The alpine and subalpine sites are respectively located at 3528 m and 3022 

m, with treeline occurring at approximately 3400 m. For our study, the alpine site was 

representative of a snowpack likely to be less sensitive to climate perturbations, while the 

subalpine was potentially more sensitive. This was based on how December, January, and 

February (DJF) average air temperatures at the two sites compared to previous work, which has 

shown the largest sensitivity to warming to occur between approximately -5°C and 0°C (Kapnick 

and Hall, 2012; Knowles et al., 2006; Mote et al., 2018). Over the baseline historical period (1 
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October 1991 through 30 September 2013), average DJF air temperature was -10.3°C in the 

alpine and -6.2°C in the subalpine (Table 3.1).  

 
Figure 3.1. The location of the Niwot Ridge LTER within the western United States (a) and a topographical map 
showing the meteorological stations and snow pit sites. The dashed line in the LTER inset (b) represents 
approximate treeline (3400 m) and the thin, solid lines are 100 m contours. 

Table 3.1. Mean meteorological quantities for December, January, and February (DJF) at the alpine and subalpine 
sites (WY1991–WY2013) along with mean peak SWE magnitude and timing for the two sites as observed in the 
snow pits (WY2007–WY2013).  

Site DJF air 
temperature 

(°C) 

DJF wind speed 
(m s-1) 

DJF RH 
(%) 

Peak 
SWE 
(mm) 

Peak 
SWE date 

Alpine -10.3 11.4 67.1 843 06-May 
Subalpine -6.2 1.7* 55.8 395 26-April 

*Subalpine wind speed uses corrected values from Jennings et al. (2018a) 

 
Meteorological data were available from water year 1991 (WY, 1 October of the previous 

calendar year to 30 September) to WY2013. These data included hourly observations of air 

temperature, relative humidity, wind speed, incoming shortwave radiation, and precipitation. The 

raw observations were subjected to an intensive quality control and infilling procedure to ensure 

their suitability as model forcing data (Jennings et al., 2018a). The serially complete records of 

air temperature, relative humidity, and incoming shortwave radiation were used to calculate an 

empirical estimate of incoming longwave radiation based on the recommendations of Flerchinger 



 61 

et al., (2009). The complete dataset is publicly available on the Niwot Ridge LTER webpage 

(Jennings et al., 2017). 

The alpine and subalpine sites also have long-term snow pit records of SWE, depth-

weighted snowpack temperature, and cold content (Williams, 2016; Williams et al., 1999). The 

record includes 292 snow pit measurements from WY1995–WY2013 in the alpine and 147 

measurements from WY2007–WY2013 in the subalpine. According to these data, observed peak 

SWE in the alpine was approximately double peak SWE in the subalpine from WY2007 through 

WY2013, the period for which there were overlapping snow pit observations. Additionally, the 

snow pit data were used to validate simulated snow cover properties and to improve the forcing 

data, namely precipitation corrections for gage under-/over-catch, as well as to parameterize the 

canopy module for the subalpine model runs (Jennings et al., 2018a). We also used automated 

SWE data from the Niwot Snow Telemetry (SNOTEL) station, which is located within the 

LTER less than 1 km from the subalpine site at an elevation of 3021 m (Fig. 3.1). 

3.3 Methods 

3.3.1 SNOWPACK model description 

SNOWPACK is a physics-based snow model forced by air temperature, relative humidity, wind 

speed, incoming shortwave and longwave radiation, and precipitation at an hourly or longer time 

step (Bartelt and Lehning, 2002; Lehning et al., 2002b, 2002a). The model simulates a one-

dimensional snowpack with an arbitrary number of layers that have their own thickness, density, 

and temperature values, as well as snow grain size and type. New layers are added with snowfall, 

while melt and densification lead to a reduction in the number of layers. SNOWPACK also 

provides a full treatment of the snowpack energy balance: 
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 𝑑𝑈
𝑑𝑡 + 𝑄! = 𝑄!" + 𝑄!" + 𝑄! + 𝑄!" + 𝑄! + 𝑄! 

(3.1) 

where !"
!"

 is the simulated rate of change in internal snowpack energy, 𝑄! is the energy available 

for melt (once cold content equals 0.0 MJ m-2), 𝑄!" is net shortwave radiation, 𝑄!" is net 

longwave radiation, 𝑄! is sensible heat flux, 𝑄!" is latent heat flux, 𝑄!  is ground heat flux, and 

𝑄! is the heat advected by precipitation (all W m-2). 

Model configuration was the same as in Jennings et al. (2018a) except this study used 

SNOWPACK version 3.4.5 in place of version 3.3.0, which was used in the previous work. 

Additionally, we changed the way precipitation phase partitioning was handled by the model. 

Unless precipitation phase is assigned in the forcing data file, SNOWPACK calls the data 

preprocessor MeteoIO (Bavay and Egger, 2014) to designate whether the precipitation is rain, 

snow, or a mix of the two. In its stock configuration, the user indicates whether MeteoIO should 

use either a single air temperature threshold to partition rain and snow or a range between two air 

temperature values with a linear mix of precipitation phase in between. Jennings et al. (2018a) 

used an air temperature threshold of 2.5°C to better represent the high rain-snow air temperature 

thresholds commonly found at upland, continental sites (Jennings et al., 2018b; Ye et al., 2013). 

For this work, we updated MeteoIO to include a binary logistic regression model (e.g., Froidurot 

et al., 2014; Jennings et al., 2018b) that partitions precipitation between rain and snow as a 

function of air temperature and relative humidity: 

 𝑝 𝑠𝑛𝑜𝑤 =  
1

1+ 𝑒 ! ! !!! ! !!"  (3.2) 

where 𝑝 𝑠𝑛𝑜𝑤  is the probability of snow (0 to 1, dimensionless), α, β, and γ are the optimized 

model coefficients (-10.04, 1.41, and 0.09, dimensionless), Ta is air temperature (°C), and RH is 

relative humidity (%). Precipitation is set to be snow when 𝑝 𝑠𝑛𝑜𝑤  >= 0.5 and rain when 
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𝑝 𝑠𝑛𝑜𝑤  < 0.5 (Fig. 3.2). The binary logistic regression model was shown to be the most 

effective method in a Northern Hemisphere comparison (Jennings et al., 2018b), so we used this 

method in this study to provide consistently high performance across the climate change 

perturbations. 

 
Figure 3.2. Snow probability as a function of air temperature and relative humidity (Eq. 3.2) where yellow shading 
indicates an increased likelihood of snow and blue shading an increased chance of rain. The gray dashed line 
separates snow probability values greater than or equal to 0.5 (left) and less than 0.5 (right).  

Furthermore, SNOWPACK was chosen for this work because the model has been 

extensively validated in the literature in terms of its ability to represent SWE, snow depth, 

snowpack temperature, cold content, snow microstructure, and energy balance partitioning 

(Etchevers et al., 2004; Jennings et al., 2018a; Lehning et al., 2001; Lundy et al., 2001; Meromy 

et al., 2015; Rutter et al., 2009). In addition, SNOWPACK and its spatially distributed version, 

Alpine3D (Lehning et al., 2006), have been effectively used to explore the effect of climate 

change on snow cover properties in various areas with differing physiographic and climatic 
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properties (Bavay et al., 2013; Marty et al., 2017; Meromy et al., 2015; Musselman et al., 2017c; 

Rasmus et al., 2004).  

3.3.2 Baseline model runs 

We used the model setup described in the section above and the quality controlled forcing data 

from Jennings et al. (2018a) to simulate the alpine and subalpine snowpacks for the period 

WY1991–WY2013. Simulated SWE, depth-weighted snowpack temperature, and cold content 

for the baseline (i.e. historical) runs were validated on the equivalent snow pit and SNOTEL 

observations (Table 3.2). The switch to SNOWPACK 3.4.5 yielded a negligible change in 

performance relative to version 3.3.0 used in Jennings et al. (2018a).  

Table 3.2. Validation metrics for the baseline simulations compared to snow pit SWE, depth-weighted temperature 
(Ts), and cold content (CC) data in the alpine and snow pit plus SNOTEL data in the subalpine. 

Site WY 
range 

SWE r2 SWE mean 
bias (cm) 

Ts r2 Ts mean 
bias (°C) 

CC r2 CC mean bias 
(MJ m-2) 

Alpine 1995–
2013 0.6 10.9 0.6 1.3 0.6 1.3 

Subalpine 
(snow pit) 

2007–
2013 0.7 -3.4 0.7 0.9 0.6 0.6 

Subalpine 
(SNOTEL) 

1993–
2013 0.9 -1.2 NA NA NA NA 

3.3.3 Climate perturbations 

The baseline simulations were then perturbed based on the predicted likely changes to climate in 

the southwestern United States and Colorado as presented in the US Global Change Research 

Program’s (USGCRP) Fourth National Climate Assessment (USGCRP, 2017) and 5th 

Assessment Report of the IPCC (IPCC, 2013). Both reports utilize output from a suite of climate 

models that are included in the 5th phase of the Coupled Model Intercomparison Project 

(CMIP5). Although there is a range of representative concentration pathways (RCP—the CO2 

emission scenario that limits increases in surface energy to a given W m-2 value) and associated 

model output, we focused on RCP4.5 and RCP8.5. In RCP4.5, emissions peak in 2040 before 
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declining, while emissions continue to rise unabated in RCP8.5. Thus, RCP8.5 represents a 

greater increase in atmospheric carbon dioxide and air temperature. Details on the reports’ 

methods can be found within the source documents.  

  For the climate perturbations in this work, we focused on three key meteorological 

quantities:  

1) Air temperature increases (∆T) with associated increases in incoming longwave radiation 

2) Changes to total precipitation (∆Ptot) 

3) Changes in precipitation seasonality (∆Pseas) 

We applied the above perturbations individually to the forcing data in order to isolate the impact 

of individual components of climatic change on snow accumulation and melt processes. The 

ranges and increments for these perturbations are detailed in the subsections below.  

3.3.3.1 Air temperature and incoming longwave radiation increases 

We used the delta-change approach by applying air temperature increases in 0.5°C increments 

from +0.5°C to +4.0°C. Each increase was applied uniformly to the baseline hourly data and we 

did not consider seasonal changes to air temperature or impacts to the diurnal temperature range. 

The values for the ∆T perturbation scenario were chosen based on the USGCRP report, which 

showed air temperatures in the western United States may increase by between 2.7°C and 4.8°C 

in RCP4.5 and RCP8.5 by the end of the 21st century (Vose et al., 2017). According to both the 

USGCRP and IPCC, increases in air temperature are highly probable between 2030 and 2100. 

There are no areas in the region where air temperature is expected to decrease in either report. 

In addition to increasing air temperature, we also increased incoming longwave radiation 

through the Stefan-Boltzmann law: 

 𝐿𝑊!" = 𝜎𝜀!𝑇!! (3.3) 
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where 𝐿𝑊!" is incoming longwave radiation (W m-2), 𝜎 is the Steffan-Boltzmann constant (5.67 

× 10-8 W m-2 K-4), 𝜀! is atmospheric emissivity (0 to 1, dimensionless), and 𝑇! is air temperature 

(K). In the empirical equations we used to compute 𝐿𝑊!", 𝜀! was estimated as a function of 

humidity and cloud cover (Jennings et al., 2018a). In our perturbations, we kept hourly 𝜀! values 

from the baseline scenario constant due to the high uncertainty in future humidity and cloud 

cover (IPCC, 2013). 

3.3.3.2 Changes to total precipitation 

To reflect potential changes to total precipitation, we perturbed the hourly precipitation data from 

the baseline in 5% increments from -20% to +20%. As with the ∆T scenario, we used the delta-

change approach and applied the perturbations uniformly across the forcing dataset. Although 

predicted changes to precipitation in the western United States are typically < 10% in the RCP 

4.5 and 8.5 scenarios, the IPCC and USGCP both show greater uncertainty in these predictions 

as compared to air temperature increases. Additionally, the two reports present a large spread in 

in interannual variability, approaching ±50% relative to mean observed total precipitation. 

3.3.3.3 Changes to precipitation seasonality 

In order to isolate the effects of changing precipitation seasonality from changing total 

precipitation, we kept annual precipitation constant while varying the proportions of winter and 

spring precipitation in 10% increments. In this case, we increased winter precipitation by 10% 

(DJF+10), 20% (DJF+20), and 30% (DJF+30) while reducing springtime precipitation by the 

same amounts. Although changes to spring precipitation are less likely than the winter increases 

according to the USGCRP report, we still wanted to evaluate the effect of a shift from winter to 

spring precipitation as snowmelt rate and timing are highly sensitive to spring snowfall (Clow et 

al., 2016; Jennings et al., 2018a; Seligman et al., 2014). We followed the same protocol as with 
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the winter increases, but increased March, April, and May precipitation (MAM+10, MAM+20, 

and MAM+30), while decreasing the winter precipitation amounts.  

3.3.4 Assessing changes to snow accumulation and melt, snowfall fraction, cold content, 
and the snowpack energy balance  

In regard to the first research question, we analyzed the SNOWPACK output data from the 

climate change simulations to look for evidence of a differential response between the 

snowpacks at the two sites. We used a set of four snowpack metrics designed to capture seasonal 

snow cover evolution: 

1) Peak SWE: The total water stored in the snowpack at its maximum.  

2) Melt timing (i.e., the date of peak SWE): Although melt may occur before the date of 

peak SWE, this metric is often used as the timing of melt onset as it signifies the start of 

the main snowmelt period in seasonal snowpacks. 

3) Snowmelt rate: The average snowmelt rate between melt onset and the first date of SWE 

= 0.  

4) Snow-covered days: The total number of days with snow cover.  

The first three metrics above are of interest to water managers as they represent how much, 

when, and at what rate meltwater will be produced. The last metric is important to the earth’s 

climate as snow has a higher albedo than bare ground, meaning a greater proportion of incoming 

solar radiation is reflected when snow is on the ground. 

 After analyzing the output data for evidence of a differential response of the two 

snowpacks, we then focused on research question two by assessing three components of physical 

control: 1) snowfall fraction—the proportion of annual precipitation falling as snow, 2) cold 

content, and 3) the snowpack energy balance. In this work snowfall fraction was considered a 

primary response driver as it represents the amount of rain or snow entering the snowpack or 
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bare ground if no snow cover was present. This is critical given the differing effects rain and 

snow have on snowpack properties and land surface hydrology. The next component we 

considered was cold content, which is a measure of the snowpack’s energy deficit: 

 𝐶𝐶 = 𝑐!𝜌!𝑑!(𝑇! − 𝑇!) (3.4) 

where 𝐶𝐶 is snowpack cold content (MJ m-2), 𝑐! is the specific heat of ice (2.1× 10-3 MJ kg-1 °C-

1), 𝜌! is the density of snow (kg m-3), 𝑑! is snow depth (m), 𝑇! is the depth-weighted snowpack 

temperature (°C), and 𝑇! is the melting temperature of ice (0°C). We expected cold content to be 

impacted by the perturbations because the cold content of new snowfall is simulated as a linear 

function of air temperature and precipitation (Cherkauer et al., 2003; Lehning et al., 2002a; 

Wigmosta et al., 1994). Finally, we analyzed changes to the snowpack energy balance (Eq. 3.1) 

that occurred with the climate perturbations. 𝑄!" is generally the prime source of melt energy in 

mountain snowpacks (e.g., Bales et al., 2006; Cline, 1997a; Jepsen et al., 2012; Marks and 

Dozier, 1992), but we were also interested in how changes to the rest of the energy balance were 

associated with the snowpack responses at the two sites. For this part of the analysis we focused 

only on 𝑄!", 𝑄!", 𝑄!, and 𝑄!" as 𝑄!  and 𝑄! contributed near-negligible amounts of energy to 

𝑄! in the baseline and climate change scenarios.  

3.4 Results 

3.4.1 Changes to snow accumulation and melt 

SWE accumulation decreased at the two sites with air temperature increases, but the snowpacks 

exhibited a differential response to warming (Fig. 3.3a,b; Table 3.3). The subalpine site was 

more sensitive to the ∆T perturbations, with mean peak SWE declining 15.4% °C-1 as compared 

to 4.9% °C-1 in the alpine. The loss of snow covered days and the progression of melt onset per 

degree of warming were also more pronounced in the subalpine. For example, an increase of 2°C 
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was associated with a loss of 32.8 d in annual snow cover duration relative to the baseline in the 

subalpine and 21.4 d in the alpine, a relative difference of 53.3%. Similarly, subalpine melt onset 

advanced by 2.6 more days per 1°C of warming than alpine melt onset. Daily snowmelt rate also 

declined significantly in the subalpine, while the alpine increase was not significant at the 95% 

level. Changes to snowmelt rate in the ∆T perturbations will be discussed further in the energy 

balance results section below (Sect. 3.4.4). 

Simulated snow cover evolution at both sites was strongly impacted by the ∆Ptot 

perturbations (Fig. 3.3c,d; Table 3.3). The small differences between the alpine and subalpine 

suggest the response was relatively consistent between the two sites, in contrast to the 

differential response to the ∆T scenarios. Each 10% increase in total precipitation was associated 

with a 12.1% increase in peak SWE in the alpine and a 15.4% increase in the subalpine. A gain 

in total precipitation also had a slight delaying effect on snowmelt onset and a lengthening effect 

on the snow covered season with similar values at the two sites. Melt rate was also responsive to 

total precipitation with each 10% increase being associated with a 1.5 mm d-1 increase in alpine 

melt rates and a 0.9 mm d-1 increase in the subalpine. Because our ∆Ptot perturbations reflected 

both gains and losses, our simulations also showed that decreases in total precipitation induced 

significant changes to the alpine and subalpine snowpacks, namely reduced peak SWE, earlier 

melt onset, fewer snow covered days, and damped snowmelt rates. These changes were all equal 

in magnitude, but opposite in sign to the precipitation increases—e.g., a 10% decline in total 

precipitation produced 12.1% and 15.4% decreases in peak SWE in the alpine and subalpine, 

respectively.  

The ∆Pseas perturbations had little effect on most of the metrics we evaluated (Fig. 3.3e,f; 

Table 3.3), suggesting precipitation seasonality plays less of a role in snow cover evolution at 
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our sites than either air temperature or total precipitation. Although the values were small, the 

subalpine site experienced a larger relative increase in peak SWE compared to the alpine. The 

other notable change was a shift towards earlier melt onset when winter precipitation increased at 

the expense of spring precipitation in the alpine. In this case, each 10% increase in DJF 

precipitation was associated with a 1.3 d progression in melt onset.  

 
Figure 3.3. Mean daily SWE for the ∆T (a,b), ∆Ptot (c,d), and ∆Ptot (e,f) perturbations for the 23 simulation years in 
the alpine (top row) and subalpine (bottom row). 
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Table 3.3. Changes to mean snow accumulation and melt metrics associated with the baseline and different climate 
perturbation scenarios. The change values are given in their units and then as a percentage of the mean baseline 
value (except for the change in melt onset date). For the ∆T perturbations, the change is given per °C, while change 
is given per 10% for the precipitation perturbations. For precipitation seasonality, we set the percent change to be 
positive when the value increased with greater DJF precipitation (i.e., the 0.4% relative increase in alpine peak SWE 
is per 10% increase in DJF precipitation). The * indicates the change was not significant at the 95% level. 

Site Scenario Change in 
peak SWE 
(mm °C-1)  

or 
(mm per  

10%) 

Change 
in peak 
SWE  

(% °C-1)  
or 

(% per 
10%) 

 Change 
in melt 
onset 
date 

(d °C-1) 
or 

(d per 
10%) 

Change 
in SCD 
(d °C-1) 

or 
(d per 
10%) 

Change in 
SCD 

(%°C-1) 
or 

(% per 
10%) 

Change in 
melt rate 
(mm d-1 

°C-1) 
or 

(mm d-1 
per 10%) 

Change 
in melt 

rate 
(% °C-1) 

or 
(% per 
10%) 

Alpine 
∆T -43.9 -4.9 -6.2 -10.7 -4.1 0.2* 1.0* 
∆Ptot 108.8 12.1 1.3 4.6 1.8 1.5 7.3 
∆Pseas 3.2 0.4 -1.3 0.0* 0.0* -0.3 -1.6 

Subalpine 
∆T -54.3 -15.4 -8.8 -16.4 -7.5 -0.4 -4.2 
∆Ptot 54.6 15.4 1.7 7.0 3.2 0.9 8.5 
∆Pseas 6.7 1.9 0.2 0.5 0.2 0.0* -0.2* 

3.4.2 Changes to snowfall fraction 

The ∆T perturbations had a significant effect on snowfall fraction at the two sites  (Fig. 3.4). In 

the alpine, mean snowfall fraction declined from 83.9% in the baseline to 74.8% with the +4.0°C 

warming scenario, while subalpine snowfall fraction decreased from 71.0% in the baseline to 

54.7% in the greatest warming scenario. This meant, on average, the alpine saw total annual 

snowfall decline from 1167 ± 239 mm in the baseline to 1042 ± 211 mm in the +4.0°C 

perturbation. Similarly, the subalpine declined from 527 ± 115 mm of annual snowfall in the 

baseline to 407 ± 92 mm with 4.0°C of warming. In terms of sensitivity to warming, the 

subalpine site was more affected, seeing a 5.7% °C-1 reduction in snowfall fraction, compared to 

2.7% °C-1 in the alpine.  
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Figure 3.4. Annual snowfall fraction for the baseline and ∆T perturbations in the alpine (a) and subalpine (b) for the 
23 year simulation years. Boxplots show the median, interquartile range, and outliers for the annual snowfall 
fraction. Snowfall fraction for ∆Ptot and ∆Pseas not shown due to negligible changes produced by the precipitation 
perturbations.  

There was a negligible change in snowfall fraction with the ∆Ptot perturbations (not 

shown). Because the increases and decreases were applied uniformly across the forcing dataset, 

changes to snowfall were accompanied by nearly equal changes to rainfall. Therefore, all of 

these scenarios were within 0.1% of the baseline snowfall fractions of 83.9% in the alpine and 

71.0% in the subalpine. As would be expected, the changes to annual snowfall were pronounced 

for the ∆Ptot perturbations. Each 10% increase in total precipitation was associated with a 116.8 

mm increase in annual snowfall in the alpine and 58.4 mm in the subalpine. Conversely, a 

decrease in total precipitation led to losses equivalent in magnitude to the gains at the two sites.  

