
Three-Dimensional Discrete Element Method

Parallel Computation of Cauchy Stress Distribution

over Granular Materials

Beichuan Yana, Richard A. Regueiroa,∗

aDepartment of Civil, Environmental, and Architectural Engineering

University of Colorado Boulder

Abstract

The paper presents Cauchy stress tensor computation over parallel grids
of Message Passing Interface (MPI) parallel Three-Dimensional (3D) Dis-
crete Element Method (DEM) simulations of granular materials, considering
spherical and non-spherical particles. The stress tensor computation is stud-
ied for quasi-static and dynamic conditions, and its resulting symmetry or
asymmetry is discussed within the context of classical continuum mechanics
(CCM), granular materials mechanics (GMM), and micropolar continuum
mechanics (MCM). The average Cauchy stress tensor computation follows
Bagi’s and Nicot’s formulations and is verified within MPI parallel 3D DEM
simulations involving dynamically-adaptive compute grids. These grids al-
low calculation of temporal and spatial distributions of stress across granular
materials under static and dynamic conditions. The vertical stress com-
ponent in gravitationally-deposited particle assemblies exhibits non-uniform
spatial distributions under static equilibrium, and its zone of maximum value
changes during the process of gravitational pluviation and collapse. These
phenomena reveal a microstructural effect on stress distribution within gran-
ular materials that is attributed to their discrete particulate nature (particle
size, shape, gradation, boundary conditions, etc).
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1. INTRODUCTION

Granular materials may behave mechanically in a discrete or continu-
ous manner, exhibiting solid- or fluid-like properties and transitions in be-
tween. Regardless of mechanical response, the underlying particulate nature
of granular materials is responsible for their range of behavior and proper-
ties. Even with anticipated adoption of exascale computing platforms (with
limited access), it will be too computationally expensive to account for ev-
ery particle (or grain) of a granular material with regard to engineering de-
sign, such as building foundations subjected to sand liquefaction, tire/tool
interactions with granular soils on the Earth, Moon, or Mars, marine soil
anchoring mechanisms, etc. Such simulations would require billions to tril-
lions, if not more, of non-spherical particles within 3D DEM codes, with
possible additional coupling to Computational Fluid Dynamics (CFD). As
a result, for the foreseeable future, continuum mechanics will likely remain
the most efficient modeling framework within which to simulate the range
of mechanical behavior and properties that granular materials experience.
However, recognizing the deficiencies of a purely continuum approach, mul-
tiscale modeling approaches are being developed whereby DEM-CFD codes
are hierarchically or concurrently coupled to continuum numerical methods
such as the Finite Element Method (FEM) or meshfree methods. For such
methods, it is necessary to upscale discrete particle behavior to continuum
variables such as stress, strain, stress-rate and strain-rate, etc, within large
deformation, nonlinear continuum mechanics, and to do so within a MPI
parallel 3D DEM code. Thus, as a first step, the paper focuses on the com-
putation of the Cauchy stress tensor within dynamically-adaptive compute
grids associated with an MPI parallel 3D DEM non-spherical particle code
ParaEllip3d (Yan and Regueiro, 2018b,c,f,a,e). Specifically, the paper fo-
cuses on two aspects of the problem:

1. The microstructural definition of the average stress tensor over
a particle assembly has been a controversial topic (Weber, 1966;
Christoffersen et al., 1981; Rothenburg and Selvadurai, 1981; Bagi,
1996, 1999, 2003; Kuhn, 2003; Bardet and Vardoulakis, 2001;
Fortin et al., 2003; De Saxcé et al., 2004; Balevičius and Markauskas,
2007; Nicot et al., 2013; Yan and Regueiro, 2018d), especially when
inertial terms are included. In particular, a point of contention has
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been whether stress tensor asymmetry should be accounted for or not.
Chang and Ma (1991); Huang et al. (2002); Durán et al. (2010) advo-
cated the use of an asymmetric stress tensor, while Cundall and Strack
(1979); Durán et al. (2010) suggested negligible stress asymmetry for
practical purposes.

2. The computational capability of 3D DEM is limited by two fac-
tors: (i) number of particles, and (ii) shape and size distribution
that can be simulated. For example, most applications involv-
ing complex-shaped (non-spherical) particles such as axisymmetric
ellipsoids (Ng, 1994, 2004), three-axis ellipsoids (Yan et al., 2010),
poly-ellipsoids (Peters et al., 2009; Zhang et al., 2018), superellipsoids
(Wellmann et al., 2008; Delaney et al., 2010), or asymmetrical par-
ticles constructed by non-uniform rational Basis-Splines (NURBS)
(Lim and Andrade, 2014) constrain their number of particles to tens
of thousands, typically not exceeding 100,000. This particle number
limitation may cause simulations to miss interesting granular physics
that are only observed for greater than 500,000 to many millions (and
perhaps billions to trillions) of non-spherical particles.

Recently, Yan and Regueiro (2018d) attempted to clarify the stress ten-
sor definition and its symmetry property by conducting OpenMP (serial-
like) 3D DEM simulations for various static, quasi-static, and dynamic cases,
such as gravitational deposition, isotropic/oedometer compression, and high-
strain-rate (HSR) oedometer impact. They concluded that the stress tensor
should be calculated using Bagi’s formula (Bagi, 1996, 1999, 2003), not We-
ber’s (Weber, 1966; Christoffersen et al., 1981; Rothenburg and Selvadurai,
1981) or Drescher’s formulas (Drescher and De Jong, 1972; Cowin, 1977;
Cundall and Strack, 1983), for a particle assembly or representative vol-
ume element (RVE) in static equilibrium. They proposed to modify De
Saxcé’s formula (Fortin et al., 2003; De Saxcé et al., 2004) and Nicot’s for-
mula (Nicot et al., 2013), which take into account body forces and inertial
terms, by incorporating a boundary-radius-gap term, such that these stress
definitions are consistent with and converge to Bagi’s definition under static
conditions. This is important when studying granular phenomena that tran-
sition between static, quasi-static, and dynamic conditions.

With regard to computational capabilities, parallel computing of 3D
DEM has become an indispensable trend in numerical modeling of granu-
lar materials that involve a large number of particles, especially for model-
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ing complex-shaped (i.e., non-spherical) particles which require high CPU-
demand. There has been considerable interest in developing and utilizing
parallel DEM codes in recent years (Henty, 2000; Baugh Jr and Konduri,
2001; Washington and Meegoda, 2003; Maknickas et al., 2006). For exam-
ple, Vedachalam and Virdee (2011) used LAMMPS (large-scale atomic and
molecular massively parallel simulator, developed by Sandia National Lab-
oratories) and LIGGGHTS (LAMMPS improved for general granular and
granular heat transfer simulations) to study the motion of snow particles,
wherein the snow grains are assumed to be spherical particles 5 mm in di-
ameter. An empirical coefficient of restitution (ratio of rebound velocity to
impact velocity) is adopted rather than the strict Hertzian nonlinear contact
model, while Mindlin’s history-dependent shear model is not considered. Re-
cently, Yan and Regueiro (2018b,c,f,a,e) provided unprecedented parallel 3D
DEM simulation capability for complex-shaped particles across five orders of
magnitude of simulation scale (i.e., number of particles) on U.S. Department
of Defense (DoD) supercomputers using ParaEllip3d, a MPI parallel 3D DEM
code developed at the University of Colorado Boulder, providing detailed per-
formance analyses including speedup, efficiency, scalability, and granularity.
For example, up to 2,048 compute nodes (32,768 cores) are used for simu-
lating 10 million three-axis ellipsoidal particles (equivalent to approximately
1 billion spherical particles in terms of computational demand). They de-
termined that superlinear speedup is a common phenomenon for large scale
MPI parallel 3D DEM simulations of complex-shaped particles based upon a
spatial domain decomposition algorithm. It was shown to be associated with
inherent perfect scalability of 3D DEM; i.e., its memory scalability function
is a nonlinearly decreasing function of the number of processors.

Computing the Cauchy stress tensor and its spatial distribution over gran-
ular materials does not require parallel computing, per se, but in addition
to being able to simulate a large number of particles, it also provides a
natural and accurate spatial partitioning boundary using parallel compute
grids (spatially-adaptive grids if the parallel algorithm is well designed). In
fact, for MPI parallel 3D DEM simulations of complex-shaped particles, the
parallel compute grid size can be easily changed such that it can adapt to
any characteristic length scale needed in continuum models: it can be much
larger than the mean particle diameter, or it can be equivalent to a sin-
gle particle diameter. Furthermore, the compute grids of MPI parallel 3D
DEM provide a natural framework for calculating finite strain measures in
granular materials (Zhang and Regueiro, 2015), by tracking the motion of
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particles within the grids, therefore making it possible to study stress-strain
and stress-strain-rate-form constitutive relations (not covered in the paper).

