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Fargas Cabanillas, Josep Maria (M.S., Electrical engineering)

Frustrated coupling based adiabatic coupler

Thesis directed by Prof. Milos Popovic

In this master thesis we will present a new type of 2x2 3dB coupler that we called frustrated

coupling based adiabatic coupler. In our knowledge this coupler has the best performance among

all the 2x2 3dB 220nm thick silicon couplers. It has a splitting ratio of at least 51/49 over 200nm

bandwidth. Also 0.11dB splitting ratio over 40nm bandwidth. Low loss under 2.5% over the 200nm

and under 1% on the 40 bandwidth. Finally its footprint is 3.6m x 28m. It is 5 times smaller than

the best MMI [3].
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Chapter 1

Introduction

On the late 1960’s integrated photonics was born. On Miller’s original paper we can find

what it has been the core concepts of integrated photonics [7]. Silicon-on-insulator (SOI) is one

branch of integrated photonics that uses silicon as the main material to guide light. A high index

contrast between silicon and normally silicon oxide allows the creation of waveguides. And Thus

those lead to couplers, gradings, modulators etc. This technology was born mainly as a byproduct

of electronic chips foundries. Optics engineers realized that they could use SOI to create photonics

chips. This platform is increasingly becoming more and more popular due to its compactness and

scalability.

Silicon phototonics systems are made of different structures that manipulate light in different

ways. The most basic structure is the waveguide that allows to propagate the light though the

photonic chip. An other interesting structure is a 2x2 coupler. This device has two inputs and two

outputs and splits the light from each input to the two outputs evenly. It can seem that is a trivial

device but the 2x2 coupler is key to built most of the silicon photonics systems. For example to

build a Mach-Zender interferometer we need two 2x2 couplers. Boson sampling and linear quantum

integrated photonics are good examples where 2x2 couplers are need.

In this thesis we will explore the main approaches to design a 2x2 coupler and we will present

a novel 2x2 coupler design which we called frustrated coupling based adiabatic coupler.



Chapter 2

Theory to descrive 2x2 couplers

In this chapter we are going to explore the theory to understand the different kinds of 2x2

couplers in the literature. In order to do that first, we are going to introduce the slab waveguide to

understand the basic concepts. Then we will present a three dimensional waveguide and it’s prop-

erties. After understanding waveguides we are going to introduce coupled mode theory, supermode

picture and adiabatic theory to be able to describe property the different type of couplers.

2.1 Slab waveguide

Firstly we want to introduce the concept of optical guidance. Imagine a long square metallic

pipe made of metal with air inside. If an electromagnetic wave gets into the pipe it will hit the

walls and reflect as in a mirror and hit an other wall and reflect again and so on. Then we can say

that the square metallic pipe is guiding the electromagnetic wave. However we are working with

optical frequencies and metal generates high losses at those frequencies. But we can use the same

idea to guide optical frequencies.

The simplest optical waveguide is the dielectric slab. Is one of the few structures which

can be solved analytically. Understanding the slab waveguide is really useful to understand three

dimensional waveguides.

The major phenomenon that makes slab waveguides work is the total internal reflection.
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This happens in the interface between two dielectrics if the indecent angle is small enough. From

geometrical optics we know that a ray of light will follow the Snell’s law while crossing interface

separating two different dielectrics.

n1sin(Θ1) = n3sin(Θ3) (2.1)

Figure 2.1: In this figure we can see the slab waveguide geometry. It consist in three layers of

different dielectrics which their respective refractive indexes. Red arrows represent a ray traveling

through the structure.

We define the critical angle Θc as the angle just before internal reflection. So the condition

for the critical angle is Θ3 = π/2.

Θc = asin(
n3
n1

) (2.2)

Then all the waves with incident angles Θ1 > Θc will be guided due to internal reflection.

To understand the shape of the electric fields that propagate inside the structure we can

simply solve Maxwell equations.
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∇×E(r, t) = −µ0
∂H(r, t)

∂t

∇×H(r, t) = εon
2(r)

∂E(r, t)

∂t

(2.3)

The cross indicates a vector product, H and E are the magnetic and electric field vectors,

and εo and µo are the dielectric permeability and magnetic permeability of vacuum. Magnetic and

conductive materials are not considered. The index of refraction of the medium is designated by

n, and t is the time.

For the slab waveguide we can assume that there is no variation in y direction so

∂

∂y
= 0 (2.4)

We look for solutions with a constant propagation constant along z. For simplicity and

without losing generality we are assuming polarization in y direction. So, he mode is Transverse

Electric (TE). The other polarization: Transverse Magnetic (TM) can be solved analogously.

Manipulating Maxwell equations we find the scalar equation that has to be satisfied on each layer.

∇2Eyi(x, z) + n2i k
2
oEyi(x, z) = 0 (i = 1, 2, 3) (2.5)

We will to try the following solution where β is the propagation constant.

Eyi(x, z) = Ei(x)exp(−jβz) (i = 1, 2, 3) (2.6)

And then we will have to solve the following equation to find the possible values of β

d2Ei
dx2

+ [n2i k
2
o − β2]Ei = 0 (2.7)

We are looking for confined fields within the guide. This means we will have a standing wave
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inside the guiding layer and an evanescent field outside. So, we can write.

