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Scientific modeling is increasingly important both in K-12 science education and the broader

scientific community, but there are significant gaps in both our understanding of how people learn

modeling and how we can support them in this process. This work takes a comprehensive look

at how students use digital modeling tools in science classrooms, particularly with EcoSurvey, a

tool developed to support students in creating a model of the components and interactions in the

local ecosystem. This tool has been developed using an iterative process and deployed in three

consecutive school years as part of a design-based implementation research project in high school

biology classrooms. During this time, I have developed new techniques for analyzing students’

models and modeling activity along with the impact of feedback and recommender systems. These

approaches have demonstrated significant power in creating a picture of students’ modeling activity

in real time. In addition, I have determined the effects of certain design decisions on student tool

utilization through iterative deployment, and found that explicit scaffolds can have a significant

impact on students’ models and modeling practices. Finally, I have begun to map how student

activity can be related to their learning of modeling as a science and engineering practices. Through

this work, I have demonstrated the power of real-time activity analytics to provide insight on the

appropriate level of student support to give. This work advances learning analytics, the study of

scientific modeling in the classroom, and modeling tool design.
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Chapter 1

Introduction

My research studies students’ scientific modeling. In particular, I focus on how we can au-

tomatically characterize students’ models and their modeling practices, how the design of digital

modeling tools can support student modeling practices, and how my measures of modeling engage-

ment relate to student understanding of modeling as a science and engineering practice. I study

these questions through the iterative design and deployment of EcoSurvey, a digital modeling tool

for high school biology. Within this iterative process, I have developed and applied a framework for

normalizing modeling actions across tools, developed a suite of analytics for characterizing modeling

and practices in real time, and explored types of feedback that are useful for teachers and students

to support reflection. Through this work, I demonstrate that improved modeling tool design and

the incorporation of real-time feedback based on novel analytics can have a positive impact on the

student modeling experience.

Scientific models represent ideas, processes, and phenomena by describing important compo-

nents, their characteristics, and their interactions. Models are constructed across a broad spectrum

of scientific disciplines, such as the food web in biology, the water cycle in Earth science, or the

structure of the solar system in astronomy. Models are central to the work of scientists for under-

standing phenomena, and for constructing and communicating theories. Constructing and using

models to explain scientific phenomena is also an essential practice in contemporary science class-

rooms. In A Framework for K-12 Science Education [58], developing and using models is one of

the eight core practices deemed essential for science learning and instruction. According to the
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Framework, ”[s]cientists use models... to represent their current understanding of a system (or

parts of a system) under study, to aid in the development of questions and explanations, to gener-

ate data that can be used to make predictions, and to communicate ideas to others” ([58], Pg 57).

Systems models are also considered a cross-cutting concept in the Framework, allowing students to

understand components, interactions, and mechanisms that influence a system.

Scientific models can take many forms, such as textual descriptions, visual diagrams, com-

puter simulations, and mathematical equations. For instance, in elementary physical science,

Schwarz et al.[76] studied the development of students’ modeling practices by having students

sketch models depicting how light interacts with objects to produce shadows. In another case,

Bryce et al.[3] asked students to construct a clay model of a cell, using those models to represent

their understanding of the spatial relationship between pieces. Even these simple modeling activi-

ties push students to represent their current knowledge and to use this knowledge to explain new

phenomena. Models are often more complex, involving visual representations or computer simula-

tions. Such models may focus on the complex interactions between components (e.g. predator-prey

interactions in a food web) or depict how a substance changes state over time (e.g., how water

changes from liquid to gas as it moves through stages in the water cycle).

However, while it is widely recognized that developing students’ ability to create and use mod-

els to understand phenomena is important, learning sciences research has documented numerous

challenges to implementation in the classroom. These challenges include variations in how teach-

ers approach the topic of modelling [50] and variations in how students engage with the practices

[39, 1]. Variations in classroom implementation can lead to differences in students’ opportunities

to learn these important modeling practices [28].

The context for my research is scientific modeling in high school biology classrooms. This work

is part of Inquiry Hub, a research-practice partnership developing inquiry-based biology curriculum

for middle and high school classrooms [43]. Within the high school ecology unit, students are tasked

with creating a model of their local ecosystem using EcoSurvey, a digital modeling tool designed

to represent the organisms and interactions the students encounter as they map a local field site.
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Table 1.1: Research Questions.

Research Question Objective Data Sources

How can we automatically
characterize students’ models
and their engagement with
modeling practices at scale?

Computational methods can automat-
ically characterize both models and
modeling practices in real-time.

EcoSurvey Final
Models & Click-
streams

What methods can we use to
promote successful scientific
modeling?

Designs that scaffold modeling activi-
ties and real-time feedback can help stu-
dents build ”better” models

Analyses of EcoSur-
vey Modeling Tool
Design, Final Mod-
els, & Clickstreams

How do students’ modeling
practices relate to their un-
derstanding of scientific mod-
eling?

Students will generally demonstrate a
strong understanding of scientific mod-
eling after the use of digital modeling
tools. Students that successfully engage
with modeling practices will demon-
strate a deeper understanding of mod-
eling.

EcoSurvey Click-
streams & Inter-
views

Through our partnership with a large urban school district in the midwestern United States, we

are collecting data from over a thousand students as they use EcoSurvey in their classrooms.

My work crosses the fields of computer science, cognitive science, and education. I develop

and adapt new methods of computational learning analytics to understand student activities in

modeling tools, as well as advance understandings of human-centered computing in the area of

digital modeling tool design. This work also helps define scientific modeling at the student level,

providing quantitative representations of student engagement with modeling practices. This quanti-

tative representation also helps solidify definitions of student scientific modeling in learning sciences.

Finally, this work has a real-world impact on teachers and students in the classroom, helping them

to teach and understand both ecological concepts of organisms and interactions as well as abstract

scientific modeling skills.

1.1 Research Objectives

My research is organized around three key questions, summarized in Table 1.1.
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1.1.1 (RQ1) How can we automatically characterize students’ models and their

engagement with modeling practices at scale?

The purpose of this investigation is to understand the classroom activities of students. Sci-

entific modeling is a new focus in the K-12 classroom; while scientists have been using models for

many years and students have been using models as part of their classroom activities, emphasizing

modeling as a science and engineering practice with connections across fields is a new approach

[58].

My approach looks at modeling as a science-wide practice. I use emerging learning sciences

theory related to models and associated activities to create a framework of what makes a good

system model, as a cross-cutting science concept. This framework drives approaches for creating a

standardized representation of models (normalizing) and the actions students take to create, revise,

and use them. I study how this approach applies to the use of digital modeling tools, particularly

our EcoSurvey tool. By normalizing models and modeling practices to existing learning sciences

theory, we can develop analytic approaches that examine the use of digital modeling tools from a

modeling perspective, rather than from the domain-specific perspective of how these models apply

to the problem at hand.

First and foremost, this work supports teachers and students. In our preliminary work,

teachers expressed a pressing need for support in analyzing and evaluating students’ modeling to

provide substantive guidance through instruction, discussion, and grading. My methods create

a summary view of the students’ models and activity that teachers can quickly interpret. This

summary can then be leveraged in classroom practice to guide students in creating richer models.

This approach also opens new grounds in learning analytics. Normalizing models and mod-

eling practices allows me to apply computational methods to supporting teachers in classrooms at

scale. This approach allows me to generalize findings beyond the particular use case of our teachers

using EcoSurvey. I also expand learning analytics to incorporate new techniques that apply to

sequential activity with a digital tool.
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1.1.2 (RQ2) What methods can we use to promote successful scientific modeling?

This question explores the impact of tool design and analytic feedback, specifically in how

well students leverage modeling practices and the strength of their final models (as discussed in

RQ1). The characterization of models and modeling practices, while an important theoretical

development, is ultimately useful in terms of how it can be used to impact students’ learning.

I use these measures of modeling to understand differences that arise from the iterative design,

development, and deployment of EcoSurvey.

I use two different approaches to promote scientific modeling. First, I examine the design of

the tool and workflow of the students’ modeling process. This work focuses on how the features

of our digital modeling tool map to the modeling practices. The process of mapping actions to

practices provides insights into how well those practices are represented. Furthermore, analysis

of student use of EcoSurvey can highlight where students do not engage with certain modeling

practices.

The other approach examines the students’ modeling practices to generate customized feed-

back that can inform future actions. The idea of providing formative feedback is well developed in

digital learning environments and broader learning sciences contexts (e.g. [66]). However, teachers

in our pilot deployments have requested greater support in understanding their students’ models

and modeling activity. If we can develop systems that use an online approach to analyzing mod-

els and practices, we can provide support to teachers and students during the modeling process,

helping teachers give strong formative feedback and helping students to understand modeling as a

series of practices.

The normalized features of models and modeling practices provide an ideal metric for answer-

ing this question. Since the normalization approach is designed to work across different modeling

scenarios, the process provides a direct comparison between different versions of EcoSurvey.
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1.1.3 (RQ3) How do students’ modeling practices relate to their understanding

of scientific modeling?

This question characterizes the experience from the student perspective. My work seeks to

develop a system that drives students to not only engage with modeling practices and build suc-

cessful models, but also to understand modeling as a science and engineering practice. We measure

understanding through short interviews that increasingly prompt students to discuss modeling.

These interviews are then coded for the depth and generality of students’ explanations and the

level of prompting required for them to give their most advanced description. In addition, I find

the correlation between students’ modeling practices and their responses to our modeling inter-

views. This helps validate our normalization process, providing insight into how those measures

relate to understanding.

1.1.4 Conjecture Map

These questions inform a conjecture map [74] of how my interventions will influence mediating

processes to affect change on models and modeling practices seen in figure 1.1. A conjecture map,

as the name suggests, visualizes how a proposed change to a system (in this case, a digital modeling

environment) can influence the outcomes for your targeted element of the system (in this case, the

student experience). The map opens with high-level conjectures about possible changes to the

system and links those conjectures to action items that embody them. These action items, in turn,

are linked to mediating processes that take place within the system, which then link to expected

outcomes.

In order to determine the validity of this set of conjectures, I need to understand my outcomes,

that is, what makes a ”better” model, and how successful students create such models (i.e. what

constitutes the practice of modeling). In addition, these definitions should be as generalizable as

possible, in order to apply to both ecosystems students in a variety of ecological contexts as well

as modeling activities in other domains. This generalizability also supports the development of
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Figure 1.1: Conjecture Map.



8

analyzing these features in real-time, which can then be presented to users to shape future actions.

This leads to RQ1, focused around the development of automated methods for characterizing models

and modeling practices.

My next objective is to understand how I can design tools, particularly EcoSurvey, to support

students in this modeling process (RQ2). My intervention is focused on designing EcoSurvey to

naturally afford [61] engagement with modeling practices and the incorporation of a personalized

feedback system that analyzes modeling activity in real time. In particular, my design scaffolds the

interaction mapping within the tool and the regular use of a graph visualization to see the model as

a whole. Meanwhile, my feedback supports teachers in understanding students’ modeling activities

within EcoSurvey and gives students direct feedback on their modeling activity.

In addition to examining the student experience within EcoSurvey, I also want to look at

how using the tool relates to generalized knowledge about modeling as a science and engineering

practice and how students perceive the experience. This leads to RQ3, which examines the outcome

measures that evaluate student understanding.

Answering these questions will significantly contribute to the body of knowledge in learning

analytics and learning sciences research, as well as provide design guidelines to developers of digital

modeling tools and instructional materials. Learning analytics researchers benefit from the explo-

ration of how existing techniques can be extended to understand student scientific modeling (RQ1).

Seeing how these methods apply to scientific modeling can connect analytics work to active research

in learning sciences and can demonstrate the power of learning analytics to impact learning in real

time (RQ2). Learning sciences researchers benefit from an understanding of student and classroom

differences in students’ scientific models and modeling practices (RQ1), exploration into new ways

to guide student modeling (RQ2) and an understanding of the impacts of digital modeling activities

on the student experience (RQ3). Instructional tool and materials developers gain insight into the

impact of various design decisions on student activity in an open-ended modeling context (RQ2)

and ideas on how to support student understanding (RQ3).

My work also helps to support teachers and students in real-world classrooms. Scaffolds guide
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students through the modeling activity, helping them to ”dive in”. My analytics make students’

models visible to teachers in a summarized, dashboard view that shows how students have engaged

with modeling practices. This approach also allows for teachers and students to see what steps

might contribute to creating a better model.

1.2 Related Work

My research bridges work and ideas from Learning Sciences and multiple subdisciplines of

Computer Science to enhance students’ opportunities to learn. The foundations of this work stem

from scientific modeling education research, a growing discipline in the Learning Sciences space

that seeks to understand the features of classroom scientific models and the processes behind

students’ modeling. This research demonstrates a growing body of knowledge from a cognitive

perspective of student understanding, but there are also opportunities to address issues around

addressing equity of access and understanding students’ modeling at scale. Machine Learning

research provides ideas and methods for understanding these very issues; I leverage normalization

and classification techniques to provide a generalized understanding of modeling without expert

intervention. Human-Centered Computing techniques bring a unique opportunity to explore both

how we can design modeling tools and systems to support strong scientific modeling as well as

methods to use our modeling insights to provide targeted and supportive feedback for students

during the modeling process.

1.2.1 Scientific Modeling in Education

1.2.1.1 Scientific models that support complete explanations of phenomena

Scientific models are tools for explanation and prediction. A complete scientific explanation

should ”explain observed relationships between variables and describe the mechanisms that support

cause and effect inferences about them” [58]. Thus, to support student explanations, a scientific

model of a phenomenon should include important components (”variables”), their interactions (”re-
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lationships”), and define the mechanisms involved. When modeling an ecosystem, these correspond

to the organisms in the ecosystem (animals, plants, insects, fungi, etc), how these organisms in-

teract with each other and the environment (predator, prey, producer, decomposer, etc), and the

involved processes (abiotic, biotic, etc). Professional biologists use this information to measure

the biodiversity of an ecosystem in terms of species richness, evenness, and divergence [26, 50, 19].

Implementing modeling in the classroom adds an extra layer of complexity, incorporating teachers’

understandings in addition to those of the students [32, 90]. Nevertheless, by building models,

students can apply their understanding of ecosystems and gain insight into the components of good

models.

In this work, I characterize variation in students models by examining the number of or-

ganisms present, the variety of types of organisms present, the number of interactions between

organisms that students have identified, and the diversity of these interaction types. I also look

at how these features are distributed within a model. These measures are used to understand the

complexity of a student model. Interestingly, understanding the complexity of an ecosystem has

been shown to support students to develop empathy and other affective stances towards nature [36].

Student understanding the flow of matter and energy through ecosystems has also been shown to

vary strongly across cultural boundaries [1], providing further motivation for addressing equity in

student models and student modeling practices.

1.2.1.2 Strong student scientific modeling practices

Constructing scientific models is part of the ”inquiry” tradition in science education, where

students learn scientific concepts through hands-on ”doing” [39]. Understanding what students are

doing at a fine-grained level can provide teachers with useful insights into learning processes, as

well as provide teachers with feedback as to where and when students need additional assistance.

Towards this end, several scholars have developed frameworks characterizing effective student mod-

eling practices [76, 3]. Schwarz et al. [76] identify a series of seven practices: (1) identifying the

anchoring phenomena to be modeled, (2) constructing a model, (3) testing the model, (4) evalu-
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ating a model, (5) comparing the model against other ideas, (6) revising the model, and (7) using

the model to predict or explain phenomena. Bryce et al.[3] identify a similar set of practices as

important to support student learning during modeling, namely (1) observation (paralleling the

anchoring phenomena), (2) model construction, (3) model use, (4) model evaluation, and (5) model

revision. Their research suggests that supporting students to engage in these practices can lead to

positive learning outcomes [76].

Here, I focus on a subset of these practices - constructing, evaluating, revising, and using

models - incorporating them into my analysis framework [10]. I use these four practices as they

are directly supported through the EcoSurvey interface and can be readily observed and tracked

in the usage log. In addition to these four practices, I examine the degree to which students

engaged in iterative design of their models. Iteration occurs when students cycle between the

other four modeling practices, where the four practices correspond directly to individual actions

in the EcoSurvey interface, such as adding an organism or relationship (construction), editing an

organism or relationship (revision), or generating a graph of the entire ecosystem to support a tree

choice (using). Iteration is an important modeling practices that is used to both expand the scope

of a model and to improve its accuracy [28, 3]. Learning analytic techniques are used to identify

the degree to which students used these practices and to examine variations in student modeling

practices. While these usage log analysis methods are an excellent passive way to collect data

on student practices [65], it is important to note that these methods do not capture information

about how students are reasoning with their models. Exploring student reasoning with models and

how they generate explanation using models is beyond the scope of this study, and would require

deep exploration of students’ cognitive processes using think-alouds, cognitive interviews or other

learning and cognitive sciences research methods (e.g. [76]).