It should be noted that a proper implementation and application of the
average Cauchy stress tensor in a typical spatial domain decomposition par-
allelism of MPI parallel 3D DEM relies upon the form of stress tensor def-
inition and thus requires careful treatment. For example, if Bagi’s formula
is adopted, it is not only necessary to collect boundary-particle contact in-
formation, but also requires processing particle-particle contact information
between adjacent compute grids and define branch vectors accurately, which
will be covered in detail in the paper.

The structure of the remainder of the paper is as follows: Section 2 sum-
marizes various analytical formulas for the calculation of the Cauchy stress
tensor in granular materials; Section 3 discusses conceptually stress tensor
symmetry from the perspective of classical continuum mechanics (CCM),
granular materials mechanics (GMM), and micropolar continuum mechan-
ics (MCM); Section 4 presents the MPI parallel computing framework of 3D
DEM based upon spatial domain decomposition; Section 5 details the correct
algorithm for stress tensor calculation in MPI parallel 3D DEM; Section 6
provides an analysis of stress tensor components calculated using OpenMP
3D DEM; Section 7 provides stress tensor spatial distributions across particle
assemblies via MPI parallel 3D DEM; Section 8 examines temporal and spa-
tial distributions of stress during dynamic processes; Section 9 investigates
the microstructural effects of particle assemblies on stress distribution; and
the last section provides conclusions and outlooks.

2. ANALYTICAL STRESS TENSOR FORMULAS FOR GRAN-

ULAR MATERIALS

Weber (1966) proposed a stress tensor definition for granular materials
by averaging the particle contact forces in the vicinity of a spatial point.
Christoffersen et al. (1981) derived the same formula for stress by volume-
averaging the product of contact forces and branch vectors, applying the
principle of virtual work. In summary, Weber (1966); Christoffersen et al.
(1981); Rothenburg and Selvadurai (1981) calculated the stress tensor using
the following formula as,

〈σij〉Weber =
1

V

∑

c∈I

f c
i l

c
j (1)
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where V is the RVE volume, c is the particle contact point, and I is the total
number of particle contacts internal to the RVE. The force vector f c

i is the
contact force transmitted at internal particle contact point c, as illustrated
in Fig.1(a). The vector lcj is the branch vector for internal contact point c
which connects the centroids of two adjoining particles.

(a) Internal and external forces. (b) Boundary-radius-gap.

Figure 1: Schematic of RVE.

Drescher and De Jong (1972); Cowin (1977); Cundall and Strack (1983)
presented a stress definition which considered the relation between a volume
average of stress and a surface integral of traction within classical continuum
mechanics. Such a definition was made without employing the principle of
virtual work as,

〈σij〉Drescher =
1

V

∑

e∈E

f e
i x

e
j (2)

where E is all particle contacts external to or on the boundary of the RVE,
f e
i is the contact force vector at point e on the RVE boundary, as shown in
Fig.1(a), and xe

j is the current space coordinate vector of contact point e on
the boundary.

Bagi (1996) presented definitions of stress and small strain in terms of
local, micro-level variables with the help of two complementary geometrical
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systems. Bagi (1999) presented the stress tensor definition of particle as-
semblies with volumetric loads in addition to boundary forces, using clearly-
defined branch vectors. For internal contacts, a branch vector connects the
centroids of two particles, and for external contacts, a branch vector points
from the centroid of a boundary particle to its external contact point. The
stress tensor definition included both internal and external contact forces
such that (Bagi, 2003),

〈σij〉Bagi =
1

V

(

∑

c∈I

f c
i l

c
j +
∑

e∈E

f e
i l

e
j

)

(3)

where f e
i is the contact force vector at point e on the RVE boundary, and

lej is the branch vector associated with external contact point e, also called
boundary-radius gap, which points from the centroid of a boundary particle
to the external contact point e, as illustrated in Fig.1(b).

Bardet and Vardoulakis (2001) noted that stress tensor symmetry has
significance in computational granular mechanics, particularly for DEM sim-
ulations employing dynamic relaxation (DR) to solve the dynamic equilib-
rium equations for quasi-static problems. They concluded that computed
stress tensor asymmetry implied inaccurate calculation and/or lack of static
equilibrium. If correct, their conclusion would also be applicable to dynamic
simulations which eventually reach static equilibrium.

Fortin et al. (2003); De Saxcé et al. (2004) constructed an average
Cauchy stress tensor in integral form which takes into account the contact
reaction forces and body forces as,

〈σij〉De Saxcé =
1

V

(

∑

c∈{I∪E}

xc
if

c
j +

∫

V

xiρ
(

gj − aj

)

dV

)

(4)

where f c
j denotes either an internal or boundary contact force vector at point

c, gj is the gravitational acceleration vector, aj is the acceleration vector,
and xj is the current spatial coordinate vector within V . It was noted that
the constructed stress tensor is automatically symmetric and invariant by
translation. De Saxcé et al. (2004) also presented a rigorous proof of stress
tensor symmetry by applying the balance of angular momentum.

Nicot et al. (2013) studied the stress tensor definition based on an equiva-
lent continuum, but using different decomposition of dynamic contributions.
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They concluded that the stress tensor can be expressed as a sum of two con-
tributions: (i) the standard term by Love-Weber formula for quasi-statics;
and (ii) dynamic terms resulting from rotational particle velocities and accel-
erations. It is interesting to observe from their numerical simulation of silo
discharge that the stress inertial terms are an order of magnitude lower than
the static stress terms. The balance of linear momentum is relied upon in
their derivation, whereas the balance of angular momentum is not. Nicot’s
formula is as follows,

〈σij〉Nicot =
1

V

∑

c∈I

f c
i l

c
j −

1

V

∑

p∈{I∪E}

(

εiklΩ̇
p
kχ

p
jl + Ωp

iΩ
p
kχ

p
jk − (Ωp)2χp

ij

)

(5)

where p denotes a particle within I ∪ E, εikl is the permutation symbol, Ωp
k

denotes the angular velocity vector of particle p and Ωp its magnitude, and χp
ij

is the inertial tensor for particle p. The angular velocity, angular acceleration,
and inertial tensor are written with respect to the global coordinate system
(GCS) in Eq.(5), and must be converted to GCS if first calculated in a local
coordinate system (LCS) associated with particle p.

Yan and Regueiro (2018d) proved the so-called equation of stress equiv-
alence, and concluded that the stress tensor for a particle assembly or RVE
which is subjected to boundary forces and gravity forces in static equilibrium
should be calculated via Bagi’s formula, not Weber’s formula. As a result,
Yan and Regueiro (2018d) derived a so-called modified Nicot’s formula as,

〈σij〉Nicot-2 =
1

V

(

∑

c∈I

f c
i l

c
j +
∑

e∈E

f e
i l

e
j

)

−
1

V

∑

p∈{I∪E}

(

εiklΩ̇
p
kχ

p
jl + Ωp

iΩ
p
kχ

p
jk − (Ωp)2χp

ij

)

,

(6)

and so-called modified De Saxcé’s formula as,

〈σij〉De Saxcé-2 =
1

V

(

∑

c∈I

f c
i l

c
j +
∑

e∈E

f e
i l

e
j

)

−
1

V

(

∫

V

xiρajdV

)

, (7)

by incorporating the boundary-radius-gap term. The modified Nicot’s for-
mula and modified De Saxcé’s formula share two important features: (i) the
gravity term vanishes, and (ii) both converge to Bagi’s formula under static
conditions.
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3. SYMMETRY OF STRESS TENSOR IN GRANULAR MATE-

RIALS

3.1. Stress tensor in classical continuum mechanics (CCM)

In CCM, the balance of linear momentum and angular momentum for a
continuous body are expressed in Eq.(8) and (9), respectively, as,

∫

∂V

tdS +

∫

V

fdV = 0, (8)
∫

∂V

x× tdS +

∫

V

x× fdV = 0, (9)

nσ = t or njσji = ti (10)

where x denotes current coordinate in V or on ∂V , f is the body force
per unit volume, f = ρ(g − a), including both gravity acceleration g and
inertial acceleration a, ρ is the mass density, and t is the traction on ∂V .
Equation (10) represents Cauchy’s stress theorem and provides the definition
of the Cauchy stress tensor in a continuous body.

It is well known that on the basis of Eq.(10), σij = σji if Eq.(8) and (9) are
satisfied simultaneously; σij 6= σji if Eq.(9) is not satisfied (typically because
of the existence of external moment or imbalance of angular momentum).
Equation (9) implies that there is no stress couple or local rotational accel-
eration within CCM, whereas they exist in MCM. In essence, the balance of
angular momentum of an infinitesimally-small differential volume element dv
within a classical continuum body ensures that there exists no “external” or
unbalanced moment on that element.

3.2. Stress tensor in granular materials mechanics (GMM)

De Saxcé et al. (2004) proved Cauchy stress tensor symmetry utilizing
the equations of balance of linear and angular momenta in CCM. Note that
the modified De Saxcé’s formula in Eq.(7) reduces to Bagi’s formula for
static equilibrium, so the proof of Cauchy stress symmetry in terms of Bagi’s
formula is incorporated as well. The proof is briefly summarized.