In layer 1: E1 = Ecos(κx− φ)

In layer 2: E2 = E′exp(γx)

In layer 3: E3 = E′′exp(−δ(x− h))

(2.8)

where the constants κ,γ and δ are given by

κ =
√
n21k

2
o − β2

γ =
√
β2 − n22k2o

δ =
√
β2 − n23k2o

(2.9)

The boundary conditions have to be satisfied. This means continuity of Ei(x) and its gradient

dEi
dx at each interface. At x=0 we get

E′ = Ecos(φ)

γE′ = −κEsin(−φ)

(2.10)

which leads to a closed-form expression for φ

tan(φ) =
γ

κ
(2.11)

Similarly at x=h we get

E′′ = Ecos(κh− φ)

−δE′′ = −κEsin(κh− φ)

(2.12)

and therefore:

tan(κh− φ) =
δ

κ
(2.13)

Then manipulating both expressions we will finally get the dispersion relation for the slab

wave guide:

tan(κh) = κ
γ + δ

κ2 − γδ
(2.14)
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This equation has a solution for a discrete set of β. We can solve this equation 2.14 numeri-

cally and find the possible values for β. Setting the width as a variable we will obtain the dispersion

curve shown in Figure 2.2.

Every mode has a different propagation constant. We know that the phase velocity is simply

the speed of light over the refractive index. So we define the effective refractive index for each mode

as:

neff =
βn
ko

=
βnλ

2π
(2.15)

Figure 2.2: In this figure we can see how the propagation constant is changing with width for both

polarizations. For each with exist a set of possible modes propagating through the dielectric. The

Y-axis is in units of neff . This is directly related to the propagation constant: neff = β
ko

. In this

structure n1 = 3.47 (Si) ,n2 = n3 = 1 (Air) @1550nm

As we can see in Figure 2.2 if the slab thickness is less than 0.2µm we will have only one mode

in each polarization. The first mode is called fundamental mode. A waveguide that only guides the
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fundamental mode is called monomode waveguide. In future steps we will like to have monomode

waveguides. It can be proven that the set of modes is complete. Every mode is perpendicular

respect to the others and the set of all of them form a base. This condition implies that the overlap

integral over the volume for the product of the electric field of two modes i and j is δij . The number

of nulls depends on the order of mode. For example the fundamental mode does not have any null.

The first mode has a null, the second has two and so on [11].

Figure 2.3: In this figure we can see the first two TE modes.

2.2 3D waveguides

In the last section we studied the slab waveguide. It is a 2D structure and it could seem

useless since we live in a 3D world. However, the slab waveguide is used as a good approximation

when one of the dimensions is much larger than the others.
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Figure 2.4: In this figure we can see the slab waveguide geometry in a three dimensional world.

When the core dimensions have the same order of magnitude in both directions at the cross

section then we can not make the slab waveguide approximation. Moreover, we can not find the

general expression for the modes analytically.

Figure 2.5: We can approximate the modes in x direction as a slab waveguide for the left structure.

However we can not compute the y direction modes using the slab waveguide approximation. The

right structure is the one we will be dealing with for our designs. It can have air cladding or SiO2

cladding.

Therefore from now on we are going to use powerful numerical tools to deal with 3D dielectric
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structures. Most of those codes have been developed by Prof. Miloš Popović during his Ph.D. and

improved by the members of the group.

The first code we are going to use is the modesolver. This code gets a cross section as an in-

put and computes the modes and propagation constants of those. It also have a visualization tool

which allows to see and sort the different electric and magnetic components of the modes.

Figure 2.6: In this figure we can see the visualization tool for the mode solver. We can select the

mode and the field components we want to visualize.

The first thing we can do is to visualize how the modes look like on a cross section. First we

are going to show the silicon oxide structure. We will see the first three modes: TE1,TE2,TM1.

We are only plotting the real part of Ex and Ey. Those components allow us to distinguish between

TE and TM polarizations. TE1 has almost all the field on Ex by definition. However there is some

Ey field on the edges due to edges effects. TE1 is symmetrical respect to x and y axis in component

Ex and asymmetrical respect to x and y in component Ey. We can see that the TE1 mode is well

confined meaning that most of the field is inside the waveguide. TM1 is the only TM mode that

can be guided using a 220nm thick waveguide. We can see that is not well confined and has even
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symmetry in component Ey and odd symmetry en component Ex. Finally for this width we can

observe how TE2 appears. This mode is starting to be guided but if we want it to be completely

guided we will need a wider waveguide. We know that a mode is guided if we can see its shape

clearly on the electric field plot. An other way to see if the mode is guided is look at the dispersion

plot Figure 2.9 and 2.10 This mode has one null, even parity respect to x and odd parity respect

to y in component Ex.

Figure 2.7: First three modes, first row TE1 second row TM1 third row TE2. 220 nm thick silicon

waveguide on silicon oxide substrate and silicon oxide cladding.

Putting air as a cladding breaks the vertical symmetry. And so, the symmetry in the modes.

The index contrast is higher and the modes are better confined. The propagation constants are
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higher compared with silicon cladding.

Figure 2.8: First three modes, first row TE1 second row TM1 third row TE2. 220 nm thick silicon

waveguide on silicon oxide substrate and air cladding.

We have seen that the monomode cutoff for a two dimensional silicon waveguide surrounded

by air is 200nm. Analogously we can compute the dispersion for air cladding and silicon oxide

cladding. It is crucial for our designs to find the monomode cutoff. To avoid problems we are going

to use monomode waveguides. After the simulations this results have been found:
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Monomode cutoff width

SiO2 cladding 400nm

Air cladding 600nm

Figure 2.9: Dispersion of 220 nm thick silicon waveguide on silicon oxide substrate and air cladding.

Figure 2.10: Dispersion of 220 nm thick silicon waveguide on silicon oxide substrate and silicon

oxide cladding.
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2.3 Coupled mode theory

In the last section we understood the single waveguide. Now we are going to see what hap-

pens when we put two waveguides close together. In order to understand that first we need to

derive a mathematical theory called coupled mode theory. This theory is an approximation but it

leads to pretty accurate results.

