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Abstract 14 

Recent years have witnessed an increasing frequency of disasters, both natural and human-induced. 15 

This applies pressure to critical infrastructures (CIs). Among all the CI sectors, the energy 16 

infrastructure plays a critical role, as almost all other CIs depend on it. In this paper, 30 energy 17 

infrastructure models dedicated for the modeling and simulation of power or natural gas networks 18 

are collected and reviewed using the emerging concept of resilience. Based on the review, typical 19 

modeling approaches for energy infrastructure resilience problems are summarized and compared. 20 

The authors, then, propose five indicators for evaluating a resilience model; namely, catering to 21 

different stakeholders, intervening in development phases, dedicating to certain stressor and failure, 22 

taking into account different interdependencies, and involving socio-economic characteristics. As 23 

a supplement, other modeling features such as data needs and time scale are further discussed. 24 

Finally, the paper offers observations of existing energy infrastructure models as well as future 25 

trends for energy infrastructure modeling. 26 

Keywords: energy infrastructure, resilience, power grid, modeling and simulation, model 27 

evaluation, natural gas network 28 

1 Introduction 29 

1.1 Critical Infrastructure (CI) Protection 30 

A nation’s health, wealth, and security rely on the production and distribution of goods and 31 

services. The array of physical assets, processes and organizations through which these goods and 32 

services move are called infrastructures (Moteff 2010). Among all infrastructure systems, the 33 

critical infrastructures (CIs) are those systems “whose incapacity or destruction would have a 34 
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debilitating impact on the defense and economic security” (PCCIP 1997). Presidential Policy 1 

Directives 21 Critical Infrastructure Security and Resilience (PPD-21) identified 16 critical sectors 2 

of infrastructures including: chemical, commercial facilities, communication, critical 3 

manufacturing, dams, defense industrial base, emergency services, energy, financial services, food 4 

and agriculture, government facilities, healthcare and public health, information technology, 5 

nuclear reactors, materials, and waste, transportation systems, and water and wastewater systems.  6 

However, human-induced and natural disasters, such as the 9/11 terrorist attacks (History.com 7 

2017) in 2001 and Hurricane Katrina (History.com 2018) in 2005, further highlighted the 8 

vulnerability of CI systems and raised the awareness about their protection. In the United States, 9 

the National Infrastructure Simulation and Analysis Center (NISAC) and the Department of 10 

Homeland Security established in 2001 and 2002, respectively, aim at improving CI protection. 11 

PPD-8 and PPD-21 specifically addressed the national preparedness of CI systems.  12 

Similar organizations and programs have also been developed in other regions and countries, such 13 

as the European Program on Critical Infrastructure Protection, the Critical Infrastructure Protection 14 

Implementation Plan in Germany and the Critical Infrastructure Resilience Program in the UK 15 

(Ouyang 2014). In Asia, recovering from the earthquake and tsunami at Tokushima, the National 16 

Resilience Program of Japan dedicated $210 billion worth investment in 2013 to increase the 17 

overall resilience of energy, water, transportation and other CIs (Dewit 2016). Being aware that 18 

the majority of outages have roots in the distribution system, the Chinese National Energy 19 

Administration allocated 20 trillion CNY for the distribution renovation during 2015-2020 to 20 

increase reliability, power quality, and resilience to disruptions. The modeling and simulation of 21 

CIs for protection and resilience purposes have thus received significant interests among 22 

universities, national laboratories and private companies.  23 

1.2 The Concept of Resilience 24 

Resilience, as an emerging concept in the area of engineering, was first introduced in 1973 by 25 

Holling into the fields of ecology and evolution (Holling 1973). This concept was first used to 26 

describe the ability of an ecosystem to continue functioning after changes. Nowadays, resilience 27 

has been broadly applied across many fields, including natural disaster and risk management 28 

(Cutter et al. 2014), civil infrastructure studies (Bocchini and Frangopol 2012; Bocchini et al. 2013; 29 

Frangopol and Bocchini 2011), system engineering (Dessavre et al. 2016), energy systems (Bie et 30 

al. 2017; Watson et al. 2014), etc.  31 

Though consensus on resilience definition is lacking (Hosseini et al. 2016), the essence of 32 

resilience definitions is generally the same, that is, it is an overarching concept that encompasses 33 

the system performance before and after disastrous events. Francis and Bekera (2014) reviewed 34 

various approaches to defining and assessing resilience and identified three resilience capacities: 35 

adaptive capacity, absorptive capacity, and recoverability. Resilience therefore can be defined as 36 

“the ability of an entity to anticipate, resist, absorb, respond to, adapt to and recover from a 37 

disturbance” (Carlson et al. 2012).  38 

Resilience is a multi-dimensional concept. Its qualitative and quantitative studies often involve 39 

interdisciplinary efforts. Meerow et al. (2016) reviewed the literature on urban resilience and 40 

concluded that “applying resilience in different contexts requires answering: Resilience for whom 41 
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and to what? When? Where? And Why?” They, thus, pointed out the key considerations in the 1 

application of resilience: the stakeholder, the stressor, the temporal and spatial scale, and the 2 

motivation. Shaw and IEDM Team (2009) developed a Climate Disaster Resilience Index to 3 

measure the existing level of climate disaster resilience of targeted areas. This index utilizes 25 4 

variables in five resilience-based dimensions: natural, physical, social, economic and institutional. 5 

Carlson et al. (2012) and McManus et al. (2007) provided frameworks for system-level and region-6 

level resilience overview to address personal, business, governmental, and infrastructure aspects 7 

of resilience. Roege et al. (2014) formulated a scoring matrix to evaluate the system’s capability 8 

to plan, absorb, recover and adapt from the perspective of physical, information, cognitive and 9 

social.  10 

In this work, reviewing energy infrastructure models from a resilience perspective implies utilizing 11 

different resilience-based dimensions and considerations during the evaluation of the selected 12 

models. Consequently, the models’ ability to promote resilience in energy infrastructures against 13 

short-term disruptions and long-term degradations is addressed, not only from a physical 14 

perspective, but also socio-economically.  15 

1.3 Energy Infrastructure Resilience 16 

Energy infrastructures include electric power, natural gas, and fuel networks. Among all the CI 17 

sectors, energy infrastructure might be identified as the most crucial one due to the enabling 18 

functions they provide across all other CI sectors (PPD-21). For example, water supply and sewer 19 

systems rely on electric power systems to operate their pump stations. Information and 20 

telecommunication systems rely on power networks to carry out information transmission tasks. 21 

Transportation systems rely on fuel networks to obtain power for all kinds of vehicles. The 22 

dependence of other critical infrastructures on the energy network can lead to its vulnerability: 23 

Disruptions in the energy system may transverse to other dependent infrastructure systems and 24 

possibly even back to itself, where the failure originated (Huang et al. 2014; Buldyrev et al. 2010). 25 

This cascading and escalating characteristic of failure adds to energy network’s vulnerability. 26 

Energy infrastructures are also vulnerable to climate change. For example, the rising sea level and 27 

increasing frequency of major storms lead to severe floods in coastal areas, where a lot of energy 28 

infrastructures are located (Bollinger 2011), such as power plants, natural gas facilities, and oil 29 

and gas refineries. Moreover, high-impact low-probability events, such as hurricanes and terrorist 30 

attacks, further threaten the operation of energy infrastructures.  31 

Based on the above-mentioned importance and vulnerability, the study of energy infrastructure 32 

resilience has become an urgent and significant research topic. Different researchers approach this 33 

problem in various ways. Many scholars simulate energy infrastructure resilience as an optimal 34 

operation problem (Arif et al. 2018; Chen et al. 2016; Ding et al. 2017; Chen et al. 2018; Manshadi 35 

and Khodayar 2015; Yuan et al. 2016). Some adopt agent-based modeling (ABM) technique to 36 

reveal the complex interactions among energy system components (Dudenhoeffer et al. 2006; 37 

Pederson et al. 2006; Li et al. 2016; Keirstead et al. 2010). Others improve traditional topological 38 

metrics of power grids by embodying its physical behavior (Bompard et al. 2009). Also, in 39 

response to the emergence of “big data” resources, some researches apply large-scale data analysis 40 

in the energy resilience studies, especially for power grid studies (Ji et al. 2016; Peter et al. 2015).  41 

Although some researches consider resilience and reliability of energy infrastructures in the same 42 

topic (Albasrawi et al. 2014; Amin 2008), it is to note that resilience and reliability are not the 43 
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same. While reliability is the ultimate goal that system designers and providers strive for, resilience 1 

is the way to achieve it by recovering fast from and adapting to disruptions (Clark-Ginsberg 2016). 2 

The focus of this review paper is the modeling and simulation of energy infrastructure resilience. 3 

1.4 Work Scope and Highlights 4 

The modeling and simulation of CIs has been the topic of a few critical reviews. Eusgeld et al. 5 