The balance of linear and angular momenta are expressed in index nota-
tion as,

∫

∂V

tidS +

∫

V

fidV = 0, (11)
∫

∂V

(xitj − xjti)dS +

∫

V

(xifj − xjfi)dV = 0 for i 6= j, (12)
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and the average stress is thus defined as,

〈σij〉 :=
1

V

(

∫

∂V

xitjdS +

∫

V

xifjdV

)

. (13)

Then, if σij is symmetric, we have,

〈σij〉 − 〈σji〉 =
1

V

(

∫

∂V

(xitj − xjti)dS +

∫

V

(xifj − xjfi)dV

)

= 0 (14)

It must be emphasized that Eq.(14) may not hold in GMM or MCM. For
example, it is possible to show that the following equation holds for a particle
assembly or RVE in GMM,

∑

c∈I

lc × f c +
∑

e∈E

le × f e =
∑

p∈{I∪E}

IpΩ̇
p
, (15)

where Ip denotes the moment of inertial tensor of particle p. For discussion
purposes, we assign Ψ :=

∑

p∈{I∪E} I
pΩ̇

p
. Hence, with Eqs.(14) and (15),

the shear terms of stress take the following form in GMM:

σ23 − σ32 =
1

V
Ψ1,

σ31 − σ13 =
1

V
Ψ2, (16)

σ12 − σ21 =
1

V
Ψ3,

where Ψ1, Ψ2 and Ψ3 are the three components of Ψ. This means that in
a particle assembly or RVE the average stress tensor could be asymmetric
if any particle exhibits angular acceleration, which is highly likely during
dynamic loading such as gravitational pluviation.

3.3. Stress tensor in micropolar continuum mechanics (MCM)

In MCM, the balance of angular momentum does not necessarily lead to
symmetry of the Cauchy stress tensor. In fact, the Cauchy stress tensor is
asymmetric generally in MCM, and the imbalance of angular momentum of
CCM is generalized to include additional terms (surface couple, body couple,
and intrinsic spin) such that they become balanced. Therefore, the average
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stress tensor calculated using Eq.(13) may not be symmetric. In MCM, the
balance of angular momentum is stated as (Eringen, 1968),

ek
[

σ[ij] −ml[ji],l + ρ(ℓ[ji] − ω[ji])
]

= 0, (17)

where ek is a coefficient such that ek = 1 for k = 1, 2, 3 (i 6= j 6= k), the skew
part is σ[ij] = (σij − σji)/2, mlji is the higher-order couple stress, ρℓji is the
body couple force, and ρωji is the micro-spin inertia, defined respectively as,

(mljinl)da :=

∫

da

σ
(α)
lj ξ

(α)
i n

(α)
l da(α),

(ρℓji)dv :=

∫

dv

ρ(α)f
(α)
j ξ

(α)
i dv(α), (18)

(ρωji)dv :=

∫

dv

ρ(α)ξ̈
(α)
j ξ

(α)
i dv(α),

where σ
(α)
lj is the symmetric Cauchy stress of micro-element α, ξ

(α)
i is the

relative position vector of micro-element α, ρ(α) is the mass density of micro-
element α, f

(α)
j is the body force per unit mass on micro-element α, and n

(α)
l

is the unit normal vector on micro-element α. Note that micro-element α
within MCM may be a single particle or cluster of particles (Eringen, 1968).
Expressing Eq.(17) for k = 1, 2, 3, respectively, we have,

σ23 − σ32 = ρ(ω32 − ω23)− ρ(ℓ32 − ℓ23)− (ml32,l −ml23,l)

σ31 − σ13 = ρ(ω13 − ω31)− ρ(ℓ13 − ℓ31)− (ml13,l −ml31,l) (19)

σ12 − σ21 = ρ(ω21 − ω12)− ρ(ℓ21 − ℓ12)− (ml21,l −ml12,l).

It can be seen that if the skew parts of the micro-spin inertia tensor ρω, body
force couple ρℓ, and divergence of couple stress (divm) are zero, then the
Cauchy stress tensor is symmetric. Otherwise, if any of these terms are non-
zero, such as the skew part of the micro-spin inertia tensor ρω, the Cauchy
stress will be asymmetric, such as shown in Eq.(16) for GMM.

In CCM, the Cauchy stress tensor is symmetric under static and dynamic
conditions. In MCM, the Cauchy stress tensor becomes symmetric only when
the right-hand-side terms in Eq.(19) are zero, such as for static conditions and
when body force couple and divergence of couple stress are negligible. That is
why Bagi’s formula is chosen under static conditions: stress calculated from
Bagi’s formula satisfies symmetry whether the granular material is treated
as CCM, or special conditions (ρℓ ≈ 0 and divm ≈ 0) for MCM.
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To evaluate the degree of asymmetry of the stress tensor, we define a
quantity, relative asymmetry index (RAI), as the ratio of L2-norm of the
skew-symmetric part to the symmetric part with diagonal elements set to
zero, such that,

RAI =

(

1
2

(

〈σij〉 − 〈σij〉
T
)

)L2−norm

(

1
2

(

〈σij〉+ 〈σij〉T
)

)L2−norm

diag=0

. (20)

3.4. Stress wave propagation

In dynamic simulations, forces exerted on the boundary of the particle
assembly in each time step are not felt instantaneously by the interior par-
ticles because it takes a certain number of time steps for the DEM system
to transmit boundary forces to the interior particles (for the wave to prop-
agate through the assembly). No doubt this also holds true for quasi-static
simulations, to a certain degree. When this stress wave effect is pronounced,
the balance of linear and angular momenta are not satisfied (classically) at a
discrete instant in time, namely, Eq.(12) does not hold, and the stress tensor
is asymmetric.

More simply, when a dynamic boundary condition (force, displacement,
or combination thereof) is applied to a particle assembly, it may exert an
external moment, and in turn impose an imbalance of angular momentum;
the particle assembly undergoes an overall “rotational” acceleration, or so-
called “intrinsic spin.” This phenomenon does not exist for an infinitesimally-
small continuum point with differential volume dv in CCM, for which it
always holds that σij = σji because the balance of angular momentum is
satisfied. In MCM, the differential volume dv has length, as indicated in
Eqs.(17)-(19).

The overall “rotation” or “intrinsic spin” of a particle assembly may not
be easily observed macroscopically. For example, it exists during oedome-
ter/uniaxial strain in compression, for which the specimen only undergoes
macroscopic axial strain. In fact, any form of deformation of a granular ma-
terial will include macroscopic rotation (or a moment due to constraint on
rotation), which is an essential difference from CCM. How to define rota-
tional effects on the stress tensor computation will rely on MCM, and this is
beyond the scope of the paper.
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4. PARALLEL COMPUTING FOR 3D DEM

4.1. Four-step design and link-block

The four-step design paradigm proposed by Foster (1995) for MPI par-
allelization was followed for the design of the MPI parallel 3D DEM code
ParaEllip3d : partitioning, communication, agglomeration, and mapping.
The computational spatial domains are divided via the link-cell (LC) method
into equal-sized cubical cells of length not smaller than the diameter of the
largest particle, illustrated in Fig.2(a).

(a) link-cell algorithm, a cell

having 26 neighbors in 3D.

(b) Schematic of link-blocks, virtual cells, and

border layers.

Figure 2: Link-cell to link-block algorithms.

We extend the link-cell (LC) method to a link-block (LB) technique in
MPI parallel 3D DEM. With introduction of LB, Foster’s four-step paradigm
can be readily applied in designing a parallel algorithm in DEM. Partition-
ing: The computational domain is divided into blocks. Each block may
consist of many virtual cells. In Fig.2(b), there are 8 blocks numbered from
0 to 7, each containing 5 x 5 x 5 small virtual cells. The size of the virtual
cells may be chosen to be the maximum diameter of the discrete particles.
Communication: Each cell, as a primitive task unit, can communicate
with 26 possible surrounding ones to determine contact detection. However,
the communication mechanism may change after agglomeration. Agglom-

eration: By combining 5 x 5 x 5 virtual cells into a block, communication
overhead is lowered, such that each block only needs to communicate with
neighboring blocks through border/ghost layers (BL), which are virtual cells
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marked by blue dots in Fig.2(b). Note that each block communicates with 26
possible BLs, i.e., 6 surface BLs, 12 edge BLs, and 8 vertex BLs. Mapping:

There are a number of choices for mapping a block of particles to a core,
a CPU, multiCPUs within a node, or even a whole node. Very often each
block is mapped to a whole compute node.

4.2. Interblock communication

In Fig.2(b), a border/ghost layer is not limited to constructing a surface
layer between two adjacent blocks, as there are other forms. For example,
block 3 communicates with block 1 through a surface border layer, with block
0 through an edge border layer, and with block 4 through a vertex border
layer, as shown in Fig.2(b).

