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Robust long term autonomy represents one of the most important targets for advancing

robotic applications in the next 10 to 15 years, particularly because of the the advances in the so-

called Classical Age of Simultaneous Localization and Mapping (SLAM) which place us in the age

of Robust-Perception. Creating algorithms which allow robots to operate for years, unsupervised,

in any environment is key step in the direction of true autonomy. This thesis presents a suite of

algorithms to help enable robust long term autonomy, specifically robustness to a robot’s calibration

parameters (internal knowledge the robot must possess in order operate) and to the environment

the robot is situated in. Starting from the fundamentals of SLAM, the now de facto formulation

is presented as a segue into self-calibration - the task of estimating calibration parameters such as

the camera position on the robot. The following extensions are then developed: (i) an approach

to treat slowly varying quantities, such as the position of a sensor drifting over years of operation,

(ii) an algorithm which allows a robot to learn what movements it needs to perform in order to

know its calibration parameters - using a reinforcement learning framework for self-calibration

and (iii) all the insight from previous research is used to create a real-time self-calibration system

which is capable of dealing with drift, unobservable parameters - for example when the robot is

constrained to planar movement - and an information theoretic based segment selection mechanism

which only choses “informative” segments of the trajectory in order to reduce computation time.

However robustness is not only in regards to internal parameters such as a robot’s sensor position

- the environment the robot operates in is dynamic - dealing with that environment is the final

contribution, where an online probabilistic approximate joint feature persistence model is presented

to determine which parts of the world are changing.
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Chapter 1

Introduction

Simultaneous localization and mapping (SLAM) is the problem of simultaneously estimating

the state of the robot and a map of the environment. Much progress has been made under the banner

of SLAM. However, for long-term autonomous operations in real-world environments, localization

and mapping must be viewed as tasks that continue over the lifetime of robot. Real environments

change in their shape and appearance over time, both gradually and acutely. Figure 1.1 shows

a classic example of a long-term application. Recently, a number of exciting new approaches to

handling environmental change to support lifelong localization and mapping have been proposed.

In its most simple form the state is the robot’s position, consisting of its position and rotation

with regards to some reference frame. The state can optionally be augmented with other quantities

such as biases, velocity and calibration parameters. The map can take several representations

depending on the aspects of interest, such as the position of landmarks, objects, a dense 3D mesh,

etc. describing the environment in which the robot operates. The motivation behind building a

map is twofold: A map is often required for other, higher-level robot tasks, such as path-planning or

for providing an intuitive visualization for a human operator. Second, the map allows for limiting

the error in the robot’s state estimation: by re-visiting an area of the map the robot can “reset” its

localization error (so called loop closures). The motivation behind estimating the robot’s state

is immediate as any higher-level action on the robot requires the knowledge of its current state.

Therefore SLAM has application in any scenario where a prior map is not available and needs to

be built.
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Figure 1.1: Example of a life-long robotic application: NASA Curiosity rover on Mars.
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In other robotics applications, an a priori environment is known, such as a robot operating

on a factory floor where a manually built map is provided, on a self-driving car operating on streets

that have previously been mapped with laser scanners or even in outdoor environments where GPS

measurements are available (the GPS measurements represent known locations in the map). In

these scenarios the problem can be simplified to simply estimating the robot state. SLAM owes

most of its popularity due to the flexibility of dealing with both scenarios: indoor environments

where no pre-existing map exists, operating in an environment with a pre-built map and seamlessly

switching between both scenarios.

Given the current state of SLAM, it begs the question is SLAM solved?. This is a question

often asked in robotics communities [42]. The question is di�cult to answer since SLAM is such a

brad topic, a given robot/environment/performance combination. In general terms, the following

aspects must be defined for any well posed answer to be formed:

• platform: available sensors, dynamics, computational resources;

• environment: 3D or planar, presence of static landmarks, amount of dynamic elements;

• performance: robot state estimation accuracy, accuracy for environment representation,

success rate, latency, memory requirements.

For example, mapping in a planar environment with a platform equipped with wheel encoders and a

laser scanner with su�cient accuracy and low failure rate can be considered largely solved. Vision-

based SLAM with slowly-moving robots (domestic robots, mars rovers, etc) and visual-inertial

odometry can be considered mature research fields. Pretty much ever other platform, environment,

performance combination still deserves a large amount of research. Current algorithms fail when the

motion of the robot/environment is overly challenging (e.g., fast robot dynamics, acutely dynamic

environments) or when the performance requirements are very strict (e.g., high rate estimation for

fast closed-loop control).
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1.1 Life-Long SLAM

SLAM systems have matured to the point where we are asking, and most importantly, an-

swering questions such as “What is long-term autonomy?”, “Do we need semi-autonomy to get

us there?”, “What novel map representations are required?”, “Do we need redundant sensing for

robustness?”, and “What kind of long-duration field experiments are required?”. In this section we

will build on the basic optimization-based SLAM formulation presented in Section ?? and analyze

some aspects related to life-long SLAM; where current research has gotten us, what are the major

shortcomings and the unexplored areas that need future work. These aspects can be broadly di-

vided into two main categories: (i) Robustness, which addresses calibration and the many failure

modes of SLAM when applied to long-term scenarios and (ii) Scalability which looks at dealing

with the growing state and environment footprints in a resource constrained platform.

A SLAM system can be fragile in two major aspects: algorithmic or hardware-related. The

former class includes failure modes inherent to the existing SLAM algorithms (e.g., di�culty to

handle extremely dynamic environments). The latter includes failures due to sensor degradation

over time. In order to achieve long-term operation, explicitly addressing these failure modes is

crucial, where simplified assumptions such as static environment or full reliance on on-board sensors

no longer hold. We will omit the (large) class of software-related failures, while briefly mentioning

that system integration and testing are non-trivial and key aspects of any SLAM system.

1.1.1 Algorithmic Failures

Data association is one of the main sources of algorithmic failures. As described in Section

2.3 data association matches each measurement to a corresponding portion of the state vector.

In feature-based visual SLAM, it associates each visual feature (or key-point) to a specific 3D

landmark. Perceptual aliasing, the phenomenon in which di↵erent sensory inputs lead to the same

sensor signature makes this problem particularly hard. This may cause incorrect data-associations

(false positives) which, if not handled correctly, results in incorrect estimates from the back-end.
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The presence of unmodeled dynamics in the environment makes the situation worse, with things

such as short and long-term seasonal changes, which deceive the data-association module. A com-

mon assumption in most SLAM approaches is that the world remains unchanged as the robot

moves through it (static landmark assumption). This static world assumption holds true for

short mapping runs in small scale environments, as long as there is a limited number of short term

dynamics (e.g., people/objects moving about the scene). We are primarily concerned with mapping

over longer time scales, in arbitrarily large environments, where change is inevitable. Variations

from day to night, seasonal changes, such as foliage, and even change in the structure of the envi-

ronment, as new buildings rise and old buildings are demolished, all directly a↵ect the performance

of SLAM systems. Another aspect of robustness is that of doing SLAM in adverse environments,

such as underwater [10, 35, 36, 71] where the limited visibility, constantly changing conditions and

impossibility of using sensors such as laser range finders make the problem challenging. The most

immediate robustness issue to tackle is data association. It can have devastating e↵ects on the

optimization and can be addressed in the front-end and/or in the back-end of a SLAM system.

Traditionally the front-end has been entrusted with establishing correct data association. The easi-

est scenario is short-term data association: if the sampling rate of the sensor is relatively fast to the

dynamics of the robot, tracking features that correspond to the same 3D landmark is considered a

solved problem. For example, if we wish to track a 3D point across consecutive images, assuming

the framerate is su�ciently high, standard approaches based on descriptor matching and optical

flow [133] ensure consistent and reliable tracking. This short-term visual tracking is the basis of

visual odometry. On the other hand, long-term data association is more challenging and involves

both loop closure detection and validation. For loop closure detection on the front-end, the naive

brute-force approach which detects features in the current measurement (e.g., image) and tries

to match them against all previously detected features becomes impractical. Bag-of-words [137]

is a popular solution to this problem, by quantizing the feature-space and allowing more e�cient

searches. Furthermore Bag-of-words can be arranged in to a hierarchical vocabulary tree [112]

that enable quick lookup in large-scale datasets. Bag-of-words-based techniques such as [25, 44]
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Figure 1.2: Example of incorrect data association provided by the front end; the back end has
to be robust to theses incorrect associations. Standard “robust” back ends such as g2o using the
Huber norm fail to converge (blue), the proposed robust switchable constraint back end [141] (red)
discards incorrect loop closures. Figure courtesy of Niko Sünderhauf and Peter Protzel [141].

have shown reliable performance on the task of loop closure detection. However these approaches

have the significant drawback of not handling severe illumination changes, since visual words can

no longer be matched. This shortcoming has led to the development of methods that explicitly

account for such variations by matching sequences [102], gathering di↵erent possible visual appear-

ances into a unified representation [21], or using spacial and appearance information [57]. Lowry

et al. provides a detailed survey on visual place recognition [91]. There are also approaches for

detecting loop closures in other sensor modalities, such as laser scanners: Tipaldi et al. [142] pro-

poses FLIRT features in 2D laser scans. Loop closure validation consists of additional geometric

validation steps to ascertain the quality of the loop closure detection. In the case of vision-based

loop closures, RANSAC is commonly used for geometric verification and outlier rejection, [41] and

references therein provide a thorough coverage.

Despite all the e↵ort towards detecting and validating loop closures on the front-end, the

presence of perceptual aliasing makes it unavoidable that wrong loop closures are fed to the back-

end. These incorrect associations can severely corrupt the quality of the estimate [141]. Due to

this, a recent line of research proposes techniques [3, 18, 81, 117, 141] to make the SLAM back-end

resilient against spurious measurements. Figure 1.2 shows an example of the proposed solution

in [141], where the back-end tries to “optimize out” incorrect data associations provided by the

front end. These methods all reason on the validity of the loop closure constraints by looking at

the residual error induced by the constraints during the optimization. Constraints that increase
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the residual by an unreasonable amount are considered outlines and are ’disabled’. Other methods

[118, 128] try to detect incorrect loop closures before any optimization is run, by identifying loop

closures that are not supported by the odometry. In dynamic environments the challenge is twofold.

First, the system has to detect, discard or track changes. Mainstream approaches attempt to discard

dynamic portions of the scene [109], other works incorporate the dynamic elements as part of the

model [125, 147, 146]. The second challenge involves modeling permanent and semi-permanent

changes to the environment, and update the map accordingly. Current approaches that deal with

dynamic environments either maintain multiple, time-dependent maps of the same location [27, 74]

or use a single representation, parameterized by a time-varying parameter [76, 131].

1.1.2 Calibration

An issue every roboticist deals with routinely is sensor calibration. In order to be able to use

sensor data in the back-end (Section 2.2) each sensor needs to be precisely calibrated. For vision-

based sensors for example, knowing the camera lens distortion parameters, focal length and central

point (necessary for a pinhole projection model) are essential for correct feature extraction/tracking.

An inertial measurement unit (IMU) is even more complicated, with time-varying biases on each

of the accelerometer and gyroscope axis. Furthermore, if multiple sensors are used, as is typical in

most SLAM applications (e.g. the visual-inertial navigation system is a common example of sensor

fusion [94]) then sensor extrinsic calibration parameters are also needed (e.g. the rigid-body SE(3)

relative pose between sensors). There has been a considerable amount of e↵ort dedicated to sensor

intrinsic and extrinsic self-calibration [61, 99, 93, 97, 24, 32, 150, 115, 66, 68]. Both [56] and [121]

considered self-calibration in a batch setting with various tailoring to di↵erent intrinsic parameters.

[39] presented a method to calibrate the varying intrinsics of a pinhole camera in a batch setting,

given the rotation of the camera was known. A solution was also o↵ered to align the rotation

sensor and camera data in time. Many current techniques for vision-aided inertial navigation use

filtering approaches [61, 69, 106] or a smoothing formulation. In either case the estimation is made

constant-time by rolling past information into a prior distribution. Filtering methods present the



8

significant drawback of introducing inconsistencies due to linearization errors of past measurements

which cannot be corrected post hoc, particularly troublesome for non-linear camera models. Some

recent work has tackled these inconsistencies; see, e.g. [87, 55, 23, 88]. The state-of-the-art includes

methods to estimate poses and landmarks along with calibration parameters, but these approaches

do not output the marginals for the calibration parameters, which are desirable for long-term

autonomy applications.

Building on these works, simultaneous solutions to the SLAM and self-calibration problem

have been proposed but generally all online solutions assume constant calibration parameters. [22]

proposed a method to recursively estimate camera and landmark 3D parameters as well as the

intrinsic parameters of a nonlinear camera model in an online framework. [89] also developed a

filtering solution to estimate both the camera pose and also intrinsics and extrinsics for a non-

linear camera model with rolling shutter and a commercial grade IMU in an online framework, but

that approach does not output covariances in an MLE sense. Nobre et al. [115] extended the

work presented in [68] to propose an extensible self-calibrating and change-detecting intrinsic and

extrinsic pipeline that operates online and in real-time. The key insight is collecting informative

segments of the trajectory for estimating the calibration parameters, and using a statistical test to

ascertain if the calibration parameters have changed.

1.2 Outline

This thesis will first define the standard “architecture” for SLAM (Chapter 2) based on an

optimization-based maximum-a-posterior formulation which is broken down into a back-end (Sec-

tion 2.2) and front-end (Section 2.3). A gentle introduction to Lie Groups, and how it pertains

to representing rotations is also provided (Appendix A). Chapter 3 introduces self-calibration and

presents a constant-time algorithm for both estimating a robot’s calibration parameters as well as

detecting changes in those parameters and adjusting accordingly. Chapter 4 extends Chapter 3

to deal with the case when a robot is operating for extended periods of time and the changes in

parameters are gradual and harder to detect. In Chapter 5 an active approach is taken, where the
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robot explores its action space and learns what motions it needs to perform in order to calibrate

itself. Chapter 6 shifts the perspective to the world in which the robot operates, developing a novel

formulation on environment feature persistence which leverages joint information from correlated

features to detect small changes in the environment. Chapter 7 takes lessons learned from all the

previous chapters and builds upon them to develop a low time complexity robust self-calibrating al-

gorithm which is experimentally validated in long term autonomy applications. Finally, conclusions

and future work directions are discussed in Chapter 8.

1.3 Publications

Some of the contributions described in this dissertation have first appeared as the following

publications:

• Chapter 3: “Multi-Sensor SLAM with Online Self-Calibration and Change Detection”,

presented at the International Symposium on Experimental Robotics (ISER), 2016 [115]

• Chapter 4: “Drift-Correcting Self-Calibration for Visual-Inertial SLAM”, presented at

the International Conference on Robotics and Automation (ICRA), 2017 [116]

• Chapter 5: “Reinforcement Learning for Assisted Visual-Inertial Robotic Calibration”,

presented at the International Symposium on Robotics Research (ISRR), 2017 [113] and

invited submission to the International Journal on Robotics Research (IJRR) special edi-

tion.

• Chapter 6: “Online Probabilistic Change Detection in Feature-Based Maps”, presented

at the International Conference on Robotics and Automation (ICRA), 2018 [114] and US

Patent Application Serial Number IP-A-2602.

• Chapter 7: “FastCal: Robust Online Self-Calibration for Robotic Systems”, under sub-

mission to the International Symposium on Experimental Robotics (ISER), 2018



Chapter 2

State Parameterization for SLAM

The genesis of the probabilistic SLAM problem dates back to the 1986 IEEE Robotics and

Automation Conference held in San Francisco, California. This sparked the development of the basic

probabilistic SLAM formulations, such as the Extended Kalman Filter, Rao-Blackwellized Particle

Filters and the maximum likelihood estimation; also it outlined the challenges associated with data

association and robustness. This period can be roughly set as starting in 1986 and ending in 2004.

A thorough overview of these first 20 years of SLAM can be found in the surveys by Durrant-Whyte

and Bailey in [33, 9]. More recently, a partial survey conducted by Dissanayake et al. in [31] covers

a period refereed to as the algorithmic analysis age where the fundamental properties of SLAM

were studied, including observability, convergence, consistency and non-linearity. Also of note in

this period is the discovery and use of the sparsity structure in SLAM for the creation of e�cient

solvers that use the Schur-Complement to exploit the sparse nature of the linearized SLAM system,

which will be covered in section 2.2. Several open-source SLAM libraries were created in this period.

A large collection of surveys on SLAM have been published, with the later ones focusing

on specific sub-fields such as Multi-Robot SLAM and visual place recognition. Table 2.1 contains

the main SLAM surveys to date. The large amount of research on SLAM in the past 30 years

is not surprising if one thinks about the breath of manifolds SLAM encompasses; at a lower level

(called the front end, Section 2.3) SLAM intersects other research fields such as computer vision

and signal processing. On a higher level (which will later be referred to as the back end, Section

2.2) SLAM is an interesting combination of statistics, graph theory, geometry and probabilistic
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estimation. On top of these layers there are non-negligible practical aspects ranging from sensor

modeling to system integration.

Table 2.1: SLAM Surveys

Year Topic Reference

2006 Probabilistic approaches Durrant-Whyte and Bailey [20, 6]

2008 Filtering methods Aulinas et. al. [5]

2008 Visual SLAM Neira et. al. [63]

2008 Visual Navigation Bonin-Font et. al. [8]

2008 Loop Closures Mahon et. al. [57]

2011 Observability, Consistency, Convergence Dissanayake et. al. [18]

2011 SLAM Back-End Grisetti et. al. [28]

2012 Visual Odometry Scaramuzza and Fraundofer [81, 80]

2012 Driverless Cars Ros et. al. [74]

2012 Visual SLAM Fuentes-Pacheco et. al. [26]

2015 Rotation Estimation Carlone et. al. [10]

2016 Multi-Robot SLAM Saeedi et. al. [77]

2016 Visual Place recognition Lowry et. al. [53]

2016 Convergence, Observability, Robustness Huang et. al. [35]

2.1 Anatomy of a SLAM system

There are three prevalent formulations of the Simultaneous Localization and Mapping Prob-

lem (SLAM) problem: Probabilistic, Extended Kalman Filter (EKF) or the Particle Filter formula-

tion such as the Rao-Blackwellized Filter. We will take the Probabilistic approach since it is useful

for viewing SLAM from the traditional Statistical Point Estimation pespective as that reveals the

underlying problem structure. This approach makes evident the least squares minimization prin-
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Sensors
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Figure 2.1: Typical front-end and back-end division in a SLAM algorithm.

underlying problem structure. This approach makes evident the least squares minimization prin-

ciple, which is less evident in the EKF (or Recursive Bayesian Estimation) formulation. Also, this

approach clearly shows the underlying probability density functions, which highlight the Gaussian

probabilistic nature of SLAM - which means that SLAM is simply tracking a normal distrubution

though the state space; a state space that is dynamic in its number of elements as we remove

parameters though the probabilistic operation of marginalization or add parameters via condition-

ing. Finally, the statistical point estimation approach directly leverages a large body of knowledge

on the convergence of least squares estimation, which is not so readily available in the recursive

non-linear (EKF) perspective.

Modern SLAM systems can be divided into two main parts: front-end and back-end.

Figure 2.1 shows a high-level division.

2.2 Maximum-a-Posteriori SLAM back-end

While there are di↵erent formulations for the back-end, such as the Extended Kalman Filter

or Particle Filters, the de-facto standard is the Maximum-A-Posteriori (MAP) estimation, which

can be traced back to 1997 in Lu and Milios’s work [92] and Gutmann and Konolige [49]. In

the following 16 years multiple approaches have improved the e�ciency and robustness of the

underlying optimization problem. In all these approaches, SLAM is formulated as a maximum-a-

posteriori estimation problem and most use the formalism of factor graphs [78] to reason about

the interdependence among variables.
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Assuming we have a set of random variables we wish to estimate, denoted by X ; in SLAM the

variable X usually includes the robot trajectory (as a discrete set of 6-DOF poses) and the position

of landmarks in the environment. The state can be augmented with biases, gravity, calibration

parameters, etc. Given a set of measurements Z = {z
k

: k = 1, ..., m} such that each measurement

can be expressed as a function of X ; z
k

= h
k

(X
k

) + ✏
k

where X
k

✓ X is a subset of the full state

vector, h
k

(·) is a known function (measurement or observation model) and ✏
k

is random mea-

surement noise, usually assumed to be zero-mean Gaussian. We wish to estimate X by computing

the optimal assignment of variables X ⇤ that attains the maximum of the posterior P (X|Z), which

can be interpreted as the belief over X , given all the measurements:

X ⇤ .
= arg max

X
P(X|Z) = arg max

X
P(Z|X )P(X ) (2.1)

Which follows from Bayes theorem. P (Z|X ) is the likelihood of the measurements Z given

the current state assignment X , and P (X ) is the prior probability distribution over X . The prior

encodes any information known about the state vector before measurements are taken; in case

no prior is available, P (X ) reduces to a uniform distribution (constant) which does not a↵ect

the maximization problem and can be dropped from the optimization. In these cases the MAP

estimation is reduced to a maximum likelihood estimation. The common assumption is that the

measurements Z = {z
k

: k = 1, ..., m} are independent (i.e., the noise a↵ecting the measurements

are not correlated), problem (2.1) can be factorized into:

X ⇤ = arg max
X

P (X )
mY

k=1

P (z
k

|X ) = arg max
X

P (X )
mY

k=1

P (z
k

|X
k

) (2.2)

Where z
k

now only depends on the subset X
k

of the state vector. This problem can be

interpreted as inference over a factor graph, where the nodes in the graph correspond to the

variables in the state vector X and the terms P (z
k

|X
k

) and P (X ) are called factors that encode

probabilistic constraints over a subset of nodes. Thus a factor-graph is a graphical model which

encodes the dependence between the k-th factor (with its measurement z
k

) and the corresponding
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variables X
k

. An immediate advantage of this model is that it enables an intuitive visualization

of the problem. Figure 2.2 shows an example factor graph underlying a simple SLAM problem.