1.2.1.3 Equity in Student Learning Experiences

Student learning outcomes vary widely across teachers [33, 53]. Students with a top-performing

math teacher can be expected to perform .266 standard deviations better on a standardized math
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test than those with a median teacher [33]. Similarly, McNeill et al.[53] evaluated 22 high school

ecology classrooms across the US and found that teacher differences accounted for 34.5% of the

variance on scores from a multiple choice assessment and 42.5% of the variance on scores from

an open ended assessment. Differences in student learning outcomes can be attributed, in part,

to differences in their opportunities to learn different topics [52, 55]. For instance, in a classroom

setting, the opportunity for iteration can be driven by the structure of the class: students will not

expand or refine their model if they are not given the opportunity to do so.

Differences in student learning can also be attributed to differences in the curriculum be-

ing utilized, and differences in how teachers implement curriculum in their specific classroom [33].

Large variations in how teachers implement STEM ”inquiry-oriented” curriculum have been rou-

tinely observed [40, 75], and curriculum integrating modeling is no exception. Windschitl et al.

[90] conducted a series of studies examining how K-12 teachers integrated student modeling into

their classrooms and found significant variance in teacher understanding and adoption. For many

teachers, the traditional scientific method notion of generating a hypothesis is deeply ingrained in

their views of science practices. Subsequently, these teachers had difficulty adopting a scientific

practice that required them to ground ideas and predictions in an initial model. In some cases,

they found that teachers simply rejected the model-based inquiry approach, citing that providing

students with opportunities to engage in iterative practices took too much classroom time and

added unnecessary complexity. Similarly, Jordan et al. [32] found that teachers spent most of their

time using models as a communication tool rather than a practice for students to engage with in

the classroom.

One of the important approaches to defining improvement across learning sciences is to

reduce the variance attributable to the sources inherently present in the education system [4]. By

reducing the variance attributable to differences in teacher, school, or population demographics,

we can provide a more equitable educational experience. Our objective in this work is to reduce

the variance in students use of modeling practices, with a particular focus at reducing effects found

at the teacher level. This reduction in variance will promote equity in the learning experience by
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giving all students opportunities to learn [28].

In my analysis, I examine variations in student modeling across classrooms and teachers,

analyzing both students’ opportunities to learn and variations in the degree to which they engaged

in specific modeling practices. For these analyses, I use measures of frequency and variety as

features [77]. Frequency characterizes how often students were able to engage in the different

modeling practices within EcoSurvey, whereas variety captures the breadth of practices that they

engaged in. Frequency and variety have been shown to reliably predict the uptake and adoption of

new technologies across different groups of users [77, 51]. These features differentiate patterns of

uptake and adoption of modeling practices across classrooms.

I also explore the ways in which an individual student’s modeling processes can be indicative

of teacher differences. I use sequence classification techniques [90] to detect recurring patterns,

called sequential patterns or action sequence features, in student’s modeling practices, as they

engage in cycles of creating, evaluating, revising, and using their models. I explore the degree

to which automatically extracted and optimized action sequence features are able to correctly

predict a specific student’s teacher. These pattern mining methods have been used by learning

analytics researchers to address questions related to course selection trajectories [11] and group

work dynamics [68]. Automatic feature optimization is a common technique used in data mining

to identify the features that carry predictive value for classification [21]; the resulting features can

reveal insights into processes important for differentiating between categories [20]. In this case, I

am using these sequences to detect and understand potential differences in modeling curriculum

implementation across teachers.

1.2.2 Learning Analytics

1.2.2.1 Understanding Student Activity

Understanding student activity is an active area of Learning Analytics research. There is a

large body of work focused on detecting students’ skill acquisition using digital tools. One example
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of this is a study focused on young students’ ability to make numeric and fractional estimates in a

number line game [46]. In this study, they found significant gains in student accuracy over time.

One important area of research around understanding student activity focuses on detecting

variance between students as a predictor of future activity. One example is Jihyun Park et al’s [63]

work on understanding student use of online classroom resources using features drawn from student

clickstreams. These features focus on generalizing beyond the course content, focusing on simple

frequency measures (e.g. number of clicks per day) and abstractions of how the content accessed

relates to the course schedule, determining whether the content being accessed is being ”previewed”

or ”reviewed”. The team used these metrics to categorize whether students’ engagement with online

resources increased, decreased, or stayed the same, creating three different categories of students.

Overall, they found that students who specifically increased their engagement with the tool had a

better success rate in the class.

While these aggregate features are useful in understanding activity, another approach to

understanding this activity and variance is the use of sequence modeling [91]. This approach

focuses on a fine-grained distinction of different activities and analyzes patterns in how activities

lead into one another. This approach parallels that used by d’Aquin et al.[11], where they used

sequential pattern mining to study student course enrollment patterns.

These innovations inspire my approach to analyzing student engagement with modeling prac-

tices. By adapting the approaches of aggregate activity and sequence analysis to scientific modeling

in the classroom, I develop new insights into how students participate in this crucial activity.

1.2.2.2 Online Analysis

While Learning Analytics bodies of work demonstrate a strong body of existing work in un-

derstanding student activity, this work is often performed in a post-hoc fashion, extracting what

improvements, differences, or gaps may exist from a tool deployment. An important area of ongoing

research seeks to understand how these methods can be used to predict potential performance. Cre-

ating ”online” systems (i.e. systems that measure performance and draw conclusions in real time,
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during use) has the potential to detect critical differences and gaps in learning and engagement. In

turn, these predicted differences can be used for intervention, supporting students in useful ways.

Online difference detection and intervention is not new. In general user interface research,

this area has driven the development of many different tools, including interventions as ubiquitous

as ”Clippy”, the oft-ridiculed Microsoft Office digital assistant. At the 2017 conference on Learning

Analytics & Knowledge, several research teams (e.g. [24, 47, 30]) presented preliminary results in

designing and/or deploying predictive systems for education and learning, while many others (e.g.

[70, 34]) cited prediction for intervention as an important next step for their research.

There are three main styles of online intervention: alerts, automated task selection, and

dashboards. In alert-based interventions, such as the aforementioned Clippy, the system provides

some sort of notification to the user of some error or inefficiency in their actions. This approach faces

numerous problems, primarily accuracy (and the balance between misses and false positives, e.g

[29]) and usability (e.g. Clippy [57]). Automated task selection, or choosing the problem/example

to show a student based on features of the problem/object and previous responses of the student,

is a common approach in the learning setting (e.g. [73]). However, this approach is uniquely suited

to learning tasks focused on repetition, such as image classification. Dashboards serve as a passive

learning intervention that focuses on ”informating” [92] and guiding only when accessed. This

approach, while overcoming the burdens of interruption provided by alert systems and working well

in longitudinal tasks, faces issues related to the need to access the information (limiting the access

to those with the motivation to seek out feedback) and the possible complexity of interpretation.

In my work, a dashboard-type information view is the most effective method for showing real-

time feedback. The motivations of a joint formal classroom activity, such as EcoSurvey, provide

a higher level of baseline motivation to improve through the social pressures of collaboration and

the external motivation provided by the teacher. The students can also benefit from the metacog-

nitive aspects of interpreting feedback, allowing them to understand both how to improve their

models as well as how to engage with modeling more generally. In addition, the teachers have

motivation as professionals to both guide students to engaging with feedback as well as scaffold
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their interpretation.

1.2.3 Human Centered Computing

1.2.3.1 Scaffolds

Scaffolding, or the use of external supports to help a person accomplish a task is a common

approach in the learning sciences. Vygotsky [88] discussed such supports when describing the zone

of proximal development for apprentices in trade fields. Scaffolds are natural extensions of this idea,

tools that support a learner in this process, providing guidance or removing levels of complexity

from the problem. These scaffolds can then be removed from the application, setting, or activity

when the learner is ready to move on.

This scaffolding approach has been adopted in software-supported learning scenarios (e.g.

[71, 16] ). One particular line of work has focused on digital applications that support scientific

inquiry. Quintana et al.[72] describe three phases of scaffolding scientific inquiry:

1) Characterizing the cognitive tasks, social interactions, tools, and artifacts that
constitute the scientific practices in which learners are engaged.

2) Characterizing the aspects of these practices in which learners encounter obsta-
cles.

3) Characterizing scaffolding guidelines that specify ways that tools can alter the
task to address the obstacles by helping make tasks more tractable and productive
for learners.

My work naturally builds on these guidelines. By focusing the design of EcoSurvey around

the practices outlined in learning science literature on modeling in the classroom, we naturally

connect to the real practices of the task. My analytics are designed to automatically measure how

successful students are at engaging with these practices and the points at which students run into

difficulty. I have used this feedback in design, and the results show that students are using the

revised modeling tool to engage more successfully with modeling.
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1.2.3.2 Co-Design / User-Centered Design / Iterative Design

User-Centered Design is an important methodology for creating usable and useful tools for

real-world use. This process focuses on several key techniques, including iteration [60]. These

methods have helped define what makes for a successful design, with a focus on outcome measures

related to the task at hand. This work motivates both our design process as well as the need

for new approaches to defining successful models and engagement with modeling practices in the

classroom.

My design work takes place in the context of a larger Design Based Implementation Research

(DBIR; [14]) project. This process builds on the ideals of user-centered design, but expands its

commitment to involving end users (in our case, teachers) as co-researchers and designers, testing

and refining theoretical assumptions during iterative design cycles. We employ a co-design process

[83, 66] to develop and refine our curricula and systems, including EcoSurvey. Co-design is ”a

highly-facilitated, team-based process in which teachers, researchers, and developers work together

in defined roles to design an educational innovation, realize the design in one or more prototypes,

and evaluate each prototype’s significance for addressing a concrete educational need” ([66], p. 51).

We have successfully used this process to design both software tools [83] and new curriculum [77]

with teachers.

1.3 Research Context

1.3.1 Inquiry Hub

EcoSurvey was developed as part of a larger collaborative design-based research project

called the Inquiry Hub, which is focused on supporting teachers in developing student-centered

approaches to curriculum and teaching [77]. Inquiry Hub Biology is a digital high school biology

curriculum developed in partnership with Denver Public Schools. Within the ecosystems unit of

this curriculum, students are asked to choose a tree to plant on their school grounds or other

designated site that will improve their local ecosystem’s biodiversity and resilience.
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1.3.2 EcoSurvey

To develop an understanding of their local ecosystem, students use EcoSurvey to document

and visualize organisms and interactions they encounter. Within EcoSurvey, students join a ”sur-

vey” set up for their class, take photos and field notes on organisms they find on their school

grounds, and create a ”card” for each organism. Students add details to each card about the or-

ganism including its role in the ecosystem and relationships it has with other organisms. EcoSurvey

is designed to support peer-review, allowing for students to provide feedback and make edits to

cards quickly and easily. These models are visualized in a graph view, allowing for further review

and use as evidence as the proper tree to plant.

1.4 Dissertation Structure

This dissertation is built from three studies that address parts of the research questions

discussed above. Chapters 2, 3, and 4 have either been published as a journal or conference article

or are being drafted for future submission. Chapter 2 reviews the analysis of our first year of

EcoSurvey deployment, and was initially published as a conference paper at the 2017 7th Annual

Conference on Learning Analytics & Knowledge in Vancouver. That chapter builds the foundation

for answering RQ1, and establishes the motivation and baseline for RQ2. Chapter 3 expands

on our first year analysis to perform comparison with data from our second deployment. It was

published in the Frontiers in ICT journal special issue on digital education in 2017, and reinforces

the impact of my analytics on RQ1 while beginning the exploration of RQ2. The final third year

of deployment is captured in Chapter 4 and is targeted for submission to the Journal of Learning

Analytics special issue on Human-Centered Analytics. This final study reinforces our findings on

RQ1 and RQ2, as well as discovering some boundaries for those conclusions. The chapter also

explores RQ3 by examining the correlation between modeling activity and the ability to explain

and discuss modeling. All three papers include collaborative work and contributions made by my

thesis advisor Tamara Sumner. In addition, my collaborator Jonathan Ostwald made contributions
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to the work presented in chapters 2 and 3, my undergraduate research assistant Conor McNamara

contributed to methods and analyses presented in chapter 3, and my collaborator Jennifer Jacobs

contributed to data analysis presented in chapter 4. Finally, Chapter 5 will revisit the research

questions, and discuss how each one has been addressed through these three studies.



Chapter 2

Scientific Modeling: Using learning analytics to examine student practices and

classroom variation

This chapter was published as a full paper (best paper nominee) at the 2017 Learning Ana-

lytics & Knowledge conference in Vancouver (see [70]). This work establishes the foundations of my

approach to understanding scientific models and modeling practices at scale (RQ1) and provides a

baseline measure of these two facets for exploring the impact of our iterative design (RQ2).

2.1 Introduction

Scientific models represent ideas, processes, and phenomena by describing important compo-

nents, their characteristics, and their interactions. Models are constructed across a broad spectrum

of scientific disciplines, such as the food web in biology, the water cycle in Earth science, or the

structure of the solar system in astronomy. Models are central to the work of scientists for under-

standing phenomena, and for constructing and communicating theories. Constructing and using

models to explain scientific phenomena is also an essential practice in contemporary science class-

rooms. In A Framework for K-12 Science Education [58], developing and using models is one of the

eight core practices deemed essential for science learning and instruction. According to the Frame-

work, ”[s]cientists use models... to represent their current understanding of a system (or parts of

a system) under study, to aid in the development of questions and explanations, to generate data

that can be used to make predictions, and to communicate ideas to others” [58].

Scientific models can take many forms, such as textual descriptions, visual diagrams, com-



21

puter simulations, and mathematical equations. For instance, in elementary physical science,

Schwarz et al [76] studied the development of students’ modeling practices by having students

sketch models depicting how light interacts with objects to produce shadows. Bryce et al [3] asked

students to construct a clay model of a cell. Even these simple modeling activities push students

to represent their current knowledge and to use this knowledge to explain new phenomena. Models

are often more complex, involving visual representations or computer simulations. Such models

may focus on the complex interactions between components (e.g. predator-prey interactions in a

food web) or depict how a substance changes state over time (e.g., how water changes from liquid

to gas as it moves through stages in the water cycle).

In this research, we study the development of student modeling practices in secondary bi-

ology classrooms. In these classrooms, students used a web-based software tool - EcoSurvey - to

characterize organisms and their interrelationships found in their local urban ecosystem. Students

use EcoSurvey to: (1) photograph, map and characterize local species, (2) document how species

interact around shared resources such as food, and (3) identify resources and species that are

important to the resilience of their environment. EcoSurvey follows in a rich tradition of computer-

based modeling tools [80, 37, 15]. These digital modeling tools provide built-in affordances that

foreground important scientific modeling practices, and are explicitly designed to scaffold students’

modeling activities, through the careful design of the interface and prompts promoting reflection

and appropriate action [71, 15]. As such, they support students to develop more complex models

that would be difficult to create using traditional tools and these models can be quickly revised

thanks to their digital nature.

Digital modeling tools also provide an opportunity for instrumentation to unobtrusively cap-

ture usage. Reflecting contemporary software architectures, EcoSurvey is a cloud-based software

tool, where all changes and refinements to student models are centrally captured and stored, provid-

ing researchers with a fine-grained record of student modeling practices at scale, across potentially

thousands of students in a wide range of classroom settings. These rich data offer opportunities for

new learning analytic methods to better characterize student scientific modeling practices and to
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examine classroom level differences. In this paper, we use learning analytics and machine learning

techniques to answer the following questions:

1) What variation do we see in the models created by students to support explanations of

scientific phenomena, in our case, ecosystem biodiversity?

2) What variation do we see in student modeling practices across different teachers?

3) Can the action sequences used by students during modeling be used to predict each stu-

dent’s teacher?

We analyzed EcoSurvey usage data collected from over 200 secondary students across ten

classrooms. We observed large variations in the completeness and complexity of student models,

and large variations in their iterative refinement processes. We also observed large differences in

student modeling practices across different classrooms and teachers, and we were able to predict a

student’s teacher based on the observed modeling practices with a high degree of accuracy without

significant tuning of the predictive model. These results highlight the value of this approach

for extending our understanding of student engagement with an important contemporary science

practice, as well as the potential value of analytics for identifying critical differences in classroom

implementation. These results shed light on potential improvements in tools and curricula. Before

discussing our approach and results further, we first present the education and learning sciences

theories underpinning this work and describe our research context and the EcoSurvey tool in more

detail.

2.2 Theory and Related Work

A central goal of our approach is to develop theoretically-grounded analytic methods. Edu-

cation research and the learning sciences offer insights into three areas critical to our approach: the

elements of a ”good” student model, how to characterize student modeling practices, and variation

in classroom implementation across teachers.
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2.2.1 Scientific models that support complete explanations of phenomena

Scientific models are tools for explanation and prediction. A complete scientific explanation

should ”explain observed relationships between variables and describe the mechanisms that support

cause and effect inferences about them” [58]. Thus, to support student explanations, a scientific

model of a phenomenon should include important components (”variables”), their interactions (

”relationships”), and define the mechanisms involved. When modeling an ecosystem, these corre-

spond to the organisms in the ecosystem (animals, plants, insects, fungi, etc), how these organisms

interact with each other and the environment (predator, prey, producer, decomposer, etc), and the

involved processes (abiotic, biotic, etc). Professional biologists use this information to measure the

biodiversity of an ecosystem in terms of species richness, evenness, and divergence [26, 50, 19].

