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ABSTRACT 10 

 This paper explores and develops different mathematical frameworks to address the 11 

representation of inherent uncertainties such as those often involved in the assessment of natural hazard 12 

risk for the built environment. To date, little exploration has been performed of such theories, inhibiting 13 

the progress and use of these potentially well-suited frameworks, especially to applications for expert 14 

evidence in the field of sustainable and resilient infrastructure. One such framework, Dempster-Shafer 15 

Theory, allows the combination of multiple expert beliefs while considering uncertainties that are often 16 

ingrained in this field. In cases such as seismic hazards, for which structural vulnerability and structural 17 

damage are evaluated in a case-by-case scenario, subjective assessments are not only useful but 18 

necessary. This research performs a rigorous exploration to determine the behavior and trends of 19 

Dempster-Shafer Theory, including a mathematical proof of asymptotic behavior, in an attempt to both 20 

(a) understand how this framework handles confidence, ignorance, and combined beliefs, and (b) 21 

encourage the use of more natural frameworks in cases that involve uncertainty. The results of this 22 

exploration suggest that probability may not be the most natural framework in which to quantitatively 23 

incorporate the involved uncertainty. Ignorance and evidence-based assessments may be better 24 

represented using Dempster Shafer Theory. 25 
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Introduction 26 
 27 

Risk assessment is an integral component of modern engineering and hazard mitigation, but presents 28 

a mathematical obstacle due to the inherent uncertainties involved in such evaluations. The field of 29 

natural hazard assessment for infrastructure often requires assessments that are inherently subjective in 30 

nature, as no structure or location is exactly the same. At any given project, a limited number of experts 31 

may be available to provide their risk evaluations using varying amounts of evidence and information. A 32 

variety of frameworks could be considered when handling such uncertainties. 33 

 Probability often provides a reliable structure in such situations, where an educated guess can be 34 

made based on the outcome of previous similar occurrences and professional judgment. There are many 35 

circumstances, however, in which the sources of uncertainty and knowledge of the modeling are not well 36 

represented within the constraints of probability theory, as will be discussed below. Such circumstances 37 

include ignorance (when there is limited amount of data), varying degrees and sources of confidence, and 38 

situations that are not repetitive enough to use previous data to create robust frequency-based probability, 39 

either directly or through subjective assessment.  40 

The “subjectivists” offered an interpretation of probabilities as a “degree of belief”; the probability of 41 

an uncertain event as a measure of one’s belief about its occurrence (Vick 2002 p. 20). As stated by 42 

Melchers (1999), “a subjective probability estimate reflects the degree of ignorance about the 43 

phenomenon under consideration”. The class of subjective probabilities, or Bayesian degrees of belief, 44 

allows for a broad context of Probability Theory, justified not necessarily by the objective or frequentist 45 

basis, but to single occurrence events in the form of a measure of one’s uncertainty about a particular 46 

event. As such, judgments manifested in the form of subjective probabilities can be manipulated with the 47 

axioms of Probability Theory. Although this offers a powerful framework for systematically 48 

incorporating uncertainty into almost any problem, subjective probabilities cannot distinguish between 49 

situations such as known equal outcomes and complete ignorance. In addition, whether probability 50 



 

 

 

estimates are based on objective (frequentist) models or subjective models, they must by definition obey 51 

the axioms of probability theory. Further, judgments treated with a probabilistic model suggest there is 52 

precise information not only about the event itself, but also its contrary, which may not be appropriate in 53 

cases with little or partial knowledge. For instance, suppose a piece of equipment could have been 54 

manufactured in country A or country B, but no other. Limited evidence leads to assigning a belief or 55 

confidence of 20% that its origin is country A, and a belief or confidence of 30% that it came from 56 

country B. That leaves a 50% uncertainty or ignorance of belief assignment regarding the country of 57 

origin. These realizations inspired research into a broader conception of uncertainty, exploring important 58 

facets of uncertainty that are not probabilistic in nature. These other forms of characterizing uncertainty 59 

have received very limited attention in the area of structural risk and vulnerability, and it is now apparent 60 

that a complete paradigm shift in embodying uncertainty is needed for more robust and resilient theories 61 

of structural and community vulnerability (Corotis 2015). 62 

There has been a significant amount of research that explores the relevance and applicability of other 63 

mathematical theories dedicated to the treatment of uncertainty, but many of these methods remain only 64 

partially developed and not investigated in terms of their applicability to the field of civil engineering 65 

(see, for example, Adeli 1988, Ayyub 1998 and 2001, Ayyub and Klir 2006, Booker and Ross 2011, Klir 66 