Every wave propagating though the structure can be written as a linear superposition of all the

modes in that structure. Because, as we have said before, the modes are a complete set. With-

out losing generality, from now on we are going to focus only on TE modes. Since we are using

monomode waveguides we are going to consider the fundamental TE mode only.

We start with two wave guides, they can be different. Just for fun we will pick a rectangular

waveguide and a heart shaped waveguide. As we can see in the following figure each wave guide

will have its own fundamental mode.

Figure 2.11: TE fundamental mode in both waveguides.

We can write the mode solution as a mode profile with a constant transversal shape propa-
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gating along the waveguide as:

E♥ = E0,♥(x, y)e−jβ♥z

H♥ = H0,♥(x, y)e−jβ♥z

E� = E0,�(x, y)e−jβ�z

H� = H0,�(x, y)e−jβ�z

(2.16)

Now we are going to couple this modes. When two waveguides are in close proximity, they

become coupled. In the following figure we can see how the modes look like when the two waveguides

are close. We can observe that the modes have slightly changed in shape.

Figure 2.12: First two modes in the supermode picture.

This is called the supermode picture. This two modes considering the two waveguides are

the supermodes. This modes are going to be key in the following sections.

The assumption to derive the coupled mode theory is that the supermodes can be represented

as a weighted sum of the individual guided modes. This implies that the modes do not change at

all with the introduction of the other waveguide. In reality, the modes are deformed slightly, but

are still coupled.

E = A(z)E♥ +B(z)E�

H = A(z)H♥ +B(z)H�

(2.17)
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Now we substitute these fields into Maxwell’s curl equations (2.3) to obtain

(ẑ ×E♥)
dA

dz
+ (ẑ ×E�)

dB

dz
= 0 (2.18)

(ẑ ×H♥)
dA

dz
− jωεo(εr − ε♥)AE♥ + (ẑ ×H�)

dA

dz
− jωεo(εr − ε�)AE� = 0 (2.19)

We derive the generalized coupled-mode equations by substituting the above expressions into the

following integral equations.

∫ ∞
−∞

∫ ∞
−∞

[E♥
∗ • (Eq.3.18)−H�

∗ • (Eq.3.19)]dxdy = 0∫ ∞
−∞

∫ ∞
−∞

[E�
∗ • (Eq.3.18)−H♥

∗ • (Eq.3.18)]dxdy = 0

(2.20)

After lots of algebra, we get the generalized coupled-mode equations. These are solved to

describe the coupling between the two waveguides.

dA

dz
+ c♥�

dB

dz
e−j(β�−β♥)z + jχ♥A+ jκ♥�Be

−j(β�−β♥)z = 0

dB

dz
+ c�♥

dA

dz
e−j(β�−β♥)z + jχ�B + jκ�♥Ae

−j(β�−β♥)z = 0

(2.21)

Where κ♥� is the mode coupling coefficient

κ♥� =
ωεo

∫∞
−∞

∫∞
−∞(εr − ε�)E♥

∗ •E�dxdy∫∞
−∞

∫∞
−∞ ẑ • (E♥

∗ ×H♥ + E♥ ×H♥
∗)dxdy

(2.22)

c♥� is the butt coupling coefficient

c♥� =

∫∞
−∞

∫∞
−∞ ẑ • (E♥

∗ ×H� + E� ×H♥
∗)dxdy∫∞

−∞
∫∞
−∞ ẑ • (E♥

∗ ×H♥ + E♥ ×H♥
∗)dxdy

(2.23)

χ♥ is the change in propagation constant

χ♥ =
ωεo

∫∞
−∞

∫∞
−∞(εr − ε�)E♥

∗ •E♥dxdy∫∞
−∞

∫∞
−∞ ẑ • (E♥

∗ ×H♥ + E♥ ×H♥
∗)dxdy

(2.24)

χ� will be the same expression (2.24) but changing hearts to squares.
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Where εr is the dielectric function containing both waveguides and ε� is the dielectric with

only � waveguide.

The most important coefficient is the coupling coefficient. This parameter quantifies how effi-

ciently power leaks from waveguide ♥ to waveguide � due to the behavior of the supermode. If

we change ♥ for � and � for ♥. We will get a coupling coefficient that tells how efficiently power

leaks from � to ♥.

The coefficient c♥� quantifies the excitation efficiency from one waveguide to an other. If the

waveguides are sufficient separated then c♥� ≈ 0 and κ♥� ≈ 0.

Finally the coefficient χ♥ measure how the propagation constant of ♥ changes due to the fact

that � is close. This coefficient increases as the gap between waveguides is smaller. Normally we

will neglect this term because is much lower than the other two.

We know that the total power in wave guide ♥ is

P♥ =
1

2

∫ ∞
−∞

∫ ∞
−∞

[E♥ ×H♥
∗] • ẑdxdy (2.25)

The observe that the denominator in all the coefficients is equal to 4P♥. Without losing

generality we will normalize the power according to 4P♥ = 1. Then can be shown that c♥� = c∗�♥

and χ♥ = χ∗�.

If we substitute the fields on equation (3.25) and we work the algebra we will find the follow-

ing expression for the power:

P =
1

4
[| A |2 + | B |2 +A∗Bc♥�e

−j2δz +AB∗c∗�♥e
j2δz] (2.26)

where δ =
β�−β♥

2 . Assuming that the waveguides are loss-less the power has to be conserved and
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so

dP

dz
= 0 (2.27)

jA∗B(κ∗�♥ − κ♥� − 2δc♥�)e−j2δz − jAB∗(κ�♥ − κ∗♥� − 2δc♥�)∗e−j2δz = 0 (2.28)

And this has to be satisfied for all z, then we must have κ�♥ = κ∗♥�+2δc∗♥�. Then if the waveguides

are similar and not super close then κ�♥ = κ∗♥�. In our heart shape waveguide example we could

not be able to neglect c♥� but since we are going to use square similar waveguides we can assume

c♥� = χ♥ = 0. Finally we found the coupled-mode equations.

dA

dz
= −jκ♥�Be−j(β�−β♥)z

dB

dz
= −jκ�♥Ae−j(β�−β♥)z

(2.29)

This simple equations describe how the power bounces around from one mode to an other [8].