The ∆Pseas perturbations produced slight increases in snowfall fraction when precipitation 

was shifted from MAM to DJF (not shown). The effect was greater at the warmer subalpine site 

where the DJF+ scenarios shifted precipitation to a time of the year when snow was more likely. 

In this case, the DJF+30 perturbation produced a 72.2% annual snowfall fraction, compared to 

69.9% for MAM+30. Again, the effect was small, with an increase in snowfall fraction of just 
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0.4% per 10% increase in subalpine DJF precipitation. In the alpine, the change in snowfall 

fraction was even lower, with only a 0.8% range between the DJF+30 and MAM+30 scenarios. 

3.4.3 Cold content 

Seasonal patterns of cold content development and removal were significantly impacted by the 

∆T perturbations (Fig. 3.5a,b, Table 3.4). In the subalpine, average annual peak cold content was 

reduced by more than half for the +4.0°C scenario relative to the baseline, declining to -0.6 MJ 

m-2 from -1.5 MJ m-2. Average annual alpine peak cold content was less affected in relative 

terms by the ∆T perturbations, declining from -6.1 MJ m-2 in the baseline to -4.1 MJ m-2 in the 

+4.0°C warming scenario, a loss of 32.7%. In absolute terms, the alpine saw a greater MJ m-2 

decline per 1°C of warming. This was likely due to the fact that the subalpine snowpack goes 

isothermal several times throughout the winter (i.e. cold content equals zero) even in the 

baseline. This meant the alpine had a greater absolute range in which its cold content could be 

reduced by warming.  

 

Cold content development is strongly related to total precipitation at the two study sites 

(Jennings et al., 2018a), meaning the ∆Ptot perturbations had a large effect on seasonal cold 

content patterns (Fig. 3.5c,d, Table 3.4). As with snow accumulation and melt, the response of 

alpine and subalpine cold content was similar with small differences between the two in terms of 

the relative change in peak cold content magnitude. Changes to the timing of peak cold content 

were non-significant at the 95% level at the two sites. 

Although the ∆Pseas perturbations had a minimal impact on snow accumulation and melt, 

they did induce significant changes in seasonal cold content patterns (Fig. 3.5e,f, Table 3.4). A 

shift to more winter precipitation (DJF+) led to more rapid cold content development and higher 
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peak cold content than the MAM+ perturbations. However, the DJF+ perturbations exhibited a 

rapid decline in cold content relative to MAM+, likely because less cold content was being added 

to the snowpack during spring storm events due to reduced snowfall. At both sites, cold content 

magnitudes tended to converge in April and May during the main period of snowpack ripening 

before peak SWE.  

 
Figure 3.5. Same as Figure 3.3 but for mean daily cold content. 

Table 3.4. Same as for Table 3.3, but values correspond to changes in cold content. Note: A positive value for a 
change in cold content indicates a loss, while a negative value represents a gain. Cold content is an energy deficit 
and a negative value. 

Site Scenario Change in peak CC 
(MJ m-2  °C-1) or 

(MJ m-2  per 10%) 

Change in peak 
CC (% °C-1)  

or 
(% per 10%) 

 Change in peak 
CC date 
(d °C-1) 

or 
(d per 10%) 

Alpine 
∆T 0.5 8.2 -2.0 
∆Ptot -0.8 -13.7 0.5* 
∆Pseas -0.5 -7.8 -6.2 

Subalpine 
∆T 0.2 15.5 -7.5 
∆Ptot -0.2 -14.9 -0.1* 
∆Pseas -0.1 -5.0 2.4 
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Changes to seasonal patterns of cold content development and removal in the ∆T 

perturbations were a direct result of changes in the cold content added to the snowpack per day 

during snowfall (Fig. 3.6). Because air temperature remained constant for the ∆Ptot and ∆Pseas 

perturbations, all changes to cold content were due to increases or decreases in snowfall. For the 

baseline scenario, each 50 mm of daily snowfall was responsible for, on average, -1.0 MJ m-2 of 

cold content additions to the alpine snowpack and -0.6 MJ m-2 to the subalpine snowpack. Each 

1°C of warming was associated with a loss of 0.05 MJ m-2 of cold content for every 50 mm of 

daily snowfall. This meant the cold content added to the snowpack by each 50 mm of snowfall 

fell to -0.9 MJ m-2 in the alpine and -0.5 MJ m-2 in the subalpine with 2°C of warming.  

 
Figure 3.6. Daily cold content additions from snowfall plotted against daily snowfall for the ∆T perturbations in the 
alpine (a) and subalpine (b). The solid lines of best fit were computed using ordinary least squares regression and 
show a decrease in cold content from snowfall with increasing air temperatures. ∆Ptot and ∆Pseas figures not shown 
because the cold content from snowfall at a given daily snowfall value remained unchanged (air temperature during 
snowfall remained constant). 

Warming and reductions in total and winter precipitation were all associated with reduced 

amounts of total cold content added by precipitation per water year (Fig. 3.7). In both the alpine 

and subalpine, the greatest amounts of total cold content from precipitation occurred in the +20% 
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∆Ptot perturbations, which is unsurprising given the linear relationship between air temperature 

and precipitation and cold content (Eq. 3.4). A shift from MAM to DJF precipitation also 

produced significant cold content gains relative to the baseline scenario at both sites due to 

increasing precipitation in colder months.  

Figure 3.7. Average total content per water year added by precipitation for the ∆T (a,b), ∆Ptot (c,d), and ∆Ptot (e,f) 
perturbations in the alpine (top row) and subalpine (bottom row). The black whiskers represent ±1 standard error. 
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3.4.4 The role of the snowpack energy balance during snowmelt 

As noted above, the warming scenarios significantly reduced melt rates in the subalpine, while 

the increases to alpine melt rate were not statistically significant at the 95% level. This was 

caused by a significant decrease in melt-period QM in the subalpine with warming and a non-

significant increase in the alpine (Fig. 3.8a,b). At both sites, the ∆T perturbations produced 

earlier snowmelt timing (Fig. 3.3a,b, Table 3.3), which led to a decrease in the net radiative 

fluxes (Fig. 3.8c,d). This decline was primarily a result of reduced incoming solar radiation as 

the melt period shifted earlier in the year away from the summer solstice (i.e., away from when 

solar zenith angles are greatest). The advance of snowmelt timing with warming also decreased 

QLW as melt-period air temperatures decreased with the larger ∆T perturbations. This may appear 

counter-intuitive, but the forward shift in melt timing had a greater effect on melt-period air 

temperatures and the resultant incoming longwave radiation than the applied warming. 

Furthermore, an increase in the turbulent fluxes balanced the decrease in the radiative fluxes in 

the alpine, an effect not simulated in the subalpine where the turbulent fluxes increased only 1.8 

W m-2 from the baseline to the +4.0°C scenario (Fig. 3.8e,f). On average, QH and QLE were 

approximately 10X greater in the alpine than subalpine because forest cover significantly 

damped the turbulent fluxes at the snow surface at the latter site.  
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Figure 3.8. Mean melt period QM (a,b), radiative fluxes (c,d), and turbulent fluxes (e,f) in the alpine (top) and 
subalpine (bottom). Here the melt period is defined as the time between peak SWE and the snow-off date. The 
points are the average hourly flux value across the melt periods from the 23 simulation years with whiskers 
representing ±1 standard error for each ∆T scenario.  

Changes to total precipitation also had an effect on the snowpack energy balance, with 

the positive ∆Ptot perturbations leading to greater melt rates and vice versa for the negative 

perturbations (Fig. 3.3c,d, Table 3.3). These changes were interlinked with the effect of 

precipitation on the duration of snow cover and the associated differences in available energy at 

the earth’s surface. Shifts in the date of melt onset were small for both sites relative to the change 

in snow covered days, meaning the majority of changes to the energy balance were caused by a 

lengthening of the melt season for the positive perturbations and a contraction for the negative 

perturbations. This can be seen by relatively uniform changes to QM, the radiative fluxes, and the 

turbulent fluxes in Figure 3.9. Both QSW and QLW increased at the two sites in the positive ∆Ptot 

scenarios as the melt period extended into a time of greater insolation and increased air 
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temperatures. Similarly, QH and QLE both increased in the alpine and subalpine with the positive 

∆Ptot perturbations. 

The timing of snowmelt onset and melt rate were both relatively insensitive to the ∆Pseas 

perturbations (Fig. 3.3e,f, Table 3.3). Similarly, the snowpack energy balance showed little 

variation across the changing percentages of precipitation seasonality. Changes to QM, the 

radiative fluxes, and the turbulent fluxes (not shown) were all negligible. 

Figure 3.9. Same as with Figure 3.8 but for the ∆Ptot perturbations.  

3.4.5 Interaction between cold content and the snowpack energy balance 

The three perturbation scenarios display marked differences in the way cold content and the 

snowpack energy balance interact to control changes to snow accumulation and melt. Figure 3.10 

displays the average daily cold content plus the average net flux into the snowpack for the 
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different perturbations. In this figure, a colored line plotted beneath the horizontal gray zero line 

indicates the net flux was not great enough, on average, to satisfy the cold content for that day. 

Conversely, colored lines above the zero line indicates that, on average, the net flux was greater 

than cold content and melt could occur.  

As noted above, changes in melt onset were most pronounced for the ∆T perturbations 

relative to the precipitation scenarios. This is indicated in the ∆T plot, which shows marked 

divergence in where the colored lines cross the zero line (Fig. 3.10 a,b). Although there is 

significant spread in the colored lines for the ∆Ptot (Fig. 3.10 c,d) and Pseas (Fig. 3.10 e,f) 

perturbations, these lines tended to converge as they approached positive values later in the snow 

season, whereas the ∆T lines continued to diverge. This is reflective of the physical processes 

controlling the differential response of the two sites to warming air temperatures and the more 

consistent response to precipitation changes. Both snowfall fraction and the cold content of new 

snowfall were reduced in the ∆T perturbations, meaning it took less energy to satisfy the 

snowpack’s internal energy deficit. This was compounded by the fact that the net radiative and 

turbulent fluxes were greater throughout the snow cover season for the warmer ∆T perturbations. 

For example, DJF and MAM net fluxes were respectively 2.0 W m-2 and 27.8 W m-2 greater in 

the alpine and 1.8 W m-2 and 8.1 W m-2 greater in the subalpine for the +4.0°C scenario relative 

to the baseline.  

For the +3.0°C and greater warming scenarios, daily average cold content was no longer 

greater than daily average net flux in the subalpine (Fig. 3.10b), meaning melt was probable 

throughout the entirety of the snow cover season. This shift led to a marked increase in the 

number of winter melt events, with total annual average pre-peak SWE melt approximately 

doubling from 71.7 mm in the baseline to 146.6 mm in the +4.0°C scenario. This meant pre-peak 
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SWE melt increased proportionally from 20.3% of peak SWE in the baseline to 97.6% in the 

warmest ∆T perturbation. Thus, the amount of water lost to melt during the winter nearly 

equaled the total water stored in the snowpack at peak SWE with 4.0°C of warming. In some 

simulation years for the three warmest ∆T perturbations, subalpine snow cover shifted from 

seasonal to transient, representing a substantial shift in the hydrology of the subalpine snowpack. 

Conversely, winter melt stayed minimal in the alpine relative to the subalpine, reaching a 

maximum annual average of 48.0 mm (6.5% of peak SWE) in the in the +4.0°C scenario. 

Changes to winter melt were small for the precipitation scenarios despite the changes to cold 

content, suggesting the increase for the ∆T perturbations was an effect of interactions between 

enhanced positive fluxes and reduced cold content.  
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Figure 3.10. Average daily cold content plus net flux for the ∆T (a,b), ∆Ptot (c,d), and ∆Ptot (e,f) perturbations in the 
alpine (left column) and subalpine (right column). The gray dashed line at 0 MJ m-2 represents cold content being 
equal to the net fluxes in magnitude. Colored lines above the zero line indicate that the net fluxes were, on average, 
greater in magnitude than snowpack cold content, meaning melt could occur. 

3.5 Discussion 

3.5.1 Physical controls on the perturbation responses 

We found the higher, colder alpine site to be less sensitive to the effects of warming air 

temperatures on snow accumulation, snowmelt onset, and snowmelt rate. This can be explained 
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through the physical controls we evaluated in the results section presented above. First of all, 

snowfall fraction at the alpine site was reduced by a lesser percentage with each degree of 

warming relative to the subalpine. This meant that frequent snowfall persisted in the alpine 

despite air temperature increasing by the same amount as in the subalpine. Warmer air 

temperatures also reduced the amount of cold content added to the snowpack per snowfall event. 

Loss of snowfall combined with warming led to average annual peak cold content approaching -

0.4 MJ m-2 in the subalpine and -3.0 MJ m-2 in the alpine in the +4.0°C scenario. The 

significantly diminished subalpine cold content made the site more prone to midwinter melt 

events, which reduced peak SWE accumulation as mass was lost to melt before the main 

snowmelt season. Importantly, at 3°C of warming and above, the subalpine snowpack was 

substantially altered by a shift in the melt season from spring to the entirety of the winter. No 

longer was cold content large enough to buffer against midwinter melt. Instead, melt was 

probable and likely throughout the entirety of the snow cover season. Furthermore, warming-

induced changes to snowmelt rate were non-significant in the alpine because a loss in the 

radiative fluxes caused by a shift in the melt period to reduced insolation was approximately 

balanced by an increase in the turbulent fluxes as a result of high wind speeds and warming 

temperatures. Although the turbulent fluxes increased slightly in the subalpine, this change was 

not enough to balance the effect of significantly diminished radiative fluxes.  

Changes in total precipitation had significant impacts on snow accumulation at both sites, 

which is unsurprising given their cold winter and spring air temperatures (i.e., mass increases 

during the snow season almost uniformly lead to increased snowfall). The ∆Ptot perturbations 

were done percentage-wise, meaning the alpine saw a greater absolute increase in peak SWE for 

each 10% increase in total precipitation, but relative changes were similar at the two sites. In 
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other words, the response to total precipitation was fairly consistent compared to the differential 

response to warming air temperatures. Increased snowfall was associated with slightly delayed 

snowmelt onset and faster snowmelt as the melt period lengthened and shifted into a time of 

increased insolation. Although cold content was significantly altered by precipitation 

perturbations, these changes did not translate into large effects in seasonal melt onset. This is 

likely because the changes in cold content did not occur with increases in the snowpack energy 

balance as in the warming scenarios. 

The final perturbation scenario we considered, ∆Pseas, had a near-negligible impact on our 

study sites. As noted above, cold winter and spring temperatures meant that precipitation fell 

mainly as snow, even when seasonality was shifted preferentially towards MAM. We kept total 

precipitation constant for these perturbations, so annual snowfall went relatively unchanged at 

the two sites, with the subalpine seeing a slight reduction in the MAM+ scenarios. Although we 

discuss the broader applicability of our results below, we note here that the effect of seasonality 

will likely be higher at warmer sites where a shift from DJF to MAM would result in 

significantly more rain and reduced snowfall fractions. Furthermore, we applied the climate 

change scenarios independently in order to individually examine the effect of the ∆T, ∆Ptot, and 

∆Pseas perturbations. As with the application of the ∆Pseas scenarios to warmer sites, our results 

suggest that simultaneously increasing air temperature and shifting precipitation towards MAM 

would lead to a greater response at the warmer subalpine site. 

3.5.2 Implications for water resources management in a warming climate 

Climate change poses a serious challenge to water resources management through its effects on 

the timing and volume of water deliveries to reservoirs and other infrastructure (Barnett et al., 

2005; Milly et al., 2008). This study supports the results of previous research, namely that 
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climate warming has and will continue to reduce snow accumulation (Harpold et al., 2012; Mote 

et al., 2018), produce earlier snowmelt onset (Clow, 2010; Regonda et al., 2005; Stewart, 2009), 

and reduce snowmelt rates (Musselman et al., 2017a). In addition to those key changes, the fact 

that the alpine and subalpine snowpacks responded differently to simulated warming brings up 

two further considerations. One, snow accumulation decreased at a greater relative rate in the 

subalpine compared to the alpine. Thus, streamflow forecasts that rely on statistical relationships 

between snow accumulation at a point and streamflow volume will likely degrade as the amount 

of snow monitored at a single station becomes progressively less and less representative of the 

snow accumulation in the elevations above it. Two, the temporal gap in snowmelt onset between 

the two sites increased with warming. In the baseline, subalpine peak SWE occurred an average 

of 21 d before alpine peak SWE. In the +4.0°C perturbation, this temporal gap expanded to 35 d, 

representing a relative increase of 66.7%. Compounding the problem is that a significantly larger 

proportion of subalpine meltwater was produced before peak SWE in the warming scenarios. 

Thus, reservoir operations will likely have to updated as more meltwater is delivered earlier in 

the season and as elevational patterns of snowmelt onset change with continued warming. 

3.5.3 Assumptions and shortcomings  

By using the delta-change approach, we assumed that future increases to air temperature would 

be uniform and the diurnal temperature range would be unaffected. However, past work has 

shown that snowpacks across an elevational gradient are sensitive to the diurnal temperature 

range (Nayak et al., 2010) and that warming is associated with a decrease in the diurnal 

temperature range (Karl et al., 1991). Therefore, we are likely missing changes to snow cover 

evolution induced by variations in the diurnal temperature range. Such changes may include a 

decrease in nighttime cooling of the snowpack and reduced refreezing of liquid water, meaning 
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daytime positive energy fluxes could go towards melting the snowpack instead of warming it. 

We also assumed temperature and precipitation changes would be equivalent at the two sites 

despite previous research in the Rocky Mountains showing climate trends to be spatially 

heterogeneous, even over small spatial scales. For example, Kittel et al. (2015) presented 

significant increases in high-alpine precipitation, while changes to subalpine precipitation were 

not significant over their study period. In addition to precipitation, other research has shown 

changes to air temperature are dependent on elevation (McGuire et al., 2012; Pepin and 

Losleben, 2002; Williams et al., 1996). However, it should be noted that past studies using 

SNOTEL measurements may be affected by inhomogeneities in the temperature data (Oyler et 

al., 2015). 

For this paper we only examined two point locations and did not consider the broader 

spatial extent of the Niwot Ridge LTER and the associated variability in snowpack accumulation 

and melt (Jepsen et al., 2012). Previous research has shown that point observations of SWE are 

limited in their representativeness of the surrounding landscape (Molotch and Bales, 2006, 2005) 

and that meltwater outflow and timing can vary over short distances (Webb et al., 2018a, 2018b). 

This is due to both variability in snowpack internal properties and the spatial variation of the 

snowpack energy budget (Dadic et al., 2013; Marks and Winstral, 2001; Pomeroy et al., 2003). 

Thus, there is evidence to suggest that proximate snowpacks experiencing the same changes in 

climate would respond differently due to variations in physiography (e.g., Tennant et al., 2017). 

Additionally, our work focused on only two cold continental sites, despite the large diversity of 

seasonal snow cover classes in the western United States (Armstrong and Armstrong, 1987; 

Serreze et al., 1999; Trujillo and Molotch, 2014). We chose these locations because of their long-

term meteorological and snow pit records and because they could represent sites that past work 
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has shown to be more (the subalpine) and less (the alpine) sensitive to the impacts of climate 

change on snow accumulation and melt. Although this research cannot be transferred directly to 

other areas, we believe our findings can be used to inform future research. Continuing to explore 

the differential response of alpine and subalpine snowpacks to warming will be critical 

considering that elevations above 3000 m in the Colorado River Basin provide approximately 

50% of streamflow to the river (Hammond et al., 2018).  

3.5.4 Other factors 

Recent research has shown how landscape properties and disturbances govern snow 

accumulation and melt processes. For example, the seasonal evolution of subalpine snowpacks is 

strongly controlled by the interactions between forest characteristics and climate (Dickerson-

Lange et al., 2017; Lundquist et al., 2013; Molotch et al., 2009; Roth and Nolin, 2017), 

suggesting that forest cover can affect the response of subalpine snowpacks to changes in air 

temperature and precipitation (Tennant et al., 2017). Furthermore, landscape-scale disturbances 

to forested areas, such as wildfire and bark beetle infestation have already had marked impacts 

on mountain snowpacks (Gleason et al., 2013; Livneh et al., 2015). Light absorbing impurities, 

such as dust, also have a pronounced effect on snowmelt timing and streamflow generation 

(Painter et al., 2017; Skiles et al., 2012). Both dust and post-wildfire char decrease surface 

albedo, which increases QSW and contributes to greater QM values (Deems et al., 2013; Gleason 

and Nolin, 2016; Painter et al., 2012, 2010). Therefore, research on the future of snow in the 

western United States should consider the effects of landscape disturbances and light absorbing 

impurities on snow accumulation and melt as they may exacerbate the warming response, 

particularly if feedbacks between snow and forest regeneration are considered (Knowles et al., 

2017). For this study, we focused only on changes in climate given the high certainty in future 
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air temperature increases (IPCC, 2013) as well as the strong correlation between winter 

precipitation and snow accumulation and melt in cold continental areas (Serreze et al., 1999; 

Trujillo and Molotch, 2014).  

Furthermore, Harpold and Brooks (2018) reported that relative humidity can help explain 

the differential inter-regional response to climate warming. Their analysis of 462 SNOTEL 

stations indicated that sites with lower relative humidity saw a reduced impact of increased air 

temperatures on snowpack ablation relative to sites with higher relative humidity. They note that 

drier sites, like the ones studied here, are buffered against the effects of climate warming through 

energy losses from QLW and QLE. While this work explains the large-scale controls on the non-

linear response of snowpacks to climate warming, our work shows there can still be significant 

differences over short distances at sites with similar seasonal relative humidity values. 