(2008) reviewed eight modeling and simulation techniques for interdependent CIs; namely, agent-6 

based modeling, system dynamics, hybrid system modeling, input-output-model, hierarchical 7 

holographic modeling, critical path method, high level architecture and petri nets. They also 8 

proposed seven model evaluation criteria concerning modeling focus, methodical design strategies, 9 

type of interdependencies, types of events for simulation, event consequences, data needs and 10 

monitoring field. More recently, Ouyang (2014) reviewed existing approaches for CI modeling 11 

and simulation grouping them into six types: empirical approaches, agent-based approaches, 12 

system dynamics based approaches, economic theory based approaches, network based 13 

approaches, and others. Existing studies were categorized and reviewed in terms of fundamental 14 

principles. Different approaches were further compared concerning the inclusion of sampled 15 

resilience improvement strategies.  16 

However, both aforementioned studies had a working scope of general CI systems rather than 17 

focusing on energy infrastructures. The work of Eusgeld et al. (2008) only compared different 18 

modeling approaches against each other without reviewing the details of specific models. The 19 

work of Ouyang (2014) adopted several resilience improvement strategies to evaluate the 20 

modeling approaches but did not address other important issues of resilience such as the 21 

stakeholder or the temporal scale.  22 

In this paper, we conduct a comprehensive review of 30 energy infrastructure models collected 23 

from open literature. In the overview part, we first summarize the modeling scenarios and the 24 

problems tackled by the models, as well as their typical assumptions. Based on the literature review, 25 

typical approaches to study energy infrastructure resilience are introduced with exemplary models. 26 

As the next step, we propose five selected resilience indicators; namely, catering to different 27 

stakeholders, intervening in development phases, dedicating to certain stressor and failure, taking 28 

into account different interdependencies and involving socio-economic characteristics. Other 29 

features are further discussed such as model type, data needs, etc. This review highlights the 30 

features and trends of existing models concerning their ability to address the multi-dimensional 31 

aspects of energy infrastructure resilience while stressing the characteristics of different modeling 32 

approaches. From reading the paper, the readers could gain knowledge of: 1) what are the 33 

differences among major energy infrastructure models, 2) what are the modeling needs from a 34 

resilience perspective through the proposed resilience indicators, 3) what kind of energy 35 

infrastructure model is needed in the future to better equip energy infrastructure resilience studies.  36 

The remainder of the paper is organized as follows: Section 2 introduces the model-collection 37 

procedure, provides an overview of the models and summarizes typical modeling approaches. 38 

Sections 3 proposes the resilience indicators, as well as other selected modeling features. Section 39 

4 gives a discussion based on the proposed indicators and modeling features. Finally, concluding 40 

remarks and future trends in the field are stated in Section 5. 41 
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2 Reviewing Existing Energy Infrastructure Models 1 

2.1 Collection of Models 2 

The review focus of this paper are models aiming at energy infrastructure operation, protection, or 3 

resilience enhancement. Three model collection methods have been applied: 1) searching literature 4 

with a variety of keywords, 2) checking the references and citations of the papers identified through 5 

method 1, 3) referring to the publications of selected research groups in the field.  6 

The keywords used in the literature search are listed in Table 1. The search strings accounted for 7 

the fact that different literature may use different terms for the same object (i.e. protection and 8 

security). As a result, 210 journal and conference papers from reliability, infrastructure and energy 9 

related journals were initially collected. Related papers citing or cited by the papers found in the 10 

first stage were reviewed as well.  11 

Table 1 Keywords for Literature Search 12 

 

+ 

 

+ 

Model* 

Energy Infrastructure 

 

Simulat* 

Power Resilien* 

Electric* 
Network 

Vulnerab* 

Gas Protect* 

Fuel 

 
System 

Secur* 

Risk 

 13 

Models were also collected by reviewing the work done by active research groups in CI modeling 14 

and simulation field such as NISAC, ANL, Los Alamos National Laboratory (LANL), etc. NISAC 15 

experts use advanced modeling and simulation capabilities to address CI interdependencies, 16 

vulnerabilities, and complexities in the U.S. Scientists at ANL use the ABM technique to study 17 

various aspects of energy network resilience. They also developed models for the natural gas and 18 

petroleum fuel networks (Pederson et al. 2006). The Interdependent Energy Infrastructure 19 

Simulation System (Toole and McCown 2008) developed by LANL is an actor-based model that 20 

helps decision-makers understand and assess intrinsic vulnerabilities in CIs.  21 

Through the above-mentioned procedure, this study identified 30 models for energy infrastructures. 22 

In the selected models, 17 are applied on power networks, 3 on natural gas networks, 4 on both 23 

power and natural gas networks, and the remaining 6 are applied on other energy infrastructure 24 

systems. When looking at the detailed scenarios of the models, most models for power networks 25 

focus on power transmission networks. Nonetheless, the research on distribution systems is 26 

emerging. Some of the models integrate financial networks, human activity, or supervisory control 27 

and data acquisition (SCADA). The natural gas network models mainly focus on the analysis and 28 

restoration of natural gas transmission pipelines. The models for both power and natural gas 29 

networks are dedicated to studying the interdependencies between the two systems. Other models 30 

include energy generation and storage system model (Page et al. 2013), coal distribution network 31 
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model (Shih et al. 2009), crude oil and petroleum product transport pipeline model (Pederson et al. 1 

2006), and integrated urban energy systems model (Keirstead et al. 2010).  2 

2.2 Model Overview 3 

To understand what problems the research community of energy infrastructure resilience is trying 4 

to tackle and how the researchers are approaching these problems, this section first summarizes 5 

the research problems of the selected models and their corresponding key assumptions. Then, in 6 

the following section, the modeling approaches adopted by these models are introduced, 7 

representing typical methods for conducting energy infrastructure resilience studies. 8 

Given that resilience describes a system’s ability to sustain disruptions and to recover quickly from 9 

them, energy infrastructure resilience models concentrate on solving two major problems: 1) 10 

resource allocation and hardening planning in the preparation stage, 2) power outage management 11 

and service restoration in the immediate aftermath and recovery stage. Due to the limitation of 12 

budgets, how to identify the most vulnerable components in the system, harden them with 13 

minimized economic costs and gain the most effects out of the hardening measures is one main 14 

topic the research community cares about. The second topic aims to mitigate the impacts of the 15 

disasters and to recover the services quickly. Typical implementations include models that 16 

simulate the restoration process or that abstract the restoration process as an optimal control 17 

problem (Arif et al. 2018). Common restoration measures include repair crew dispatch, distributed 18 

generation (DG), switch device remote control, etc. 19 

Since the energy infrastructure sector is closely related to other CI sectors, an emerging number of 20 

researches focus on the study of interdependencies within the energy infrastructure sector and 21 

across CI sectors. Within the energy infrastructure sector, the interaction between the natural gas 22 

system and the power grid system is studied (Erdener et al. 2014). Across different sectors, 23 

researchers try to involve energy, water, transportation and communication systems into the same 24 

modeling and simulation framework and find resilient solutions on a more holistic scale. 25 

For different application focuses, the models are usually developed under various assumptions of 26 

the real world. In models of distributed generation or microgrid technologies, it is typically 27 

assumed that the remotely controlled automatic switch devices are available in the distribution 28 

network so that lines can be opened/closed and loads can be connected/disconnected to form 29 

multiple microgrids. The switches are assumed to have local communication capabilities to 30 

exchange information with its neighboring switches (Chen et al. 2016). In most resilience models 31 

that simulate the defender and attacker activities, the decision maker has a budget to harden a 32 

maximum of power lines and to place a maximum of DG units and the system operators are aware 33 

of the status of all the components after the occurrence of the outage (Yuan et al. 2016). The worst-34 

case attack scenario occurs and the hardened lines and nodes are assumed to be able to survive the 35 

disasters. For models that study the weather impact, it is usually assumed the system is exposed to 36 

the same weather conditions at any given time by modeling the weather event as a standstill event, 37 

which reduces the complexity of the modeling procedure because no regional weather aspects are 38 

considered. The restoration time during high and extreme wind speed events is equal to the 39 

restoration time during normal wind speeds (Panteli and Mancarella 2017; Cadini et al. 2017). For 40 

models studying interdependencies between power and gas systems, it is usually assumed that 41 

electricity generation consumes gas and gas compressors consumes electricity (Yuan et al. 2016). 42 

Other specific assumptions depend on the modeling objectives and the scale of the model. 43 
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Table 2 summarizes basic information for the selected models including name, developer/author, 1 

scenario, and purpose/problem tackled. “Scenario” gives the specific modeling object of a model. 2 

“Purpose/problem tackled” describes the targeted problem the model was developed to solve. 3 

Among all the models, 15% are for power outage management and service restoration, 21% are 4 

for vulnerability and reliability analysis, 18% are for resource allocation and hardening planning, 5 

12% are for infrastructure interdependency analysis. The rest address problems such as electricity 6 

market studies, weather event impact studies, general presentation and analysis, etc. 7 

Table 2 Basic Information of the Selected Models 8 
 

Name Developer/Author Scenario Purpose/ Problem Tackled 

1 Two-stage outage 

management model 

(2018) 

Arif et al. Power distribution systems Improve the computational efficiency in solving 

outage management problems for large distribution 

systems, co-optimize the repair, reconfiguration, 

and DG dispatch to maximize the picked-up loads 

and minimize the repair time. 

