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Abstract Facets formed along the footwalls of active normal-fault blocks display a variety of
longitudinal profile forms, with variations in gradient, shape, degree of soil cover, and presence or absence
of a slope break at the fault trace. We show that a two-dimensional, process-oriented cellular automaton
model of facet profile evolution can account for the observed morphologic diversity. The model uses two
dimensionless parameters to represent fault slip, progressive rock weathering, and downslope
colluvial-soil transport driven by gravity and stochastic disturbance events. The parameters represent rock
weathering and soil disturbance rates, respectively, scaled by fault slip rate; both can be derived from
field-estimated rate coefficients. In the model's transport-limited regime, slope gradient depends on the
ratio of disturbance to slip rate, with a maximum that represents the angle of repose for colluvium. In this
regime, facet evolution is consistent with nonlinear diffusion models of soil-mantled hillslope evolution.
Under the weathering-limited regime, bedrock becomes partly exposed but microtopography helps trap
some colluvium even when facet gradient exceeds the threshold angle. Whereas the model predicts a
continuous gradient from footwall to colluvial wedge under transport-limited behavior, fully
weathering-limited facets tend to develop a slope break between footwall and basal colluvium as a result of
reduced transport efficiency on the rocky footwall slope. To the extent that the model provides a reasonable
analogy for natural facets, its behavior suggests that facet profile morphology can provide useful
constraints on relative potential rates of rock weathering, soil disturbance, and fault slip.

1. Introduction
Mountain fronts in extensional tectonic settings often display facets: steep, basin-facing hillslopes that follow
the surface trace of the bounding fault and mark the transition from footwall to hanging wall (Figure 1).
In many cases, dissection of a footwall range by transverse streams creates triangular facets: facet slopes
that are flanked by V-shaped transverse valleys, which present a triangular shape when viewed from the
adjacent basin (see especially Figures 1a, 1e, and 1i). In other settings, facets may be trapezoidal in profile
or even compose a more or less continuous surface along a weakly dissected footwall range (e.g., Wallace,
1978) (Figures 1g and 1h).

This paper explores the sculpting of facet cross-sectional profiles, using a process-based numerical model
as an interpretive tool. We examine the extent to which the model can account for the diversity in facet
morphology and in particular diversity in slope angle, regolith cover, profile shape, and presence or absence
of a slope break across the range-bounding fault. We also use the model to frame testable predictions for the
relationship between facet morphology, erosion rate, and fault slip rate.

2. Background
Fault scarps and facets have intrigued geologists since at least the late nineteenth century, when mapping
expeditions in western North American brought surveyors and geologists to the spectacular terrain of the
Basin and Range physiographic providence. Among the first published remarks and illustrations on facet
geomorphology in the western United States were those of Gilbert (1875, 1928) and Davis (1903, 1909). Both
viewed facets as exhumed fault planes, with only minor modification by erosion. Later workers, however,
noted a discrepancy between the dip angle of facets and of the fault planes beneath. Where facets often
dip between 20◦ and 35◦ (Anderson, 1977; Blackwelder, 1928; Davis, 1903, 1909; Fuller, 1931; Gilluly, 1928;
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Figure 1. Examples of normal-fault facets. (a) Mountain front in Lake Baikal Rift Zone, Russia. (b) Kung Co half graben, Tibet. (c) Hatay Graben, Antakya,
Turkey (Boulton & Whittaker, 2009). (d) Wasatch fault system, Provo section, near Springville, Utah, USA. (e) West side of Sangre de Cristo range, San Luis
Valley, Colorado, USA. (f) Star Valley fault, Wyoming, USA. Note fault trace (light blue dotted line) at base of range front. (g) Magnola fault, central Apennines,
Italy. Vegetation break marks approximate location of fault trace. (h) Portion of the Fucino fault near Gioia di Marsi, Italy. Fault trace shown in light blue dotted
line. (i) Wasatch fault system, Nephi section, Utah, USA. Fault trace shown in light blue dotted line.

Menges, 1990; Pack, 1926; Petit et al., 2009; Wallace, 1978; Wilkinson et al., 2015), the bedrock fault planes
below commonly form angles of 50◦ to 70◦ with respect to the horizontal (Blackwelder, 1928; Gilluly, 1928;
Fuller, 1931; Pack, 1926; Schneider, 1925; Wallace, 1978; Wilkinson et al., 2015). The difference in dip
between a normal fault plane and the facets above it implies that facets, despite their often strikingly pla-
nar form, are erosionally modified features (Gilluly, 1928; Pack, 1926). Gilluly (1928), in his work on the
Oquirrh Range (Utah, USA), pointed out an interesting implication of this erosional modification: “as the
dip of the fault averages more than 60 degrees along this part of the range front, a wedge having an apical
angle of 30 to 40 degrees has evidently been removed from each facet.” Because the tip of a facet gets exposed
to erosion earlier than the base, it undergoes more cumulative erosion. In this sense, the tip of a facet may
be considered geomorphically “older” than the base (Gilbert, 1928; Menges, 1990; Wallace, 1978).

An unusually well-documented example of the contrast between fault plane and facet morphology comes
from a study of the Campo Felice fault in the Italian central Apennines by Wilkinson et al. (2015). Detailed
maps of the Campo Felice fault plane obtained from terrestrial laser scans of the bedrock fault scarp, together
with ground-penetrating radar images of the fault plane in the subsurface, revealed a fault dipping at 57 ±
4◦, whereas the facet surface above the exposed fault plane dips at 40 ± 5◦ and the debris below the fault
trace dips at 36 ± 3◦. Along the Campo Felice, therefore, Gilully's “removed wedge” would have an apical
angle of about 17◦.

Facets show a wide diversity in morphology. Although the dip angles of many facets range between 20◦

and 35◦, facets have been reported to have dips as low as several degrees (e.g., Menges, 1990) or as high
as ≥40◦ (e.g., Wilkinson et al., 2015) (Figure 2). Their apices may vary in height from tens to hundreds of
meters above the fault trace. Some facets are more or less continuously mantled in soil, as, for example,
those along a portion of the Sangre de Cristo Range in New Mexico, USA, studied by Menges (1990), and
on some facets along the eastern margin of the American Basin and Range (Figures 1d, 1f, and 1i). Others,
including facets developed on carbonate rocks in the Italian central Apennines, are rocky, with a shallow,
discontinuous colluvium (Tucker et al., 2011) (Figures 1g and 1h). The longitudinal profiles of facets may be
planar, slightly convex upward, or slightly concave upward (Figure 2). Some faceted mountain fronts display
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Figure 2. Selected facet profiles, measured on a 1-m digital elevation model, from four segments of the Wasatch Fault
Zone (Fayette, Levan, Nephi, Brigham City). Profiles labeled by mean slope angle and concavity. Base of each facet lies
just above the colluvial wedge and any fault scarp (profile coordinates listed in Table S2).

a clear break in slope between the base of the facets and an adjacent colluvial apron (Figures 1g, 3b, and
3c). For example, facets and adjacent colluvial wedges surveyed by Bubeck et al. (2015) in the Apennines
showed a distinct slope break. Along other mountain fronts, the basal colluvium dips at a similar angle to
the facet above (Figure 3a), with the contact between the two sometimes marked by a fault scarp (Figure 1h),
and sometimes obscured (Figure 1i).