3.6 Conclusion 

The snowpacks at the two sites evaluated in this study displayed a differential response to 

simulated climate warming, while the response to changes in total precipitation and precipitation 

seasonality were relatively consistent. Increases to air temperature led to decreased snow 

accumulation, shortened snow cover duration, and advanced melt timing to a greater degree in 

the subalpine snowpack than the alpine. This was primarily a result of subalpine snowfall 

fraction decreasing at more than twice the rate per 1°C of warming in addition to pronounced 

changes in the seasonal evolution of cold content and the snowpack energy balance. At 3°C of 

warming and greater, cold content was no longer of a high enough magnitude to buffer against 

positive energy fluxes during the winter, leading to a substantial proportion of melt occurring 

before peak SWE in the subalpine. Due to lower air temperatures and higher snowfall, this same 

effect was not simulated in the alpine. Additionally, subalpine melt rates declined by 8.5% per 
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1°C of warming as the melt period shifted earlier in the year towards a time of reduced 

insolation. In the alpine, the loss in melt-period radiative energy was balanced by an increase in 

simulated turbulent fluxes, leading to a non-significant change in melt rates. Increases in total 

precipitation had a marked effect on seasonal snow cover evolution at both sites, producing 

greater peak SWE, higher snowmelt rates, and longer snow cover duration. Conversely, 

decreases in total precipitation reduced peak SWE, slowed snowmelt rates, and contracted the 

snow cover season. The relative changes were similar at the two sites, suggesting a consistent 

response to variations in total precipitation as opposed to the differential response to increasing 

air temperatures. The snowpacks showed little sensitivity to precipitation seasonality, indicating 

the timing of precipitation was less important than air temperature and total precipitation at our 

two study sites.  
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Chapter 4 

4 The sensitivity of modeled snow accumulation and melt to 
precipitation phase methods across a climatic gradient in the 
western United States 

 

Abstract 

Climate warming is driving a shift from snow to rain in cold and temperate regions globally, the 

hydroclimatic impacts of which are simulated using snow, hydrologic, and land surface models. 

Although air temperature thresholds and ranges are most commonly used to partition rain and 

snow within these models, there are a wide variety of precipitation phase methods that can be 

employed. However, little is known about how the selection of a precipitation phase method 

affects uncertainty in modeled snow accumulation and melt. This work aims to close this 

knowledge gap through physics-based snow model simulations at 11 sites in the western United 

States that span a climatic gradient from warm maritime to cold continental. We kept model 

setup consistent across the sites and forced the SNOWPACK model with serially complete, 

infilled, hourly meteorological data. A total of 12 simulations were run at the study sites with 

each model run corresponding to a different precipitation phase method. The methods used for 

precipitation phase determination were air, dew point, and wet bulb temperature thresholds, air 

temperature ranges, and binary logistic regression models. At the warm maritime sites, relative 

differences between the maximum and minimum annual snowfall fractions predicted by the 

different methods were sometimes greater than 100%, while the two coldest sites typically 

experienced relative differences less than 15%. Ranges in annual peak SWE were consistently 

greater than 200 mm at the warm maritime sites, exceeding 400 mm at some sites and years. 

Again, the coldest sites expressed reduced sensitivity with peak SWE ranges typically less than 
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20 mm. Method choice also affected other snow cover evolution properties, including the date of 

peak SWE, snowmelt rate, and snow cover duration with the warmer sites being more sensitive. 

In some cases the range in peak SWE date and snow cover duration exceeded one month. 

Overall, this work shows that wetter sites with winter temperatures near freezing (i.e. maritime) 

are most sensitive to the choice of precipitation phase method. This has serious implications for 

estimates of water storage, melt timing, and land surface albedo in simulations of past and future 

hydroclimatic conditions.  

4.1 Introduction 

One of the most prominent impacts of climate warming has been a shift from snow to rain in 

temperate and cold regions across the globe (e.g., Knowles et al., 2006; Trenberth, 2011), a trend 

that is expected to continue with further increases in air temperature (Bintanja and Andry, 2017; 

Klos et al., 2014; O’Gorman, 2014; Safeeq et al., 2015). In order to assess how this change 

affects global hydroclimate, researchers have employed snow models, hydrologic models, and 

land surface models of varying degrees of complexity (e.g., Barnett et al., 2005). One trait many 

of these models share is the partitioning of rainfall and snowfall based on a spatially uniform air 

temperature threshold or a range between two thresholds with a linear mix of liquid and solid 

precipitation in between. Recent work has called into question this simplistic treatment of 

precipitation phase (Feiccabrino et al., 2015; A. A. Harpold et al., 2017c) because of the 

pronounced spatial variability of the temperature at which rain and snow fall in roughly equal 

frequency (Jennings et al., 2018b; Ye et al., 2013). This suggests the use of a spatially uniform 

air temperature threshold is likely to produce errors in modeled precipitation phase with resultant 

effects on hydroclimatic simulations. 
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The use of a spatially uniform air temperature threshold appears logical given the strong 

temperature-dependence of precipitation phase. Observational work has shown that precipitation 

is primarily solid at temperatures at and below the freezing point (Auer Jr, 1974; Avanzi et al., 

2014; Kienzle, 2008; United States Army Corps of Engineers, 1956). In general, as air 

temperature increases above 0°C, the probability of snowfall decreases following a sigmoidal 

curve (Dai, 2008; Fassnacht et al., 2013). As such, many models employ temperature thresholds 

greater than 0°C, but some still rely on the freezing point to separate rain and snow. More recent 

work has shown humidity exerts a secondary control on precipitation phase with snowfall more 

probable at a given temperature in more arid conditions (Froidurot et al., 2014; Gjertsen and 

Ødegaard, 2005; Jennings et al., 2018b). Surface air pressure also affects phase partitioning, but 

to a lesser degree than air temperature and humidity, with snowfall more common at higher 

temperatures when surface pressure is lower (i.e. at higher elevations) (Ding et al., 2014; 

Jennings et al., 2018b; Rajagopal and Harpold, 2016).  

Given the secondary controls exerted by humidity and surface pressure on the probability 

of rain versus snow, precipitation phase methods have been developed to leverage this 

information into more accurate rain and snow predictions. These methods include dew point 

temperature thresholds (Marks et al., 2013; Ye et al., 2013), wet/ice bulb temperature thresholds 

(Anderson, 1968; Harder and Pomeroy, 2013), and binary logistic regression equations that 

predict the probability of snow as a function of various meteorological quantities (Froidurot et 

al., 2014; Jennings et al., 2018b). Recent work has shown that the spatial variability of phase 

partitioning is reduced when using humidity information in addition to air temperature (Ye et al., 

2013). Furthermore, methods incorporating humidity better predict precipitation phase than air 

temperature-only methods relative to observations across the Northern Hemisphere (Jennings et 
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al., 2018b), likely due to their better representation of the hydrometeor energy balance (Harder 

and Pomeroy, 2013; A. A. Harpold et al., 2017c). 

The wide variety of precipitation phase methods and marked spatial variability in rain-

snow partitioning suggests method selection can introduce significant uncertainty to model 

output in areas where snow contributes to the annual hydrologic cycle. Previous work has shown 

precipitation phase method selection leads to variations in snowfall fraction—the percentage of 

precipitation that falls in a given year as snow— approaching 30% or greater (A. A. Harpold et 

al., 2017a; Jennings et al., 2018b; Raleigh et al., 2016). However, how this variability in snowfall 

fraction translates into divergences in simulated snow accumulation and melt is more uncertain. 

Harder and Pomeroy (2014) used the Cold Regions Hydrologic Model to evaluate how various 

snow cover properties were affected by precipitation phase method selection in three cold 

research basins in Canada. They found simulated SWE and snow cover duration were both 

sensitive to method choice with the methods producing the greatest snowfall fractions leading to 

increased SWE and longer snow covered periods. Method selection also leads to divergence in 

the SWE produced by individual storm events and in annual peak SWE, with higher air 

temperature thresholds producing greater SWE (Mizukami et al., 2013; Raleigh and Lundquist, 

2012; Wayand et al., 2017). Other research has shown that simulated snow depth is typically 

greater when using higher air temperature thresholds or ranges, particularly in periods 

immediately following precipitation (Fassnacht and Soulis, 2002; Wen et al., 2013).  

Most of the work above focused on single sites or a selection of sites with broadly similar 

hydroclimatic characteristics. However, this overlooks the significant spatial variability of phase 

partitioning and the uncertainty associated with such variability. For example, a comparison of 

three models with different precipitation phase methods showed that snowfall fraction at colder 
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sites was less sensitive to the choice of a method than warmer sites (Raleigh et al., 2016). 

Jennings et al. (2018b) also showed that uncertainty in annual snowfall fraction peaked at 

average annual air temperatures between 0°C and 5°C with less uncertainty at temperatures 

above and below that range. To date, no work has explored how a diverse selection of 

precipitation phase methods would affect simulated snow cover evolution across a climatic 

gradient. I.e., is the importance of phase method selection dependent on climate? This question is 

further compounded when future warming-driven changes to snow accumulation and melt are 

taken into consideration. Sites with average winter air temperatures near freezing are generally 

considered most sensitive to the effects of warming (e.g., Nolin and Daly, 2006) and these sites 

have also expressed the greatest sensitivity to precipitation phase method. Thus, it may be the 

case where the sensitivity of snow accumulation and melt to precipitation phase method selection 

is greater than the climate warming signal.  

Given the importance of snow to the hydrologic cycle in the western United States—and 

cold and temperate regions globally—we aim to show how precipitation phase methods induce 

different degrees of variability in simulated snow cover evolution across a climatic gradient. We 

will do this through quantification of different snow accumulation and melt metrics and how they 

are affected by method selection at sites that span a climatic gradient from warm maritime to 

cold continental. We will then evaluate how the sensitivity is controlled by air temperature, 

relative humidity, and precipitation at the different sites. 

4.2 Study sites and data 

We selected sites across the western United States (Fig. 4.1) with long-term forcing and 

validation data that represented a range of snow conditions from transient snow with rain-on-

snow and midwinter melt events to cold, deep seasonal snowpacks with little melt once the snow 
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season began. For this work, three stations at the HJ Andrews Experimental Forest were used to 

represent warm, maritime snowpacks. The two stations at the Southern Sierra Critical Zone 

Observatory (CZO) also have a warm, maritime climate, but seasonal snowpacks develop more 

consistently. The final maritime site is Dana Meadows in Yosemite National Park, which has a 

deep seasonal snowpack due to considerable winter snowfall and low temperatures. The semi-

arid Johnston Draw basin within the Reynolds Creek Experimental Watershed is in the 

intermountain transition zone between maritime and continental. Finally, the two stations on 

Niwot Ridge are representative of cold continental locations. More information on the sites is 

presented in the text below and in Table 4.1. 
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Figure 4.1.  The western United States with the 5 study sites. Details on the stations at each site along with their 
meteorological characteristics are detailed in the following paragraphs and in Table 4.1. 

The HJ Andrews Experimental Forest is part of the Long Term Ecological Research 

(LTER) network. Although there are multiple study sites within the forest, we focused on the 

three meteorological stations with long-term forcing and validation data: Cenmet (HJA-CEN), 

Vanmet (HJA-VAN), and Uplmet (HJA-UPL). Due to its lower elevation, the HJA-CEN site 

only develops seasonal snowpacks during some winters, but is otherwise transient. HJA-VAN 

and HJA-UPL typically develop seasonal snowpacks, but snow is transient in some years. Winter 

melt and rain-on-snow events are common throughout the HJ Andrews (Harr, 1986; Jennings 
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and Jones, 2015; Mazurkiewicz et al., 2008; Perkins and Jones, 2008). This site represents a 

typical maritime climate within the rain-snow transition zone. 

The Upper (SSC-UPR) and Lower (SSC-LWR) Providence Creek stations in the 

Southern Sierra CZO are within the maritime zone and generally develop seasonal snowpacks. 

Reported annual snowfall fractions range between 20% and 60%, and rain-on-snow events can 

occur at both stations (Hunsaker et al., 2012). SSC-UPR and SSC-LWR can be either rain- or 

snow-dominated depending on the climate of a particular year (Hunsaker et al., 2012). This site 

represents maritime climates in the seasonal snow zone where winter melt events are frequent 

but snow cover persists throughout the winter.  

The Dana Meadows station (YOS-DAN) is located within Yosemite National Park and is 

part of the Yosemite Hydroclimate Network (Lundquist et al., 2016). YOS-DAN receives 

significant winter precipitation, which produces snow depths several meters deep due to low 

winter temperatures (Lundquist et al., 2016; Rice et al., 2011). Although it has a maritime 

climate, annual snowfall fraction can exceed 90% (Lundquist et al., 2016) thanks to the station’s 

high elevation and strongly seasonal precipitation. Winter melt makes up a relatively low 

proportion of annual snowmelt at this elevation (Rice et al., 2011). 

Johnston Draw is a sub-watershed within the larger Reynolds Creek Experimental 

Watershed, which is part of the CZO network. Reynolds is within the rain-snow transition zone 

(Nayak et al., 2010) and has a semi-arid intermountain climate, bridging the divide between 

maritime and continental. We focused our simulations on three stations with co-located 

meteorological and snow depth measurements: 125 (JD-125), 124b (JD-124b), and 124 (JD-

124). Previous work has shown average annual snowfall fraction ranges from 39% at the lower 

station to 53% at the highest (Godsey et al., 2018). Similar to the HJ Andrews study sites, 
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seasonal snowpacks develop at the Johnston Draw stations in some years, but not in others. Due 

to high wind speeds and complex terrain, snow patterns vary across sites from year to year 

(Godsey et al., 2018). Additionally, winter melt and rain-on-snow events occur throughout the 

Reynolds Creek Experimental Watershed (Marks et al., 2001; Marks and Winstral, 2001).  

The Niwot Ridge LTER has a cold continental climate (Greenland, 1989) with previously 

reported annual snowfall fractions ranging between 63% and 80% (Caine, 1996; Knowles et al., 

2015). The C1 station (NWT-C1) is in the subalpine area of Niwot Ridge and Saddle (NWT-

SDL) is situated above treeline in the alpine. Winter melt and rain-on-snow events are rare at 

both stations, particularly at NWT-SDL. High winter wind speeds are responsible for significant 

spatial variation in snow depth at NWT-SDL (Erickson et al., 2005; Litaor et al., 2008), while a 

dense stand of lodgepole pine reduces the effect of wind on snow cover evolution at NWT-C1.  

Table 4.1. Station information plus average annual and December/January/February (DJF) climatic conditions for 
the 8 years of the study period (WY2004–WY2011).  

    Annual DJF 

Site Station Code 
Elevation 

(m) 
Ta 

(°C) 
RH 
(%) 

VW 
(m s-1) 

PPT 
(mm) 

Ta 
(°C) 

RH 
(%) 

VW 
(m s-1) 

PPT 
(mm) 

PPT* 
(%) 

HJ 
Andrews 

Cenmet HJA-CEN 1020 7.5 81.2 1.0 2308 1.7 86.3 1.0 957 41.5 
Vanmet HJA-VAN 1275 7.0 76.8 1.2 2259 1.3 80.4 1.3 956 42.3 
Uplmet HJA-UPL 1295 6.5 77.3 0.8 2841 0.7 81.6 0.8 1133 39.9 

Southern 
Sierra 
CZO 

Lower 
Providence SSC-LWR 1753 8.4‡ 68.3 0.9 1538 1.3 79.5 0.6 821 53.4 

Upper 
Providence SSC-UPR 1981 9.1 57.4 1.2 1613 2.3 63.7 0.9 878 54.4 

Yosemite 
Nat. Park 

Dana 
Meadows YOS-DAN 2987 1.4 55.6 1.3 811 -5.5 62.7 1.4 468 57.7 

Johnston 
Draw 

125 JD-125 1508 7.9 57.6 1.7 586 -1.5 74.3 1.7 217 37.0 
124b JD-124b 1778 6.8 59.2 1.8 718 -2.1 74.5 1.9 301 41.9 
124 JD-124 1804 6.9 56.8 4.4 580 -2.2 72.5 5.3 198 34.1 

Niwot 
Ridge 

C1 NWT-C1 3022 2.6 60.8 2.7 917 -6.3 62.3 4.1 216 23.6 
Saddle NWT-SDL 3528 -0.7 64.3 8.5 1483 -9.9 71.4 11.7 592 39.9† 

             
*Column corresponds to percentage of annual precipitation that falls during DJF.  
‡Average Ta values are cooler at SSC-LWR than SSC-UPR due to differences in vegetation and physiography at the 
two stations (M. Safeeq, personal communication, 20 June 2018). 
†High DJF precipitation percentage likely due to gage overcatch reduction factors. The alpine precipitation gage 
sees significant overcatch due to blowing snow (Williams et al., 1998a) and reduction factors were developed 
relative to observed changes in the NWT-SDL snow pit SWE (Jennings et al., 2018a). 
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4.3 Methods 

4.3.1 Model setup and forcing data preparation 

We used the one-dimensional, physics-based SNOWPACK model (Bartelt and Lehning, 2002; 

Lehning et al., 2002b, 2002a) to evaluate the sensitivity of snow cover evolution to various 

precipitation phase methods. SNOWPACK is forced with air temperature (Ta), relative humidity 

(RH), wind speed (VW), incoming shortwave radiation (SWin), incoming longwave radiation 

(LWin), and precipitation (PPT) at an hourly or longer time step. Part of our motivation for using 

SNOWPACK, in addition to the model’s consistent performance in snow model studies 

(Etchevers et al., 2004; Rutter et al., 2009) and extensive validation (Jennings et al., 2018a; 

Lehning et al., 2001; Lundy et al., 2001; Meromy et al., 2015), was that it offers the user the 

option to include precipitation phase as part of the forcing data. In this scheme, the user can 

identify a time step as all-snow (0) or all-rain (1), or a mix of precipitation (decimal values 

between 0 and 1). Further details on the precipitation phase methods implemented in this study 

are provided in Sect. 4.3.2 below and model validation is given in Appendix 4.1.  

We ran SNOWPACK at an hourly time step and kept model setup nearly identical across 

the sites in order to make the precipitation phase sensitivity results as comparable as possible. In 

some cases, this approach overlooked important changes to the snow accumulation and melt 

processes (e.g., snowfall interception, enhancement of incoming longwave radiation) caused by 

forest cover, notably at the HJ Andrews site and, to a lesser extent, NWT-C1. However, we 

wanted the simulations to represent snow cover evolution without introducing the confounding 

hydrologic effects of interception and model representation thereof, meaning the canopy module 

for SNOWPACK was not activated at any of the sites. The only changes made to model setup 

were the meteorological measurement heights (Appendix 4.2), which were provided as part of 

the various forcing datasets.  
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Where possible, we relied on quality control and infilling methods from the dataset 

creators given their familiarity with meteorological processes at their respective sites. At HJ 

Andrews, the provided data were quality controlled, but not serially complete. We first infilled 

data with instruments at different heights located at the same station when those measurements 

were available. We used linear regressions from the other stations to fill all other missing data. 

For the Southern Sierra CZO sites, we performed an additional quality control routine based on 

Meek and Hatfield (1994) in order to clean up spurious data points. We then infilled missing data 

by regressing the two sites. All other datasets were serially complete and we performed no 

further quality control or infilling procedures. Additionally, none of the sites had LWin 

measurements available for the entirety of the study period. We used the empirical estimates of 

LWin provided with the Niwot Ridge and Yosemite datasets to force SNOWPACK. For the other 

sites, we used the empirical Unsworth and Monteith (1975) formulation that is included with the 

forcing data preprocessor MeteoIO. At the HJA stations, we bias-corrected the LWin estimate 

based on one year of LWin observations from HJA-VAN that showed a -56.9 W m-2 wintertime 

bias. This was significantly larger in magnitude than the bias previously found in the Unsworth 

and Monteith (1975) estimate (Flerchinger et al., 2009), suggesting its performance is more 

spatially variable than previously noted. 

4.3.2 Precipitation phase methods 

We evaluated a selection of precipitation phase methods found in the literature, including the 

more typical Ta thresholds and ranges as well as methods incorporating humidity (Table 4.2). For 

the Ta, dew point (Td), and wet bulb (Tw) thresholds, precipitation was designated as all-rain 

when the temperature was warmer than the threshold and all-snow when cooler than or equal to 

the threshold. When using the Ta ranges, a linear mix of precipitation phase was given when Ta 
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fell within the range during precipitation with all-rain above the warmer threshold and all-snow 

below the cooler threshold. The binary regression methods (Froidurot et al., 2014; Jennings et 

al., 2018b) computed the probability of snow (psnow) as a function of Ta and RH (RegBi, Eq. 4.1) 

and as a function of Ta, RH, and surface pressure (Ps, RegTri, Eq. 4.2). Precipitation was set to be 

all snow when psnow >= 0.5 and rain when psnow < 0.5: 

 𝑝!"#$ =  
1

1+ 𝑒 !!".!" ! !.!"!! ! !.!"!"  (4.1) 

 𝑝!"#$ =  
1

1+ 𝑒 !!".! ! !.!"!! ! !.!"!"!!.!"!!
 (4.2) 

Each of the study sites included RH as part of their meteorological observations, but only 

the HJ Andrews and Reynolds Creek sites had observations of Td, while no sites had long-term 

Tw measurements. To keep precipitation phase methods constant across the sites, we calculated 

Td (Alduchov and Eskridge, 1996) and Tw (Stull, 2011) as empirical functions of Ta and RH. The 

empirical formulation tracked observed Td at Reynolds with an r2 of 1.0 and a slight cool bias of 

-0.3°C. There were no observations on which to validate the Tw estimates, but Stull (2011) shows 

biases typically < 1.0°C. 

It should be noted that although this work pursues a wide variety of precipitation phase 

methods, it is not completely comprehensive. For example, some models fit a sigmoidal curve 

between two thresholds when assigning precipitation phase in a Ta range (e.g., Fassnacht et al., 

2013; Kienzle, 2008; Leavesley et al., 1995). However, we did not include this method because it 

should produce little variability in annual snowfall fraction relative to the linear Ta ranges if a 

uniform distribution of air temperature and precipitation is assumed within the temperature 

range. Additionally, atmospheric and climate models are being increasingly used to simulate 

precipitation rate and phase. The wide variety of microphysics schemes available suggests that a 
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critical examination of these methods should be made, as well. However, such an analysis is 

beyond the scope of the current work. 