2 Microgrids formation 

scheme (2016) 

Chen et al. Power distribution systems Create a microgrid operation scheme to restore 

critical loads from the power outage by controlling 

the ON/OFF status of the remotely controlled 

switch devices and DG.  

3 Sequential service 

restoration framework 

(2018)  

Chen et al. Power distribution systems Generate a sequential service restoration framework 

for distribution systems and microgrids in large-

scale power outages. A sequence of control actions 

includes coordinating switches, distributed 

generators, and switchable loads to form multiple 

isolated microgrids.  

4 Multiple energy resilient 

operation model (2015)  

Manshadi and 

Khodayar  

Electricity and natural gas systems Identify the vulnerable components and ensure the 

resilient operation of coordinated electricity and 

natural gas infrastructures considering multiple 

disruptions within the microgrid by improving the 

resilience of generation and demand scheduling.  

5 Two-stage robust 

optimization model 

(2016) 

Yuan et al. Power distribution systems Resilient distribution network planning to 

coordinate the hardening distributed generation 

resource allocation with the objective of minimizing 

the system damage.  

6 A risk optimization model 

(2017)  

Nezamoddini et al. Power transmission networks Determine the optimal investment decision for the 

resilient design of transmission systems against 

physical attacks. The investment costs are 

minimized such that the load curtailment does not 

exceed a certain threshold value. 

7 The planner-attacker-

defender model (2017) 

Fang et al. Power transmission networks Study the combination of capacity expansion and 

switch installation in electric systems that ensures 

optimum performance under nominal operations 

and attacks. The planner-attacker-defender model is 

adopted to develop decisions that minimize 

investment and operating costs, and functionality 

loss after attacks. 

8 Attack structural 

vulnerability model 

(2010) 

Chen et al. Power transmission networks Propose a hybrid approach for structural 

vulnerability analysis of power transmission 

networks, in which a DC power flow model with 

hidden failures is embedded into the traditional 

error and attack tolerance methodology. 

9 CitInES (2013) Page et al. Energy generation, storage, transport, 

distribution systems and demand 

Present a multi-energy modelling environment to 

simulate and optimize urban energy strategies. 

Energy demand is modeled to consider the costs and 

impacts of demand-side measures. Optimization 

techniques are involved to provide answers to urban 

energy infrastructure planning issues.  
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Name Developer/Author Scenario Purpose/ Problem Tackled 

10 An improved model for 

structural vulnerability 

analysis (2009) 

Chen et al. Electric power systems Structural vulnerability analysis of power networks. 

Depicting a typical power network as a weighted 

graph based on electrical topology by introducing 

its bus admittance matrix. 

11 Graph Model (2006) Holmgren Electric power systems Model electric power delivery networks as graphs, 

calculate values of topological characteristics of the 

networks, and evaluate different strategies to 

decrease the vulnerability of the system. 

12 Tri-level defender-

attacker-defender model 

(2018) 

Lin and Bie Power distribution systems Find the best hardening plan under malicious 

attacks given the available defending resources and 

operational restoration measures for a distribution 

system. Resilient operational measures include 

optimal DG islanding formation and topology 

reconfiguration. 

13 A "proof-of-concept" 

model (2011) 

TU Delft The 380kV power network in the 

Netherlands 

Explore the adaptation of energy infrastructures to 

climate change. 

14 Electricity Market 

Complex Adaptive 

System (2006) 

ANL Electric power and financial networks Modeling and simulation of operations in 

restructured electricity markets. 

15 Natural Gas Infrastructure 

Toolset (2006) 

ANL, Infrastructure 

Assurance Center 

Natural gas networks Provide an analyst with a quick method to access, 

review, and display components of the natural gas 

network; perform varying levels of component and 

systems analysis, and display analysis results.  

16 Critical Infrastructure 

Modeling System (2006) 

INL Electric power system, human activity 

and SCADA 

Provide decision makers with a highly adaptable 

and easily constructed ‘wargaming’ tool to assess 

infrastructure vulnerabilities including policy and 

response plans.  

17 Critical Infrastructure 

Simulation by 

Interdependent Agents 

(2006) 

University Roma Tre Electric power system and SCADA Analyze short term effects of failures in terms of 

fault propagation and performance degradation.  

18 Integrated energy system 

reliability evaluation 

model (2016) 

Li et al. Electricity distribution network, 

distributed renewable energy system, 

gas system, cooling, and heating 

systems 

Present a new reliability evaluation approach, in 

which Smart Agent Communication is based system 

reconfiguration is integrated into the reliability 

evaluation process. 

19 SynCity (2010) Imperial College 

London 

Urban energy systems Provide an integrated, spatially and temporally 

diverse representation of urban energy use within a 

generalized framework across all the design steps 

and in a variety of problem environments. 

20 Resilience evaluation 

model (2017) 

Panteli and Pierluigi Electric power systems Provide a conceptual framework for gaining insight 

into the resilience of power systems with focus on 

the impact of severe weather events. The effect of 

weather is quantified with a stochastic approach. 

The resilience of the critical power infrastructure is 

modeled and assessed within a context of system-

of-systems that also include human response as a 

key dimension. 

21 Multi-microgrid reliability 

assessment framework 

(2017) 

Farzin et al. Multi-microgrid distribution system Develop a general framework for reliability 

assessment of multi-microgrid (MMG) distribution 

systems. Investigate reliability impacts of 

coordinated outage management strategies in a 

MMG distribution network. 

22 Critical Infrastructures 

Interdependencies 

Integrator (2002) 

ANL Natural gas pipelines Infrastructure restoration time and/or cost 

estimation considering an interdependency analysis. 
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Name Developer/Author Scenario Purpose/ Problem Tackled 

23 Restore (2011) ANL Natural gas pipelines Estimate the time and cost of Infrastructure 

restoration.  

24 A framework for 

reliability/availability 

assessment (2017) 

Cadini et al. Electric power transmission networks Combine an extreme weather stochastic model to a 

realistic cascading failure simulator based on a 

direct current power flow approximation and a 

proportional re-dispatch strategy. Dynamics of the 

network is completed by the introduction of a 

restoration model accounting for the operating 

conditions that a repair crew may encounter during 

an extreme weather event. 

25 Interdependent Energy 

Infrastructure Simulation 

System (2006) 

LANL Electric power and natural gas 

infrastructures 

Assist individuals in analyzing and understanding 

interdependent energy infrastructures. 

26 Framework for Electricity 

Production Vulnerability 

Assessment (2009) 

Shih et al. Coal distribution network Use data warehousing and visualization techniques 

to explore the interdependencies between coal 

mines, rail transportation, and electric power plants.  

27 Critical Infrastructure 

Protection Modeling and 

Analysis (CIPMA) 

Program (2006) 

Australian 

Government - 

Attorney General's 

Department 

CI networks and high priority precincts  Support business and government decision making 

for CI protection, counter-terrorism and emergency 

management, especially with regard to prevention, 

preparedness, and planning and recovery. 

28 Petroleum Fuels Network 

Analysis Model (2006) 

ANL, Infrastructure 

Assurance Center 

Crude oil and petroleum product 

transport pipelines 

Perform hydraulic calculations of pipeline transport 

of crude oil and petroleum products. Introduction of 

pipeline component dependencies into critical 

infrastructure analyses. 

29 Critical energy 

infrastructures (2014) 

Erdener et al. Electricity, natural gas and oil systems Analysis of the impacts of interdependencies 

between electricity and natural gas systems. 

Propose an integrated simulation model that reflects 

the dynamics of the systems in case of disruptions 

and takes the cascading effects of these disruptions 

into account. 

30 Fast Analysis 

Infrastructure Tool (2006) 

Sandia National 

Laboratory (SNL) 

Electric power, natural gas, and 

waterway systems 

Determine the significance and interdependencies 

associated with elements of the nation’s CI. 