The diversity in facet morphology raises the question of whether facets may encode useful information about
tectonic processes, as several studies have suggested. Hamblin (1976) and Anderson (1977) identified flights
of facet-like surfaces along the Wasatch Front (Utah, USA) separated by bench-like spurs and interpreted
these as reflecting alternating episodes of rapid slip and tectonic quiescence. Menges (1990) noted that facets
along the southern Sangre de Cristo Range tend to be steeper and taller toward the middle of fault segments,
as opposed to zones of overlap between adjacent segments. DePolo and Anderson (2000) compiled morpho-
logic data on 45 normal faults with independent slip-rate estimates in the arid to semiarid environment of
the Great Basin, USA. Faults with a slip rate in excess of a few tens of microns per year were associated with
facets, and among these, DePolo and Anderson (2000) demonstrated a correlation between slip rate and
facet height. In a study of facets along four segments of the Wasatch fault system, Zuchiewicz and McCalpin
(2000) noted multiple potential controls on facet geometry, including lithology, but they considered slip rate
to be the primary control. In laboratory experiments by Strak et al. (2011), facet angle increased with slip rate
up to a limiting threshold angle. By contrast, Densmore et al. (1998) and Ellis et al. (1999) suggested on the
basis of numerical model experiments that facet erosion might be controlled chiefly by bedrock landsliding,
such that facet angle represents a threshold angle for stability that does not correlate with slip rate.

If facets take shape through a collaboration between tectonics and erosion, then it stands to reason that
their morphology might also encode useful information about rates of geomorphic processes. Menges (1990)
noted, for example, that the degree of soil development generally increases upslope on facets along the
southern Sangre de Cristo Range. Using a simple geometric model, Tucker et al. (2011) noted that the dif-
ference in dip angle between a facet and its basal fault—in other words, the apical angle of Gilluly's wedge
of missing rock (𝛽 in Figure 4)—could be related quantitatively to the ratio of the rates of fault slip and facet
erosion. Expressed in terms of surface-normal erosion rate En (as opposed to the arc-wise vector used in the
original paper), the relation is as follows:

sin 𝛽 = sin(𝛼 − 𝜃) = En∕V , (1)
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Figure 3. Selected facet and colluvial wedge profiles from three segments of the Wasatch Fault Zone (Fayette, Levan,
Nephi). (a) Facet and colluvial wedge profiles for which the facet and colluvial wedge have similar slope angles.
(b) Facet and colluvial wedge profiles for which the slope of both is less than 34◦, and fractional regolith cover nears
100%, but where the facet and colluvial wedge exhibit different slopes. (c) Facet and colluvial wedge profiles for which
the slope of the facet is greater than 34◦, and the surface of the facet appears rocky (fractional regolith cover <100%).
(d–f) Airborne lidar hillshade examples of profiles in relation to topography: (d) gentle and smooth slopes with
uniform regolith cover; (e) intermediate slope with uniform regolith cover; and (f) steep slope with bedrock exposed.
Line segments correspond to plotted profiles in (a), (b), and (c). Fractional soil cover estimated from lidar hillshade and
field observations (profile coordinates listed in Table S3).

where 𝛼 is the fault dip angle, 𝜃 is the facet dip angle, and V is the fault slip rate (these and other symbols are
listed in Table S1 in the supporting information). The concept is illustrated in Figure 4. One implication of
the geometry illustrated in Figure 4 is that if one knew the fault slip rate and the fault dip, one could estimate
the erosion rate (averaged over the age of the facet). Conversely, independent knowledge of the erosion rate
would allow estimation of the slip rate.

The geometric view of facets as surfaces that erode as they emerge from below ground leads to the question of
what factors determine the erosion rate on a normal-fault facet—and this in turn requires us to understand
the governing geomorphic processes acting on the surface. Wallace (1978) hypothesized that fault scarps
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Figure 4. Conceptual illustration showing how fault slip rate, V , fault dip
angle, 𝛼, and slope-normal erosion rate, En, combine to set the dip angle of
a facet profile. Ev is the vertical erosion rate (modified from Tucker
et al., 2011).

created by tectonic offset should relax relatively quickly from the initial
fault dip to a more stable angle of 30◦ to 37◦ and thereafter lay back much
more slowly. As noted earlier, Densmore et al. (1998) and Ellis et al. (1999)
proposed, on the basis of numerical model experiments, that many facets
form by bedrock landsliding and that the facet surfaces essentially rep-
resent failure planes. Petit et al. (2009) questioned this interpretation, in
part because of the scarcity of features such as head scarps and debris
lobes that one would expect to be associated with bedrock landsliding.
Our own observations of facets in the Italian Apennines and the Wasatch
fault system, USA, also lead us to support the view of Petit et al. (2009)
that facets often undergo progressive weathering and erosion, as opposed
to deep-seated landsliding (though landsliding undoubtedly does occur
occasionally on some faceted mountain fronts). Menges (1990) suggested
that facets might be effectively transport limited, yet the fact that some
facets have extensive bedrock outcrops suggests that this is not always the
case. Whereas Menges (1990) noted some evidence for slope wash, Gilbert
(1928) argued that “rains accomplish little in the way of erosion… [due
to] absorption and retardation by porous talus and in conditions unfa-
vorable to concentration of flow.” Finally, variation in facet morphology
and scale with lithology implies that facet materials differ in their sus-
ceptibility to weathering and transport (Menges, 1990; Zuchiewicz &
McCalpin, 2000).

Numerical models of extensional mountain range evolution can reproduce classic landforms such as facets,
spurs, and wineglass-shaped valleys (wide in the headwaters and narrowing downstream; e.g., Leeder &
Jackson, 1993), but models differ in their representation of the governing processes. Densmore et al. (1998)
and Ellis et al. (1999) introduced a model that included rock weathering, regolith creep, and bedrock lands-
liding and explored a part of the parameter space in which facet erosion occurred primarily by landsliding.
A model developed by Petit et al. (2009) represented hillslope erosion using a diffusion formulation, with
a higher transport coefficient applied to slopes steeper than 40◦. In their study of facets in the Great Basin,
DePolo and Anderson (2000) showed that the observed relationship between slip rate and facet angle was
consistent with a nonlinear diffusion model. The planform landscape evolution model studied by Petit et al.
(2009) showed little correlation between facet slope and fault dip angle, whereas the geometrical analysis
of Tucker et al. (2011) implies that fault dip should be a primary control. In summary, the community has
developed several published models of landscape evolution on extensional footwalls, but the implications of
these models for facet evolution differ depending on the assumed process rules. To make further progress, we
need models that can account for the observed diversity in facet morphology, including variations in slope
angle, regolith cover, and shape, and that make field-testable predictions about the relationship between
morphology, erosion rate, and slip rate.