Table 4.2. Details on the precipitation phase methods used in this work. The temperature value for each threshold 
method is given in the “Rain-snow threshold” column. The “All-snow threshold” and “All-rain threshold” columns 
respectively give the Ta values below which all precipitation is snow and above which all precipitation is rain for the 
Ta range methods. The regression models compute phase as a function of meteorological conditions during 
precipitation and are not associated with a threshold value. Due to a large variety of precipitation thresholds and 
ranges (Feiccabrino et al., 2015; A. A. Harpold et al., 2017c; Jennings et al., 2018b), the citations are listed if the 
values are approximate. 

Category Method 

Rain-snow 
threshold 

(°C) 

All-snow 
threshold 

(°C) 

All-rain 
threshold  

(°C) Citation(s) 

Ta threshold 

Ta0 0.0 NA NA (Jennings et al., 2018a; Lehning et al., 
2002a*; Lynch-Stieglitz, 1994; Rajagopal 

and Harpold, 2016; Wen et al., 2013) 

Ta1 1.0 NA NA 
Ta2 2.0 NA NA 
Ta3 3.0 NA NA 

Ta range 

Tar0 NA -0.5 0.5 (Cherkauer et al., 2003; Tarboton and 
Luce, 1996; United States Army Corps of 

Engineers, 1956; Wayand et al., 2016; 
Wigmosta et al., 1994) 

Tar1 NA -1.0 3.0 

Td threshold Td0 0.0 NA NA (Marks et al., 2013; Zhang et al., 2017) Td1 1.0 NA NA 

Tw threshold Tw0 0.0 NA NA (Anderson, 1968; Harder and Pomeroy, 
2013; Marks et al., 2013) 

Tw1 1.0 NA NA  
Binary logistic 
regression 

RegBi NA NA NA (Froidurot et al., 2014; Jennings et al., 
2018b) RegTri NA NA NA 

*The SNOWPACK default is a 1.2°C Ta threshold. 

4.3.3 Evaluating the effect of method selection on snowfall fraction and simulated snow 
cover evolution 

For water years (WY, 1 October of the previous calendar year to 30 September) 2004–2011, we 

simulated snow cover evolution at the 11 stations using the SNOWPACK model. Each station 

had a total of 12 unique runs corresponding to the different precipitation phase methods. All 

forcing data and model setup remained the same across the runs at each site except for the 

precipitation phase method (model validation metrics for the different methods at each site can 

be found in Appendix 4.1). We evaluated the effect of precipitation phase method selection by 

quantifying changes to snowfall fraction and various metrics of seasonal snow cover evolution 

(Fig. 4.2). These metrics include: peak SWE magnitude and timing, snow-off date, snowmelt 
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rate, and snow cover duration. Peak SWE magnitude is the maximum amount of water held 

within the snowpack, while peak SWE timing is the date when peak SWE occurs, also known as 

melt onset. The melt season lasts from the date of peak SWE to the snow-off-date, which is the 

first date on which SWE equals zero. For this work, we set snowmelt rate to be the daily average 

snowmelt rate between peak SWE timing and snow-off date. Snow cover duration is the total 

number of days when simulated SWE is greater than zero. We present both mean simulated 

quantities at the various sites and metrics of variability, including standard deviation, coefficient 

of variation, and range. Stations with greater variability in their snow cover evolution metrics 

were considered to be more sensitive to the choice of precipitation phase method. 

 

Figure 4.2. Example niveograph showing seasonal snow cover evolution, adapted from Trujillo and Molotch 
(2014). 

4.3.4 Evaluating the relationships between climate and snow cover sensitivity 

In addition to quantifying the variability introduced by the different precipitation phase methods, 

we evaluated the control exerted by daily meteorology and seasonal climate on snow cover 

evolution sensitivity at our study sites. We first examined how daily Ta and RH introduced 
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variability into simulated snowfall fraction. We did this by grouping all average daily 

meteorological conditions in 1°C Ta bins from -8°C to +8°C and 10% RH bins from 60% to 

100% on days with precipitation. We then calculated the standard deviation in daily snowfall 

fraction within each bin across all sites and methods. Those results were used to determine the Ta 

range that produced the greatest standard deviation in daily snowfall fraction. Next, we 

computed the proportion of DJF+MAM precipitation that fell within that Ta range at each site for 

each simulation year and used that percentage to predict annual snowfall fraction standard 

deviation with ordinary least squares regression. Finally, we quantified how DJF+MAM Ta and 

PPT controlled variability in peak SWE at our study sites by computing a multiple linear 

regression with the two meteorological quantities acting as the predictor variables.  

4.4 Results 

4.4.1 Mean simulated snow cover properties 

The study locations showed significant differences in simulated snow cover evolution. Values 

presented in Table 4.3 were computed by taking the mean of all 12 simulations at each station, 

where each simulation corresponded to a different precipitation phase method. Mean peak SWE 

ranged from 73.1 mm at JD-124 to 1146.1 mm at HJA-UPL. The date of peak SWE, or melt 

onset, also displayed large variability with values ranging from 24 January at JD-125 to 13 May 

at NWT-SDL. Melt rates were all greater than 10 mm d-1 during the ablation season except for at 

the JD stations. The greatest melt rates were simulated at HJA-UPL and NWT-SDL. The latest 

snow off date was 20 June at NWT-SDL, while the earliest occurred on 22 February at JD-124. 

Snow cover duration was greatest at NWT-SDL at 241.1 d. Conversely, snow cover was 

simulated for less than 3 months, on average, at JD-125 and JD-124. 
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Table 4.3. Mean snow cover evolution metrics for the 11 stations. Each value was calculated as the mean across all 
water years and all precipitation phase methods. 

 Peak SWE (mm) Peak SWE date 
Melt rate 
(mm d-1) Snow-off date 

SCD 
(d) 

Station Mean SD Mean SD (d) Mean SD Mean SD Mean SD 
HJA-CEN 522.7 252.9 16-Feb 22.0 15 3.9 16-Apr 29.8 158.4 28.2 
HJA-VAN 643.1 305.9 14-Feb 22.2 14.5 3.2 22-Apr 31.8 173.1 27.9 
HJA-UPL 1146.1 469.9 14-Mar 23.0 24.9 7.3 14-May 32.1 201.1 22.4 
SSC-LWR 531.9 160.1 8-Mar 19.0 17.6 3.6 16-Apr 19.3 145.6 27.8 
SSC-UPR 617.9 298.8 5-Mar 26.6 17.6 6.0 19-Apr 25.6 149.2 35.6 
YOS-DAN 674.4 236.7 18-Mar 17.5 10.9 4.1 25-May 25.5 208.2 40.3 
JD-125 83.4 46.5 24-Jan 28.5 4 1.5 25-Feb 31.8 78.1 31.5 
JD-124b 177.5 87.6 1-Feb 25.8 5.7 2.5 23-Mar 23.7 122.4 23.9 
JD-124 73.1 35.0 2-Feb 31.4 3.5 2.8 22-Feb 36.0 77.6 30.7 
NWT-C1 407.2 78.5 22-Apr 10.8 11.9 2.8 5-Jun 8.6 225.3 19.2 
NWT-SDL 915 234.2 13-May 10.0 24.4 10.1 20-Jun 9.2 241.1 14.9 

4.4.2 Effect of precipitation phase method on snowfall fraction 

The sites displayed marked differences in the annual snowfall fraction simulated by the different 

precipitation phase methods (Fig. 4.3, Table 4.2). Average annual snowfall fraction (all methods, 

all years) ranged from 32.3% at the HJA-CEN station to 92.4% at the YOS-DAN station (Table 

4.2). In this case, more strongly seasonal precipitation at YOS-DAN (Table 4.1) produced a 

higher annual snowfall fraction than NWT-SDL, despite the former station’s warmer average Ta. 

These two stations also had the lowest standard deviation in annual snowfall fraction, suggesting 

precipitation phase method selection was less important at these sites. Conversely, the standard 

deviation of annual snowfall fraction was greater than 6.0% at the remaining stations, reaching a 

maximum of 9.6% at JD-124b. For all sites except YOS and NWT, all coefficients of variation 

were greater than 10%, with a maximum of 25.0% at HJA-CEN. The warmer sites also had a 

wider range in their annual snowfall fraction. In some years at HJA, SSC, and JD, the relative 

difference between the minimum simulated annual snowfall fraction and the maximum exceeded 

100%, meaning the snowiest simulations produced more than double the snowfall of the rainiest. 



 106 

At NWT-SDL and YOS-DAN the relative difference in annual snowfall fraction was typically 

less than 15%. 

 

Figure 4.3. Mean annual snowfall fraction at the 11 study sites for the 12 different precipitation phase methods. The 
whiskers represent the standard error of annual snowfall fraction for the 8 simulation years. For this plot and all 
subsequent figures showing the station data, the maritime sites are shown in the top two rows, the intermountain site 
is in the third row, and the continental site is in the bottom row. 
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Table 4.4. Summary statistics for average annual snowfall fraction computed using the 12 different precipitation 
phase methods at the 11 study sites. 

 Average annual snowfall fraction (%) 
Station Average SD CV Range 
HJA-CEN 32.3 8.1 25.0 27.4 
HJA-VAN 45.5 6.5 14.2 22.6 
HJA-UPL 51.8 7.5 14.6 25.7 
SSC-LWR 56.8 9.6 16.9 32.3 
SSC-UPR 71.2 7.8 10.9 25.0 
YOS-DAN 92.4 3.3 3.5 10.1 
JD-125 39.1 8.0 20.4 26.0 
JD-124b 55.7 7.2 12.9 23.2 
JD-124 47.9 7.2 14.9 23.9 
NWT-C1 70.4 6.0 8.6 18.2 
NWT-SDL 82.4 3.4 4.1 10.3 
 

There was a large range in the aggregate mean annual snowfall fraction (all stations, all 

years) for the different methods (Fig. 4.4). The highest Ta and Td thresholds produced the 

greatest annual snowfall fractions, while Ta0 and Tr0 produced the lowest. The absolute 

difference in mean annual snowfall fraction between Ta3 and Tar0 was 20.9%, meaning using Ta3 

over Tar0 gave a relative increase of 42.9% in annual snowfall fraction. The Tw and Td thresholds 

produced greater snowfall fractions than the equivalent Ta thresholds because the former two are 

cooler than Ta when relative humidity is less than 100%. Additionally, there was a negligible 

difference between Ta0 and Tar0 as well as between Ta1 and Tar1, suggesting the use of a range 

over a threshold introduces minimal variability in snowfall fraction. The regression methods, 

RegBi and RegTri, produced the 5th and 6th greatest annual snowfall fractions. 
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Figure 4.4. Mean annual snowfall fraction for the different precipitation phase methods at the 11 stations. The 
whiskers represent the standard error of annual snowfall fraction for the 11 stations. Ranked from highest to lowest 
annual snowfall fraction, the methods are: Ta3 (69.6%), Td1 (64.8%), Ta2 (63.6%), Tw1 (63.4%), RegTri (60.6%), 
RegBi (58.6%), Ta1 (57.4%), Td0 (56.5%), Tar1 (56.0%), Tw0 (55.9%), Ta0 (49.2%), and Tar0 (48.7%).  

4.4.3 Effect of precipitation phase method on simulated snow cover evolution 

There were marked differences between the stations in terms of the effect of precipitation phase 

method choice on seasonal snow cover evolution (Fig. 4.5). NWT-SDL and YOS-DAN showed 

little sensitivity in annual snowfall fraction across the methods and this was reflected in the 

negligible differences in mean daily SWE at the two stations. Conversely, there was wide 

divergence in simulated SWE at the remaining maritime sites and at the Johnston Draw stations.  
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Figure 4.5. Mean daily SWE for each precipitation phase method (colored lines) at the different stations. The mean 
daily SWE was computed by averaging the SWE on each day for the given precipitation phase method across the 
simulation years.   
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Breaking down the analysis to the individual snow cover evolution metrics reveals more 

differences in the sensitivity of the sites to precipitation phase method selection (Fig. 4.6). In 

terms of peak SWE standard deviation and range, the HJA and SSC stations were most sensitive, 

with the range in peak SWE across the phase methods exceeding 200 mm in most years. 

Conversely, YOS and NWT were relatively insensitive as their ranges were nearly always less 

than 100 mm. Although the JD stations showed little sensitivity in terms of range, they expressed 

significant sensitivity when looking at the coefficient of variation due to their low mean annual 

peak SWE (Table 4.3). Thus, percentage-wise, JD was as sensitive as the two warm maritime 

sites to the selection of a precipitation phase method. JD was also sensitive to precipitation phase 

method selection in terms of peak SWE date. At HJA and JD, the range in peak SWE date 

approached one month and greater in certain years, while it was generally less than 10 days at the 

other sites. We found the greatest differences in peak SWE dates were generally simulated on 

years with low/transient snow cover. In these cases, late-season precipitation was simulated as 

rain by the low thresholds and snow by the high thresholds, meaning an early SWE maximum 

was recorded as the peak in the former case and a late SWE maximum in the latter case.  

Similar sensitivities were simulated for snow-off date and snow cover duration with the 

warm maritime sites and JD being the most sensitive. In some years, the snow-off date occurred 

more than a month later with the high thresholds than with the low thresholds at JD and HJA. 

Conversely, the range was always 10 days or fewer at YOS and NWT. In terms of snow cover 

duration, ranges among the thresholds typically exceeded 3 weeks at HJA, SSC, and JD. NWT-

C1 approached the sensitivity of the warmer stations, while NWT-SDL and YOS-DAN were the 

least sensitive. For both snow-off date and snow cover duration, JD had the greatest coefficient 
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of variation values, showing the semi-arid intermountain site was quite sensitive to precipitation 

phase method selection in relative terms. 

Finally, differences among the sites were relatively low for melt rate sensitivity. JD 

stations had the greatest sensitivity in terms of the coefficient of variation due to their low mean 

annual melt rates, which were an order of magnitude lower than those simulated at the other sites 

(Table 4.3). Ranges for the different stations were relatively similar to one another with the 

interquartile ranges generally showing some degree of overlap. Overall, melt rate at YOS-DAN 

was the least sensitive to precipitation phase method in terms of standard deviation, coefficient 

of variation, and range.  
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Figure 4.6. The sensitivity of various snow cover evolution metrics to precipitation phase method at the study 
stations. The standard deviation, coefficient of variation, and range were computed across the precipitation phase 
methods within each simulation year at each station, and the boxplots show the distribution of those values across all 
the simulation years. The boxplots for standard deviation and range use the units shown in the y-axis title, while all 
coefficient values are percentages.  
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In addition to looking at intra-station differences, we also examined how the methods 

compared in aggregate across all the stations. Figure 4.7 shows that Ta3 produced the greatest 

values for each of the snow cover evolution metrics, while Ta0 and Tar0 were generally 

responsible for the lowest values. Ta2, Td1, and Tw1 showed strong overlap in their ranks for the 

different methods, suggesting that, in aggregate, there was less divergence in snow cover 

evolution for these methods than for others. Additionally, RegTri produced consistently higher 

snow cover evolution ranks (e.g., greater SWE, longer snow cover duration) than RegBi, 

indicating that including surface pressure as a predictor variable led to increased snowfall at the 

stations studied here. It is also notable that the Tar methods produced similar ranks to their 

equivalent Ta thresholds (i.e., the Tar0 range is centered on Ta0). Finally, the Tw and Td thresholds 

were associated with greater snow cover evolution ranks than the Ta thresholds at the same 

degree value. 
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Figure 4.7. Rank plot of the precipitation phase methods in terms of peak SWE, peak SWE date, snow-off date, 
snow cover duration (abbreviated SCD in plot), and melt rate. Ranks were calculated for each snow cover evolution 
metric by averaging the values for that metric across the individual stations. Ranks closest to 1 (top of plot) 
correspond to increased peak SWE magnitude, later peak SWE date, later snow off date, longer snow cover 
duration, and faster melt rate. 

4.4.4 Climatic controls on model sensitivity 

All of the precipitation phase methods in this paper partitioned precipitation into rain or snow, or 

a mix of the two, using Ta or Ta and RH (only RegTri uses Ps). This combined with the large 

differences in seasonal Ta and RH, as well as in annual snowfall fraction across the sites, led to 
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the question of how variability in snowfall fraction is produced. We therefore evaluated the 

control daily Ta and RH exerted on the standard deviation of daily snowfall fraction across all 

sites and all methods. In general, snowfall fraction standard deviation was greatest at daily Ta 

values between 0°C and 4°C (Fig. 4.8). RH provided a secondary control, with greater variability 

at lower RH values. Overall, the largest standard deviations in snowfall fraction were simulated 

at daily RH less than 80% and Ta between 1°C and 3°C. However, it should be noted that 75.2% 

of all precipitation recorded at these sites occurred in the 90%–100% RH bin. Therefore, 

although daily snowfall fraction standard deviations were highest at lower RH values the 

majority of the variability in annual snowfall fraction was an effect of Ta. In this context, the 

percentage of DJF+MAM precipitation that fell within the 0°C–4°C Ta range explained 74.0% of 

the variance in annual snowfall fraction standard deviation across the study sites (Fig. 4.9).  

 

Figure 4.8. The standard deviation of daily snowfall fraction as a function of Ta (a) and as a function of Ta and RH 
(b). We binned the meteorological quantities within the ranges shown and calculated the standard deviation of 
snowfall fraction per Ta bin (a) and Ta/RH bin (b) using simulated precipitation phase from all stations and all 
methods. 
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Figure 4.9. Standard deviation in annual snowfall fraction as predicted by the proportion of DJF+MAM PPT falling 
between 0°C and 4°C. Each point represents one simulation year at a station identified by the color and shape. The 
black line of best fit was calculated using ordinary least squares regression (r2 = 0.74, p-value < 0.0001). 

Moving past variability in daily and annual snowfall fraction, we next evaluated how 

sensitivity in peak SWE was related to seasonal climate. A multiple linear regression with 

DJF+MAM Ta and DJF+MAM PPT as the predictor variables explained 78.6% of the variance 

in the range of annual peak SWE at the stations (Fig. 4.10). In this case, warmer Ta and increased 

PPT were both associated with greater ranges in the peak SWE simulated by the different 

precipitation phase methods. This meant the maritime sites HJA and SSC had the greatest 

sensitivity to precipitation phase method due to their relatively warm Ta and high PPT values. 

Conversely, moderate PPT values and lower Ta led to minimal sensitivity at the cold continental 

NWT stations and the cold maritime YOS-DAN station. Again, the effect of Ta on sensitivity is 
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manifest in the data. In high snowfall years at NWT-SDL, DJF+MAM PPT approached that of 

the low DJF+MAM PPT years at HJA and SSC. However, despite the increased PPT at NWT-

SDL, the range in peak SWE predicted by the different precipitation phase methods remained 

low. Additionally, the multiple linear regression performed here is likely only valid for the range 

of climatic conditions at our study sites. For example, extrapolating the regression to Ta values 

above 5°C would indicate greater peak SWE sensitivity for a given PPT value. However, moving 

towards increasingly warmer Ta would likely lead to lower peak SWE ranges due to the 

increasing probability of rainfall versus snowfall.  

 

Figure 4.10. Range in annual peak SWE as simulated by the different precipitation phase methods at the 11 study 
stations. Each point represents one simulation year at a given station and larger points correspond to increased 
uncertainty in peak SWE. Predicting the peak SWE range as a function of DJF+MAM Ta and PPT using multiple 
linear regression yielded an r2 of 0.79. 
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4.5 Discussion 

4.5.1 A best precipitation phase method? 

In this work we showed that the selection of a precipitation phase method introduces variability 

in modeled snow accumulation and melt, with our study sites expressing varying degrees of 

sensitivity. Although the different methods corresponded to relatively higher and lower objective 

function values (Appendix 4.1), uncertainties in the forcing data, model structure, and 

parameters, as well as a lack of precipitation phase observations prevent this work from being a 

referendum on the “best” precipitation phase method for snow modeling. Our aim was to 

highlight how snow simulations were affected across a climatic gradient by the choice of 

precipitation phase method. Additionally, our goal was not to create the best model setup at each 

site, but rather to keep model setup consistent in order to compare the sensitivity of phase 

partitioning without introducing other uncertainties. Thus, the low r2 and higher bias values at 

certain stations could likely be improved with model tuning, but we did not pursue such an 

approach. 

Although we cannot declare a “best” method, previous work has shown that, in general, 

methods incorporating humidity information outperform Ta-only methods (Harder and Pomeroy, 

2013; Jennings et al., 2018b; Marks et al., 2013; Ye et al., 2013). In that context, one can 

consider the RegBi model as a baseline given its top rank in a Northern Hemisphere precipitation 

phase method comparison (Jennings et al., 2018b). Our study showed that RegBi typically 

produced low biases relative observed snow depth and SWE (Appendix 4.1) and led to snow 

cover evolution metrics that were neither extremely high nor low (Fig. 4.7). The higher Ta, Td 

and Tw thresholds produced greater peak SWE and longer snow cover duration, while the lower 

thresholds led to less accumulation and shorter snow cover duration. Additionally, our model-

based study showed that uncertainty in precipitation phase peaked between 0°C and 4°C (Fig. 
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4.8), which is the same air temperature range reported by Ding et al. (2014) in which 

precipitation phase methods exhibit degraded performance relative to observations. Moving 

forward, work needs to be done validating precipitation phase methods, but using spatially 

uniform high and low thresholds will likely lead to overprediction and underprediction, 

respectively, of peak SWE and snow cover duration. 