In this work, we characterize variation in students models by examining the number of or-

ganisms present, the variety of types of organisms present, the number of interactions between

organisms that students have identified, and the diversity of these interaction types. We also look

at how these features are distributed within a model. These measures are used to understand the

complexity of a student model. Interestingly, understanding the complexity of an ecosystem has

been shown to support students to develop empathy and other affective stances towards nature [36].

Student understanding the flow of matter and energy through ecosystems has also been shown to

vary strongly across cultural boundaries [1], providing further motivation for understanding varia-

tion in student models and student modeling practices.

2.2.2 Strong student scientific modeling practices

Constructing scientific models is part of the ”inquiry” tradition in science education, where

students learn scientific concepts through hands-on ”doing” [39]. Understanding what students are

doing at a fine-grained level can provide teachers with useful insights into learning processes, as

well as provide teachers with feedback as to where and when students need additional assistance.

Towards this end, several scholars have developed frameworks characterizing effective student mod-
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eling practices [76, 3]. Schwarz et al. [76] identify a series of seven practices: (1) identifying the

anchoring phenomena to be modeled, (2) constructing a model, (3) testing the model, (4) evalu-

ating a model, (5) comparing the model against other ideas, (6) revising the model, and (7) using

the model to predict or explain phenomena. Bryce et al [3] identify a similar set of practices as

important to support student learning during modeling, namely (1) observation (paralleling the

anchoring phenomena), (2) model construction, (3) model use, (4) model evaluation, and (5) model

revision. Their research suggests that supporting students to engage in these practices can lead to

positive learning outcomes [76].

Here, we focus on a subset of these practices - constructing, evaluating, revising, and using

models - incorporating them into our analysis framework [10]. We focus on these four practices

as they are directly supported through the EcoSurvey interface and can be readily observed and

tracked in the usage log. In addition to these four practices, we examine the degree to which students

engaged in iterative design of their models. Iteration occurs when students cycle between the other

four modeling practices, where the four practices correspond directly to individual actions in the

EcoSurvey interface, such as adding an organism or relationship (construction), editing an organism

or relationship (revision), or generating a graph of the entire ecosystem to support explanations

(using). Iteration is an important modeling practices that is used to both expand the scope of

a model and to improve its accuracy [28, 3]. Learning analytic techniques are used to identify

the degree to which students used these practices and to examine variations in student modeling

practices. While these usage log analysis methods are an excellent passive way to collect data

on student practices [65], it is important to note that these methods do not capture information

about how students are reasoning with their models. Exploring student reasoning with models and

how they generate explanation using models is beyond the scope of this study, and would require

deep exploration of students’ cognitive processes using think-alouds, cognitive interviews or other

learning and cognitive sciences research methods (e.g. [76]).
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2.2.3 Teacher Differences

Student learning outcomes vary widely across teachers [33, 53]. Students with a top perform-

ing math teacher can be expected to perform .266 standard deviations better on a standardized

math test than those with a median teacher [33]. Similarly, McNeill et al [53] evaluated 22 high

school ecology classrooms across the US and found that teacher differences accounted for 34.5% of

the variance on scores from a multiple choice assessment and 42.5% of the variance on scores from

an open ended assessment. Differences in student learning outcomes can be attributed, in part,

to differences in their opportunities to learn different topics [52, 55]. For instance, in a classroom

setting, the opportunity for iteration can be driven by the structure of the class: students will not

expand or refine their model if they are not given the opportunity to do so.

Differences in student learning can also be attributed to differences in the curriculum be-

ing utilized, and differences in how teachers implement curriculum in their specific classroom [33].

Large variations in how teachers implement STEM ”inquiry-oriented” curriculum have been rou-

tinely observed [40, 75], and curriculum integrating modeling is no exception. Windschitl et al

[90] conducted a series of studies examining how K-12 teachers integrated student modeling into

their classrooms and found significant variance in teacher understanding and adoption. For many

teachers, the traditional scientific method notion of generating a hypothesis is deeply ingrained in

their views of science practices. Subsequently, these teachers had difficulty adopting a scientific

practice that required them to ground ideas and predictions in an initial model. In some cases,

they found that teachers simply rejected the model-based inquiry approach, citing that providing

students with opportunities to engage in iterative practices took too much classroom time and

added unnecessary complexity.

In our analysis, we examine variations in student modeling across classrooms and teachers,

analyzing both students’ opportunities to learn and variations in the degree to which they engaged in

specific modeling practices. For these analyses, we use measures of frequency and variety as features

[79]. Frequency characterizes how often students were able to engage in the different modeling
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practices, whereas variety captures the breadth of practices that they engaged in. Frequency and

variety have been shown to reliably predict the uptake and adoption of new technologies across

different groups of users [79, 51]. Here, we use these features to study the different patterns of

uptake and adoption of modeling practices across classrooms.

We also explore the ways in which an individual student’s modeling processes can be indicative

of teacher differences. We use sequence classification techniques [91] to detect recurring patterns,

called sequential patterns or action sequence features, in student’s modeling practices, as they

engage in cycles of creating, evaluating, revising, and using their models. We explore the degree

to which automatically extracted and optimized action sequence features are able to correctly

predict a specific student’s teacher. These pattern mining methods have been used by learning

analytics researchers to address questions related to course selection trajectories [11] and group

work dynamics [68]. Automatic feature optimization is a common technique used in data mining

to identify the features that carry predictive value for classification [21]; the resulting features can

reveal insights into processes important for differentiating between categories [20]. In our case, we

are using these sequences to detect and understand potential differences in modeling curriculum

implementation across teachers.

2.3 Research Context: Inquiry Hub and EcoSurvey

EcoSurvey was developed as part of a larger collaborative design-based research project called

the Inquiry Hub, which is focused on supporting teachers in developing student-centered approaches

to curriculum and teaching [77]. Inquiry Hub Biology is a digital high school biology curriculum

developed in partnership with a large urban school district in the midwestern United States. Within

the ecosystems unit of this curriculum, students are asked to choose a tree to plant on their school

grounds or other designated site that will improve their local ecosystem’s biodiversity and resilience.

Classes use EcoSurvey to create a collective model of their local ecosystem. They use these models

to provide evidence and construct arguments to support their choice about the type of tree they

choose to plant. The recommended type of tree is then planted on the site, in collaboration with
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the local Parks and Recreation Department, based on the students’ arguments and evidence. Thus,

the models students create using EcoSurvey support them to construct arguments with real world

consequences. To illustrate the use of EcoSurvey within this context, we follow the experience of

”Maria”, a fictional student in Ms. Smith’s 3rd period class.

2.3.1 Data Collection and Creating the Model

Ms. Smith instructs students to map the ecosystem within a selected site on their school

grounds or in the local area, taking pictures and making field notes on the organisms and inter-

actions between organisms that they observe. Maria’s group makes observations along the creek

that runs next to the school. They find a lady beetle, a honey locust tree, some mushrooms, a gray

squirrel, and a few other organisms. Using their smartphones, they take pictures of these organisms

and upload them to EcoSurvey, creating a ”card” for each organism while out in the field. Each

card automatically captures information about the date, time, and location of the observation be-

ing recorded. Cards also include a ”relations” field to capture interactions between organisms and

information about the organism’s role in the ecosystem. Students begin entering this information

as they observe it in the field, and then continue to augment this information back in the classroom

through additional research. In Figure 2.1, we see Maria’s lady beetle card under construction.

While in the field, she created the card, uploaded a picture, and added details about interactions

they saw. At the same time, her team members are also creating cards for other organisms they

are observing.

2.3.2 Evaluating the Model

As students create cards, their organisms are added to a shared class ”survey”. The survey

view shows all of the organism cards and their detailed information, ordered by how recently they

were edited. Maria can see that her classmates have created many cards, including a Blue Jay card

(Figure 2.2).

Ms. Smith organizes the student groups into pairs and asks each group to review the other’s
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Figure 2.1: The edit view for Maria’s Lady Beetle card.
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Figure 2.2: The main view of Ms. Smith’s class survey.

cards for correctness and completeness. Maria’s group is paired with Group 2, who completed

several cards. Andre, a member of Group 2, asks Maria to first review the red tailed hawk card he

created. Maria uses the search feature of the survey view to quickly find the hawk among the cards.

She notices that this card is missing many details, including interactions with other organisms.

2.3.3 Revising the Model

Maria recommends that Group 2 do further research into how the hawk contributes to the

local ecosystem. She also takes the chance to update her group’s gray squirrel and honey locust

cards. She discovered that hawks prey upon squirrels and nest in honey locust trees during her

earlier research. She didn’t realize that their school ecosystem included hawks until she reviewed

the work of her classmates, as her group did not see a hawk. Once Maria has completed editing

her group’s cards, she continues her review of Group 2’s cards. She uses the group select function

to view only the cards created by members of Group 2.

Group 2 notices that two people in Maria’s group created duplicate lady beetle cards. Maria

decides to add her lady beetle information to the other card, since it is more detailed, and uses the

delete function to remove her lady beetle card from the model.
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2.3.4 Iterating the Model

In reviewing Group 2 cards, Maria sees a card for geese, but notices that the group did not add

a predatory relationship to grass, even though she observed geese eat the grass on the soccer field.

She uses the search functionality and discovers that no one in class created a card to document

grass as an observed organism. Maria adds a new card for grass and includes a predatory-prey

relationship with geese. By cycling back through earlier modeling practices (creating new cards),

Maria is iteratively improving the class model to be more complete and accurate.

2.3.5 Using the Model

Once the class has created a robust model of their local ecosystem, students use this model

to construct arguments for choosing a particular tree to plant. Maria presses the ”create relation

graph” button, which generates the graph representation of the model and exports it to a digital

graphing tool(Figure 2.3). Maria and her team study the resulting diagram that enables them to

visualize the relationships (links) between all the organisms (nodes) they have cataloged. It is clear

from looking at her graph that the English Oak trees are an important keystone species in their

site, involved in a large number of relationships with a wide variety of organisms. The geospatial

locations in the observational data indicate that there are only two English Oak trees located in

their site; Maria and her group recommend planting an additional tree of this type.

2.3.6 Analyzing EcoSurvey Use

Maria’s scenario illustrates how EcoSurvey supports students to engage in the practices of

creating, evaluating, revising, iterating, and using models. To use a learning analytics approach

to study modeling practices, we must map specific actions, or sequences of actions, taken in the

EcoSurvey interface to specific modeling practices. Table 1 describes the mapping between modeling

practices and specific EcoSurvey interface actions that we use in our analyses. As students interact

with EcoSurvey, the system captures and logs each of the actions shown in Table 2.1. Each log

entry includes the time, user, survey, and action type.
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Figure 2.3: A section of Maria’s final graph.

Table 2.1: EcoSurvey Actions

Modeling
Practice

Description EcoSurvey Actions

Create Model Create a new entry in the model New Card

Evaluate
Model

Explore the organisms and interactions in
the current model

Group Select, Search

Revise Model Edit or delete organisms and interactions in-
cluded in the current model

Edit, Delete

Use Model Export a representation of the model for use
(e.g. constructing an argument)

Generate Graph, Download

Iterate Cycle between creation, revision, and use
practices

New Card, Edit, Delete, Gen-
erate Graph, Download
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2.4 Methods

Here, we describe data used in our analyses as well as the specific analytic techniques used

to answer each of our three research questions. All teachers’ names are pseudonyms.

2.4.1 Study Data

EcoSurvey usage log data was collected from 262 students, across 10 high school classrooms,

during Fall 2015. These 10 classes were taught by three different teachers: Anderson, Baker, and

Chavez. Anderson taught two periods of high school biology, which she elected to combine into

one group to produce a single ecosystems model. Baker taught three periods, while Chavez taught

five. From the sample, we recorded actions for 204 students, while 58 students did not record any

activity. All classrooms in this sample followed a 3:1 device deployment where three students used

one laptop together; thus it is not surprising that there are students with no recorded activity. A

total of 9 models were created, which included 586 organism cards and 545 interactions, generating

3160 action logs.

2.4.2 Variation in Student Scientific Models

Our first research question examines variation within student models, focusing specifically on

the richness of students’ models in terms of the number of organisms and their relationships. We

analyze the relative number of organisms and interactions within each class survey. We also look

at the balance of interactions per organism by evaluating both the average number of interactions

per organism and variance in the distribution of interactions. Examining variance allows us to

distinguish different patterns in the assignment of interactions to organisms. Some classes may

create models where most organisms have a similar number of interactions, while other classes may

create models where only a few organisms have been assigned many interactions.
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2.4.3 Variation in Modeling Practices

Our second research question examines variation in student modeling practices, focusing on

action variety, frequency, and iteration. Action variety refers to the range of actions a student

performed. For example, some students may have only created and edited cards, while others may

have used the full range of EcoSurvey actions. Frequency refers to the total number of actions

completed by an individual student and the number of usage sessions they engaged in. Sessions are

defined by a series of actions from a single user without a large break in activity (greater than two

hours). Defining a session using a two hour gap allows for any student activity within a long class

period to occur within one session; several of our classrooms employ 1.5 hours block periods.

To characterize iteration practices, we look for evidence of design cycles within the log infor-

mation. Design cycles can be recognized when students engage in multiple sequences of construct-

revise-use practices. This focus on a sequence of practices is consistent with Schwarz et al [76],

which characterized modeling practices as a series of steps. By extension, a design cycle consists

of returning to a previous modeling step after moving on in the sequence (e.g. creating a new card

after editing a different card). We counted the number of cycles as a measure of iteration.

Combined, these three metrics - action variety, frequency, and iteration - yield an eight

feature vector for each student consisting of total number of EcoSurvey actions, total number of

create actions, total number of evaluate actions, total number of revise actions, total number of

use actions, total number of EcoSurvey action types taken, number of sessions, and number of

iterations. We combined the feature vectors for students with the same teacher, and performed a

Kruskal-Wallis H test [42] for each feature to determine differences between teachers. A Kruskal-

Wallis H test is a non-parametric adaptation of an ANOVA to compare samples of different sizes,

as we have in our groups. We further explored these differences using Tukey’s HSD test [84] to test

the significance of pairwise differences between teachers.
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2.4.4 Predictive Value of Modeling Practices

Our third research question examines the degree to which we can use sequences of student

modeling actions to predict that student’s teacher. For this prediction task, we use the previously

described features of variety, frequency, and iteration as well as automatically extracted sequence

patterns. This sequence pattern approach is inspired by the feature-based sequence classification

methods summarized by Xing, Pei, and Keogh [91]. In our work, a sequence pattern consists of

a series of EcoSurvey actions (e.g. ”New Card”, ”Edit”, ”Generate Graph”) embedded within a

student’s complete action log. To extract sequence patterns, we used the Colibri Core [86] software

package. This software package, originally designed for natural language processing tasks, treats

every action as a token and determines the frequency of consecutive token sequences (n-grams)

from student usage logs. These token sequences can include wildcard actions (skip-grams). For

instance, the software will extract the sequence ”New Card”, ”Edit”, ”Generate Graph” as either

an n-gram or as the skip-gram ”New Card”, {*}, ”Generate Graph”. This skip-gram will capture

similar sequence patterns, where one action occurs between New Card and Generate Graph actions.

This yielded 2,893 unique sequence patterns, that occurred at least three times, across all student

usage logs. Once we extracted these sequence patterns, we used them as a new series of features to

augment each student’s existing feature vector. This approach parallels that used by d’Aquin et al

[11], where they used sequential pattern mining to study student course enrollment patterns.

To understand which features that characterize a student’s modeling actions are most pre-

dictive of his or her teacher, we input subsets of each student’s feature vector into four Naive Bayes

classifiers using Weka [22]. The first classifier used the eight features related to variety, frequency,

and iteration of actions. The second classifier used the full set of sequence pattern extracted by

Colibri Core for each student. The third classifier implemented a best-first search [21], which au-

tomatically reduced the full set of sequence patterns to the eighteen most predictive features. The

last classifier combines the eight variety, frequency, and iteration features with the eighteen most

predictive sequence patterns. Each test was run using 10-fold cross validation.
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Table 2.2: Final models for each class.

Survey # Users Organisms Interactions Int. Per Org. Int. Var.

Anderson 4 & 7 29 155 264 1.7 4.35

Baker 1 28 47 7 0.149 0.297

Baker 2 27 25 5 0.2 0.24

Baker 4 29 19 0 0 0

Chavez 1 27 88 70 0.795 0.663

Chavez 2 29 45 27 0.6 1.31

Chavez 6 30 60 57 0.95 3.78

Chavez 7 31 81 82 1.012 5.72

Chavez 8 32 66 33 0.5 0.826

2.5 Results

Results are presented for each of our three research questions.

2.5.1 (RQ1) What variation do we see in the models created by students?

As shown In Table 2.2, there are substantial variations in the models created by students in

different classrooms. We see that Anderson’s students documented many more organisms (155) and

interactions (264) than all other classes. Though Anderson had both of her classes work together

to create one survey, the total number of students contributing to this model is comparable to the

number of students contributing in other classrooms. We also see that students in Baker’s three

classes each documented significantly fewer organisms and interactions. One class only documented

19 organisms (less than one per student) and did not document any interactions. Chavez’s classes

exhibit wide variation, particularly in the numbers of interactions documented by each class.