3. Approach and Scope
We view normal-fault facets as unique natural experiments: slopes that are born as steep, seismotectonic
fault scarps, and undergo progressive weathering and erosion as they are translated upward and away from
the fault trace. We use a process-oriented cellular automaton model of facet cross-section evolution as an
interpretive tool with which to address the following questions: Can a model that combines rock weathering
with disturbance-driven soil creep account for the observed range in facet angle, regolith cover fraction,
shape, and colluvial wedge angle? If so, what are the primary controlling factors? Does the model imply
a systematic relationship between facet angle, erosion rate, and fault slip rate, and if so, what does that
relationship look like? The answer to this last question is especially important, because it sets up a testable
prediction: Facet angle is easy to measure, and erosion rate can in principle be obtained either through the
geometric method summarized in Figure 4 (if fault slip rate is known) or by techniques such as cosmogenic
nuclide analysis.

We focus on the cross-sectional geometry of facets, rather than their full three-dimensional (3-D) form; in
other words, our interest is not in explaining why facets are often triangular (reflecting the geometry of
transverse canyons) but rather in understanding what sets their gradient, profile shape, and regolith cover.
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Figure 5. Schematic illustration of model domain, which represents a vertical cross section through an idealized facet
and its adjacent colluvial wedge. The right side of domain represents the upper edge of facet, and the left side represents
a longitudinal stream in the hanging wall that removes any debris delivered to it. Changing the position of the cross
section (e.g., from a-a′ to b-b′), and therefore its length, is accomplished by changing the width of the model domain.

That said, the influence of facet length—the distance between the fault trace and the facet's upper edge
at a particular cross-sectional position—is considered by comparing models with varying domain length,
as described below. We do not consider controls on the height of the facet edge, as this clearly depends in
part on the spacing between transverse channels and on the topography of valley side slopes along them.
We further restrict our consideration to unchanneled facet surfaces, where incision by concentrated flow
plays little or no role. Finally, our main focus is on normal-fault facets, rather than facet-like features that
form by other means, such as folding or rapid river incision (e.g., Cotton, 1950), though there are obvious
similarities, and steep slopes formed by rapid vertical base-level fall have been studied theoretically using a
version of the same model that we apply here (Tucker et al., 2018).

Note that we use the terms “soil,” “regolith,” and “colluvium” interchangeably to refer to loose granular
material on a hillslope. We do not distinguish among the properties of different types of soil or other granular
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Figure 6. (a–h) Illustration of cell states and pairwise transitions in the Grain Facet model, with examples of several
transitions. Each cell assigned an integer from 0 to 8 that represents its state (0 is air, States 1–6 represent the six
directions of motion, State 7 is stationary regolith, and State 8 is rock) (figure modified from Tucker et al., 2018).

material but instead consider the primary material contrast to be the difference between bedrock and the
disaggregated, granular material that results when that rock has been sufficiently weathered.

4. Cellular Hillslope Evolution Model
We model facet profile evolution using a continuous-time stochastic cellular automaton method. With this
method, the spatial domain is represented using a discrete lattice of cells, while the dynamics are modeled
by cell-state transition events that occur at random intervals in time, according to specified rate coeffi-
cients (Narteau et al., 2001, 2009). This approach offers several important advantages for modeling facet
slope evolution. First, it accounts for a continuous range of slope forms, from smooth, soil-mantled slopes
to steep, irregular, and rocky ones (Tucker et al., 2018). It provides a direct treatment of stochastic distur-
bances, rather than lumping their effects into a “black-box” rate coefficient, and these disturbances can
trigger both short-range and long-range (nonlocal) ravel-like sediment motion, depending on topography.
Nonetheless, the model's parameters can be translated to field-estimated rate coefficients for weathering
and sediment transport (Tucker et al., 2018). Furthermore, because the cellular framework allows a fully
two-dimensional representation (as opposed to the more common profile representation, in which surface
elevation is a function of one independent spatial dimension), it provides a natural way to treat combined
vertical and horizontal tectonic offset. Finally, the cellular approach described below (and in greater detail
by Tucker et al., 2016, 2018) honors the occurrence of a patchy or otherwise incomplete regolith cover, as is
observed on some facet surfaces.

The facet profile evolution model builds on the “Grain Hill” cellular automaton framework (Tucker et al.,
2018), with the addition of a 60◦ dipping normal fault. The model domain consists of a lattice of hexagonal
cells that represents a vertical cross section through a hypothetical facet and its adjacent colluvial wedge
(Figure 5). The height of each hexagonal cell (defined as twice the apothem, which is the distance from
hexagon's center to the midpoint of one of the sides) is denoted by 𝛿. The lower left corner of the model
represents a longitudinal stream that removes any debris delivered to it, and whose elevation can either be
fixed to the hanging wall block or allowed to rise over time at a prescribed rate. In either case, the hanging
wall serves as the reference frame for the model. The right side of the model represents the upper edge of
the facet at that particular cross section; increasing or decreasing the width of the domain broadly equates
to moving the cross section toward or away from the facet tip (Figure 5).

Each hexagonal model cell represents one of three types of material: air, rock, or regolith (Figure 6). Regolith
cells may be stationary or may be in a state of motion in one of the six lattice directions. Collectively, these
materials and motion directions are represented by assigning one of nine integer state codes to each cell
in the domain (one each for air, rock, and stationary regolith, plus one for each of the six motion direc-
tions). Stochastic, pairwise transitions represent the processes of rock weathering, regolith disturbance,
and ensuing regolith motion (Tucker et al., 2016, 2018). For example, the rock cell in a rock-air pair has a
user-specified probability per unit time of transitioning to a regolith cell, representing weathering. Instead
of clicking through a series of time steps of fixed duration, the model iterates over a sequence of these
stochastic-in-time transition events, in which one or both cells in an adjacent pair change state. The algo-
rithm works by scheduling each potential transition event at a randomly generated future time, using
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an exponential probability distribution function of interevent waiting times. The program then iterates in
chronological order through these scheduled events. As the domain evolves, new transitions are sched-
uled, and some previously scheduled ones are invalidated. Tucker et al. (2016) provide a comprehensive
description of the continuous-time stochastic framework and the algorithms that implement it.

Tucker et al. (2018) present the rule set for the Grain Hill model. Here, we briefly summarize these rules
and describe two additions to the original version: the implementation of steady slip on a 60◦ dipping nor-
mal fault, and the addition of a rule that represents dissolution of bedrock. Adding the dissolution rule
permits comparison of the numerical model with a simple analytical expression and also acknowledges the
occurrence of facets in soluble rock, such as the platform carbonates common to the Mediterranean region.