A “patch” test is designed using 162 ellipsoidal particles. The particle
assembly is composed of two layers of 81 particles, gravitationally-deposited
into a rigid container, illustrated in Fig.3(a). The container is partitioned
into four blocks separated by blue dashed lines shown in Fig.3(b), which also
represents the initial configuration of the randomly-sized particles as shown
from a top view.

Each block is mapped to and computed by an individual process, so
there are four processes, p0 to p3. Each process needs to communicate with
other processes to determine its own boundary conditions. For example,
process p3 needs to know those particles from process p1 that are enclosed
by the purple rectangular box, those from process p2 enclosed by the red
rectangular box, and those from process p0 enclosed by the green square
box. A detailed movie records how those particles move across the borders
and collide with particles from other blocks, and it reveals that each process
is able to determine its boundary conditions accurately. The overall motion
of the 162 particles through parallel computing is observed to be the same
as that observed in an OpenMP computation.

4.3. Load balance and adaptive compute grids

In MPI parallel computing it is important to maintain load balance be-
tween processes; otherwise, some processes are busy computing while others
could be hungry awaiting tasks. To this end, dynamically-adaptive compute
grids are developed. Figure 4 demonstrates a simulation of particles falling
into a container via gravity, whereby the compute grids (marked by green
lines) dynamically follow the particle motions and redistribute across space.
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(a) 3D view of initial configuration. (b) Top view of initial configuration.

(c) Top view at time t1 during

simulation.

(d) Top view at time t2 during

simulation.

Figure 3: Illustration of interblock communication.
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(a) Initial configuration of

particle pluviation.

(b) Middle stage of particle

pluviation.

(c) Final stage of particle

pluviation.

Figure 4: Dynamically-adaptive compute grids that achieve efficient load balance.

4.4. Particle-boundary interaction

The MPI parallel 3D DEM code ParaEllip3d not only needs to gather
particle data from all processes, but also needs to collect particle-boundary
interaction data from those boundary processes. As shown in Fig.4, in order
to obtain particle-boundary interaction data on the bottom and four sides of
the top-open rigid container, relevant parallel processes must be identified,
collected, and communicated to the root process for data merging.

5. STRESS TENSOR IMPLEMENTATION IN PARALLEL DEM

Yan and Regueiro (2018d) have pointed out that the stress tensor should
be calculated via Bagi’s formula, not Weber’s formula or Drescher’s formula
in static equilibrium. They suggested using the modified Nicot’s formula in
dynamic simulations, which takes into account inertial terms of particle rota-
tional velocities and accelerations. The stress calculated using the modified
Nicot’s formula converges to that calculated by Bagi’s formula, under static
conditions. These two formulas are chosen and implemented in ParaEllip3d
for stress tensor calculation.

Bagi’s formula includes internal contact forces (correspondingly, internal
branch vectors) and external contact forces (correspondingly, external branch
vectors). These two parts are not necessarily differentiated in serial comput-
ing of 3D DEM. However, they must be distinguished in parallel computing
in order to implement correct stress tensor calculations.

Figure 5 illustrates a particle assembly structure in parallel computing of
DEM. As an example, process p0 only owns black particles that are assigned
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Figure 5: Internal and external particles of a MPI process.
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to it at the stage of one-time global partitioning. During the stage of MPI
transmission, p0 receives green particles from adjacent processes p1-3. At
the stage of neighbor search and contact resolution, p0 actually owns both
black and green particles, but it does not need to distinguish black ones from
green ones for contact force computation. Nevertheless, at the stage of stress
tensor calculation, the black particles are internal particles, and the green
particles are external particles, which must be treated differently according
to Bagi’s formula in Eq.(3).

For any contact-pair consisting of two particles that has been detected,
if both particles are “black,” then they are treated as an internal contact-
pair and computed by the first term of Eq.(3). If one of the particles is
“green,” then they are treated as an external contact-pair and computed
by the second term of Eq.(3). The direction of the branch vectors must
be carefully determined. In addition, a process needs to handle particle-
boundary contacts if it is a boundary process. For example, processes p0-3
are all boundary processes, as shown in Fig.5. The contact force vectors and
associated branch vectors accounting for the boundary-radius-gap between
the boundary surface and its particles must be evaluated properly in order
for the stress tensor calculation to be correctly computed.

6. STRESS TENSOR CALCULATION IN SERIAL COMPUT-

ING

Before calculating stress for MPI mode of the 3D DEM code ParaEllip3d,
serial and OpenMP-enabled numerical simulations are performed to calculate
the average stress tensor and quantify its symmetry or lack thereof. The
OpenMP-enabled numerical simulations use 16 or 32 cores to accelerate the
computation.

ParaEllip3d is a 3D DEM code developed at the University of Colorado
Boulder with general capacity to simulate a wide range of laboratory exper-
iments and in-situ field tests that involve a large number of complex-shaped
(i.e., non-spherical) particles. The interparticle contact constitutive rela-
tion is based on the nonlinear Hertzian normal contact model and history-
dependent Mindlin shear contact model, combined with Coulomb friction
and interparticle contact damping, which are described in detail and verified
numerically in Yan (2008); Yan et al. (2010). The simulated particle shapes
range from spherical to three-axis ellipsoidal (with variation of 1st and 2nd
aspect ratios), to non-axisymmetric ploy-ellipsoidal (with variation of 1st

18



and 2nd aspect ratio, and variation of three non-axisymmetry ratios). The
simulation types include but are not limited to: grain number/size/mass
distribution and filtering; gravitational deposition (pluviation or raining);
degravitation response; isotropic compression; oedometer/uniaxial compres-
sion; conventional triaxial compression; true triaxial compression; plane-
strain compression; quasi-static and dynamic penetration; high-strain-rate
impact and deformation; compressive and shear wave propagation; con-
strained and unconstrained collapse; hierarchical multiscale coupling with
FEM; and two-way multiphysics coupling with Computational Fluid Dy-
namics (CFD) for shock wave or explosive wave interaction. Fundamentals
of the DEM such as time integration method, rotation of ellipsoids, con-
tact resolution, energy statistics, etc, are detailed in Yan (2008); Yan et al.
(2010); Yan and Regueiro (2018a).

6.1. Damping mechanism

In DEM, two forms of damping mechanism are usually applied: (1) global
damping (also referred to as background damping), which operates on the
absolute velocities and angular velocities of the particles. Global damping as
such may be envisioned as the effect of dashpots connecting each particle to
ground (Cundall and Strack, 1979), which is not physically-based; (2) inter-
particle contact damping is essential and physical to model the mechanical
interaction between particles, which is especially true for dynamic problems
where interparticle collisions dominate the kinetic energy dissipation. The
contact interface is illustrated in Fig.6, characterized by normal stiffness kn,
shear stiffness kt, friction coefficient µ, and normal contact damping coeffi-
cient cn.

For example, the normal damping coefficient cn (Onate and Rojek, 2004)
can be taken as a fraction of the critical damping Ccr for the system of two
rigid bodies with masses m1 and m2, connected with a spring of stiffness kn
(Taylor and Preece, 1992):

Ccr = 2

√

m1m2kn
m1 +m2

(21)

cn = ξCcr (22)

where ξ is the damping ratio. Note this damping ratio ξ portrays interparticle
energy dissipation and can be calibrated with experiments recorded by high-
speed cameras. We found that it ranges between 0.25 ∼ 0.85 by observation
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kn

kt

µ

cn

Figure 6: Model of contact interface.

of numerous experimental and numerical tests of pluviation; it is taken as
1.0 in quasi-static simulations. In the shear direction of contact between
particles, friction dissipates energy.

The global damping (translational and rotational) is usually applied to
each individual particle and unavoidably affects the linear and angular mo-
mentum of the particle; the interparticle contact damping (along in-contact
normal and shear relative velocity directions) is applied to each pair of in-
contact particles as a pair of action and reaction “forces,” which has no
bearing on the linear momentum, or angular momentum for monodisperse
spherical particle assemblies, yet may have slight influence on angular mo-
mentum of general particle assemblies. Obviously, the stress tensor formulas
presented in this paper do not take this into account. Static simulations or
static equilibrium state obtained by dynamic simulations do not have this
problem, because the damping mechanism normally vanishes at the instant
of reaching static equilibrium.

Note that all simulations in this paper only use interparticle damping,
and do not apply any global damping in order to eliminate the influence
of damping “force” on the linear and angular momentum of the particle
assembly in dynamic or quasi-static state.

Static states of a particle assembly are obtained from gravitational depo-
sition, in which particles are initially “floated” in space without interaction,
and then gravitationally-deposited into a rigid container. At the end of the
simulation, all particles come to rest and are packed under gravity. The
parameters are listed in Table 1. The following sections provide the stress
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tensor calculations from Yan and Regueiro (2018d) (in review) for complete-
ness and comparison with later results from parallel computing.