The number of interactions per organism, a broad measure of model complexity, further

illustrates apparent classroom differences, with Anderson’s class creating more complex models than

Baker’s and Chavez’s classes. To better understand classroom differences, we examine variance in

the number of interactions per organism. In Anderson’s class, we see a high variance in comparison

to the interactions per organism metric, which indicates that there are a small number of organisms

with lots of interactions and many organisms with few interactions.
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Chavez’ P1 and P7 classes provide a particularly interesting case to examine this variation.

On reviewing Table 2.2, we see that the variance in the number of interactions assigned to each

organism is significantly lower in P1 than in P7, while the actual number of organisms and inter-

actions are comparable. Further analyses reveal that students in Chavez’s P1 did not assign any

interactions for 39% of their organisms, while students in P7 did not assign interactions to 74% of

their organisms. A similar analysis revealed that 42% of the organisms documented in Anderson’s

model did not include interactions. In most classes, the majority of organisms have no documented

interactions. It appears that students engaged significantly more with describing organisms, and

spent far less time consistently documenting interactions.

2.5.2 (RQ2) What variation do we see in student modeling practices across dif-

ferent teachers?

There are significant differences between the student action sequences of our three teachers

on all eight metrics related to variety, frequency, and iteration (p < .001). Our Tukey’s HSD test

for each feature shows that the three groups are each distinct to a significant degree in Create,

Revision, and Iteration frequency (Figure 2.4a, p < .05), as well as Overall Actions, Session Count,

and Action Variety (Figure 2.4b, p < .05). We also see Anderson’s students performed significantly

more Evaluate and Use actions than the other two teachers’ students (Figure 2.4a, p < .05), though

the differences between Baker’s and Chavez’s students are not significant. Anderson’s class also used

EcoSurvey twice as much, as measured by session counts. Overall, Anderson’s students engaged

in more modeling practices than both of the other two groups, and Chavez’s students engaged in

more modeling practices than Baker’s.

There were also differences in the modeling practices that students employed. Students in

Baker’s classes rarely engaged in three of the five modeling practices we are studying: revisions,

iteration, or use. Chavez’s class engaged with four of the five practices, but appeared to rarely use

their models.
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(a) The average number of actions by modeling
practice type.

(b) The average number of actions, types of ac-
tions, and action sessions.

Figure 2.4: Student modeling practices for each teacher’s students.



38

Table 2.3: Predictive accuracy of each action sequence feature set

Feature Set # Attributes Naive Bayes Acc

Baseline 0 51.96%

All Sequence Patterns 2,893 63.73%

Variety, Frequency, and Iteration Features 4 67.65%

Best Sequence Patterns 18 75.00%

Combined Features 22 80.39%

2.5.3 (RQ3) Can the action sequences used by students during modeling be used

to predict each student’s teacher?

As shown in Table 2.3, student action sequences can predict their teacher with varying degrees

of reliability depending upon the features used. Our baseline assumes that each student is in one

of Chavez’s classes; almost 52% of the students in this study were in one of his classes. All of

the feature sets we studied improved performance over the baseline. Classifying based on all 2,893

sequence patterns improved our classification accuracy by almost 12%, whereas classifying solely

based on our variety, frequency, and iteration features improved performance by over 15%. We also

trained a model on the best sequence patterns, that is, the 18 most predictive patterns identified

by Weka’s Attribute Selection tool [21]; this yielded a nearly 25% improvement in performance.

The best performing model was one that combined the most predictive sequence patterns with our

variety, frequency, and iteration features. This combination resulted in a 30% improvement over

baseline, correctly predicting a student’s teacher 80% of the time.

The most useful features for classification accuracy are the 18 ”best” sequence patterns (Table

2.4). A closer examination reveals that these sequence patterns correspond to our five modeling

practices in interesting ways. These patterns prioritize model revision, evaluation, and iteration

as distinguishing features, which correspond to the differences in classroom modeling practices

discussed under research question 2.

To better understand the types of errors that our best performing model makes, we generated

a confusion matrix (Table 2.5). We see that 75% of the errors are due to the misclassification of 30

of Chavez’s students as Baker’s students. One possible reason for this misclassification is that some
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Table 2.4: The most predictive action sequences.

New card, New card, {*}1,
New card, {*}, {*}, New card

New card, {*}, Group Select,
{*}, New card

Group Select

Group Select, {*}, Group Se-
lect

Group Select, {*}, {*}, {*},
Group Select

Group Select, {*}, New card,
{*}, New card

Group Select, Search Search, {*}, {*}, {*}, Edit Edit

Edit, Edit Edit, {*}, Edit Edit {*} {*} Edit

Edit, Search Edit, Generate Graph, Down-
load

Edit, Generate Graph, Down-
load, Edit

Generate Graph Download Generate Graph, Download

students in Chavez’s classes performed very few modeling actions overall, similarly to the majority

of students in Baker’s classes.

2.6 Discussion

In this study, we demonstrated the utility of learning analytic methods for characterizing

variation in students’ scientific models and their modeling practices. We also showed that an

individual student’s modelling action sequences can be used to predict his or her teacher. Our

results support Windschitl et al’s findings documenting large variations in how teachers implement

modeling in their classrooms [90]. While we did not conduct direct classroom observations, our

analysis revealed profound, quantifiable differences in the models that students constructed across

different classrooms and significant differences in their classroom learning experiences as depicted

in the range of modeling practices that they engaged in.

Student models exhibited large variance in the number of organisms and interactions doc-

1 A {*} refers to a wild card in a skip-gram, which can be compelted with any value.

Table 2.5: Combined features confusion table.

Classified As

Anderson Baker Chavez

Correct Class
Anderson 29 0 1

Baker 1 64 3

Chavez 5 30 71
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umented. These differences could be due to a variety of factors, such as the time allocated to

modeling during class, the degree to which modeling practices were incorporated into instruction,

or their teacher’s dispositions and knowledge about scientific modeling. Our results suggest that

such teacher level differences do matter. Another source of variation could be differences in ability

and knowledge that individual students bring to the modeling task. In our current work, we are

revising the Inquiry Hub curriculum to provide better guidance to teachers to integrate modeling

into their classroom, and we are providing more opportunities for students to engage in modeling

throughout the unit.

Our analysis of student models also revealed a disturbing similarity across all classrooms and

teachers: all the models contained significant percentages of organisms that did not have a single

defined interaction with another organism. Thus, these student models are missing critical elements

of a complete and sound ecosystem model. It is unlikely that these models can support students

to develop comprehensive explanations and predictions as called out in the Framework [58]. There

are multiple possible explanations for these behaviors, including weaknesses in the Inquiry Hub

curriculum, the associated teacher professional development, or the design of the EcoSurvey tool.

As a first step, we have made major changes to the design of EcoSurvey version 2 to make it easier

for students to establish relationships from multiple parts of the interface, to visualize established

relationships through an integrated graph view, and to see which organisms are not connected to

others in the model.

The large variance we observed in student modeling practices provides evidence of significant

teacher-level differences. Clearly these teachers are implementing EcoSurvey and the corresponding

lessons differently in their classrooms, with wildly varying results. When teachers devoted more

time to modeling, as measured by sessions, their students’ engaged in a richer variety of modeling

practices. Prior research suggests that there is a linkage between student engagement in modeling

practices and future learning outcomes [76, 3]. Thus, it appears that students in several of our

participating classrooms lacked critical opportunities to learn [52, 55], that could ultimately impact

their academic performance. In future work, we plan to examine the relationships between student
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engagement in modeling practices and their learning outcomes as measured by end-of-course school

district assessments.

Our predictive analysis provided further evidence of significant teacher-level differences. The

feature selection algorithm honed in on the presence or absence of three modeling practices - evalu-

ation, revision, and iteration - as the features that best predicted a student’s teacher. This suggests

that future professional development and curriculum design should focus on these specific practices,

ensuring that all students get an opportunity to participate in these parts of the modeling process.

In EcoSurvey version 2, we have expanded features designed to support evaluation, revision, and

iteration practices. For instance, we have implemented generating a visual graph of their model

directly into the tool, rather than exporting this information into a 3rd party graphic tool. By

facilitating students to use (visualize) their models more frequently, we hope that this will prompt

them to notice shortcomings and engage in more iterative refinements. The most accurate clas-

sifier also benefited from additional features characterizing action variety, frequency (number of

actions), and iteration. These features further highlight differences in student engagement, with

some students missing the opportunity to explore, develop, and use their models over time.

A core aspect of our analytic approach explicitly linked specific user interface actions in

the EcoSurvey tool to individual modeling practices identified through prior research: creating,

evaluating, revising, using, and iterating [76, 3, 28]. This approach enabled us to work with

theoretically and empirically sound features identified through prior classroom research. And, this

approach enabled us to interpret the action sequences identified as salient by our algorithms in a

theoretically-informed way, enabling us to link our findings back to instructional concerns, such

as curriculum design and professional development. This method of linking interface actions to

identified modeling practices could support generalizing this analytic approach to other tools that

support scientific modeling.

While this study yielded many results that have informed our partnership design work, there

are several limitations that are important to note. First, we are working with a limited data set,

containing data from only three teachers and 9 models. While we generated interesting insights into
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differences between these classrooms, it is difficult to generalize our findings to a broader spectrum

of classrooms. Second, we cannot attribute our observed variation in models and modeling practices

to student-level differences, due to the shared and collaborative nature of the deployment. All our

participating classrooms asked students to work in groups and each group shared a single laptop

computer; we are actually observing the collaborative modeling practices of small groups rather

than individual students.

2.7 Conclusion

We have demonstrated that learning analytics can be used to study student scientific models

and student modeling practices at a scale that has previously been impossible. We used quantitative

statistical measures to study variation across models and teachers. We also used methods drawn

from data mining and machine learning to identify critical differences in student modeling practices

and to explore which features of student modeling sequences are useful for classification.

This work opens the door for a wide variety of further research. Future directions could

incorporate student demographics and examine potential differences in the uptake of modeling

practices across various populations. Future work could also incorporate student assessment data

to look at connections between engagement in modeling practices and student learning outcomes.

Other work could further explore teacher-level differences, combining classroom observations with

learning analytics to better understand the different approaches teachers take during classroom

implementation.

The work presented here has already informed the Inquiry Hub partnership’s effort. The

design-based research team is making evidence-based changes to our curriculum, professional de-

velopment, and classroom tools based on these results. Other research groups studying student

scientific modeling can apply these theories and analytic techniques in their settings to understand

variation in models, modeling practices, and classroom implementation.
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Chapter 3

Using Learning Analytics to Understand Scientific Modeling in the Classroom

This chapter first appeared as a journal article in the Frontiers in ICT publication special issue

on Digital Education (see [69]). This work is a direct extension of the previous publication/chapter,

but adds information on the second year of deployment. This chapter reveals some impacts of our

iterative design (RQ2), particularly in regards to the distribution of relationship types in models

between years. There are also significant null results on the impacts of design presented here,

particularly in the coninued persistence of the orphaned card phenomenon and the teacher and

classroom variance in size and complexity of models.

3.1 Introduction

Scientific models represent ideas, processes, and phenomena by describing important compo-

nents, their characteristics, and their interactions. Models are constructed across a broad spectrum

of scientific disciplines, such as the food web in biology, the water cycle in Earth science, or the

structure of the solar system in astronomy. Models are central to the work of scientists for under-

standing phenomena, and for constructing and communicating theories. Constructing and using

models to explain scientific phenomena is also an essential practice in contemporary science class-

rooms. In A Framework for K-12 Science Education ([58]), developing and using models is one

of the eight core practices deemed essential for science learning and instruction. According to the

Framework, [s]cientists use models... to represent their current understanding of a system (or parts

of a system) under study, to aid in the development of questions and explanations, to generate data
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that can be used to make predictions, and to communicate ideas to others ([58]).

Scientific models can take many forms, such as textual descriptions, visual diagrams, com-

puter simulations, and mathematical equations. For instance, in elementary physical science,

Schwarz et al [76] studied the development of students modeling practices by having students

sketch models depicting how light interacts with objects to produce shadows. Bryce et al [3] asked

students to construct a clay model of a cell. Even these simple modeling activities push students

to represent their current knowledge and to use this knowledge to explain new phenomena. Models

are often more complex, involving visual representations or computer simulations. Such models

may focus on the complex interactions between components (e.g. predator-prey interactions in a

food web) or depict how a substance changes state over time (e.g., how water changes from liquid

to gas as it moves through stages in the water cycle).

However, while it is widely recognized that developing students modelling skills is important,

learning sciences research has documented numerous challenges to implementation in the classroom.

These challenges include variations in how teachers approach the topic of modelling ([40, 32]) and

variations in how students engage with the practices ([76, 3]). Variations in classroom implementa-

tion can lead to differences in students opportunities to learn these important modeling practices

([52]).

Learning Analytics can play a valuable role in understanding these differences in opportu-

nities to learn. By focusing on how data streams can be used to characterize learner activity and

understanding, researchers have been creating adaptive and responsive systems that leverage new

insights to improve the learning experience for those students who need support. This approach

has been leveraged in many learning scenarios (e.g. [7, 27]), but has seen limited application in

scientific modeling.

In this research, we study the development of student modeling practices using digital model-

ing tools in secondary biology classrooms. In these classrooms, students used a web-based software

tool - EcoSurvey - to characterize organisms and their interrelationships found in their local urban

ecosystem. Students use EcoSurvey to: (1) photograph, map and characterize local species, (2)
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document how species interact around shared resources such as food, and (3) identify resources

and species that are important to the resilience of their environment. EcoSurvey follows in a rich

tradition of computer-based modeling tools (e.g. [80, 37, 15]). These digital modeling tools pro-

vide built-in affordances that foreground important scientific modeling practices, and are explicitly

designed to scaffold students’ modeling activities, through the careful design of the interface and

prompts promoting reflection and appropriate action ([71, 15]). As such, they support students to

develop more complex models that would be difficult to create using traditional tools and these

models can be quickly revised thanks to their digital nature.

Digital modeling tools also provide an opportunity for instrumentation to unobtrusively cap-

ture usage. Reflecting contemporary software architectures, EcoSurvey is a cloud-based software

tool, where all changes and refinements to student models are centrally captured and stored, provid-

ing researchers with a fine-grained record of student modeling practices at scale, across potentially

thousands of students in a wide range of classroom settings. These rich data offer opportunities for

new learning analytic methods to better characterize student scientific modeling practices and to

examine classroom level differences. In this paper, we use learning analytics and machine learning

techniques to answer the following questions:

1) How can we automatically measure the extent to which students scientific models support

complete explanations of phenomena?

2) How does the design of student modeling tools influence the complexity and completeness

of students models?

3) How do clickstreams reflect and differentiate student engagement with modeling practices?

We analyzed EcoSurvey usage data collected from over 1000 secondary students across two

deployments. In the first deployment, we observed large variations in the completeness and com-

plexity of student models, and large variations in their iterative refinement processes. We also

observed large differences in student modeling practices across different classrooms and teachers,

and we were able to predict a student’s teacher based on the observed modeling practices with a

high degree of accuracy without significant tuning of the predictive model. In our second deploy-
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ment, we saw improvements in the completeness and complexity of students models, suggesting

benefits from improvements in modeling tool design.

These results highlight the value of this approach for extending our understanding of student

engagement with scientific modeling, as well as the potential value of analytics for identifying critical

differences in classroom implementation. These results shed light on potential improvements in tools

and curricula. Before discussing our approach and results further, we first present the education

and learning sciences theories underpinning this work and describe our research context and the

EcoSurvey tool in more detail.

3.2 Related Work

3.2.1 Scientific models that support complete explanations of phenomena

Scientific models are tools for explanation and prediction. A complete scientific explanation

should explain observed relationships between variables and describe the mechanisms that support

cause and effect inferences about them ([58]). Thus, to support student explanations, a scien-

tific model of a phenomenon should include important components (variables), their interactions

(relationships), and define the mechanisms involved. This approach is similar to the Structure-

Behavior-Function model (SBF, [25]). However, the focus on interactions in our approach allows

for more abstract relationships that do not rely on one particular behavior or function.

When modeling an ecosystem, these correspond to the organisms in the ecosystem (animals,

plants, insects, fungi, etc), how these organisms interact with each other and the environment

(predator, prey, producer, decomposer, etc), and the involved processes (abiotic, biotic, etc). Pro-

fessional biologists use this information to measure the biodiversity of an ecosystem in terms of

species richness, evenness, and divergence ([19, 26, 50]).

In this work, we characterize variation in students models by examining the number of or-

ganisms present, the variety of types of organisms present, the number of interactions between

organisms that students have identified, and the diversity of these interaction types. We also look
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at how these features are distributed within a model. These measures are used to understand the

complexity of a student model. This approach is similar to prior research understanding student

models, particularly work from [32]. Our approach to analyzing student models primarily differs

from the focus on components and interactions rather than using the SBF framework. This change

allows us to automatically characterize the different pieces of models, which can be used to support

real-time analysis and feedback in the future.

Interestingly, understanding the complexity of an ecosystem has been shown to support

students to develop empathy and other affective stances towards nature [36]. Student understanding

the flow of matter and energy through ecosystems has also been shown to vary strongly across

cultural boundaries [1], providing further motivation for supporting equitable opportunities to

learn scientific modeling.