The figure shows the robot poses, landmarks and camera calibration parameters (the variables

that compose the robot state) and the factors that impose constraints between these variables.

A less immediate advantage of factor graphs is generality: complex inference problems can be

modeled, with heterogeneous variables and factors, with arbitrary interconnections. For example,

completely di↵erent sensor inputs, such as camera data and inertial measurement unit readings can

be seamlessly integrated into a factor graph containing two nodes. A node can contain variables

embedded in di↵erent manifolds, such as an euclidean translation, a SO(3) rotation and calibration

parameters. Also of note is that the connectivity of the factor graph is directly correlated with the

sparsity of the resulting SLAM problem, as discussed below.

We now will write Eq. (2.2) in a more explicit and tractable form, which in turn will allow

us to derive the basic MAP SLAM algorithm. Assume that the measurement noise ✏
k

is a zero-

mean Gaussian noise with information matrix ⇧
k

. Then the measurement likelihood in Eq. (2.2)

becomes:

P (z
k

|X
k

) / exp

✓
�1

2
||h

k

(X
k

)� z
k

||2⇧
k

◆
(2.3)

Where for some vector e, ||e||2⇧ = eT⇧e as the squared Mahalanobis distance. We make the

similar assumption that the prior P (X ) is Normally distributed:

P (X ) / exp

✓
�1

2
||h0 (X )� z0||2⇧0

◆
(2.4)

for a given h0 (·), prior mean z0 and information matrix ⇧0.

Maximizing the posterior is the same as minimizing the negative log-posterior, therefore

the MAP estimate in Eq. (2.2) becomes:

X ⇤ = arg min
X

�log

 
P (X )

mY

k=1

P (z
k

|X
k

)

!
= arg min

X

mX

k=1

1

2
||h

k

(X
k

)� z
k

||2⇧
k

(2.5)
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Which is a nonlinear least squares problem, given that, as in most robotics problems, h (·) is a

nonlinear function. It is worth noting that the formulation in Eq. (2.5) follows from the assumption

of Normally distributed noise. If other assumptions are made on the noise distribution a di↵erent

cost function would be formulated; for instance, if the noise were modeled as a Laplace distribution,

the squared `2-norm in Eq. (2.5) is replaced by the `1-norm. It is also common to substitute the

squared `2-norm in Eq. (2.5) with a robust loss functions such as Huber or Tukey loss [59] to

increase resilience to outliers.

The reader with a background in computer vision may notice the resemblance between Eq.

(2.5) and bundle adjustment (BA) in the Structure from Motion [145] problem; both Eq. (2.5)

and BA stem from a maximum-a-posteriori formulation, however there are two features that dis-

tinguish SLAM from BA. First, the factors in Eq. (2.5) are general and not constrained to model

projective geometry as in BA. These factors usually include a wide variety of sensor models (sensor-

fusion) such as inertial sensors, wheel encoders, GPS, laser scanners, to mention a few. Second,

Eq. (2.5) is designed to be solved incrementally: new measurements are made available at each

time step as the robot moves through an environment, and an updated state-estimate is com-

puted, usually with real-time constraints. Bundle Adjustment focuses on the batch solution after

all measurements have been collected.

The solution to Eq. (2.5), as in most nonlinear least squares problem, is done via successive

linearizations, e.g., the Gauss-Newton (GN) or Levenberg-Marquadt methods are the classical

algorithms . The Gauss-Newton method starts at an initial guess X̂ , and proceeds iteratively. At

each iteration GN approximates the minimization problem Eq. (2.5) as

�⇤X = arg min
�X

1

2

mX

k=0

||A
k

�X � b
k

||2⇧
k

= arg min
�X

1

2
||A�X � b||2⇧ (2.6)

where �X is a small “update” w.r.t. the linearization point X̂ , A
k

.
= @h

k

(X )
@X is the Jacobian

of the measurement function h
k

(·) with respect to the state vector X , b
k

.
= z

k

� h
⇣
X̂
⌘

is the

residual error at X̂ . On the right hand side of Eq. (2.6) A and b are obtained by stacking A
k
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(resp. b
k

); ⇧ is the block-diagonal matrix including the measurement information matrices ⇧
k

as

diagonal blocks. The optimal update �⇤X which minimizes Eq. (2.6) can be computed in closed form

from the normal equations:

�⇤X =
�
AT⇧A

��1
AT⇧b (2.7)

This allows, at each iteration, the linearization point to be updated via X̂  X̂ + �⇤X . The

matrix
�
AT⇧A

�
is an approximation of the Hessian.

Vector spaces. Up until this point we have assumed that X is embedded in a vector space

(thus the sum X̂ + �⇤X is well defined). When X includes variables belonging to smooth manifolds

(e.g., rotations), the general structure of the GN method remains unchanged, but the euclidean

sum (X̂ + �⇤X ) is replaced with a suitable mapping, called a retraction [2]. It is common to denote

the retraction operator with � which maps the “small correction” �⇤X defined in the tangent space

of the manifold at X̂ , to an element of the manifold, i.e., the linearization point is updated as

X̂  X̂ � �⇤X . A common retraction is the lie algebra of SO(3), denoted by so(3). In this case

the retraction is the exponential map, and its inverse operator is the logarithm (which goes from

SO(3) to so(3)). The so(3) lie algebra is motivated and detailed in Appendix A.

Problem Sparsity. A key element behind all modern SLAM solvers is the the Jacobian

matrix A appearing in Eq. (7.4) is sparse, and that sparseness is dictated by the topology of the

underlying factor graph. This enables the use of fast linear solvers to compute �⇤X [65, 63, 80].

This also allows the design of incremental or online solvers, which update the estimate of X as

new observations are acquired, in real-time [136, 63, 65, 122]. Many current SLAM libraries (e.g.,

GTSAM [29], g2o [80], Ceres [4], iSAM [63] and SLAM++ [130]) are able to solve problems with

tens of thousands of variables within seconds.

MAP vs. Filtering. The formulation described up to this point is commonly referred to as

maximum-a-posteriori estimation, factor graph optimization, graph-SLAM, full smooth-

ing, or smoothing and mapping (SAM). The term smoothing is used since all poses are op-



17

x1 x2 x3
u1 u2

m1 m2 m3 m4

c1

l1 l2

K

p

Figure 2.2: SLAM as a factor graph. Blue circles denote robot poses at consecutive time steps
(x1,x2,...), green circles denote landmark positions (l1 , l2 , . . .), the red circle denotes the
variable associated with the intrinsic camera calibration parameters (K). Factors are shows are
black dots: the label u marks factors corresponding to odometry constraints, m marks factors
corresponding to camera observations, c denotes loop closures, and p denotes prior factors.
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timized over, as opposed to filtering techniques which maintain only the most recent pose. MAP

estimation has been proven to be more accurate and e�cient than the original nonlinear filter-

ing approaches for SLAM. The surveys [9, 33] provide an overview on filtering approaches and

[138] provides an extensive comparison between filtering and smoothing approaches. It is worth

noting however, that some EKF-based SLAM systems have also demonstrated state-of-the-art per-

formance. Examples of modern EKF-based SLAM systems include the Multi-State Constraint

Kalman Filter of Mourikis and Roumeliotis [106] and the visual-inertial navigation systems of Kot-

tas et al. [75] and Hesch et al. [53]. The performance gap between filtering and smoothing

based SLAM approaches narrows as the linearization point of the EKF improves (as is the case

with visual-inertial navigation), with the use of sliding-window filters and when the sources of

inconsistency in the EKF are addressed [75, 54, 1].

As will be discussed in the next section, the MAP estimation described here is performed on

pre-processed sensor data. As such, it is often referred to as the SLAM back-end since it does not

concern itself with receiving, pre-processing or the data-association aspects of sensor handling.

2.3 SLAM front-end

When implementing a SLAM algorithm, it is not practical to write the sensor measurements

as an analytic function of the state, as required in the MAP estimation described in Section 2.2.

If the raw sensor data is an image, we would have to represent the intensity of each pixel as a

function of the SLAM state; this di�culty arises even with simpler sensors such as single-beam

lasers. The underlying problem is that we are not able to design a su�ciently general and tractable

representation of the environment, which would connect the the direct measurements to the state

parameters we wish to estimate. This is the main motivation behind the so-called SLAM front-

end, which is broadly tasked with three main functions: First, translating raw sensor data into

its relevant features. For example, in sparse vision-based SLAM the front-end extracts the pixel-

location of a few distinguishable points in the environment; these pixel locations are much more

amenable to modeling in the back-end. Second is data association; associating each measurement
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(pixel location) to a specific landmark (3D point). More abstractly, the data association module

is tasked with associating each sensor measurement z
k

with a subset of the state vector X
k

such

that z
k

= h
k

(X
k

) + ✏
k

. Finally, the front end may provide an initial guess for the state vector

X in the nonlinear back-end optimization. Figure 2.1 provides a pictorial representation of this

division of tasks in a SLAM system. The front-end block’s data association module contains two

main components: short-term data association and long-term. Short-term is tasked with associating

corresponding features in consecutive sensor measurements; for example, the short-term association

would associate two pixel measurements in consecutive frames to the same 3D point, this is what

is commonly referred to as pure visual odometry [41]. Long-term data association, also known as

loop closure is in charge of associating new measurements to older landmarks. It is common for

the back-end to provide feedback information to the front-end to support loop closure detection

and validation. The SLAM front-end is naturally sensor-dependent, since the notion of a feature

changes depending on the sensor we consider; it may be a pixel location for an image provided by

a camera, or a laser scan provided by a 3D laser scanner.



Chapter 3

Multi-Sensor SLAM with Online Self-Calibration and Change Detection

3.1 Problem Statement

Autonomous platforms equipped with visual and inertial sensors have become increasingly

ubiquitous. Generally these platforms must undergo sophisticated calibration routines to estimate

extrinsic and intrinsic parameters to high degrees of certainty before sensor data may be inter-

preted and fused. Even once fielded, these platforms may experience changes in these parameters.

Self-calibration addresses this by inferring intrinsic and/or extrinsic parameters pertaining to pro-

prioceptive and exteroceptive sensors without using a known calibration mechanism or a specific

calibration routine. The motivation behind self-calibration is to remove the explicit, tedious, and

sometimes nearly impossible calibration procedure from robotic applications such as localization

and mapping. By continuously estimating calibration parameters, no prior knowledge of calibration

procedures is required. Furthermore, with the addition of statistical change detection on calibration

parameters, long-term autonomy applications are greatly robustified.

Most current techniques for vision-aided inertial navigation use filtering approaches [61, 69,

106] or a smoothing formulation. In either case the estimation is made constant-time by rolling

past information into a prior distribution. Filtering methods present the significant drawback

of introducing inconsistencies due to linearization errors of past measurements which cannot be

corrected post hoc, particularly troublesome for non-linear camera models. Some recent work has

tackled these inconsistencies; see, e.g. [87, 55, 23, 88]. The state-of-the-art includes methods to

estimate poses and landmarks along with calibration parameters, but these approaches do not
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Figure 3.1: Example pose graph. Poses being estimated (blue) are conditioned on past poses
(red) and landmark positions (stars). Both the fixed sliding window and the adaptive window are
conditioned on previous poses. The candidate window is not conditioned since it does not make
the assumption that previous poses are correctly estimated.
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output the marginals for the calibration parameters, which are desirable for long-term autonomy

applications.

To address these considerations, we propose a method that avoids using any prior distribu-

tion; instead, a conditioning approach is used [67], coupled with selecting only highly informative

segments of the trajectory [68]. The method discards segments capturing degenerate motions which

provide little to no information for both camera intrinsic and camera-IMU extrinsic [61, 69] pa-

rameters. However, unlike the intrinsic parameters of a linear camera model [66], the convergence

basin for the six degree of freedom camera-IMU transform is found to be very narrow. An initial-

ization procedure similar to [32, 19] is employed to initialize the camera-IMU transform, which is

then used in a maximum-likelihood estimator. The use of a maximum-likelihood formulation is

especially useful as it provides the covariance matrix for the estimated parameters, which makes it

possible to establish a fitness score for each segment of the trajectory.

We also propose an extension to the framework presented in [68], allowing for multiple sensors

to be self-calibrated in an online setting, leveraging [61, 69] to disambiguate unobservable degrees

of freedom. Note that while the global position of the IMU and the rotation axis about gravity

are not observable, the following quantities are generally observable: 1) IMU roll and pitch with

respect to the horizontal plane; 2) IMU position, orientation and velocity with respect to the initial

IMU position; 3) feature position with respect to the initial IMU position; and 4) IMU-to-camera

transformation. Finally, we introduce per-sensor candidate trajectory segments, which we find to

be necessary to properly estimate each sensors’ relevant parameters online.

3.2 Formulation and Methodology

3.2.1 Initialization

As shown in [32, 19], having a good initial estimate can mean the di↵erence between fast

convergence and complete divergence. As such, we leverage the work from [32, 61, 69] which shows

that with a minimum of three frames and five tracked features, it is possible to obtain the camera-



23

to-IMU rotation. This initial rotation estimate can then be used to solve a linear system for an

initial guess at the translation estimate.

We consider the scenario where enough (five or more) features are observed across at least

three frames. The tracked features can be used to obtain the relative rotation between two camera

frames i, j : CR
ij

and integrating the IMU measurements to obtain the relative rotation: BR
ij

,

where C represents the camera frame and B the body frame, which is defined without loss of

generality as the IMU frame. The following equation relates the camera rotation to the body

rotation:

CR
ij

= C

B

RBR
ij

B

C

R)C R
ij

C

B

R = C

B

RBR
ij

, (3.1)

where C

B

R is the rotation of the body frame in the camera frame. In order to obtain C

B

R we employ

an error-state formulation to minimize a robustified over-constrained least squares problem.

In our experience we find that collecting more than 3 frames yielded more reliable estimates;

therefore, we use 20 frames for the initial rotation estimate. Once the estimate on C

B

R has converged,

translation can be obtained by employing the method described in [32] by solving a linear system

derived from transferring the 3D position of a landmark from the camera to the body frame.

3.2.2 Constant Time Self-Calibration

The constant time self-calibrating framework is briefly summarized here; for more details,

refer to [66]. Due to the limited observability and high connectivity of calibration parameters in

the SLAM graph, it is impractical to estimate these parameters in real-time applications using

conventional filtering or smoothing approaches [106, 86, 84, 88]. Instead every segment of m frames

in the trajectory is analyzed, and the n most informative segments are added to a priority queue,

where m and n are tuning parameters dependent on the the calibration parameters being estimated.

In order to assess the informativeness of a segment, a score is computed based on the marginals of

the calibration parameters estimated by a particular candidate segment.

If the candidate segment outperforms the worst-scoring window in the priority queue by a

predefined margin, it is swapped in. Every time the priority queue is updated, a batch optimization
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Figure 3.2: System architecture with two sensors. For new sensors to be added only the blue boxes
need to be provided. Asynchronous Adaptive Conditioning and the Priority Queue boxes each run
in their own thread (dotted regions). The main thread is only tasked with the maximum-likelihood
estimator and analyzing candidate segments.

over poses, landmarks and calibration parameters is run on all the segments in the queue to obtain

a new set of calibration parameters. As such, the priority queue represents a rolling estimate of the

n most informative segments in the trajectory. For estimating camera intrinsic parameters, such as

focal length and principal point, only visual measurements are used in the candidate segment. When

the camera-to-IMU transform is estimated, inertial residuals are added to the candidate window

estimation. The priority queue optimization’s null space therefore requires careful treatment as

it is carried out over several non-continuous segments of the trajectory with varying sensor data.

Figure 4.3 shows the optimization windows over a sample set of poses. Figure 3.2 shows the

proposed architecture for multiple sensors.

3.2.3 Change Detection

The priority queue posterior (with covariance ⌃0
PQ

) represents the uncertainty over the cali-

bration parameters considering the top k segments in the trajectory. As these segments are usually

not temporally consecutive, this distribution encodes the long term belief over the calibration pa-

rameters. Conversely, the candidate segment posterior (with covariance ⌃
s

) is calculated based on

the most recent measurements and represents an instantaneous belief over the calibration parame-

ters. If there is a sudden change in calibration parameters, for example if the camera is rotated or
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moved to a di↵erent location on the platform, then this will manifest as a di↵erence in the means

of the two posterior distributions. This task of comparing the means of two multivariate normal

distributions with di↵erent covariances is known as the Multivariate Behrens-Fisher problem.

When the posterior of the priority queue and the candidate segment is over a set of calibration

parameters that represent an SE(3) pose, special attention has to be given to comparing the means

of these distributions, particularly with regards to the rotation. A minimal local parameterization

is used for the rotation component of the 6 DOF SE(3) pose, so when comparing two posteriors

over rotations in the so(3) tangent space, one posterior must be transported to the tangent space

of the other by means of the Adjoint map, which for SO(3) is:

Ad
R

: R3 ! R3, Ad
R

= R, (3.2)

which allows moving the matrix exponential from the right-hand side to the left-hand side:

A · exp(bx ) = exp( \Ad
A

· x) · A, (3.3)

where if q 2 so(3) is in minimal 3-vector tangent representation, and M�
3⇥3 is the space of (3⇥ 3)

skew-symmetric matrices, then the map c(·) : q !M�
3⇥3.

By transporting the tangent space rotation posterior from the candidate segment to the

tangent space of the priority queue posterior, the null hypothesis that the means are equal can be

tested:

H0 = µ
PQ

= µs (3.4)

The F distribution for the null hypothesis is as in [68].
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3.2.4 Adaptive Asynchronous Conditioning

An adaptive asynchronous conditioning [67] solution is employed to avoid the use of a prior

distribution on the sliding window SLAM. When conditioning is used instead of marginalization,

current active parameters are conditioned on previous parameters, which are assumed to be correct.

However since new information may alter the estimate for previous poses, a sliding window pose

and landmark estimation is run on a separate thread. This sliding window can adaptively increase

its size to alter previous poses based on new measurements. The criteria to increase the window is

based on the “tension” of the conditioning residuals, explained as follows. Conditioning residuals

are the residual terms connecting an active and inactive pose. For example, a landmark that has

a reference frame in an inactive pose, but is seen in an active pose will have a conditioning visual

residual. The window is expanded when the the current estimate for a parameter falls outside of the

expected estimate based on the conditioning residual. Since multiple sensor modalities are used, the

Mahalanobis distance of each conditioning residual is thresholded in a �2 test to probabilistically

determine when a residual is outside of its expected interval (inducing “tension” in that residual).

3.3 Experimental Results

In order to evaluate the proposed method, experiments were run on two sensor platforms

known as “rigs.” Both rigs were equipped with a monocular camera and a commercial grade MEMS-

based IMU. Rig A is a smartphone-like mobile device with an integrated global shutter camera

with a wide field-of-view lens at 640 ⇥ 480 resolution and a commercial MEMS IMU sampled

at 120Hz. Rig B is a Ximea MQ022CG-CM camera with a wide field-of-view lens at 2040 ⇥

1080 resolution downsampled to 640 ⇥ 480 coupled with a LORD MicroStrain 3DM-GX3 MEMS

IMU, sampled at 200Hz. Cameras on both rigs capture images at 30 frames per second. In all

experiments, the AAC system is comprised of a fixed-window estimator with a 10 keyframe window

width and an asynchronous adaptive estimator (as per Section 3.2.4) with a minimum window

size of 20 keyframes. As broached in Section 3.2.1, when both the camera intrinsic parameters
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Figure 3.3: Results of a reconstructed indoor dataset spanning 1200 keyframes and 2972 frames.
The priority queue consisted of 5 segments with 30 poses in each segment. Camera-to-IMU trans-
lation and rotation estimates (solid blue line), with their 3 sigma bounds (dotted red line). The
pseudo ground truth (solid black line), obtained by o✏ine calibration procedures is shown to be
close to the online estimates, with average sub-degree rotation error and centimeter-level translation
error.
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and the camera-to-IMU transform are unknown, an initial batch optimization comprising all poses,

landmarks and calibration parameters (but no IMU measurements) runs until its entropy falls below

a predetermined threshold, at which point the camera intrinsic calibration is handed over to the

self-calibration framework discussed in Section 3.2.2. At this point the IMU initialization procedure

is engaged—first separately estimating rotation and translation by solving a linear system, then

handing over initial estimates on the camera-to-IMU transform to a batch estimation for refinement.

Once the batch camera-to-IMU estimation has fallen below a predetermined entropy, the estimation

is passed on to the rolling self-calibrating framework for constant-time estimation.

A second experiment was performed on Rig B, where only the camera-to-IMU parameters

were being estimated, but the position of the IMU was physically changed mid-dataset. This

experiment’s results are show in Figure 3.5.

3.4 Discussion

In Figure 3.4, a sharp drop is witnessed in uncertainty on all intrinsic parameters around

keyframe 820, where a particularly informative segment was swapped into the queue. The same

behavior is not witnessed around keyframe 820 for the camera-to-IMU transform estimate in Fig-

ure 3.3, which strongly suggests the need for di↵erent queues for di↵erent sensors. Supporting the

initialization sequence used for SE(3) transform approximation, Figure 3.5 demonstrates rapid con-

vergence to new translation parameters when the sensors are moved with respect to one another on

Rig B. The entropy of the priority queue increases temporarily until enough post-change segments

are added.