Young’s modulus E (Pa) 4.5× 1010

Poisson’s ratio ν 0.25
specific gravity Gs 2.65
interparticle coef. of friction µ1 0.5
particle-wall coef. of friction µ2 0.5
interparticle contact damping ratio ξ 0.25 ∼ 0.85
particle radii (m) 0.001 ∼ 0.0025
particle shape (aspect ratio) 1:1:1, 1:0.8:0.6, 1:0.8:0.4, 1:0.6:0.4
time step △t (sec) 5.0× 10−7 or smaller

Table 1: Numerical parameters used in gravitational pluviation simulations.

6.2. Monodisperse spherical particle assemblies

Monodisperse spherical particle (1.5 mm radius) assemblies are simulated
with different number of particles: 68, 153, 600, 1,176, 1,536, 2,400 and 3,456,
respectively. The final rested state for each of the particle assemblies is
illustrated in Fig.7. The processes of boundary contact forces and assembly
energy for 68 and 3,456 particles are plotted in Fig.8, and it is observed
that the rotational energy contributes a very small fraction relative to the
translational energy during the process of particle packing and rebounding.

Table 2 lists the 3x3 matrix of stress tensor components calculated by
Weber’s and Bagi’s formulas for the 7 cases. It is clear that the stress tensor
calculated by Weber’s formula is asymmetric for small numbers of particles,
and the asymmetry decreases with an increasing number of particles. On the
other hand, the stress tensor calculated by Bagi’s formula exhibits excellent
symmetry for all cases (68 particles to 3,456 particles). Even for 3,456 par-
ticles, the stress gap between Weber’s and Bagi’s formulas is still apparent.
The RAI’s are calculated for all cases. By Weber’s formula, it is as high as
15.1% for 68 particles and as low as 1.1% for 1,176 particles, while it is below
0.03% by Bagi’s formula for all cases. As a technical index, a RAI value of
1% indicates clear asymmetry, and 5% represents strong asymmetry.

6.3. Polydisperse ellipsoidal particle assemblies

Polydisperse ellipsoidal particle assemblies (1.0 to 2.5 mm radius) are
simulated with different number of particles: 69, 179, 476, 1,071, 1,904 and
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(1) 68 (2) 153 (3) 600 (4) 1,176

(5) 1,536 (6) 2,400 (7) 3,456

Figure 7: Rested state of monodisperse spherical particle assemblies.

(a) 68 particles (b) 3,456 particles

Figure 8: Boundary contact forces and assembly energy in gravitational deposition.
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Table 2: Static stress tensor of monodisperse spherical particle assemblies.
Weber’s formula Bagi’s formula

particles stress tensor RAI (%) stress tensor RAI (%)

-6.44E+01 -1.15E+01 -2.72E+00 -9.07E+01 -9.70E+00 -1.19E+00
68 -8.11E+00 -6.16E+01 -5.34E+00 15.1 -9.70E+00 -8.76E+01 -4.44E+00 8.03E-05

-1.37E+00 -5.50E+00 -1.09E+02 -1.19E+00 -4.44E+00 -1.25E+02

-8.12E+01 -2.31E-01 2.55E+00 -1.01E+02 4.87E-01 2.82E+00
153 -1.35E-04 -7.86E+01 -8.39E+00 2.2 4.87E-01 -9.84E+01 -9.15E+00 2.33E-03

2.54E+00 -8.09E+00 -9.68E+01 2.82E+00 -9.15E+00 -1.15E+02

-1.46E+02 -2.85E+01 8.86E+00 -1.71E+02 -2.83E+01 7.75E+00
600 -2.72E+01 -1.51E+02 1.48E+01 2.2 -2.83E+01 -1.76E+02 1.50E+01 5.29E-05

9.21E+00 1.56E+01 -2.54E+02 7.75E+00 1.50E+01 -2.80E+02

-2.35E+02 3.97E+01 -8.45E+00 -2.66E+02 3.95E+01 -8.25E+00
1,176 3.96E+01 -2.34E+02 -1.42E+01 1.1 3.95E+01 -2.65E+02 -1.39E+01 1.74E-05

-7.88E+00 -1.34E+01 -3.05E+02 -8.25E+00 -1.39E+01 -3.27E+02

-1.88E+02 -9.42E+00 4.69E+00 -2.09E+02 -9.84E+00 5.25E+00
1,536 -9.95E+00 -1.90E+02 -1.05E+00 5.2 -9.84E+00 -2.11E+02 -4.00E-01 2.71E-02

5.62E+00 -5.35E-01 -2.55E+02 5.25E+00 -4.00E-01 -2.76E+02

-2.42E+02 -3.77E+00 -8.39E+00 -2.65E+02 -3.84E+00 -8.16E+00
2,400 -4.24E+00 -2.43E+02 2.18E+00 4.0 -3.84E+00 -2.66E+02 2.56E+00 2.94E-04

-8.16E+00 2.81E+00 -3.32E+02 -8.16E+00 2.56E+00 -3.55E+02

-2.29E+02 1.11E+01 -2.17E+00 -2.47E+02 1.10E+01 -1.98E+00
3,456 1.14E+01 -2.29E+02 -1.89E+00 1.7 1.10E+01 -2.48E+02 -1.64E+00 2.07E-03

-2.07E+00 -1.57E+00 -3.56E+02 -1.98E+00 -1.64E+00 -3.79E+02

2,975, respectively. The final rested state of each of the particle assemblies
is illustrated in Fig.9.

Table 3 lists the 3x3 matrix of stress tensor components calculated by We-
ber’s and Bagi’s formulas for the 6 cases. It exhibits a trend similar to that for
monodisperse spherical particle assemblies. The stress from Bagi’s formula
exhibits excellent symmetry. Note that contact geometry resolution between
ellipsoids is numerically challenging. As an estimate, modern supercomput-
ers are typically capable of computing up to 15, 000 ∼ 30, 000 particles per
core (PPC) of spheres, and 150 ∼ 300 PPC of complex-shaped particles such
as ellipsoids or poly-ellipsoids with optimal computational granularity (CG)
for large-scale MPI simulations (Yan and Regueiro, 2018b). The RAI by We-
ber’s formula ranges from 3.9% to 30.0%, indicating strong asymmetry; while
it is typically below 0.3% calculated by Bagi’s formula for all cases.

It was proven in Section 3 that the Cauchy stress tensor is symmetric
under static conditions for CCM and GMM. Bardet and Vardoulakis (2001)
stated that computed stress tensor asymmetry implies inaccurate calculation
and/or lack of static equilibrium. The simulations of different shapes and size
gradation of particles in this section provide clear numerical verification that
at rested (static) state, Bagi’s formula provides a symmetric stress tensor,
whereas Weber’s formula does not. We emphasize that stress tensor sym-
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(1) 69 (2) 179 (3) 476

(4) 1,071 (5) 1,904 (6) 2,975

Figure 9: Rested state of polydisperse ellipsoidal particle assemblies.

Table 3: Static stress tensor of polydisperse ellipsoidal particle assemblies.
Weber’s formula Bagi’s formula

particles stress tensor RAI (%) stress tensor RAI (%)

-2.83E+01 1.76E+00 9.77E-02 -4.12E+01 -5.52E-01 1.77E+00
69 1.39E+00 -3.77E+01 1.30E+01 3.9 -6.30E-01 -5.75E+01 1.57E+01 2.80E-01

-3.45E-01 1.39E+01 -6.30E+01 1.74E+00 1.57E+01 -8.10E+01

-4.62E+01 5.09E-01 3.03E-01 -5.81E+01 7.73E-01 9.67E-01
179 1.44E+00 -4.10E+01 2.27E+00 30.0 7.73E-01 -5.09E+01 8.39E-01 2.47E-03

-4.20E-01 1.66E+00 -5.61E+01 9.67E-01 8.39E-01 -6.98E+01

-8.36E+01 5.66E+00 1.58E+00 -9.81E+01 3.67E+00 1.57E+00
476 3.58E+00 -8.39E+01 2.35E+00 20.3 3.67E+00 -9.74E+01 2.62E+00 3.29E-03

1.90E+00 3.94E+00 -1.09E+02 1.57E+00 2.62E+00 -1.26E+02

-1.19E+02 7.53E+00 2.66E+00 -1.36E+02 8.36E+00 3.67E+00
1,071 6.95E+00 -1.18E+02 3.81E-01 6.3 8.36E+00 -1.33E+02 -3.01E-01 9.05E-03

3.41E+00 7.62E-01 -1.51E+02 3.68E+00 -3.00E-01 -1.66E+02

-1.32E+02 -2.81E+00 8.30E+00 -1.47E+02 -1.49E+00 9.85E+00
1,904 -2.27E+00 -1.29E+02 -7.09E-02 4.8 -1.49E+00 -1.43E+02 -8.66E-01 2.23E-02

8.36E+00 -7.34E-01 -1.79E+02 9.85E+00 -8.62E-01 -1.96E+02

-1.60E+02 1.49E+00 -5.74E-01 -1.75E+02 1.25E+00 5.09E-01
2,975 1.09E+00 -1.71E+02 3.43E+00 6.3 1.24E+00 -1.85E+02 4.35E+00 2.37E-02

-1.00E-01 3.80E+00 -2.13E+02 5.07E-01 4.35E+00 -2.29E+02
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metry is independent of the RVE size, or size of averaging volume, which
is contrary to the conclusion by Lin and Wu (2016). In addition, from the
perspective of stress tensor calculation, the number of particles in the RVE
does not need to be large, namely, tens or hundreds of particles would be ad-
equate provided that high-precision contact geometric resolution is assured,
which ParaEllip3d successfully provides.