 1 

2.3 Modeling Approaches 2 

In this section, we introduce typical modeling approaches for energy infrastructure resilience 3 

problems. The models collected in this paper adopt a variety of modeling approaches including 4 

optimal operation modeling, topological network modeling, agent-based modeling, probabilistic 5 

modeling, system dynamics modeling, empirical modeling, etc.  6 

Table 3 lists the modeling approaches and the corresponding models that were collected in this 7 

paper.  8 

The most common four approaches will be introduced in detail in the following subsections. The 9 

rest approaches are introduced briefly in “other approaches”. It should be noted that since the 10 

review object of this paper is numerical models that could conduct simulations and predict system 11 

performance in the real world, no surveys or qualitative studies were included. In the remaining 12 

part of this section, each modeling approach is introduced with exemplary models to address their 13 

characteristics. 14 
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 1 

Table 3 Modeling Approaches for Energy Infrastructure Resilience Problems 2 
 

Modeling Approach Model Name 

1 

Optimal Operation Modeling 

Two-stage outage management model (Arif et al. 2018) 

2 Microgrids formation scheme (Chen et al. 2016) 

3 Sequential service restoration framework (Chen et al. 2018) 

4 Multiple energy resilient operation model (Manshadi and Khodayar 

2015) 

5 Two-stage robust optimization model (Yuan et al. 2016) 

6 A risk optimization model (Nezamoddini et al. 2017) 

7 The planner-attacker-defender model (Fang and Sansavini 2017) 

8 

Topological Network Modeling 

Attack structural vulnerability model (Chen et al. 2010) 

9 CitInES (Page et al. 2013) 

10 An improved model for structural vulnerability analysis (Chen et al. 

2009) 

11 Graph Model (Holmgren 2006) 

12 Tri-level defender-attacker-defender model (Lin and Bie 2018) 

13 

Agent-Based Modeling 

A "proof-of-concept" model (Bollinger 2011) 

14 Electricity Market Complex Adaptive System (Pederson et al. 2006) 

15 Natural Gas Infrastructure Toolset (Pederson et al. 2006) 

16 Critical Infrastructure Modeling System (Dudenhoeffer et al. 2006) 

17 Critical Infrastructure Simulation by Interdependent Agents (Pederson 

et al. 2006) 

18 Integrated energy system reliability evaluation model (Li et al. 2016) 

19 SynCity (Keirstead et al. 2010) 

20 

Probabilistic Modeling 

Resilience evaluation model (Panteli and Mancarella 2017) 

21 Multi-microgrid reliability assessment framework (Farzin et al. 2017) 

22 Critical Infrastructures Interdependencies Integrator (Gillette et al. 

2002) 

23 Restore (ANL 2011) 

24 A framework for reliability/availability assessment (Cadini et al. 

2017) 

25 

Other 

Approaches 

 

Actor-Based Modeling 
Interdependent Energy Infrastructure Simulation System (IEISS) 

(Toole and McCown 2008) 

26 
Empirical Modeling 

Framework for Electricity Production Vulnerability Assessment (Shih 

et al. 2009) 

27 System Dynamics Modeling CIPMA Program (Pederson et al. 2006) 

28 Physical Modeling Petroleum Fuels Network Analysis Model (Pederson et al. 2006) 

29 Integrated Simulation 

Platform 

Critical energy infrastructures (Erdener et al. 2014) 

30 Integrated Simulation 

Platform 

Fast Analysis Infrastructure Tool (Pederson et al. 2006) 

 3 
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2.3.1 Optimal Operation Modeling  1 

Optimal operation modeling is one of the most widely used method in the research area of energy 2 

infrastructure resilience. In this method, when the system is interrupted, achieving resilience can 3 

be interpreted as an optimization problem to restore the system within a short time while 4 

minimizing the load shedding ratio.  5 

Arif et al. (2018) solved the outage management problem by co-optimizing the repair, 6 

reconfiguration, and DG dispatch to maximize the picked-up loads and minimize the repair time 7 

considering reconfiguration and repair crew scheduling. Chen et al. (2016) and Ding et al. (2017) 8 

proposed a microgrid formation mechanism to restore critical loads after major faults at the grid 9 

caused by natural disasters. In this scheme, a mixed-integer linear program was formulated to 10 

maximize the total prioritized loads restored while satisfying self-adequacy and operation 11 

constraints of each microgrid. Similarly, Chen et al. (2018) formulated a mixed-integer linear 12 

program model for the sequential service restoration problem. This model can generate the optimal 13 

restoration sequences to coordinate dispatchable DGs and switchgears to energize the system on a 14 

step-by-step basis. Manshadi and Khodayar (2015) proposed a bi-level optimization methodology 15 

which took into consideration the interdependency between natural gas and electricity 16 

infrastructures. Through this model, the identification of most vulnerable components in the 17 

system, as well as the resilient generation and demand scheduling could be achieved. Yuan et al. 18 

(2016) proposed a model for resilient distribution system planning with hardening and DG based 19 

on two-stage optimization. In this model, a multi-stage and multi-zone-based uncertainty set was 20 

used to capture the uncertainty of natural disasters. 21 

To sum up, existing optimal operation models share common object functions such as maximizing 22 

picked-up loads, minimizing repair time and economic investments. For restoration strategy 23 

development purpose, frequently considered measures include topology reconfiguration, DG 24 

dispatch, microgrid formulation, repair crew dispatch and switch device control. The problem is 25 

usually represented by mathematical models with equilibrium equations and certain constraints, 26 

including self-adequacy and operation constraints. An emerging number of researches focus on 27 

solving problems of demand scheduling and load flexibility in response to the adoption of 28 

building-to-grid, vehicle-to-grid technologies. 29 

However, this type of model is usually focused on one single problem, either protection resource 30 

allocation or restoration, which are two separate stages of energy infrastructure resilience. On the 31 

other hand, the occurrence of the disaster is usually not simulated. If all these characteristics are 32 

coupled together, the optimization problem might get very complicated and the computational time 33 

problem will arise. Nezamoddini et al. (2017) compared the computational time of different scales 34 

of test systems. The computational time increases from 3 seconds to 4.2 hours when the system 35 

upgrades from IEEE 6-bus to IEEE 57-bus test system. 36 

2.3.2 Topological Network Modeling 37 

Power networks have been studied as a typical example of real-world complex networks (Chen et 38 

al. 2009). They can be modeled by extracting their topology. In this type of models, the power 39 

networks are represented by a set of vertices connected by a set of edges, where the vertices 40 
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represent buses and the edges represent transmission lines. This type of model is typically applied 1 

in the structural vulnerability analysis of power networks. 2 

Topological network models are easy to analyze due to their high level of abstraction and 3 

simplification. Buldyrev et al. (2010) used the topology of the interdependent power system and 4 

communication system to demonstrate the cascading fault evolving between the two systems. Page 5 

et al. (2013) proposed a simplified energy network modeling approach. Based on the topology of 6 

the original network, they used clusters that were aggregations of network nodes to build a less 7 

detailed model and calibrated it with detailed simulations. In this way, the number of variables was 8 

significantly reduced.  9 

However, purely topological approaches fail to capture the physical properties and operational 10 

constraints of power systems and, therefore, can sometimes provide too optimistic analyses 11 

(Bompard et al. 2009). Hines et al. (2010) compared purely topological network models and higher 12 

fidelity models in the vulnerability modeling of electricity infrastructures. They used three 13 

measures of vulnerability: characteristic path lengths, connectivity loss, and blackout sizes. Their 14 

conclusion was that evaluating vulnerability in power networks using purely topological network 15 

models can be misleading. Chen et al. (2010) proposed a hybrid model for structural vulnerability 16 

analysis of power networks. Their approach embodied the traditional topological methodology and 17 

took into account important characteristics of power transmission networks such as the power flow 18 

distribution. Consequently, their hybrid model better approximated real power grids compared 19 

with a traditional topological network model. 20 

Topology modification, or known as reconfiguration, plays an important role in the study of 21 

electric power system resilience, as a section can be reconnected to another power supply when an 22 

outage happens. Lin and Bie (2018) proposed a tri-level defender-attacker-defender model to 23 

harden the distribution system under malicious attacks. In this model, resilient operational 24 

measures such as topology reconfiguration and DG were simulated to study their impact on 25 

distribution system resilience.  26 

2.3.3 Agent-Based Modeling 27 

Agent-based models consist of dynamically interacting, rule-based agents (d'Inverno and Luck 28 

2004; Wooldridge and Jennings 1995). A general definition of agent is: “an entity with a location, 29 

capabilities and memory. The entity location defines where it is in a physical space… What the 30 

entity can perform is defined by its capabilities… the experience history (for example, overuse or 31 

aging) and data defining the entity state represent the entity’s memory.” (Bonabeau 2002). An 32 

agent-based model can exhibit complex behavior patterns (Reynolds 1987) and provide valuable 33 

information about the dynamics of the simulated real-world system (Bonabeau 2002).  34 

The application of ABM in the modeling and simulation of energy infrastructures mainly focuses 35 

on the analysis of the interactions between interdependent systems. Casalicchio et al. (2010) used 36 