3.2.2 Strong student scientific modeling practices

Constructing scientific models is part of the inquiry tradition in science education, where stu-

dents learn scientific concepts through hands-on doing [39]. Understanding what students are doing

at a fine-grained level can provide teachers with useful insights into learning processes, as well as

provide teachers with feedback as to where and when students need additional assistance. Towards

this end, several scholars have developed frameworks characterizing effective student modeling prac-

tices [76, 3]. [76] identify a series of seven practices: (1) identifying the anchoring phenomena to

be modeled, (2) constructing a model, (3) testing the model, (4) evaluating a model, (5) compar-

ing the model against other ideas, (6) revising the model, and (7) using the model to predict or

explain phenomena. [3] identify a similar set of practices as important to support student learning

during modeling, namely (1) observation (paralleling the anchoring phenomena), (2) model con-

struction, (3) model use, (4) model evaluation, and (5) model revision. Their research suggests

that supporting students to engage in these practices can lead to positive learning outcomes [76].

Here, we focus on a subset of these practices - constructing, evaluating, revising, and using

models - incorporating them into our analysis framework [10]. We focus on these four practices
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as they are directly supported through the EcoSurvey interface and can be readily observed and

tracked in the usage log. In addition to these four practices, we examine the degree to which students

engaged in iterative design of their models. Iteration occurs when students cycle between the other

four modeling practices, where the four practices correspond directly to individual actions in the

EcoSurvey interface, such as adding an organism or relationship (construction), editing an organism

or relationship (revision), or generating a graph of the entire ecosystem to support explanations

(using). Iteration is an important modeling practices that is used to both expand the scope of

a model and to improve its accuracy [28, 3]. Learning analytic techniques are used to identify

the degree to which students used these practices and to examine variations in student modeling

practices. While these usage log analysis methods are an excellent passive way to collect data

on student practices [65], it is important to note that these methods do not capture information

about how students are reasoning with their models. Exploring student reasoning with models and

how they generate explanation using models is beyond the scope of this study, and would require

deep exploration of students cognitive processes using think-alouds, cognitive interviews or other

learning and cognitive sciences research methods (e.g. [75]).

3.2.3 Learning Analytics of Student Activity

Understanding student activity is an active area of Learning Analytics research. There is a

large body of work focused on detecting students skill acquisition using digital tools. One example

of this is a study focused on young students ability to make numeric and fractional estimates in a

number line game. In this study, they found significant gains in student accuracy over time.

One important area of research around understanding student activity focuses on detecting

variance between students as a predictor of future activity. One example is [63], understanding

student use of online classroom resources using features drawn from student clickstreams. These

features focus on generalizing beyond the course content, focusing on simple frequency measures

(e.g. number of clicks per day) and abstractions of how the content accessed relates to the course

schedule, determining whether the content being accessed is being previewed or reviewed. The
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team used these metrics to categorize whether students engagement with online resources increased,

decreased, or stayed the same, creating three different categories of students. Overall, they found

that students who specifically increased their engagement with the tool had a better success rate

in the class.

While these aggregate features are useful in understanding activity, another approach to

understanding this activity and variance is the use of sequence modeling [91]. This approach

focuses on a fine-grained distinction of different activities and analyzes patterns in how activities

lead into one another. This approach parallels that used by [11], where they used sequential pattern

mining to study student course enrollment patterns.

These innovations inspire my approach to analyzing student engagement with modeling prac-

tices. By adapting the approaches of aggregate activity and sequence analysis to scientific modeling

in the classroom, I develop new insights into how students participate in this crucial activity.

3.2.4 Scaffolds

Scaffolding, or the use of external supports to help a person accomplish a task is a common

approach in the learning sciences. [88] discussed such supports when describing the zone of proximal

development for apprentices in trade fields. Scaffolds are natural extensions of this idea, tools that

support a learner in this process, providing guidance or removing levels of complexity from the

problem. These scaffolds can then be removed from the application, setting, or activity when the

learner is ready to move on.

This scaffolding approach has been adopted in software-supported learning scenarios (e.g.

[71, 16]). One particular line of work has focused on digital applications that support scientific

inquiry. [72] describe three phases of scaffolding scientific inquiry:

1) Characterizing the cognitive tasks, social interactions, tools, and artifacts that
constitute the scientific practices in which learners are engaged.

2) Characterizing the aspects of these practices in which learners encounter obsta-
cles.
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3) Characterizing scaffolding guidelines that specify ways that tools can alter the
task to address the obstacles by helping make tasks more tractable and productive
for learners.

Our work naturally builds on these guidelines. By focusing the design of EcoSurvey around

the practices outlined in learning science literature on modeling in the classroom, we naturally

connect to the real practices of the task. Our analytics are designed to automatically measure how

successful students are at engaging with these practices and the points at which students run into

difficulty. We have used this feedback in design, and our results show that students are using the

revised modeling tool to create more complete models of their local ecosystem.

3.3 Context

EcoSurvey was developed as part of a larger collaborative design-based research project called

the Inquiry Hub, which is focused on supporting teachers in developing student-centered approaches

to curriculum and teaching [77], [67]. Inquiry Hub Biology is a digital high school biology curriculum

developed in partnership with a large urban school district in the midwestern United States. Within

the ecosystems unit of this curriculum, students are asked to choose a tree to plant on their school

grounds or other designated site that will improve their local ecosystem’s biodiversity and resilience.

Classes use EcoSurvey to create a collective model of their local ecosystem. They use these models

to provide evidence and construct arguments to support their choice about the type of tree they

choose to plant. The recommended type of tree is then planted on the site, in collaboration with

the local Parks and Recreation Department, based on the students’ arguments and evidence. Thus,

the models students create using EcoSurvey support them to construct arguments with real world

consequences. To illustrate the use of EcoSurvey within this context, we follow the experience of

Maria, a fictional student in Ms. Smith’s 3rd period class.
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3.3.1 Data Collection and Creating the Model

Ms. Smith instructs students to map the ecosystem within a selected site on their school

grounds or in the local area, taking pictures and making field notes on the organisms and inter-

actions between organisms that they observe. Maria’s group makes observations along the creek

that runs next to the school. They find a lady beetle, a honey locust tree, some mushrooms, a gray

squirrel, and a few other organisms. Using their smartphones, they take pictures of these organisms

and upload them to EcoSurvey, creating a ”card” for each organism while out in the field. Each

card automatically captures information about the date, time, and location of the observation be-

ing recorded. Cards also include a ”relations” field to capture interactions between organisms and

information about the organism’s role in the ecosystem. Students begin entering this information

as they observe it in the field, and then continue to augment this information back in the classroom

through additional research. In figure 3.1, we see Maria’s lady beetle card under construction.

While in the field, she created the card, uploaded a picture, and added details about interactions

they saw. At the same time, her team members are also creating cards for other organisms they

are observing.

3.3.2 Evaluating the Model

As students create cards, their organisms are added to a shared class ”survey”. The survey

view shows all of the organism cards and their detailed information, ordered by how recently they

were edited. Maria can see that her classmates have created many cards, including a Blue Jay card

(figure 3.2).

Ms. Smith organizes the student groups into pairs and asks each group to review the other’s

cards for correctness and completeness. Maria’s group is paired with Group 2, who completed

several cards. Andre, a member of Group 2, asks Maria to first review the blue jay card he created.

Maria uses the search feature of the survey view to quickly find the blue jay among the cards. She

notices that this card is missing many details, including interactions with other organisms.
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Figure 3.1: The edit view for Maria’s Lady Beetle card.

Figure 3.2: The main view of Ms. Smith’s class survey.
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3.3.3 Revising the Model

Maria recommends that Group 2 do further research into how the blue jay contributes to the

local ecosystem. She also takes the chance to update her group’s honey locust card. She discovered

that blue jays nest in honey locust trees during her earlier research. She didn’t realize that their

school ecosystem included blue jays until she reviewed the work of her classmates, as her group

did not see one. Once Maria has completed editing her group’s cards, she continues her review of

Group 2’s cards. She uses the group select function to view only the cards created by members of

Group 2.

Group 2 notices that two people in Maria’s group created duplicate lady beetle cards. Maria

decides to add her lady beetle information to the other card, since it is more detailed, and uses the

delete function to remove her lady beetle card from the model.

3.3.4 Iterating the Model

In reviewing Group 2 cards, Maria sees a card for geese, but notices that the group did not add

a predatory relationship to grass, even though she observed geese eat the grass on the soccer field.

She uses the search functionality and discovers that no one in class created a card to document

grass as an observed organism. Maria adds a new card for grass and includes a predatory-prey

relationship with geese. By cycling back through earlier modeling practices (creating new cards),

Maria is iteratively improving the class model to be more complete and accurate.

3.3.5 Using the Model

Once the class has created a robust model of their local ecosystem, students use this model

to construct arguments for choosing a particular tree to plant. Maria presses the ”create relation

graph” button, which generates the graph representation of the model and exports it to a digital

graphing tool(figure 3.3). Maria and her team study the resulting diagram that enables them to

visualize the relationships (links) between all the organisms (nodes) they have cataloged. It is clear

from looking at her graph that the English Oak trees are an important keystone species in their
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site, involved in a large number of relationships with a wide variety of organisms. The geospatial

locations in the observational data indicate that there are only two English Oak trees located in

their site; Maria and her group recommend planting an additional tree of this type.

Figure 3.3: A section of Maria’s final graph.

Maria’s scenario illustrates how EcoSurvey supports students to engage in the practices of

creating, evaluating, revising, iterating, and using models. To use a learning analytics approach

to study modeling practices, we must map specific actions, or sequences of actions, taken in the

EcoSurvey interface to specific modeling practices. Table 1 describes the mapping between modeling

practices and specific EcoSurvey interface actions that we use in our analyses. As students interact

with EcoSurvey, the system captures and logs each of the actions shown in table 3.1. Each log

entry includes the time, user, survey, and action type.

3.3.6 EcoSurvey Design Iteration

Consistent with a design-based research approach, we are iteratively improving the design of

the Ecosurvey tool and the supporting curriculum after each field deployment. Classroom observa-
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Table 3.1: EcoSurvey Actions

Modeling
Practice

Description EcoSurvey Actions

Create Model Create a new entry in the model New Card

Evaluate
Model

Explore the organisms and interactions in
the current model

Group Select, Search

Revise Model Edit or delete organisms and interactions in-
cluded in the current model

Edit, Delete

Use Model Export a representation of the model for use
(e.g. constructing an argument)

Generate Graph, Download

Iterate Cycle between creation, revision, and use
practices

New Card, Edit, Delete, Gen-
erate Graph, Download

tions, feedback from users, and analysis of the usage patterns from the first version drove several

important changes.

The foremost change is the redesign of the survey view, incorporating the graph representation

of the model into the students main workflow as seen in figure 3.4. This view presents the model

as a collection of components (organisms) and interactions (relationships). This development grew

from results from our first deployment that students failed to engage with relationships for many

organisms in their models, and many classrooms showed limited engagement with exporting their

models to the graph view. Therefore, we designed the graph layout to emphasize the relationships

between organisms, naturally promoting the task of adding relationships to disconnected cards.

The second change we made was to the types of relationships that could be added as seen in

figure 3.5. In the first version, the relationship field was open and would accept any response. This

led to a wide variety of responses, many of which did not accurately reflect possible relationships

(e.g. brown trout is not a relationship type). While we normalized the relationships for analysis

(as discussed below), this still left a large number of unknown relationships. By using a closed list

of relationship options based on language from the science standards, version two of EcoSurvey

scaffolds student model development and scientific understanding by driving them to consider how

their intuitive representation of the relationship maps to the terms used by scholars in the field.
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Figure 3.4: The graph view in version two

Figure 3.5: The card edit view in version two
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3.4 Methods

Here, we describe data used in our analyses as well as the specific analytic techniques used

to answer each of our three research questions.

This study was reviewed and approved by the University of Colorado Boulder Institutional

Review Board, and all activities were conducted according to their rules and guidelines. Teachers

gave written informed consent, and all student data were collected anonymously in the course of

normal classroom activities. The University of Colorado Boulder Institutional Review Board waived

the need for written informed consent to be obtained from the students’ parents/legal guardians.

All teachers names are pseudonyms.

3.4.1 Study Data

The work presented here builds on two deployments, one of each version of EcoSurvey. Both

deployments took place in the same district and with the same professional development routines.

However, the data we have analyzed for each deployment used a separate cadre of teachers, which

allows us to avoid effects due to previous experience with using EcoSurvey in the classroom.

For our first deployment, EcoSurvey usage log data was collected across 10 high school

classrooms during Fall 2015. A total of 9 models were created, which included 586 organism cards

and 545 interactions. Our second deployment in Fall 2016 featured final models from students in

35 classes across 11 teachers. These models included 4,136 organism cards and 4,701 interactions.

The deployment of the first version of EcoSurvey also incorporated activity logging. From

the sample, we recorded actions for 204 students, generating 3160 action logs, while 58 students

did not record any activity. All classrooms in both samples followed a 3:1 device deployment where

three students used one laptop together; thus it is not surprising that there are students with no

recorded activity.
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3.4.2 Model Complexity Analysis

Our first research question examines variation within student models, focusing specifically on

the richness of students’ models in terms of the number of organisms and their relationships. We

analyze the relative number of organisms and interactions within each class survey. We also look

at the balance of interactions per organism by evaluating both the average number of interactions

per organism and variance in the distribution of interactions. Examining variance allows us to

distinguish different patterns in the assignment of interactions to organisms. Some classes may

create models where most organisms have a similar number of interactions, while other classes may

create models where only a few organisms have been assigned many interactions.

We also analyze the distribution of relationship types using evenness. This measure considers

how each type of relationship is represented within the survey. We calculated evenness using the

shannon index, the same formula for species evenness in the study of ecosystems [78]. The shannon

index gives an evenness score from zero to one. A survey with an equal number of relationships of

each type would have a perfect evenness score of one. Conversely, a survey with many predator-prey

relationships and few others would have a low program type evenness score. The shannon index is

calculated using the following formula:

J ′ =
H ′

H ′
MAX

(3.1a)

where

H ′ = −
N∑
i=1

Piln(Pi) (3.1b)

where pi = proportion of relationships of type i in the surveys and

H ′
MAX = −

N∑
i=1

ln(Si) (3.1c)

where Si = total number of relationships in the surveys
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3.4.3 Influence of Tool Design on Models

Our second research question seeks to understand how design changes in digital modeling tools

can have an impact on students’ models. These measures are important for the iterative process

of our design-based research approach, providing evidence of what impact the design changes have

on students’ models.

To evaluate the impacts of design, we aim to compare directly across deployments of different

versions of EcoSurvey. We run the same statistical comparisons for each version and compare across

conditions. In cases where direct comparison of means and variance is possible, we use a standard

Student’s t-test [82] to determine significance.

3.4.4 Variation in Modeling Practices

Our last research question examines variation in student modeling practices, focusing on

action variety, frequency, and iteration. Action variety refers to the range of actions a student

performed. For example, some students may have only created and edited cards, while others may

have used the full range of EcoSurvey actions. Frequency refers to the total number of actions

completed by an individual student and the number of usage sessions they engaged in. Sessions are

defined by a series of actions from a single user without a large break in activity (greater than two

hours). Defining a session using a two hour gap allows for any student activity within a long class

period to occur within one session; several of our classrooms employ 1.5 hours block periods.

To characterize iteration practices, we look for evidence of design cycles within the log infor-

mation. Design cycles can be recognized when students engage in multiple sequences of construct-

revise-use practices. This focus on a sequence of practices is consistent with prior work (e.g. [76]),

which characterized modeling practices as a series of steps. By extension, a design cycle consists

of returning to a previous modeling step after moving on in the sequence (e.g. creating a new card

after editing a different card). We counted the number of cycles as a measure of iteration.

Combined, these three metrics - action variety, frequency, and iteration - yield an eight
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feature vector for each student consisting of total number of EcoSurvey actions, total number of

create actions, total number of evaluate actions, total number of revise actions, total number of

use actions, total number of EcoSurvey action types taken, number of sessions, and number of

iterations. We combined the feature vectors for students with the same teacher, and performed a

Kruskal-Wallis H test ([42]) for each feature to determine differences between teachers. A Kruskal-

Wallis H test is a non-parametric adaptation of an ANOVA to compare samples of different sizes,

as we have in our groups. We further explored these differences using Tukey’s HSD test [84] to test

the significance of pairwise differences between teachers.

3.4.5 Predictive Value of Modeling Practices

This understanding of modeling practice allows us to characterize the variation in student

activity in EcoSurvey. To expand on this characterization, we examine the degree to which we can

use sequences of student modeling actions to predict that student’s teacher. We plan to use this

prediction in a support system for students and teachers embedded within the tool.

For this prediction task, we use the previously described features of variety, frequency, and

iteration as well as automatically extracted sequence patterns. In our work, a sequence pattern

consists of a series of EcoSurvey actions (e.g. ”New Card”, ”Edit”, ”Generate Graph”) embedded

within a student’s complete action log. To extract sequence patterns, we used the Colibri Core [86]

software package. This software package, originally designed for natural language processing tasks,

treats every action as a token and determines the frequency of consecutive token sequences (n-

grams) from student usage logs. These token sequences can include wildcard actions (skip-grams).