Chapter 3

Types of 2x2 power couplers

In this chapter we will present and compare the main three 2x2 couplers on the literature:

direcitonal couplers, adiabatic couplers and MMIs.

3.1 Directional Coupler

In the last section we have derived the basic equations of coupling mode theory. We also

introduced key concepts such as the coupling coefficient. Now we have the tools to study the

directional coupler. First we are going to approach the directional coupler analytically using coupled

mode theory and finally we are going to use finite differences in time domain to solve the problem

numerically.

3.1.1 Directional Coupler: CMT approach

A directional coupler consist of two parallel waveguides [6]. Those waveguides are separated

by a gap g. They have width w1,w2 which does not change along z. And they can have air or

silicon oxide cladding with a thickness t.
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Figure 3.1: Directional coupler geometry.

We start pumping light in one of the wave guides. Therefore the initial conditions to solve

equation 2.29 will be A(0) = A0 and B(0) = 0. Therefore is trivial to get the solutions for the

evolution of the amplitudes along the directional coupler.

A(z) = Ao[cos(ψz) +
jδ

ψ
sin(ψz)]e−jδz

B(z) = −Ao
jκ

ψ
sin(ψz)ejδz

(3.1)

where κ = κAB = κ∗BA, δ = βA − βB and ψ =
√
κ2 + δ2.

It makes more sense to express the last expression in terms of power instead of amplitudes.

PA(z) =
| A(z) |2

| Ao |2
= 1− Fsin2(ψz)

PB(z) =
| B(z) |2

| Bo |2
= Fsin2(ψz)

(3.2)

Where F is the maximum power-coupling efficiency

F =
κ2

ψ2
=

1

1 + δ2

κ2

(3.3)
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From the expression for power-coupling efficiency we can deduce that we will only be able to

transfer all the power form one waveguide to the other if δ
κ = 0. This can happen if κ≫ δ, i.e.

waveguies with similar sizes and close together. However if the waveguides get closer and closer

then the approximations we have done are less valid. The other way to be able to achieve 100%

power transfer is using the same exact width for both waveguides.

Figure 3.2: Power in each mode vs z

The aim of this section is to design a directional coupler. So we would want an even power

at the outputs for a single port input. In order to do that we will look for the length L3dB where

we have 50-50 power transfer.

L3dB =
1

ψ
asin(

1√
2F

) =
asin(

√
1+( δ

κ
)2

2 )
√
κ2 + δ2

(3.4)

This equation has solution if F > 0.5 otherwise we can not achieve 50% transmission form

the first waveguide to the second. This condition leads to a condition for δ and κ.

δ 5| κ | (3.5)
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Figure 3.3: Plotting equation 3.4 L3dBψ-F

If F = 1 we have a directional coupler. For F < 1 we have a delta-beta coupler. For the

case where F = 0.5 we do not need exactly L3dB. We can tolerate some variations on L3dB and

still have 50-50 splitting because the design is first order invariant with length. That can be seen

in Figure 3.2.

Figure 3.4: Artistic representation of our directional coupler. We start with all the power in one

wavguide then it starts bouncing form one waveguide to the other. Every period we can find a

length which splits the power evenly.
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3.1.2 Directional Coupler: FDTD approach

We have seen the theory behind the directional coupler. One of the best ways to simulate

the propagation of electromagnetic waves through dielectrics is finite differences time domain, or

FDTD. There are some commercial software that are able to do FDTD simulations. However we

have been using the code wrote by Christina Manolatou. She wrote most of the fortran code, my

advisor Miloš Popović made some smaller additions and wrote matlab postprocessing, then people

in our group built the matlab input interface.

For every simulation we have to define the structure in a three dimensional matrix, the positions

of the sources and the position for the observation plains. The code can work in 2D supposing

one dimension infinite (i.e. slab waveguides) or 3D. We did the study considering 2D just because

the simulations took less time. We will skip the 3D results and we will see directly the results in 2D.

The aim is simulating low-loss couplers. To do that we want to avoid something called numer-

ical scattering. The numerical scattering is caused due to the discritization. If the discritization is

small enough we will not have numerical scattering. However, the minimum discritization that we

can use to solve the structure in a reasonable time is dx = 10nm. In order to solve that problem

we will use a Fermi-Dirac distribution to smooth the edges.

There is no specific reason to use a Fermi-Dirac distribution instead of other function besides

it works. When I arrived at the lab they were already using this technique to reduce the numerical

scattering.
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Figure 3.5: On the left: waveguide without smoothing. On the right: smoothed waveguide

The Fermi-Dirac equation we are using to smooth the edges is

y =
1

1 + ln(9)e
ax

1.5dy

(3.6)

where a is a parameter that controls how many pixels are going to be smoothed. The smooth-

ing should be performed perpendicular to the curve at each point. However, we apply the smoothing

in y direction since is the mostly affected direction due to discretization.
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Figure 3.6: On the left: Fermi-Dirac distribution for different values of a. On the right: Loss on

the structure versus the smooth parameter a.
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We want to see the effect of the smooth parameter on the dielectric. We have simulated a

sinusoidal bend using the FDTD code. We keep track of the losses on the structure while changing

the parameter a. For now on we are going to chose a value of a = 1 since give us low loss.

In order to simulate the directional coupler we will add a bending input and bending output.