Some discrepancies between the o✏ine values and the estimates from the priority queue can

be observed (such as on the rotation values in Figure 3.3). This can be caused by a number of

factors: 1) the o✏ine calibration is only a pseudo-ground truth, and 2) lack of observability of

these parameters, especially yaw, since we only use naturally occurring features. Note that the

self-calibration sequence we suggest relies on non-degenerate motions that excite the appropriate

degrees of freedom so as to render them observable, which we have found to occur naturally in
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Figure 3.4: Self-calibration camera intrinsic parameters. Neither camera intrinsic or camera-to-IMU
extrinsic parameters were known. Even with total uncertainty on all calibration parameters at the
start, convergence to o✏ine values is observed for both camera intrinsic and extrinsic parameters.
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the y component of translation was changed, all other parameters remained the same. as shown
by the pseudo ground truth line (black line). The system automatically detected a change in mean
and re-estimated all parameters.
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experimental hand-held datasets.

A particular failure case is through slow changes of calibration parameters through a data

collection. Changes in parameter values are currently induced as a step function; however, if a

calibration parameter changes incrementally over time, it will not trigger a change event, as per

Section 3.2.3. Instead, new segments with low entropy will be swapped into the priority queue,

mixed with past segments that presented a di↵erent mean. Another failure case is related to the

determinant-based scoring system, which could result in a very low uncertainty for an unobservable

parameter. These drawbacks warrant further development of a more robust scoring system.

3.5 Summary

This chapter presents online, constant-time self-calibration and change detection with re-

calibration for joint estimation of camera-to-IMU transform and camera intrinsic parameters, using

only naturally occurring features. The system is evaluated with experimental data and shown to

converge to o✏ine calibration estimates with centimeter level accuracy for camera-to-IMU transla-

tion, and sub-degree accuracy for rotation. The statistical change detection framework presented in

[68] and summarized in Section 3.2.3 has been extended to the camera-to-IMU transform, including

a statistical comparison of distributions over candidate segments for a SE(3) pose.

The use of an adaptive conditioning window for re-estimation of past poses allows this frame-

work to operate in long-term applications where the accumulation of linearization errors in a prior

distribution would lead to significant drift. We presented a framework that supports adding addi-

tional sensors while maintaining online operation. To the authors’ best knowledge this is the first

application of multi-sensor self-calibration with automatic change detection and re-estimation of

parameters.



Chapter 4

Drift-Correcting Self-Calibration for Visual-Inertial SLAM

4.1 Problem Statement

Autonomous platforms destined for long-term applications equipped with visual and inertial

sensors have become increasingly ubiquitous. Generally these platforms must undergo sophisticated

calibration routines to estimate extrinsic and intrinsic parameters to high degrees of certainty before

sensor data may be interpreted and fused. Once fielded, calibration parameters are generally fixed

for the lifetime of the platform, or are modeled as a piecewise constant function [68]. For many

applications however, these platforms may experience gradual changes in calibration parameters

due to e.g. temperature dilation, non-rigid mounting or accidental bumps that can change both

sensor intrinsic and extrinsic parameters. Self-calibration addresses this by inferring intrinsic and

extrinsic parameters pertaining to proprioceptive and exteroceptive sensors without using a known

calibration target or a specific calibration routine. The motivation behind self-calibration is to

remove the explicit, tedious, and sometimes nearly impossible calibration procedure from robotic

applications and to enable robust long-term autonomous operation. Most approaches to online self-

calibration that do not rely on marginalization (such as filtering, which is subject to linearization

errors of past measurements) either assume calibration parameters remain constant or change in

a piecewise constant fashion. These approximations work well for single digit percent drift over

calibration parameters on relatively short (<200m) trajectories but induce considerable drift for

longer periods of operation. Figure 4.1 (bottom) shows a simulation of time-varying calibration

parameters and the traditional piecewise-constant approximations, demonstrating long periods of
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incorrectly-estimated parameters.

We present a novel approach that approximately models calibration parameters as a con-

tinuous time-varying quantity, which we refer to as drift-correcting self-calibration (DCSC). By

continuously estimating calibration parameters, no prior knowledge of calibration values or proce-

dures is required. Furthermore, with the addition of statistical change detection and regression on

drifting calibration parameters, long-term autonomy applications are greatly robustified against ac-

cidental changes where the calibration varies over time. This approach is based on probabilistically

determining segments where the motion provides enough excitation on the calibration parameters

to permit observability [61, 69]. This permits seamless handling of degenerate motions and un-

known calibration parameters, enabling the much sought after “power-on-and-go” operation. Our

approach includes probabilistic change detection as well as change regression; the former system

detects change events that require completely re-estimating calibration parameters, and the latter

identifies the start of the change region so that past poses can be re-estimated with the correct cal-

ibration parameters. This approach is validated on camera intrinsic and camera-to-IMU extrinsic

parameters, however is easily extensible to an arbitrary number of sensors [115]. To the authors’

knowledge, DCSC is the first proposed solution to long-term drift due to time varying calibration

parameters that does not rely on a prior distribution.

4.2 Related Work

The problem of self-calibration with varying camera intrinsics has received much attention

in the literature in part due to the benefits outlined above. Both [56] and [121] considered a

batch-solution self-calibration tailored to di↵erent intrinsic parameters. [39] presented a method

to calibrate the varying intrinsics of a pinhole camera in a batch setting, given the rotation of the

camera was known. A solution was also o↵ered to align the rotation sensor and camera data in

time.

Many current techniques for vision-aided inertial navigation use filtering approaches (e.g.

[61, 69, 106]) or a smoothing formulation. In either case the estimation is made constant-time
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Figure 4.1: Top: experimental robotic vehicle with a camera mounted on a pan-tilt unit for changing
camera-to-IMU extrinsics (IMU rigidly mounted inside body of platform). Bottom: camera focal
length ground truth (solid green line) over an 8 hour trajectory using our visual-inertial simulation
pipeline. The piecewise-constant approximation (dashed blue line) lags behind the ground truth
due to uncertainty in the measurements which make a small change in calibration parameters
indistinguishable from noise. The constant assumption is the dashed red line. The ground truth
shows the continuous time-varying nature of the parameter, which our method approximates.
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by rolling past information into a prior distribution. Filtering methods present the significant

drawback of introducing inconsistencies due to linearization errors of past measurements which

cannot be corrected post hoc, particularly troublesome for non-linear camera models. Some recent

work has tackled these inconsistencies; see, e.g. [87, 55, 23, 88]. The state-of-the-art includes

methods to estimate poses and landmarks along with calibration parameters, but these approaches

do not output the marginals for the calibration parameters, which are desirable for long-term

autonomy applications.

Building on these works, simultaneous solutions to the SLAM and self-calibration problem

have been proposed but generally all online solutions assume constant calibration parameters. [22]

proposed a method to recursively estimate camera and landmark 3D parameters as well as the

intrinsic parameters of a nonlinear camera model in an online framework. [89] also developed a

filtering solution to estimate both the camera pose and also intrinsics and extrinsics for a non-linear

camera model with rolling shutter and a commercial grade IMU in an online framework, but that

approach does not output covariances in an MLE sense.

4.3 Methodology

The proposed method aims to continuously estimate both intrinsic and extrinsic calibration

parameters [115], while also detecting change events due to sensor perturbation and regressing

calibration parameters in an arbitrarily large change region. As such, DCSC has three distinct

components: Constant Time Self-Calibration [66] is needed in order to continuously estimate the

instantaneous belief over intrinsic and extrinsic calibration parameters at any point in the trajec-

tory; Change Detection [68] signals a statistically significant di↵erence in the means of the instan-

taneous belief over calibration parameters and the long term belief, indicating a high probability

that the calibration parameters have been perturbed; and finally, Change Regression checks for

the start of the change region and regresses the calibration parameters in that region, allowing for

re-estimation of past poses with the correct calibration parameters, reducing the long-term drift.

Each of these components are described in the following sections, with emphasis given to Change
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Regression which is a novel contribution on which this chapter is focused. Alongside DCSC, a

keyframe-based [72] pose-and-landmark non-linear maximum likelihood estimation is performed

for real-time map updates. Thus, our implementation details will also describe a system for adap-

tive SLAM estimation [67], which is used to ensure the maximum likelihood poses and landmarks

are estimated.

4.3.1 Calibration Parameter Modeling

Central to the proposed self-calibration methodology explained in the following sections is

the modeling of how calibration parameters change over time. Most approaches to self-calibration

estimate calibration parameters such as camera intrinsics, sensor-to-sensor extrinsics and time o↵set

at the start of the trajectory and make the assumption that those parameters will remain fixed,

i.e.: x

c

(t) = x

c

(0) where x

c

represents the calibration parameter vector, a function of time. This

assumption is valid for short trajectories, however it breaks down when long term operation is

desired, due to the inherent drift in sensor calibrations. Another option is modeling calibration

parameters as a multivariable piecewise constant function, and probabilistically detecting change

events, as in [68] and [115]:

x

c

(t) = x

c

(t
i

) if t
i

 t  t
i+1, (4.1)

where t
i

, i = {1, . . . , n} defines n points of time in which the estimated calibration parameters

are detected to have changed. Note in this case that the time-dependent parameter vector is

approximated by a piecewise constant constant function, x
c

(t
i

). While this approach is well-suited

to large sudden changes, it does not handle cases where the calibration parameters are slowly

drifting over a long period of time due to the di�culty in distinguishing small changes from sensor

noise. Figure 4.1 depicts this scenario.

Given the fact that sensor calibration parameters are often slowly-varying functions of time

in long term autonomy applications, we propose the following model:
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Figure 4.2: Piecewise time-varying calibration parameters over simulated dataset.
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(4.2)

where e.g. t
i+1  t  t

i+2 represents a change region that can be arbitrarily long. The key

considerations for this model are 1) determining the start and end points for the change event, and

2) establishing basis functions for f
i

(t); Figure 4.2 shows an example of this approach with a linear

basis function. Section 4.3.5 goes into detail on both these aspects.

4.3.2 Constant Time Self-Calibration

4.3.3 Initialization

As shown in [32, 19], having a good initial estimate can mean the di↵erence between fast

convergence and complete divergence. A good initial guess is needed on both intrinsic and extrinsic

calibration parameters. We treat these cases separately as follows:
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Figure 4.3: Example pose graph. Poses being estimated (blue) are conditioned on past poses
(red) and landmark positions (stars). Both the fixed sliding window and the adaptive window are
conditioned on previous poses. The candidate window is not conditioned since it does not make
the assumption that previous poses are correctly estimated.

4.3.3.1 Camera Intrinsics Initialization

The camera intrinsic parameters are bootstrapped by running a batch optimization over the

entire state vector (rig location, landmark inverse depths and all the camera intrinsic calibration

parameters). Once the score of the batch estimation falls below a predetermined threshold, indi-

cating that the uncertainty over calibration parameters is su�ciently small, estimation is handed

over to the candidate segments and priority queue, as described in Section 4.3.2.

4.3.3.2 Camera-to-IMU Initialization

We leverage the work from [32, 61, 69] which shows that with a minimum of three frames

and five tracked features, it is possible to obtain the camera-to-IMU rotation. This initial rotation

estimate can then be used to solve a linear system for an initial guess at the translation estimate.

We consider the scenario where enough (five or more) features are observed across at least three

frames. The tracked features can be used to obtain the relative rotation between two camera frames

i, j : C

R

ij

and integrating the IMU measurements to obtain the relative rotation: B

R

ij

, where C

represents the camera frame and B the body frame, which is defined without loss of generality as
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the IMU frame. The following equation relates the camera rotation to the body rotation:

C

R

ij

= C

B

R

B

R

ij

B

C

R)C

R

ij

C

B

R = C

B

R

B

R

ij

, (4.3)

where C

B

R is the rotation of the body frame in the camera frame. In order to obtain C

B

R we employ

an error-state formulation to minimize a robustified over-constrained least squares problem.

In our experience we find that collecting more than 3 frames yielded more reliable estimates;

therefore, we use 20 frames for the initial rotation estimate. Once the estimate on C

B

R has converged,

translation can be obtained by employing the method described in [32] by solving a linear system

obtained from transferring the 3D position of a landmark from the camera to the body frame.

4.3.4 Change Detection

The priority queue posterior (with covariance ⌃0
PQ

) represents the uncertainty over the cali-

bration parameters considering the top k segments in the trajectory. As these segments are usually

not temporally consecutive, this distribution encodes the long term belief over the calibration pa-

rameters. Conversely, the candidate segment posterior (with covariance ⌃
s

) is calculated based on

the most recent measurements and represents an instantaneous belief over the calibration parame-

ters. If there is a sudden change in calibration parameters, for example if the camera is rotated or

moved to a di↵erent location on the platform, then this will manifest as a di↵erence in the means

of the two posterior distributions. The simple di↵erence in means cannot be used as a change

detecting mechanism however, since the uncertainty associated to the estimate needs to be taken

into account. This procedure, comparing the means of two multivariate normal distributions with

di↵erent covariances, is known as the Multivariate Behrens-Fisher problem. Using an F distribu-

tion as in [68], the null hypothesis that the means of the candidate segment and that of the priority

queue are equal can be tested:

H0 : µ
PQ

= µ
s

(4.4)
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By comparing the p-value corresponding to the F distribution to a significance parameter

↵ = 0.1 the null hypothesis can be rejected for p  ↵. There are several events, such as feature-less

environments, motion blur, loss of tracking and non-static features which may lead to an incorrectly

estimated posterior for the candidate segment. In order to avoid these scenarios a simple test is

used where ⌫cs consecutive candidate segments must have p  ↵ for a change event to be triggered,

where ⌫cs = 3.

A failure case for this approach when dealing with slow-changing parameters is when the

candidate window mean consistently di↵ers from the priority queue mean, but not enough to clearly

be distinguishable from noise, so the condition p  ↵ for ⌫cs consecutive segments will not be met

and a change event will not be triggered. This will cause the priority queue to slowly drift towards

the new calibration parameter as candidate segments are swapped in, however since a change was

not detected, candidate segments which where estimated prior to the change event will remain in

the queue, resulting in a sub-optimal global estimate.

This prompts a second criterion for detecting a change: if the mean of the priority queue,

equal to x

c

, over the past 3 seconds fits a linear curve with slope � > �th a tuned threshold, a

change event is triggered and the priority queue is re-estimated. This allows for past segments to

be removed from the queue and re-estimation on the new parameters. Note that �th sets the DCSC

algorithm’s sensitivity to slow changes.

4.3.5 Change Regression

The change detection mechanism presented in Section 4.3.4 will not detect the exact onset

of the change event. As shown in Figure 4.4, there can be a considerable time-delay between the

start of a change event and the change detection. The critical failure case is a drifting calibration

parameter, which is indistinguishable from noise until it di↵ers significantly from the previous

estimate. The option of simply making the change detection mechanism more sensitive to changes

by adjusting the threshold parameter ↵ is not viable since that will trigger change events on

inaccurately estimated candidate segments, causing the priority queue to be routinely cleared and
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re-estimated, which can result in worse priority queue estimates and has a direct impact on both

accuracy and real-time performance.

Instead of attempting to detect the exact onset of a change event as it occurs, the start point

for the change event is regressed from the change detection point, which will be after the start of

the change: when a change event is triggered as in Section 4.3.4 at keyframe n⇤ every previous

keyframe n < n⇤ is tested as the starting position for the change event. This is done by leveraging

the novel probabilistic change detection introduced in [68].

4.3.5.1 Start Point Estimation

The intuition behind detecting the start point is that, according to the model described in

Section 4.3.1, the change region is preceded by a period in which the calibration parameters are

relatively constant. Considering that the candidate window encodes the instantaneous belief over

calibration parameters, then for every keyframe, the p-value for the null hypothesis test between

the priority queue distribution and the latest candidate segment of which that frame was a part is

stored. This allows for detecting the constant calibration regions, as depicted in Figure 4.2, by a

segment in which the p-value is smaller than a threshold �th. We employ the following heuristic:

if ⌫sp consecutive segments have a p-value divergence smaller than �th, where ⌫sp = 50 is used. If

the start point is unable to be estimated the change regression is aborted and the system falls back

onto the default setting of re-estimating calibration parameters from the change detection point

onward.

4.3.5.2 Parameter Regression

Once the start point for the change event has been determined, the calibration values for all

poses during time (t
i+1, ti+2) in Eq. (4.2) need to be re-estimated (see Figure 4.2 for an example;

poses between times (0, t
b

) would require re-estimation). In our implementation this is accomplished

by fitting a linear curve to the calibration value at the regressed start point of the change event

and the converged priority queue values after the change event. The choice of basis function to fit
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is dependent on the sensor and how changes are expected. In our experiments camera focal length

and camera-to-IMU extrinsics are estimated, which are considered to drift in an approximately

linear form for handheld and vehicle-mounted applications. Special care is taken to guarantee that

all poses in the change region are re-estimated with the updated calibration parameters.

4.3.6 Adaptive SLAM

Finally, an adaptive asynchronous conditioning [67] solution is employed to avoid the use

of a prior distribution on the sliding window estimation. When conditioning is used instead of

marginalization, current active parameters are conditioned on previous parameters, which are as-

sumed to be correct. However since new information may alter the estimate for previous poses, a

sliding window pose and landmark estimation is run on a separate thread. This sliding window

can adaptively increase its size to alter previous poses based on new measurements. The criteria to

increase the window is based on the “tension” of the conditioning residuals, explained as follows.

Conditioning residuals are the residual terms connecting an active and inactive pose. For example,

a landmark that has a reference frame in an inactive pose, but is seen in an active pose will have

a conditioning visual residual. The window is expanded when the the current estimate for a pa-

rameter falls outside of the expected estimate based on the conditioning residual. Since multiple

sensor modalities are used, the Mahalanobis distance of each conditioning residual is thresholded in

a �2 test to probabilistically determine when a residual is outside of its expected interval (inducing

“tension” in that residual).

4.3.7 Visual Tracking

Visual tracking is inspired on the tracking component of [38], where the photometric error of

a patch is directly miminized to find the new location of the feature. Harris corners are used for

feature initialization, in image regions where there are a small number of active tracks. NCC scores

for corresponding feature patches are thresholded at 0.875 to reject large changes in appearance.

A keyframing approach [100] is used for improved performance and to deal with situations such as
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Figure 4.4: Comparison of a fast change of the camera field of view from 130� to 45� (top figure)
in camera focal length and a slow drift from 130� to 120� degrees (bottom figure). The drift over
a long period of time greatly increases the area between the ground truth and the priority queue
estimate, resulting in incorrect estimates for a large segment of the trajectory. Each are averaged
over 10 simulations with noise added.
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Figure 4.5: Simulated visual trajectory with feature tracks.

stationary camera.

4.4 Simulations

Special attention was given to creating a pipeline for generating simulated visual and inertial

data for evaluation of both the proposed algorithm and the e↵ects of not properly accounting for

changing calibration parameters over long trajectories. In order to be able to evaluate arbitrary

motions, a random 6-DOF pose graph is generated using a system inspired by video game dynamics.

This trajectory is then used to carve out a path in maze of cubes, ensuring that any simulated

motion will be visually trackable. Figure 4.5 shows one such path, and the corresponding features

and feature tracks. Simulated inertial accelerometer and gyroscope data corresponding to the

trajectory is also generated for consistent scale and evaluating camera-to-IMU estimation. The use

of simulated data allows for exact ground truth comparison, which is especially challenging when

evaluating the response to slowly drifting to calibration parameters in real world settings.
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4.5 Experiments and Results

4.5.1 Simulation

In order to evaluate the proposed method, the simulation pipeline described in Section 4.4

was used to generate arbitrary trajectories with corresponding synchronized visual-inertial data.

A series of Monte Carlo simulations of camera intrinsics and camera-to-IMU calibrations were

performed. We chose a set of 5 trajectories, with varying degrees of excitation on each degree of

freedom (so as to avoid known degenerate motions). For each trajectory we ran 30 simulations with

varying calibration parameters: camera focal length and camera-to-IMU rotation. The camera’s

field of view was initialized at 130� and changed to 120� over a time period tchange drawn from

a Gaussian distribution with a mean of 60s and standard deviation of 10s. The camera-to-IMU

rotation was initialized at C

B

⇢ = [0.53 0.53 0.53]T and changed to C

B

⇢ = [0.53 0.53 0.58]T . Camera

focal length and camera-to-IMU rotation initial and final values were perturbed by a zero-mean

Gaussian with standard deviation of 5�. Simulated camera data was captured at 15 frames per

second, with IMU updates at 100Hz. For each projected feature point from the simulated images

(640 ⇥ 480 resolution), independent zero-mean Gaussian noise with � = 0.5 was added to the

(u, v) pixel coordinates. Zero-mean Gaussian noise with � = 10�3 was also added to the IMU

accelerometer and gyroscope measurements and biases. Each simulation was run on three di↵erent

calibration schemes: the proposed DCSC algorithm, the piece-wise constant method described

in [68] and [115] and the constant method where the calibration is obtained in the start of the

trajectory and held constant throughout. The start time for the change event for each simulation is

drawn from a uniform distribution in the first half of the trajectory. The results of these simulations

are shown in Table 4.1 for the DCSC algorithm, where B

C

⇢ is the total camera-to-IMU rotation error,

% Drift is average translation drift and % Change Start is at which fraction of the change region

the start point was detected.