To represent normal-fault slip, a 60◦ dipping fault crosses the grid lattice at a user-specified location
(Figure 5, bottom). Fault slip is treated as quasi steady, with small displacement events occurring at regular
intervals. During each slip event, cells in the footwall block are shifted up and to the right on a 60◦ angle,
with a displacement distance of

√
3 lattice units per time interval 𝜏s (

√
3 corresponds to shifting cells to the

right by one column and upward by one and a half cell widths). We will also make use of a related quantity,
𝜏 = 𝜏s∕

√
3, which is the average time interval between unit slip events. The slip rate is therefore V = 𝛿∕𝜏

[L/T], where 𝛿 is the width of a grid cell; slip rate is controlled in the model by setting 𝜏s. Note that the square
brackets here and below are used to indicate the dimensions of certain quantities, with L denoting length
and T denoting time (so for example “[L/T]” should be read as “this variable has units that represent length
per time,” such as meters per second, fathoms per fortnight, or potrzebies per kovac; Knuth, 1955).

Production of regolith from bedrock is represented by a transition from a rock-air pair to a regolith-air
pair (Figures 6a and 6b). The rate constant w [1/T] represents the average transition frequency. We denote
the corresponding characteristic weathering velocity as W = 𝛿w [L/T]. Given a cell width of 𝛿, the expected
bare-bedrock weathering rate is 2aW , where a is a surface-roughness coefficient (described below); the fac-
tor of 2 reflects the fact that for a planar surface, the hex lattice geometry exposes an average of two faces per
cell. Note that the model's treatment of weathering means that it effectively occurs normal to the air-rock
interface, whatever the orientation of that interface may be.

In order to explore the case of completely weathering-limited slopes, we introduce a second weathering rule
to represent dissolution. When this rule is invoked, rock-air cell pairs transition to air-air pairs—representing
rock dissolution—with an average rate s [1/T], and a charateristic dissolution velocity Ws = 𝛿s. The expected
bare rock dissolution rate [L/T] is therefore 2aWs.

We assume that regolith transport can occur by two means: (1) displacement by a disturbance event and
subsequent motion or (2) spontaneous gravitational failure, when the local angle of repose is exceeded. The
model's disturbance rule represents the action of processes like animal burrowing, frost heave, tree throw,
and other mechanisms that tend to displace regolith outward from the surface. The disturbance transition
rule applies to locations where a resting regolith cell lies adjacent to an air cell. When the transition occurs,
the regolith and air trade places, and the regolith state switches from resting to moving in the direction
from which disturbance originated (Figures 6b and 6c). The disturbance rate parameter d [1/T] represents
the average disturbance frequency and functionally equates to the disturbance frequency parameter Na in
the probabilistic theory of soil creep developed by Furbish et al. (2009). The corresponding characteristic
disturbance velocity is denoted by D = 𝛿d. Tucker et al. (2018) show that for relatively gentle slopes, the dis-
turbance rate relates directly to the commonly used soil transport efficiency factor (“hillslope diffusivity”),
Ds, according to

d =
Ds

60𝛿2 . (2)

For regolith-mantled slopes steeper than about 15◦, the effective transport efficiency increases progressively
with slope angle, diverging at a 30◦ effective angle of repose (Tucker et al., 2018, their Figure 10).

Moving particles follow a set of transition rules that mimic the kinematics of inelastic grain motion in a
gravitational field. Although these motion and collision rules are necessarily heuristic, they effectively cap-
ture the settling motion of disturbed particles (Furbish et al., 2009). The motion, gravitational, and inelastic
collision rules are illustrated in Figure 6 and described in greater detail by Tucker et al. (2016, 2018). One
rule to note in particular is that a regolith cell lying above and adjacent to an air cell can transition to a
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Figure 7. Simulated facet cross-sectional profiles formed under a combination of fault slip and dissolution. Dark gray indicates rock, and light blue is air. Labels
show the dimensionless effective dissolution efficiency, S′ (equation (3)), and the predicted and simulated average facet slope angle, 𝜃. Solid line shows facet
profile predicted by equation (4). Dotted line shows projected fault plane. Panels (e) and (f) show runs with the same S′ as (b) and (c), respectively, but with
longer facets (represented by a wider model domain).

moving state, with a high transition rate parameter, representing spontaneous gravitational destabilization.
Because of the lattice geometry, this rule imposes an effective 30◦ angle of repose. Regolith cells on slopes
steeper than this will tend to undergo spontaneous downslope motion without requiring a disturbance event
to mobilize them. This treatment provides a way to represent ravel transport.

Sensitivity experiments indicate that the exact nature of the motion and settling rules is not especially impor-
tant (see the supporting information). What matters more is that there exists a timescale separation between
disturbance (with intervals on the order of years) and settling (timescale on the order of seconds or less). The
rule set described above can capture a range of slope forms, including regolith-mantled and convex-upward
forms, planar angle of repose, and partially mantled “rocky” slopes (Tucker et al., 2018). This generality
makes the model an appropriate one for exploring bedrock fault scarps and facets, which emerge during
earthquakes as steep, rock slopes and can subsequently evolve into partially or fully regolith mantled ero-
sional slopes. In the following section, we present a systematic parameter exploration, beginning with the
simple case of a purely weathering-limited slope.

5. Results
5.1. Weathering Limited Case: Facet Dissolution
We start with a simple test: If a facet erodes at a steady, uniform rate, its evolution should follow the geometry
illustrated in Figure 4. The profile should be linear, and the dip angle should relate to the rates of erosion and
slip according to equation (1). To perform this test, we run the model with dissolution activated and without
any rock-to-regolith conversion. On a planar surface, with an average of two faces per cell, the expected
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Figure 8. Difference in angle between fault plane (𝛼) and facet (𝜃), as a
function of the dimensionless dissolution rate S′, which is expected
dissolution rate divided by the fault slip rate, from runs with fault slip and
dissolution (only). Open circles and pluses show individual model runs
with shorter and longer facets, respectively (Figure 7). Line shows the
prediction of equation (4).

average rate of erosion by dissolution would be 2𝛿s. Surface rough-
ness further increases the effective dissolution rate by a factor a ≈ 1.8
(supporting information section S2).

We define a dimensionless dissolution efficiency as the ratio of expected
dissolution rate (2a𝛿s) to fault slip rate:

S′ = 2a𝛿s
V

. (3)

Here 2a𝛿s [L/T] is the expected slope-normal erosion rate, and S′ there-
fore represents the ratio of slope-normal erosion rate to fault slip rate.
From equation (1), the predicted facet dip angle is

𝜃 = 𝛼 − sin−1S′, (4)

where 𝜃 and 𝛼 are both in radians. Figure 7 presents simulated profiles
for facets eroded by dissolution, under different values of dimensionless
weathering rate S′. The figure also compares shorter and longer facets
(top and bottom rows, respectively). The simulated facets show a linear
relation between angle and dissolution rate, consistent with the analytical
expectation (equation (4)) (Figure 8). As expected, there is no apparent
relation between slope angle and the width of the cross section.