ABM to model a system composed of a power grid and a communication network with agents 37 

representing the entire infrastructure, its subsystems and the humans involved in the scenario. In 38 

this model, an agent is described by its attributes, the services it provides to other agents, and the 39 

services provided by other agents. Li et al. (2016) modeled the integrated energy system of 40 

electricity and natural gas system. A two-hierarchy smart agent model is built as the basis for the 41 

system reliability analysis. The lower hierarchy are the component smart agents which represent 42 
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the power lines, transformers, and electricity loads while the higher hierarchy are the zone agents 1 

which form the system topology.  2 

Another important application of ABM is to simulate the socio-economic activities, such as the 3 

electricity market and human activities within the energy infrastructure framework. Zhou et al. 4 

(2011) simulated an electricity market with demand response from commercial buildings. In this 5 

model, agents were used to model different participants of the market such as power generation 6 

companies, load-serving entities, commercial building aggregators, and an independent system 7 

operator. SynCity (Keirstead et al. 2010) is a tool developed by Imperial College London for 8 

integrated modeling of urban energy systems. This tool adopts agent-based micro-simulations to 9 

simulate the daily-activities of citizens of the city. Each citizen makes stochastic decisions based 10 

on the pre-defined rules and according to the environment around him/her. Solanki et al. (Solanki 11 

et al. 2010; Solanki et al. 2007) used agents to model different operators in restoring the electric 12 

system.  13 

The ABM technique has proved its advantages in the following aspects: 1) It can capture 14 

complicated interdependencies by simulating physical or economic flows among different 15 

infrastructures. 2) It enables the study of large-scale problems by avoiding complicated theoretical 16 

analysis. 3) It allows behavior analysis of customers or decision-makers by making certain rules. 17 

However, ABM still has limitations in that it is difficult to validate, and not all types of 18 

interdependencies can be included in one single model. Most existing agent-based models can only 19 

simulate one type of interdependencies such as the physical or logical interdependency (Zhang and 20 

Peeta 2011). 21 

2.3.4 Probabilistic Modeling 22 

In energy infrastructure resilience modeling, probabilistic algorithm is necessarily applied to 23 

capture the uncertain characteristics of the system failure. Many models adopt sequential Monte 24 

Carlo simulation method (Panteli and Mancarella 2017; Farzin et al. 2017; Cadini et al. 2017). A 25 

Monte Carlo simulation uses repeated sampling to determine the properties of some phenomenon 26 

or behavior (Fishman 2013). The essential idea is to use randomness solving problems that might 27 

be deterministic in principle. It is useful for gathering information about random objects, 28 

estimating certain numerical quantities, and optimizing complicated objective functions (Kroese 29 

et al. 2014). 30 

Monte Carlo simulation in the field of energy infrastructure modeling is often employed for the 31 

simulation of weather events due to their high stochasticity. Panteli and Mancarella (2017) 32 

developed a time-series simulation model based on sequential Monte Carlo method to assess the 33 

impact of weather events on power-system resilience. With the knowledge of the hurricane 34 

occurrence frequency and its impact on power system components, Li et al. (2014) developed an 35 

algorithm to evaluate the risks of the power system in face of hurricanes. This method can be 36 

expanded to systems under other stochastic natural disasters. Similarly, Cadini et al. (2017) used 37 

a sequential Monte Carlo simulation scheme to simulate historical failures caused by both normal 38 

and extreme weather events. The simulation results were then used to evaluate the reliability of 39 

the studied power transmission system.  40 

Another common application of Monte Carlo simulation in energy infrastructure modeling is to 41 

simulate the restoration process of disrupted infrastructures. For example, the software tool Critical 42 

Infrastructures Interdependencies Integrator (Gillette et al. 2002) developed by ANL used Monte 43 
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Carlo simulation to estimate the time and cost required to restore a given infrastructure component, 1 

a specific infrastructure system, or a set of interdependent infrastructures.  2 

It should be noted that Monte Carlo simulation can be integrated into other modeling frameworks, 3 

such as optimization-based models, to simulate the performance of energy systems. For example, 4 

Farzin et al. (2017) evaluated the role of outage management with Monte Carlo simulation, while 5 

considering the optimal power flow problem of the electric distribution system.  6 

2.3.5 Other Modeling Approaches 7 

Actor-based modeling: Similar to an agent-based model, an actor-based model is composed of 8 

actors that can make local decisions, create more actors, send messages and determine how to 9 

respond to messages received. The Interdependent Energy Infrastructure Simulation System 10 

(IEISS) (Toole and McCown 2008) developed by LANL is an actor-based infrastructure modeling, 11 

simulation, and analysis tool designed to understand interdependent energy infrastructures. The 12 

actors can realistically simulate the dynamic interactions within each of the infrastructures, with a 13 

specialization in simulating the interdependent electric power and natural gas infrastructures. 14 

Empirical modeling: Empirical models are built based on historical data or expert experience. Shih 15 

et al. (2009) adopted data warehousing technique to conduct vulnerability assessment of 16 

interdependencies between coal mines, rail transportation, and electric power plants. A data 17 

warehouse is a system used for reporting and data analysis. It has the capability of bringing various 18 

datasets together and managing historical data. In this case, the data warehouse allowed an 19 

interactive analysis of historical and multi-dimensional data of varied granularities. 20 

System dynamics modeling: System dynamics is a method for studying the behavior and the 21 

underlying structure of a complex system over time (Kirkwood 1998). It is widely used in the 22 

analysis of CI interdependencies. For example, the CIPMA program (Scott 2005) in Australia 23 

adopts the system dynamics model to examine the relationships and dependencies within and 24 

between CI systems, and to demonstrate how a failure in one sector can greatly affect the 25 

operations of other CI sectors. 26 

Physical modeling: Petroleum Fuels Network Analysis Model (PFNAM) (Pederson et al. 2006) is 27 

a physical model developed by ANL to perform hydraulic calculations of pipeline transport of 28 

crude oil and petroleum products. Main outputs of the model include pressure and pipeline capacity 29 

estimates along the pipeline. 30 

Integrated simulation platform: Some models are implemented in a way that several approaches 31 

are adopted for component models and then coupled together. Erdener et al. (2014) proposed an 32 

integrated simulation model for electricity and gas systems. The electricity and gas systems are 33 

first modeled separately and then linked by an (MATLAB-based) interface. The Fast Analysis 34 

Infrastructure Tool (FAIT) developed by SNL (Pederson et al. 2006) consists of a dependency 35 

model and an economic model. The dependency model is an object-oriented expert system model 36 

of infrastructure interdependencies. The economic model utilizes the input-output method for 37 

estimating the economic consequences of the disruption of an asset. An input-output model is a 38 

quantitative economic technique that represents the interdependencies between different branches 39 

of a national economy or regional economies (Ten Raa 2010). This economics-based method has 40 

been applied on CIs to capture the cascading economic effects of a disruption across different 41 

sectors (Zhang and Peeta 2011).  42 



15 

 

3 Proposed Resilience Indicators and Other Features 1 

3.1 Resilience Indicators 2 

To address energy infrastructure resilience, a model should take into account certain dimensions 3 

of resilience. Sharifi (2016) proposed a framework for the analysis of community resilience 4 

assessment (CRA) tools. Within this framework, six criteria were proposed to evaluate the selected 5 

CRA tools. These include comprehensiveness in addressing multiple dimensions of community 6 

resilience, considering connections between different spatial scales, ability to measure changes 7 

across temporal scales, developing suitable measures for capturing uncertainties, collaboration 8 

with stakeholders, and leading to action plans. Cutter et al. (2014) measured the inherent resilience 9 

of counties in the United States according to six capitals identified in the extant literature: social, 10 

economic, housing and infrastructure, institutional, community, and environmental. Hosseini et al. 11 

(2016) identified four domains of resilience: organizational, social, economic, engineering. 12 

Although different researchers may emphasize various aspects when assessing resilience, they do 13 

share some common grounds. Based on literature review, this paper proposes five indicators for 14 

energy infrastructure models from the resilience perspective. A model that successfully helps 15 

enhance energy infrastructure resilience should: be dedicated to certain stakeholders, intervene in 16 

one or more resilient infrastructure development phases, be able to simulate a certain stressor and 17 

the failure it caused, address interdependencies within or between infrastructure sectors, and 18 

integrate socio-economic characteristics.  19 

Indicator 1 – Catering to different stakeholders: Urban infrastructures are owned and operated 20 

by different stakeholders who may not be aware of the interdependencies between their own 21 

infrastructure system and other systems (Hasan and Foliente 2015). Different stakeholders tend to 22 

have different priorities and considerations, when making decisions related to infrastructure 23 

investment, protection, or restoration. Hence, it is necessary to identify the stakeholder of a 24 

selected model before diving into further details. A stakeholder-oriented lens helps better 25 

understand a model’s values and limitations. Francis and Bekera (2014) included stakeholder 26 

engagement as a key component in the analysis framework of engineered and infrastructure 27 

systems. Hasan and Foliente (2015) classified stakeholders according to their scales and roles into: 28 

international union, federal/state/local government, advocacy organizations, donors/financial 29 

institutions, insurance, utility companies, business, and households, individuals and communities.  30 