One such trajectory is shown in Figure 4.6 where the DCSC method obtains final translation

error of 28m which corresponds to 0.04% of the distance traveled and an average rotation error of



45

Table 4.1: DCSC Monte Carlo Simulation Results

f
x

Err (px) f
y

Err (px) c
x

Err c
y

Err B

C

⇢ Err % Drift % Change

Set µ 3� µ 3� µ 3� µ 3� µ 3� - -

1 1.01 16.62 4.34 25.21 0.95 10.42 1.14 11.02 0.09 0.05 0.012 0.195
2 2.32 20.24 3.58 27.85 1.32 14.98 2.04 17.90 0.12 0.04 0.069 0.153
3 1.76 14.22 2.91 18.82 0.52 11.52 0.87 9.88 0.16 0.09 0.093 0.107
4 3.42 23.13 4.02 30.14 1.80 12.92 1.91 11.71 0.07 0.03 0.095 0.206
5 1.89 13.87 1.94 15.02 0.89 9.78 0.99 10.53 0.15 0.11 0.094 0.124
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Figure 4.6: 700m simulated trajectory. The camera focal length was changed linearly from 120�

to 130� over a 60 second period. The proposed DCSC algorithm obtains the smallest translation
error at 0.04% of the total distance traveled. The bottom figure shows the focal length (f

x

) as the
change occurs, and how each self-calibration scheme responds. DCSC also correctly finds the start
and end point of the change event.
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0.406 rad

4.5.2 Experiments with the Mobile Platform

In order to determine the performance of the proposed algorithm on data from real hardware,

we used our experimental vehicle, depicted in Figure 4.1. The vehicle is equipped with a global

shutter Ximea MQ022CG-CM camera with a wide field-of-view lens at 2040 ⇥ 1080 resolution

downsampled to 640 ⇥ 480 mounted on a pan-tilt unit and an onboard Gladiator MEMS IMU

capturing at 200Hz. Images were captured at 30Hz. The platform was driven over a 300m trajectory

where the camera-to-IMU rotation was changed with the pan-tilt sensor over the course of 2 minutes.

Figure 4.7 shows the comparison of the piecewise priority queue with it’s 3� bounds and the DCSC

algorithm. The covariance on the priority queue spikes at change events when the queue is wiped

but quickly tightens around the mean as segments are added to the queue. A ground truth was not

available for the experiment so a comparison of start and end poses was used: The DCSC algorithm

had a translation error of 1.13m, equivalent to 0.3% of the trajectory. Using the piecewise constant

approximation the final translation error was 2.22m, or 0.7% of the trajectory.

4.6 Discussion

This chapter presents online, constant-time self-calibration and change detection with re-

calibration for joint estimation of camera-to-IMU transform and camera intrinsic parameters, deal-

ing explicitly with the case of drifting calibration parameters over long trajectories. The system

is evaluated with experimental and simulated data and shown to converge to o✏ine calibration

estimates even in the presence of slowly drifting calibration parameters. The statistical change de-

tection framework presented initially in [68] is used to detect change regions for drifting parameters

and estimate the calibration parameters in the drift region.

The use of a drift correcting self-calibrating framework coupled with adaptive conditioning

window for re-estimation of past poses allows this framework to operate in long-term applications

where the accumulation of linearization errors in a prior distribution and the accumulation of
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Figure 4.7: Self-calibration and drift correction on experimental platform. Priority queue estimates
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estimates (green solid line)
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incorrectly estimated calibration parameters over change periods would lead to significant drift.

We present an analysis on the e↵ects of inappropriate modeling of calibration parameters over

long trajectories, and show how the use of a multivariate probabilistic change detection framework

can greatly reduce the drift even in the presence of hard-to-detect incremental changes over time

in calibration parameters. This method presents some failure cases that warrant further study,

such as when the rate of drift is slow compared to the inherent noise in estimation errors, the

boundary detection scheme presented may be inaccurate. An adaptive way of choosing all the

tuning parameters is also necessary for this system to be easily usable in practice. In future work

we would like to investigate the use of di↵erent basis functions, such as higher order polynomials

or Gaussian Processes.



Chapter 5

Reinforcement Learning for Assisted Visual-Inertial Robotic Calibration

5.1 Problem Statement

Common to all robotic applications are some set of parameters—camera intrinsics, sensor

extrinsics, biases, scale factors, model parameters, etc.—that are essential for higher level robotic

tasks such as state estimation, planning and control. These parameters are called calibration

parameters and are usually obtained o✏ine with specific and sometimes sophisticated calibra-

tion routines, or online in a self-calibrating framework that relies on su�ciently exciting motions

and naturally occurring data. “Su�ciently exciting motions” is a recurring phrase in almost all

expositions of self-calibration in the literature [70]. While there has been work on determining

the observability of di↵erent motions [70], the full observability of the calibration parameters may

not be guaranteed for an arbitrary measurement sequence. This renders the calibration procedure

non-trivial for an inexperienced operator, especially in non-holonomic platforms such as ground ve-

hicles; it is simply not obvious how to physically move the platform so as to collect measurements

that allow the desired parameters to be inferred.

In the context of life-long autonomous operation, self-calibrating systems are a necessity

since they allow for compensation of errors induced over time, such as after a collision or due

to sensor changes. Robust self-calibration also allows for using the same algorithm on multiple

platforms and foregoing the o✏ine calibration routine entirely. The downside of self-calibration is

that it considerably increases the dimensionality of the state space while providing no additional

measurements. Thus the task of collecting measurements that render the full state-space observable
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Figure 5.1: (a) Motions suggested to an inexperienced operator for camera-to-IMU extrinsic cal-
ibration, drawn from the learned policy. (b) Convergence of translation and rotation over the
motions suggested in (a). Note how the first suggested movements provide little to no information
on translation, but allow rotation to converge. This follows our practical knowledge that estimating
rotation first improves convergence on translation.
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is non-trivial. In practice this means that self-calibrating systems require specific motions that are

executed by an expert operator who excites the platform until the desired states have converged

to acceptable values, or when no operator is available, hoping the platform will undergo su�cient

excitation so as to render the states observable. This problem can be addressed in two ways:

1 Optimization: optimize over trajectories in order to generate motions which render ob-

servable parameters.

2 Learning: determine which motions render the system observable through experiences.

The first option tackles the problem by optimizing over some measure of observability [51],

such as the condition number of the linearized system, in order to produce trajectories that maxi-

mize the observability of the state space. While appealing in its elegance, this requires knowledge

of the motion model of the platform, and can be computationally demanding. The second op-

tion, which is the approach taken in this chapter, forgoes the process model and uses a model-free

reinforcement learning technique to learn which sequence of motions render the desired states ob-

servable. The appeal of this approach is that it can be applied to any platform, holonomic or

non-holonomic, without the simplifying assumption of a process and environment model. A use

case is a non-expert operator needing to calibrate a rig (physical assembly with sensors mounted)

with a camera and an IMU (Inertial Measurement Unit). In currently-available calibration libraries

[8] the user is tasked with waving the rig around until the calibration parameters are obtained with

satisfactory uncertainty. Our approach allows for the system to learn which sequences of mo-

tions contain useful segments that render the desired state-space observable. Once the informative

sequence of motions is learned, these can be suggested to any user, removing the random “hope-

that-this-motion-is-su�ciently-exciting” approach in favor of a series of suggested motions that will

obtain the desired calibration parameters deterministically.

Unsurprisingly, self-calibration has received considerable attention in the robotics community,

and has proven to be a hard problem due to the slow time-varying nature (drift over time) and

inference over naturally occurring data. The first of these problems has been addressed in part by
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existing self-calibrating algorithms [115], the second gives rise to a series of problems that are less

commonly considered:

1 Observability during normal operation: normal operation may not render calibration

parameters observable if e.g. two cameras do not share an overlapping field of view. In

this case, planar motion renders the problem of finding the camera-to-camera extrinsic

parameter degenerate.

2 Parameters that appear observable, but in fact are not were noise not present:

related to the general observability of calibration parameters, it is possible that a solution

is numerically obtained even in degenerate cases due to noisy measurements, leading to a

physically uninterpretable solution. An example of this is a rank-deficient matrix which is

made numerically full-rank due to noise. While a solution is possible, it has no physical

meaning. This is rarely addressed in calibration systems.

3 Which motions will render unobservable dimensions in parameter space observ-

able: calibration experiments are usually hand-engineered to guarantee that all parameters

become observable, especially for platforms for which a process model is not available or

desirable, this makes calibration a very tedious and error-prone activity for the average

operator, since it is not obvious how the sensor has to be excited.

Existing algorithms handle (1) by hoping su�ciently exciting motions are provided. Some

work has been done to address (2) but it is largely unexplored in most calibration systems. To the

best of our knowledge no published self-calibration algorithm is able to cope with issue (3) without

requiring a process model, some work on this direction has been done by [123] but it is limited to

camera intrinsics and our approach does not require the user to follow the given instructions.

In this chapter we propose an algorithm to deal with all of the presented di�culties in cal-

ibration. Observability is handled by exploiting the link between the Fischer Information matrix

and nonlinear observability [60]. Treating numerically unobservable parameters is performed by
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detecting directions in the parameter space that are unobservable through singular value thresh-

olding of the scaled information matrix and avoiding updating the current state estimate in those

directions. Deciding which motions will generate measurements that allow for inference over the

desired parameters is done by incorporating reinforcement learning for empirically learning which

sequence of motions maximizes the inference of the desired parameters.

The calibration procedure is modeled as a Markov Decision Process (MDP) and Q-learning is

employed to learn the optimal action-selection policy. The action-space is discretized into motions

that can be easily performed by a human operator, and the state-space is defined as the combina-

tion of possible parameter states. For example, the desired final state is when every direction of

the parameter space can be inferred, intermediate states are composed of the subsets of the pa-

rameter space that may be independently observed—when calibrating camera-to-IMU extrinsics,

a set of measurements may render the rotation observable, but not the translation, then another

set of measurements may provide information on the translation (see Figure 5.1). Thus the only

requirement of our system is that the sensors be equipped on a platform that is capable of per-

forming motions that render the parameters observable, and that the human-operator is able to

loosely follow instructions on moving the platform. The main question we aim to answer is: can a

MDP with delayed reward regress a convergent policy for the calibration problem? The remainder

of this chapter will cover related work in Section 5.2, the mathematical background in Section

5.3, the theoretical foundation of our method is explained in Section 5.4, Section 5.5 validates our

approach with simulated and real-world experiments. Finally Section 5.6 provides a discussion on

our findings.

5.2 Related Work

The use of a known calibration pattern such as a checkerboard coupled with nonlinear re-

gression has become the most popular method for camera calibration in computer vision during

the last decade; it has been deployed both for intrinsic camera calibration [140] and extrinsic cal-

ibration between heterogeneous sensors [151]. While being relatively e�cient, this procedure still
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requires expert knowledge to reach a discerning level of accuracy. It can also be quite inconvenient

on a mobile platform requiring frequent recalibration (e.g experimental platforms which undergo

constant sensor changes). In an e↵ort to automate the process in the context of mobile robotics,

several authors have included the calibration problem in a state-space estimation framework, either

with filtering [98] or smoothing [79] techniques. Filtering techniques based on the Kalman filter are

appealing due to their inherently online nature. However, in case of nonlinear systems, smoothing

techniques based on iterative optimization can be superior in terms of accuracy [139].

Our approach does not rely on formal observability analyses to identify degenerate paths of

the calibration run as in [16], since these approaches still expect non-degenerate excitations.

A last class of methods relies on an energy function to be minimized. For instance, Levinson

and Thrun [85] have defined an energy function based on surfaces and Sheehan et al. [134] on an

information theoretic quantity measuring point cloud quality.

Despite considerable work in the field of calibration, very little is known regarding how to

e�ciently and actively deal with degenerate cases frequently occurring during a calibration routine.

The current state of the literature frequently assumes that optimization routines are executed on

well-behaved data. As demonstrated in the next sections, this can be a critically flawed assumption

in real-world scenarios.

5.3 Problem Formulation

In the following exposition, we borrow the formalism of the probabilistic discrete-time Simul-

taneous Localization and Mapping (SLAM) model [34]. For the sake of clarity, we consider here a

robot with a single camera observing a known number of landmarks at each timestep and a single

inertial measurement unit sampling linear acceleration and angular velocity. A front-end inspired

by [83] is tasked with establishing correspondences between sensor’s measurements and landmarks.
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5.4 Methodology

Let X = {x0:K} be a set of latent random variables (LRV) representing robot states up to

timestep K, L = {l1:N} a set of LRV representing N landmark positions, Z = {z11:N :K1:N } a set

of LRV representing K ⇥N landmark measurements, and ⇥ an LRV representing the calibration

parameters of the robot’s sensor. The goal of the calibration procedure is to compute the posterior

marginal distribution of ⇥ given all the measurements up to timestep K,

p(⇥|Z) =

Z

X ,L
p(⇥, X , L|Z). (5.1)

The full joint posterior on the right-hand side may be factorized into:

p(⇥, X , L|Z) / p(⇥,x0, L)
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By making the common assumption that Eq. (5.2) is normally distributed with mean µ⇥XL and co-

variance ⌃⇥XL we can derive a Maximum a Posteriori (MAP) solution for the mean and covariance,

µ̂⇥XL = arg max
⇥XL

p(⇥, X , L|Z) = arg min
⇥XL

�log p(⇥, X , L|Z); (5.3)

we further define our model by defining an observation model z
k

i

= g(x
k

, l
i

, ⇥,n
k

) where n
k

⇠

N (0,N
k

) is a normally distributed observation noise variable, with known covariance N
k

. Given

that the observation model is usually nonlinear, such as a camera projection with lens distortion, we

resort to a nonlinear least squares method that iteratively solve a linearized version of the problem.

We employ the Gauss-Newton algorithm for this purpose.

Directly from Eq. (7.1) and the assumption of normally distributed measurements, we can

turn the MAP problem into the minimization of a sum of squared error terms. This is covered

in detail in [34], so we will briefly cover only the aspects that are relevant to our approach. The

Gauss-Newton method only requires the Jacobian matrix of error terms, J. In block matrix form

the update is

(JTG�1J)�µ̂⇥XL = �JTG�1r(µ̂⇥XL), (5.4)
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where G is the error covariance matrix built from diagonal blocks of N
k

and r(µ̂⇥XL) is the

error evaluated at the current state estimate. At convergence the quantity JTG�1J is the Fischer

Information Matrix (FIM) and also the inverse of the estimate covariance matrix, ⌃̂⇥XL. This

is a key aspect of this work, since as will be described below, the numerical rank of the FIM

provides information about the numerical observability of the parameters for a given batch of data.

Specifically for computing the posterior distribution ⇥ we use the cost terms and Jacobians for

both camera intrinsics and camera-to-IMU extrinsics as defined in [115, 66].

5.4.1 Observability

There exists a solution to Eq. (7.4) i↵ the FIM is invertible, i.e. it is of full rank. The

link between the rank of the FIM and observability of the parameters being estimated is well

established in [60]. A singular FIM corresponds to some unobservable directions in the parameter

space given the current set of observations. Classical observability analysis, for example the method

of Hermann and Krener [52], proves structural observability—that there exists some dataset for

which the parameters are observable—but it does not guarantee that the parameters are observable

for any dataset.

Using singular-value decomposition (SVD) on the FIM we can identify a numerically rank-

deficient matrix by analyzing its singular values and consequently the numerical observability of

the system [50] [45] [90]. The numerical rank r of a matrix is defined as the index of the smallest

singular value �
r

which is larger than a pre-defined tolerance ✏,

r = arg max
i

�
i

� ✏. (5.5)

It is important to note that the numerical rank corresponds to the algebraic rank of the unperturbed

matrix within a neighborhood defined by the parameter ✏ proportional to the magnitude of the

perturbation matrix, which in this case can be interpreted as the noise a↵ecting the measurements.

When the noise a↵ecting the matrix entries has the same scale (by using column or row scaling)

then the numerical rank can be determined by the singular values.



57

Specifically we decompose the error covariance matrix G from Eq. (7.4) into its square root

form by using Cholesky decomposition, G�1 = LTL, we can re-write Eq (7.4) in standard form:

(LJ)T (LJ)�µ̂⇥XL = �(LJ)TLr(µ̂⇥XL), (5.6)

which are the normal equations for the linear system (LH)�µ̂⇥XL = �Lr(µ̂⇥XL). Thus we can

directly use a rank-revealing decomposition to estimate the numerical rank of the FIM, and con-

sequently the numerical observability of the system. Both SVD [46] and QR decomposition [46]

are rank-revealing; here we use SVD to demonstrate the method, though we use the more compu-

tationally e�cient QR decomposition in practice. Let (LJ) be a m ⇥ n matrix with the following

SVD decomposition:

LJ = USVT, (5.7)

where U is m⇥ n and orthogonal, S = diag(�1, ..., �n

) the singular values and V an n⇥ n matrix,

also orthogonal. From Eq. (7.6) and the orthogonality of U and V we can solve (7.4) as

�µ̂⇥XL = �VS�1ULr(µ̂⇥XL) (5.8)

In order to only update the observable directions of the parameter space, we apply the

truncated SVD (or truncated QR decomposition) which establishes the rank of the system by

analyzing its singular values [50], only using the first r rows of S, as defined in Eq. (5.5). This

allows us to only update the observable directions of the parameter space and maintain the other

directions at their initial value. Establishing the value of ✏ to use is specific to the amount of noise

expected in the measurements and is treated in Section 5.5. Using the method described in this

section we are able to identify which subset of the calibration parameters are observable, and when

the full parameters space is observable, which is a key element of the algorithm described in the

following section.

5.4.2 Learning Motions

The methodology described up to this point allows us to optimize for the calibration param-

eters while identifying unobservable directions in the parameter space. We will now describe using
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that result in order to learn which sequence of motions lead to the regression of the full parameter

space.
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Figure 5.2: Example of discretized state space and actions for camera intrinsic calibration (pinhole
camera model). Dark circles correspond to possible stochastic actions {a1, a2}. Blue arrows indicate
a reward for that transition. We have grouped {f
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y

} and {c
x

, c
y

} for simplicity. All possible
transitions are not shown for readability.

We consider a robot moving through space (or manipulated by an operator) as an agent

situated in some feature-rich environment comprised of both the position of the robot in the

environment and the latent calibration variables. The agent can perform certain actions in the

environment (e.g. move to a new location, make new measurements). These actions may result

in a reward (e.g. information on a latent variable). Actions can thus transform the environment

(e.g. new configuration of latent variables) and lead to a new state, which the agent can perform

another action on, and so forth. The rules for how to chose which action to take given the current

state is called a policy, which must consider the stochasticity of the environment (e.g. the choice

of action, such as moving the robot forward, may or may not obtain information about a latent

variable depending on the structure of the world). The set of states and actions along with the rules

for transitioning make up a Markov decision process, and one episode of this process corresponds
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to a sequence of state, action, rewards. The episode ends when the terminal state is reached.

The calibration problem can be interpreted as an MDP in which each state represents the

regression of each direction of the calibration parameter space (see Figure 5.2), and the actions are

a discretized set of movements that can be performed by the operator. Drawing a parallel to a

game, we wish to discover the optimal policy, and therefore sequence of actions, for reaching our

final state taking into account not only the immediate reward of an action (i.e. learning about a

specific parameter) but the future rewards. To illustrate how this applies to calibration, consider a

simplified example: If the robot knows nothing about its camera-to-IMU calibration, but it knows

that given a certain movement it will learn the camera-IMU translation along the x direction, and

given another movement, it will learn the rotation about the x-axis. Note that we assume here

that no feasible movement will learn both simultaneously. From an immediate reward standpoint

it may seem arbitrary, but by first regressing rotation we are able to reach the full final calibration

in fewer movements. We wish to learn the optimal policy for calibration. The state discretization

is based on the choice of ✏ as described in Section 5.4.1 which is the threshold that determines the

rank deficiency and therefore the observable directions of the parameter space. We have empirically

set ✏ = 0.015, however it does need to be adjusted if we were to use a system with a di↵erent noise

profile.

Q-Learning is well suited for the class of problem. Briefly, within reinforcement learning,

Q-Learning is a model-free technique which can be used to find an optimal action-selection policy

for a finite MDP. The basic principle is to maximize the discounted future reward. The discounted

aspect is due to the stochastic nature of the environment and this to down-weigh the uncertain

future rewards. This method essentially consists of establishing a discrete set of actions (Section

5.4.2.1) and states, a reward table for state transitions, and a Q-table which contains one row for

each state and a column for each possible action, which encodes the “quality” of a certain action

in a given state. Given our finite state space and discretized action space we are able to iteratively
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approximate the Q function using the Bellman equation:

Q(s, a) = r + �max
a

0Q(s0, a0), (5.9)

Which is the reward for the state transition plus the maximum possible future reward for the next

state. The idea behind Q-learning is that we can iteratively converge on the Q-table using the

Bellman equation, see Algorithm 1. In practice we also use a learning rate parameter ↵ = 0.1

which essentially limits the step size for each iteration. Once the Q-table has converged we can

simply follow the learned policy ⇡, given the current state: ⇡(s) = arg max
a

Q(s, a) and suggest

that action to the user.
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Algorithm 1: Observability-aware calibration Q-Learning
Data: sensor measurements, �, ↵, Reward matrix

Result: converged Q-table

Initialize Q-table [states, actions] 0;

while Q-table not converged do

select random initial state;

while goal state not reached do

select possible action, a, given current state;

display action a to be carried out to user;

compute �µ̂⇥XL  �VS�1ULr(µ̂⇥XL) according to (7.7);

compute observable directions according to 5.5;

if at least one calibration direction is observable then

go to corresponding state s0 and observe reward r;

else

stay in current state and set r  0;

end

update Q-table: Q[s, a] Q[s, a] + ↵ (r + �max
a

0Q[s0, a0]�Q[s, a]);

end

end

We apply this to both regressing camera intrinsics and extrinsics. Note that the important data

association, outlier rejection, residual and Jacobian calculation steps are delegated to a sparse

visual-inertial keyframe-based SLAM system which we will not go into detail here. In both intrinsic

and extrinsic cases the reward table is straightforward: a reward of 25 is given for non-final state

transitions and a reward of 100 is given for any transition to the final state (full calibration). Figure

5.2 shows a simple example where only two actions are possible, and the blue arrows indicate the

reward value for that state transition. These values were obtained empirically. We found that

using a constant ↵ = 0.1 works well, although experimenting with variable step sizes could lead to
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quicker convergence. We initialize the Q-table to zero and use � = 0.9. We experimented with a

variable discount factor [40] but found no practical benefit. The outer loop is executed until the

convergence criteria is met. We use a relative change metric to quit the learning process, with a

maximum number of iterations max iter = 1000.