In their work highlighting the different types of precipitation phase methods, Harpold et 

al. (2017c) called for improved automatic monitoring of precipitation phase through the 

installation of disdrometer networks. Given the spatially variable sensitivity of simulated snow 

cover evolution to precipitation phase method that we have shown in this work, we echo their 

recommendation. Due to their relatively high cost, precipitation phase research using 

disdrometers has generally been performed at a limited number of sites over short study periods 

(e.g., Wayand et al., 2016; Yuter et al., 2006). Visual observer reports (Dai, 2008, 2001), snow 

boards (Wayand et al., 2017) and snow depth sensors (Rajagopal and Harpold, 2016; Zhang et 

al., 2017) are alternative methods, but each have their drawbacks. Therefore, permanent 

disdrometer installations in transient and seasonal snow zones should be considered, especially if 

coordinated with the already established CZO and LTER networks.  

4.5.2 Physical mechanisms controlling sensitivity to phase method 

The warm maritime sites HJA and SSC expressed the largest peak SWE ranges from 

precipitation phase method selection (Fig. 4.6). These ranges were typically larger than 200 mm 

and sometimes exceeded 500 mm, indicating large uncertainty in snowpack water storage. 

Additionally, snow-off date ranges typically exceeded two weeks at these stations, meaning the 

timing of complete melt was also affected by precipitation phase method. These large variations 

in snow cover evolution were likely due to the combined effect of reduced frozen mass entering 



 120 

the snowpack and subsequent changes to the snowpack energy balance. For the former, both 

HJA and SSC had high proportions of precipitation falling between 0°C and 4°C (Fig. 4.9), 

which led to wide ranges in annual snowfall fraction (Table 4.4). The methods producing lower 

annual snowfall fractions (e.g., Ta0 and Tar0) generally corresponded to earlier snow-off dates 

(Fig. 4.7) simply because there was less frozen mass to melt. In other words, the energy required 

to melt the entire snowpack was reduced relative to the methods producing higher snowfall 

fractions, and the snowpack could be melted over a shorter time period. 

Compounding the response of the warm maritime sites was the fact that snow and rain 

have different fates when they enter a snowpack with resultant effects on the snowpack energy 

budget. Snowfall can increase snowpack cold content (Jennings et al., 2018a), refresh surface 

albedo (Clow et al., 2016; Painter et al., 2012; United States Army Corps of Engineers, 1956), 

and provide dry pore space that must be filled with liquid water before melt can begin 

(Bengtsson, 1982b; Seligman et al., 2014). Rainfall, conversely, can advect heat to the snowpack 

(Marks et al., 1998), infiltrate and run off (Harr, 1986, 1981), or be refrozen in the snowpack if 

there is cold content to be satisfied. In this context, the precipitation phase methods that 

produced more rainfall affected snow cover evolution not just through reduced frozen mass but 

also through changes to the snowpack energy budget.  

In addition to affecting snow cover evolution, rain-on-snow events are also responsible 

for high snowmelt rates and floods in the Oregon Cascades and Sierra Nevada mountains 

(McCabe et al., 2007) and these events are expected to change in spatial extent and intensity with 

climate warming (Musselman et al., 2018). Previous work has shown precipitation phase can 

affect runoff dynamics during rain-on-snow events with a shift from solid to liquid precipitation 

leading to enhanced snowmelt runoff (Jennings and Jones, 2015). Therefore, the marked 
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uncertainty in precipitation phase produced by the different methods is likely to affect 

simulations of rain-on-snow events. In this study, precipitation phase method selection led to 

ranges in the annual number of daily rain-on-snow events (SWE > 10 mm, rainfall > 10 mm, and 

runoff > 10 mm) between 1 and 23 days at HJA and SSC. This corresponded to annual runoff 

ranges from rain-on-snow events between 41.7 mm and 679.9 mm at the two sites. Thus, the 

conclusions of rain-on-snow modeling studies may be affected by the choice of a precipitation 

phase method. 

4.5.3 Assumptions and limitations 

Snow modeling studies are hindered by inherent uncertainties in model structure (Essery et al., 

2013; Etchevers et al., 2004; Rutter et al., 2009; Slater et al., 2001) and forcing data (Lapo et al., 

2015; Raleigh et al., 2016, 2015). While the research presented herein shows that precipitation 

phase method should be considered another critical component of model uncertainty, our work 

was also likely affected by the aforementioned issues in structure and forcing data which can be 

seen in the variability of model performance at the different sites (Appendix 4.1). In this work, 

we used the well-validated, physics-based SNOWPACK model, but past research has shown 

there is no best snow model and that model performance varies both within and across study sites 

(e.g., Rutter et al., 2009). Therefore, our use of a single model may overestimate or 

underestimate the sensitivity of snow cover evolution to precipitation phase method at certain 

sites and points in time. Future research should therefore focus on how model choice affects the 

sensitivity of simulated snow cover evolution to precipitation phase method.  

In addition to the uncertainties introduced by the SNOWPACK model, we used empirical 

methods to estimate Td and Tw, which could affect rain-snow partitioning. We were satisfied 

with the performance of the Td method as it strongly matched Td observations from Johnston 
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Draw (Sect. 4.3.2). However, there were no observations of Tw on which to validate the Stull 

(2011) method, which was optimized for standard surface pressure and for a range of Ta and RH 

values. The figures in Stull (2011) show that pressure-induced uncertainty in Tw is generally less 

than 1°C when RH > 50%. Additionally, the total percentage of precipitation observations falling 

within the Stull (2011) Ta and RH ranges was between 94.3% and 100% at our stations. Thus, we 

expect only marginal uncertainty to be introduced by the empirical methods. However, 

precipitation phase and hydrometeor temperature are strongly related to Tw (Harder and 

Pomeroy, 2013), suggesting there should be enhanced monitoring of Tw at research sites. 

Furthermore, our research only examined methods that partition precipitation phase using 

surface meteorological quantities such as Ta and RH. Atmospheric and climate models can also 

be used for hydroclimatic simulations either through direct coupling in earth systems models or 

as forcing data for land surface models. Many such models employ microphysics schemes to 

assign and track precipitation phase from the formation of a hydrometeor, through various 

atmospheric layers, to the land surface. For example, the Weather Research and Forecasting 

(WRF) model (Skamarock et al., 2005) has been used to simulate snow cover accumulation and 

ablation over large study domains in the western United States when coupled to a land surface 

model (Ikeda et al., 2010; Musselman et al., 2017a; Rasmussen et al., 2011). WRF has also been 

used to model the elevation of the rain-snow transition line in order to evaluate which basin areas 

are receiving solid or liquid precipitation during storm events (Minder et al., 2011). In addition, 

work from the 5th phase of Coupled Model Intercomparison Project (CMIP5) has shown that 

climate models produce different snowfall fractions due to variations in both climate and 

precipitation phase method (Krasting et al., 2013). In CMIP5, some models utilize microphysics 

schemes, while others assign precipitation phase at the land surface using methods similar to the 
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ones presented in this work. Therefore, understanding and quantifying the sensitivity of model 

output due to precipitation phase method selection is important for both hydrologic and climate 

modeling studies.  

4.5.4 Connecting this work to large-scale LSM hydroclimate simulations 

Snow exerts a primary control on various hydroclimatic processes, including streamflow 

generation (Barnhart et al., 2016; Berghuijs et al., 2014), soil moisture (Harpold and Molotch, 

2015), soil temperature (Groffman et al., 2001; Slater et al., 2017), and land surface albedo 

(Groisman et al., 1994). Previous basin-scale research has shown variability in precipitation 

phase propagates into uncertainties in hydrologic model output, such as streamflow timing and 

volume (Blöschl et al., 1991; Harder and Pomeroy, 2014; Mizukami et al., 2013). In this work, 

we showed significant variability in the sensitivity of simulated snow accumulation and melt to 

the selection of a precipitation phase method at stations spanning a climatic gradient in the 

western United States. An ideal next step would be to leverage the results from this study and 

others by scaling up to gridded land surface models to better understand how precipitation phase 

method selection affects simulations of past, present, and future hydroclimatic conditions over 

large spatial extents.  

Two main components of such research would be streamflow volume and timing, and 

land surface albedo. For the former, approximately 60 million people in the western United 

States (Bales et al., 2006) and nearly 2 billion globally rely on snowmelt-derived water resources 

(Barnett et al., 2005; Mankin et al., 2015). Knowing the timing and volume of streamflow—

which are directly related to snowmelt onset and peak SWE magnitude—is essential for proper 

water resources management. It is therefore reasonable to assume method selection will be 

important to simulated streamflow given that we saw snowmelt onset ranges exceeding one 
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month and peak SWE magnitude differences greater than 200 mm. Our work suggests that this 

variability will produce the greatest impact in areas that see significant precipitation and have 

average winter and spring Ta between 0°C and 4°C.  

Additionally, land surface albedo will be directly impacted by variability in snow cover 

duration due to the increased albedo of snow relative to bare ground. Previous research has 

shown radiative forcing has increased at the earth’s surface (Flanner et al., 2011) due to 

decreased snow cover duration over large spatial extents (Brown, 2000; Groisman et al., 1994). 

Thus, the ranges we showed in snow cover duration, approaching 2 months, will have direct 

impacts on the planet’s simulated energy balance. In this regard, the use of a spatially uniform, 

high Ta rain-snow threshold would lead to greater snow cover duration, higher surface albedo, 

and a larger proportion of incoming solar radiation reflected back to space relative to a low Ta 

threshold. These considerable uncertainties in both hydrologic and climatic processes are 

particularly important when considered in the context of continued climate warming. 

4.5.5 Snow and climate warming 

As noted in the introduction, the shift from snow to rain in cold and temperate regions across the 

globe is expected to continue with further warming. Future air temperature increases are 

expected to lead to reduced snowfall fractions (Klos et al., 2014; Lute et al., 2015; Safeeq et al., 

2015), reduced peak SWE (Adam et al., 2009), earlier snowmelt onset (Stewart et al., 2004a), 

and slower snowmelt rates (Musselman et al., 2017a). Climate-driven changes in snow 

accumulation and ablation are associated with both impacts to water resources availability 

(Barnett et al., 2008) and land surface albedo (Déry and Brown, 2007). Areas with winter Ta near 

0°C have been identified as most “at-risk” to reductions in snowfall fraction and snow 

accumulation in a warming climate (Nolin and Daly, 2006). Concerningly, our work shows it is 
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precisely these areas that have the greatest modeled snow cover evolution sensitivity to 

precipitation method selection. 

Harpold et al. (2017a) showed that future changes to snowfall fraction are moderated or 

exacerbated by the choice of a precipitation phase method, depending on the area’s relative 

humidity. However, how this uncertainty affects the conclusion of climate change predictions is 

typically not discussed. In the context of the work presented herein, there should be a focus 

applied to areas where the baseline variability in peak SWE, snowmelt onset, and snow cover 

duration due to precipitation phase method approaches or exceeds the simulated change in the 

associated snowpack properties with warming. In warm maritime climates, research has shown 

peak SWE may decrease by upwards of several hundred millimeters as warming continues (e.g., 

Cooper et al., 2016; Leung et al., 2004; Minder, 2010; Musselman et al., 2017b), which is near 

the range of peak SWE sensitivity values reported in this work. Precipitation phase method 

selection is also likely to impact simulations of future warm snow droughts where anomalously 

warm winters are associated with low peak SWE (Harpold et al., 2017b). In a relative sense, this 

would be particularly important in low snow years like the extreme 2015 drought experienced in 

the Sierra Nevada and Cascade mountains. In addition, snow cover duration variability due to 

precipitation phase method selection may affect simulations of the snow-albedo feedback, which 

is the amplification of surface warming due to reduced snow cover (Hall, 2004; Hall and Qu, 

2006). As climate warming shifts new areas towards the winter and spring average Ta values 

(0°C–4°C) that lead to the greatest snowfall fraction standard deviation, our research suggests 

that uncertainty in future hydroclimatic states will be exacerbated by precipitation phase method 

selection.  
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4.6 Conclusion 

In this work we simulated seasonal snow cover evolution using the SNOWPACK model forced 

with 12 different precipitation phase methods at 11 study sites spanning a climatic gradient. We 

found the choice of a precipitation phase method introduced significant uncertainty into annual 

snowfall fraction, peak SWE, snowmelt onset, snowmelt rate, snow-off date, and snow cover 

duration. However, sensitivity of snow cover evolution to method selection was not consistent 

across our study sites. In general, cold sites were relatively insensitive to the choice of method 

because all methods were simulating similar amounts of snowfall. In this context, the YOS-DAN 

and NWT-SDL stations exhibited the lowest sensitivity to precipitation phase method selection. 

Peak SWE ranges were typically less than 50 mm for these two stations, while snowmelt onset 

date ranges were generally less than 1 week. Conversely, the warm maritime HJA and SSC 

stations showed marked sensitivity to precipitation phase method selection with peak SWE 

ranges typically greater than 200 mm, exceeding 400 mm in some years. These sites also 

displayed significant sensitivity in snow cover timing metrics with snowmelt onset date ranges 

approaching 1 month or greater and snow cover duration ranges generally exceeding 3 weeks.  

The spatially variable sensitivity of snow cover evolution was primarily a result of 

climatic differences between the sites. Increased DJF+MAM Ta and PPT were associated with 

greater peak SWE ranges across the different precipitation phase methods. This meant the 

maritime sites HJA and SSC with significant winter and spring PPT were most affected by 

precipitation phase method selection. Although YOS-DAN is still in the maritime zone, its cold 

winter Ta was closer to the NWT stations than to the other maritime sites, making it relatively 

insensitive. Overall, we found stations with DJF+MAM mean Ta greater than 0°C to be more 

sensitive than those with mean Ta less than 0°C. This is troublesome considering climate 

warming is expected to push new areas in the seasonal snow zone towards winter temperatures 
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near 0°C and above. Thus, there is the wicked problem of the places most likely to have snow 

accumulation and melt impacted by further warming are the most sensitive to precipitation phase 

method selection. It is therefore critical that future work examine the relationship between the 

climate signal and the model variability that results from precipitation phase partitioning 

uncertainty, particularly in areas undergoing a snow-to-rain transition.  

4.7 Appendix 4.1 – Model validation 

As noted in the Methods section, model setup was kept constant at all the sites, no parameter 

tuning was performed, and the SNOWPACK canopy module was not activated. This was done to 

minimize the introduction of confounding factors and to keep the simulation results as 

comparable as possible. Figure 4.11 displays mean bias and r2 values for the simulations relative 

to observed SWE and snow depth at the different stations. Each data point in the boxplots 

represents one precipitation method for the 8 simulation years. Mean biases were lowest at the 

NWT stations and at SSC-UPR relative to SWE observations and at the JD stations and SSC-

LWR relative to snow depth observations. Average r2 values were between 0.65 and 0.91 for 

SWE except at NWT-SDL (0.52) and HJA-VAN (0.51), and 0.61 and 0.79 for snow depth 

except at JD-124 (0.46). The variability of model output at the different stations is representative 

of both inconsistent snow model performance (Etchevers et al., 2004; Rutter et al., 2009) and the 

difficulty of accounting for wind processes in point snow models (Raleigh et al., 2015). 
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Figure 4.11. Mean bias (top row) and r2 (bottom row) values for the SNOWPACK simulations relative to observed 
SWE (a,b) and snow depth (c,d). The boxplots show the median, interquartile range, minimum, maximum, and 
outlying values for each objective function for the different precipitation phase methods at a given station. The open 
triangles indicate the mean objective function value for all precipitation phase methods at that station.  

Figure 4.12 shows the objective function values for SWE and snow depth for the various 

methods aggregated across the stations. In terms of mean bias, the binary regression models and 

the Ta1 threshold provided the best performance with average values between 3.1 mm and 9.1 

mm relative to observed SWE and between -1.7 mm and 6.9 mm relative to observed snow 

depth. Conversely, the Ta0, Ta2, Ta3 thresholds and the Tar0 range provided the worst performance 

with Ta2 and Ta3 overpredicting snow accumulation and Ta0 and Tar0 underpredicting snow 

accumulation by upwards of 100 mm relative to observed SWE and 200 mm and greater relative 

to observed snow depth. There was relatively little divergence in r2 values across the methods, 

with only a 0.07 and 0.08 difference between the maximum and minimum average r2 values for 
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SWE and snow depth, respectively. The lowest r2 values were produced by the Ta0 threshold and 

Tar0 range, while the highest values were produced by Td1, Tw1 and the higher Ta thresholds. 

 

 
Figure 4.12. Mean bias (top row) and r2 (bottom row) values for the SNOWPACK simulations relative to observed 
SWE (a,b) and snow depth (c,d). The boxplots show the median, interquartile range, minimum, maximum, and 
outlying values for each objective function for the different precipitation phase methods at all stations. The open 
triangles indicate the mean objective function value for that precipitation phase methods at all stations. 
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4.8 Appendix 4.2 – Instrument measurement heights 

 
Table 4.5. Measurement heights for wind speed and other meteorological quantities at the study stations. 

Station 
Wind height 

(m) 
Other measurement 

heights (m) 
HJA-CEN 10 4.5 
HJA-VAN 10 4.5 
HJA-UPL 10 4.5 
SSC-LWR 4 4 
SSC-UPR 4 4 
YOS-DAN 5 5 
JD-125 3 3 
JD-124b 3 3 
JD-124 3 3 
NWT-C1 5* 2 
NWT-SDL 5 2 
   
*The NWT-C1 anemometer is located in an unrepresentative location (open road), so observations were corrected to 
represent wind speed in the forest canopy (Jennings et al., 2018a).  



 131 

Chapter 5 

5 Conclusion 
5.1 Summary of findings 

The research presented in this dissertation contributed to the knowledge of snow accumulation 

and melt processes in a changing climate. To do this, I leveraged a combination of validation 

data in the form of snow pit observations and automated snow depth and SWE sensors, quality 

controlled and serially complete meteorological data, and the physics-based SNOWPACK 

model. Below are short summaries of the findings of the three projects followed by ideas for 

future research based on the questions that this dissertation raised but did not answer.  

5.1.1 Project 1 (Chapter 2): Observations and simulations of the seasonal evolution of 
snowpack cold content and its relation to snowmelt and the snowpack energy 
budget 

Observations and simulations both showed that new snowfall was the primary source of cold 

content development, being responsible for 84.4% and 73.0% of daily cold content gains at the 

alpine and subalpine sites, respectively. A negative snowpack energy balance was responsible for 

the remainder of daily cold content additions at the two sites, while air temperature showed little 

relationship to cold content development. Initial non-zero cold content values delayed snowmelt 

onset and damped snowmelt rates at time scales one month and less. Conversely, peak cold 

content magnitude was not correlated with seasonal snowmelt rate or timing, suggesting cold 

content magnitude has greater predictive capacity at shorter time scales. 

5.1.2 Project 2 (Chapter 3): Evaluating the differential response of an alpine and 
subalpine snowpack to changes in climate 

We simulated a differential response to climate warming at our study sites, with the colder, 

higher alpine site being less sensitive to air temperature increases than the subalpine site. This 
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was due to three physical reasons: 1) Snowfall fraction decreased less rapidly with warming than 

in the subalpine; 2) Significant cold content was still added to the alpine snowpack throughout 

the snow season, preventing mid-winter melt events; 3) Changes to snowmelt rate were non-

significant because increases to the turbulent fluxes balanced decreases in the radiative fluxes 

with earlier melt onset. As opposed to the differential response to warming, changes to total 

precipitation led to relatively consistent results at the alpine and subalpine sites with later melt 

onset and faster snowmelt rates being associated with increased precipitation. Changes to 

precipitation seasonality had a near-negligible impact on snow cover properties at both sites. 

5.1.3 Project 3 (Chapter 4): The sensitivity of modeled snow accumulation and melt to 
precipitation phase methods across a climatic gradient in the western United States 

There was marked spatial variability in the sensitivity of simulated snow cover evolution to 

precipitation phase method selection. The three sites with average winter air temperatures less 

than -5°C expressed minimal sensitivity to the different methods, suggesting that method 

selection matters little at cold, high-elevation sites where the vast majority of annual 

precipitation falls as snow. Conversely, at the remaining warmer sites, precipitation phase 

method selection introduced significant uncertainty with ranges in annual snowfall fraction 

exceeding 30%. This significant uncertainty propagated into sensitivity in simulated snow cover 

evolution with peak SWE ranges approaching 500 mm and snow cover duration ranges nearing 

one month or more. Overall, sites with warmer winter and spring temperatures and greater 

precipitation were most sensitive to precipitation phase method selection in terms of the 

variability in snow cover evolution. 
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5.2 Future research 

Snow is irreplaceable to the economy and water resources of the western United States and to 

many other cold and temperate regions across the globe (Bales et al., 2006; Barnett et al., 2005; 

Mankin et al., 2015; Sturm et al., 2017). Thus, near-certain future air temperature increases and 

declines in snow cover (IPCC, 2013; USGCRP, 2017) stand to have a large impact on humans, 

ecosystems, and regional hydroclimate. Now more than ever there is the need for research into 

snow accumulation and melt processes across spatial and temporal scales using a combination of 

ground observations, model output, and remote sensing data. Standing in the way is the fact that 

snow research is inherently difficult due to challenging field conditions (Marr, 1967), 

pronounced spatial variability (Blöschl, 1999; Clark et al., 2011), limited representativeness of 

point measurements (Molotch and Bales, 2006), and difficulties in observing quantities of 

interest. The last point is particularly salient to my work moving forward in the following ways: 

1. It was noted in the introduction to Project 1 that the primary reason for a lack of cold 

content research is that cold content is difficult to observe. Cold content is a linear 

function of snowpack mass and temperature, but observations of internal snowpack 

temperature are scarce relative to those of snow depth and SWE. The Niwot Ridge LTER 

offered a unique opportunity for evaluating how cold content accumulated in seasonal 

snowpacks thanks to long-term snow pit and meteorological datasets. Unfortunately, due 

to their time-intensive nature, snow pit records from other sites are typically short, 

inconsistent, or non-existent. Thus, we know little about how cold content develops in 

other climates as there are few measurements to analyze or to employ as validation data. 

