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A B S T R A C T   

Cheatgrass (Bromus tectorum L.) presence in the Great Basin is associated with an increase in fire frequency and 
size, likely due to increased spatial continuity of fine fuel biomass. Measurements of the extent and cover of 
cheatgrass are steadily improving, but the strength of the relationship between cover and aboveground biomass 
(AGB) is unclear. An allometric equation that can reliably convert cover to AGB of cheatgrass would allow for 
improved incorporation of regional estimates of cover into models of fire activity, carbon storage, and net pri-
mary productivity, all of which rely on biomass. We measured cover and AGB of cheatgrass at 60 locations in the 
north-central Great Basin and used these measurements to model the relationship. We found a strong, linear 
relationship between the percent cover and AGB, which was improved after square root transformation of both 
cover and AGB, and after incorporating the number of days after peak NDVI that the biomass and cover were 
measured. These results show that AGB of cheatgrass can be reliably estimated from cover. It is likely that 
allometric equations based on cover will be effective for other grass species, but care must be taken to account for 
phenology (e.g., peak NDVI) in the estimation.   

1. Introduction 

The aboveground biomass (AGB) of plants is an important ecological 
property and a key indicator of how terrestrial ecosystem function re-
sponds to global change. Invasions of non-native grasses have altered the 
abundance and spatial distribution of plant AGB in many areas across 
the United States (Fusco et al., 2019) and other parts of the world (Miller 
et al., 2010; Milton, 2004; Setterfield et al., 2010). This can lead to the 
modification of fire activity, often leading to loss of human life and 
property, substantial financial costs, and loss of ecosystem functions 
(Brooks et al., 2004; D’Antonio and Vitousek, 1992). One of the most 
well-documented examples of a fire-prone, non-native grass is cheat-
grass (Bromus tectorum L.). Cheatgrass has colonized most of the western 
United States, and is particularly dominant in the Great Basin. There, 

cheatgrass increases the connectivity of fine fuels such that fire spreads 
through colonized landscapes more readily than through native, 
perennial-dominated landscapes (Davies and Nafus, 2013). As a result, 
in areas dominated by cheatgrass, fires are twice as likely to occur and 
tend to become much larger than in native vegetation from which 
cheatgrass is absent (Balch et al., 2013; Bradley et al., 2018). The 
ongoing expansion of cheatgrass has disrupted ecosystem functioning 
(Turnbull et al., 2012; Wilcox et al., 2012) and led to a loss of plant 
biodiversity (Mahood and Balch 2019). 

Allometric equations are a useful tool for using proxy measures to 
estimate biomass or carbon stocks. Many of the measurements used in 
allometric equations require on-the-ground measurements that are labor 
intensive. Equations for woody plants typically require field measure-
ments of diameter at breast height or basal area, canopy diameter, and 
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canopy height (Bayen et al., 2020; Dimobe et al., 2018). Biomass of 
perennial grass species has been estimated using canopy diameter, tillers 
m− 2, basal area or diameter, height, and number of seedheads 
(Andariese and Covington, 1986; Assaeed, 1997; Rojo et al., 2017). 
Often these equations are site-specific, accounting for overstory tree 
type, fire history, livestock grazing, and site identity (Andariese and 
Covington, 1986; Nafus et al., 2009). This can limit the feasibility of 
scaling site-specific measurements to regional models of abundance. 

In herbaceous communities, allometric equations are sometimes 
created for aggregated functional groups. But it appears that single- 
species models are more accurate than multispecies models (Chieppa 
et al., 2020; Nafus et al., 2009; Pottier and Jabot, 2017). In addition, 
single-species models might be more generalizable from site to site 
(Pottier and Jabot, 2017), and perhaps from year to year. This could be 
because herbaceous plants are more sensitive to water availability than 
woody plants. In different years and at different sites, the relative 
abundances of herbaceous plants varies in response to water availabil-
ity. These ecological responses could explain why interannual vari-
ability in precipitation has been documented to cause interannual 
variability in the relationship between cover and biomass (Ónodi et al., 
2017). 