6.4. Bagi’s vs Weber’s vs Drescher’s formulas

The static stress tensor calculated from Weber’s, Drescher’s, and Bagi’s
formulas are compared in Table 4, using the assembly of 1,536 monodisperse
spherical particles.

Table 4: Stress tensors calculated from various formulas

formula stress tensor RAI (%)

-2.09E+02 -9.84E+00 5.25E+00
Bagi -9.84E+00 -2.11E+02 -4.00E-01 0.028

5.25E+00 -4.00E-01 -2.76E+02

-1.88E+02 -9.42E+00 4.69E+00
Weber -9.95E+00 -1.90E+02 -1.05E+00 5.2

5.62E+00 -5.35E-01 -2.55E+02

-2.09E+02 -9.84E+00 5.25E+00
Drescher -9.84E+00 -2.11E+02 -4.74E-01 94.7

2.19E+02 2.14E+02 1.88E+01

First, the stresses calculated by Weber’s and Drescher’s formulas are
asymmetric and are different from the result of Bagi’s formula. Second, the
RAI by Bagi’s formula is low (below 0.03%), whereas the RAI by Weber’s
formula is 5.2% indicating strong asymmetry, and the RAI by Drescher’s
formula is 94.7% representing high asymmetry. In addition, the σzz (or σ33)
component by Drescher’s formula deviates significantly from that by Weber’s
and Bagi’s formulas.
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7. STRESS TENSOR CALCULATION IN PARALLEL COM-

PUTING

7.1. DoD supercomputers

The target architectures in this work are four of the DoD supercomputers:
Thunder, Topaz, Excalibur, and Onyx, and their architectural parameters are
listed in Table 5.

Table 5: Four DoD Supercomputers (https://centers.hpc.mil/systems/summary.html).

supercomputer Thunder Topaz Excalibur Onyx

system SGI ICE X SGI ICE X Cray XC40 Cray XC40/50
compute nodes 3,576 3,492 3,162 3,438
cores per node 36 36 32 44
total cores 125,888 125,440 101,184 161,448

memory per node 128 GB 128 GB 128 GB 128 GB
CPU Xeon E5-2699v3 Xeon E5-2699v3 Xeon E5-2698v3 Xeon E5-2699v4

core speed 2.3 GHz 2.3 GHz 2.3 GHz 2.8 Ghz
interconnect 4x FDR InfiniBand 4x FDR InfiniBand Cray Aries Cray Aries

peak PFLOPS 5.62 4.66 3.77 6.06
default MPI SGI MPT SGI MPT Cray MPICH2 Cray MPICH2

7.2. Stress tensor symmetry

A parallel simulation depositing 7,200 spherical particles into a rigid con-
tainer is conducted using 3 x 3 x 4 compute grids in x, y, z directions,
respectively, as illustrated in Fig.4. Spatial distribution of σzz in the rested
state is plotted in Fig.10. Note that some of the digits are hidden due to
post-process rendering effect, and only the numbers at the top and left parts
of the figure are readable.

Stress tensors over the grids are calculated in the rested state using Bagi’s
formula. From nine columns of compute grids, the central column and an
edge column are selected to print out their stress tensor values in top-down
order in Table 6. It is seen that excellent symmetry is achieved, whether
from internal compute grids or from boundary compute grids. This verifies
that the stress tensor calculation algorithm in MPI parallel 3D DEM is im-
plemented correctly. It is also observed that σzz increases with depth due to
gravity, as expected.

26



Figure 10: σzz distribution of 7,200 particles using 3 x 3 x 4 grids.

Table 6: Static stress tensors calculated over parallel computing grids.
central column edge column

grid stress tensor RAI (%) stress tensor RAI (%)

-4.17E+01 -4.81E+00 -2.16E+00 -6.17E+01 3.89E-01 -8.70E+00
top -4.81E+00 -4.17E+01 -2.95E+00 2.68E-02 3.89E-01 -6.50E+01 -1.03E+01 5.32E-04

-2.16E+00 -2.94E+00 -5.52E+01 -8.70E+00 -1.03E+01 -7.80E+01

-3.99E+02 -1.55E+01 -5.02E+00 -2.77E+02 -2.55E+01 9.72E+00
mid-top -1.55E+01 -3.89E+02 -2.18E+00 1.50E-03 -2.55E+01 -3.27E+02 -4.63E+01 1.32E-04

-5.02E+00 -2.18E+00 -4.74E+02 9.72E+00 -4.63E+01 -3.28E+02

-6.31E+02 -1.10E+02 -2.17E+01 -4.32E+02 -1.51E+02 1.00E+02
mid-bottom -1.10E+02 -5.97E+02 -1.14E+01 3.56E-04 -1.51E+02 -4.09E+02 1.30E+02 2.77E-05

-2.17E+01 -1.14E+01 -1.06E+03 1.00E+02 1.30E+02 -6.50E+02

-7.29E+02 -1.93E+01 -4.93E-01 -5.63E+02 -1.51E+02 -3.12E+01
bottom -1.93E+01 -7.19E+02 7.80E+00 2.29E-04 -1.51E+02 -5.67E+02 -2.02E+01 5.41E-04

-4.93E-01 7.80E+00 -1.38E+03 -3.12E+01 -2.02E+01 -9.11E+02
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7.3. Spatial distribution of σzz

Three different spherical particle assemblies (7k, 50k, and 250k particles,
respectively) are used to investigate the spatial distribution of σzz utilizing
parallel computing. The particles are dropped into rigid containers via grav-
itational pluviation, and then the assemblies are trimmed flat at the top
surface. High-resolution movies generated from the simulations of gravita-
tional deposition are displayed at the following YouTube playlist (note: play
with 1080p or 1440p HD option to observe details): https://www.youtube.
com/playlist?list=PL0Spd0Mtb6vXWB2qqR0k6Hc35Qcj12tXr

(a) 7k particles. (b) 50k particles. (c) 250k particles.

Figure 11: Top-trimmed spherical particle assemblies.

The top-trimmed assemblies consist of 7k, 50k, and 250k particles, re-
spectively, and their heights are 0.06 cm, 0.15 cm, and 0.50 cm, respectively,
as shown in Fig.11. The number of particles per grid in parallel computing is
roughly 55, 75, and 55 for the three specimens, respectively. A vertical slice
view of σzz is plotted for the three assemblies in Fig.12, wherein the σzz con-
tours exhibit a dome-shaped spatial distribution. Zebra-shaded graphs are
used to plot the distribution more clearly in Fig.13, exhibiting σzz contour
dome-shapes for each of the three different assemblies. The spatial distribu-
tion captured by parallel computing of 3D DEM differs from that calculated
by CCM, which would provide evenly-distributed σzz in the horizontal direc-
tion for the case of no boundary friction, as shown later in Fig.27(b).

The dome-shaped spatial distribution of σzz is associated with conducting
pluviation in a relatively narrow container, which prevents particles from
moving laterally, locking up different microstructures along horizontal levels.
As illustrated later in Section 9.2, the horizontal stress σyy also produces a
dome-shaped distribution. From the vertical centerline to side walls of the
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container, the lockup may become more pronounced and result in such stress
distributions. This conjecture will be further studied by analysis of internal
topology and fabric across the particle assemblies, for example, using Qhull
(www.qhull.org), which enables construction of tetrahedra in 3D space that
connect the centroids of every four neighboring particles, or the contact points
of every four neighboring interparticle contact pairs, and examines important
geometric quantities such as tetrahedral shape/volume, solid angles, dihedral
angles, etc.

In addition, Section 9.2 delineates incremental displacement (Fig.26) and
dislocation pattern (Fig.29) of the particle assemblies as a result of pluviation,
which could also contribute to the stress distribution.

(a) 7k particles. (b) 50k particles. (c) 250k particles.

Figure 12: Vertical slice view of σzz.

(a) 7k particles. (b) 50k particles. (c) 250k particles.

Figure 13: Vertical slice view of σzz.

Figure 14 provides a horizontal slice view of σzz for the three assemblies.
In the center, a ring-shaped distribution is revealed. An isosurface view of
σzz is presented in Fig.15: (a) side view of the 7k particle assembly, where
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the dome-shape is plotted by an isosurface; and (b) bottom view of the 250k
particle assembly.