For instance, the software will extract the sequence ”New Card”, ”Edit”, ”Generate Graph” as

either an n-gram or as the skip-gram ”New Card”, {*}, ”Generate Graph”. This skip-gram will

capture similar sequence patterns, where one action occurs between New Card and Generate Graph

actions. This yielded 2,893 unique sequence patterns, that occurred at least three times, across all

student usage logs. Once we extracted these sequence patterns, we used them as a new series of

features to augment each student’s existing feature vector.
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To understand which features that characterize a student’s modeling actions are most pre-

dictive of his or her teacher, we input subsets of each student’s feature vector into four Naive Bayes

classifiers using Weka [22]. The first classifier used the eight features related to variety, frequency,

and iteration of actions. The second classifier used the full set of sequence pattern extracted by

Colibri Core for each student. The third classifier implemented a best-first search [21], which au-

tomatically reduced the full set of sequence patterns to the eighteen most predictive features. The

last classifier combines the eight variety, frequency, and iteration features with the eighteen most

predictive sequence patterns. Each test was run using 10-fold cross validation.

3.5 Results

Our results are divided into sections based on the type of analysis performed. In the first

two sections, results are further broken up by deployment version, allowing us to present each set

of results independently and then discuss how they relate to our second question about the impact

of design on student models.

3.5.1 Model Complexity Analysis

3.5.1.1 Version 1

As shown in table 3.2, there are substantial variations in the models created by students in

different classrooms. We see that Anderson’s students documented many more organisms (155) and

interactions (264) than all other classes. Though Anderson had both of her classes work together

to create one survey, the total number of students contributing to this model is comparable to the

number of students contributing in other classrooms. We also see that students in Baker’s three

classes each documented significantly fewer organisms and interactions. One class only documented

19 organisms (less than one per student) and did not document any interactions. Chavez’s classes

exhibit wide variation, particularly in the numbers of interactions documented by each class.

The number of interactions per organism, a broad measure of model complexity, further
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Table 3.2: Version 1 Final Models

Survey Organisms Interactions Int. Per Org. Int. Var.

Anderson 4/7 155 264 1.7 4.35

Baker 1 47 7 0.149 0.297

Baker 2 25 5 0.2 0.24

Baker 4 19 0 0 0

Chavez 1 88 70 0.795 0.663

Chavez 2 45 27 0.6 1.31

Chavez 6 60 57 0.95 3.78

Chavez 7 81 82 1.012 5.72

Chavez 8 66 33 0.5 0.826

Averages 65.11111111 60.55555556 0.6562222222 1.909555556

illustrates apparent classroom differences, with Anderson’s class creating more complex models than

Baker’s and Chavez’s classes. To better understand classroom differences, we examine variance in

the number of interactions per organism. In Anderson’s class, we see a high variance in comparison

to the interactions per organism metric, which indicates that there are a small number of organisms

with lots of interactions and many organisms with few interactions.

Chavez’ P1 and P7 classes provide a particularly interesting case to examine this variation.

On reviewing table 3.2, we see that the variance in the number of interactions assigned to each

organism is significantly lower in P1 than in P7, while the actual number of organisms and inter-

actions are comparable. Further analyses reveal that students in Chavez’s P1 did not assign any

interactions for 39% of their organisms, while students in P7 did not assign interactions to 74% of

their organisms. A similar analysis revealed that 42% of the organisms documented in Anderson’s

model did not include interactions. In most classes, the majority of organisms have no documented

interactions. It appears that students engaged significantly more with describing organisms, and

spent far less time consistently documenting interactions.

3.5.1.2 Version 2

The models generated during the second deployment of EcoSurvey demonstrated both paral-

lels and contrasts. First and foremost, the average number of organisms and interactions are both
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Table 3.3: Version 2 Final Models

Survey Organisms Interactions Interactions Per Organism Interaction Variance

MIN - Jaques 1 6 1 0.166666667 0.138889

MAX - Lin 1 70 189 4.5 78.67857

Averages 118.1714286 134.3142857 1.136605416 6.539478711

higher in our second deployment group (as seen in table 3.3), with the number of organisms showing

a trend towards significance (P = 0.09). Furthermore, the ratio of relationships per organism tends

to be significantly higher, demonstrating significantly more complex models.

The variance in relationships per organism once again also leads to some interesting results.

The high levels of variance across classes highlights continued imbalance in the distribution of as-

signed relationships; students are once again focusing on key cards when creating relationships.

However, the wide range of percentages of cards without relationships (17% to 88%) demonstrates

that classes are engaging with relationships in different patterns. Nevertheless, the average per-

centage of orphaned cards (50%) is lower than the first deployment.

3.5.2 Relationship Analysis

3.5.2.1 Version 1

Students did successfully engage with adding relationships to their models in the first version

of EcoSurvey. However, analysis (as seen in figure 3.6) did suggest several trends of use that did

motivated changes to the relationship system in EcoSurveys design. First and foremost, there were

a large number of unknown relationships that could not be normalized. This trend represents the

ambiguity in students models, which leads to an inability to construct explanations and arguments

using the model. Second, we see an imbalance of relationship types (evenness = 0.749), with a par-

ticular emphasis towards predator-prey connections (55.8%). This indicates that students were not

engaging deeply with exploring other types of relationships, particularly competitive relationships

(5.7%) that are important for maintaining organism balance. Finally, this analysis emphasized that

important bidirectional connections between organisms, such as symbiotic relationships of mutual
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beneficence, were not properly incorporated into EcoSurvey.

3.5.2.2 Version 2

Version two showed remarkable improvement in the evenness of relationship types (figure 3.7,

evenness = 0.803), even with the added complexity of a new mutually benefits relationship type.

In particular, we see a remarkable decrease in the relative abundance of predator-prey relationships

(down 26.5%) and a substantial increase in the use of all other valid relationship types. In addition,

though version two incorporated the ability to denote unknown relationships, this feature saw very

little use (1.1%).

3.5.3 Practices Analysis

3.5.3.1 Analysis of Teacher Differences

There are significant differences between the student action sequences of our three teachers

on all eight metrics related to variety, frequency, and iteration (p < .001). Our Tukey’s HSD test

for each feature shows that the three groups are each distinct to a significant degree in Create,

Revision, and Iteration frequency (figure 3.8a, p < .05), as well as Overall Actions, Session Count,

and Action Variety (figure 3.8b, p < .05). We also see Anderson’s students performed significantly

more Evaluate and Use actions than the other two teachers’ students (figure 3.8a, p < .05), though

the differences between Baker’s and Chavez’s students are not significant. Anderson’s class also used

EcoSurvey twice as much, as measured by session counts. Overall, Anderson’s students engaged

in more modeling practices than both of the other two groups, and Chavez’s students engaged in

more modeling practices than Baker’s.

There were also differences in the modeling practices that students employed. Students in

Baker’s classes rarely engaged in three of the five modeling practices we are studying: revisions,

iteration, or use. Chavez’s class engaged with four of the five practices, but appeared to rarely use

their models.
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Figure 3.6: The relationship type distribution for Version 1

Figure 3.7: The relationship type distribution for Version 2
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(a) The average number of actions by modeling prac-
tice type.

(b) The average number of actions, types of actions,
and action sessions.

Figure 3.8: Student modeling practices for each teacher’s students.
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3.5.3.2 Predictive Value of Practices

As shown in table 3.4, student action sequences can predict their teacher with varying degrees

of reliability depending upon the features used. Our baseline assumes that each student is in one

of Chavez’s classes; almost 52% of the students in this study were in one of his classes. All of

the feature sets we studied improved performance over the baseline. Classifying based on all 2,893

sequence patterns improved our classification accuracy by almost 12%, whereas classifying solely

based on our variety, frequency, and iteration features improved performance by over 15%. We also

trained a model on the best sequence patterns, that is, the 18 most predictive patterns identified

by Weka’s Attribute Selection tool [21]; this yielded a nearly 25% improvement in performance.

The best performing model was one that combined the most predictive sequence patterns with our

variety, frequency, and iteration features. This combination resulted in a 30% improvement over

baseline, correctly predicting a student’s teacher 80% of the time.

The most useful features for classification accuracy are the 18 ”best” sequence patterns (table

3.5). A closer examination reveals that these sequence patterns correspond to our five modeling

practices in interesting ways. These patterns prioritize model revision, evaluation, and iteration

as distinguishing features, which correspond to the differences in classroom modeling practices

discussed under research question 2.

To better understand the types of errors that our best performing model makes, we generated

a confusion matrix (table 3.6). We see that 75% of the errors are due to the misclassification of 30

of Chavez’s students as Baker’s students. One possible reason for this misclassification is that some

Table 3.4: Predictive accuracy of each action sequence feature set

Feature Set # Attributes Naive Bayes Acc

Baseline 0 51.96%

All Sequence Patterns 2,893 63.73%

Variety, Frequency, and Iteration Features 4 67.65%

Best Sequence Patterns 18 75.00%

Combined Features 22 80.39%
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Table 3.5: The most predictive action sequences.

New card, New card, {*}1,
New card, {*}, {*}, New card

New card, {*}, Group Select,
{*}, New card

Group Select

Group Select, {*}, Group Se-
lect

Group Select, {*}, {*}, {*},
Group Select

Group Select, {*}, New card,
{*}, New card

Group Select, Search Search, {*}, {*}, {*}, Edit Edit

Edit, Edit Edit, {*}, Edit Edit {*} {*} Edit

Edit, Search Edit, Generate Graph, Down-
load

Edit, Generate Graph, Down-
load, Edit

Generate Graph Download Generate Graph, Download

students in Chavez’s classes performed very few modeling actions overall, similarly to the majority

of students in Baker’s classes.

3.6 Discussion

Overall, these results demonstrate the capabilities of our analytic techniques to help us under-

stand scientific modeling in the classroom. We have been able to discover the variance in students’

models, the impact of design features on those models, and the variance in student engagement

with modeling practices. These results inform work in learning analytics, modeling tool design, and

the design of curricula and professional development for the Next Generation Science Standards.

While the second deployment showed limited evidence of improved student contribution, there

is still large variance in the number of organisms and interactions documented at the classroom

and teacher level. These differences could be due to a variety of factors, such as the time allocated

to modeling during class, the teacher’s dispositions and knowledge about scientific modeling, or

the teacher’s capability to support student use of EcoSurvey. These possibilities can be addressed

Table 3.6: Combined features confusion table.

Classified As

Anderson Baker Chavez

Correct Class
Anderson 29 0 1

Baker 1 64 3

Chavez 5 30 71
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through curriculum and professional development design around supporting student modeling, as

well as through the interface design and the inclusion of teacher supports within digital modeling

tools like EcoSurvey.

Our analysis of student models also revealed a disturbing similarity across all classrooms and

teachers: all the models contained significant percentages of organisms that did not have a single

defined interaction with another organism. Thus, these student models are missing critical elements

of a complete and sound ecosystem model. It is unlikely that these models can support students to

develop comprehensive explanations and predictions as called out in the Framework ([58]). There

are multiple possible explanations for these behaviors, including weaknesses in the Inquiry Hub

curriculum, the associated teacher professional development, or the design of the EcoSurvey tool.

In developing the second version of EcoSurvey, we made key design changes that we hy-

pothesized would improve student models. As a first step, we made major changes in designing

EcoSurvey version two to make it easier for students to establish relationships from multiple parts

of the interface, to visualize established relationships through an integrated graph view, and to

see which organisms are not connected to others in the model. In the second version, we did see

gains in the level of completeness and complexity of students models, as well as a more even distri-

bution of relations mapped in the system. However, these changes have only slightly reduced the

isolated organism phenomenon. This result suggests that further mechanisms will be necessary to

address these issues. Our planned approach is to incorporate adaptive feedback mechanisms within

EcoSurvey, providing scaffolds for struggling students.

The large variance we observed in student modeling practices provides evidence of significant

teacher-level differences. Clearly, these teachers are implementing EcoSurvey and the corresponding

lessons differently in their classrooms, with wildly varying results. When teachers devoted more

time to modeling, as measured by sessions, their students’ engaged in a richer variety of modeling

practices. Prior research suggests that there is a linkage between student engagement in modeling

practices and future learning outcomes ([76, 3]). Thus, it appears that students in several of

our participating classrooms lacked critical opportunities to learn ([52, 55]), that could ultimately
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impact their academic performance. In future work, we plan to examine the relationships between

student engagement in modeling practices and their learning outcomes as measured by end-of-course

school district assessments.

Our predictive analysis provided further evidence of significant teacher-level differences. The

feature selection algorithm honed in on the presence or absence of three modeling practices -

evaluation, revision, and iteration - as the features that best predicted a student’s teacher. This

suggests that future professional development and curriculum design should focus on these specific

practices, ensuring that all students get an opportunity to participate in these parts of the modeling

process. The most accurate classifier also benefited from additional features characterizing action

variety, frequency (number of actions), and iteration. These features further highlight differences

in student engagement, with some students missing the opportunity to explore, develop, and use

their models over time.

In EcoSurvey version 2, we expanded features designed to support evaluation, revision, and

iteration practices. By facilitating students to use (visualize) their models more frequently, we

hope that this will prompt them to notice shortcomings and engage in modeling practices that were

previously underutilized. A parallel clickstream analysis of our redesigned interface is a necessary

next step in our future research.

While this study yielded many results that have informed our partnership design work, there

are several limitations that are important to note. First, we cannot attribute our observed variation

in models and modeling practices to student-level differences, due to the shared and collaborative

nature of the deployment. All our participating classrooms asked students to work in groups and

each group shared a single laptop computer; we are actually observing the collaborative model-

ing practices of small groups rather than individual students. Second, our practices analysis is

only available for students in our first deployment cycle. This limited set shows potential for cap-

turing differences in modeling engagement, but further data collection is required to explore the

generalizability of these findings.

While our technique is designed to generalize across tools, our investigations thus far have
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only explored student use of EcoSurvey, limiting our ability to generalize our findings. Never-

theless, a core aspect of our analytic approach explicitly linked specific user interface actions in

the EcoSurvey tool to individual modeling practices identified through prior research: creating,

evaluating, revising, using, and iterating ([76, 3, 28]). This approach enabled us to work with

theoretically and empirically sound features identified through prior classroom research. And, this

approach enabled us to interpret the action sequences identified as salient by our algorithms in a

theoretically-informed way, enabling us to link our findings back to instructional concerns, such as

curriculum design and professional development. This method of linking interface actions to identi-

fied modeling practices can support generalizing this analytic approach to other tools that support

scientific modeling, such as Model-It! ([31]), Dragoon ([87]), or activities within the Wallcology

unit ([48]).

3.7 Conclusion

In this study, we demonstrated the utility of learning analytic methods for characterizing

variation in students’ scientific models and their modeling practices. We also showed that an

individual student’s modelling action sequences can be used to predict his or her teacher. Our

results support Windschitl et al’s findings documenting large variations in how teachers implement

modeling in their classrooms [90]. While we did not conduct formalized classroom observations, our

analysis revealed profound, quantifiable differences in the models that students constructed across

different classrooms and significant differences in their classroom learning experiences as depicted

in the range of modeling practices that they engaged in. This result confirms and expands upon

the conclusions of [32] that modeling is handled differently across classrooms, but provides evidence

that the variance is not only attributable to the teacher. The variance in model complexity within

each teacher shows that student and class level variance can sometimes have a higher impact than

teacher level variance.

One important aspect we plan to address in future work is the impact of modeling activities

on student learning. Our team has been developing assessments to embed three dimensional as-
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sessments [9] within the ecosystems curriculum. Within this body of questions, we have designed

prompts to elicit student understandings of modeling as a science and engineering practice as well

as a cross-cutting concept, allowing us to measure student development of these skills while using

EcoSurvey and the accompanying curriculum. In addition, we have developed protocols to evaluate

students’ final reports related to the unit-level challenge of choosing a tree to plant on their school

grounds. By analyzing how students incorporate their models of the local ecosystem into their final

choice, we can measure the impact of EcoSurvey on students’ explanations of ecosystem phenomena

[58].

We are also incorporating these findings into the next iteration of design and deployment of

our modeling tool. Our biggest improvement is to provide these analytics in real-time feedback

systems within EcoSurvey. We plan to work with pre-service and active teachers to design interfaces

that support the needs of students in successfully developing complete models of their ecosystem,

as well as interfaces to support teachers in understanding the activity and contributions of students

towards their models.

3.8 Author Contributions

All the authors contributed to the design and development of EcoSurvey tools and analytics.

David Quigley took the lead on writing, but all the authors took part in writing and reviewing

content.

3.9 Acknowledgements

This work builds on [70]. This material is based in part upon work supported by the National

Science Foundation under Grant Numbers 1555550 and 1147590. Any opinions, findings, and

conclusions or recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation. In addition, the authors would

like to thank the Gordon and Betty Moore Foundation for their support.