Cover is one proxy for biomass that can be estimated rapidly and 
does not require destructive sampling. Annual estimates of cheatgrass 
cover at regional extents have been derived from remotely sensed im-
ages (Boyte et al., 2019; Boyte and Wylie, 2016; Bradley et al., 2018; 
Bradley and Mustard, 2006; Jones et al., 2018; Peterson, 2005). The 
accuracy and spatial and temporal resolution of these estimates are 
increasing over time. For example, Boyte et al. (2019) modeled cheat-
grass cover across the Great Basin at 250 m resolution with a mean 
absolute error of 12.6%. These approaches suggest that regional esti-
mates of cheatgrass cover can be derived from remotely sensed data in 
near real time (Boyte et al., 2019; Boyte and Wylie, 2016; Bradley et al., 
2018; Bradley and Mustard, 2006; Peterson, 2005). However, AGB is a 
more directly informative ecological property than cover, a more ac-
curate proxy of carbon storage and net primary productivity than cover, 
and is necessary for modeling fire occurrence (Hantson et al., 2016; 
Pilliod et al., 2017) and emissions (Kennedy et al., 2020). Nevertheless, 
the relationship between cover and AGB of cheatgrass remains largely 
unexplored. If the estimates of cheatgrass cover from regional cover 
models could be reliably converted to AGB with an allometric equation, 
fire risk assessment could be improved through a more accurate esti-
mation of fine fuel load. In addition, the outputs of regional cover 
models could be more easily transferred to models of net primary 

productivity and carbon storage, and perhaps be integrated into global 
dynamic vegetation models. 

Another unresolved question about the relationship between AGB 
and cover is whether it is strictly linear. For many species of herbaceous 
plants, when cover is low, the relationship appears to be linear 
(Axmanová et al., 2012; Chieppa et al., 2020; Flombaum and Sala, 2007; 
Muukkonen et al., 2006; Pottier and Jabot, 2017). At higher levels of 
cover, there is more uncertainty in the functional form of the relation-
ship (Boyte et al., 2019). As the density of stems increases, overlapping 
canopies and increased vegetation height may cause AGB to increase 
exponentially, while the relationship between stem density and cover 
reaches saturation as cover approaches 100% (Axmanová et al., 2012; 
Marushia and Allen, 2011; Pottier and Jabot, 2017). However, as stem 
density increases, AGB could also reach saturation at some theoretical 
maximum as well, due to intraspecific competition or resource limita-
tion (Fig. 1). This phenomenon is more likely when plant height varies 
considerably, creating a complex canopy with many layers. A complex 
canopy is more likely to develop when the community includes many 
species, especially perennial plants of different ages and species. Annual 
plants may be more likely to grow to similar heights and have a simple 
canopy. In our case, cheatgrass often occurs in a near monoculture, with 
a single canopy layer. Therefore, the relationship between AGB and 
cover may remain linear even as cover approaches 100%. 

One possible confounding factor in the relationship between cover 
and AGB is the response of annual plants to interannual climatic varia-
tions. Annual plants in the Great Basin, especially cheatgrass, are highly 
responsive to precipitation, aridity, and temperature (Larson et al., 
2017; Mangla et al., 2011). Not only are the abundance and phenology 
of cheatgrass responsive to interannual variation, but the specific leaf 
area, or leaf area per unit biomass, can vary as a function of moisture 
availability (Butterfield et al., 2017; Fernández and Reynolds, 2000; 
Poulin et al., 2007; Sandel and Low, 2019; Tardella et al., 2017). If the 
relationship between cover and AGB is highly variable among years, 
then predicting AGB as a function of cover may require accounting for 
functional trait response to interannual climate variability. 