 Although thermistor arrays used to monitor snowpack temperature have their own 

drawbacks, they offer a useful alternative to snow pits. They provide automated 

measurements at different vertical levels and can be used to calculate depth-weighted 
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snowpack temperature. These observations can then be used to compute cold content 

when combined with automated mass readings from a snow pillow or regular manual 

depth and density measurements. Moving forward I hope to collaborate with other 

researchers to explore their existing observations and develop strategies to incorporate 

automated snowpack temperature measurements at more field sites. I particularly want to 

focus on areas where cold content is low due to warm internal snowpack temperatures 

(e.g., California’s Sierra Nevada mountains). Project 2 showed that a marked increase in 

winter melt occurred when seasonal snowpack cold content neared the daily net flux 

magnitude, meaning areas with low cold content could express a greater sensitivity to 

warming. Thus, better quantifying cold content development in such areas could further 

understanding into how snow accumulation and melt processes are evolving in a 

changing climate. 

2. In addition to improving our knowledge of cold content development processes, 

measurements of snowpack temperature can also be used to better constrain the surface 

energy budget, which is notoriously difficult to close in winter over snow-covered 

surfaces (e.g., Blanken et al., 2009; Helgason and Pomeroy, 2011; Turnipseed et al., 

2002). Project 2 showed how quantifying the snowpack energy balance is essential to 

understanding the differential response of mountain snowpacks to climate warming. 

However, most current physics-based models employ energy balance formulations that 

are decades old, which is particularly troublesome for the turbulent fluxes whose 

uncertainty is sometimes greater than their magnitude (Etchevers et al., 2004). Lapo et al. 

(2015) showed that monitoring snow surface temperature can improve energy balance 

simulations through better partitioning of the turbulent and radiative fluxes. In this 
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context, automated measurements of internal snowpack temperature could further 

constrain the snowpack energy balance as changes to internal energy are reflective of the 

incoming and outgoing fluxes.  

 In future work, I aim to improve model simulations of the energy budget through 

enhanced monitoring in mountain environments and development of physical 

relationships between surface fluxes and changes in internal snowpack energy. I hope to 

focus on a selection of sites that have existing research infrastructure and span a climatic 

gradient similar to the sites in Project 3. In the ideal scenario, each study site would have 

an intensive array of monitoring equipment that extends from the snow-soil interface to 5 

m above the ground. Measurements would cover the full snowpack energy balance 

through the use of pyranometers, pyrgeometers, eddy flux instruments, ground heat flux 

plates, snowpack thermistors, and an infrared thermometer to measure snow surface 

temperature. Precipitation mass and phase, snow depth, snow mass, and snowmelt would 

also be measured to cover the mass balance. The observations could then be used to 

inform improved treatments of the snowpack energy balance in physics-based snow 

models. 

3. Despite being visible to the human eye, precipitation phase is difficult to observe and 

properly quantify at air temperatures near freezing. Visual observer reports are time-

intensive, include a degree of subjectivity, and do not enable quantification of rain-snow 

proportions in mixed-phased events. Snow boards and snow depth sensors can also be 

used to infer precipitation phase, but the former require manual measurements and the 

latter rely on depth-change algorithms to estimate phase. Laser disdrometers, although 

expensive, can accurately measure precipitation phase and report the solid-liquid ratio 
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during mixed-phase storms, thus offering a promising way forward (Wayand et al., 2016; 

Yuter et al., 2006). For future research, I hope to install disdrometers collocated with 

existing meteorological and snow observation stations that are part of the CZO, LTER, 

and SNOTEL networks. This work will be used to improve how precipitation phase is 

represented in snow, hydrologic, and land surface models by evaluating the surface 

controls on phase partitioning in mountain areas with diverse climatic conditions.   

 Furthermore, Project 3 covers only how precipitation phase method choice leads 

to snow cover evolution uncertainty, meaning there is much more to unpack from a 

hydroclimate perspective. As previously mentioned, snowpacks serve myriad roles in the 

global hydrologic cycle and climate system, making it essential that land and earth 

systems models accurately simulate precipitation phase. To this end, I am actively 

working with other researchers to take the information produced in Project 3 at the point 

scale to land surface model runs across large spatial extents. As it stands, this work will 

entail the forcing of a land surface model with different precipitation phase methods as in 

Project 3 with the aim of quantifying the uncertainty in simulated streamflow timing and 

magnitude as well as land surface albedo. The simulations will be done for both historic 

and future climatic conditions in order to evaluate how precipitation phase method 

selection affects the conclusions of climate change research. Such work is particularly 

topical given that climate warming is expected to push cold areas with currently sub-

freezing winter temperatures to near- and above-freezing values, thus likely increasing 

the uncertainty in precipitation phase partitioning. 

4. All of the work presented in this dissertation was performed at the point scale, but point 

measurements do not fully represent the spatial variability of snow accumulation and 
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melt processes (Elder et al., 1991; Molotch and Bales, 2006). Previous work has shown 

that such processes can vary over short distances due to the effects of wind redistribution 

and variations in the snowpack energy balance (e.g., Marks and Winstral, 2001; Pomeroy 

et al., 2003). In general, a lack of spatially distributed snowpack data has limited the 

validation of snowpack models to a small collection of automated snow depth and SWE 

monitoring sites. Thus, there has not been much well-constrained work done on how the 

snowpack energy balance and snowmelt rate and timing vary in space over large spatial 

extents. To that end, I am currently using the Alpine3D model (Lehning et al., 2006) in 

conjunction with distributed snow depth data from NASA’s Airborne Snow Observatory 

(ASO).  

 ASO has revolutionized the way mountain snowpacks are observed through its 

fusion of airborne lidar and an imaging spectrometer (Painter et al., 2016). In the 

Tuolumne River Basin on the west side of California’s Sierra Nevada mountains, their 

spatially distributed depth product has increased the number of validation points from a 

handful of automated sensors to nearly a half-million pixels. For my work, I am using 

one lidar snow depth scene per year to scale the precipitation input to better match how 

snow is distributed across the landscape (e.g., Brauchli et al., 2017; Vögeli et al., 2016), 

while the remaining scenes are used for model validation. Once the baseline simulations 

are finished, the next step of the project will be to assess how climate warming affects the 

snowpack energy balance to determine if certain physiographic areas are more sensitive 

than others in terms of the timing and rate of their meltwater deliveries. Ultimately, it will 

be the fusion of advanced remote sensing observations, enhanced in situ measurements, 
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and physics-based models that will make possible future advancements in understanding 

snow accumulation and melt processes in a changing climate. 



 139 

6 References 
Abatzoglou, J.T., 2011. Influence of the PNA on declining mountain snowpack in the Western 

United States. Int. J. Climatol. 31, 1135–1142. 

Adam, J.C., Hamlet, A.F., Lettenmaier, D.P., 2009. Implications of global climate change for 
snowmelt hydrology in the twenty-first century. Hydrol. Process. 23, 962–972. 

Albert, M.R., McGilvary, W.R., 1992. Thermal effects due to air flow and vapor transport in dry 
snow. J. Glaciol. 38, 273–281. 

Alduchov, O.A., Eskridge, R.E., 1996. Improved Magnus form approximation of saturation 
vapor pressure. J. Appl. Meteorol. 35, 601–609. 

Anderson, E.A., 1976. A point of energy and mass balance model of snow cover. NOAA Tech 
Rep NWS 19, 1–150. 

Anderson, E.A., 1968. Development and testing of snow pack energy balance equations. Water 
Resour. Res. 4, 19–37. 

Andreadis, K.M., Storck, P., Lettenmaier, D.P., 2009. Modeling snow accumulation and ablation 
processes in forested environments. Water Resour. Res. 45. 
https://doi.org/10.1029/2008WR007042 

Angström, A.K., 1915. A study of the radiation of the atmosphere: based upon observations of 
the nocturnal radiation during expeditions to Algeria and to California. Smithsonian 
Institution. 

Armstrong, R.L., Armstrong, B.R., 1987. Snow and avalanche climates of the western United 
States: a comparison of maritime, intermountain and continental conditions. IAHS Publ 
162, 281–294. 

Armstrong, R.L., Brun, E., 2008. Snow and climate: physical processes, surface energy exchange 
and modeling. Cambridge University Press. 

Auer Jr, A.H., 1974. The rain versus snow threshold temperatures. Weatherwise 27, 67–67. 

Avanzi, F., De Michele, C., Ghezzi, A., 2014. Liquid-solid partitioning of precipitation along an 
altitude gradient and its statistical properties: An Italian case study. Am. J. Clim. Change 
2014. 

Bales, R.C., Molotch, N.P., Painter, T.H., Dettinger, M.D., Rice, R., Dozier, J., 2006. Mountain 
hydrology of the western United States. Water Resour. Res. 42. 

Barnett, T.P., Adam, J.C., Lettenmaier, D.P., 2005. Potential impacts of a warming climate on 
water availability in snow-dominated regions. Nature 438, 303–309. 



 140 

Barnett, T.P., Pierce, D.W., 2009. Sustainable water deliveries from the Colorado River in a 
changing climate. Proc. Natl. Acad. Sci. 106, 7334–7338. 
https://doi.org/10.1073/pnas.0812762106 

Barnett, T.P., Pierce, D.W., Hidalgo, H.G., Bonfils, C., Santer, B.D., Das, T., Bala, G., Wood, 
A.W., Nozawa, T., Mirin, A.A., others, 2008. Human-induced changes in the hydrology 
of the western United States. science 319, 1080–1083. 

Barnhart, T.B., Molotch, N.P., Livneh, B., Harpold, A.A., Knowles, J.F., Schneider, D., 2016. 
Snowmelt rate dictates streamflow. Geophys. Res. Lett. 43, 8006–8016. 

Bartelt, P., Lehning, M., 2002. A physical SNOWPACK model for the Swiss avalanche warning: 
Part I: numerical model. Cold Reg. Sci. Technol. 35, 123–145. 

Bavay, M., Egger, T., 2014. MeteoIO 2.4.2: a preprocessing library for meteorological data. 
Geosci. Model Dev. 7, 3135–3151. https://doi.org/10.5194/gmd-7-3135-2014 

Bavay, M., Grünewald, T., Lehning, M., 2013. Response of snow cover and runoff to climate 
change in high Alpine catchments of Eastern Switzerland. Adv. Water Resour. 55, 4–16. 

Bengtsson, L., 1982a. Percolation of meltwater through a snowpack. Cold Reg. Sci. Technol. 6, 
73–81. 

Bengtsson, L., 1982b. The importance of refreezing on the diurnal snowmelt cycle with 
application to a northern Swedish catchment. Hydrol. Res. 13, 1–12. 

Beniston, M., Keller, F., Koffi, B., Goyette, S., 2003. Estimates of snow accumulation and 
volume in the Swiss Alps under changing climatic conditions. Theor. Appl. Climatol. 76, 
125–140. 

Berg, N.H., 1986. Blowing snow at a Colorado alpine site: measurements and implications. Arct. 
Alp. Res. 147–161. 

Berghuijs, W.R., Woods, R.A., Hrachowitz, M., 2014. A precipitation shift from snow towards 
rain leads to a decrease in streamflow. Nat Clim Change 4, 583–586. 

Berghuijs, W.R., Woods, R.A., Hutton, C.J., Sivapalan, M., 2016. Dominant flood generating 
mechanisms across the United States: Flood Mechanisms Across the U.S. Geophys. Res. 
Lett. 43, 4382–4390. https://doi.org/10.1002/2016GL068070 

Bintanja, R., Andry, O., 2017. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267. 

Blanken, P.D., Williams, M.W., Burns, S.P., Monson, R.K., Knowles, J., Chowanski, K., 
Ackerman, T., 2009. A comparison of water and carbon dioxide exchange at a windy 
alpine tundra and subalpine forest site near Niwot Ridge, Colorado. Biogeochemistry 95, 
61–76. 

Blöschl, G., 1999. Scaling issues in snow hydrology. Hydrol. Process. 13, 2149–2175. 



 141 

Blöschl, G., Gutknecht, D., Kirnbauer, R., 1991. Distributed snowmelt simulations in an alpine 
catchment: 2. Parameter study and model predictions. Water Resour. Res. 27, 3181–
3188. 

Blöschl, G., Kirnbauer, R., 1991. Point snowmelt models with different degrees of complexity—
internal processes. J. Hydrol. 129, 127–147. 

Boone, A., Etchevers, P., 2001. An intercomparison of three snow schemes of varying 
complexity coupled to the same land surface model: Local-scale evaluation at an Alpine 
site. J. Hydrometeorol. 2, 374–394. 

Brauchli, T., Trujillo, E., Huwald, H., Lehning, M., 2017. Influence of Slope-Scale Snowmelt on 
Catchment Response Simulated With the Alpine3D Model. Water Resour. Res. 53, n/a-
n/a. https://doi.org/10.1002/2017WR021278 

Brooks, P.D., Williams, M.W., 1999. Snowpack controls on nitrogen cycling and export in 
seasonally snow-covered catchments. Hydrol. Process. 13, 2177–2190. 

Brown, R.D., 2000. Northern hemisphere snow cover variability and change, 1915-97. J. Clim. 
13, 2339–2355. 

Burns, S.P., Molotch, N.P., Williams, M.W., Knowles, J.F., Seok, B., Monson, R.K., 
Turnipseed, A.A., Blanken, P.D., 2014. Snow Temperature Changes within a Seasonal 
Snowpack and Their Relationship to Turbulent Fluxes of Sensible and Latent Heat. J. 
Hydrometeorol. 15, 117–142. https://doi.org/10.1175/JHM-D-13-026.1 

Caine, N., 1996. Streamflow patterns in the alpine environment of North Boulder Creek, 
Colorado Front Range. Z. Geomorphol. Suppl. 27–42. 

Cayan, D.R., Dettinger, M.D., Kammerdiener, S.A., Caprio, J.M., Peterson, D.H., 2001. Changes 
in the onset of spring in the western United States. Bull. Am. Meteorol. Soc. 82, 399–
415. 

Cayan, D.R., Peterson, D.H., 1989. The influence of North Pacific atmospheric circulation on 
streamflow in the west. Asp. Clim. Var. Pac. West. Am. 375–397. 

Cherkauer, K.A., Bowling, L.C., Lettenmaier, D.P., 2003. Variable infiltration capacity cold land 
process model updates. Glob. Planet. Change 38, 151–159. 
https://doi.org/10.1016/S0921-8181(03)00025-0 

Christensen, N.S., Wood, A.W., Voisin, N., Lettenmaier, D.P., Palmer, R.N., 2004. The effects 
of climate change on the hydrology and water resources of the Colorado River basin. 
Clim. Change 62, 337–363. 

Clark, M.P., Hendrikx, J., Slater, A.G., Kavetski, D., Anderson, B., Cullen, N.J., Kerr, T., Örn 
Hreinsson, E., Woods, R.A., 2011. Representing spatial variability of snow water 
equivalent in hydrologic and land-surface models: A review. Water Resour. Res. 47, 
W07539. https://doi.org/10.1029/2011WR010745 



 142 

Clark, M.P., Nijssen, B., Luce, C.H., 2017. An analytical test case for snow models. Water 
Resour. Res. 53, 909–922. https://doi.org/10.1002/2016WR019672 

Cline, D.W., 1997. Snow surface energy exchanges and snowmelt at a continental, midlatitude 
Alpine site. Water Resour. Res. 33, 689–701. 

Clow, D.W., 2010. Changes in the timing of snowmelt and streamflow in Colorado: a response 
to recent warming. J. Clim. 23, 2293–2306. 

Clow, D.W., Williams, M.W., Schuster, P.F., 2016. Increasing aeolian dust deposition to 
snowpacks in the Rocky Mountains inferred from snowpack, wet deposition, and aerosol 
chemistry. Atmos. Environ., Acid Rain and its Environmental Effects: Recent Scientific 
AdvancesPapers from the Ninth International Conference on Acid Deposition 146, 183–
194. https://doi.org/10.1016/j.atmosenv.2016.06.076 

Colbeck, S.C., 1989a. Air movement in snow due to windpumping. J. Glaciol. 35, 209–213. 

Colbeck, S.C., 1989b. Snow-crystal growth with varying surface temperatures and radiation 
penetration. J. Glaciol. 35, 23–29. 

Cooper, M.G., Nolin, A.W., Safeeq, M., 2016. Testing the recent snow drought as an analog for 
climate warming sensitivity of Cascades snowpacks. Environ. Res. Lett. 11, 084009. 
https://doi.org/10.1088/1748-9326/11/8/084009 

Crawford, T.M., Duchon, C.E., 1999. An improved parameterization for estimating effective 
atmospheric emissivity for use in calculating daytime downwelling longwave radiation. J. 
Appl. Meteorol. 38, 474–480. 

Dadic, R., Mott, R., Lehning, M., Carenzo, M., Anderson, B., Mackintosh, A., 2013. Sensitivity 
of turbulent fluxes to wind speed over snow surfaces in different climatic settings. Adv. 
Water Resour. 55, 178–189. 

Dai, A., 2008. Temperature and pressure dependence of the rain-snow phase transition over land 
and ocean. Geophys. Res. Lett. 35. 

Dai, A., 2001. Global Precipitation and Thunderstorm Frequencies. Part I: Seasonal and 
Interannual Variations. J. Clim. 14, 1092–1111. https://doi.org/10.1175/1520-
0442(2001)014<1092:GPATFP>2.0.CO;2 

Deems, J.S., Painter, T.H., Barsugli, J.J., Belnap, J., Udall, B., 2013. Combined impacts of 
current and future dust deposition and regional warming on Colorado River Basin snow 
dynamics and hydrology. Hydrol. Earth Syst. Sci. Katlenburg-Lindau 17, 4401. 
http://dx.doi.org.colorado.idm.oclc.org/10.5194/hess-17-4401-2013 

Déry, S.J., Brown, R.D., 2007. Recent Northern Hemisphere snow cover extent trends and 
implications for the snow-albedo feedback. Geophys. Res. Lett. 34, L22504. 
https://doi.org/10.1029/2007GL031474 



 143 

DeWalle, D.R., Rango, A., 2008. Principles of snow hydrology. Cambridge University Press. 

Dickerson-Lange, S.E., Gersonde, R.F., Hubbart, J.A., Link, T.E., Nolin, A.W., Perry, G.H., 
Roth, T.R., Wayand, N.E., Lundquist, J.D., 2017. Snow disappearance timing is 
dominated by forest effects on snow accumulation in warm winter climates of the Pacific 
Northwest, United States. Hydrol. Process. 31, 1846–1862. 
https://doi.org/10.1002/hyp.11144 

Dilley, A.C., O’Brien, D.M., 1998. Estimating downward clear sky long-wave irradiance at the 
surface from screen temperature and precipitable water. Q. J. R. Meteorol. Soc. 124, 
1391–1401. 

Ding, B., Yang, K., Qin, J., Wang, L., Chen, Y., He, X., 2014. The dependence of precipitation 
types on surface elevation and meteorological conditions and its parameterization. J. 
Hydrol. 513, 154–163. 

Easterling, D.R., Kunkel, K.E., Arnold, J.R., Knutson, T., LeGrande, A.N., Leung, L.R., Vose, 
R.S., Waliser, D.E., Wehner, M.F., 2017. Precipitation change in the United States, in: 
Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, 
T.K. (Eds.), Climate Science Special Report: Fourth National Climate Assessment, 
Volume I. U.S. Global Change Research Program, Washington, DC, USA, pp. 207–230. 
https://doi.org/10.7930/J0H993CC 

Elder, K., Dozier, J., Michaelsen, J., 1991. Snow accumulation and distribution in an Alpine 
Watershed. Water Resour. Res. 27, 1541–1552. https://doi.org/10.1029/91WR00506 

Erickson, T.A., Williams, M.W., Winstral, A., 2005. Persistence of topographic controls on the 
spatial distribution of snow in rugged mountain terrain, Colorado, United States. Water 
Resour. Res. 41. 

Essery, R., Morin, S., Lejeune, Y., B Ménard, C., 2013. A comparison of 1701 snow models 
using observations from an alpine site. Adv. Water Resour., Snow–Atmosphere 
Interactions and Hydrological Consequences 55, 131–148. 
https://doi.org/10.1016/j.advwatres.2012.07.013 

Etchevers, P., Martin, E., Brown, R., Fierz, C., Lejeune, Y., Bazile, E., Boone, A., Dai, Y.-J., 
Essery, R., Fernandez, A., others, 2004. Validation of the energy budget of an alpine 
snowpack simulated by several snow models (SnowMIP project). Ann. Glaciol. 38, 150–
158. 

Fassnacht, S.R., Soulis, E.D., 2002. Implications during transitional periods of improvements to 
the snow processes in the land surface scheme-hydrological model WATCLASS. 
Atmosphere-Ocean 40, 389–403. 

Fassnacht, S.R., Venable, N.B.H., Khishigbayar, J., Cherry, M.L., 2013. The probability of 
precipitation as snow derived from daily air temperature for high elevation areas of 
Colorado, United States. IAHS-AISH Publ. 65–70. 



 144 

Feiccabrino, J., Graff, W., Lundberg, A., Sandström, N., Gustafsson, D., 2015. Meteorological 
Knowledge Useful for the Improvement of Snow Rain Separation in Surface Based 
Models. Hydrology 2, 266–288. https://doi.org/10.3390/hydrology2040266 

Flanner, M.G., Shell, K.M., Barlage, M., Perovich, D.K., Tschudi, M.A., 2011. Radiative forcing 
and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. 
Nat. Geosci. 4, 151–155. https://doi.org/10.1038/ngeo1062 

Flerchinger, G.N., Xaio, W., Marks, D., Sauer, T.J., Yu, Q., 2009. Comparison of algorithms for 
incoming atmospheric long-wave radiation. Water Resour. Res. 45. 
https://doi.org/10.1029/2008WR007394 

Förster, K., Meon, G., Marke, T., Strasser, U., 2014. Effect of meteorological forcing and snow 
model complexity on hydrological simulations in the Sieber catchment (Harz Mountains, 
Germany). Hydrol. Earth Syst. Sci. 18, 4703–4720. 