(a) 7k particles. (b) 50k particles. (c) 250k particles.

Figure 14: Horizontal slice view of σzz.

(a) 7k particles. (b) 250k particles.

Figure 15: Isosurface view of σzz for 7k and 250k assemblies.

7.4. Influence of compute grid sizes

For each of the seven equations that calculate stress in granular materials,
Eq.(1)∼(7), the term V denotes volume of the RVE. In parallel computing
of 3D DEM, V is dependent on the size of the compute grids. It is interest-
ing to recognize that the dynamically-adaptive compute grids used in MPI
parallel 3D DEM are neither purely Lagrangian nor purely Eulerian: (a) the
compute grids provide spatial domain decomposition for parallel computing
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and are not tied to particles, though they follow the overall motion of the
particle assembly in 3D space, similar to a Lagrangian perspective; and (b)
generally the compute grids are not Eulerian; however, they become Eule-
rian if they are fixed on purpose, which provides a flexible way to observe
fluid-like behavior of granular materials (but adversely affects load balancing
in parallel computing).

Figure 16 displays σzz along the compute grid surfaces of the 50k par-
ticle assembly at rest using 3x3x5, 5x5x7, and 7x7x13 grids (1110, 285, 78
particles per grid accordingly), respectively. Apparently different values are
presented at the same location. For example, the center grid on the left-front
surface provides -933, -1111, and -987 Pa for σzz for the three different grids,
respectively. Overall, denser grids produce higher σzz at greater depth and
produce lower σzz at lower depth due to volume averaging effect.

Table 7 lists the stress tensor components calculated in the center com-
pute grid of 7k and 50k particle assemblies, respectively, using different com-
binations of grids. The normal stress components increase with denser grids
(i.e., smaller grid sizes) in the case of 7k particles, and decrease with denser
grids in the case of 50k particles. In general, the magnitude of stress tensor
components does not have a monotonic relation with the averaging volume
used to calculate the stress tensor, and it actually depends on the spatial
location of the grid inside the particle assembly. Furthermore, the size of the
compute grids in parallel computing can be flexibly chosen, according to a
particular length-scale effect of interest to be resolved by the analyst.

Table 7: Stress tensor calculated using different compute grids

center grid of 7k particles center grid of 50k particles
grids stress tensor grids stress tensor

-3.20E+02 -5.98E+00 -4.02E+00 -1.12E+03 -6.30E+00 -1.87E+02
1x1x1 -5.98E+00 -3.18E+02 -8.32E+00 3x3x5 -6.30E+00 -1.08E+03 -1.11E+02

-4.02E+00 -8.32E+00 -4.68E+02 -1.87E+02 -1.11E+02 -1.87E+03

-5.09E+02 -1.11E+02 -2.19E+01 -7.42E+02 -1.20E+02 -3.81E+02
3x3x3 -1.11E+02 -5.00E+02 -1.83E+01 5x5x9 -1.20E+02 -6.98E+02 -3.32E+02

-2.19E+01 -1.83E+01 -8.01E+02 -3.81E+02 -3.32E+02 -1.26E+03

-5.25E+02 -9.91E+01 -1.50E+02 -4.92E+02 -1.23E+02 -2.97E+02
5x5x5 -9.91E+01 -4.73E+02 -9.51E+01 7x7x13 -1.23E+02 -4.46E+02 -2.27E+02

-1.50E+02 -9.51E+01 -1.18E+03 -2.97E+02 -2.27E+02 -8.07E+02
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(a) 3x3x5 grids. (b) 5x5x9 grids.

(c) 7x7x13 grids.

Figure 16: 3D view of σzz using different compute grids (zoom-in to the PDF file to see
the small-font numbers).
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8. STRESS DISTRIBUTION DURING DYNAMIC PROCESSES

8.1. Gravitational pluviation

The temporal and spatial distributions of σzz during gravitational pluvi-
ation are studied using the third particle assembly described in Section 7.3.
The specimen consists of 250k particles that are initially floated up to 1.5
meters in height, and then allowed to drop under gravity into a rigid con-
tainer. Each parallel computing grid contains roughly 55 particles. The
contour plots of vertical stress σzz are shown in two movies at YouTube:

• σzz: https://youtu.be/OtZoVFKRHjg
• zoomed-in σzz: https://youtu.be/FBG4HQK4Hzo

(a) stage 18. (b) stage 24.

(c) stage 30. (d) stage 33.

Figure 17: σzz at different stages of 250k particle pluviation.
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The simulation output is evenly divided into 100 stages in time, and
Fig.17 displays σzz contour distributions at stages 18, 24, 30 and 33, respec-
tively. Note that blue color indicates zero stress. During pluviation, as the
particles start to pack at the bottom of the container, the location of max-
imum σzz keeps moving up until all particles are packed. When comparing
the following two movies:

• particles: https://youtu.be/V23MyTCdEGg
• σzz: https://youtu.be/FBG4HQK4Hzo,

it is seen that the location of maximum σzz is near the top surface of the
packed particles, where the most intense collisions occur between particles.
Figure 18 shows the σzz contour distribution and particle assembly state at
stage 30, side-by-side for easier comparison.

(a) σzz. (b) particles.

Figure 18: σzz vs particle assembly state at stage 30.

8.2. Constrained collapse

Numerical collapse simulations using 535k different-shaped particles are
performed to observe stress tensor component distributions. The simulation
process is essentially the same as pluviation, but using a wider container
(and more particles) to observe the collapse and expansion of the particle
assemblies. Each parallel computing grid contains roughly 60 particles. Four
particle shapes are chosen with the following aspect ratios: sphere (1:1:1),
ellipsoid-1 (1:0.8:0.6), ellipsoid-2 (1:0.8:0.4), and ellipsoid-3 (1:0.6:0.4), of
which the maximum particle semi-axis length is 2 mm. 3D details of the
particle motion can be watched via the following movies at YouTube:
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• sphere: https://youtu.be/ZVX4-fREy2M
• ellipsoid-1: https://youtu.be/nrUUp1rz9OY
• ellipsoid-2: https://youtu.be/AQuG2tKeZC4
• ellipsoid-3: https://youtu.be/6XuyaMCjpll

Figure 19 demonstrates the collapse of 535k particles with 8 snapshots
in time. Note the scattered particles in the central area of Fig.19 (4 ∼ 6)
that are rebounded from the front/back walls, not from the left/right walls.
Figure 20 shows the cross-sectional view of sphere and ellipsoid-1 assemblies
at rest.

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 19: Side view of the collapse process of 535k particles.

(a) Sphere. (b) Ellipsoid-1.

Figure 20: Cross-sectional view of sphere and ellipsoid-1 assemblies at rest.

Detailed temporal and spatial distributions of σzz can be viewed via the
following movies at YouTube:
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• sphere σzz: https://youtu.be/JevBgyBnLJA
• ellipsoid-1 σzz: https://youtu.be/0SaBOo57mqY
• ellipsoid-2 σzz: https://youtu.be/RY6gh2xazis
• ellipsoid-3 σzz: https://youtu.be/ZBNBo1p-PEg

(a) stage 04. (b) stage 08.

(c) stage 12. (d) stage 40.

Figure 21: σzz contours at different stages of 535k particle collapse.

The collapse simulation output is also evenly divided into 100 stages in
time, and Fig.21 displays the σzz contours for the sphere assembly at stages
04, 08, 12, and 40, respectively. The stress is plotted using a combination
of midplane slice view and boundary view. At stage 04, the bottom of the
particle assembly undergoes maximum stress due to particle-wall collision; at
stage 08, the collision between upper and lower particles causes the maximum
stress; at stage 12, the fluid-like “wave” spreads and hits the side walls of
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the container where the maximum stress occurs; and at stage 40, the particle
assembly is close to rested/static state.

Figure 22 displays the midplane slice view of σzz contours at rest using
zebra-shaded graphs for the four assemblies with different particle shapes.
Overall, a layered stress distribution pattern is observed, parallel to the sur-
face profile of the collapsed particle assemblies.

(a) sphere. (b) ellipsoid-1.

(c) ellipsoid-2. (d) ellipsoid-3.

Figure 22: σzz contours for particles with different aspect ratio.

In contrast to the dome-shaped σzz contour inside a narrow vertical con-
tainer, as shown in Section 7.3, the wider container allows more lateral motion
of the particles and alleviates the lockup effect along its side walls, resulting
in a more evenly-distributed stress contour, particularly in Fig.22(d).
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9. MICROSTRUCTURAL EFFECT ON STRESS DISTRIBU-

TION IN GRANULAR MATERIALS

9.1. Influence of bottom impact in pluviation

In the pluviation simulations, the initial locations of the particles are lifted
by a certain distance such that they generate stronger collisions at the bottom
of the rigid container. The 7k, 50k, and 250k particle assemblies are lifted
by 5, 10, and 20 cm, respectively, to create bottom gaps. The pluviation
processes are displayed at the following YouTube playlist: https://www.

youtube.com/playlist?list=PL0Spd0Mtb6vVnYZ795H3ku8C-0tBPIPfS.