Indicator 2 – Intervening in development phases: This indicator evaluates in which phase of 31 

infrastructure development a model can be employed. Four phases are distinguished: design, 32 

operation, restoration, and adaptation. Compliance with this indicator is decided as follows. If the 33 

model helps designers recognize the most vulnerable components in an infrastructure system and 34 

enhance the infrastructure resilient design, then the model is dedicated to the design phase. If the 35 

model focuses on the modeling and simulation of CI operational status, then the model is dedicated 36 

to the operation phase. If the model simulates restoration processes and helps develop restoration 37 

strategies, then the model is dedicated to the restoration phase. If the model integrates resilience 38 

enhancement techniques and considers the long-term adaptation of CIs to certain stressors, then 39 

the model is dedicated to the adaptation phase.  40 

Indicator 3 – Dedicating to certain stressor and failure: In the research field of resilience, a 41 

stressor represents the source that causes the system to change its original status. For CIs, there are 42 



16 

 

generally two kinds of stressors: human-induced stressors such as terrorism and maloperations, 1 

and nature-induced stressors such as the climate change and extreme weather events. Identifying 2 

the stressor that a model is dealing with helps further evaluate the failure mode. 3 

There are three types of infrastructure failures; namely, cascading failure, escalating failure, and 4 

common cause failure (Gillette et al. 2002; Sanghavi et al. 2017; Khosravi et al. 2017). The 5 

cascading failure refer to the disruption of one single infrastructure that is caused by a component 6 

failure, which is common in power grid disruptions. An escalating failure is a disruption in one 7 

infrastructure that exacerbates independent disruptions in other infrastructures. This kind of 8 

escalating effect is due to the complex interdependencies among infrastructure sectors and often 9 

leads to a longer time of restoration. A common cause failure is a disruption of two or more 10 

infrastructures at the same time resulted from a common cause. Existing models typically don’t 11 

distinguish between “cascading failure” and “escalating failure”, englobing them all under the 12 

concept of “cascading failure”. In this paper, they are distinguished to investigate a models’ 13 

temporal scale and the feature in simulating escalating effects of disasters. For example, a model 14 

for escalating failure not only simulates the immediate effects of a disruption, but also the 15 

propagated effects of a disaster among different sectors.  16 

Indicator 4 – Taking into account different interdependencies: The interdependency between 17 

CIs is defined by Rinaldi et al. (2001) as “a bidirectional relationship between two infrastructures 18 

through which the state of each infrastructure influences or is correlated to the state of the other.” 19 

Due to the complex relationships among different CI sectors, the vulnerability of CI systems is 20 

raised. The failure of one single component can lead to the failure of the entire system, even of the 21 

systems that rely on it. Some research results have proved the necessity to consider 22 

interdependencies between infrastructure systems when evaluating resilience and reliability (Li et 23 

al. 2016; Erdener et al. 2014). 24 

There are four types of interdependencies: physical, cyber, geographic, and logical (Rinaldi et al. 25 

2001). Physical interdependency expresses the physical reliance on material flow from one 26 

infrastructure to another. Typically, the output of one infrastructure may be the input of another 27 

infrastructure for operation. Cyber interdependency expresses the reliance on information transfer 28 

between infrastructures. An infrastructure has cyber interdependency if its state depends on 29 

information transmitted through the communication infrastructure. Geographic interdependency 30 

exists if a local environmental event can affect multiple infrastructures. That is, elements of 31 

multiple infrastructures are in close spatial proximity. Logical interdependency is a dependency 32 

that exists if two infrastructures depend on each other via a mechanism that fall into none of the 33 

above categories. It may be more closely linked to a control schema that links one infrastructure 34 

to another infrastructure without any direct physical, cyber, or geographic connection. Compliance 35 

with this indicator is confirmed if a model considers any of the four types of interdependencies 36 

inner the energy sector, or between energy and other sectors. 37 

Indicator 5 – Involving socio-economic characteristics: Socio-economic characteristics are 38 

significant aspects of resilience. According to the City Resilience Framework (ARUP 2015), 39 

economy and society is one of the four basic elements of resilience, which is also recognized as 40 

the organizational resilience. The other three categories include the health and wellbeing of 41 

individuals, urban systems and services and, finally, leadership and strategy, which emphasize the 42 

role of people, place and knowledge in constructing a resilient city. When evaluating the resilience 43 

of energy infrastructures, a place-based perspective considering the people, as well as the socio-44 
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economics is more comprehensive. Many researchers point out that the socio-economic impacts 1 

resulting from the infrastructure disruptions can be very significant and needs serious 2 

considerations (Dore and Etkin 2000; Field et al. 2012)  3 

This indicator examines if a selected energy infrastructure model considers the socio-economic 4 

impacts of the infrastructure failures or involves socio-economic activities in the simulation. 5 

Typical socio-economic characteristics include age, ethnic, religion, income, disaster insurance, 6 

and community resources.  7 

3.2 Other Modeling Features 8 

In order to further evaluate the models and gain insights into the characteristics of different 9 

modeling approaches in the context of energy infrastructure modeling, some more features of the 10 

models are discussed in this section; namely, data needs, model type, and time scale. Furthermore, 11 

whether the model is dynamic or static and whether the damage and restore processes are 12 

endogenous or exogenous are also discussed.  13 

Data needs: The input data of a model usually include information about the layout of the 14 

simulated system, commodity flows, functioning, as well as numerical values for modeling 15 

parameters (Eusgeld et al. 2008). Data needs can vary largely according to the modeling 16 

approaches. A model with high data needs relies on high quality and large quantity of input data 17 

to provide reasonable outputs. On the contrary, a model with low data needs can provide plausible 18 

outputs, even when little data is accessible. This indicator analyzes the data needs of modeling 19 

approaches for energy infrastructures. For example, if a model requires databases as inputs, then 20 

the data demand level is high. If a model only has a few input variables, or only requires a small 21 

amount of profile data, then the data demand level is low. If the situation lies in between, then the 22 

demand level is regarded as medium. 23 

However, it should be noted that there is a trade-off between a model’s data need and its accuracy. 24 

High-fidelity models that reproduce the state and behavior of the real world better will rely more 25 

on high quantity and quality of data (Eusgeld et al. 2008). On the other hand, a model with lower 26 

data need might sacrifice its accuracy due to more assumptions. The data need of a model from a 27 

developer’s angle is dependent on the development purpose. In the context of energy infrastructure 28 

resilience, for example, a model intended for impact analysis of weather events on the energy 29 

system will require more data than an optimization model that is developed for restoration strategy 30 

design. At last, a model’s data need is also highly dependent on the data availability. Sometimes, 31 

developers have to make reasonable assumptions to compensate for the inaccessible data. 32 

Model type: This indicator evaluates the computational mechanism of the models. Three types of 33 

models are distinguished: white box, black box, and grey box, which is their combination. In the 34 

white-box approach, the model uses governing laws of physics and the detailed knowledge of the 35 

underlying process (Afram and Janabi-Sharifi 2014). In the black-box approach, the system 36 

performance data is collected under normal use or under a specific test and a relationship is found 37 

between the input and output variables using mathematical methods (Owen and Kennedy 2009). 38 

In the grey-box approach, the model structure is formed using physics-based methods and the 39 

parameters are determined using estimation algorithms based on the measured data (Afram and 40 

Janabi-Sharifi 2014). 41 
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Time scale: The simulation time step and time horizon vary with the purpose and scenario of the 1 

energy infrastructure model. Holmgren (2006) simulated different hazard scenarios and gave their 2 

time scales. For major technical failure that disables a station in the sub-transmission or 3 

distribution grid, the corresponding vertices in the model are removed for 10 hours. For human 4 

factors and regular technical failures, the time scale is 1 to 2 hours. For snowstorm and lightning, 5 

the time scales are 8 hours and 0.5 hour, respectively. As for the repair time, it usually lasts hours 6 

depending on the damaged component in the system. Li et al. (2016) studied the reliability problem 7 

of integrated energy systems and gave the repair time of different components. Each kilometer of 8 

gas or heat pipeline will take 5 hours to repair. However, for gas-fired boiler, steam turbine, or 9 

absorption cooling plant, it will take 200 to 300 hours to repair. This indicator examines the time 10 

scale each model is designed to simulate over. Time step and time horizon are distinguished.  11 