This sinusoidal bends will couple some light when we get closer to the coupling region. Therefore

we have to modify the coupling equation in order to take into account this extra coupling due to

the bend region. Then we will have the cross port power K2 and the through port power T 2.

K2 = sin(
π

2Lz
[L+ zbend])

2

T 2 = cos(
π

2Lz
[L+ zbend])

2

(3.7)

Where Lz is the cross-over length and zbend represents the effective extra coupler distance

introduced by the coupling from the non-parallel waveguides.

Figure 3.7: Directional coupler dielectric.

Now we can simulate the directional coupler for different coupling lengths and fit the curve

to the theoretical equation. And thus we can find Lz,zbend. We will chose air cladding and 160nm

width for both waveguides.
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Once we found the desired length to make the device work as a beamsplitter we can look at

its dependence with wavelength. As we can see in the figure the transmission coefficients highly

depend on wavelength. So, the directional coupler can be a short beamsplitter but not a broadband.
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Figure 3.8: On the left: Directional coupler, power versus length. On the right: Directional coupler,

power versus wavelength at 50-50 length condition.

A variation of the directional coupler is the delta-beta directional coupler [5]. As we have

seen before if we make the waveguides width different then we can not achieve 100% power transfer

from one waveguide to the other one. So the cross port power transfer will be.

K2 =
sin2(κL

√
1 + (4β2κ )2

1 + (4β2κ )2
(3.8)
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Figure 3.9: Delta-Beta Directional coupler dielectric.

Using this principle we can find the width that make exactly 50% power transfer at maximum.

As we saw in the last section. In this way we can design a first order invariant structure with respect

to coupling length. We chose air cladding and 180 and 150 nm width. So we chose length 1.6µm

and we can see that as the directional coupler is highly dependent on wavelength.

Coupling length [ µm]

0 1 2 3 4 5

P
o

w
e

r 
C

o
u

p
lin

g

0

20

40

60

80

100
Pow vs length @1550

Through port (t
2
)

Cross Port ( κ
2
)

κ
2
+t

2

Wavelength ( µm)

1.54 1.56 1.58

T
ra

n
s
m

is
s
io

n

0.46

0.48

0.5

0.52

0.54

Through port (t
2
)

Cross Port ( κ
2
)

Figure 3.10: On the left: Delta-Beta directional coupler, power versus length. On the right: Delta-

Beta directional coupler: power versus wavelength at 50-50 length.
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3.2 Adiabatic coupler

So far we have talked about z invariant structures. In those structures the waveguide width

does not change along the propagation direction. In this section we are going to explore what

happen when the geometry change in z direction. We will use those results to design an another

kind of coupler, the adiabatic coupler [9].

We have already talked about the orthogonality condition in modes. This condition can not be

satisfied in waveguide structures in which the waveguide parameters vary in the direction of propa-

gation. It can not be satisfied in the sense that we can not find the same base of orthogonal modes

at each cross section along z. However we can define the local normal modes at the position z0.

The local normal mode representation will now become a function of z.

Figure 3.11: To define a local normal mode, the slowly varying waveguide structure (darker line) is

replaced at z0 by the structure of constant with z (less darker line), and the normal mode solutions

at z0 are obtained.
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The amplitudes of the local normal modes along the structure can vary in contrast to the

fixed structure. Power transfer between the local normal modes of a varying structure will occur,

and we will see the power transfer depends on the change of rate on the geometry.

We have to modify the coupled mode theory due to the variation in z. We are not going to

derive the equations but a rigorous derivation can be found on [2]. The main idea to find the

equations is write the mode of each local slice in terms of the modes of the slice right before. In

this way we can find power transmission from z to z + dz. For the forward modes.

∂Ai
∂z

= −CijAj + jβiAi (3.9)

where the subscripts i and j refer to the fundamental and next higher order systems modes.

Here (Ai,Aj),(βi, βj) and Cij are the corresponding amplitudes, propagation constants, and nor-

malized coupling coefficient between these modes. The expression for the coupling coefficient can

be found on [10].

Cij =
k0
4

√
ε0
µ0

1

∆βij

∫
A
ê∗i · êj

∂n(x, y)2

∂z
dA (3.10)

We define a slow or adiabatic waveguide transition as a transition between two waveguide

structures that takes place so slowly that negligible power transfer occurs between the normal

modes. That happen when the rate of change of the walls is small in z direction. Then ∂n(x,y)2

∂z −→ 0

and no interaction appears between different modes.

∂Ai
∂z

= jβiAi

∂Aj
∂z

= jβjAj

(3.11)

This happen if δ � κ. Then we can lunch the first mode A1 of the structure at z = 0 and
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ideally the power in the second mode A2 at length L will be

| A2(L) |2

| A(0) |2
−→ 0 (3.12)

This means that all the power will remind in the first mode. Notice that at each slice the

modes are changing. By adiabatic assumption the geometry will change slowly. However for a

long structure we can start in one geometry and end in a completely different one. This is the key

concept to design a low loss broad-band coupler.

We will start with two waveguides separated in order to not have coupling at all between them.

We want the width of this two waveguides to be different. In this way the two first supermodes

will have different propagation constants. The first mode will correspond to the wider waveguide.

We want to change this cross section with a large gap and two waveguides with different width to

a cross section with a small gap and two equal waveguides. The modes in this last section will be

the symmetrical and the antisymmetrical. If our structure is long enough to be adiabatic then the

first mode at the beginning will lead to the first mode at the end. And the same for the second

mode.

Figure 3.12: We can see how the structure is and which are the modes at the first and last section.

We can also see how the propagation constant evolve with z.
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If we have two equal waveguides at the last slice and we have all the power in ether the first

mode or the second mode. Then we have half of the power in each wave guide. Then we need to

separate the two waveguides apart to have two different outputs. If we do that in a symmetrical

way no power will transfer from one waveguide to the other.