5.2. Facets With Regolith
We next consider the case in which rock weathers isovolumetrically to regolith rather than dissolving,
with regolith motion driven by stochastic disturbance events (Figure 6). Two dimensionless parameters

Figure 9. Examples of simulated facet profiles at varying values of d′ and w′. Dotted line shows projected fault plane.
Model grids have 111 rows and 81 columns.
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Figure 10. Modeled equilibrium facet angle as a function of weathering and disturbance rate parameters. Solid line
shows the analytical solution for the case in which no regolith is produced (all rock dissolves), which corresponds to an
effectively infinite disturbance rate. Dashed line shows the model's 30◦ effective angle of repose.

determine the model's behavior:

Dimensionless weathering rate: w′ = W∕V = W𝜏∕𝛿 = w𝜏

Dimensionless disturbance rate: d′ = D∕V = D𝜏∕𝛿 = d𝜏.

The first of these represents the characteristic weathering velocity (W) relative to fault slip rate (V), whereas
the second represents characteristic disturbance velocity (D) relative to fault slip rate.

Figures 9 and 10 illustrate the role of these two parameters for the case of a facet of fixed length. The model
shows three behavior regimes. When w′ ≫ d′, gradient depends on the disturbance frequency regardless of
weathering rate. In this transport-limited regime, solutions with d′ ≤ 1 produce angle-of-repose slopes
(recall that the model has a 30◦ effective angle of repose) (Figure 9, panels in upper left quadrant). Although
these angle-of-repose solutions are not inevitable, they occupy a large part of the model's parameter space
and could be thought of as an attractor state. When w′ < 1, slope angle depends primarily on w′. But even in
this weathering-controlled regime, disturbance rate continues to have some influence, except in the extreme
dissolution-limited case when there is no regolith to move (Figure 10, solid curve and circles).

Facet shape depends on both w′ and d′. With sufficiently effective weathering and transport, represented by
the parameter space w′ > 1 and d′ > 1, the model produces convex-upward facets (Figure 9, upper right). If
either of these parameters is less than unity, the model generates planar or nearly planar facets. The regolith
cover that forms on these surfaces remains relatively thin (one to a few 𝛿 thick) because the nearly complete
cover shields the bedrock from further weathering.

Figure 11. Modeled regolith cover proportion for facets in quasi steady
state, as a function of weathering and disturbance rate parameters. Scatter
around the sigmoidal curve reflects stochastic variability (each data point
represents one snapshot in time rather than a temporal average).

Facet length has little influence on slope angle (cf. Figure 10 left and right),
except in the case of d′ ≫ 1 (star and triangle symbols in Figure 10). Here,
longer slopes are systematically steeper, because in this transport-limited,
subthreshold mode, increased downslope regolith flux necessitates a
steeper gradient.

The fractional regolith cover depends mainly on w′ and secondarily on
d′ (Figure 11). The relation follows a sigmoid-like curve, with the steep-
est segment of the curve corresponding to w′ ≈ 1 and a fractional cover
of approximately 50%. The calculations show >80% cover when w′ > 10
and less than 50% cover when w′ < 1. For a given w′, a facet with a higher
disturbance rate will tend have a thinner cover, all else equal. Values
of d′ ≪ 1 are associated with significantly enhanced stochastic variability
in cover percentage in both space and time.

5.3. Colluvial Wedges
We explore the formation of colluvial wedges with a series of model runs
similar to those in Figure 9 but with the fault location shifted to the right
(Figure 12). This geometry places the base-level outboard of the fault
trace, thereby allowing the creation of a colluvial wedge between the
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Figure 12. Simulated facet profiles showing the development of a colluvial wedge (light brown cells) on the
hanging wall.

fault and base level. In the angle-of-repose regime, with w′ > 1 and d′ ≤ 1, the wedge shares the same slope
gradient as the facet itself, so that the fault trace appears partway up the facet slope (Figure 12, upper
left). Solutions with w′ < 1 and d′ < 1 generate slope breaks because the bedrock facet rises more steeply
than the colluvial wedge, which can be no steeper than the angle of repose (Figure 12, lower left). With
w′ < 1 and d′ > 1, sediment transport becomes efficient enough that the wedge slope is less than the angle of
repose (Figure 12, lower right). Solutions with w′ ≈ 1 and d′ > 1 produce a relatively muted slope break in
which both the facet and the wedge lie below the stability angle.

5.4. Base-Level Change
Up to now we have assumed that the base-level elevation remains fixed to the rocks in the hanging wall.
In real extensional systems, however, this will rarely be the case. With the hanging wall rock as a reference
frame, base level may rise as the hanging wall basin undergoes aggradation: a common situation in exten-
sional systems. On the other hand, if the entire extensional system rises relative to an external base level
such as eustatic sea level, the hanging wall blocks may themselves be incised, such that the local base level
within a given hanging wall falls. Hanging wall incision has occurred, for example, in parts of the central
Apennines extensional province in Italy (e.g., D'Agostino et al., 2003).

To explore how base-level rise might influence facet evolution, we performed a series of models runs iden-
tical to those in the previous section but with the addition of a numerical “sill” along the left boundary
(Figure 13). The sill's elevation rises through time at 25% of the vertical speed of footwall motion. The experi-
ment is imperfect, as there is no easy way to keep the facet length constant. Nonetheless, the results illustrate
potential impacts of hanging wall aggradation. In the reference frame of hanging wall bedrock, the fault trace
rises and migrates away from the basin. Aggradation reduces the gradient of both the bedrock facet and the
colluvial wedge. When w′ and facet length are sufficiently low, the rate of accommodation space creation
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Figure 13. Simulated facet profiles with a rising base level along the left model boundary, representing an aggrading
hanging wall basin. The “sill” that implements rising base level is shown by the dark points along the lower portion of
the left side of each panel.

outpaces the sediment flux from the eroding facet, and all the incoming sediment is trapped (Figure 13).
In these cases, sediment from an external source, such as an axial river or a nearby fan fed by a transverse
stream, might be expected to fill the extra accommodation space, creating a sharp contact between the facet
and the (relatively flat) basin floor, with the fault trace essentially at the slope base, as is sometimes observed
(e.g., Figure 1f).

When the weathering and (especially) disturbance rates are high relative to slip rate, the model realizations
produce nearly flat footwall and hanging wall topography (Figure 13, top three rows of rightmost column).
Effectively, the footwall is planed off as it rises, with the debris accumulating in the adjacent basin.