(a) without bottom gap. (b) with 5 cm bottom gap.

Figure 23: σzz with or without initial bottom gap for 7k particles.

(a) without bottom gap. (b) with 10 cm bottom gap.

Figure 24: σzz with or without initial bottom gap for 50k particles.
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Figure 23 displays the σzz contours at rest for 7k particles with and with-
out 5 cm bottom gap, for which a slight difference can be noticed; yet, the
overall contour distributions are similar. Figure 24 displays the σzz contours
at rest for 50k particles with and without the 10 cm bottom gap. Figure 25
displays the σzz contours at rest for 250k particles with and without the
20 cm bottom gap. Again, the overall contour distributions are similar,
though a slight difference is noticeable. Further investigation into the re-
lations between various pluviation heights and granular material properties
such as packing density/void ratio, fabric anisotropy, stress distribution, etc,
is needed to better understand the effects.

(a) without bottom gap. (b) with 20 cm bottom gap.

Figure 25: σzz with or without initial bottom gap for 250k particles.

9.2. Influence of friction

Two more cases are investigated for the gravitational pluviation tests:
(1) no particle-to-wall friction; (2) no friction whatsoever, i.e., particle-
to-particle and particle-to-boundary friction vanish. The particle assem-
bly motions and corresponding incremental displacement vector fields can
be observed in the following YouTube playlist: https://www.youtube.

com/playlist?list=PL0Spd0Mtb6vVy7jG_XipIqvbejNGtLxa9, wherein six
movies play continuously to show the differences. With boundary friction,
the deposited/packed particles are locked immediately by the walls; whereas,
without boundary friction the deposited/packed particles exhibit a stronger
rebound-and-repack process, during which particles clearly slide along the
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side and bottom walls. Without friction, the deposited/packed particles ex-
hibit slippage along walls and dislocations between particles.

Figure 26 displays the incremental displacement vector fields at a later
stage of the particle assembly motion for the 3 cases, and they exhibit some
differences.

(a) friction. (b) no wall friction. (c) no friction.

Figure 26: Friction effect on incremental displacement vector fields of 7k particle assembly.

Figure 27 displays a slice view of σzz for the 3 cases. If comparing (a)
friction to (b) no wall friction, the difference can be observed in the lower-
right zone, although the overall distributions are similar. On the other hand,
case (c) provides a noticeably different stress distribution since it represents
a different material with zero friction.

(a) friction. (b) no wall friction. (c) no friction.

Figure 27: Friction effect on σzz for 7k particle assembly.

The horizontal stress σyy distribution for the three cases is displayed in
Fig.28. Case (b) reveals higher σyy in the lower-right zone than in case (a),
which could be the result of a frictionless wall that allows more re-adjustment
between particles in that zone. Case (c) displays even higher concentration
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of σyy in the lower-right corner. The ratio of horizontal to vertical stress
σyy/σzz, namely, the coefficient of lateral earth pressure at rest K0, is worthy
of more investigation in a separate paper.

(a) friction. (b) no wall friction. (c) no friction.

Figure 28: Friction effect on σyy for 7k particle assembly.

The three different friction conditions are also simulated for the
50k particle assembly. The particle assembly motions are displayed at
the following YouTube playlist: https://www.youtube.com/playlist?

list=PL0Spd0Mtb6vXzsWtvGbiu4w0ukkfL_7J4, where 3 movies play con-
tinuously to show the differences. The particle assemblies reveal clear yet
distinct dislocations, which can be observed by dot-matrix view shown
at the following YouTube playlist: https://www.youtube.com/playlist?

list=PL0Spd0Mtb6vUQQjzq7070HokGSkQor8xE. Figure 29 displays the dis-
location pattern side view of the 50k particle assembly for the three cases.

(a) friction. (b) no wall friction. (c) no friction.

Figure 29: Friction effect on dislocations for 50k particle assembly.

Figure 30 displays a slice view of σzz contour for the 50k particle assem-
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bly for the three cases. If comparing (a) friction to (b) no wall friction, the
difference may be observed in the lower-right zone, although the overall dis-
tributions are similar. Case (c) provides a different stress distribution since
it represents a different material with zero friction.

(a) friction. (b) no wall friction. (c) no friction.

Figure 30: Friction effect on σzz for 50k particle assembly.

From Figs.20, 26 and 29, it is noticed that the monodisperse assemblies
tend to “crystallize” by arranging themselves into regular subsets. In our
tentative simulations of weak collision using low pluviation/free fall height,
the phenomenon is not only observed in monodisperse assemblies of spheres,
but also seen in that of ellipsoids; and the flatter the ellipsoids, the weaker
the “crystallization.” Small-scale polydisperse assemblies have not demon-
strated such crystallization, and we do not yet have datasets for large-scale
simulations of polydisperse assemblies to analyze. The crystallization phe-
nomenon is worthy of further investigation, which should cover the influence
of particle shape, particle size distribution, particle collision strength associ-
ated with pluviation height, initial particle spatial distribution, and container
side gap space that allows lateral deformation of particle assemblies.

9.3. Influence of particle shape

We hypothesize that particle shape affects the stress distribution re-
sulting from gravitational pluviation. To support this hypothesis, four
particle aspect ratios (sphere (1:1:1), ellipsoid-1 (1:0.8:0.6), ellipsoid-2
(1:0.8:0.4), and ellipsoid-3 (1:0.6:0.4)) are used in the pluviation sim-
ulations for 250k particles. Each parallel computing grid contains
roughly 55 particles. The pluviation processes can be viewed via
the following YouTube playlist: https://www.youtube.com/playlist?

list=PL0Spd0Mtb6vU_7RwKbiBdpQGS7GGbBvUs. The rested states for the
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three aspect ratios of ellipsoidal particles are displayed in Fig.31, in addition
to the spherical particles shown in Fig.11(c) (trimmed at the top). Clearly
they provide a different structure and packing density due to particle shape
difference.

(a) ellipsoid-1. (b) ellipsoid-2. (c) ellipsoid-3.

Figure 31: Particle shape effect on deposited assemblies.

The sphere (Fig.13(c)) and ellipsoid-1 (Fig.32(a)) cases show a dome-
shaped σzz spatial distribution. However, the ellipsoid-2 and ellipsoid-3 cases
(Figs.32(b),(c)) exhibit a river plate stress distribution, which shows lower
values in the center part of the particle assemblies, contrary to that of dome-
shaped distribution. How the distribution is related to particle shapes needs
a more comprehensive study involving distributions of localized density or
void ratio, principle axis orientations, fabric tensors, spatial topology of par-
ticle centroid connectivity and contact point connectivity, etc. But we have
recognized that they are related, such that it may be concluded that particle
shape affects stress distribution in granular materials.

(a) ellipsoid-1. (b) ellipsoid-2. (c) ellipsoid-3.

Figure 32: Particle shape effect on σzz spatial distribution.
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10. CONCLUSION AND OUTLOOK

Bagi’s formula is chosen for stress tensor spatial distribution calculation
over granular materials under static conditions because (i) it satisfies sym-
metry, and (ii) a dynamic stress tensor formula, such as modified Nicot’s
formula, converges to it for static equilibrium. Its implementation in MPI
parallel computing of 3D DEM is based upon spatial domain decomposition
and dynamically-adaptive compute grids, and it requires separate treatment
in calculating the internal and external contact forces and corresponding
branch vectors. Numerical simulations verify the correctness of implementa-
tion in the MPI parallel 3D DEM code ParaEllip3d by showing that stress
tensors calculated within each grid for parallel computing satisfy symmetry
under static conditions.

The combination of stress tensor calculation and large-scale parallel com-
puting provides deeper insight into the micromechanical behavior (stress ten-
sor in the paper) of granular materials under static and dynamic conditions.
The normal stress components in gravitationally-deposited particle assem-
blies exhibit non-uniform spatial distributions under static equilibrium, and
the manner by which the maximum stress zone changes during the process of
gravitational pluviation and collapse is also captured. 3D DEM simulations
illustrate the effect of the following factors on stress distribution: pluviation
impact extent, boundary friction, interparticle friction, boundary constraint
conditions, and particle shape. Some of the factors, e.g., pluviation height
and particle shape, have important engineering implications and are worthy
of further study.

It is of great interest and importance to extend the average Cauchy stress
tensor calculation in MPI parallel 3D DEM to include finite strain mea-
sures, and relevant objective-rate-forms such as Oldroyd and Truesdell stress
rates (which involve the velocity gradient) utilizing the compute grids. They
will allow a complete mechanical upscaling framework from grain-scale to
continuum-scale for the study of stress-strain and stress-strain-rate-form con-
stitutive relations. In future work, a method will be presented to calculate
strains, strain-rates, and objective stress-rates for large deformations within
granular materials based upon MPI parallel 3D DEM for non-spherical par-
ticles.
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