Here, we sampled cover and AGB of cheatgrass, and modeled their 
relationship, at 380 locations across the Great Basin from 2016 to 2019. 
Our primary research goal was to develop an allometric equation that 
could estimate biomass using cover as the only field-based measure-
ment. Such an equation could be applied to models of cover at regional 
extents to (Boyte et al., 2019; Jones et al., 2018) to estimate AGB. We 
hypothesized that at low cover values, the relationship between cover 
and biomass is linear, but could become non-linear at high-cover values. 

Fig. 1. The saturation effect, where aboveground biomass increases linearly with stem density, but cover reaches saturation as it approaches 100 percent (panel a), 
and the expected form of the cover to biomass relationship as cover increases (panel b). This relationship would lead to greater inherent sampling error at higher 
values of cover. 
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We also examined the effect of sample size and aggregation on estimates 
of AGB. At 60 locations, we aggregated samples from 0.1 m2 quadrats to 
represent cover at the level of 30–50 m transects. At 320 locations, we 
collected and processed samples at the level of the individual 1 m2 

quadrat to represent the full range of cover values observed at that scale. 

2. Methods 

2.1. Study area 

The study area encompassed 312,750 km2 across the states of 
Nevada, Utah, California, and Idaho in the Great Basin of the western 
United States. The region has hot, dry summers and cold, wet winters. 
Annual precipitation (±standard deviation) averages 266 ± 46 mm, 
falling mostly from November to May. Average mean annual tempera-
tures are 9.4 ± 0.5 ◦C, with seasonal extremes of 22 ± 0.5 ◦C in July and 
− 1±0.5 ◦C in December. The region consists of mountain ranges that 
run approximately north-south, and the sagebrush ecosystems that are 
the most likely to be invaded by or replaced by cheatgrass generally lie 
on the lower slopes of the mountains or in the intervening valleys. Our 
sites ranged from 1273 to 1604 m in elevation with an average of 1396 
m. Mean precipitation for the water year preceding sampling (±standard 
deviation) at our study locations was 360 ± 50 mm in 2016, 344 ± 66 
mm in 2017, and 274 ± 49 mm in 2018. 

2.2. Field sampling 

We used two sampling methods to measure cover and AGB of 
cheatgrass. The first method (hereafter, transect-level) was intended to 
capture the variation in cover and AGB at approximately the resolution 
of a Landsat pixel. We measured cover with ocular estimates and clipped 
all standing cheatgrass biomass in multiple 0.1 m2 quadrats along 30 or 
50 m transects. We then averaged cover and summed biomass. The 
second method (hereafter, quadrat-level) was intended to encompass 
the full range of possible cover values. For these samples, we measured 
cover using ocular estimates in individual 1 m2 quadrats along a range of 
cover values from 0 to 100%. We then clipped a one 0.1 m2 subset from 
each quadrat that appeared to be representative of the 1 m2 quadrat. We 
dried all biomass samples at 60 ◦C and weighed them when the mass 
stabilized. 

2.3. Transect-level sampling design 1 

We used two different designs for sampling along transects. In June 
2016, we sampled cheatgrass at its peak AGB at 20 locations in the 
north-central Great Basin (Fig. 2). We selected locations after reviewing 
fire and soil maps from the US Bureau of Land Management (BLM) and 
consulting with land managers from the BLM’s Winnemucca Field Of-
fice. The slopes (0–5%) and elevations (1297–1607 m) of the locations 
were similar, and locations were separated by at least 1.5 km. Eleven 
locations were dominated by sagebrush (Artemisia tridentata). Cheat-
grass cover in the understory of six of these sites was <5%. Native shrubs 
were not present in nine sites, which instead were dominated by 
cheatgrass (>5% cover) and annual forbs (<5% cover). Permitted levels 
of livestock grazing in summer and autumn were similar among 
locations. 

At each location, we established three pairs of parallel, 50-m tran-
sects, each separated by 20 m. We sampled 0.1 m2 quadrats every 5 m 
along each transect. For each of the 60 transects, we averaged mea-
surements of cover and summed measurements of biomass among the 22 
quadrats. 