Froidurot, S., Zin, I., Hingray, B., Gautheron, A., 2014. Sensitivity of Precipitation Phase over 
the Swiss Alps to Different Meteorological Variables. J. Hydrometeorol. 15, 685–696. 
https://doi.org/10.1175/JHM-D-13-073.1 

Gjertsen, U., Ødegaard, V., 2005. The water phase of precipitation—a comparison between 
observed, estimated and predicted values. Atmospheric Res., Precipitation in Urban 
Areas 77, 218–231. https://doi.org/10.1016/j.atmosres.2004.10.030 

Gleason, K., Nolin Anne W., Roth Travis R., 2013. Charred forests increase snowmelt: Effects 
of burned woody debris and incoming solar radiation on snow ablation. Geophys. Res. 
Lett. 40, 4654–4661. https://doi.org/10.1002/grl.50896 

Gleason, K.E., Nolin, A.W., 2016. Charred forests accelerate snow albedo decay: parameterizing 
the post-fire radiative forcing on snow for three years following fire. Hydrol. Process. 30, 
3855–3870. https://doi.org/10.1002/hyp.10897 

Godsey, S.E., Marks, D., Kormos, P.R., Seyfried, M.S., Enslin, C.L., Winstral, A.H., McNamara, 
J.P., Link, T.E., 2018. Eleven years of mountain weather, snow, soil moisture and stream 
flow data from the rain-snow transition zone—the Johnston Draw catchment, Reynolds 
Creek Experimental Watershed and Critical Zone Observatory, USA. Earth Syst. Sci. 
Data 10, 1207–1216. https://doi.org/10.5194/essd-10-1207-2018 

Greenland, D., 1989. The climate of Niwot Ridge, front range, Colorado, USA. Arct. Alp. Res. 
380–391. 

Groffman, P.M., Driscoll, C.T., Fahey, T.J., Hardy, J.P., Fitzhugh, R.D., Tierney, G.L., 2001. 
Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest 
ecosystem. Biogeochemistry 56, 135–150. 

Groffman, P.M., Hardy, J.P., Driscoll, C.T., Fahey, T.J., 2006. Snow depth, soil freezing, and 
fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest. Glob. 
Change Biol. 12, 1748–1760. https://doi.org/10.1111/j.1365-2486.2006.01194.x 



 145 

Groisman, P.Y., Karl, T.R., Knight, R.W., 1994. Observed Impact of Snow Cover on the Heat 
Balance and the Rise of Continental Spring Temperatures. Science 263, 198–200. 
https://doi.org/10.1126/science.263.5144.198 

Hall, A., 2004. The Role of Surface Albedo Feedback in Climate. J. Clim. 17, 1550–1568. 
https://doi.org/10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2 

Hall, A., Qu, X., 2006. Using the current seasonal cycle to constrain snow albedo feedback in 
future climate change. Geophys. Res. Lett. 33, L03502. 
https://doi.org/10.1029/2005GL025127 

Hamlet, A.F., Mote, P.W., Clark, M.P., Lettenmaier, D.P., 2005. Effects of temperature and 
precipitation variability on snowpack trends in the Western United States*. J. Clim. 18, 
4545–4561. 

Hammond, J., Saavedra Freddy A., Kampf Stephanie K., 2018. How Does Snow Persistence 
Relate to Annual Streamflow in Mountain Watersheds of the Western U.S. With Wet 
Maritime and Dry Continental Climates? Water Resour. Res. 0. 
https://doi.org/10.1002/2017WR021899 

Harder, P., Pomeroy, J., 2013. Estimating precipitation phase using a psychrometric energy 
balance method. Hydrol. Process. 27, 1901–1914. https://doi.org/10.1002/hyp.9799 

Harder, P., Pomeroy, J.W., 2014. Hydrological model uncertainty due to precipitation-phase 
partitioning methods. Hydrol. Process. 28, 4311–4327. 

Harpold, A., Brooks, P., Rajagopal, S., Heidbuchel, I., Jardine, A., Stielstra, C., 2012. Changes 
in snowpack accumulation and ablation in the intermountain west. Water Resour. Res. 
48, 1–11. https://doi.org/10.1029/2012WR011949 

Harpold, A.A., Brooks, P.D., 2018. Humidity determines snowpack ablation under a warming 
climate. Proc. Natl. Acad. Sci. 201716789. https://doi.org/10.1073/pnas.1716789115 

Harpold, A.A., Crews, J.B., Rajagopal, S., Winchell, T., Schumer, R., 2017a. Relative Humidity 
Has Uneven Effects on Shifts From Snow to Rain Over the Western U.S. Geophys. Res. 
Lett. 44, 2017GL075046. https://doi.org/10.1002/2017GL075046 

Harpold, A.A., Dettinger, M., Rajagopal, S., 2017b. Defining snow drought and why it matters. 
EOS-Earth Space Sci. News 98. 

Harpold, A.A., Kaplan, M., Klos, P.Z., Link, T., McNamara, J.P., Rajagopal, S., Schumer, R., 
Steele, C.M., 2017c. Rain or snow: hydrologic processes, observations, prediction, and 
research needs. Hydrol Earth Syst Sci 21, 1–22. 

Harpold, A.A., Molotch, N.P., 2015. Sensitivity of soil water availability to changing snowmelt 
timing in the western US. Geophys. Res. Lett. 42, 8011–8020. 



 146 

Harr, R.D., 1986. Effects of clearcutting on rain-on-snow runoff in western Oregon: A new look 
at old studies. Water Resour. Res. 22, 1095–1100. 

Harr, R.D., 1981. Some characteristics and consequences of snowmelt during rainfall in western 
Oregon. J. Hydrol. 53, 277–304. 

Helgason, W., Pomeroy, J., 2011. Problems Closing the Energy Balance over a Homogeneous 
Snow Cover during Midwinter. J. Hydrometeorol. 13, 557–572. 
https://doi.org/10.1175/JHM-D-11-0135.1 

Henn, B., Raleigh, M.S., Fisher, A., Lundquist, J.D., 2012. A Comparison of Methods for Filling 
Gaps in Hourly Near-Surface Air Temperature Data. J. Hydrometeorol. 14, 929–945. 
https://doi.org/10.1175/JHM-D-12-027.1 

Hock, R., 2003. Temperature index melt modelling in mountain areas. J. Hydrol. 282, 104–115. 
https://doi.org/10.1016/S0022-1694(03)00257-9 

Hood, E., Williams, M., Cline, D., 1999. Sublimation from a seasonal snowpack at a continental, 
mid-latitude alpine site. Hydrol. Process. 13, 1781–1797. 

Hunsaker, C.T., Whitaker, T.W., Bales, R.C., 2012. Snowmelt runoff and water yield along 
elevation and temperature gradients in California’s southern Sierra Nevada. JAWRA J. 
Am. Water Resour. Assoc. 48, 667–678. 

Ikeda, K., Rasmussen, R., Liu, C., Gochis, D., Yates, D., Chen, F., Tewari, M., Barlage, M., 
Dudhia, J., Miller, K., 2010. Simulation of seasonal snowfall over Colorado. 
Atmospheric Res. 97, 462–477. 

IPCC, 2013. Climate Change 2013: The Physical Science Basis.  Contribution of Working Group 
I to the Fifth Assessment Report of the Intergovernmental  Panel on Climate Change. 
Cambridge University Press Cambridge, UK, and New York. 

Jennings, K.S., Jones, J.A., 2015. Precipitation-snowmelt timing and snowmelt augmentation of 
large peak flow events, western Cascades, Oregon. Water Resour. Res. 51, 7649–7661. 
https://doi.org/10.1002/2014WR016877 

Jennings, K.S., Kittel, T.G.F., Molotch, N.P., 2018a. Observations and simulations of the 
seasonal evolution of snowpack cold content and its relation to snowmelt and the 
snowpack energy budget. The Cryosphere 12, 1595–1614. https://doi.org/10.5194/tc-12-
1595-2018 

Jennings, K.S., Kittel, T.G.F., Molotch, N.P., 2017. Infilled climate data for C1, Saddle, D1 from 
1990-1-1 to 2013-12-31, hourly. 

Jennings, K.S., Winchell, T.S., Livneh, B., Molotch, N.P., 2018b. Spatial variation of the rain-
snow temperature threshold across the Northern Hemisphere. Nat. Commun. 9. 
https://doi.org/10.1038/s41467-018-03629-7 



 147 

Jepsen, S.M., Molotch, N.P., Williams, M.W., Rittger, K.E., Sickman, J.O., 2012. Interannual 
variability of snowmelt in the Sierra Nevada and Rocky Mountains, United States: 
Examples from two alpine watersheds. Water Resour. Res. 48. 
https://doi.org/10.1029/2011WR011006 

Kampf, S.K., Lefsky, M.A., 2016. Transition of dominant peak flow source from snowmelt to 
rainfall along the Colorado Front Range: Historical patterns, trends, and lessons from the 
2013 Colorado Front Range floods. Water Resour. Res. 

Kapnick, S., Hall, A., 2012. Causes of recent changes in western North American snowpack. 
Clim. Dyn. 38, 1885–1899. 

Karl, T.R., Kukla George, Razuvayev Vyacheslav N., Changery Michael J., Quayle Robert G., 
Heim Richard R., Easterling David R., Fu Cong Bin, 1991. Global warming: Evidence 
for asymmetric diurnal temperature change. Geophys. Res. Lett. 18, 2253–2256. 
https://doi.org/10.1029/91GL02900 

Kienzle, S.W., 2008. A new temperature based method to separate rain and snow. Hydrol. 
Process. 22, 5067–5085. https://doi.org/10.1002/hyp.7131 

Kirchner, J.W., 2006. Getting the right answers for the right reasons: Linking measurements, 
analyses, and models to advance the science of hydrology. Water Resour. Res. 42. 

Kittel, T.G.F., Williams, M.W., Chowanski, K., Hartman, M., Ackerman, T., Losleben, M., 
Blanken, P.D., 2015. Contrasting long-term alpine and subalpine precipitation trends in a 
mid-latitude North American mountain system, Colorado Front Range, USA. Plant Ecol. 
Divers. 8, 607–624. https://doi.org/10.1080/17550874.2016.1143536 

Kittel, Timothy, 2009. The Development and Analysis of Climate Datasets for National Park 
Science and Management: A Guide to Methods for Making Climate Records Useful and 
Tools to Explore Critical Questions. 

Klos, P.Z., Link, T.E., Abatzoglou, J.T., 2014. Extent of the rain-snow transition zone in the 
western US under historic and projected climate. Geophys. Res. Lett. 41, 4560–4568. 

Knowles, J.F., Blanken, P.D., Williams, M.W., Chowanski, K.M., 2012. Energy and surface 
moisture seasonally limit evaporation and sublimation from snow-free alpine tundra. 
Agric. For. Meteorol. 157, 106–115. https://doi.org/10.1016/j.agrformet.2012.01.017 

Knowles, J.F., Harpold, A.A., Cowie, R., Zeliff, M., Barnard, H.R., Burns, S.P., Blanken, P.D., 
Morse, J.F., Williams, M.W., 2015. The relative contributions of alpine and subalpine 
ecosystems to the water balance of a mountainous, headwater catchment. Hydrol. 
Process. 29, 4794–4808. https://doi.org/10.1002/hyp.10526 

Knowles, J.F., Lestak, L.R., Molotch, N.P., 2017. On the use of a snow aridity index to predict 
remotely sensed forest productivity in the presence of bark beetle disturbance. Water 
Resour. Res. 53, 4891–4906. 



 148 

Knowles, J.F., Molotch Noah P., Trujillo Ernesto, Litvak Marcy E., 2018. Snowmelt�Driven 
Trade�Offs Between Early and Late Season Productivity Negatively Impact Forest 
Carbon Uptake During Drought. Geophys. Res. Lett. 45, 3087–3096. 
https://doi.org/10.1002/2017GL076504 

Knowles, N., Dettinger, M.D., Cayan, D.R., 2006. Trends in snowfall versus rainfall in the 
western United States. J. Clim. 19, 4545–4559. 

Krasting, J.P., Broccoli, A.J., Dixon, K.W., Lanzante, J.R., 2013. Future Changes in Northern 
Hemisphere Snowfall. J. Clim. 26, 7813–7828. https://doi.org/10.1175/JCLI-D-12-
00832.1 

Lapo, K.E., Hinkelman, L.M., Raleigh, M.S., Lundquist, J.D., 2015. Impact of errors in the 
downwelling irradiances on simulations of snow water equivalent, snow surface 
temperature, and the snow energy balance. Water Resour. Res. 51, 1649–1670. 

Leavesley, G.H., Stannard, L.G., Singh, V.P., others, 1995. The precipitation-runoff modeling 
system-PRMS. Comput. Models Watershed Hydrol. 281–310. 

Lehning, M., Bartelt, P., Brown, B., Fierz, C., 2002a. A physical SNOWPACK model for the 
Swiss avalanche warning: Part III: Meteorological forcing, thin layer formation and 
evaluation. Cold Reg. Sci. Technol. 35, 169–184. 

Lehning, M., Bartelt, P., Brown, B., Fierz, C., Satyawali, P., 2002b. A physical SNOWPACK 
model for the Swiss avalanche warning: Part II. Snow microstructure. Cold Reg. Sci. 
Technol. 35, 147–167. 

Lehning, M., Fierz, C., Lundy, C., 2001. An objective snow profile comparison method and its 
application to SNOWPACK. Cold Reg. Sci. Technol., ISSW 2000:International Snow 
Science Workshop 33, 253–261. https://doi.org/10.1016/S0165-232X(01)00044-1 

Lehning, M., Völksch, I., Gustafsson, D., Nguyen, T.A., Stähli, M., Zappa, M., 2006. 
ALPINE3D: a detailed model of mountain surface processes and its application to snow 
hydrology. Hydrol. Process. 20, 2111–2128. 

Leung, L.R., Qian, Y., Bian, X., Washington, W.M., Han, J., Roads, J.O., 2004. Mid-century 
ensemble regional climate change scenarios for the western United States. Clim. Change 
62, 75–113. 

Li, D., Wrzesien, M.L., Durand, M., Adam, J., Lettenmaier, D.P., 2017. How much runoff 
originates as snow in the western United States, and how will that change in the future? 
Geophys. Res. Lett. 44, 6163–6172. https://doi.org/10.1002/2017GL073551 

Liston, G.E., Elder, K., 2006. A meteorological distribution system for high-resolution terrestrial 
modeling (MicroMet). J. Hydrometeorol. 7, 217–234. 



 149 

Litaor, M.I., Williams, M., Seastedt, T.R., 2008. Topographic controls on snow distribution, soil 
moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. 
J. Geophys. Res. Biogeosciences 113. 

Livneh, B., Deems, J.S., Buma, B., Barsugli, J.J., Schneider, D., Molotch, N.P., Wolter, K., 
Wessman, C.A., 2015. Catchment response to bark beetle outbreak and dust-on-snow in 
the Colorado Rocky Mountains. J. Hydrol. 523, 196–210. 
https://doi.org/10.1016/j.jhydrol.2015.01.039 

Livneh, B., Xia, Y., Mitchell, K.E., Ek, M.B., Lettenmaier, D.P., 2010. Noah LSM Snow Model 
Diagnostics and Enhancements. J. Hydrometeorol. 11, 721–738. 
https://doi.org/10.1175/2009JHM1174.1 

Luce, C., Lopez-Burgos, V., Holden, Z., 2014. Sensitivity of snowpack storage to precipitation 
and temperature using spatial and temporal analog models. Water Resour. Res. 50, 9447–
9462. https://doi.org/10.1002/2013WR014844 

Lundquist, J.D., Dickerson-Lange, S.E., Lutz, J.A., Cristea, N.C., 2013. Lower forest density 
enhances snow retention in regions with warmer winters: A global framework developed 
from plot-scale observations and modeling: Forests and Snow Retention. Water Resour. 
Res. 49, 6356–6370. https://doi.org/10.1002/wrcr.20504 

Lundquist, J.D., Roche, J.W., Forrester, H., Moore, C., Keenan, E., Perry, G., Cristea, N., Henn, 
B., Lapo, K., McGurk, B., Cayan, D.R., Dettinger, M.D., 2016. Yosemite Hydroclimate 
Network: Distributed stream and atmospheric data for the Tuolumne River watershed and 
surroundings. Water Resour. Res. 52, 7478–7489. 
https://doi.org/10.1002/2016WR019261 

Lundy, C.C., Brown, R.L., Adams, E.E., Birkeland, K.W., Lehning, M., 2001. A statistical 
validation of the SNOWPACK model in a Montana climate. Cold Reg. Sci. Technol. 33, 
237–246. 

Lute, A.C., Abatzoglou, J.T., Hegewisch, K.C., 2015. Projected changes in snowfall extremes 
and interannual variability of snowfall in the western United States. Water Resour. Res. 
51, 960–972. https://doi.org/10.1002/2014WR016267 

Lynch-Stieglitz, M., 1994. The development and validation of a simple snow model for the GISS 
GCM. J. Clim. 7, 1842–1855. 

Lytle, D.A., Poff, N.L., 2004. Adaptation to natural flow regimes. Trends Ecol. Evol. 19, 94–
100. https://doi.org/10.1016/j.tree.2003.10.002 

Mankin, J.S., Viviroli, D., Singh, D., Hoekstra, A.Y., Diffenbaugh, N.S., 2015. The potential for 
snow to supply human water demand in the present and future. Environ. Res. Lett. 10, 
114016. https://doi.org/10.1088/1748-9326/10/11/114016 



 150 

Marks, D., Dozier, J., 1992. Climate and energy exchange at the snow surface in the alpine 
region of the Sierra Nevada: 2. Snow cover energy balance. Water Resour. Res. 28, 
3043–3054. 

Marks, D., Dozier, J., Davis, R.E., 1992. Climate and Energy Exchange at the Snow Surface in 
the Alpine Region of the Sierra Nevada 1. Meteorological Measurements and 
Monitoring. Water Resour. Res. 28, 3029–3042. 

Marks, D., Kimball, J., Tingey, D., Link, T., 1998. The sensitivity of snowmelt processes to 
climate conditions and forest cover during rain-on-snow: a case study of the 1996 Pacific 
Northwest flood. Hydrol. Process. 12, 1569–1587. 

Marks, D., Link, T., Winstral, A., Garen, D., 2001. Simulating snowmelt processes during rain-
on-snow over a semi-arid mountain basin. Ann. Glaciol. 32, 195–202. 

Marks, D., Winstral, A., 2001. Comparison of snow deposition, the snow cover energy balance, 
and snowmelt at two sites in a semiarid mountain basin. J. Hydrometeorol. 2, 213–227. 

Marks, D., Winstral, A., Flerchinger, G., Reba, M., Pomeroy, J., Link, T., Elder, K., 2008. 
Comparing simulated and measured sensible and latent heat fluxes over snow under a 
pine canopy to improve an energy balance snowmelt model. J. Hydrometeorol. 9, 1506–
1522. 

Marks, D., Winstral, A., Reba, M., Pomeroy, J., Kumar, M., 2013. An evaluation of methods for 
determining during-storm precipitation phase and the rain/snow transition elevation at the 
surface in a mountain basin. Adv. Water Resour. 55, 98–110. 
https://doi.org/10.1016/j.advwatres.2012.11.012 

Marr, J.W., 1967. Data on mountain environments: I. Front Range, Colorado, sixteen sites, 1952-
1953. Univ. Colo. Press. 

Marty, C., Schlögl, S., Bavay, M., Lehning, M., 2017. How much can we save? Impact of 
different emission scenarios on future snow cover in the Alps. The Cryosphere 11, 517. 

Mazurkiewicz, A.B., Callery, D.G., McDonnell, J.J., 2008. Assessing the controls of the snow 
energy balance and water available for runoff in a rain-on-snow environment. J. Hydrol. 
354, 1–14. 

McCabe, G.J., Hay, L.E., Clark, M.P., 2007. Rain-on-snow events in the western United States. 
Bull. Am. Meteorol. Soc. 88, 319–328. 

McGuire, C.R., Nufio, C.R., Bowers, M.D., Guralnick, R.P., 2012. Elevation-Dependent 
Temperature Trends in the Rocky Mountain Front Range: Changes over a 56- and 20-
Year Record. PLoS ONE 7, e44370. https://doi.org/10.1371/journal.pone.0044370 

Meek, D.W., Hatfield, J.L., 1994. Data quality checking for single station meteorological 
databases. Agric. For. Meteorol. 69, 85–109. 



 151 

Meromy, L., Molotch, N.P., Williams, M.W., Musselman, K.N., Kueppers, L.M., 2015. 
Snowpack-climate manipulation using infrared heaters in subalpine forests of the 
Southern Rocky Mountains, USA. Agric. For. Meteorol. 203, 142–157. 
https://doi.org/10.1016/j.agrformet.2014.12.015 

Milly, P.C.D., Betancourt, J., Falkenmark, M., Hirsch, R.M., Kundzewicz, Z.W., Lettenmaier, 
D.P., Stouffer, R.J., 2008. Stationarity is dead: Whither water management? Science 319, 
573–574. 

Minder, J.R., 2010. The Sensitivity of Mountain Snowpack Accumulation to Climate Warming. 
J. Clim. 23, 2634–2650. https://doi.org/10.1175/2009JCLI3263.1 

Minder, J.R., Durran, D.R., Roe, G.H., 2011. Mesoscale Controls on the Mountainside Snow 
Line. J. Atmospheric Sci. 68, 2107–2127. https://doi.org/10.1175/JAS-D-10-05006.1 

Mizukami, N., Koren, V., Smith, M., Kingsmill, D., Zhang, Z., Cosgrove, B., Cui, Z., 2013. The 
impact of precipitation type discrimination on hydrologic simulation: Rain–snow 
partitioning derived from HMT-West radar-detected brightband height versus surface 
temperature data. J. Hydrometeorol. 14, 1139–1158. 

Molotch, N.P., Bales, R.C., 2006. SNOTEL representativeness in the Rio Grande headwaters on 
the basis of physiographics and remotely sensed snow cover persistence. Hydrol. Process. 
20, 723–739. 

Molotch, N.P., Bales, R.C., 2005. Scaling snow observations from the point to the grid element: 
Implications for observation network design. Water Resour. Res. 41. 