5.4.2.1 Action Discretization

Given that this work is focused on providing intuitive and simple calibration instructions to

a inexperienced operator, we discretize the initially continuous action space (possible movements

performed by the rig) into a set of movements that can be easily conveyed and performed by the

operator. This consists of translation along one degree of freedom combined with rotation around

a single axis. Empirically we found this to be the optimal trade-o↵ for basis motions that are

both su�ciently informative and simple enough for the operator to execute. Degenerate motions

such as pure rotation or translation were not included. This results in a tractable set of only 18

actions. The motions are also limited to the range of motion of the average human arm, between

60 and 80cm. Given the goal of providing easy-to-understand motion suggestions we chose simpler

basis motions which may lead to more actions being performed (i.e. a more complex motion could

contain more information than the simple motions suggested here, but would be harder to execute).

Figure 5.3 shows a few learned motions from the discrete set of actions. The motion discretization

described requires that the platform execute those motions when training. The training procedure

consists of either simulations, as shown in section 5.5.2 or the the rig being moved around the

environment (either by an operator or autonomously) in the latter case we suggest the discretized

motions to be executed by the operator.

5.5 Experiments

We evaluate the proposed framework on several fronts. First we describe results from our

simulated experiments, using synthetic visual and inertial data to train our system and evaluate

the performance of calibration with the synthetically trained motions vs. trained with real data.
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Figure 5.3: Left image shows learned policy for regressing camera intrinsics for a radial-tangential
distortion model, with a narrow field of view lens (f = 460px) and central point in the middle of
the image. Changing to a fisheye lens and a much wider field of view (f = 220px) changes the
learned optimal action sequence (right figure). Each graph depicts the three suggested motions for
that camera.

We then demonstrate that the system can be successfully applied to both camera intrinsics and

camera-to-IMU extrinsics, and that our method performs equally or better than publicly available

calibration tools. Finally we demonstrate that this system can be used for life-long learning by

adapting to changes in hardware configuration that impact the calibration routine.

5.5.1 Experimental Setup

The proposed method was implemented in C++ and integrated into our existing sparse

keyframe-based visual-inertial SLAM pipeline which uses BRISK [?] feature descriptors and ceres-

solver [?] as the non-linear solver. In order to evaluate the proposed method, experiments were

run on a sensor platform known as “rig.” The rig was equipped with a monocular camera and

a commercial grade MEMS-based IMU. The camera is equipped with a wide field-of-view lens at

2040⇥ 1080 resolution downsampled to 640⇥ 480 coupled with a MEMS IMU, sampled at 200Hz.

The camera captures images at 30 frames per second.

In order to generate simulated measurements visual and inertial data corresponding to each of

the 18 basis motions was generated. A di↵erentiable quaternion spline through the SO(3) element of
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each pose was used to obtain smooth gyroscope measurements, and a cubic spline was run through

the euclidean positions for accelerometer measurements. Simulated visual data was generated by

creating a virtual world in OpenGL and simulating movement corresponding to the accelerometer

measurements. Visual data was captured at 15fps with IMU updates at 100Hz. For each projected

feature point from the simulated images (640 ⇥ 480 resolution), independent zero-mean Gaussian

noise with � = 0.5 was added to the (u, v) pixel coordinates. Zero-mean Gaussian noise with

� = 10�3 was also added to the IMU accelerometer and gyroscope measurements and biases.

5.5.2 Simulations

We generate noisy simulated measurements corresponding to the 18 basis functions and run

through the training procedure in Algorithm 1 until the relative change in values for the Q-table

is < 1e�3.

An experiment was run to determine if di↵erent calibration parameters would suggest di↵erent

motions. To that end we generated synthetic data to regress the Q-table for narrow (radial-

tangential distortion) and wide field of view fisheye (fov distortion) camera, which resulted in three

considerably distinct set motions (see Figure5.3). We then used the suggested motions to execute

the calibration procedure with simulated measurements for both cameras. Using the suggested

motions corresponding to the camera which was used for training yielded on average a 22% better

mean and 8% lower variance, suggesting a correlation between the learned motions and the camera

distortion model and field of view.

5.5.3 Real-world Data

Experiments with the rig described in Section 5.5 require an interface for suggesting motions

to the user. Due to the simplicity of the motions we resort to a textual representation, indicating

what direction the rig should be moved in and rotation about which axis. A graphical interface

with visual feedback is in development. The main objectives of this experiment are to verify that

an inexperienced user can use the suggested motions to easily and reliably calibrate a robotic
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Figure 5.4: Convergence of extrinsic parameters by an inexperienced operator following suggested
motions. The solid black line represents the ground truth as obtained by a batch optimization with
a target-based routine, the blue line represents the estimate as the rig is moved and the dotted red
line the 3� bounds. The jumps in values correspond to the moment a new segment is processed.
A total of four motions were suggested for this calibration run.

system and obtain lower variance compared to a publicly available standard calibration pipeline.

To that end we manually trained algorithm, then calibrated the same camera with a fisheye lens

by following the motions suggested by our system and also by waving a calibration target in front

of the camera and using vicalib [8], a publicly available calibration library, to optimize over the

camera intrinsics. This experiment was repeated 50 times for each calibration method in order to

obtain statistically significant results. The users selected to perform the calibration ranged from

lab members to random volunteers that did not have experience calibrating cameras. The results
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Figure 5.5: Convergence of camera intrinsic calibration parameters with real-data by following
motion suggestions. Dotted red line is the 3� bound, solid black line is the ground truth value.

can be seen in Figure 5.6 which clearly show that both methods converge to the same mean, but the

distribution is tighter around our method. Furthermore both extrinsic (Figure 5.4) and intrinsic

(Figure 5.5) calibration using motion suggestions converges to within 3� of the ground truth in as

few as 40 keyframes. Finally Figure 5.1 shows an example of a sequence of motions suggested for

extrinsics calibration and the corresponding convergence of translation and rotation. It is important

to note that a feature-rich environment assumption is made: there must be enough salient features

for visual tracking. This is the most common scenario so we are not sacrificing much by forgoing

an analysis on the e↵ects of the structure of the environment on calibration.

5.6 Discussion

In this chapter, we have presented a novel calibration tool that uses reinforcement learning

to provide live feedback on the state of calibration and produces accurate calibration parameters
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Figure 5.6: Distribution of focal lengths and central point for all trials. The mean parameter values
between our method and vicalib are similar (focal length: 332.1px for vicalib and 334.8px for our
method), the standard deviations are much higher (32.1 vs. 21.2) indicating more consistent and
repeatable results.
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even when used by inexperienced operators. We have leveraged truncated SVD/QR decomposition

to deal with unobservable directions and reinforcement learning for motion suggestions to perform

model-free calibration for both camera intrinsics and camera-to-IMU extrinsics. We have evaluated

the proposed system in a variety of scenarios and shown that it can be used as a replacement

for currently available calibration toolkits. Our principal question was to assess the suitability

of reinforcement learning when applied to the calibration problem. We have shown that through

the discretization of both the action and state we are able to leverage Q-learning to improve

the calibration experience. An argument could be made that a much larger state space would

be possible when using a deep network [103] instead of the Q-table, but we argue that for the

calibration problem as stated here, there is little practical advantage. A considerable challenge in

the proposed framework is designing the human interface so that the user will follow the instructed

motions. This is an area in which warrants further development, however in the projected fully

autonomous mode where motion suggestions are the input to a controller, the human interface

can be removed from the pipeline. An interesting result that lends itself to long term autonomy

is the ability to capture di↵erent sensor configurations. As shown in Figure 5.3 having radically

di↵erent calibration parameters results in a di↵erent set of optimal motions, reinforcing the point

that the “SLAM wobble” or any pre-determined calibration maneuver is not guaranteed to provide

acceptable parameter inference. If a robot is expected to calibrate itself autonomously it cannot

have a pre-determined routine or hope that random navigation will render its calibration parameters

observable. A system that is robust to sensor configuration changes by re-learning how to calibrate

itself is a step in the direction of both “power-on-and-go” robotics and long term autonomy.



Chapter 6

Online Probabilistic Change Detection in Feature-Based Maps

6.1 Problem Statement

In the context of mobile robots and autonomous driving, accurate high resolution spatial

awareness is necessary for successfully navigating an environment. This can be cast as a data

fusion problem in which noisy measurements from sensors undergoing uncertain dynamic motions

must be combined into a single underlying state estimate. This problem is typically addressed

through a procedure known as SLAM. Some applications, such as autonomous driving, require

high fidelity state estimates which need to be robust to sensor and environmental changes. Current

SLAM algorithms can be fragile in two aspects: algorithmic foundations and hardware robustness.

The former includes failure modes induced by limitations in current SLAM algorithms (i.e. di�culty

handling dynamic environments); the latter includes failures due to sensor degradation. We focus

on one of these algorithmic limitations: the reliance on static maps. In general, one cannot make

simplifying assumptions such as the existence of a static world on arbitrary real-world environments;

stop signs are removed, buildings change appearance, and road construction is pervasive. Explicitly

addressing this failure mode is critical for safe long-term operation.

It is impossible to talk about algorithmic failures without mentioning data association. Data

association matches each measurement to the portion of the state the measurement refers to (e.g.

associating a visual feature to a specific landmark in visual SLAM). Incorrect associations can

quickly cause the SLAM estimate to diverge [109]. This is especially critical in feature-based maps

which lack a notion of appearance (i.e visual or structural descriptor).
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Figure 6.1: Localizing against a stale map: the green trajectory shows the estimated poses from
range/bearing and odometry measurements, given a prior map which is no longer current (circles
represent incorrect map elements).

In the static-world case, perceptual aliasing makes data association a challenging problem;

this problem is worsened by the presence of unmodeled dynamics in the environment, which include

both short-term and seasonal changes. It is fairly common for current SLAM approaches to make

a static world assumption, which holds true for independent, short mapping runs in small-scale

environments. However, when mapping in large environments over long periods of time, change is

inevitable.

Change in the environment can be especially di�cult to detect when dealing with an increased

amount of clutter or when the change is subtle. For example, lane markings may be re-painted

a few centimeters from the original position due to construction, or tra�c signs may be slightly

re-located. These scenarios are especially susceptible to incorrect data associations resulting in

localization error. We present a robust solution to detecting changes in feature-based maps which

leverages information about both single features and neighboring features to produce a globally

consistent belief over individual and joint feature persistence. Figure 6.1 shows an example of
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Figure 6.2: Graphical example of the problem: in the left figure, the measurements are correctly
associated to map features; in the middle figure, some landmarks have moved, for example lane
markings that were re-painted (blue stars), and the map is outdated (white stars). Here, one mea-
surement (green cross) is correctly identified as a new measurement, while the other is incorrectly
associated to the outdated map feature due to landmark clutter, pose and measurement uncertain-
ties. In the right figure, the incorrect data association causes the least-squares solution to converge
to an incorrect estimate. Our proposed solution leverages the correlation between the three land-
marks which moved to estimate the joint feature persistence and improve data associations.

robust localization against a stale map: the localization estimate remains consistent even though

some elements of the map have moved.

We extend the work in [126], which introduced the notion of a Bayesian filter to model feature

persistence in a time-varying feature-based environmental model. We di↵er from [126] by proposing

a general formulation for persistence which takes into account correlation between features. We

focus on sparse feature based maps with no assumptions on sensor-specific feature descriptors (i.e

visual descriptors) which is broadly applicable to any sparse feature-based representation. We are

interested in estimating the existence of each feature in the map and bounding the localization

error due to incorrect data associations, we show that by capturing the underlying structure of

the environment we are able to make better informed decisions on data associations. In summary,

we propose a novel joint probabilistic formulation over feature persistence. We show that a joint

formulation over feature persistence can be made informative by imposing or learning the structure

of the environment. We further show that the joint and marginal persistence estimates are amenable

to constant-time operation. Finally, we demonstrate that by incorporating the joint belief over

feature persistence in the data-association step, we are able to perform robust localization even
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in the presence of hard-to-detect changes (e.g. small changes). We demonstrate the benefits of

estimating map persistence in a graph-SLAM [30, 64] implementation, potentially enabling long-

term autonomous applications which are robust to arbitrarily small map changes.

6.2 Prior Work

The challenge of dealing with dynamic and semi-static environments is a recurring problem in

the robotics community and has been addressed from multiple fronts. The principal challenges with

semi-static environments are the need to detect a change in the environment and update an existing

map so that it reflects the most current state of the world. One way to tackle this problem is to use

environmental representations that are suited for dynamic environments. One such representation

is the seminal work by Biber and Duckett [13, 12] who update a sparse map built from 2D laser scans

by randomly selecting a fixed fraction of the scans every revisit to update the prior map. Morris

et al. presents a multiple-map approach [105] where many map instances are stored and the one

best fitting the current set of sensor measurements is used, an approach suitable for environments

with a discrete set of possible configurations. Other approaches [20] model each “place” as a set

of experiences which has proven to be robust to drastic seasonal changes. The main di↵erence

between these methods and what we propose is that while one targets localization we are interested

in producing a geometrically and temporally consistent representation of the environment suitable

for continued localization.

Other approaches [146, 73, 74] are capable of recovering a geometrically-consistent map robust

to dynamic environments. However these solutions are tailored to specific sensor modalities, such

as the work in [74] which models places as a collection of camera images, connected by 6-DOF

transformations between camera poses. Another example is [146], which proposes the Dynamic

Pose Graph SLAM but limits its use to 2D laser scanners and lacks an underlying probabilistic

model for reasoning about change while abstracting the sensor modalities.

The Occupancy Grid is also a common choice for environmental representation, as proposed

by Meyer-Delius et al. [101]. This work uses a dynamic occupancy grid which adapts the classic
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occupancy grids [104] to dynamic environments by modeling each cell as a stationary two-state

Markov process. Other works such as [127] also propose a form of dynamic occupancy grids;

[143] incorporated the occupancy grid model into a particle filtering framework for a Bayesian

model-based mapping solution. These methods have in common the restriction of representing the

environment by its volumetric geometry, which limits their accuracy in cases of interest such as

when using visual appearance information for mapping.

Recently there has been some work on semi-static feature-abstracted environments such as

Krajnk et al. [77] with Fourier analysis for predicting future states but that is designed for peri-

odic activity. The work most similar to this chapter was presented by Rosen et al. [126] which

proposes an information-theoretic formulation for feature persistence taking into account sensor er-

rors. However, this approach ignores potential correlations between feature persistence by assuming

each feature persistence is marginally independent. This is not validated with any real data; fur-

thermore, the impact of the persistence model on improving the map and data associations is not

addressed. In contrast to these prior works, we present a general unified formulation for feature

persistence that captures potential correlation between features, while maintaining a tractable pos-

terior for constant-time estimation and showing the necessity of modeling feature persistence jointly

for robust localization.

6.3 Methodology

We cast feature persistence estimation within the context of probabilistic SLAM. The quan-

tities of interest that are directly useful for higher-level tasks are the robot’s pose in time and the

positions of the map features; these quantities will be represented by the state vector X = [xp,xl1:M ]

where xp are all the poses and xl are the M map features. Given a set of sensor measurements Z,

the Maximum-a-Posteriori (MAP) SLAM problem is to maximize the posterior p(X|Z). However

this problem as stated is intractable since it requires summing over all possible data associations,

an intractably large problem due to its combinatorial nature [28]. Letting J be the vector of all

data association hypothesis one might then wish to estimate the optimal data association vector
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arg max
J

p(J |Z); however the di�culty in evaluating the likelihood of a spurious measurement (i.e.

the likelihood of seeing a new feature) makes this approach undesirable. The usual solution is to

solve for data associations with a search over possible associations, using techniques such as Joint

Compatibility Branch and Bound (JCBB) [109] and then condition the state estimate on data as-

sociations: p(X|Z, J) where J is the vector of data associations that assign a feature in the state

vector to a measurement. If we drop the static-world assumption and allow features to have an as-

sociated “survival time,” an additional set of discrete random variables ⇥t 2 {0, 1} which represent

if a feature exists at a specified time t. An appealing approach would be to jointly estimate data

associations and feature persistence p(J, ⇥|Z), however we run into the same problem of evaluating

the likelihood of a spurious measurement. Therefore we take a similar approach to estimating the

state vector X and condition the feature persistence on the output of the data association step

p(⇥t|J). This is done by first estimating J using a data association technique such as JCBB, which

is then used to estimate ⇥.

6.3.1 Feature Persistence Model

We follow the survivability formulation introduced in [126], which we will briefly describe

here. Each feature i in the map has a latent “survival-time” T
i

2 [0,1) which represents the time

when feature i ceases to exist, as well as a persistence variable ⇥t

i

:

T
i

⇠ p
T

i

(·)

⇥t

i

|T
i

=

8
>>><

>>>:

1, t  T
i

0, t > T
i

, (6.1)

where ⇥t

i

is a boolean random variable representing whether feature i exists at time t, and p
T

i

(·)

encodes some prior distribution over the survival time T
i

. We are interested in estimating for

each feature i, its marginal persistence probability p(⇥t

i

= 1|J1:N ), where J1:N are all the feature

detections collected until time t
N

. Note that for a map with M features J1:N = {J1:N
1 , ..., J1:N

M

} with

J1:N
k

, {jti
k

}N
i=1, k 2 [1, M ], j 2 [0, 1]. The feature detections are the output of the data-association
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step, indicating if feature k was detected at time t
i

.

6.3.2 Estimating Feature Persistence

We are interested in estimating the full joint feature persistence posterior at a certain time

t, given all data association decisions from time t1 to t
N

:

p(⇥t = 1|J1:N ), (6.2)

where ⇥t is the joint persistence over all M map features ⇥t , {⇥t

1, ..., ⇥
t

M

} at time t 2 [t
N

,1).

This implies that we are interested in estimating the joint posterior probability over feature existence

in the present and future, given the sequence of detections for all features. It is important to note

that we only estimate the persistence probability for times equal to or greater than the last received

measurement t
N

. Noting that p(⇥t = 1|J1:N ) = p(T � t|J1:N ), with T , {T
i

}M
i=1 the vector of

survival times for all M map features and using Bayes’ Rule to compute the posterior probability

in (6.2)

p(⇥t = 1|J1:N ) =
p(J1:N |T � t)p(T � t)

p(J1:N )
. (6.3)

We will now derive a closed-form expression for evaluating each of the joint posterior terms,

starting with the joint detection likelihood P (J1:N |T � t). We make the assumption that a se-

quence of detections J1:N of feature i depend only on the feature i itself; that is, p(J1:N
i

|T � t) =

p(J1:N
i

|T
i

� t)

p(J1:N |T � t) =
MY

i=1

p(J1:N
i

|T
i

� t)

=
mY

i=1

nY

k=1

p(jtk
i

|T
i

� t), (6.4)

where we are also making the assumption that the sequence of detections {jt1
i

, jt2
i

, . . . , jtN
i

} for

feature i is conditionally independent from other detections, given the persistence ⇥t

i

. The intuition

behind this is that given existence of a feature, its sequence of detections should not depend on

other features. We are still left with evaluating the individual measurement likelihood P (jt
i

|T
i

)

which is the probability of detecting a feature given its survival time T
i

. If data-associations were
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always perfect this would simply be 1 if T
i

� t and 0 if T
i

< t. Since that is not the case, we follow

the formulation in [126] and define a probability of missed detections P
M

and probability of false

alarm P
F

. Using the model defined in (6.1)

p(jt
i

|T
i

) =

8
>>><

>>>:

P
(1�j

t

i

)
M

(1� P
M

)j
t

i , T
i

� t

P
j

t

i

F

(1� P
F

)(1�j

t

i

), T
i

< t

, (6.5)

where P
M

models the probability that the feature exists but was not detected, and P
F

the proba-

bility that the feature no longer exists but was detected, which may happen due to incorrect data

associations or spurious measurements. These quantities are dependent on a series of factors such

as the amount of clutter in the environment, the data-association process, and therefore the state

uncertainty. We present P
M

and P
F

as constants, but they could be modified per observation, e.g.,

to include occlusions.
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Figure 6.3: p(T
i

) (solid black line) is the independent prior on the survival time T
i

modeled as an
exponential decaying function. Given some correlated feature k with T

k

� 50 we model p(T |T
k

�
50) (dotted blue line) with weights ⇡

i

= 0.75 ⇡
k

= 0.25, which re-enforces our prior belief over T
i

if
T
i

� 50
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The core contribution of this work is in the modeling and evaluation of p(⇥t), the joint prior

distribution over feature persistence (at time t). In the trivial case each feature is independent and

p(⇥t) =
Q

M

i=1 p(⇥t

i

) however we cannot realistically make that independence assumption. In many

environments the existence of one feature is clearly correlated to the existence of other features and

exploiting that correlation is a crucial aspect estimating jointly consistent persistence. However,

tracking the full joint distribution P (⇥t) over all features is intractable as it grows 2M with M map

features. However, if we impose some structure to the environment (e.g. a feature drawn from a

curb in the road is not a↵ected if a sign-post is removed, however it is strongly correlated to other

features in the same curb) the complexity of computing the joint prior is bounded by the maximum

number of correlated features. Such structure is justified based on the intuition that the existence

of a feature is only strongly correlated to a subset of the map. The formulation proposed in [126]

makes the assumption that the persistence for each feature is marginally independent, which is

a specific instance which falls out of the general formulation in (6.3). We propose exploiting the

underlying structure of the environment to leverage the correlation between features while still

maintaining a tractable posterior. Imposing some structure on the feature map such that there

exists a set of L  M cliques {⌧
i

}L
i=1, with ⌧ t

i

⇢ ⇥t and features z 2 ⌧ , the joint posterior factors

into

p(⇥t) ⇡
LY

i=1

p(⌧ t

i

). (6.6)

Given the assumption that features associated in a clique ⌧
i

have strongly correlated persis-

tence, the joint prior p(⌧ t

i

) can be approximately decomposed into:

p(⌧ t

i

) ⇡
Y

z2⌧
p(✓t

z

|✓t
k

) =
Y

z2⌧
p(T

z

|T
k

� t) 8k 2 ⌧, (6.7)

which states that for any feature k in a clique ⌧
i

, the joint distribution p(⌧
i

) can be approximately

factored into a product of conditional distributions on feature z

k

2 ⌧
i

. The intuition behind this

approximation is that for a set of correlated features (e.g a set of features all drawn from the same

rigid body), conditioning on a single feature from that rigid body adds approximately the same

amount of information as conditioning on all the features. The conditional prior p(T
z

|T
k

� t) is
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defined as

p(T
z

|T
k

� t) ,

8
>>><

>>>:

⇡
z

p(T
z

< t
i

) t
i

< t

⇡
z

p(T
z

� t
i

) + ⇡
k

t
i

� t

, (6.8)

with
P

j

⇡
j

, 1 pairwise weights associated to each feature pair in ⌧
i

.