2.4. Transect-level sampling design 2 

In the first week of July in 2017 and 2018, and in September 2019, 
we sampled 40 locations in the north-central Great Basin (Fig. 2). 
Sampling in 2017 and 2018 coincided with peak AGB of cheatgrass. 
Sampling in 2019 followed senescence and seed dispersal. Half of the 
sites were dominated by sagebrush and half were dominated by cheat-
grass and annual forbs. Elevations ranged from 1200 to 1700 m, and all 
locations had a history of livestock grazing. At each location, we 
established one 30-m transect with five 0.1 m2 quadrats randomly 
located along the transect. In 2017–2018, we averaged cover and 
aggregated biomass across the five quadrats to calculate transect-level 
cover and biomass. For locations sampled in 2019, we recorded cover 
and AGB from each quadrat separately. This allowed us to evaluate 
whether aggregation affected the relationship between AGB and cover. 

2.5. Quadrat-level sampling design 

We sampled quadrats at 90 locations in the northern Great Basin 
(Owyhee County, Idaho; 30 in late June and early July 2016, 20 in late 

Fig. 2. Study area and sampling sites. Circles represent the locations of 1 m2 quadrat-level samples, which were collected from 2016 to 2019. Squares represent the 
locations of transect-level samples collected from 2016 to 2019. Note that the same transect-level sites were resampled from 2017 to 2019. 
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June and early-mid July 2017, and 40 in June 2018), 33 locations in the 
eastern Great Basin (Tooele County, Utah) in June 2017, 90 locations in 
the central Great Basin (Lander, Nye, and Eureka Counties, Nevada; 40 
in June and early July 2018 and 50 in June and early July 2019), and 
124 locations in the western Great Basin (Mono and Alpine Counties, 
California and Mineral, Lyon, and Douglas Counties, Nevada; 50 in 
June–August 2016, 34 in June 2017, and 40 in June–July 2018; Fig. 2). 
Many locations were tens of km apart (e.g., some locations in the central 
Great Basin were 90 km apart). 

2.6. Ancillary data 

We used satellite remote sensing data extracted at each sampling 
location to explore the potential confounding effects of elevation, pre-
cipitation, and the time since peak greenness that the cover and biomass 
were sampled (hereafter, tPG). For elevation we used 30-m digital 
elevation models (Rabus et al., 2003). For precipitation, we used esti-
mates of monthly precipitation at 800-m resolution from PRISM (PRISM 
Climate Group, 2016) and calculated the cumulative precipitation from 
May of the year preceding sampling through June of the sampling year 
for each sampling location. For tPG, we used Google Earth Engine 
(Gorelick et al., 2017) to extract the daily time series of the Normalized 
Differenced Vegetation Index (NDVI) from the Moderate Resolution 
Imaging Spectroradiometer on both the Terra and Aqua satellites 
(MOD09) (Vermote et al., 2015) for each sampling location. We then 
calculated the date with the highest NDVI for each year at each location 
and subtracted the date of peak NDVI from the date of sampling for each 
location to estimate tPG. 

2.7. Statistical modeling 

We used linear models to estimate the relationship between percent 
cover and AGB from the transect-level samples collected at peak AGB 
(June 2016, July 2017, and July 2018). First, we created a set of ordi-
nary least squares (OLS) models, each with data from one year, and 
another OLS model with the data from all three years. Cover was the 
predictor and AGB was the response variable. Next, we created linear 
mixed models with the data from all three years (Bates et al., 2015; 
Pinheiro et al., 2021). We explored including the year of sampling as a 
random effect, adding a random slope, and fixing the intercept at zero. 
We also explored incorporating nonlinear effects by square root- and 
log-transforming both AGB and cover (as in Guevara et al., 2002). 
Finally, we explored adding precipitation, elevation, and tPG as cova-
riates. To determine which model was the best fit to the data, we 
inspected diagnostic plots, used Akaike’s Information Criterion (AIC; 
Burnham and Anderson, 2002a,b) to compare the models with the same 
transformation type, and used the R2 values of the observed versus 
predicted values (OvP R2; Piñeiro et al., 2008) to compare models with 
different transformation types. 