Molotch, N.P., Barnard, D.M., Burns, S.P., Painter, T.H., 2016. Measuring spatiotemporal 
variation in snow optical grain size under a subalpine forest canopy using contact 
spectroscopy. Water Resour. Res. https://doi.org/10.1002/2016WR018954 

Molotch, N.P., Blanken, P.D., Williams, M.W., Turnipseed, A.A., Monson, R.K., Margulis, 
S.A., 2007. Estimating sublimation of intercepted and sub-canopy snow using eddy 
covariance systems. Hydrol. Process. 21, 1567–1575. 

Molotch, N.P., Brooks, P.D., Burns, S.P., Litvak, M., Monson, R.K., McConnell, J.R., 
Musselman, K., 2009. Ecohydrological controls on snowmelt partitioning in mixed-
conifer sub-alpine forests. Ecohydrology 2, 129–142. 

Monson, R.K., Lipson, D.L., Burns, S.P., Turnipseed, A.A., Delany, A.C., Williams, M.W., 
Schmidt, S.K., 2006. Winter forest soil respiration controlled by climate and microbial 
community composition. Nature 439, 711. 

Mosier, T.M., Hill, D.F., Sharp, K.V., 2016. How much cryosphere model complexity is just 
right? Exploration using the conceptual cryosphere hydrology framework. The 
Cryosphere 10, 2147–2171. https://doi.org/10.5194/tc-10-2147-2016 



 152 

Mote, P.W., Hamlet, A.F., Clark, M.P., Lettenmaier, D.P., 2005. Declining mountain snowpack 
in western North America*. Bull. Am. Meteorol. Soc. 86, 39–49. 

Mote, P.W., Li, S., Lettenmaier, D.P., Xiao, M., Engel, R., 2018. Dramatic declines in snowpack 
in the western US. Npj Clim. Atmospheric Sci. 1, 2. https://doi.org/10.1038/s41612-018-
0012-1 

Musselman, K.N., Clark, M.P., Liu, C., Ikeda, K., Rasmussen, R., 2017a. Slower snowmelt in a 
warmer world. Nat. Clim. Change 7, 214–219. https://doi.org/10.1038/nclimate3225 

Musselman, K.N., Lehner, F., Ikeda, K., Clark, M.P., Prein, A.F., Liu, C., Barlage, M., 
Rasmussen, R., 2018. Projected increases and shifts in rain-on-snow flood risk over 
western North America. Nat. Clim. Change 1. https://doi.org/10.1038/s41558-018-0236-4 

Musselman, K.N., Molotch, N.P., Margulis, S.A., 2017b. Snowmelt response to simulated 
warming across a large elevation gradient, southern Sierra Nevada, California. The 
Cryosphere 11, 2847–2866. https://doi.org/10.5194/tc-11-2847-2017 

Musselman, K.N., Molotch, N.P., Margulis, S.A., 2017c. Snow melt response to simulated 
warming across a large elevation gradient, southern Sierra Nevada, California. 
Cryosphere Discuss 2017, 1–47. https://doi.org/10.5194/tc-2017-123 

Nayak, A., Marks, D., Chandler, D.G., Seyfried, M., 2010. Long-term snow, climate, and 
streamflow trends at the Reynolds Creek Experimental Watershed, Owyhee Mountains, 
Idaho, United States: CLIMATE TRENDS AT RCEW. Water Resour. Res. 46, n/a-n/a. 
https://doi.org/10.1029/2008WR007525 

Nolin, A.W., Daly, C., 2006. Mapping “at risk” snow in the Pacific Northwest. J. 
Hydrometeorol. 7, 1164–1171. 

Obled, C., Rosse, B., 1977. Mathematical models of a melting snowpack at an index plot. J. 
Hydrol. 32, 139–163. https://doi.org/10.1016/0022-1694(77)90123-8 

O’Gorman, P.A., 2014. Contrasting responses of mean and extreme snowfall to climate change. 
Nature 512, 416–418. https://doi.org/10.1038/nature13625 

Oyler, J.W., Dobrowski, S.Z., Ballantyne, A.P., Klene, A.E., Running, S.W., 2015. Artificial 
amplification of warming trends across the mountains of the western United States. 
Geophys. Res. Lett. 42, 153–161. https://doi.org/10.1002/2014GL062803 

Painter, T.H., Berisford, D.F., Boardman, J.W., Bormann, K.J., Deems, J.S., Gehrke, F., Hedrick, 
A., Joyce, M., Laidlaw, R., Marks, D., others, 2016. The Airborne Snow Observatory: 
Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for 
mapping snow water equivalent and snow albedo. Remote Sens. Environ. 184, 139–152. 

Painter, T.H., Deems, J.S., Belnap, J., Hamlet, A.F., Landry, C.C., Udall, B., 2010. Response of 
Colorado River runoff to dust radiative forcing in snow. Proc. Natl. Acad. Sci. 107, 
17125–17130. 



 153 

Painter, T.H., Skiles S. McKenzie, Deems Jeffrey S., Brandt W. Tyler, Dozier Jeff, 2017. 
Variation in Rising Limb of Colorado River Snowmelt Runoff Hydrograph Controlled by 
Dust Radiative Forcing in Snow. Geophys. Res. Lett. 45, 797–808. 
https://doi.org/10.1002/2017GL075826 

Painter, T.H., Skiles, S.M., Deems, J.S., Bryant, A.C., Landry, C.C., 2012. Dust radiative forcing 
in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, 
radiation, and dust concentrations. Water Resour. Res. 48, W07521. 
https://doi.org/10.1029/2012WR011985 

Pederson, G.T., Betancourt, J.L., McCabe, G.J., 2013. Regional patterns and proximal causes of 
the recent snowpack decline in the Rocky Mountains, US. Geophys. Res. Lett. 40, 1811–
1816. 

Pederson, G.T., Gray, S.T., Ault, T., Marsh, W., Fagre, D.B., Bunn, A.G., Woodhouse, C.A., 
Graumlich, L.J., 2011a. Climatic controls on the snowmelt hydrology of the northern 
Rocky Mountains. J. Clim. 24, 1666–1687. 

Pederson, G.T., Gray, S.T., Woodhouse, C.A., Betancourt, J.L., Fagre, D.B., Littell, J.S., 
Watson, E., Luckman, B.H., Graumlich, L.J., 2011b. The unusual nature of recent 
snowpack declines in the North American Cordillera. Science 333, 332–335. 

Pepin, N., Losleben, M., 2002. Climate change in the Colorado Rocky Mountains: free air versus 
surface temperature trends. Int. J. Climatol. 22, 311–329. 

Perkins, R.M., Jones, J.A., 2008. Climate variability, snow, and physiographic controls on storm 
hydrographs in small forested basins, western Cascades, Oregon. Hydrol. Process. 22, 
4949–4964. 

Pomeroy, J.W., Toth, B., Granger, R.J., Hedstrom, N.R., Essery, R.L.H., 2003. Variation in 
surface energetics during snowmelt in a subarctic mountain catchment. J. Hydrometeorol. 
4, 702–719. 

Rajagopal, S., Harpold, A.A., 2016. Testing and Improving Temperature Thresholds for Snow 
and Rain Prediction in the Western United States. JAWRA J. Am. Water Resour. Assoc. 

Raleigh, M.S., Livneh, B., Lapo, K., Lundquist, J.D., 2016. How Does Availability of 
Meteorological Forcing Data Impact Physically Based Snowpack Simulations? J. 
Hydrometeorol. 17, 99–120. https://doi.org/10.1175/JHM-D-14-0235.1 

Raleigh, M.S., Lundquist, J.D., 2012. Comparing and combining SWE estimates from the 
SNOW-17 model using PRISM and SWE reconstruction. Water Resour. Res. 48, 
W01506. https://doi.org/10.1029/2011WR010542 

Raleigh, M.S., Lundquist, J.D., Clark, M.P., 2015. Exploring the impact of forcing error 
characteristics on physically based snow simulations within a global sensitivity analysis 
framework. Hydrol. Earth Syst. Sci. 19, 3153–3179. https://doi.org/10.5194/hess-19-
3153-2015 



 154 

Rasmus, S., Räisänen, J., Lehning, M., 2004. Estimating snow conditions in Finland in the late 
21st century using the SNOWPACK model with regional climate scenario data as input. 
Ann. Glaciol. 38, 238–244. https://doi.org/10.3189/172756404781814843 

Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A.P., Black, J., 
Thériault, J.M., Kucera, P., Gochis, D., others, 2012. How well are we measuring snow: 
The NOAA/FAA/NCAR winter precipitation test bed. Bull. Am. Meteorol. Soc. 93, 811–
829. 

Rasmussen, R., Liu, C., Ikeda, K., Gochis, D., Yates, D., Chen, F., Tewari, M., Barlage, M., 
Dudhia, J., Yu, W., 2011. High-resolution coupled climate runoff simulations of seasonal 
snowfall over Colorado: a process study of current and warmer climate. J. Clim. 24, 
3015–3048. 

Regonda, S.K., Rajagopalan, B., Clark, M., Pitlick, J., 2005. Seasonal cycle shifts in 
hydroclimatology over the western United States. J. Clim. 18, 372–384. 

Rice, R., Bales, R.C., Painter, T.H., Dozier, J., 2011. Snow water equivalent along elevation 
gradients in the Merced and Tuolumne River basins of the Sierra Nevada. Water Resour. 
Res. 47, W08515. https://doi.org/10.1029/2010WR009278 

Roth, T.R., Nolin, A.W., 2017. Forest impacts on snow accumulation and ablation across an 
elevation gradient in a temperate montane environment. Hydrol Earth Syst Sci 21, 5427–
5442. https://doi.org/10.5194/hess-21-5427-2017 

Rutter, N., Essery, R., Pomeroy, J., Altimir, N., Andreadis, K., Baker, I., Barr, A., Bartlett, P., 
Boone, A., Deng, H., others, 2009. Evaluation of forest snow processes models 
(SnowMIP2). J. Geophys. Res. Atmospheres 114. 
https://doi.org/doi/10.1029/2008JD011063/ 

Safeeq, M., Shukla, S., Arismendi, I., Grant, G.E., Lewis, S.L., Nolin, A., 2015. Influence of 
winter season climate variability on snow–precipitation ratio in the western United States. 
Int. J. Climatol. 

Schlögl, S., Marty, C., Bavay, M., Lehning, M., 2016. Sensitivity of Alpine3D modeled snow 
cover to modifications in DEM resolution, station coverage and meteorological input 
quantities. Environ. Model. Softw. 83, 387–396. 
https://doi.org/10.1016/j.envsoft.2016.02.017 

Schmucki, E., Marty, C., Fierz, C., Lehning, M., 2014. Evaluation of modelled snow depth and 
snow water equivalent at three contrasting sites in Switzerland using SNOWPACK 
simulations driven by different meteorological data input. Cold Reg. Sci. Technol. 99, 
27–37. 

Seligman, Z.M., Harper, J.T., Maneta, M.P., 2014. Changes to Snowpack Energy State from 
Spring Storm Events, Columbia River Headwaters, Montana. J. Hydrometeorol. 15, 159–
170. https://doi.org/10.1175/JHM-D-12-078.1 



 155 

Serreze, M.C., Clark, M.P., Armstrong, R.L., McGinnis, D.A., Pulwarty, R.S., 1999. 
Characteristics of the western United States snowpack from snowpack telemetry 
(SNOTEL) data. Water Resour. Res. 35, 2145–2160. 

Sexstone, G.A., Clow, D.W., Stannard, D.I., Fassnacht, S.R., 2016. Comparison of methods for 
quantifying surface sublimation over seasonally snow-covered terrain. Hydrol. Process. 
30, 3373–3389. https://doi.org/10.1002/hyp.10864 

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Wang, W., Powers, J.G., 
2005. A description of the advanced research WRF version 2. National Center For 
Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div. 

Skiles, S.M., Painter, T.H., Deems, J.S., Bryant, A.C., Landry, C.C., 2012. Dust radiative forcing 
in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing 
and snowmelt rates. Water Resour. Res. 48, W07522. 
https://doi.org/10.1029/2012WR011986 

Slater, A.G., Lawrence, D.M., Koven, C.D., 2017. Process-level model evaluation: a snow and 
heat transfer metric. The Cryosphere 11, 989–996. https://doi.org/10.5194/tc-11-989-
2017 

Slater, A.G., Schlosser, C.A., Desborough, C.E., Pitman, A.J., Henderson-Sellers, A., Robock, 
A., Vinnikov, K.Y., Entin, J., Mitchell, K., Chen, F., others, 2001. The representation of 
snow in land surface schemes: Results from PILPS 2 (d). J. Hydrometeorol. 2, 7–25. 

Sospedra-Alfonso, R., Melton, J.R., Merryfield, W.J., 2015. Effects of temperature and 
precipitation on snowpack variability in the Central Rocky Mountains as a function of 
elevation: CLIMATE DRIVEN ALPINE SNOWPACK. Geophys. Res. Lett. 42, 4429–
4438. https://doi.org/10.1002/2015GL063898 

Stewart, I.T., 2009. Changes in snowpack and snowmelt runoff for key mountain regions. 
Hydrol. Process. 23, 78–94. 

Stewart, I.T., Cayan, D.R., Dettinger, M.D., 2005. Changes toward earlier streamflow timing 
across western North America. J. Clim. 18, 1136–1155. 

Stewart, I.T., Cayan, D.R., Dettinger, M.D., 2004a. Changes in snowmelt runoff timing in 
western North America under a “business as usual” climate change scenario. Clim. 
Change 62, 217–232. 

Stewart, I.T., Cayan, D.R., Dettinger, M.D., 2004b. Changes in snowmelt runoff timing in 
western North America under abusiness as usual’climate change scenario. Clim. Change 
62, 217–232. 

Stull, R., 2011. Wet-bulb temperature from relative humidity and air temperature. J. Appl. 
Meteorol. Climatol. 50, 2267–2269. 



 156 

Sturm, M., Goldstein, M.A., Parr, C., 2017. Water and life from snow: A trillion dollar science 
question. Water Resour. Res. n/a-n/a. https://doi.org/10.1002/2017WR020840 

Sturm, M., Holmgren, J., König, M., Morris, K., 1997. The thermal conductivity of seasonal 
snow. J. Glaciol. 43, 26–41. 

Sturm, M., Holmgren, J., Liston, G.E., 1995. A seasonal snow cover classification system for 
local to global applications. J. Clim. 8, 1261–1283. 

Tarboton, D.G., Luce, C.H., 1996. Utah energy balance snow accumulation and melt model 
(UEB). Citeseer. 

Tennant, C.J., Harpold, A.A., Lohse, K.A., Godsey, S.E., Crosby, B.T., Larsen, L.G., Brooks, 
P.D., Van Kirk, R.W., Glenn, N.F., 2017. Regional sensitivities of seasonal snowpack to 
elevation, aspect, and vegetation cover in western North America. Water Resour. Res. 53, 
6908–6926. https://doi.org/10.1002/2016WR019374 

Trenberth, K.E., 2011. Changes in precipitation with climate change. Clim. Res. 47, 123. 

Trujillo, E., Molotch, N.P., 2014. Snowpack regimes of the Western United States. Water 
Resour. Res. 50, 5611–5623. https://doi.org/10.1002/2013WR014753 

Trujillo, E., Molotch, N.P., Goulden, M.L., Kelly, A.E., Bales, R.C., 2012. Elevation-dependent 
influence of snow accumulation on forest greening. Nat. Geosci. 5, 705. 

Turnipseed, A.A., Blanken, P.D., Anderson, D.E., Monson, R.K., 2002. Energy budget above a 
high-elevation subalpine forest in complex topography. Agric. For. Meteorol. 110, 177–
201. 

Udall, B., Overpeck, J., 2017. The twenty-first century Colorado River hot drought and 
implications for the future. Water Resour. Res. 53, 2404–2418. 

United States Army Corps of Engineers, 1956. Snow hydrology. US Army North Pac. Div. 
Portland Or. 

United States Geological Survey, 2005. Changes in Streamflow Timing in the Western United 
States in Recent Decades. Fact Sheet 2005-3018. 

Unsworth, M.H., Monteith, J.L., 1975. Long-wave radiation at the ground I. Angular distribution 
of incoming radiation. Q. J. R. Meteorol. Soc. 101, 13–24. 

USGCRP, 2017. Climate Science Special Report: Fourth National Climate Assessment, Volume 
I. U.S. Global Change Research Program, Washington, DC, USA. 
https://doi.org/10.7930/J0J964J6 

Vincent, C., Le Meur, E., Six, D., Funk, M., Hoelzle, M., Preunkert, S., 2007. Very high-
elevation Mont Blanc glaciated areas not affected by the 20th century climate change. J. 
Geophys. Res. Atmospheres 112. 



 157 

Viviroli, D., Dürr, H.H., Messerli, B., Meybeck, M., Weingartner, R., 2007. Mountains of the 
world, water towers for humanity: Typology, mapping, and global significance. Water 
Resour. Res. 43. 

Vögeli, C., Lehning, M., Wever, N., Bavay, M., 2016. Scaling precipitation input to spatially 
distributed hydrological models by measured snow distribution. Front. Earth Sci. 4, 108. 

Vose, R.S., Easterling, D.R., Kunkel, K.E., LeGrande, A.N., Wehner, M.F., 2017. Temperature 
changes in the United States, in: Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, 
D.J., Stewart, B.C., Maycock, T.K. (Eds.), Climate Science Special Report: Fourth 
National Climate Assessment, Volume I. U.S. Global Change Research Program, 
Washington, DC, USA, pp. 185–206. https://doi.org/10.7930/J0N29V45 

Walker, D.A., Halfpenny, J.C., Walker, M.D., Wessman, C.A., 1993. Long-term studies of 
snow-vegetation interactions. BioScience 43, 287–301. 

Walker, M.D., Webber, P.J., Arnold, E.H., Ebert-May, D., 1994. Effects of interannual climate 
variation on aboveground phytomass in alpine vegetation. Ecology 75, 393. 

Wayand, N.E., Clark, M.P., Lundquist, J.D., 2017. Diagnosing snow accumulation errors in a 
rain-snow transitional environment with snow board observations. Hydrol. Process. 31, 
349–363. https://doi.org/10.1002/hyp.11002 

Wayand, N.E., Stimberis, J., Zagrodnik, J.P., Mass, C.F., Lundquist, J.D., 2016. Improving 
simulations of precipitation phase and snowpack at a site subject to cold air intrusions: 
Snoqualmie Pass, WA. J. Geophys. Res. Atmospheres 121, 9929–9942. 

Webb, R., Fassnacht, S.R., Gooseff, M., 2018a. Hydrologic flow path development varies by 
aspect during spring snowmelt in complex subalpine terrain. The Cryosphere 12, 287–
300. https://doi.org/10.5194/tc-12-287-2018 

Webb, R., Williams, M., Erickson, T.A., 2018b. The Spatial and Temporal Variability of 
Meltwater Flow Paths: Insights From a Grid of Over 100 Snow Lysimeters. Water 
Resour. Res. 54, 1146–1160. https://doi.org/10.1002/2017WR020866 

Wen, L., Nagabhatla, N., Lü, S., Wang, S.-Y., 2013. Impact of rain snow threshold temperature 
on snow depth simulation in land surface and regional atmospheric models. Adv. 
Atmospheric Sci. 30, 1449–1460. https://doi.org/10.1007/s00376-012-2192-7 

Wigmosta, M.S., Vail, L.W., Lettenmaier, D.P., 1994. A distributed hydrology-vegetation model 
for complex terrain. Water Resour. Res. 30, 1665–1679. 

Williams, M., 2016. Snow cover profile data for Niwot Ridge, Green Lakes Valley from 
1993/2/26 - ongoing, weekly to biweekly. 

Williams, M.W., Bardsley, T., Rikkers, M., 1998. Overestimation of snow depth and inorganic 
nitrogen wetfall using NADP data, Niwot Ridge, Colorado. Atmos. Environ. 32, 3827–
3833. 



 158 

Williams, M.W., Cline, D., Hartman, M., Bardsley, T., 1999. Data for snowmelt model 
development, calibration, and verification at an alpine site, Colorado Front Range. Water 
Resour. Res. 35, 3205–3209. 

Williams, M.W., Losleben, M., Caine, N., Greenland, D., 1996. Changes in climate and 
hydrochemical responses in a high-elevation catchment in the Rocky Mountains, USA. 
Limnol. Oceanogr. 41, 939–946. 

Winchell, T.S., Barnard, D.M., Monson, R.K., Burns, S.P., Molotch, N.P., 2016. Earlier 
snowmelt reduces atmospheric carbon uptake in midlatitude subalpine forests. Geophys. 
Res. Lett. 43, 8160–8168. 

Yang, D., Goodison, B.E., Metcalfe, J.R., Louie, P., Leavesley, G., Emerson, D., Hanson, C.L., 
Golubev, V.S., Elomaa, E., Gunther, T., others, 1999. Quantification of precipitation 
measurement discontinuity induced by wind shields on national gauges. Water Resour. 
Res. 35, 491–508. 

Ye, H., Cohen, J., Rawlins, M., 2013. Discrimination of Solid from Liquid Precipitation over 
Northern Eurasia Using Surface Atmospheric Conditions*. J. Hydrometeorol. 14, 1345–
1355. 

Yuter, S.E., Kingsmill, D.E., Nance, L.B., Löffler-Mang, M., 2006. Observations of Precipitation 
Size and Fall Speed Characteristics within Coexisting Rain and Wet Snow. J. Appl. 
Meteorol. Climatol. 45, 1450–1464. https://doi.org/10.1175/JAM2406.1 

Zhang, Z., Glaser, S., Bales, R., Conklin, M., Rice, R., Marks, D., 2017. Insights into mountain 
precipitation and snowpack from a basin-scale wireless-sensor network. Water Resour. 
Res. 53, 6626–6641. https://doi.org/10.1002/2016WR018825 

 


	University of Colorado, Boulder
	CU Scholar
	2018

	Evaluating the Climatic and Energy Balance Controls on Snow Accumulation and Melt in Mountain Snowpacks
	Keith Steven Jennings
	Recommended Citation


	Microsoft Word - jennings_dissertation_FINAL.docx