Despite this structures are robust,broadband and easy to design they tent to be really long (∼

100µm). This is not a problem if we do not care about space, but if we want to package a 2x2

couplers network we may have to use an other kind of coupler.

We can not use FDTD to simulate those structures because they are too long. So, in order to

simulate them we are going to use a film mode matching code (FMM), written by Prof. Miloš

Popović.

We are going to simulate only the adiabatic region. We are going to keep tracking of the power

for each symmetrical and antisymmetrical mode. Ideally we want to pick the length that makes

the power on the antisymmetrical mode zero. But for a real design we need the minimum length

that makes the device work under some conditions. We impose the minimum error ratio has to be

1% in power, so 49-51% ratio. This means having less than 1e-4 of the normalized power in the

antisymmetrical mode.
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Figure 3.13: Observation plain: last section where the two waveguides are the same width. We can

see the rate of power for the symmetrical mode and the antisymmetrical vs device lengths.

From the plot we can see that at length near to 70µm the device could work. However this

length is really sensitive, a little change on length is going to change a lot the fraction of power

in the antisymmetrical mode. In order to avoid that we would pick a length higher than 200µm

which is really long.

3.3 Summary

We have seen in the last few sections the directional coupler and the adiabatic coupler. The

other promising coupler is the multimode interference coupler (MMI) proposed on [1]. We simu-

lated the first two because the main concepts that make them work are useful to understand the

new coupler we will present in the next chapter. So simulating or explaining the MMI is out of the

scope of this thesis. However we will compare our new coupler with the best three 2x2 types of

couplers in the literature.
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The directional coupler can be really short v 5µm and low loss but is highly wavelength de-

pendent. In opposition to the adiabatic coupler which is really long v 200µm and low loss but

is really broadband. On [4] the authors compare a directional coupler and optimize an adiabatic

coupler. The results they got are pretty impressive. They use a silicon ridge waveguide with 150nm

thickness for each etching. Their adiabatic coupler is 150µm on the coupling region but taking in to

account the waveguides from the gradings in and out the footprint is 650µm× 150µm. They used

and optimized the design proposed on [12]. On simulations they got: power ratio of v 0.00521dB

over 60nm (1271-1331nm). They show that with a fabrication error of 10nm on the waveguide

width the power ratio goes to 0.05dB. The MMI gets a good trade off on shortness, broadband

and fabrication errors tolerance. The best MMI in the literature so far on the 220nm silicon thick

platform gives a simulated: power ratio of v0.1dB, insertion loss v0.11dB over 36nm (1530nm-

1566nm). This device has a food print of 3.8µm× 152µm. The tapers in are 50 [3].

Even though we can not compare apples with apples since the adiabatic coupler has not a 220nm

silicon layer cross section. The recent results give us an idea of how good the performance on

adiabatic couples can be. The results on the MMI are pretty promising too.
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Frustrated coupling based adiabatic coupler

4.1 Frustrated coupling based adiabatic coupler

4.1.1 The concept

We have seen the three main 2x2 coupler strategies on the literature. In this section we are

going to propose a new type of 2x2 coupler. This new type of coupler its called frustrated coupling

based adiabatic coupler and it will be really short, low-loss and broadband. In order to do that we

are going to use concepts from both directional and adiabatic coupler and we are going to create

and hybrid. The key idea to this design came from my advisor Prof. Miloš Popović when he was

doing his Ph.D. at MIT back in 2005. One day he was trying his FMM code, he was simulating

the same kind of adabatic couplers like the ones we saw in the last section. He was trying to tilt

that structure. He realized that the coupling from one layer the the next one changes with tilting.

But even more, changing the tilting direction changes the sign of the coupling coefficient. Which

means that exist a tilt of the structure that makes the coupling from the first to the second mode

zero. So now instead of trying to change slowly the structure to avoid coupling what we will do is

to make the whole integral from Eq. 3.10 equal to zero by bending the structure.
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Figure 4.1: On the left we have the top view of the dielectric. We change the angle and compute

the coupling coefficient κ12 and κ21 at each angle and across the propagation direction. On the

middle section we plot κ12 and κ21 vs z and angle. On the right we plot the intersection at zero

coupling of κ12 and κ21 vs angle and z.

The design will consist on the following geometry. Analogously to the adiabatic coupler. We

start with a wide waveguide and a thin one. In this way we can separate the propagation constant

from the first and second mode. Then keeping the gap constant we go from different width to the

same width. We do this transition linearly.

wi(z) =
wifinal − wiinitial

L
z + wiinitial (4.1)

For i=1,2. And thus on the last cross section the light will be split equally between waveguides.
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First we have to chose the parameters for w1(0), w1(L), w2(0), w2(L) and g. The number of degrees

of freedom is 3 for the first section and 2 for the last section. We are going to simulate the first and

last section and see how the geometry change the effective index of the three first modes. In order

to help this process we not only want to avoid coupling from the first to the second mode but also

from the second to the third. The condition then is to find the geometry that give us the maximum

distance from Neff1, Neff2 and Neff2, Neff3. This means that Neff2 − Neff1 ≈ Neff3 − Neff2.

Where Neffj is the effective index for the jth TE mode.

We are going to use silicon cladding structures for the 3D simulations. The reason for that is

to simplify the problem. Having a horizontal symmetry on the cross section avoid coupling from

TE to TM modes. Then we only have to worry about TE modes.