To evaluate whether aggregating the AGB collected in individual 
quadrats affected the relationship between percent cover and AGB, we 
aggregated the data collected in September 2019 by location, and 
created separate OLS models with the aggregated and unaggregated 
data. Because the two OLS models were not nested, we compared them 
by examining R2 and standard errors of the coefficients. 

We also created linear models from the samples collected at the 
quadrat level, but the coefficients appeared to be unrealistically low, 
and many models did not pass diagnostic tests, even when restricted to 
low cover values (Figure S1). Exponential and non-linear models had 
similar problems. There are at least three possible reasons for this. First, 
samples were not consistently collected at peak biomass. Second, esti-
mating cover at 1 m2 while collecting AGB in a 0.1 m2 subset of that 
square meter led to high levels of sampling error due to heterogeneity 
within the 1-m2 quadrat. Third, there was strong among-observer vari-
ation in cover estimates (Table S1). Therefore, we were concerned that 
these data were not reliable, and excluded them from the final 

estimation of the relationship between biomass and cover. 
All statistical analysis was done in R (R Core Team, 2020). Data and 

code to reproduce the analysis are at www.github.com/admahood/cg 
_biomass. 

3. Results 

We found strong, linear relationships between percent cover and 
AGB of cheatgrass. For transect-level samples collected from 2016 to 
2019, coefficients ranged from 3.3 to 7.8 g m− 2 for a 1% increase in 
cover (Fig. 3). However, because the 2019 sample was collected in 
September, cheatgrass seeds had already shed, and so it does not 
represent the relationship at peak AGB. Accordingly, we used our 
transect-level measurements from 2016 to 2018 to estimate the allo-
metric equation for calculating AGB from cover at peak biomass. 

The best model was an OLS model with both cover and AGB square 
root-transformed, and tPG as a covariate (Table 1). This model was 
among the top performing models according to AIC and OvP R2, and also 
had the best diagnostics (Figure S3). Most of the variation explained by 
the random effects in our mixed models was likely due to variation in 
tPG. Once we added tPG, the amount of variation explained by the 
random effects was essentially zero, as indicated by the similarity of the 
marginal and conditional R2 values (Table 1). Both elevation and pre-
cipitation had little effect on the AGB cover relationship (Table S2). The 
allometric equation we estimated is:  

AGB (g m− 2)0.5 = 2.67 (±0.8) * Cover (%)0.5 + 1.53 (±0.49)                      

The linear model we used to estimate this relationship had an R2 

value of 0.89 (coefficients are in Table 2). 
In our comparison of aggregated versus unaggregated samples, the 

coefficients were the same, but the variance explained was somewhat 
greater when samples were aggregated by transects (R2 = 0.89, p <
0.05) than when samples were not aggregated (R2 = 0.84, p < 0.05; 
Figure S2). 

4. Discussion 

The relationship between AGB and cover of cheatgrass was strong 
(Figs. 3 and 4). Both the response and the predictor variables in our final 
model were square root-transformed, which suggests that the relation-
ship may be nonlinear at higher values (Table 1). Our final allometric 
equation, as well as the coefficients from our models of individual years 
(Fig. 3a–c), were similar (after back-transformation) to the equations 
estimated by Chieppa et al. (2020) for short-lived grasses (6.06) and 
long-lived grasses (6.54), in which no variables were transformed. 