Dynamic or static: Dynamic models simulate the system performance in a time-dependent way, 12 

while static models calculate the system in equilibrium. Given the dynamic characteristics of 13 

energy infrastructure systems and the time-dependent instinct of resilience problems, most energy 14 

infrastructure resilience models are built dynamically. However, there do exist some static models. 15 

Manshadi and Khodayar (2015) simulated the resilient microgrid operation problem in a static way 16 

to identify the vulnerable components and the optimal operation plan considering the 17 

interdependency between power and gas systems. Nezamoddini et al. (2017) solved a resilient 18 

distribution network planning problem in equilibrium to coordinate the hardening and distributed 19 

generation resource allocation with the objective of minimizing the system damage. The physical 20 

model Petroleum Fuels Network Analysis Model (2006) conducts the hydraulic calculation of fuel 21 

pipelines in an equilibrant way.  22 

Endogenous or exogenous damage/restore: The simulation of damage and restore processes are 23 

dealt with either endogenously or exogenously in resilience models. Models that don’t obtain the 24 

disruption signal from outside but rather embed the disruptions inside the model are endogenous. 25 

Typically, the damage of the energy infrastructure is represented by the disconnection of lines, 26 

open switch devices, or randomly or intentionally removed nodes. Specially, in some agent-based 27 

models, different types of faults are propagated by agents. In exogenous models, the damage is 28 

generated by external random or non-random events, such as unit outages or system disruptions. 29 

Li et al. (2016) adopted Monte Carlo simulation to evaluate power system reliability by generating 30 

stochastic errors. The Fast Analysis Infrastructure Tool (FAIT) (2006) couples with other models 31 

to get the duration and magnitude of the disruption and recovery and conducts regional economic 32 

analysis.  33 

4 Discussions  34 

This section applies the above-proposed resilience indicators and other modeling features to 35 

evaluate the collected energy infrastructure models. The evaluation results can be found in 36 

Appendix 1 and 2. Findings regarding the resilience-related performance of the models and 37 

comparisons between different modeling approaches are discussed in the following text.  38 

Stakeholder: Regarding “resilience for whom”, Figure 1 shows the number of models with 39 

different stakeholders revealing that the stakeholders taken into account by most selected models 40 
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are the decision-makers, including the government. They serve the decision-makers during the 1 

infrastructure protection tasks, investment-related procedures, or when faced with infrastructure 2 

emergencies. The second most common stakeholders are infrastructure providers and operators, 3 

as over one third of the selected models were developed for their needs. Infrastructure providers 4 

and operators have significant impact on energy infrastructure resilience as they take charge of the 5 

operation and maintenance of infrastructures. Only two models include the consumers as relevant 6 

stakeholders. Although both decision-makers (especially the government), as well as providers 7 

and operators are in the service of consumers, surprisingly little attention has been paid to energy 8 

consumers when developing energy infrastructure models. Given that the ultimate goal of energy 9 

infrastructure resilience promotion is to better serve the consumers, it would be beneficial to 10 

consider their demands on energy supply and their response to energy infrastructure emergencies 11 

when seeking a holistic solution of energy resilience. Other stakeholders include research institutes, 12 

emergency responders, and engineers.  13 

 14 

Figure 1 Number Distribution of Models with Different Stakeholders 15 

Intervention phase: Regarding the infrastructure development phase in which a model is employed, 16 

most models in this study are found to be dedicated to the operation phase (Figure 2). Another 17 

considerable proportion of models conduct restoration simulations of the energy infrastructures. 18 

The least number of models take adaptational evolutions of energy infrastructures into account. 19 

This distribution indicates that existing energy infrastructure models for resilience studies have 20 

been focusing on the operation phase. On the other hand, they are limited in integrating long-term 21 

adaptation strategies into the modeling framework, which should be an important dimension of 22 

resilience enhancement. 23 
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 1 

Figure 2 Number Distribution of Modeling Approaches Intervening in Different Phases 2 

Stressor: Nearly 40% of the models simulating general disruptions of energy infrastructures. 3 

Instead of identifying a specific cause, these models focus on the failure of the infrastructure after 4 

the occurrence of a disaster and are generally applicable for disruption studies. 28% of the models 5 

are developed against intentional attacks while 19% are against extreme weather events such as 6 

natural disasters. Only 3% of the selected models take economic disruptions as the stressor. 7 

Failure: 40% of the models simulate cascading failures of energy infrastructures while 27% are 8 

for common cause failures, where several locations of disruptions occur together. However, only 9 

16% of the models are able to simulate escalating failures of the critical infrastructures revealing 10 

that most existing energy infrastructure models don’t account for the escalating effects of a failure. 11 

They tend to only focus on the immediate effects of a disruption. The varying temporal scale in 12 

the aftermath of disasters have been neglected by most selected models. 13 

Interdependency: Regarding CI interdependencies, 43% of the selected models consider some 14 

types of interdependencies. The model “Critical energy infrastructures” (Erdener et al. 2014) 15 

studies the interdependency inner the energy sector between the natural gas and electric power 16 

system. Other models consider interdependencies between energy and other sectors such as 17 

transportation (Page et al. 2013; Gillette et al. 2002; ANL 2011; Shih et al. 2009; Keirstead et al. 18 

2010) and telecommunication (Pederson et al. 2006; ANL 2011; Gillette et al. 2002). The rest of 19 

the models do not consider interdependencies but rather focus on the energy sector.  20 

Socio-economic characteristics: 50% of the selected models involve socio-economic 21 

characteristics during the modeling and simulation process. However, most of these models only 22 

consider economic characteristics, such as economic impacts of infrastructure disruptions (Baker 23 

et al. 2003; Pederson et al. 2006) and investment optimization (Nezamoddini et al. 2017; Fang and 24 

Sansavini 2017; Page et al. 2013). Only four of all the selected models consider social impacts of 25 

a disaster, such as public hazards (Arif et al. 2018) or effects on population and housing (Bollinger 26 

2011; Pederson et al. 2006; Keirstead et al. 2010). 27 

Data needs: Figure 3 depicts the number distribution of modeling approaches with different data 28 

needs. Agent-based models tend to have the highest data needs, as 86% of them fall in medium 29 

and high data need columns. As for optimal operation models, topological network models and 30 

probabilistic models, most of them fall in the columns of low or medium data needs. This 31 
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phenomenon is consistent with the characteristics of ABM, as historical data and attribute data will 1 

be needed to define each agent and certain interaction rules,   2 

Model type: Concerning the model type, 93.3% of the selected models are white box. Only 3.3% 3 

of them are grey box and 3.3% are black box. In the grey box model (Panteli and Mancarella 2017), 4 

historical weather data are used to first determine the frequency distribution of certain weather 5 

events. The weather profile is then used as an input of the physics-based model. In the black box 6 

model (Shih et al. 2009), data warehousing and visualization techniques are used to manage non-7 

spatial historical data which are then merged with geospatial data to model the potential impacts 8 

of a disruption to one or more mines, rail lines, or power plants. 9 

 10 

Figure 3 Number Distribution of Modeling Approaches with Different Data Needs 11 

Other features: When looking at other features of the models, the time horizon varies from the 12 

short term of several hours to the long term of several years, depending on the problem tackled. 13 

Accordingly, the time step ranges from 1 minute or 1 hour to 1 week. Most models deal with 14 

energy infrastructure resilience problems dynamically. 63.3% of the models have endogenous 15 

damage or restoration while 16.7% have exogenous. For more details, the reader could refer to 16 

Appendix 2. 17 

5 Conclusions 18 

Energy infrastructures are becoming more vulnerable due to the rising frequency of both nature- 19 

and human-induced disasters. Hence, the resilience of energy infrastructures has gained much 20 

attention in recent years. This paper reviewed 30 energy infrastructure models from a resilience 21 

perspective. Through the review, research problems tackled by the models and typical modeling 22 

approaches adopted by researchers were summarized. Specifically, the authors proposed five 23 

resilience-based indicators to comprehensively address a model’s capability in promoting energy 24 

infrastructure resilience. At last, other modeling features such as data needs and time scale were 25 

discussed to further evaluate the models.  26 

The models collected in this work involve representative state-of-the-art energy infrastructure 27 

models implemented through various approaches. The addressed problems include optimal 28 

resource allocation and hardening planning, interdependency analysis, outage management and 29 
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restoration, weather impact study, etc. The models intervene across planning, operation, 1 

restoration and adaptation phases of energy infrastructures. Based upon the review, the following 2 

observations are gained: The dominant stakeholder of the models are decision-makers, including 3 

government and regulators. Most selected models serve energy consumers indirectly as little 4 

attention is paid to energy consumers during the development stage. Most selected models focus 5 

on the operation and restoration phases of energy infrastructures. Long-term adaptation strategies 6 

are not integrated into the modeling framework by most models. Existent models tend to only 7 

consider immediate effects of system disruptions. The study on the propagated effects of the failure 8 