Having computed the likelihood and the prior from (6.3), we are left with computing the

marginal measurement probability or evidence P (J1:N ). We leverage the fact that the detection

likelihood is constant in the intervals between detections and the factorization of the full joint

posterior into L cliques. Combined with a way to evaluate the cumulative distribution function of

the survival time prior p(T  t) , F
T

(t), where F
T

(t) is the c.d.f. of the survival time prior as

described in [126] to derive a closed-form expression for the evidence; defining t0 , 0 and t
N+1 ,1

p(J1:N ) =
LY

i=1

p(J1:N
⌧

i

)

=
LY

i=1

 
Y

z2⌧
i

 
NX

u=0

p(J1:N
z

|t
u

)

Z
tu+1

tu

p(T
⌧

i

)

!!
,

(6.9)

where we first decomposed the full joint evidence into the product of the cliques ⌧
i

, then further

decomposed each clique into the product of its individual terms, which are tied together by the

joint prior P (T
⌧

i

). We make use of (6.7) to write out the integral over joint prior survival times

as a product of conditional distributions on one element of the clique p(T
⌧

i

) =
Q

z2⌧ p(T
z

|T
k

) where

each conditional prior can be evaluated according to (6.8).

6.3.2.1 Marginal Formulation

Suppose we wish to estimate the marginal persistence for a feature a which is correlated to

another feature b, given a sequence of N detections J1:N
a

, J1:N
b

from time t 2 [t1, tN ]. We may make
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the reduction:

p(⇥t

a
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a
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b
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� t) dT
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, (6.10)

where we use the fact that p(J1:N |T ) is constant in the intervals [t
i

, t
i+1] to define the integral in

(6.10) as

Z 1

0
p(J1:N

b

|T
b

)p(T
b

|T
a

� t) dT
b

=
NX

i=0

p(J1:N
b

|t
i

)

Z
t

i+1

t

i

p(T
b

|T
a

� t) dT
b

. (6.11)

Note that in the case where features a and b are independent, p(T
b

|T
a

� t) = p(T
b

) and (6.11)

simply becomes the marginal p(J1:N
b

) which cancels part of the evidence in (6.10); this results in

exactly the posterior defined in [126].

6.3.3 Feature Correlation Design

In this section we describe how to design the weights ⇡ in (6.8). Since there is no inherent

structure to the sparse feature-based environmental representation, we design a prior structure

that aims to capture the underlying structure of the environment. It is possible to learn feature

correlations from the sensor data used to create the feature map (i.e image frames or point clouds)

using a object detector to semantically segment the environment. However the original sensor data

used to create the map is not always readily available. We deal with that scenario, where the only

input to designing feature correlation is the sparse feature map itself.
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Figure 6.4: Terms which need to be computed for the marginal evidence with two features [T1, T2].
The segments represented by arrows are the the possibility that each feature’s survival time T is
within that range. Each t

i

represents the time in which a new detection was received. Computing
the joint evidence requires summing over the detection likelihood for all measurements given every
configuration of T1, T2. When a new measurement is received (dotted vertical line) at time t4 we
only need to recompute terms associated with the segments highlighted in red.

We model features which where observed at a similar point in time, and are physically

close to have correlated persistence. The intuition is that if a set of features is co-observed and

geometrically close, the likelihood that they belong to the same semantic object (e.g. lane markings,

sign post) is high. We define the set N of all features that were observed within �s, and within

that set we employ a Euclidean nearest neighbors metric to group features in cliques of up to n = 5

features, which are within a maximum distance d
max

to the center of the clique. When applied to

sparse feature-based maps in which clutter is reduced this method is a general way of capturing
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the underlying scene structure. The weights ⇡ between features are then computed as the inverse

Euclidean distance

⇡
ij

=
1����X̂i

� X̂
j

����
, (6.12)

where ⇡
ij

is the normalized weight such that
P

j

⇡
ij

= 1. Computing the set of cliques and their

corresponding weights can be performed o✏ine. Figure 6.3 demonstrates the e↵ect the weights ⇡

have on the prior distribution p(T
i

); The conditional distribution p(T
i

|T
j

> t) with given weights

⇡
ij

is a mixture model with reduced probability mass before t. In the case of independent features

⇡
ii

= 1 and Figure 6.3 becomes the solid line.

6.3.4 Recursive Estimation

Computing the full posterior in (6.3) every time a new observation is included is computa-

tionally expensive, in this section we show how to compute both the joint distribution P (⇥t|J1:N )

and the marginal P (⇥t

i

|J1:N ) as described in Section 6.3.2.1 in a recursive manner by re-using pre-

viously computed terms. This allows for a constant-time update when a new detection is received.

When a new observation jtN+1 is appended to the observation vector J1:N , t
N+1 > t

N

and given

the independence assumption in (6.4), the updated joint likelihood is

p(J1:N+1|T � t) =
MY

i=1

N+1Y

k=1

p(jtk
i

|T
i

� t). (6.13)

So the updated joint likelihood at time t
N+1 can be written in terms of the previous at time t

N

p(J1:N+1|T � t) = p(J1:N |T � t)
MY

i=1

p(jN+1
i

|T
i

� t). (6.14)

Updating the joint evidence is less straightforward due to having to integrate over all possible

survival times for all features. However using the decomposition of the joint prior distribution in

(6.7) where we have L cliques ⌧
i

, when a new measurement at t
N+1 is observed, we can compute

the updated joint evidence as

p(J1:N+1) =
LY

i=1

p(J1:N+1
⌧

i

). (6.15)
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If a clique ⌧
k

has ⌧
M

features the clique evidence p(J1:N
⌧

k

) can be computed as
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which implies that the updated partial evidence, which excludes the last term in the sum (where

the survival time is T
N+1 after incorporating the measurement at time t

N+1 is

p
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The full updated evidence can be obtained by combining the partial evidence from (6.17) with the

measurement probability given feature survival times at time T = t
N+1

p(J
1:N+1
⌧

k

) = p
L

(J1:N+1
⌧

k

) +
⌧

MY

i=1

p(jN+1
i

|T
i

� t
N+1) (6.18)

The updated joint distribution can thus be computed for each clique ⌧
i

using Eqs. (6.13), (6.15) and

computing the prior using (6.7). Figure 6.4 shows the terms that need to be updated every time a

new measurement is incorporated. In summary, we use the fact that the measurement likelihoods

are constant between observations (e.g. between t
i

and t
i+1) to discretize the integral over survival

times T , and that when a new measurement is incorporated at time t
N+1 the terms corresponding

to survival times before t
N

can simply be updated my multiplying by the probability of seeing

measurement jN+1 given that the survival time for that feature is before t
N+1 (segments in blue

in Figure 6.4). The marginal persistence probability can be updated in an analogous manner and

is omitted due to space constraints.

6.4 Robust Data Associations and Localization

In this section we briefly present a common data association technique and show how our

work estimating feature persistence can disambiguate the data association problem in the presence
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of semi-static scene elements. The maximum likelihood (ML) or individual compatibility solution to

data association is based on probabilistic methods and can be summarized as taking into account

the uncertainties between the robot’s location and the landmark position in the map. It can be

interpreted as a simple nearest neighbors data association, but with Euclidean distance replaced by

the Mahalanobis distance. The standard approach is to model each measurement z ⇠ N (h(X ), �)

as a Gaussian distribution with given covariance �. Taking the negative logarithm we obtain the

maximum likelihood cost function

D2 := ||h(X̂ )� z||2⇤, (6.19)

where D is the Mahalanobis distance and the covariance ⇤ is defined as

⇤ :=
@h

@X ⌃
@h

@X

T

+ �, (6.20)

with ⌃ the current state uncertainty. The hypothesis that a given measurement z was caused by

the jth landmark can be evaluated based on a chi-square acceptance decision D < �2
d,↵

where ↵ is

the desired confidence level and d the dimension of the measurement. Instead of considering every

map feature as a candidate for data association, we use the marginal persistence estimate for each

feature to weight the data associations. We are specifically interested in avoiding incorrect data

associations when there are multiple hypothesis with similar cost; in the scenario where we consider

feature persistence independently and the pose uncertainty is non-negligible, it is impossible to

distinguish between two hypothesis: associate the measurement to a map feature or consider it a new

feature, given that the static world assumption no longer holds. However given some environmental

structure, the joint persistence estimate can capture the di↵erence, as shown in Figure 6.5. The

only assumption is that at some point at least one feature in a clique of correlated features was

independently determined to have low persistence. For example, if a sequence of consecutive and

co-linear lane markings are represented by point features and have correlated joint prior distribution

over persistence, and those lane markings have shifted slightly the assumption is that at some point

the pose uncertainty over the vehicle location is small enough that we are able to determine that
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at least a single feature in that group no longer exists; then even if the pose uncertainty grows and

we are not able to individually determine that every feature in the group no longer exists, the joint

persistence model allows us to infer the non-existence of the other lane markings, an example of

this is shown in Figure 6.2.

6.5 Experiments and Results
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Figure 6.5: Comparison of independent filter and joint filter for a single point feature. With no
changes to the environment (t 2 [0, 540]) the filters are equivalent. At time 540 the feature is
moved by 1m in the x direction, due to increased pose uncertainty the measurements from the
moved feature are associated to the old map point, and the independent filter (dashed line) renews
its belief over the feature’s existence. The joint filter indicates a drop in belief due to the correlation
to neighboring features which have been identified as removed.

Our evaluation of the proposed joint persistence formulation has two principal objectives:

establish the improved persistence estimate by modeling correlation between features and how can

we use the persistence for each feature to perform robust data associations and successfully navigate

challenging dynamic environments. To that extent we use both simulated and real datasets with

ground truth information to assess persistence and localization error. Due to the lack of a dataset

with naturally occurring changes of a semi-static nature, we impose changes on the environment
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to varying degrees. In order to assess the usefulness of estimating feature persistence in a factor-

graph SLAM setting, we implement a 2D SLAM system in which odometry and range and bearing

measurements are added to a keyframe-based fixed-lag smoothing [135] back-end which uses ceres-

solver [4] to solve the non-linear least squares problem.

Initially the map is created with known data associations, since landmark initialization is

not the focus of this work. Once the map of 2D point features has been created, Mahalanobis-

distance data association as described in Section 6.4 is used to chose a pairing between each range

and bearing measurement and point feature in the map, using the covariance from the latest state

estimate X̂ which can be e�ciently recovered from the square-root information form using [62]

and the covariance from the estimated map feature. This setup allows for realistic modeling of the

feature detector (i.e data associations) in terms of the pose uncertainty, clutter in the environment

and the type of change the landmark underwent (removed vs. moved).

6.5.1 Simulation

We generate a 2D map with N features drawn uniformly from a predefined set of environments

(road, random landmarks, hallway) and simulate a robot traveling along a pre-determined path.

Wheel odometry measurements are generated at 50Hz, composed of forward velocity (m/s) and

steering angle (rad). The measurements are corrupted by zero-mean Gaussian noise with standard

deviation of 0.1m/s and 0.09 rad (⇠ 10�). Range and bearing measurements are generated for

every landmark in the robot’s field of view (90�, 10m) and corrupted by zero-mean Gaussian noise

of 0.05m and 0.08 rad respectively. Visible landmark measurements are removed with probability

P
M

sampled uniformly P
M

⇠ U([0.01, 0.3]) and spurious range and bearing measurements are

sampled uniformly from the robot’s field of view with probability P
F

⇠ U([0.01, 0.15]). For each ⌧
i

clique of features in the map we sample a survival time T ⇠ [0, 1000], since we make the assumption

that features in the same clique have correlated persistence. If we define a persistence threshold

P
d

= 0.5 in which features are removed from the map the performance of the removal classifier in

terms of the amount of change �
i

each feature undergoes can be assessed in terms of feature removal
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precision and recall. In a map with 50 features in which a single feature is changed by varying

amounts we average 200 observation sequences for that feature. Figure 6.6 shows the average

removal precision and recall for both the individual persistence filter as in [126] and this work. The

recall for the individual filter is considerably worse than the joint filter for small changes in the

feature, as expected since given the uncertainties in the measurements the data association step

will associate the measurement from the moved landmark to the stale map feature, thus renewing

its belief and flagging the feature for removal.
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Figure 6.6: Precision and recall for feature removal with removal threshold set to P
d

= 0.5 over
200 observations of a single feature which was moved by �

i

as described in Section 6.5.1 for a
total duration T = 1000. The feature is moved by �

i

2 {0.1, 0.3, 0.5, 1, 1.5, 2, 3} meters. The
persistence used for determining if a feature should be removed or not is computed using the
marginal persistence p(T

i

> t|J1:N ) where J1:N are all the detections for every feature in the map.

6.5.2 Real Data

In order to validate the proposed method on real data we use the UTIAS [82] dataset which

has ground truth poses sampled at 100Hz with accuracy in the order of 1e�3m. This dataset is

composed of a 2D sparse point-feature based map with ground-truth data associations provided.

Since there are no semi-static landmarks in the dataset, we impose change in the landmarks in a

similar manner as described in Section 6.5.1. We wish to assess the robustness of the proposed

method to various environmental configurations, in terms of the pose RMSE. Figure 6.7 shows

three datasets in which feature cliques were created based on co-linearity of features. The cliques
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Figure 6.7: Evaluation of robust localization in the presence of small changes to landmarks in
di↵erent configurations. Three scenarios from the UTIAS [82] dataset were used to assess the
robustness of the proposed method to small changes. Individual features (black) do not have
correlated persistence to any other features. Each scenario has two cliques (red and magenta)
which have correlated persistence. In each of the three environments the features in a clique were
moved in the x direction between [0, 2]m in increments of 0.01m. (a) - (c) represent the average
estimated trajectory position over all change configurations, (d) shows the RMSE for each scenario
vs. feature translation.

were then moved by increments of 0.01m and a batch estimate was computed for each increment.

A feature removal threshold of P
d

= 0.6 was used for data associations. Figure 6.7d shows the

evolution of the RMSE for each dataset vs. the clique translation. The RMSE increases with very

small ([0, 0.15]m) translations since all features in the clique are still detected and the incorrect

map features are still included in the optimization. The error reducing when at least one feature
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in the clique is determined to be below the removal threshold P
d

. It is interesting to note that the

detection, and subsequent update to persistence for each feature is entirely dependent on the data

association, which in turn is a function of the structure of the environment (i.e. clutter, number

of features) and the pose and feature uncertainty at the moment of data association, regardless of

the data association scheme used (e.g. JCBB, IC). The three datasets in Figure 6.7 show a drop in

RMSE at a similar change point (⇠ 0.4m) indicating a realistic minimum feature change for any

kind of persistence aided localization to be e↵ective.

6.6 Discussion

We present an general formulation for feature persistence which makes use of correlation

between feature persistence imposed by a joint prior distribution which may be learned or engi-

neered. The key insight of this work is proposing a joint distribution over feature persistence which

is computationally tractable in constant time. Our proposed formulation improves upon prior work

on modeling individual feature persistence by demonstrating the necessity of a joint model when

the environment is subject to change. Our approach allows for the use of the survival time prior

distributions discussed in [126] while incorporating information about environmental structure. We

show approximated constant-time online inference over feature persistence in a graph-slam envi-

ronment in both simulated and real scenarios, subject to landmark change. The use of persistence

for informed data associations allows navigating through challenging dynamic environments where

considering the joint feature persistence is essential.



Chapter 7

FastCal: Robust Online Self-Calibration for Robotic Systems

7.1 Problem Statement

Autonomous platforms destined for long-term applications equipped with multiple sensors

such as cameras and Inertial Measurement Unit (IMU) have become increasingly ubiquitous. Gen-

erally these platforms must undergo sophisticated calibration routines to estimate extrinsic (sensor-

to-sensor rigid body transform) parameters to high degrees of certainty before sensor data may be

interpreted and fused. Once fielded, calibration parameters are generally fixed for the lifetime of the

platform. However, in many applications these platforms experience gradual changes in calibration

parameters due to e.g. non-rigid mounting, accidental bumps and temperature dilation that can

change sensor extrinsic parameters. Self-calibration addresses this by inferring extrinsic parameters

pertaining to proprioceptive and exteroceptive sensors without using a known calibration target

or a specific calibration routine. The motivation behind self-calibration is to remove the explicit,

tedious, and sometimes nearly impossible calibration procedure from robotic applications and to en-

able robust long-term autonomous operation. Self-Calibration is an essential part of any long-term

robotic system, as such is under constant pressure to increase its accuracy, speed and robustness.

A higher speed allows its inclusion into larger systems with extensive subsequent processing (e.g.

localization, mapping, object/activity recognition, planning) and its deployment in computation-

ally constrained scenarios (e.g planetary exploration, embedded systems). A robust self-calibration

system should cope with unobservable directions in the parameter space (e.g. due to a nonholo-

nomic platform, measurement noise which makes unobservable parameters appear observable) and
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changes and drift in calibration parameters. In our previous work [115] we have partially addressed

constant-time self-calibration using a priority queue and informative segments. [116] addresses drift

and slow changes in calibration parameters by attempting to regress the change point and retroac-

tively correcting the state estimates and in [113] we propose an observability aware framework

capable of updating only the observable directions of the parameter space, even in the presence of

noisy measurements, which is then used in a reinforcement-learning framework to learn informative

motions to be suggested to a human operator. In this chapter we leverage some individual aspects

of previous works and propose significant novel contributions:

1 A novel formulation for regressing extrinsic calibration parameters which is suitable for

integration with any existing SLAM system, while being considerably faster than the system

used in [115] due to a loosely coupled formulation which optimizes over relative poses

instead of jointly over raw sensor measurements. We also propose a novel criteria for

adding informative segments to the estimation queue which minimizes the number of times

the entire segment queue needs to be optimized.

2 We handle intrinsically degenerate scenarios in noisy nonholonomic systems by only up-

dating the observable directions of the parameter space, demonstrating the necessity and

usefulness in a real-world robotic application.

3 Slow changes over arbitrary periods of time are handled by continuously renewing the

segment queue by use of time-decay on measurements, this approach is shown to be much

more e�cient and robust compared to [116], at the cost of immediate and local accuracy.

4 Integration of the proposed self-calibration system into a real-world robotic platform oper-

ating in challenging environments for extended periods of time1 .
1
3 weeks of operation, approximately 170km driven.
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Figure 7.1: Robotic platform equipped with two camera stereo pairs, one in front and one in the
back, used for experiments.
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7.1.1 Related Work

Most current techniques for vision-aided inertial navigation use filtering approaches [61, 69,

106] or a smoothing formulation. In either case the estimation is made constant-time by rolling

past information into a prior distribution. Filtering methods present the significant drawback

of introducing inconsistencies due to linearization errors of past measurements which cannot be

corrected post hoc, particularly troublesome for non-linear camera models. Some recent work has

tackled these inconsistencies; see, e.g. [87, 55, 23, 88]. The state-of-the-art includes methods to

estimate poses and landmarks along with calibration parameters, but these approaches do not

output the marginals for the calibration parameters, which are desirable for long-term autonomy

applications.

The use of a known calibration pattern such as a checkerboard coupled with nonlinear re-

gression has become the most popular method for camera calibration in computer vision during

the last decade; it has been deployed both for intrinsic camera calibration [140] and extrinsic cal-

ibration between heterogeneous sensors [151]. While being relatively e�cient, this procedure still

requires expert knowledge to reach a discerning level of accuracy. It can also be quite inconvenient

on a mobile platform requiring frequent recalibration (e.g experimental platforms which undergo

constant sensor changes). In an e↵ort to automate the process in the context of mobile robotics,

several authors have included the calibration problem in a state-space estimation framework, either

with filtering [98] or smoothing [79] techniques. Filtering techniques based on the Kalman filter are

appealing due to their inherently online nature. However, in case of nonlinear systems, smoothing

techniques based on iterative optimization can be superior in terms of accuracy [139].

Our approach does not rely on formal observability analyses to identify degenerate paths of

the calibration run as in [16], since these approaches still expect non-degenerate excitations.