Chapter 4

Understanding the impact of a scientific modeling tool on student engagement

and learning

This chapter has been written to target submission to the Journal of Learning Analytics

for their Human-Centered Analytics special issue this Fall. This report presents the data from

the third year of EcoSurvey deployment, exploring the limits of my model and modeling practices

characterization (RQ1). These results also expand our iterative deployment analysis (RQ2), finding

ways in which students’ modeling activities are influenced by tool design. This study also presents

the first results on connections between student understanding of scientific modeling and their

engagement with modeling practices (RQ3).

4.1 Introduction

Contemporary understandings of science have shifted away from considering each scientific

discipline to be a siloed collection of facts and have instead begun to accept a more integrated

perspective. This approach is particularly prevalent in science education, and is summarized in the

Framework for K-12 Education [58] as three-dimensional (3D) science. The Framework describes

these dimensions as 1) disciplinary core ideas, 2) science and engineering practices, and 3) cross-

cutting concepts. However, while the perspectives of science educators, particularly researchers in

the field, have been accepting this approach, the field has struggled with realizing this vision. This

struggle is particularly evident when it comes to determining how well a learner has understood

these multi-dimensional features, especially the implementation of science and engineering practices
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naturally embedded within other aspects of learning.

In addition to the expanding complexity of approaches for the learning of science, the tools

we use to support learning have been growing. The advent of digital learning tools, including

learning management systems [12] and intelligent tutors [18] have been helping learners to better

track their knowledge and provide them with optimized supports and trajectories for learning new

information. However, these tools often use a prescribed approach to gauge understanding of a

core concept and working through a structured process, rather than providing an open space for

exploration and development.

Each of these areas of research has made significant progress in supporting students’ learning.

Still, there is a pressing need to integrate digital supports in open exploration to support 3D science

education. By understanding the ways in which students use open-ended digital tools to implement

science and engineering practices, we can better gauge how to support students.

Our research examines student use of EcoSurvey [70], a tool used primarily in high school

biology classrooms to support the science and engineering practice of modeling. Students use

EcoSurvey to construct models of the components and interactions in the local ecosystems. This

tool has been developed as part of a larger curriculum development project aimed at supporting

3D science teaching & learning [77]. Our team has undergone an iterative deployment process

over three successive school years, allowing us to compare usage metrics and final models across

versions of the tool [69]. We have also recently integrated real-time feedback into the tool, which

provides targeted scaffolding and ”next step” recommendations to students based on their previous

modeling activity.

This longitudinal deployment of EcoSurvey has informed three research questions:

1) How do variations in tool designs impact students’ final models and engagement with

modeling practices?

2) What effect does the feedback mechanism have on student modeling practices?

3) What do students understand about scientific modeling after use of digital modeling tools?

Overall, we have found that while there was no significant difference in the size of students
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models, they had significantly higher engagement with several modeling practices when the tool

incorporated new features. In addition, while there was limited use of the feedback mechanism,

this feature did often have a positive impact on student activity when used. Finally, we conducted

short student interviews in order to document students understanding and experiences of scientific

modeling. Through these interviews, and connecting them with students modeling activity, we have

determined that students understanding of scientific modeling can be predicted to some degree by

their levels of engagement with modeling.

4.2 Background

4.2.1 Measuring Equity in Learning Experiences

One of the important approaches to defining improvement across learning sciences is to

reduce the variance attributable to the sources inherently present in the education system [4]. By

reducing the variance attributable to differences in teacher, school, or population demographics,

we can provide a more equitable educational experience. Our objective in this work is to reduce

the variance in students use of modeling practices, with a particular focus at reducing effects found

at the teacher level. This reduction in variance will promote equity in the learning experience by

giving all students opportunities to learn [28].

In order to draw conclusions about the effectiveness of an intervention, it is important to

understand uptake. We approach uptake as how a learner responds to feedback, correction, or

recommendations, as demonstrated by their actions following the moment of intervention [49].

This perspective is realized in EcoSurvey by looking for students to immediately engage with the

modeling practice recommended by the system.

4.2.2 Student Scientific Modeling

Scientific models form a core component of engaging with scientific practice [8]. Furthermore,

it is increasingly recognized that scientific modeling is an important skill to embed in science
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education [6, 17], and ”Developing and Using Models” is a core science engineering practice in

the Framework for K-12 Science Education [58]. Scientific modeling has been increasingly studied

in the K-12 classroom (e.g. [76, 3]). One of the emerging theories around developing scientific

modeling skills is to view modeling activities as engagement with a series of practices [76, 3].

These practices focus on the process of modeling, from ideation and conjecture formation to the

final application of the model to help address a problem or question. In our work designing and

studying tools that support students’ engagement in modeling, we focus on creating model elements,

reviewing the contents of a model, editing components and interactions, and attempting to use the

model as a whole. These practices are primarily contained within a single modeling medium, such

as EcoSurvey, rather than occurring in discussion or other settings. In addition, we emphasize

the importance of iteration as both a modeling practice [3] and as a practice applicable to larger

scientific inquiry activities [2].

Students’ understanding of scientific modeling has been studied primarily through interviews

and observations [76, 5]. These approaches are important to the field and allow us to gain a

deep measure of the impact of intervention on a student’s understanding. We utilize these same

approaches to evaluate how students understand scientific models after using EcoSurvey. However,

our work also emphasizes the inability of these measures to scale beyond the research setting. It is

important for us to use scalable measures of student activity and understanding, and to find ways

we can support teachers in assessing their students’ status for intervention in real time. This need

informs our approach of using new analytic techniques grounded in learning sciences frameworks

to document students’ activity while using digital tools.

4.2.3 Digital Classroom Tools

Many projects have built digital tools to engage students in scientific inquiry tasks, and

research has shown that these applications can support and even improve student learning [35, 89,

56, 54]. The vast majority of literature in this area is focused on simulation; either simulating

a model of a particular scientific phenomenon [35, 89] or simulating an immersive environment
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with discoverable scientific phenomena models embedded in the world [56, 54]. These activities are

important to building students’ understanding of models and modeling, but they do not provide

support for the generation of new models. It is also important for students to build their own models,

as a means of taking ownership of both the content and outcome. New model development is an

important part of modern scientific learning expectations, but more importantly it is a necessary

skill for participating in modern science. This is the central approach taken in the design and

implementation of EcoSurvey and its accompanying curriculum.

A common thrust of digital learning tools across disciplines is to use feedback to guide students

towards fruitful activity. This approach can be implemented in a number of ways, including the

intelligent tutor approach to selecting the next example or problem [18], but intelligent tutors

requires a prescribed semi-ordered series of activities rather than supporting open-ended student

use. Our approach displays usage information and provides a customized recommendation of a next

step. This approach builds on the idea of ”informating” [92], providing students with information

they can use in reflection as well as scaffolding the decision of what to do next without forcing

a particular usage pattern. By providing a recommendation rather than automatically sending a

student to do the ”next step”, we leave students with the agency in their model creation process.

4.3 Research Context

This research examines the iterative deployment of EcoSurvey, a digital tool for creating mod-

els of the components and interactions in a local ecosystem [70]. Our deployments take placeEco-

Survey exists within the framework of an entire year of high-school biology curriculum created

by the Inquiry Hub team [77] and deployed in a large urban school district in the western US.

Within this curriculum, students are faced with the engineering design challenge of choosing a tree

to plant on their local school grounds. To support their work on this task, students use EcoSurvey

to create a model of the existing ecosystem in their area, which allows them to determine which

organisms may be impacted by planting a certain kind of tree. This tool is implemented as an

online application, allowing access across devices including laptops and chromebooks increasingly
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found in classrooms along with tablets and smartphones.

We have been using a design-based implementation research [14] strategy to improve Eco-

Survey and accompanying curricular materials. EcoSurvey was conceived and developed during

design cycle for our ecosystems unit and first deployed in Spring 2015. Since then, our team has

made yearly changes in response to teacher and student feedback, and deployed these revisions in

the following academic year.

4.3.1 EcoSurvey

EcoSurvey is built around the concept of a ”web” or ”graph” model, in which components

(organisms) are connected by interactions (prey upon, support, mutually benefit, compete), al-

lowing students to visualize the ecosystem as a whole and determine which trees have the best

impact. Students work together, building their models in groups to contribute to a shared class

understanding of the local ecosystem.

To construct these models, students begin by going out and taking observations in their local

ecosystem. They take field notes and pictures of trees, animals, and any organisms they can find.

They also include any information they gain on relationships between animals.

Once students have captured these initial data, they then bring the information back to the

classroom and input these organisms and relationships as ”cards” and ”interactions”. Students can

then review and edit this content as needed, as shown in Figure 4.1.

Students continue to add to and revise their models by accessing additional information,

such as their local parks department’s reports on the ecosystem or national ecological relationship

databases. Once students have constructed an initial model, they can extract these individual

elements to create a visual model of the ecosystem as a whole.

Throughout this process, students iterate on their models; when reviewing an organism’s

relationships, they may notice a missing interaction such as a food source which can inspire the

creation of a new card for that organism, or an attempt to use their models can demonstrate to a

student that they haven’t considered the impact of one of their proposed trees, prompting them to
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Figure 4.1: The list view of organisms within an ecosystem model.
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go back and add, review, and edit that content.

In our prior work, we discussed significant teacher differences in classroom use of EcoSurvey

[70]. These analyses led to a few important design decisions aimed at decreasing the variation

across teachers and improving students’ engagement with EcoSurvey.

4.3.2 EcoSurvey Design Changes

The first focus in our redesign efforts was to address student confusion within the modeling

task and to improve student engagement with modeling practices. These approaches were designed

to reduce the teacher-level variance in activity by scaffolding student activity.

4.3.2.1 Integrated ”Use” Model View

As discussed in our prior work [69], one of our most important changes was to improve the

”use” model view, as seen in Figure 4.2. In the first version of EcoSurvey, when students wanted to

use their models, an export function allowed them to manipulate their models as graphs within a

separate tool. However, our analysis found that uptake of this activity was very much differentiated

by teacher, and the external and one-way nature of this process hindered iteration. To address

these concerns, we integrated a graph visualization into the core functionality of EcoSurvey with

the aim of seeing improved engagement with the ”use” modeling practice. In addition, we hoped

that this view would help students discover organism cards that have no relationships established

(”orphaned” cards) in order to help reduce the percentage of these disconnected elements.

4.3.2.2 Adaptive Feedback system

In our analysis of year one deployment, we developed methods for predicting which student

a teacher worked with by analyzing the student’s individual sequence of activity with the tool.

Since these teacher-level differences were so prominent both in the strength of final models and in

the engagement with modeling practices, we treat this teacher prediction as a three-level proxy for

measuring modeling success. Building on this idea, we implemented a real-time activity analysis



82

Figure 4.2: The integrated graph view in version 2.
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Figure 4.3: The feedback view in version 3.

system to generate feedback in the newest version of EcoSurvey. We used the same classification to

categorize active students. This classification determined the level of scaffolded feedback to give to

students. In addition, we analyzed the level of engagement with each particular scientific modeling

practice to choose a ”next step” recommendation.

To view feedback, students went to a new panel, as seen in Figure 4.3. In this view, students

were presented with a chart of their individual activity to date as broken down into practices and a

small section of text providing the individualized feedback on how best to continue engaging with

EcoSurvey. In Figure 4.3, we see a student who is currently classified as a low-strength modeler,

so the feedback incorporates encouragement and additional scaffolds about the recommended next

activity.

This feedback mechanism provided students with supports for metacognition in their activity

by informing them of their activity up to this point. This feedback is intended to help students

reflect on which modeling practices they had not yet engaged with, encouraging them to do tasks

they might otherwise have left out. Teachers also cited a lack of insight into exactly what each

student did and what support they needed within the tool; this feature could be used by teachers

to visualize each student’s engagement and provided a start for teacher intervention.

4.4 Methods

This article reports on student usage data from two separate years of deployment. In year 1,

as previously presented [69], we collected data from 10 classrooms under 3 teachers. We had 262
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students as unique EcoSurvey users in these classrooms. In year 3, we have data collected from 47

classroom groups under 15 teachers. Overall, we had 936 student accounts use EcoSurvey within

the year 3 class surveys analyzed here.

We collected students’ modeling activity by logging their clickstreams during use of EcoSur-

vey. In addition, as part of the larger Inquiry Hub project, students were given the opportunity

to consent to individual data collection including brief interviews. We used this subset of consent-

ing students, combined with teacher recommendation and student’s additional assent at the time

of interview, to select participants for a semi-structured interview about their understanding of

scientific modeling.

4.4.1 Analysis of Student Models & Activity

We analyzed students’ final models according to their size, complexity, and connectedness

using the same metrics as presented in our prior work [69], including the number of components

(organisms), interactions (relationships), and connectedness of components (orphaned cards). We

used Tukey’s HSD [84] to determine significance of differences between years.

Our iterative practices analysis process was built around the dual notions of increasing en-

gagement with modeling practices and reducing the teacher-level variance in student modeling

activity. To demonstrate changes in students’ modeling activity, we used our deployments as differ-

ent testing conditions and perform statistical comparisons. We used the Wilcoxon-Mann-Whitney

test [59] as a group comparison to account for potential non-normality in the distribution of student

activity, similar to other research in the area [64]. We used the Hedges G score [23] to determine

the effect size of these differences.

It is impossible to perform direct comparison of the variance levels between deployments, due

to the differences in the scale of deployment between the two years. However, within each year,

the variance in how students’ employ modeling practices can be broken apart, separating variance

attributable to teachers from other sources. To measure this variance, we used a simple random
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effects model:

< feature >∼ teacher (4.1)

This approach allows us to relate the variance due to teacher directly to the residual variance,

which represents all other sources of differences between student outcomes. Subsequently, we report

the proportion of variance due to teachers as a percentage of the total variance.

4.4.2 Impact of Feedback Systems on Student Activity

As discussed above, the EcoSurvey feedback system is designed to both scaffold the student

modeling experience and recommend a specific modeling action that the student should participate

in next. The scripted nature of these recommendations allows us to use the student’s action sequence

up to the moment of feedback to determine which recommended action the student received.

Our feedback impact metrics are designed around detecting and measuring a change in stu-

dents’ modeling activity after the moment of intervention by measuring uptake [49]. This approach

focuses on the immediate activity taken by the student after the moment of feedback, looking for

use of the recommended modeling practice. To quantify this approach and account for other ac-

tions that may be related to the suggested practice (e.g. reviewing your model to determine which

organisms to edit), we used a geometric decay model analyzing each occurence of the recommended

activity and its proximity to the moment of feedback. Our geometric decay model creates an im-

pact score (S) by assigning a weight to each action from the moment of feedback to the end of the

action sequence (n) based on its distance from the start (i) multiplied by a decay factor (d). This

action weight is added to the impact score if it is of the recommended type (ar = 1), otherwise it

is ignored (ar = 0). This approach can be summarized in the following formula:

S =
n∑

i=0

ar ∗ i ∗ d (4.2)

For this model, we used a decay of .9, allowing for nearby activities to be relatively similar
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in their impact score. We then binned these scores, assigning each feedback instance to high,

low, or no impact categories. We determined .8 served as a proper threshold for high impact

from recommendations, allowing for any use of the suggested activity within three actions to be

significant as well as supporting a large burst of activity. Scores below .8 but above 0 were assigned

low impact, indicating that there may have been some impact from the feedback but use of the

targeted action may also have been driven by other factors. Impact scores of 0 indicate that a

student never took the recommended action, which is classified as no impact. In addition, we

completed a series of random effects models to determine the amount of variance in modeling

practices engagement that can be attributed to using the feedback.

4.4.3 Student Learning of Scientific Modeling

To gain insight into students’ understanding of scientific modeling, we conducted interviews

with students at the beginning and end of their use of EcoSurvey. This approach allowed us to

focus on individual students within this collaborative task and provided insights into each student’s

ideas and experiences around modeling without disrupting classroom flow.

The interviews were designed as a semi-structured process, with a series of checkpoints. To

conduct these interviews, we met students during their normal class period. We selected students

for interviews in conjunction with the teacher, requesting students with varied understandings of

the material. Each student was brought to a private meeting room or space, asked for additional

permission to conduct the interview, and reintroduced to their rights as participants. Once this

step was completed, we interviewed them about: 1) what they had been doing in class so far this

year, 2) their understanding of ”scientific modeling”, 3) their experiences with scientific modeling

in biology, 4) their expectations for constructing an ecosystem model, and 5) their experience with

using EcoSurvey (post interview only).

We developed a two-part coding scheme for the student interviews. The first dimension

focused on the depth and generalizability of students’ descriptions of scientific modeling (from 0

to 4), with a higher score awarded for descriptions that focused on modeling as a science and
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Table 4.1: The statistics for model features from all 3 deployment years

Model Feature Year 1 avg. (SD) Year 2 avg. (SD) Year 3 avg. (SD)

# Organisms 65.1 (38.5) 121.6 (86.4) 100.8 (94.1)
# Interactions 60.6 (77.1) 138.2 (161.1) 37.1 (46.3)

Orphaned Cards 50.0% 50.0% 50.0%

engineering practice that can be used across problems and disciplines. This coding captured their

most advanced modeling description. The second dimension simply determined how far into the

interview, and therefore at what degree of prompting, did students first give the description of

modeling captured in dimension one.