5.5. Relation Between Facet Angle and Erosion Rate
To examine the predicted relationship between erosion rate and facet dip angle, we define a dimension-
less slope-averaged vertical erosion rate as E′

v = Ev∕𝛿d. The denominator represents the maximum rate of
regolith removal by disturbance: It is the rate one would obtain if each disturbance triggers a ravel event
that transports the disturbed material to the base of the slope. In other words, E′

v = 1 can be thought of as
representing “perfect” nonlocal transport (e.g., DiBiase et al., 2017; Doane et al., 2018; Tucker & Bradley,
2010). Cases with E′

v < 1 arise either when some displaced regolith remains on the slope (indicating local,
diffusive-like transport) or when the regolith cover is incomplete. Cases with E′

v > 1 indicate some degree of
direct gravitational failure of regolith material. To understand how E′

v > 1 is possible, recall that the model
allows for spontaneous mobilization of stationary regolith wherever a regolith cell lies diagonally above an
adjacent air cell (Tucker et al., 2016, their Figures 14 and 15). This rule represents the gravitational fail-
ure that results when grains are perched in a configuration that exceeds their friction angle (imagine, e.g.,
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Figure 14. Relationship between dimensionless erosion rate and steady-state facet angle, generated from a set of model
runs with varying w (from 10−5 yr−1 to 10−2 yr−1), varying 𝜏s (from 102 to 105 yr, corresponding to V from 0.005 to 5
mm/yr), and fixed d (10−4 yr−1). Each dashed line connects a series of runs with identical w but varying 𝜏s (decreasing
from left to right). Color in (b) represents the ratio of actual slope-normal erosion rate, estimated from the run's last
snapshot, to the theoretical maximum. For very steep cases, the estimation of erosion rate relies on just a small number
of eroded cells and gives rise to variability in the erosion-rate ratio when angle is greater than about 50◦. Color scales
shown by bars to right of each figure.

placing a pebble on an angle-of-repose slope: the pebble rolls downhill simply because the gravitational force
exceeds the frictional resistance, without the need for a disturbance event to mobilize it).

The predicted relationship between facet dip angle and E′
v is shown in Figure 14. The figure depicts data

from a set of model runs with varying weathering efficiency (w) and slip rate (V). Dotted lines connect runs
with the same weathering efficiency but varying V ; for each such set of points, slip rate rises progressively
from left to right, accompanied by an increase in facet angle. Color shading in (a) indicates the proportional
regolith cover at the end of each run, while shading in (b) shows the ratio of actual slope-normal erosion rate
to the theoretical maximum that would apply if regolith were instantly removed as soon as it was created.

The results illustrate two regimes of behavior. Regolith-mantled facets show a strongly nonlinear relation-
ship between angle and erosion rate, with a rapid acceleration in erosion rate near the model's 30◦ angle
of repose (yellow [light-colored] points in Figure 14a). Rocky facets, on the other hand, have a roughly
log-linear relationship (blue [dark] points in Figure 14a).

The first regime represents transport-limited behavior. As slope angle increases, the model predicts a
nonlinear increase in average erosion and transport rates and a transition in morphology from convex
upward to planar (Tucker et al., 2018). For fully regolith-mantled slopes, the model's 30◦ effective angle
of repose imposes an upper limit (yellow points in Figure 14a). This behavior is consistent both with the
Andrews-Bucknam transport law (Andrews & Bucknam, 1987; Roering et al., 1999) and with experimental
and field data on soil-mantled hillslopes (Binnie et al., 2007; DiBiase et al., 2012; Ouimet et al., 2009; Roering
et al., 2001; Roering, 2008; Stock et al., 2009).
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The second regime represents weathering-limited behavior. In this regime, for a given weathering efficiency
(w), the erosion rate rises approximately exponentially with slope angle, as indicated by the roughly linear
trends for facets with less than ∼80% regolith cover in Figure 14a (note the logarithmic 𝑦 axis). The relation-
ship reflects increased regolith mobility, and decreased cover fraction, on steeper slopes. Because of surface
roughness, the regolith is not infinitely mobile but rather can become temporarily trapped and stored in
microdepressions. These microdepressions appear even on very steep simulated bedrock facets, like those
along the bottom row of Figure 9. One consequence is that the slope-normal erosion rate remains below the
theoretical maximum of Emax = 2a𝛿w, which would represent a case of pure dissolution and no regolith pro-
duction (symbol colors in Figure 14b illustrate the ratio of actual erosion rate to this theoretical maximum).
This weathering-limited regime illustrates an interesting feedback: Weathering produces microtopographic
roughness features that trap colluvium, preventing slopes above the angle of repose from become completely
bare and (according to the rules of the model) shielding some of the bedrock from weathering. As the slip
rate increases, the ability of microtopography to trap material is diminished, the fractional cover declines,
and the erosion rate rises.

6. Discussion
6.1. Understanding the Variability of Facet Form
Facets and their colluvial toes exhibit a fascinating variety of forms, with notable differences in slope angle,
regolith cover, profile shape, and the presence or absence of a slope break at the fault trace. Although the
process model developed here has only two dimensionless parameters (d′ and either w′ or s′), it can repro-
duce much of the observed variety. The model manifests two general modes of behavior. Modeled slopes
for which weathering efficiency is much greater than slip rate (w′ ≫ 1) exhibit transport-limited behavior,
in which slope gradient is largely insensitive to weathering efficiency (Figure 10, points with w′ > 1). In
this mode, the equilibrium dip angle for modeled facets with a slip rate greater than the characteristic rate
of soil disturbance (d′ ≤ 1) is the angle of repose (30◦ in the model) (Figure 10, small circles and pluses at
w′ > 1). When disturbance frequency exceeds the slip rate, facet slopes act as diffusion-like hillslopes, with
convex-upward longitudinal profiles, and average dip angles below the angle of repose (illustrated by the
upper right panels in Figure 9 and by the stars and triangles at w′ > 1 in Figure 10). In either case, the facet's
profile shape and dip angle are largely insensitive to weathering efficiency.

By contrast, facet slopes with a slip rate faster than the potential weathering efficiency (w′ < 1) operate in
a weathering-limited mode. In this mode, dip angle depends on weathering efficiency, slip rate, and dis-
turbance frequency (Figure 10, points for w′ < 1). In this mode, facets are planar and may be steeper or
gentler than the angle of repose. Although weathering limits the rate of erosion in this mode, the processes
of soil disturbance and downslope transport still exert an important influence; all else equal, facets with
lower disturbance frequency are predicted to be steeper, and vice versa. The morphologic signature that most
clearly distinguishes weathering-limited and transport-limited modes is the proportional regolith cover,
which depends primarily on weathering efficiency and secondarily on disturbance frequency (Figure 11).

The model also predicts that a break in slope between the facet surface and the colluvial apron below will
occur either when the facet dip angle exceeds the angle of repose or when the lack of regolith limits the
transport and erosion rate on the facet (Figure 12). Both cases occur in the weathering-limited regime and
are marked by an incomplete regolith cover on the facet. The slope break reflects a contrast in erosion and
transport efficiency between the rocky facet surface and the colluvial wedge. For a system with a relatively
steady base level, presence of a slope break suggests a weathering-limited regime. The converse is not quite
true; model realizations in the transitional regime of w′ ≈ d′ ≈ 1 show only a subtle slope break that might
be difficult to detect in the field, especially under base level rise (Figures 9 and 12).