We will start with the last section since it is easier. After simulating the cross section we real-

ized that roughly as small the gap the better. Then we pick a g = 100nm since is the smallest

gap we can fabricate without any problems. Then we consider which width to pick. We know that

w1(L) = w2(L) to have the symmetrical mode in the last section. After plotting the effective index

for the three first modes we decided that the best width is w(L) = 380nm. Then by trial and error

we find that the best width are w1(0) = 480nm and w2(0) = 340nm.
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Figure 4.2: Neff versus normalized length for the following geometry: w1(0) = 480nm, w2(0) =

340nm, w(L) = 380nm, g = 100nm. Notice that the Neff does not depend on the tilting.

We found two ways to generate the structure. The first one is to use the information obtained

on Figure 4.1. Since the information on the right plot is local, we can integrate the angles to generate

the desired structure. The other way to generate the structure is more automatized. We start the

algorithm to design the structure with only the first cross section. We compute the modes on this

section with the FMM code. Then we introduce a new slice. The widths on this slice will be slightly

different since we moved a step in z direction. Then we are going to slide this layer in x direction

an amount ρ. If we do that for positive and negative values of ρ and we plot κ12 and κ21 we will

see that there is a sweet spot where they go to zero.



37

Figure 4.3: This figure is key to understand this last section. We can see on the background the

two first slides of our design. Both layers have different width because the widths change with z.

We are showing the first mode on the first section and the second mode on the second section. The

overlap integral between those two modes and a term considering the variation on the dielectric

from section one to section two gives us κ12 (Eq. 3.10). Then we can move the second slice an

amount ρ to the right. There is a ρ0 where the κ12 = κ21 ≈ 0

Notice that the coupling in one slice only depends on the layer right before. We can repeat

this process until the last section. After doing that we will have a structure that avoids coupling

from one supermode to the other.
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Figure 4.4: Coupling coefficients κ12 and κ21 versus tilt versus z. We can find the zero coupling

condition for each z0 (ρ0(z0)).

Once we have ρ0(z) we can simulate the structure performance using the FMM code. As we

can see, even though we found the intersection for the two surfaces κ12 and κ21, that condition

does no lead to zero coupling. However it minimizes the coupling.
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Figure 4.5: Coupling coefficients κ12 and κ21 versus normalized length.
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If we do the simulation for a adiabatic structure with the same exact geometry but with

out bending; ρ(z) = 0 ∀z we needed a length of at least ∼ 200µm. Now the length for the bend

structure will be ∼ 7µm.

Length ( µm)

10
0

10
1

10
2

P
o
w

e
r 

tr
a
n
s
m

is
s
io

n
 c

o
e
ff

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

S11

S21

Figure 4.6: Power transferred from mode one to mode one and power transferred form mode one

to mode two versus length of the device.

4.1.2 The physical interpretation

In this subsection we will give an intuitive way to understand the physical interpretation of

the coupler. As we seen everything is related to the coupling coefficient from Eq. 3.10. The key

thing to notice is that the Eq.3.10 it is integrated over the cross section. So the term

∂n(x, y)2

∂z

will only be non-zero if the structure changes along z. The body of the waveguide does not contribute

on the coupling coefficient but only the sidewalls do. This is because the derivative term inside the

integral. The body of the waveguide is constant and so the derivative term is only non-zero at the

sidewalls. As we can see on Figure 4.7 a) the coupling coefficient is zero since the sidewalls do not
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change along z. The coupling sign of the coefficient can be obtained just by multiplying the sign

of the first mode, second mode and the derivatives at the sidewalls. We can obtain the sign of the

derivative term by looking at Figure 4.7. For example for structure b) the sign of the derivative

term for the top sidewall will be positive since it goes from a lower refractive index to a higher

refractive index. If the sidewall slope gets steeper then the derivative term will get higher. Looking

at Figure 4.7 b) and c) we get a positive and negative coupling coefficient, respectively. Figure 4.7

d) it is a taper. It has vertical symmetry and we can see how the coupling coefficient is zero.

Figure 4.7: In a,b,c,d we can see different configurations of a single waveguide. The difference is

how we tilt the walls. We apply local mode theory at the center cross section to compute the

coupling coefficient from Eq. 3.10.

Now we consider two waveguides, one wider than the other. We have four walls to consider.

In Figure 4.8 a) and b) we can see the same geometry but changing the sign of the tilting angle.
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This yields to the same coupling coefficient with different signs. So there must be a tilt point

in between that provides zero coupling. In this case it happens to be the trivial case where the

structure is straight, but in structures where the walls are not parallel this is still the case, even

though there is no angle at which all four walls are straight.

Figure 4.8: In a,b we can see different configurations of two waveguides. The difference is how we

tilt the walls. We apply local mode theory at the center cross section to compute the coupling

coefficient from Eq. 3.10.

Finally we show how we have to multiply the values at the walls for the first field, second

field and the derivative term (Figure 4.9 ). Then we have to integrate over all this 4 values to

obtain the coupling coefficient. The values for the product of the first and second mode are fixed.

Such value does not depend on the tilt. Then the value of the derivative term will be higher if

the slope is more abrupt. So we have four positive and negative values that we can tweak to make
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the coupling coefficient equal to zero. We would tweak those values by changing the tilt along

z. Although we are suggesting using the tilt to alter the coupling coefficient, the design of the

cross-section itself is already constrained by the design of the mode shape evolution (modes 1 and

2) from input to output. So, we are introducing a new (additional) design degree of freedom into

adiabatic structures which has normally not been considered in literature on design of adiabatic

structures (which was concerned with cross-section evolution alone).

Figure 4.9: The coupling coefficient from Eq. 3.10 obtained by adding the product of the first field,

second field and the derivative term at the walls.

4.1.3 2D design

Now we want to verify our designs using FDTD. We will start with a two dimensional design

since it take less computational time and then we will do the three dimensional simulation. The
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geometry of the two dimensional design has been chosen analogously to the third dimensional.