Once we developed this score of each student’s understanding, we connected these results to

their activity streams within EcoSurvey. We used this link to determine the correlation between

student’s engagement with the practices to their understanding of scientific modeling as a science

and engineering practice.

4.5 Results

4.5.1 Analysis of Student Models & Activity

In Table 4.1, we see the average and standard deviations for the number of (a) organisms

and (b) relations in students’ models during each EcoSurvey deployment year. Here, we see that

the average number of organisms has fluctuated, though not to a significant degree (Tukey’s HSD:

year 1 - year 2 p = 0.212; year 1 - year 3 p = 0.513; year 2 - year 3 p = 0.550), and the same trend

is seen for interactions (Tukey’s HSD: year 1 - year 2 p = 0.383; year 1 - year 3 p = 0.860; year 2 -

year 3 p = 0.359). Additionally, the table shows that the complexity of models remained consistent

across years. This consistency is reinforced by the percentage of disconnected (orphaned) cards.

In Table 4.2, we report the average and standard deviations for the number of times students

engaged with each modeling practice. In addition, we report the resulting P value for the Wilcoxon-

Mann-Whitney test of differences between the two populations, and the Hedges’ g value of effect

size.
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Table 4.2: The statistics for modeling practices engagement for year 1 and year 3

Practice Y1 Avg (SD) Y3 Avg (SD) Wilcoxon P Hedges’ g

Iterating (model) 2.93 (1.66) 14.70 (23.44) < .001 0.554
Creating 2.97 (5.67) 4.99 (6.12) < .001 0.334

Reviewing 5.25 (4.40) 9.46 (16.692) 0.012 0.277
Editing 4.66 (7.86) 4.19 (7.24) 0.983 0.064

Using 3.918269 (5.818350) 2.787393 (5.012145) < .001 0.219

The results in Table 4.2 demonstrate a significant medium-sized improvement in engagement

with iteration, or the cycling back and forth between modeling practices (e.g. creating model

elements, reviewing information, then going back and creating once again). In addition, we saw

significant small-sized improvements in engagement with creating and reviewing model elements.

Surprisingly, we also found a significant small-sized decrease in student use of their models.

In addition, the standard deviations for iteration and review have both increased drastically.

Since it is impossible to have fewer than 0 examples of any practice, these changes show the dramatic

increase in the size of the high-end tail of the distribution, meaning some students are engaging

with these practices very heavily.

Tables 4.3 and 4.4 show the results of our random-effects model, teasing apart the variance

due to teacher from other residual factors. Our random effects analysis indicates that in year

1, teacher differences are responsible for up to 61% of the variance in student engagement with

modeling. Conversely, in year 3, teacher variance is responsible for 12 to 30% of the variance in

modeling practices engagement, with a decrease shown for every practice in year 3 relative to year

1. This reduction in teacher effects is most significant in the case of review and iteration.

Table 4.3: The variance attributable to teachers and other factors for each modeling practice.

Practice Year 1 T. Var. Year 1 R. Var. Year 3 T. Var. Year 3 R. Var.

Iteration 2.232 1.425 115.3 353.6
Create 10.39 25.65 8.993 28.813
Review 9.261 13.631 28.59 203.63

Edit 21.9 48.32 17.45 39.62
Use 10.01 26.97 5.342 22.341
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Table 4.4: The variance attributable to teachers and other factors for each modeling practice.

Practice Year 1 T. Proportion Year 3 T. Proportion

Iteration 61.0% 24.6%
Create 28.8% 23.8%
Review 40.5% 12.3%

Edit 31.2% 30.6%
Use 27.1% 19.3%

4.5.2 Impact of Feedback Systems on Student Activity

Examining student use of EcoSurvey during year 3, we saw 578 uses of the feedback page

from 191 of the 936 users (20.4%). Interestingly, while there is some teacher-level variance in the

scope of use, 13 of the 15 teachers in our study had one or more student use the feature in some

capacity.

In Table 4.5, we show the distribution of impact due to feedback on student activity. It is

first important to account for the feedback uses where students had already engaged successfully

with modeling, so the system did not generate a recommended next action. These uses accounted

for 27.5% of all feedback checks. After this first check, we found 34.7% of feedback users had high

impact based on the impact score above 0.8 (showed high impact), 12.3% had an impact score below

.8 but above 0 (showed low impact), and 25.4% had an impact score of 0 (showed no impact).

Another important measure of feedback impact is the change in feedback over occurrences.

Overall, there were 120 instances of students making progress, accessing the feedback more than

once and seeing a different, more advanced recommendation. In addition, 53 users accessed the

feedback and received no recommendation, 32 of whom went from previously receiving feedback to

Table 4.5: The impact score distribution for feedback usage.

Feedback Impact Score (i) # occurrences % occurrences

N/A (no recommendation) 159 27.5
High Impact (i > .8) 201 34.7

Low Impact (.8 > i > 0) 71 12.3
No Impact (i = 0) 147 25.4
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Table 4.6: The variance attributable to feedback usage compared to other factors.

Practice Teacher Var. Feedback Var. Residual Var. Teacher % Feedback %

Iteration 87.43 85.47 394.6 0.154061674 0.1506079295
Create 8.2355 0.3005 29.4369 0.2168783527 0.007913538339
Review 20.77 36.29 229.89 0.07238194807 0.1264680258

Edit 13.681 3.643 36.262 0.2553092226 0.06798417497
Use 1.957 7.247 17.958 0.07204918636 0.266806568

the no recommendation group over their course of use. It is also interesting to note that 110 feedback

visits were completed after a student had already entered the no recommendation condition.

Finally, when including feedback in our year 3 models, we see that this feature accounts for

an additional segment of the variance as shown in Table 4.6. This inclusion further reduces the

variance found at the teacher level.

4.5.3 Student Learning of Scientific Modeling

Figure 4.4 shows the distribution of how accurate and generalized students’ responses were

when discussing scientific modeling in their post interviews. These data show an interesting bimodal

distribution, which gives an indication that there is some significant difference in students’ devel-

opment of their understanding. This difference is further highlighted by the correlation between

engagement with modeling practices and the final depth of understanding score as seen in Table 4.7.

These results show that a student’s engagement with modeling practices, especially model use and

a large number of overall actions, is predictive of a student’s understanding of scientific modeling.

Table 4.7: The correlation between the number of modeling actions of each type and a student’s
final depth of understanding score.

Practice Correlation P-Value

Iteration 0.426 0.078
Create 0.233 0.353
Review 0.432 0.073

Edit 0.363 0.139
Use 0.501 0.034*

Total Actions 0.488 0.040*
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Figure 4.4: The distribution of student explanation scores in post-interviews.
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One additional important trend we noticed in students’ post interviews was the dichotomy

between students’ perceptions of modeling and their latent understanding. For example, only 32%

of students discussed EcoSurvey or ecosystem models when asked ”What kinds of models have you

been making in science class this year?” during the interview, while the rest either discussed models

generated prior to the study period or said that they had not modeled at all.

4.6 Discussion

4.6.1 (RQ1) Iterative Analysis of Final Models and Student Activity

Unfortunately, our analysis of the final models created by students showed that there were

no significant changes to the size, complexity, or connectedness of these models between designs.

Instead, the high variance in these model features demonstrated that there is further progress to

be made in supporting the broad spectrum of students in creating robust models.

However, while we did not see a difference in students’ models, our results demonstrate

moderate success in our attempts to reduce teacher variance. One of the biggest improvements

in our newer version of EcoSurvey was the positive impact on students’ iteration, cycling back to

previously conducted activities. As discussed above, iteration is a key component in successful

scientific modeling, and improving students’ engagement with this practice is a significant step

towards equitable modeling experiences.

One of our biggest concerns is the drop in the ”use” activity, visualizing their model as a

whole. In our first year analysis, we determined engagement with model use varied significantly by

teacher. Interestingly, we found a reduction in the between-teacher variance in model usage, and

an even larger variance accounted for by use of the feedback tool. It seems only a certain subset of

students within most classrooms ever used the model. One possible reason for this division is that,

when they worked in groups, students divided up tasks and either trusted certain group members

to review the use stage or they underwent a shared experience, with multiple students looking at

one screen to discuss the complete model. In any case, it is important to rethink our techniques
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for better supporting students in the use of these ecosystem models to address their core design

challenge.

It is important to consider the implications of an improvement in student activity with no

corresponding improvements in their final models. Our interpretation of this result is that the

measures of ”good” student models are incomplete. While our metrics are designed around generic

measures of models outside of a particular discipline, it is still important to remember students are

using these models ”to test a design, or aspects of a design, and to compare the effectiveness of

different design solutions,” ([58], pg 58) in this particular case to choose a tree to plant. Therefore,

the ”goodness” of the model is intrinsically tied to the accurate representation of the problem space,

which is not captured by these generic features.

4.6.2 (RQ2) Impact of Feedback Systems on Student Activity

We saw a lack of utilization of our analytic feedback mechanism, with only around 20% of

users ever visiting the page. That said, we noticed significant differences between feedback users and

non-feedback users, with these differences not attributable to teacher differences. Our aggregate

approach demonstrates that using the feedback system can account for a student exhibiting more

robust modeling practices. Similarly, our geometric decay analysis suggests that the system showed

a significant impact in 34.7% of use cases. In addition, the changes in successive feedback showed

that students had increased their modeling practices engagement over 20% of the time. In addition,

of the 159 access actions that received no feedback, 110 of those were repeat visits after previously

having already received no feedback. These visits indicate that some students have interest in the

graph of modeling activity, rather than just the personalized feedback.

4.6.3 (RQ3) Student Learning of Scientific Modeling

Our most startling finding is the latent nature of students’ understanding of scientific mod-

eling. While students said many things during the interview that demonstrated a strong under-

standing of scientific modeling, these responses were often not in response to general questions
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about scientific modeling. Rather, students reached their most sophisticated explanation when

asked about specific modeling activities from the curriculum. In some instances, students did not

even recognize their activities as ”modeling”, as seen in this excerpt from one interview:

[Interviewer]: Have you all been making models in the past few weeks?

[Student 30]: We actually haven’t, we’ve been mainly seen looking at tree profiles
and how to create them.

Yet, later in the interview:

[Interviewer]: What would you say is the purpose of EcoSurvey?

[Student 30]: To learn how different species, whether a tree or animals interact
with each other and to learn the relationships they have.

Here, we see a student using generalized modeling language (”interact”, ”relationships”)

in conjunction with domain specific modeling language (”species”) when discussing the use of

EcoSurvey. However, when simply asked to reflect on recent modeling activities (which primarily

focused on using EcoSurvey), the student did not consider the classroom activity to be ”modeling”.

In addition, it is important for our work to recognize the significant correlation between

modeling activity and student understanding. While this correlation does not imply that using

EcoSurvey caused a deeper understanding, it is nevertheless useful to know that these features

found in the logs from our digital modeling tools can be predictive of students’ understanding of

modeling. This finding provides further evidence for the importance of using these generalized

features to generate scaffolds for learning.

4.6.4 Limitations

Working within a design-based intervention research program has enabled the study of our

design at scale and over time, but it is important to take note of the nesting (students within class-

room groups within teachers) and other confounding effects of our results. While we have conducted

mixed model tests, the interaction of factors between changes to EcoSurvey, other changes to the

curriculum design, and implementation in the classroom are difficult to untangle. However, our
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approach of iterative design and deployment within a single curriculum minimizes these differences,

and while our group of implementation teachers has grown and changed, we have kept our analysis

within the same district.

4.7 Conclusions & Future Work

This research makes important contributions towards understanding students’ scientific mod-

eling at scale. We have demonstrated a variety of capabilities and limits of our generalized approach

to analysis and used these features to understand the impact of changes in the design of a digital

modeling tool. This work is building towards a more equitable learning experience through exam-

ining scaffolds for the modeling process and deploying automated feedback based on comparison

with other modelers. These results demonstrate that there is some benefit to be gained from our

approaches, but more work is needed.

Our future work includes an expanded focus on supporting the teacher as a mediator in

this modeling process. As a first step, we made each students’ feedback visible to their teacher,

but a significant amount of work is required to make that insight easy to use and actionable for

teachers while still supporting their unique insight into the needs of each student. In addition,

while these results give some insight into how we can measure students’ modeling activity, it

is important to consider how these efforts can expand to document and incorporate a students

understanding of modeling as a science and engineering practice. We also plan to leverage some

interesting developments in the realm of 3D science assessment, creating tasks and scenarios that

require students to incorporate modeling into their domain-specific solutions.



Chapter 5

Conclusions

Overall, my work has led to some key conclusions.

1) Student models can be characterized using generalized metrics, which can inform digital

modeling environments. However, these features do not capture the entirety of model differences,

and domain-specific features must be considered to understand the quality of a model.

2) Modeling practices can be successfully mapped to activity within a modeling tool. This

mapping can provide important insight into a students understanding of the science and engineering

practice of modeling.

3) Scaffolds and feedback built within a modeling tool can have an impact on both students

models and their engagement with modeling practices, and reduce the influence of teacher differ-

ences on student success. However, designing tools and supports as optional features can lead to a

self-selection bias in how successful these improvements are at reducing variance across the board.

5.1 Revisiting the Research Questions

5.1.1 RQ1) How can we automatically characterize students models and their

engagement with modeling practices at scale?

Over the three studies, I have demonstrated a variety of metrics for understanding both

models and engagement with modeling practices.

In understanding student models, I began with a simple metric of the number of components

and interactions in each model. This metric provides a baseline of contribution and effort. In study
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1, I mentioned the orphan phenomena - a significant percentage of model components were not

connected to any others. This is one metric for model goodness; in real ecosystems, most (if not all)

organisms are interacting with one another in some way. Additionally, I used an ecological approach

of evenness to understanding the distribution of interaction types in the students models. By

looking for a better representation from predatory, mutually beneficial, supporting, and competing

relationships, we can determine if students were considering the breadth of ways in which organisms

can interact.

In understanding student engagement with modeling practices, I developed a scheme of map-

ping user activity in a clickstream to their relevant modeling practices, which allowed for automatic,

real-time characterization of the features in a students modeling behavior. I use these features to

explore differences among populations of modelers. Through this analysis, I discovered significant

differences in the way students behaved based on their teacher. These results, in turn, motivated

design changes and gave me an opportunity to reuse these metrics to compare across multiple

deployments of EcoSurvey.

5.1.2 RQ2) What methods can we use to promote successful scientific modeling?

My understanding of how we can promote successful scientific modeling comes from the

iterative design of EcoSurvey and its features. In particular, I developed an integrated approach to

using the models, implemented a closed list for assigning types of relationships, and incorporated a

user dashboard featuring a real-time visualization of previous activity and personalized feedback.

The impact of these changes on students final models is mixed. I found that students use of

the relationship types showed greater evenness in years with predetermined relationship options and

an integrated model visualization, creating models that more accurately represent the ecosystem.

However, I found no significant impact on the number of components or interactions in final models,

nor an impact on the percentage of cards with no relationships in each model, across the three

deployments.

Conversely, modeling tool design had more significant impacts on students engagement with
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modeling practices. We found that our design changes significantly reduced the teacher-level vari-

ance in reviewing, using, and iterating with their models, meaning that students did not face as

many teacher differences in their exposure to these key modeling practices when using later versions

of EcoSurvey. Furthermore, we found that use of the feedback feature is associated with increased

engagement with modeling practices.

5.1.3 RQ3) How do students modeling practices relate to their understanding of

scientific modeling?

The student interviews demonstrate that many students have a significant depth of under-

standing of scientific modeling. In addition, the correlation analysis of interviewee activity within

EcoSurvey revealed that lower modeling activity can be associated with a less sophisticated un-

derstanding of modeling. While this does not necessarily imply a causal relationship, we can

nevertheless use automated modeling activity detection and analysis to estimate a students un-

derstanding, which can then inform the scaffolding provided to the student during the modeling

process.

5.2 Future Work

This dissertation opens the door for a whole area of new research. First and foremost on my

mind is expanding these methods and analyses to other modeling tools and scenarios. There are a

variety of projects that support scientific inquiry [54, 56], scientific reading comprehension [45], and

modeling [35, 89] which provide an opportunity to generalize my findings across tools. It would be

particularly interesting to explore modeling from the perspective of students using existing models

(e.g. [35, 89]) rather than students process in generating new models.

Another important area for research is the continued exploration of design features within

EcoSurvey. My analyses have found mixed success for the impact of several design decisions,

but there is an open opportunity to continue to apply new techniques that can improve students

modeling. I am most driven to explore ways to improve engagement with model use and uptake
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with feedback in future iterations of EcoSurvey. In addition, there are opportunities to expand

information visualization research both with what feedback students and teachers can see and how

that information is displayed.

Finally, there are opportunities to improve the methods used to predict student activity. As

implemented in our most recent version, the predictive model uses aggregations of students modeling

activity and the presence of key sequence features identified from our first years deployment as

predictive of teacher differences. However, this approach does not yet adapt to the expanded

patterns found in our larger deployments, nor does it distinguish between good modelers that have

just begun their process and modelers who have struggled for a significant period of time. There is

also room for improvement in the machine learning models used for prediction; our early work relied

on the relatively strong performance of a simple nave bayes model, but more advanced and adaptive

modeling techniques could be used to address some shortcomings in the current implementation.
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