A last class of methods relies on an energy function to be minimized. For instance, Levinson

and Thrun [85] have defined an energy function based on surfaces and Sheehan et al. [134] on an

information theoretic quantity measuring point cloud quality.
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7.2 Methodology

It is common for robotic platforms to have multiple sensors, such as cameras, wheel encoders,

IMU. This creates the need to obtain the relative rigid body transform between sensors so that a

fused position estimate may be obtained. This is what we refer to as calibration parameters in this

work, represented by ⇥. There are other calibration parameters which can be estimated, such as

camera intrinsics (e.g.focal length, center point, distortion parameters) but these have been found

to not vary considerably even in long term operation. Sensor extrinsics however, change frequently

(Section 7.3) and have considerable impact on the resulting position estimation. For these reasons

we focus on estimating sensor extrinsics. For camera intrinsic self-calibration refer to [115, 66]. The

proposed FastCal algorithm can be divided into three major components, summarized in algorithm

2: 1) Selecting informative segments so as to bound the computation time. 2) Updating only the

observable directions of the parameter space. 3) Considering drift in the calibration parameters over

time by time-decaying measurements. Figure 7.2 shows the calibration problem posed as a factor

graph, both as a tightly couple problem where the poses, landmarks and calibration parameters

are estimated jointly and as a loosely coupled problem where the individual sensor pose-graphs are

estimated independently, and the calibration parameters are obtained in a subsequent optimization.

The block diagram for a typical SLAM system is also shown, where there is usually an odometry

node which provides relative poses. We also focus on creating an algorithm which has as few tuning

parameters as possible; the parameters for FastCal are summarized in table 7.1, the parameters in

bold are the ones with highest impact on the performance of the algorithm.
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Figure 7.2: (a) Landmark measurements are used to jointly estimate camera poses and camera-to-
camera extrinsics (⇥). (b) Camera poses are estimated independently; The calibration parameter
⇥ is estimated in a second step. (c) System diagram of a typical SLAM system, the input is each
camera image, and the self-calibration block integrates easily into any existing odometry pipeline
by subscribing to the existing odometry block.
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Algorithm 2: FastCal Algorithm
Data: relative pose measurements for each of the N sensors; reference sensor N

ref

, initial

guess on sensor placement.

Result: sensor-to-sensor extrinsic SE(3): ⇥

Initialize ⇥ initial guess;

if num measurements(Dcandidate) < ✓
meas

then

Dcandidate  new measurements;

else

Estimate ⇥|Dcandidate according to (7.3);

if num segments(Dinfo) < ✓
pq

then

Dinfo  Dcandidate;

else

Check if Dcandidate should be swapped into Dinfo, according to 7.2.2 ;

if Dinfo  Dcandidate then

Estimate ⇥|Dinfo according to (7.8) with TSVD;

end

end

end

for i 0 to num segments(Dinfo) do

if Time Decay for Dcandidate

i

according to (7.9) < 0.001 then

remove Dcandidate

i

from Dinfo

end

end

7.2.1 Problem Formulation

We focus on estimating the sensor-to-sensor SE(3) rigid body transform between two cameras

with no co-visible features. The calibration problem can be framed as an optimization problem in

a Bayesian estimation framework, by including the calibration parameters in the standard SLAM
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Table 7.1: FastCal Parameters

Function Symbol Default Value
TSVD threshold ✓

✏

svd

0.1
Maximum entropy ✓⌃

max

15
Number of segments in priority queue ✓

pq

10
Number of measurements in each candidate ✓

meas

10
Keyframing translation [m] ✓

kf

trans

0.15
Keyframing rotation [rad] ✓

kf

rot

0.1745
Time decay ✓

�

0.04
Number of consecutive estimates at the same value ✓

same

3
Min total update ✓

min update

0.008

formulation:

µ̂⇥XL = arg max
⇥XL

p(⇥, X , L|Z) = arg min
⇥XL

�log p(⇥, X , L|Z); (7.1)

Where the estimated parameter µ contains the robot pose (X ), landmarks (L) and calibration

(⇥) parameters. Z in this context are the sensor measurements, such as landmark observations.

The advantages of solving the problem in this formulation is leveraging joint information from all

measurements, at the price of higher computational complexity since we must solve a larger system

comprised of N poses, M landmarks in addition to the calibration parameters.

Alternatively, we can leverage the fact that most robotics systems already estimate the re-

duced state:

µ̂XL = arg max
XL

p(X , L|Z) = arg min
XL

�log p(X , L|Z); (7.2)

for each camera, where X = [x
s1,xs2, ...,xsn

] the world position for N sensors at time t.

Finding the sensor-to-sensor extrinsics can then be posed as an alignment problem, using X as the

measurement instead of the landmark observations as in (7.1).

⇥̂ = arg max
⇥

p(⇥|X ) = arg min
⇥

�log p(⇥|X ); (7.3)

This formulation has a few advantages: the least squares solution to (7.3) is simply a 6 ⇥ 6
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system (for a single pair of sensors) which can be solved very e�ciently and allows for the use of

more informative decompositions as will be discussed in 7.2.3. This formulation also allows for easy

integration into an existing SLAM system which already provides the independent sensor position

estimates; All that needs to be done is subscribe to the camera positions being estimated and

e�ciently solve (7.3).

7.2.2 Informative Segment Selection

We want to benefit from the robustness of o✏ine methods, along with the possibility to

deploy our algorithm in an online and long-term setting. To reach this goal, we process small

batches of data sequentially and decide to keep them based on their utility for the calibration.

Each new batch is merged to the old ones to refine our knowledge about the calibration parameters

until we reach a satisfactory level of confidence. This notion was introduced in [66] and extended

to multiple sensors in [115]. We briefly explain the informative segment selection into a priority

queue, to then introduce our novel metric on adding new batches of measurements. We define

the current set of data samples in a priority queue as Dinfo = {x1, ...,xn

} which has led to the

posterior marginal density in equation (7.3), associated to the random variable ⇥̂|Dinfo. The set,

Dinfo, contains the current informative measurements for the calibration variable ⇥. Our sensors,

S, continuously stream new data which are used for estimating their relative positions, that we then

accumulate in another batch of size �N denoted by Dcandidate = {x
n+1, ...,xn+�N

}. Intuitively,

if the measurements in Dcandidate are similar to those in Dinfo, we are not really improving our

knowledge about ⇥ and we can safely discard Dcandidate to keep the computation tractable. There

are multiple ways of evaluating the usefulness of Dcandidate: Given the covariance of the estimated

calibration parameters ⌃⇥, which can be obtained quickly from the solution to (7.3) by inverting

the 6 ⇥ 6 information matrix, the entropy of the distribution is then given by h = 1
2 ln|2⇡e⌃⇥|,

where the bars denote the matrix determinant. In [115], the update criteria was if the entropy

h
candidate

associated to the measurements Dcandidate was smaller than the worst scoring batch in

Dinfo by a certain margin, the segment was swapped into the informative segment queue and a new
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estimate for ⇥ was obtained by optimizing over all the measurements in the queue. This approach

performs well, as shown in [66, 115], however it causes an excessive number of estimations of the

entire priority queue, every time a new candidate segment is swapped in.
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Figure 7.3: Left: Entropies of rolling candidate window over time. Candidate window at time t = 2
could be swapped into the priority queue in place of segment 2, however by waiting until time t = 5
we can instead swap in the candidate window at time t = 4, with much more information content.
Right: Entropy of three informative batches in the priority queue.

We propose a di↵erent metric on adding batches to the priority queue: a candidate measure-

ment batch is swapped into the queue i↵. its entropy beats the worst scoring segment in the priority

queue and the rolling candidate window has achieved a local entropy minimum. This ensures that

we dont needlessly swap in segments to the priority queue and ensures that we are adding the best

possible local window to the queue, not just the one that beat the worst scoring segment. Figure 7.3

shows on the left the entropy for a rolling window of N = 10 candidate measurements over time, on

the right the entropies for the three segments in the priority queue. In the previous formulation the

candidate window at time t = 2 has an entropy of 27 which beats segment 2 in the priority queue

(with an entropy of 30) and would be swapped in. However by holding o↵ on adding the candidate

window to the priority queue, at time t = 5 we notice that the candidate entropy is increasing and

as such we have reached a local minimum at t = 4, which is then swapped into the priority queue.

This approach reduces the priority queue entropy much faster and leads to quicker convergence on

⇥, as well as greatly reducing the number times the priority queue needs to be estimated.

The measurements which are added to each segment are the relative pose measurements
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generated independently for each sensor (each camera in our case) as shown in Figure 7.2. Most

information based-approaches add every measurement to the candidate window, and re-estimate

the calibration parameter ⇥|Dcandidate, however since most systems can generate relative pose

measurements at over 20Hz, the information gain from each new individual measurement is small

and results in several evaluations of Dcandidate. We aim to reduce the number of candidate window

evaluations. Instead of adding each new measurement we take a keyframing based approach to self-

calibration and accumulate relative pose measurements until the total relative transform reaches a

threshold. In our case we use ✓
kf

trans

= 0.15m and ✓
kf

rot

= 0.1745rad. This results in both much

faster convergence and reduces the number of times the candidate window and priority queue need

to be estimated.

7.2.3 Observability-Aware Estimation

We wish to reliably estimate the sensor extrinsics even in nonholonomic platforms which can

never excite all degrees of freedom, and thus will not render the full calibration parameter space

observable. We leverage our insights from [113] to use the Truncated SVD (TSVD) decomposition

of the Fischer Information Matrix (FIM) and determine the observable directions in the parameter

space, and only update those, even in the presence of noise. This is essential for platforms which,

for example, only move on a planar surface and never excite roll, pitch or translation along the

direction normal to the ground plane. In these cases the system (7.3) is ill conditioned and we

have to either manually regularize the unobservable directions in order to make the system well

conditioned or automatically detect the observable components and only update those directions.

This is the approach we take in this work; We argue that manually regularizing explicitly throws

away information which could be useful and implicitly biases the solution. Furthermore, by adopting

the simplified parameter space, we can perform the SVD decomposition on the FIM very quickly,

since it is of reduced size (6⇥ 6 for a pair of sensors). The least squares solution to (7.3) is

(JTG�1J)�⇥̂ = �JTG�1r(⇥̂), (7.4)
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Where J is the Jacobian matrix, G the measurement covariance matrix obtained from the first step

and r the residual. There exists a solution to Eq. (7.4) i↵ the FIM is invertible, i.e. it is of full

rank. The link between the rank of the FIM and observability of the parameters being estimated

is well established in [60]. A singular FIM corresponds to some unobservable directions in the

parameter space given the current set of observations. Classical observability analysis, for example

the method of Hermann and Krener [52], proves structural observability—that there exists some

dataset for which the parameters are observable—but it does not guarantee that the parameters

are observable for any dataset.

Using singular-value decomposition (SVD) on the FIM we can identify a numerically rank-

deficient matrix by analyzing its singular values and consequently the numerical observability of

the system [50]. The numerical rank r of a matrix is defined as the index of the smallest singular

value �
r

which is larger than a pre-defined tolerance ✓
✏

svd

, r = arg max
i

�
i

� ✓
✏

svd

. When the noise

a↵ecting the matrix entries has the same scale (by using column or row scaling) then the numerical

rank can be determined by the singular values. The scaling matrix S can be computed as:

S = diag

⇢
1

||J(:, 1)|| , ...,
1

||J(:, n)||

�
(7.5)

Where ||J(:, n)|| denotes the column norm of the Jacobian matrix, for column n. Specifically

we decompose the error covariance matrix G from Eq. (7.4) into its square root form by using

Cholesky decomposition, G�1 = LTL, we can re-write Eq (7.4) in standard form:(LJ)T (LJ)�⇥̂ =

�(LJ)TLr(⇥̂) which are the normal equations for the linear system (LH)�⇥̂ = �Lr(⇥̂). Thus we

can directly use a rank-revealing decomposition to estimate the numerical rank of the FIM, and

consequently the numerical observability of the system. Let (LJ) be a m ⇥ n matrix with the

following SVD decomposition:

LJ = USVT, (7.6)

where U is m ⇥ n and orthogonal, S = diag(&1, ..., &i) the singular values and V an n ⇥ n matrix,

also orthogonal. From Eq. (7.6) and the orthogonality of U and V we can solve (7.4) as

�⇥̂ = �VS�1ULr(⇥̂), (7.7)
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Specifically, according to [50], we can e�ciently obtain the update as:

�⇥̂ =
r

✏X

i=1

uT

i

r⇥
&
i

v
i

, (7.8)

where u and v are the colmn vectors of U and V. This allows us to only update the observable

directions of the parameter space and maintain the other directions at their initial value. Estab-

lishing the value of ✏ to use is specific to the amount of noise expected in the measurements and is

treated in Section 7.3.

7.2.4 Drift Correction

In order to correct for the inevitable drift over time on the calibration parameters due to

physical shocks, maintenance, etc. We adopt a simpler strategy than what was used in [116]; We

associate a exponential time-decay with each batch in the priority queue Dinfo. This is done by

using a exponential distribution

p(t; �) = �e��t, t 2 [0,1] (7.9)

Which has an expectation E = ��1, so we see that the parameter � in (7.9) encodes the expected

time that a set of measurements remains informative. There are several potential methods for

selecting this parameter in practice, among them class-conditional learning could use machine

learning techniques to learn class-conditional decay rates for certain environments (e.g. a warehouse

where things move around a lot vs. a building where things rarely change). In this chapter we

set the decay rate � to a value empirically shown to balance continuously refreshing segments and

number of priority queue estimations.

7.3 Experiments and Results

Our experimental setup consists of a robotic platform (Figure 7.1) designed to transport

material autonomously in warehouses, deployed in diverse real-world scenarios. This is an example

of a challenging long term autonomy deployment in adverse industrial scenarios, with constrained
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Figure 7.4: Same route performed over the span of multiple weeks. Top row: no self-calibration,
using initial o✏ine calibration only. Bottom row: FastCal enabled. Each column represents a day
in which that route was performed. Columns are approximately 1 week apart.

resources and subject to physical impacts. It proves to be an excellent test-bed for the proposed

FastCal algorithm which integrates into the SLAM module seamlessly by subscribing to sensor pose

updates and registering a calibration update callback.

The robotic platform is equipped with two pairs of global shutter stereo camera pairs, one

facing forward and one facing backward, with no overlapping field of view. We focus on estimating

the front-to-back camera extrinsics, given an initial rough guess obtained with a measuring tape.

We implement the proposed FastCal algorithm in C++, utilizing the parameters defined in Table

7.1. We wish to assess how often and by how much the extrinsics parameters actually change in
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Figure 7.5: Timing comparison of the proposed FastCal algorithm vs a reference implementation
of tightly coupled, priority queue based self-calibration, for the same size priority queue, candidate
segment, number of iterations and fair parameter settings.

practice. For that end we run FastCal on the robot for a period of 14 days. In this time the robot

was subject to cargo loads up to 150kg, was transported in a truck, had it’s front bumper removed

and re-attached due to maintenance reasons and finally su↵ered one accidental head-first collision

while on joystick mode. These circumstances provide valuable data points on the usefulness and

necessity of a robust self-calibration algorithm. Figure 7.4 shows the di↵erence between using self-

calibration vs. not using calibration over a relatively long period of time. The top row shows

the estimated poses for a robot traversing the same path each time, over a period of three weeks.

The bottom row shows a di↵erent robot which had FastCal enabled traversing the same path, also

over three weeks. The position error is hard to determine exactly due to a lack of ground truth.

We use the variance in poses between trajectories as an error metric, with the assumption that

the robot should perform approximately the same path each time. The robot which did not have

FastCal su↵ers considerable drift in its pose estimates (⇠ 4m�) whereas the FastCal robot triggered

2 changes in calibration parameters, and has a much lower variance (⇠ 1m�).

In order to compare the time complexity of FastCal vs. previous approaches [115] we com-

pare the overhead that the self-calibration algorithm adds to the SLAM pipeline in two scenarios:

using the proposed FastCal algorithm and a refernce implementation of the tightly coupled ap-

proach as described in [115]. The results are shown in figure 7.5; FastCal is about 4 times faster,
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Figure 7.6: Observability score for each direction of the calibration parameter (SE(3) transform
between cameras). Note that due to the planar motion, the y component is completely unobservable,
even in the presence of noise; the unobservable direction remains clamped at its original value as a
natural consequence of FastCal, with no need for explicit regularization.

while converging to the calibration parameters sooner and providing robustness to unobservable

directions.

The observability of the parameter space and robustness to noise and unobservable directions

is one of the principal components of FastCal, Figure 7.6 shows the evolution of observability over

translation (left) and rotation (right) over a trajectory of 600ft. The robotic platform only moves on

planar surfaces, as such there is no excitation on roll or pitch, as well as along the axis perpendicular

to the ground (y). Classic observability analysis [52] tells us that only the y component (vertical

component) between the cameras is unobservable; x, z, roll, pitch and yaw are observable. Figure

7.6 shows how rotation quickly becomes observable, but translation requires the robot to perform

a few turns, and the y component is permanently unobservable, as predicted. The observability

score here is computed using the formulation in 7.2.3, obtaining the nullspace of the information

matrix and obtaining the maximum nullspace component along each direction. In Figure 7.3 we

compare the entropy of the priority queue over time, compared to the entropy of the reference

implementation priority queue. FastCal’s entropy monotonically decreases, in part due to the

novel segment adding criteria which aims to find local minimum in the candidate window search.

There is no guaratee that the priority queue entropy will reduce by swapping a single candidate
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Figure 7.7: Priority Queue entropy comparison of the proposed FastCal algorithm vs a implemen-
tation of [115]. The novel criteria on adding segments to the queue, coupled with the keyframing on
measurements results in a much faster reduction in entropy and thus convergence on the calibration
parameters.

segment, as that would require a costly mutual information estimate every time a new candidate

segment is assessed. In the reference implementation of [115] the smaller measurement sizes and

the more frequent swaps in the priority queue result in much slower convergence.

7.4 Summary

In this chapter we presented a low time complexity extrinsics self-calibration algorithm that

uses an information theoretic measure to add only the most locally informative measurement

batches to the estimation queue, the work from [115] is improved upon by leveraging novel queue

update techniques which drastically reduce the time it takes to converge on the calibration param-

eters. We have leveraged truncated SVD/QR decomposition to deal with unobservable directions

and operate on nonholonomic platforms, similar to the algorithm presented in [113], however not

applied to reinforcement learning and user motion suggestions, but to calibrating nonholonomic

robotic platforms. Finally, we have incorporated time-decay as a mechanism to address drift in

calibration parameters. We draw from the lessons learned from [116] to implement a simpler,
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more e↵ective mechanism of dealing with drift. We have evaluated the proposed system in a va-

riety of long term scenarios spanning 15 days and over 120km driven and shown that it can be

used as a low-overhead add-on to existing perception systems, while achieving similar accuracy

to o↵-line calibration techniques. Our principal goal was to develop a robust, low time complex-

ity self-calibration algorithm for sensor extrinsics, and show its usefulness in practical long term

robotic applications. We have shown that through the decoupling of the estimation problem into

two steps, and selectively adding new segments to the priority queue we are able to achieve robust

and accurate calibration results with minimal compute overhead. An argument could be made

that calibration parameters do not vary enough to justify the addition of self-calibration, but we

argue that for true long-term autonomy applications, robust self-calibration is essential, as even in

relatively short experiments there was significant change in sensor extrinsics.



Chapter 8

Summary and Future Work

This chapter presents a short summary of the contributions emanating from this thesis, to-

gether with references to papers published describing this research. We then conclude by suggesting

promising directions for future work.

8.1 Contributions

Chapter 3 presents online, constant-time self-calibration and change detection with re-calibration

for joint estimation of camera-to-IMU transform and camera intrinsic parameters, using only nat-

urally occurring features. The system is evaluated with experimental data and shown to converge

to o✏ine calibration estimates with centimeter level accuracy for camera-to-IMU translation, and

sub-degree accuracy for rotation. The statistical change detection framework presented in [68]

and summarized in Section 3.2.3 has been extended to the camera-to-IMU transform, including a

statistical comparison of distributions over candidate segments for a SE(3) pose.

The use of an adaptive conditioning window for re-estimation of past poses allows this frame-

work to operate in long-term applications where the accumulation of linearization errors in a prior

distribution would lead to significant drift. We presented a framework that supports adding addi-

tional sensors while maintaining online operation. To the authors’ best knowledge this is the first

application of multi-sensor self-calibration with automatic change detection and re-estimation of

parameters.

In Chapter 4 the work from Chapter 3 is extended to deal explicitly with the case of drifting
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calibration parameters over long trajectories. The system is evaluated with experimental and

simulated data and shown to converge to o✏ine calibration estimates even in the presence of slowly

drifting calibration parameters. The statistical change detection framework presented initially in

[68] is used to detect change regions for drifting parameters and estimate the calibration parameters

in the drift region.

The use of a drift correcting self-calibrating framework coupled with adaptive conditioning

window for re-estimation of past poses allows this framework to operate in long-term applications

where the accumulation of linearization errors in a prior distribution and the accumulation of

incorrectly estimated calibration parameters over change periods would lead to significant drift.

We present an analysis on the e↵ects of inappropriate modeling of calibration parameters over long

trajectories, and show how the use of a multivariate probabilistic change detection framework can

greatly reduce the drift even in the presence of hard-to-detect incremental changes over time in

calibration parameters.