We found suggestive evidence from our quadrat-level data that the 
relationship between cover and AGB may become nonlinear as cover 
approaches 100% (e.g., Figure S1g). However, our inferences from those 
data are tentative for the reasons outlined above (see Methods). We 
include those data here only to highlight the importance of careful study 
design and data collection. We still found evidence of a nonlinear rela-
tionship in our transect-level data, and this saturation effect may lead to 
higher sampling error at higher cover values (as in Boyte et al., 2019). 
However, because cheatgrass cover rarely exceeds 50% at the resolution 
of a 30-m Landsat pixel, even where it grows in dense monocultures 
(Boyte et al., 2019), increased error at high values is unlikely to affect 
regional models of AGB. 

Despite high variability in cheatgrass cover among years (Bradley 
and Mustard, 2006), the relationship between cover and AGB at the time 
of peak biomass appears to be relatively stable. We anticipated that 
intraspecific variation in plant functional traits could be a confounding 
factor in making the allometric equation transferable to other sites, or 
for scaling up to regional models. We did not find that to be the case 
here, but intraspecific trait variation may affect the relationship in other 
species. These traits may vary spatially along topographic and moisture 
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Fig. 3. Percent cover and aboveground biomass of cheatgrass from the four 
transect-level sampling efforts. Lines are estimates from ordinary least squares 
regression models. The shaded area is the 95% confidence interval. Data in 
2016–2018 were collected near peak aboveground biomass (AGB). Data in 
2019 were collected in September, which was at the end of the growing season 
and well past peak AGB. 

Table 1 
Performance of all candidate models. The final model is in bold. AIC = Akaike’s 
Information Criterion, R2

C = conditional R2, R2
M = marginal R2, OvP R2 

=

observed versus predicted R2. AGB, aboveground biomass.  

Model Formula AIC R2
C R2

M R2 OvP R2 

AGB ~ 0 + cover 1237.5 – – 0.921 0.795 
AGB ~ cover 1236.1 – – 0.795 0.795 
AGB ~ 0 + cover + (cover | 

study) 
1231.9 0.857 0.807 – 0.821 

AGB ~ cover + (cover | study) 1233 0.837 0.804 – 0.821 
log (AGB) ~ 0 + log (cover) 423.8 – – 0.913 0.638 
log (AGB) ~ 0 + log (cover) +

(cover | study) 
217.8 0.932 0.932 – 0.599 

log (AGB) ~ log (cover) +
(cover | study) 

208.6 0.933 0.875 – 0.619 

log (AGB) ~ log (cover) +
(1 | study) 

207.5 0.917 0.907 – 0.638 

AGB0.5 ~ cover0.5 457.2 – – 0.875 0.799 
AGB0.5 ~ cover0.5 + tPG 445.6 - - 0.886 0.801 
AGB0.5 ~ cover0.5 + tPG +

(1 | study) 
447.6 0.887 0.887 – 0.801 

AGB0.5 ~ cover0.5 + elevation +
(1 | study) 

455.2 0.89 0.881 – 0.807 

AGB0.5 ~ cover0.5 + ppt +
(1 | study) 

455.3 0.89 0.882 – 0.807 

AGB0.5 ~ cover0.5 +

(1 | study) 
453.3 0.89 0.881 – 0.806  

Table 2 
Model coefficients for the final model. tPG = days after peak NDVI that the data 
was collected.  

Variable Estimate Standard Error T-value p-value 

Intercept 1.53 0.49 3.1 <0.01 
Cover (%)0.5 2.67 0.084 31.7 <0.01 
tPG − 0.034 0.0091 − 3.7 <0.01  

Fig. 4. Partial effects of cover on aboveground biomass, after accounting for 
days since peak NDVI, for the linear model of the three years of transect-level 
data collected around peak biomass. Note that the axes are square root- 
transformed. 
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gradients (measured as soil moisture, supplemental watering, climatic 
water deficit, topographic position, and precipitation, respectively; 
Butterfield et al., 2017; Fernández and Reynolds, 2000; Poulin et al., 
2007; Sandel and Low, 2019; Tardella et al., 2017), and temporally 
throughout the growing season (Svejcar, 1990). If one considers percent 
cover to be a function of leaf area, then the relationship between AGB 
and percent cover would be a function of specific leaf area (SLA; leaf 
area divided by leaf dry mass). SLA and leaf area can vary among in-
dividuals of the same species, and within and among communities. If 
SLA is higher, a given cover value would predict a lower AGB value, so 
the cover to AGB coefficient would be lower. 