A terrestrial laser scanning study of the Campo Felice fault in the Italian central Apennines provides an
interesting case study of an active fault with a slope break between facet and colluvial wedge. A set of 25
topographic profiles collected by Wilkinson et al. (2015) reveal a footwall slope angle of 40.3◦ ± 4.6◦, with
the colluvial wedge below dipping at 35.7◦ ± 3.2◦. The facet surface on the footwall is rocky, with a colluvial
cover fraction that we estimate from a reconnaissance survey to be ≈80%. Both the slope break and the
incomplete colluvial cover imply a weathering-limited regime.

Similarly, field observations of facets along the Wasatch fault zone are also consistent with the model. Where
slopes are below the angle of repose, bedrock breaks the surface only rarely, and no slope break is seen
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Figure 15. Relationship between steady-state facet angle and dimensionless
slip rate, generated from the set of model runs shown in Figure 14. Each
dashed line connects a series of runs with identical W but varying V .

between facet and wedge (Figures 3a and 3d). Where facet angles reach
and begin to exceed likely angles of repose, bedrock exposure becomes
much more obvious and also highly spatially variable. This is accompa-
nied by the appearance of a distinct break in slope between the facet
and the wedge. These observations suggest a transition from the w′ > 1 to
w′ < 1 domains, presumably driven by spatial variation in fault slip rate
on different segments of the fault.

6.2. Tectonics From Process and Topography
The two-parameter cellular model implies a systematic relation-
ship between facet angle, regolith cover, and erosion rate. For fully
regolith-covered slopes, the model's behavior is broadly consistent with
the Andrews-Bucknam transport law, which expresses a nonlinear rela-
tion between sediment flux per width, qs, and slope gradient, S:

qs = DsS
(

1
1 − (S∕Sc)2

)
, (5)

where Ds [L2∕T] is a rate coefficient and Sc is a threshold slope. The key
difference is that whereas equation (5) diverges at S = Sc (and therefore

only applies when S < Sc), the cellular model implies the possibility that S can exceed Sc. The transition
from below-threshold to above-threshold form coincides with a shift from soil-mantled to partly rocky and
represents a limitation on regolith transport as the cover thins. The limitation has two elements. First,
the reduction in cover limits the degree of mobilization by disturbance. Second, microtopography limits
the transport length of disturbed particles and effectively traps regolith even when the average slope angle
exceeds the angle of repose. Both effects must occur on real hillslopes. Capturing them with a geomorphic
transport law may require a nonlocal formulation that replaces the divergence in the Andrews-Bucknam
law with a reduction in transport rate as regolith cover shrinks. One potential approach would be an explicit
representation of characteristic transport length, which would vary both with S∕Sc and with the ratio of
mean regolith thickness to bedrock roughness.

Another way to envision the slope-erosion relation is to consider a set of facets with identical lithology and
climate (and hence fixed W and D) but varying slip rate (Figure 15). Facets with a lower rate of slip would
tend to be fully regolith mantled (unless W is especially low), and for this subset, increasing slip rate would
be met with an increase in facet angle (Figure 15, yellow [light-colored] points). Once the angle comes close
to the threshold angle for colluvium, any further increases in slip rate would be accompanied by an increase
in gradient above the threshold angle and a reduction in colluvial cover fraction (Figure 15, dark-colored
points).

The cellular model suggests an interesting role for topographic roughness. The stochastic nature of weather-
ing and regolith-disturbance events creates surface roughness, and especially so when a substantial fraction
of rock is exposed at the surface (Figures 7 and 9). The development of roughness can accelerate rock weath-
ering because it increases the exposed surface area. At the same time, as noted above, a rough surface can
trap and hold regolith even when the average slope angle is well above the angle of repose, which allows
even very steep slopes to retain some degree of regolith cover. On vegetated hillslopes, vegetation also con-
tributes to sediment trapping (DiBiase & Lamb, 2013; Doane et al., 2018). In the model, trapping of regolith
by roughness elements retards weathering by shielding the rock. In reality, it is possible that a thin regolith
cover could actually accentuate rock weathering by trapping chemically reactive water and/or enhancing
plant growth and vegetation-related weathering, as hypothesized by Gilbert (1877). The consequences of
such an effect for facet evolution might be explored numerically with a modified version of the cellular
model that allows faster weathering for rock in contact with near-surface regolith.

One indicator of relatively efficient weathering is the presence of a more or less complete soil mantle. Such
soil-mantled facets clearly exist, as documented, for example, by Menges (1990). Given that slip rates on
faceted mountain fronts are commonly 0.1–2 mm/yr (DePolo & Anderson, 2000), an implication is that max-
imum rates of rock weathering on facets can be at least this high. Rates on that order are broadly consistent
with the findings of Heimsath et al. (2012), who demonstrated that regolith production tends to be faster on
steeper slopes.
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To test the idea that facet angle and soil cover depend on rates of weathering and fault slip, one place to
look would be extensional systems in a hyperarid environment. In such an environment, faults slipping at
millimeters per year would be expected to produce rocky facets steeper than the threshold angle for granular
material, all else equal (and assuming the rock is strong enough to resist deep-seated landsliding). The same
could be said of facets formed in highly resistant lithologies such as quartzite.

One limitation to the scenarios considered here regards the potential role of partial dissolution in soluble
lithologies. For example, carbonates underlie many of the prominent facets in the Mediterranean region,
and facets we have surveyed in central Italy often host a thin (order 10 cm) and discontinuous soil cover
(Tucker et al., 2011). Copious clastic debris in fans and colluvial wedges implies that mechanical weathering
plays a major role, but it is also possible that partial dissolution of hillslope colluvium results in a soil cover
that is thinner than it otherwise would be (it is also conceivable that the soils have thinned over historic
time as a result of heavy grazing).

The behavior of the cellular model is consistent with a geometric model that relates facet angle to fault
dip and the ratio of slope-normal erosion rate to slip rate (equation (1)). An important caveat in apply-
ing this model is that the erosion rate can be expected to vary systematically with slope angle, even on
weathering-limited slopes. The cellular model predicts that the relationship between erosion rate and
slope angle depends on the degree of regolith cover, with transport-limited slopes showing a nonlinear
relationship in which erosion rate rises rapidly as the threshold angle is approached, and weathering-
limited slopes exhibiting a gentler, exponential-like relationship (Figure 14). Hillslopes can transition from
transport-limited to weathering-limited under changes in slip rate, as might be seen along strike in major
normal fault systems, or with variation in weathering and transport efficiency through time under a chang-
ing climate. For all but the most strongly weathering-limited systems, this transition creates a notable kink
in erosion rates close to the angle of repose, but whose exact form will be challenging to constrain from field
observations alone. This kink also in part explains the tendency of real facets to show dip angles clustered in
the range of 32–40◦: In this range, changes of only a few degrees can accommodate large changes in erosion
rate, creating a geometric attractor state in this window. The occurrence of facets considerably steeper than
40◦ requires a weathering efficiency (maximum weathering rate) less than the rate of fault slip (in other
words, w′ < 1). However, where this does occur, it is likely that facets offer records of past slip rates.