Chapter 5 further builds on the self-calibration pipeline by presenting a novel user-assisted

calibration tool that uses reinforcement learning to provide live feedback on the state of calibration

and produces accurate calibration parameters even when used by inexperienced operators. We have

leveraged truncated SVD/QR decomposition to deal with unobservable directions and reinforcement

learning for motion suggestions to perform model-free calibration for both camera intrinsics and

camera-to-IMU extrinsics. An evaluation of the proposed system in a variety of scenarios has shown

that it can be used as a replacement for currently available calibration toolkits. Our principal

question was to assess the suitability of reinforcement learning when applied to the calibration

problem. We have shown that through the discretization of both the action and state we are able

to leverage Q-learning to improve the calibration experience. An interesting result that lends itself

to long term autonomy is the ability to capture di↵erent sensor configurations. As shown in Figure

5.3 having radically di↵erent calibration parameters results in a di↵erent set of optimal motions,

reinforcing the point that the “SLAM wobble” or any pre-determined calibration maneuver is not

guaranteed to provide acceptable parameter inference. If a robot is expected to calibrate itself
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autonomously it cannot have a pre-determined routine or hope that random navigation will render

its calibration parameters observable. A system that is robust to sensor configuration changes by

re-learning how to calibrate itself is a step in the direction of both “power-on-and-go” robotics and

long term autonomy.

Chapter 6 changes the perspective from intrinsic robustness (such as calibration parameters)

to extrinsic robustness: changes in the environment the robot operates in. A general formulation

for feature persistence is presented which makes use of correlation between feature persistence

imposed by a joint prior distribution which may be learned or engineered. The key insight of this

work is proposing a joint distribution over feature persistence which is computationally tractable in

constant time. Our proposed formulation improves upon prior work on modeling individual feature

persistence by demonstrating the necessity of a joint model when the environment is subject to

change. Our approach allows for the use of the survival time prior distributions discussed in [126]

while incorporating information about environmental structure. We show approximated constant-

time online inference over feature persistence in a graph-slam environment in both simulated and

real scenarios, subject to landmark change. The use of persistence for informed data associations

allows navigating through challenging dynamic environments where considering the joint feature

persistence is essential.

Finally Chapter 7 Draws from and extends Chapters 3, 4 and 5 to work in union on a

robotic platform deployed in a long-term autonomy setting. We present a low time complexity

extrinsics self-calibration algorithm that uses an information theoretic measure to add only the

most locally informative measurement batches to the estimation queue, the work from Chapter

3 is improved upon by leveraging novel queue update techniques which drastically reduce the

time it takes to converge on the calibration parameters. We have leveraged truncated SVD/QR

decomposition to deal with unobservable directions and operate on nonholonomic platforms, similar

to the algorithm presented in 5, however not applied to reinforcement learning and user motion

suggestions, but to calibrating nonholonomic robotic platforms. Finally, we have incorporated

time-decay as a mechanism to address drift in calibration parameters. We draw from the lessons
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learned from Chapter 4 to implement a simpler, more e↵ective mechanism of dealing with drift.

We have evaluated the proposed system in a variety of long term scenarios spanning 15 days and

over 120km driven and shown that it can be used as a low-overhead add-on to existing perception

systems, while achieving similar accuracy to o↵-line calibration techniques. Our principal goal

was to develop a robust, low time complexity self-calibration algorithm for sensor extrinsics, and

show its usefulness in practical long term robotic applications. We have shown that through the

decoupling of the estimation problem into two steps, and selectively adding new segments to the

priority queue we are able to achieve robust and accurate calibration results with minimal compute

overhead. An argument could be made that calibration parameters do not vary enough to justify

the addition of self-calibration, but we argue that for true long-term autonomy applications, robust

self-calibration is essential, as even in relatively short experiments there was significant change in

sensor extrinsics.

8.2 Future Work

Here we discuss some of the open problems and research questions related to robustness in

life-long SLAM which are natural extensions of the contributions in this thesis:

Metric Relocalization: On the topic of loop-closures and relocalization, appearance-based

methods [21, 102] are able to close loops between day and night sequences, or even between seasons

[110], the resulting loop closure is topological in nature, which means that while they are able

to identify that the same location is being re-visited, they do not estimate a relative pose with

respect to the previously build map. For metric relocalization, feature-based approaches are still

the norm [44], but cannot be extended to the circumstances described above. Vision has become the

sensor of choice for most loop-closing applications, which has become a sensor signature matching

problem [25, 26, 44, 142], other sensors might be exploited. For instance, Brubaker et al. [17] uses

trajectory matching to circumvent the shortcomings of cameras. Other approaches map with one

sensor modality but localize in the same map with a di↵erent sensor modality. Wolcott et al. [149]

and Foster et al. [37] take steps in that direction. [37] studies vision-based localization in a lidar
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generated map. Majdik et al. [96] studies how to localize a drone in a cadastral 3D model textured

from Google Street View images, Behzadin et al. [11] shows how to localize in hand-drawn maps

using a laser scanner and finally Winterhalter et al. [148] does RGB-D localization given 2D floor

plans. A relocalization approach that provides metric loop closure on deformable, time-varying

maps is still an important research topic and is essential for life-long SLAM.

Deformable Maps: As described in section 2.2, most mainstream SLAM algorithms have

been designed with a rigid and static world assumption; however the real world is very much non-

rigid due to dynamics and the inherent deformability of most objects. A SLAM solution for long

term applications should be able to handle dynamics in the environment, such as non-rigidity. The

computer vision community has work dating back to the 80s attempting to recover shape from

non-rigid objects, but still with restrictive applicability. For example, Pentland et al. [120, 119]

requires prior knowledge of some mechanical properties of objects, Bregler et al. [15, 144] relies on

a restricted deformation of the object, and shows examples using the human face. More recent work

in non-rigid Structure from Motion (SfM) such as [6, 5, 47] are less restrictive in their assumptions,

but still only work in small scenarios. In the SLAM community, Newcombe et al. [111] addressed

the non-rigid case for small-scale reconstructions. Even though considerable progress has been

made towards non-rigid maps, considerable work needs to be done on addressing non-rigid maps

at a large scale, which is still largely unexplored.

Failsafe SLAM and recovery: Despite the considerable progress made on the SLAM

back-end, modern SLAM solvers are still vulnerable in the presence of outliers. This is mainly due

to the fact that all SLAM techniques are based on iterative optimization over a non-convex cost

surface. This causes the outlier rejection outcome to depend on the quality of the initial guess,

and the system is also inherently fragile: despite robust techniques, the inclusion of a single outlier

can degrade the quality of the estimate, which has the snowball e↵ect of degrading the capability

of discerning outliers later on. An ideal SLAM solution for long-term applications needs to be

fail-safe and failure-aware, i.e., the SLAM system needs to be aware of imminent failure and

provide recovery mechanisms that can re-establish normal operation. These capabilities are not
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present in any existing SLAM approach.

Hardware Failure: If the accuracy of the sensor degrades due to malfunction, aging, etc,

the quality of the sensor measurements (e.g., the noise, bias) will not match the noise model used in

the back-end (2.3) which leads to poor estimates. This leads to two important research questions:

“How can we detect degraded sensor operation?” and “How can we dynamically adjust the sensor

noise statistics accordingly?”.

Automatic parameter tuning: Most SLAM systems, in particular the data association

module, require extensive parameter tuning in order to work correctly for a given scenario. For

feature-based visual-slam, for example, the number of features in an image, the number of pyra-

mid levels, the normalized cross-correlation (NCC) threshold are just a few of the possible tuning

parameters that need to be adjusted for optimal performance in a given scenario. RANSAC pa-

rameters and the criteria to decide when to add new factors (keyframe) to the graph, or when to

trigger a loop closure detection are a few other examples in a myriad of parameters. In the ideal

”power-on-and-go” SLAM system, for arbitrary scenarios, methods for automatic tuning of the

involved parameters need to be developed, especially if the system is expected to operate for long

periods of time over varying conditions.
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Appendix A

Lie Groups

The optimization methods presented in the previous sections are applicable for scalar fields

which are defined on Euclidean vector spaces Rn. When performing optimization, we calculate an

incremental update � 2 Rn which is added to the current estimate x(k) 2 Rn

x(k+1) = x(k) + �

however when dealing with rotations, this vector addition breaks down, as we will see in Section

A.1. The problem lies in modeling rotations as an Euclidean vector space, which they are clearly

not a part of, since in general performing a rotation by ! and then a rotation by � is not equivalent

to performing a rotation by ! + �. Thus rotations must be modeled as Lie Groups, as will be

seen in the following sections.

A.1 Motivation

We will start with a small example of a robot moving in a plane, parameterized by a 2D

pose (x, y, ✓). When we give it a small forward velocity v
x

, we know that the location changes as

ẋ = v
x

The solution to this trivial di↵erential equation is, with x0 the initial x-position of the robot,

x
t

= x0 + v
x

t
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A similar story holds for translation in the y direction, and in fact for translations in general:

(x
t

, y
t

, ✓
t

) = (x0 + v
x

t, y0 + v
y

t, ✓0)

Similarly for rotation we have

(x
t

, y
t

, ✓
t

) = (x0, y0, ✓0 + !t)

where ! is angular velocity, measured in rad/s in counterclockwise direction.

However, if we combine translation and rotation, the story breaks down! We cannot write

(x
t

, y
t

, ✓
t

) = (x0 + v
x

t, y0 + v
y

t, ✓0 + !t)

The reason is that, if we move the robot a tiny bit according to the velocity vector (v
x

, v
y

, !), we

have (to first order)

(x
�

, y
�

, ✓
�

) = (x0 + v
x

�, y0 + v
y

�, ✓0 + !�)

but now the robot has rotated, and for the next incremental change, the velocity vector would have

to be rotated before it can be applied. In fact, the robot will move on a circular trajectory as

illustrated in Figure A.1.

The reason is that translation and rotation do not commute: if we rotate and then

move we will end up in a di↵erent place than if we moved first, then rotated.

To make progress, we have to be more precise about how the robot behaves. Specifically, let

us define composition of two poses T1 and T2 as

T1T2 = (x1, y1, ✓1)(x2, y2, ✓2) = (x1 + cos ✓1x2 � sin ✓y2, y1 + sin ✓1x2 + cos ✓1y2, ✓1 + ✓2)

This is a bit clumsy, so we resort to a trick: embed the 2D poses in the space of 3⇥ 3 matrices, so

we can define composition as matrix multiplication:

T1T2 =

2

64
R1 t1

0 1

3

75

2

64
R2 t2

0 1

3

75 =

2

64
R1R2 R1t2 + t1

0 1

3

75
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vw

Figure A.1: A sketch of a robot moving in a circular trajectory.
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where the matrices R are 2D rotation matrices defined as

R =

2

64
cos ✓ � sin ✓

sin ✓ cos ✓

3

75

Now a “tiny” motion of the robot can be written as

T (�) =

2

666664

cos !� � sin !� v
x

�

sin !� cos !� v
y

�

0 0 1

3

777775
⇡

2

666664

1 �!� v
x

�

!� 1 v
y

�

0 0 1

3

777775
= I + �

2

666664

0 �! v
x

! 0 v
y

0 0 0

3

777775

Let us define the 2D twist vector ⇠ = (v, !), and the matrix above as

⇠̂
�
=

2

666664

0 �! v
x

! 0 v
y

0 0 0

3

777775

If we wanted t to be large, we could split up t into smaller timesteps, say n of them, and compose

them as follows, as shown in Figure A.2:

T (t) ⇡
✓

I +
t

n
⇠̂

◆
. . . n times . . .

✓
I +

t

n
⇠̂

◆
=

✓
I +

t

n
⇠̂

◆
n

Of course, the perfect solution would be obtained if we take n to infinity:

T (t) = lim
n!1

✓
I +

t

n
⇠̂

◆
n

For real numbers, this series is familiar and is actually a way to compute the exponential function:

ex = lim
n!1

⇣
1 +

x

n

⌘
n

=
1X

k=0

xk

k!

The series can be similarly defined for square matrices, and the final result is that we can write the

motion of a robot along a circular trajectory, resulting from the 2D twist ⇠ = (v, !) as the matrix

exponential of ⇠̂:

T (t) = et⇠̂
�
= lim

n!1

✓
I +

t

n
⇠̂

◆
n

=
1X

k=0

tk

k!
⇠̂k

We call this mapping from 2D twists matrices ⇠̂ to 2D rigid transformations the exponential map.
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T (�)
T (�)

T (�)
T (�)

T (�)

e�̂ ⇡ T (�)...T (�)

Figure A.2: A robot moving in a circular trajectory, approximated as n infinitesimal steps.
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The above has all elements of Lie group theory. We call the space of 2D rigid transformations,

along with the composition operation, the special Euclidean group SE(2). It is called a Lie

group because it is simultaneously a topological group and a manifold, which implies that the

multiplication and the inversion operations are smooth. The space of 2D twists, together with a

special binary operation to be defined below, is called the Lie algebra se(2) associated with SE(2).

A.2 Introduction to Lie Groups

We now define the concepts illustrated above, introduce some notation, and see what we can

say in general.

A.2.1 A Manifold and a Group

A Lie group G is both a group and a manifold that possesses a smooth group operation.

Associated with it is a Lie Algebra g which, loosely speaking, can be identified with the tangent

space at the identity and completely defines how the groups behaves around the identity. There is

a mapping from g back to G, called the exponential map

exp : g! G

which is typically a many-to-one mapping. The corresponding inverse can be define locally around

the origin and hence is a “logarithm”

log : G! g

that maps elements in a neighborhood of id in G to an element in g.

An important family of Lie groups are the matrix Lie groups, whose elements are n ⇥ n

invertible matrices. The set of all such matrices, together with the matrix multiplication, is called

the general linear group GL(n) of dimension n, and any closed subgroup of it is a matrix Lie

group. Most if not all Lie groups we are interested in will be matrix Lie groups.
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A.2.2 Lie Algebra

The Lie Algebra g is called an algebra because it is endowed with a binary operation, the Lie

bracket [X,Y ], the properties of which are closely related to the group operation of G. For example,

for algebras associated with matrix Lie groups, the Lie bracket is given by [A, B]
�
= AB �BA.

The relationship of the Lie bracket to the group operation is as follows: for commutative Lie

groups vector addition X +Y in g mimics the group operation. For example, if we have Z = X +Y

in g, when mapped backed to G via the exponential map we obtain

eZ = eX+Y = eXeY

However, this does not hold for non-commutative Lie groups:

Z = log(eXeY ) 6= X + Y

Instead, Z can be calculated using the Baker-Campbell-Hausdor↵ (BCH) formula:

Z = X + Y + [X, Y ]/2 + [X � Y, [X, Y ]]/12� [Y, [X, [X, Y ]]]/24 + . . .

For commutative groups the bracket is zero and we recover Z = X + Y . For non-commutative

groups we can use the BCH formula to approximate it.

A.2.3 Exponential Coordinates

For n-dimensional matrix Lie groups, as a vector space the Lie algebra g is isomorphic to Rn,

and we can define the hat operator [107, page 41],

ˆ: x 2 Rn ! x̂ 2 g

which maps n-vectors x 2 Rn to elements of g. In the case of matrix Lie groups, the elements x̂ of

g are also n⇥ n matrices, and the map is given by

x̂ =
nX

i=1

x
i

Gi (A.1)

where the Gi are n ⇥ n matrices known as Lie group generators. The meaning of the map x ! x̂

will depend on the group G and will generally have an intuitive interpretation.
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A.2.4 Actions

An important concept is that of a group element acting on an element of a manifold M . For

example, 2D rotations act on 2D points, 3D rotations act on 3D points, etc. In particular, a left

action of G on M is defined as a smooth map � : G⇥M !M such that [107, Appendix A]:

(1) The identity element e has no e↵ect, i.e., �(e, p) = p

(2) Composing two actions can be combined into one action: �(g, �(h, p)) = �(gh, p)

The (usual) action of an n-dimensional matrix group G is matrix-vector multiplication on Rn,

q = Ap

with p, q 2 Rn and A 2 G ✓ GL(n).

A.2.5 The Adjoint Map and Adjoint Representation

Suppose a point p is specified as p0 in the frame T , i.e., p0 = Tp, where T transforms from

the global coordinates p to the local frame p0. To apply an action A we first need to undo T , then

apply A, and then transform the result back to T :

q0 = TAT�1p0

The matrix TAT�1 is said to be conjugate to A, and this is a central element of group theory.

In general, the adjoint map Ad
g

maps a group element a 2 G to its conjugate gag�1 by g.

This map captures conjugacy in the group G, but there is an equivalent notion in the Lie algebra

g,

Ad
g

ex̂ = g exp (x̂) g�1 = exp(Ad
g

x̂)

where Ad
g

: g ! g is a map parameterized by a group element g, and is called the adjoint

representation. The intuitive explanation is that a change exp (x̂) defined around the origin, but

applied at the group element g, can be written in one step by taking the adjoint Ad
g

x̂ of x̂.
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In the special case of matrix Lie groups the adjoint can be written as

Ad
T

x̂
�
= T x̂T�1

and hence we have

Tex̂T�1 = eT x̂T

�1
(A.2)

where both T 2 G and x̂ 2 g are n⇥ n matrices for an n-dimensional Lie group.

A.3 3D Rotations

A.3.1 Basics

The Lie group SO(3) is a subgroup of the general linear group GL(3) of 3 ⇥ 3 invertible

matrices. Its Lie algebra so(3) is the vector space of 3⇥3 skew-symmetric matrices !̂. Since SO(3)

is a three-dimensional manifold, so(3) is isomorphic to R3 and we define the map

ˆ: R3 ! so(3)

ˆ: ! ! !̂ = [!]⇥

which maps 3-vectors ! to skew-symmetric matrices [!]⇥ :

[!]⇥ =

2

666664

0 �!
z

!
y

!
z

0 �!
x

�!
y

!
x

0

3

777775
= !

x

Gx + !
y

Gy + !
z

Gz

Here the matrices Gi are the generators for SO(3),

Gx =

0

BBBBB@

0 0 0

0 0 �1

0 1 0

1

CCCCCA
Gy =

0

BBBBB@

0 0 1

0 0 0

�1 0 0

1

CCCCCA
Gz =

0

BBBBB@

0 �1 0

1 0 0

0 0 0

1

CCCCCA

corresponding to a rotation around X, Y , and Z, respectively. The Lie bracket [x, y] in so(3)

corresponds to the cross product x⇥ y in R3.
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Hence, for every 3-vector ! there is a corresponding rotation matrix

R = e[!]⇥

which defines a canonical parameterization of SO(3), with ! known as the canonical or exponential

coordinates. It is equivalent to the axis-angle representation for rotations, where the unit vector

!/✓ defines the rotation axis, and its magnitude the amount of rotation ✓.

The exponential map can be computed in closed form using Rodrigues’ formula [107, page

28]:

e!̂ = I +
sin ✓

✓
!̂ +

1� cos ✓

✓2
!̂2 (A.3)

where !̂2 = !!T � I, with !!T the outer product of !. Hence, a slightly more e�cient variant is

e!̂ = (cos ✓) I +
sin ✓

✓
!̂ +

1� cos✓

✓2
!!T (A.4)

A.3.2 Diagonalized Form

Because a 3D rotation R leaves the axis ! unchanged, R can be diagonalized as

R = C

0

BBBBB@

e�i✓ 0 0

0 ei✓ 0

0 0 1

1

CCCCCA
C�1

with C =

✓
c1 c2 !/✓

◆
, where c1 and c2 are the complex eigenvectors corresponding to the 2D

rotation around !. This also means that, by (A.2),

!̂ = C

0

BBBBB@

�i✓ 0 0

0 i✓ 0

0 0 0

1

CCCCCA
C�1

In this case, C has complex columns, but we also have

!̂ = B

0

BBBBB@

0 �✓ 0

✓ 0 0

0 0 0

1

CCCCCA
BT (A.5)
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with B =

✓
b1 b2 !/✓

◆
, where b1 and b2 form a basis for the 2D plane through the origin and

perpendicular to !. Clearly, from Section ??, we have

c1 = B

0

BBBBB@

1

i

0

1

CCCCCA
and c2 = B

0

BBBBB@

i

1

0

1

CCCCCA

and when we exponentiate (A.5) we expose the 2D rotation around the axis !/✓ with magnitude

✓:

R = B

0

BBBBB@

cos ✓ � sin ✓ 0

sin ✓ cos ✓ 0

0 0 1

1

CCCCCA
BT

The latter form for R can be used to prove Rodrigues’ formula. Expanding the above, we get

R = (cos ✓)
�
b1b

T

1 + b2b
T

2

�
+ (sin ✓)

�
b2b

T

1 � b1b
T

2

�
+ !!T /✓2

Because B is a rotation matrix, we have BBT = b1bT1 + b2bT2 + !!T /✓2 = I, and using (A.5) it is

easy to show that b2bT1 � b1bT2 = !̂/✓, hence

R = (cos ✓) (I � !!T /✓2) + (sin ✓) (!̂/✓) + !!T /✓2

which is equivalent to (A.4).

A.3.3 The Adjoint Map

For rotation matrices R we can prove the following identity:

R[!]⇥RT = [R!]⇥ (A.6)

Hence, given property (A.6), the adjoint map for so(3) simplifies to

Ad
R

[!]⇥ = R[!]⇥RT = [R!]⇥

and this can be expressed in exponential coordinates simply by rotating the axis ! to R!.

As an example, to apply an axis-angle rotation ! to a point p in the frame R, we could:
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(1) First transform p back to the world frame, apply !, and then rotate back:

q = Re[!]⇥RT

(2) Immediately apply the transformed axis-angle transformation Ad
R

[!]⇥ = [R!]⇥:

q = e[R!]⇥p

A.3.4 Actions

In the case of SO(3) the vector space is R3, and the group action corresponds to rotating a

point

q = Rp

We would now like to know what an incremental rotation parameterized by ! would do:

q(!) = Re[!]⇥p

hence the derivative is:

@q(!)

@!
= R

@

@!

⇣
e[!]⇥p

⌘
= R

@

@!
([!]⇥p) = R[�p]⇥

To show the last equality note that

[!]⇥p = ! ⇥ p = �p⇥ ! = [�p]⇥!
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