As it happened with the directional coupler besides of the coupling region we need an input and

output regions. The output wave is easy to design and can be short since the only requirement

is to have reflection symmetry. The only think we have to worry about is the curvature of the

waveguides. If the bending is really abrupt we will loss light by scattering.

The input starts with two equal singlemode waveguides separated by ∼ 0.8µm. We have to link

up this first slice with the the first section of our coupling region. In the input region we will be

changing the gap and both widths at the same time. Again, we could use an adiabatic structure to

do this transition but then I can not be short. The strategy we are going to follow to design this

part is similar to the one we used for the coupling region. We are going to define θ as the tilting

of all the structure (similarly to Figure 4.3). So we are going to think about the input as a rigid

piece that can rotate an angle θ. If we simulate the structure for different angles using FDTD2D

we can see that exist an angle that minimizes the coupling between crossed modes. Even more the

parameter S12 is less than 1e− 4 which is desired. We will not be able to use this strategy in 3D

since the minimum S12 we can achieve is 1e− 3 which means that assuming that everything works

ideally besides the input part the maximum we can achieve is 40/60 at the output.
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Figure 4.10: Input tilt structure.

As we can see in Figure 4.10 we want an input angle about -8 degrees. Once the input is

working the design the output in the same way as the directional coupler. So we just need two

symmetrical sinusoidal bends.
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Figure 4.11: Left to right: Input region, coupling region and output region.

Then we fix the input and output size and we simulate the structure while changing the
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coupling region length.
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Figure 4.12: Coupler performance versus device length. On the left lunching the pulse on the upper

waveguide. On the right lunching the pulse on the down waveguide.

The results are promising. They oscillate with length and we can see that Lcoupling = 2µm

gives an awesome performance.

4.1.4 3D design

The next step is simulating the 3D structure. We could think that changing form 2D to 3D is

straightforward but is not. In 3D we find some problems that we had not in 2D. The first problem

is the existence of two different polarizations that can couple. We already solved this problem by

using SiO2 cladding. But doing that we reduced the index contrast and our design is not going

to be as short as 2D. The second problem is the small gap required in 3D. This small gap yields

a symmetrical mode where a lot of power is confined in the slot. Then if we are not careful when

we separate the two waveguides at the output a lot of power will be radiated. We solved that

problem by changing the output sine bends by splines where keeping symmetry we can play with

the curvature. It turns out that if we match the slope at the ending of the coupling region with
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the slope at the last section there is no power radiation. And so we can separate the power evenly.

Going from two separate waveguides to an asymmetrical situation at the beginning of the coupling

region is not trivial ether. The trick we used on the 2D design does not work anymore. So the input

section is now the bottleneck length wise. Using splines to define this section we can optimize it to

get the best performance. The final design is

Figure 4.13: Final design dielectric; top vision.

The dimension in microns are

Input section Coupling section output section

Length 12 11.8 4

Upper waveguide width 0.34 0.38 0.46

Gap 0.4 0.1 0.6

Lower waveguide width 0.48 0.38 0.46

Table 4.1: 3D design geometry

So the total length of the device is 28µm. Would need an extra input to go from two

800nm separated 460nm width waveguides to the input. But this may just take 3um or less, using

sinusoidal bends. After a FDTD3D analysis on this structure lunching light only for one port we

get the normalized power at both outputs.
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Figure 4.14: Coupler performance: Normalized power versus wavelength. On the left we are

lunching the light on the down port and on the right we are lunching the light on the up port.

And on Figure 4.15 we show the loss:
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Figure 4.15: Coupler performance: Loss versus wavelength. On the left we are lunching the light

on the down port and on the right we are lunching the light on the up port.

The performance of this 2x2 coupler is astonishing.

4.1.5 Conclusion

We have demonstrated on simulation a new type of coupler called frustrated coupling based

adiabatic coupler. This coupler consist on a short 2x2 adiabatic coupler. The way we can do it
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so short is by cancelling the coupling from the symmetrical and antisymmetrical supermodes by

bending the structure along z. The splitting ratio is really good, less than 1% along a broad range

∆λ = 205nm. Also along this range the loss is under 1.5%.



Chapter 5

Conclusions

In this thesis we have explored the different types of 2x2 couplers on the literature. We have

recapitulated the state of the art and the best results achieved by the community so far. A high-

performance coupler has to be broad-band, short, lowloss and with a small power split imbalance.

A directional coupler can not be high-performance since is not broadband.

Type of coupler Bandwidth [nm] Power split imbalance [dB] Length [µm]

Adiabatic [4] 60 (1271-1331) 0.005 150

MMI [3] 35 (1530-1565) 0.09-0.11 152

Frustrated coupling based adiabatic coupler 205 (1420-1625) 0.174 28

Table 5.1: 2x2 couplers coparation

We put the adiabatic coupler on the table but has a 300 thick silicon cross section so the results

are not comparable with a 220nm silicon cross section. The adiabatic has the better performance

but if they would change the ridge waveguide for a 220 thick silicon waveguide they would have a

larger structure. On the MMI design they have a power split imbalance between 0.09-0.11 dB on

a 35nm band. Our design has a power split imbalance lower than 0.11 dB on a 40nm band and

also a power split imbalance lower than 0.17 dB over a 205nm band as we can see in the following

Figure 5.1. Also over this range the loss are lower than 1.5%. And finally the best part it is 5 times

shorter.
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Figure 5.1: Frustrated coupling based adiabatic coupler performance and cooperation with the best

MMI builded on 220nm thick silicon with SiO2 cladding so far [3].

So we can conclude that we designed the best 2x2 coupler so far. We used a completely new

concept. The next step will consist on the fabrication and test of the frustrated coupling based

adiabatic coupler.
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