6.3. Testable Predictions
The prediction that erosion rates exhibit significant and highly nonlinear variations with facet slope could
be tested by obtaining erosion-rate estimates from facets above faults with an independently known slip
rate, perhaps using cosmogenic radionuclide methods. The model suggests that the form of this relationship
will be challenging to predict a priori for a given environment from field observations of slope and bedrock
exposure alone (e.g., Figure 14). However, given independent constraints on actual erosion rates across the
full range of slopes in a given facet array, the model suggests the potential to quantify fault slip rate from facet
form. Methods that assume either a constant erosion rate or an Andrews-Bucknam style slope threshold
will both result in poor calibration of slip rate from facet slope.

The predicted correlation between facet angle and fractional rock exposure should also be testable. Recent
work using lidar topography data has identified correlations between bedrock exposure and variables such
as drainage density, erosion rate, surface roughness, fracture density, and mean slope gradient (DiBiase et
al., 2012, 2018; Milodowski et al., 2015; Rossi et al., 2020). One challenge is that bedrock exposure metrics
tend to rely on local slope gradient as a proxy, which carries the risk of spurious correlation. Overcoming
this risk would require a slope-independent bedrock exposure proxy, such as one based on photographic
imagery rather than topography.

6.4. Model Applications and Limitations
The cellular model we have explored has the advantage of simplicity (just two dimensionless parameters,
w′ and d′), as well as a treatment of soil transport that honors its episodic and stochastic nature. Nonetheless,
there are plenty of limitations. In terms of geomorphic process, the model assumes that transport and ero-
sion by overland flow are negligible. This assumption may be justified for the planar, unincised cases that we
address here but is clearly not applicable to facets that are sliced by gully networks. We have also not consid-
ered the potential role of deep-seated landsliding in limiting the relief of facets on fast-slipping faults, though
as noted earlier, this process does not seem to be especially common. In terms of tectonic processes, we
have ignored both fault-plane rotation, and the possibility that the near-surface fault plane dip might not be
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identical to the long-term slip direction (e.g., in softer material, the near-surface fault dip may effectively be
steeper than the slip orientation; e.g., McCalpin, 2009). We have also ignored the possibility of time-varying
fault motion, which, as Hamblin (1976) suggested, might leave an imprint on mountain-front morphology.
Similarly, we have not addressed transient facet growth, fault breccia (or other forms of lithologic hetero-
geneity), varying fault dip, the occurrence of multiple parallel faults, or the effect of a basinward shift in the
position of the active range-bounding fault. These and other effects could be explored theoretically using
the cellular framework, which could in turn point toward additional field-testable predictions.

Questions concerning the formation and evolution of bedrock fault scarps could be addressed by incorpo-
rating discrete slip events, as opposed to the quasi-continuous slip considered here. Used in that fashion,
the model could provide a useful tool for analyzing and interpreting cosmogenic radionuclide samples on
bedrock fault scarps. The numerical model could also provide a template for developing an improved con-
tinuum theory of soil transport on steep slopes: one that overcomes the limited range of applicability of the
Andrews-Bucknam law and accounts for the role of microtopography in trapping sediment, as well as the
role of bedrock exposure in limiting downslope sediment flux.

7. Conclusions
The longitudinal profiles of normal-fault facets show a wide diversity in form. Facets can vary in slope angle
from several degrees to over 40◦. Soil entirely blankets some of them, while others reveal bare rock with a
patchy colluvial cover. Some show a distinct slope break between the facet and the colluvial wedge below,
while others exhibit a continuous, uniform gradient across the fault trace from footwall to basal colluvium.
Many have gradients close to a threshold angle for colluvium, but many others dip more gently.

A stochastic cellular automaton model of hillslope evolution with two dimensionless parameters can
account for the observed diversity in longitudinal profile form. The model addresses the morphotectonic
evolution of the near-surface portion of the footwall of a 60◦ dipping active normal fault. It uses tran-
sition rules to represent bedrock weathering and the intermittent disturbance and transport of regolith.
As shown in previous work, the model's parameters have a physical meaning and can be related to the
more common parameters of geomorphic transport laws for regolith production and downslope transport.
The two dimensionless process parameters represent characteristic velocities for weathering and regolith
disturbance, respectively, normalized by the fault slip rate.

The model exhibits two modes of behavior: transport limited and weathering limited. Under the for-
mer regime, which represents relatively large weathering efficiency, facet angle depends on disturbance
frequency and fault slip rate. Regolith fully blankets the modeled facets, and the threshold angle for
granular-material failure imposes an upper limit to gradient. This soil-mantled, threshold behavior emerges
when the potential weathering rate exceeds the fault slip rate, but the slip rate outpaces the disturbance rate.
In this regime, modeled slopes show a continuous gradient across the fault trace, from colluvial wedge to
footwall.

Weathering-limited behavior occurs when the fault-slip rate exceeds the maximum regolith production rate.
Modeled facets in this regime show intermittent regolith cover, with the cover percent depending mainly on
the ratio of (potential) weathering and slip rates and secondarily on disturbance frequency. Gradient may
exceed the threshold angle for colluvium; in this case, a partial colluvial cover remains held in place by
microtopography. If weathered rock dissolves instead of transitioning to mobile regolith, the model recap-
tures a geometric analytical solution for facet angle as a function of the ratio of erosion to slip rate. Under
weathering-limited behavior, modeled facets can exhibit a slope break between footwall and colluvial wedge
when either the footwall slope exceeds the threshold angle, or disturbance frequency is sufficiently high (or
slip rate sufficiently low) to transport eroded material at a lower-than-threshold gradient. Despite the term,
the model's weathering-limited mode involves important interactions between weathering and regolith
transport processes. For example, the rate of erosion in this mode depends on regolith disturbance frequency,
which helps set the degree of rock exposure.

The model predicts a nonlinear relation between erosion rate and gradient. The nature of the relation
depends on the mode. A soil-mantled, transport-limited facet slope shows a nonlinear curve that resembles
the Andrews-Bucknam transport law, with a nonlinear approach to an asymptote at the threshold angle
for stability. But where the Andrews-Bucknam law diverges at the threshold angle and says nothing about
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what happens above it, the cellular model implies a transition to weathering-limited behavior when gra-
dient exceeds the threshold. For rocky, weathering-limited slopes, the model predicts an exponential-like
relation between erosion rate and gradient.

The degree to which the model provides an accurate representation of facet profile evolution remains to be
tested. Estimating the erosion rates on facets of varying angle, lithology, and soil cover using cosmogenic
nuclide analysis could provide a test of the predicted controls on erosion rate. Direct collection and measure-
ment of downslope sediment flux could provide a shorter-term test that might also illuminate the governing
regolith production and transport processes. Ultimately, such data, in combination with the process-based
model presented here (or a suitably modified version thereof), could provide the basis for a geomorphic
transport law that captures the transition in behavior across the threshold angle for soil stability and the
related transition from soil-mantled to rocky slopes.
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