among different sectors is typically neglected. Although many selected models involve economic 9 

impact evaluation, only a few models take into account social parameters or consider social 10 

impacts of disasters. Concerning other modeling features, physics-based models are still the trend 11 

in energy infrastructure modeling, rather than data-driven techniques. Among others, agent-based 12 

models tend to have higher data needs than topological models and optimal operation models. The 13 

time horizon and time step vary significantly among the models, ranging from several hours to 14 

several years. 15 

Based on the discussions above, future trends in the modeling and simulation of energy 16 

infrastructures are as follows: 17 

Addressing larger temporal and spatial scale: As most existing energy infrastructure models 18 

focus on immediate effects of disruptions but are limited in capturing the dynamic behavior during 19 

longer terms, it remains to be explored how the models could be scaled over a larger temporal 20 

scale. Also, including the complex interactions across multiple CI sectors over different spatial 21 

scales helps making the model more realistic. However, the challenge of scalability lies in the 22 

computational time. How to employ more complexity in the model while reducing the 23 

computational time remains a challenge for future researchers.  24 

Integrating more human and social aspects: Though existent models serve mostly the needs of 25 

decision-makers, energy consumers’ behavior and potential in helping achieving energy 26 

infrastructure resilience would be more considered in the future. The emerging focus on human-27 

in-loop control and demand response technologies also implies this trend. Also, since the impact 28 

of disasters eventually take place on the human and the society, it would be drawing more attention 29 

to integrate social characteristics in the modeling frameworks and study the social impacts of CI 30 

disruptions. However, the uncertainty in human behavior and the quantification of social factors 31 

remain a challenge.  32 

Employing more smart resources and solutions: It was noticed from the review that smart 33 

technologies such as energy storage, demand response with flexible loads (e.g. electrical vehicles, 34 

flexible building loads) are integrated by some models to explore future possibilities of energy 35 

resilience. In the future, as these technologies develop and become more accepted, involving them 36 

in energy infrastructure models would be a trend.  37 

Due to the limited number of models collected in this paper, there are certain limitations of the 38 

work: only four of the commonly used modeling approaches are deeply analyzed and the working 39 

scope is limited to the energy sector. In the future, the same evaluation methodology could be 40 

applied to transportation, water supply and sewer, communication and other CI sectors.  41 

 42 
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Appendices 1 

Appendix 1: Proposed Resilience Indicators and the Evaluation Results of Selected Models 2 
 

Modeling 

Approach 

I1 I2 I3 I4 I5 

Stakeholder Phase of 

Intervention 

Stressor Failure 

Type 

Interdepe

ndencies 

Socio-

economic 

Characte

ristics 

1 

Optimal 

Operation 

Modeling 

N/A Restoration General 

disruptions 

Common 

cause 

failure 

None Yes 

2 N/A Restoration Extreme weather 

events 

Common 

cause 

failure 

None None 

3 N/A Restoration Storms and 

cyber-physical 

attacks 

Common 

cause 

failure 

None None 

4 Infrastructure 

planners and 

operators 

Design Intentional 

attacks 

Common 

cause 

failure 

Yes Yes 

5 N/A Design Extreme weather 

events 

Common 

cause 

failure 

None Yes 

6 Government and 

infrastructure 

operators and 

consumers 

Adaptation Intentional 

attacks 

Cascading None Yes 

7 Infrastructure 

planners 

Adaptation Intentional 

attacks 

Cascading None Yes 

8 

Topological 

Network 

Modeling 

N/A Operation Random and 

intentional 

attacks 

Cascading None None 

9 Infrastructure 

planners 

Design None None Yes Yes 

10 N/A Operation General 

disruption 

Escalating None None 

11 N/A Adaptation Intentional 

attacks 

Cascading None None 

12 N/A Design Intentional 

attacks 

Common 

cause 

failure 

None Yes 

13 

Agent-Based 

Modeling 

Policy makers Restoration Overload Cascading None Yes 

14 Policy makers, 

research institutes 

and infrastructure 

providers 

Operation General 

disruption 

Cascading None Yes 

15 Infrastructure 

providers and 

consumers 

Operation General 

disruption 

Cascading None None 

16 Decision-makers Operation General 

disruption 

Cascading Yes None 

17 Infrastructure 

providers, 

planners and 

emergency 

responders 

Operation None None Yes None 

18 NA Restoration General 

disruptions 

Cascading Yes None 
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Modeling 

Approach 

I1 I2 I3 I4 I5 

Stakeholder Phase of 

Intervention 

Stressor Failure 

Type 

Interdepe

ndencies 

Socio-

economic 

Characte

ristics 

19 Policy makers 

and engineers 

Design None None Yes Yes 

20 

Probabilistic 

Modeling 

Electrical 

utilities, system 

operators, 

regulators and 

policy makers 

Adaptation Extreme weather 

events 

Common 

Cause 

failure 

None None 

21 NA Restoration General 

disruptions 

Cascading None None 

22 Infrastructure 

providers 

Restoration General 

disruption 

None Yes Yes 

23 Government Restoration General 

disruption 

None Yes Yes 

24 Infrastructure 

operators 

Restoration Extreme weather 

events 

Cascading None None 

25 

Other Modeling 

Approaches 

Government 

internal analysts 

Operation Terrorist attack or 

natural disaster 

Cascading Yes Yes 

26 Infrastructure 

operators and 

decision-makers 

Operation General 

disruption 

Escalating Yes None 

27 Infrastructure 

operators, 

business and 

government 

decision-makers 

Operation Terrorist attack Escalating Yes Yes 

28 Government Operation General 

disruption 

Escalating None None 

29 N/A Operation General 

disruption 

Escalating Yes None 

30 Government 

internal analysts 

Operation Economic 

disruptions 

Common 

cause 

failure 

Yes Yes 

a) Yes: addressed. 1 
b) None: not addressed. 2 
c) N/A: not enough information provided. 3 
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Appendix 2: Other Modeling Features and the Evaluation Results of the Selected Models 1 
 

Modeling 

Approach 

Data 

Needs 

Model Type Output Format Time Scale Dynamic or 

Static 

Endogenous 

or 

Exogenous 

Damage/Re

store 

1 

Optimal 

Operation 

Modeling 

Medium White box Data charts Several-hour 

time horizon 

Dynamic Endogenous  

2 Low White box Plan N/A Dynamic Endogenous  

3 Medium White box Plan N/A Dynamic Endogenous 

4 Medium White box Plan N/A Static Endogenous 

5 Medium White box Data and plan N/A Dynamic Endogenous 

6 Low White box Data and plan N/A Static Endogenous 

7 Low White box Plan N/A Static Endogenous 

8 

Topological 

Network Modeling 

Low White box Data charts N/A Dynamic Endogenous 

9 High White box Potential costs and 

CO2 emission 

N/A Dynamic N/A 

10 Low White box Data charts N/A Dynamic Endogenous 

11 Low White box Data charts Several-hour 

time horizon 

Dynamic Endogenous 

12 Medium White box Plan N/A Static Endogenous 

13 

Agent-Based 

Modeling 

Medium White box Metrics 1-week time 

step 

Dynamic N/A 

14 Medium White box Economic impacts 1-hour time 

step 

Dynamic Exogenous 

15 Low White box GIS N/A Dynamic Exogenous 

16 High White box 3D visualized 

model 

N/A Dynamic Endogenous 

17 High White box Graphic models N/A Dynamic Endogenous 

18 Medium White box Data charts 1-minute or 

1-hour time 

step 

Dynamic Exogenous 

19 High White box Map 1-year time 

horizon 

Dynamic N/A 

20 

Probabilistic 

Modeling 

Low Grey box Index 10-hour to 

50-hour time 

horizon 

Dynamic Endogenous 

21 Medium White box Plan 1-hour time 

step 

Dynamic Endogenous 

22 Low White box Graphs and tables N/A Dynamic Endogenous 

23 Low White box Graphs N/A Dynamic Endogenous 

24 High White and grey 

box* 

Data charts 1 year Dynamic Endogenous 

25 

Other Modeling 

Approaches 

High White box Map N/A Dynamic N/A 

26 High Black box GIS Between 1-

month and 

5-year time 

horizon 

Dynamic Endogenous 

27 High White box GIS N/A Dynamic N/A 

28 High White box Graphs and tables N/A Static N/A 

29 Medium White box Data charts N/A Dynamic Exogenous 
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Modeling 

Approach 

Data 

Needs 

Model Type Output Format Time Scale Dynamic or 

Static 

Endogenous 

or 

Exogenous 

Damage/Re

store 

30 Medium White box Reports 1-week to 1-

month time 

horizon 

Dynamic Exogenous 

*: This model has two sub-models that adopt different modeling methods. The restoration model is white box and the 1 
cascading failure model is grey box.  2 
N/A: not enough information provided. 3 

 4 