Cheatgrass SLA has been documented to be higher at lower eleva-
tions (Ziska et al., 2005), and SLA within individual cheatgrass plants 
reaches a maximum at peak biomass and then declines as the growing 
season progresses (Svejcar 1990). We found that inclusion of elevation 
did not improve our models. But we did find a within-season effect, in 
that the coefficient of the cover to biomass relationship was lower in 
samples collected later in the growing season than at peak biomass 
(Fig. 3, Table 2). This is the opposite of what one would expect if SLA 
was the principal driver of changes in the cover-biomass relationship as 
the growing season progresses. Rather, the variation in coefficients is 
likely to be more strongly influenced by seed shedding. 

The SLAs of grass species in general have also been observed to be 
sensitive to interannual variation in precipitation. As precipitation in-
creases, SLA tends to increase (Butterfield et al., 2017; Fernández and 
Reynolds, 2000; Poulin et al., 2007; Sandel and Low, 2019; Tardella 
et al., 2017). Therefore, one would expect a higher slope of the cover to 
AGB relationship in dry years. However, adding precipitation as a co-
variate did not improve our models. The discrepancy between the 
documented variation in SLA in other studies and our results might be 
due to differences among species in strategies for surviving drought. 
Cheatgrass mitigates the effects of seasonal drought by germinating in 
early spring as soon as moisture is available and completing its life cycle 
before soil moisture decreases, and atmospheric vapor pressure deficit 
increases, during summer (Mack and Pyke, 1983). Perennial grasses like 
Elymus elymoides and Poa secunda, in contrast, must allocate fewer re-
sources to aboveground growth during the period when moisture 
availability is high, and more to underground carbon storage to survive 
the summer drought (Blumenthal et al., 2021; Johnson et al., 2015). 
These differences in resource allocation strategies may explain why the 
SLA of cheatgrass, unlike the SLA of other grasses, does not appear to be 
as sensitive to precipitation. 

Height may be another confounding factor, especially at high values 
of cover. Estimating AGB as cover approaches 100% is challenging 
because plant height still can increase after canopy cover reaches a 
maximum. One could incorporate vegetation height into a model of 
AGB, but several of the largest existing sets of training data, which 
include tens of thousands of data points, do not include measurements of 
height (see Boyte et al., 2019). Models of canopy height derived from 
remote sensing typically focus on tree or shrub cover (Alonzo et al., 
2018; Narine et al., 2019). Annual grass height is much more difficult to 
model with satellite remote sensing. Therefore, there are trade-offs be-
tween increases in model accuracy and the prompt availability of data. It 
may be possible to model cheatgrass height on the basis of topography 
and current year climate, and incorporate those values into models of 
AGB. These concerns may be moot, however, given that Chieppa et al. 
(2020) found no improvement in model accuracy when they added 
height to models of AGB predicted by cover for grass species. 

Many annual grass species have become dominant in other areas of 
the western United States. These include various species of Bromus and 
Avena throughout California, red brome (Bromus rubens L.) in the Mojave 
Desert, and Medusahead (Taeniatherum caput-medusae (L.) Nevski) in the 
northern Great Basin. Like cheatgrass, these species generally form a 
simple, single-layer canopy. It is very likely that AGB of these species can 
also be estimated from allometric equations that are based on cover. 
Differences among species in, for example, SLA, height, and seed mass 

may prevent application of the identical equation. Furthermore, one 
must account for the effect of interannual climate variability on 
phenology of any annual species. However, we believe that allometric 
equations converting cover to biomass are likely to be consistently 
applicable for single species, and that it may be possible to apply allo-
metric equations within functional groups more generally. 
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