2006, Ross 2010 and Shafer 1976 and 1987). The research presented in this paper examines the 67 

characteristics of uncertainty beyond traditional probabilistic modeling, and is motivated by these primary 68 

objectives: (i) introducing appropriate roles for uncertainty theories beyond Probability Theory and their 69 

associated relevance, (ii) developing a deeper awareness and understanding of uncertainty’s potential role 70 

within civil engineering as applied to risk assessment of infrastructure, and (iii) creating a more 71 

comprehensive uncertainty model for future research in this field. The motivation for new approaches is 72 

not intended to challenge the fundamentals of Probability Theory, but to present different mathematical 73 

models, which may be relevant in a variety of contexts.  The first objective is very important because the 74 

confluence of geophysics and structural engineering with aspects of environment, economics, and social 75 



 

 

 

and political capital means that such disparate facets are likely to require increased usage of expert 76 

opinions and beliefs. These issues reflect very different natures and sources of uncertainty, and in this 77 

paper we will show how generalized uncertainty provides some powerful approaches, but also some 78 

unexpected results that as far as the authors know have never been explored. Regarding the second 79 

objective, the first example in this paper will show the use of belief theory in a seismic damage 80 

assessment, demonstrating its use in a practical situation involving risk analysis to the built environment. 81 

Finally, previously unexplored trends, sensitivities and a mathematical derivation serve to alert potential 82 

users of some of the subtleties of generalized uncertainty.  83 

Literature Review 84 
 85 
Uncertainties in Risk Assessment 86 

 87 
In 1976, Glenn Shafer presented his work and the work of his mentor, Arthur Dempster, in “A 88 

Mathematical Theory of Evidence” (Beynon et al. 2000; Shafer 1976). This work features a Theory of 89 

Evidence in which belief functions can be formalized from a degree of belief based on available 90 

information and knowledge, termed beliefs and plausibilities (Yager and Liu 2008). As the works became 91 

known to the artificial intelligence community, the theory fell under the name of the Dempster-Shafer 92 

Theory of evidence, or commonly, Evidence Theory (Shafer 1976). Since Dempster-Shafer Theory’s 93 

origination, it has been evaluated as a potential alternative to classical, frequentist, and subjective 94 

probability. Classical, frequentist probabilities are conceptualized as the number of outcomes resulting in 95 

the specified event divided by the total number of outcomes if the situation were repeated (technically as 96 

that number approaches infinity), while subjective is entirely on the assigner’s degree of belief. There is a 97 

clear demand in the world of science and engineering for a method of risk assessment that addresses the 98 

inevitable uncertainties of the field (Cooke 1991).  99 

Generalized Information Theory 100 



 

 

 

 Recent theories that extend beyond probability include imprecise probabilities, probability-bound 101 

analysis, Possibility Theory, and Dempster-Shafer Theory. Motivated by the emergence of various 102 

mathematical models for handling uncertainty and partial information of different types, a new area of 103 

study termed Generalized Information Theory (GIT) was formally introduced in the early 1990s (Ayyub 104 

1998; Klir 2006; Ross 2010). This area of study is aimed at formally recognizing and systematically 105 

dealing with the nature and scope of uncertainty and its association with partial knowledge. In other 106 

words, GIT is concerned with the development of uncertainty theories. 107 

GIT expands Probability Theory in two dimensions by including non-additive probability 108 

measures and fuzzy sets (rather than Classical Set Theory) (Klir 2006). This paper focuses on the former, 109 

specifically the generalization of the uncertainty associated with the assignment of an element. This area 110 

of study falls under the Theory of Monotone Measures (Klir and Smith 2001; Wang and Klir 2009).  111 

Monotone Measures 112 

Monotone measures broaden the mathematical framework of Probability Theory. There are 113 

several classes of monotone measures that generalize the notion of uncertainty in the assignment of an 114 

element (x), out of a universe X, to a particular set (A). Measures include possibility/necessity measures, 115 

Sugeno λ-measures, belief/plausibility measures, interval-valued probability distributions, and imprecise 116 

probabilities (general lower and upper probabilities). Of these, possibility/necessity measures, 117 

belief/plausibility measures, and imprecise probabilities are among the most promising for the evaluation 118 

of uncertainty in a structural or community risk, reliability, vulnerability, and resilience context. In the 119 

context of classical probability, the assignment of an element x to the set A is typically interpreted as a 120 

matter of likelihood or chance, or in the context of subjective probabilities, as a degree of certainty. 121 

Monotone measures generalize this interpretation, typically associating notions of incomplete information 122 

with ‘evidence’ pertaining to x.  123 

Mathematically, a monotone measure---denoted g(A)---is a mapping to the power set (a set of 124 

beliefs on any available event or event combination) on the unit interval. The value assigned to g(A) is an 125 



 

 

 

expression of the degree of support for the belief that an element x belongs to a given crisp subset A (Ross 126 

2010). Two axioms for monotone measures establish the boundary conditions for any monotone measure: 127 

g(∅) = 0 signifies no degree of support in the null set and g(X) = 1 indicates complete belief for the entire 128 

universe. Another requirement states that the evidence supporting B must be at least as great as the 129 

evidence assigned to A, when A is completely contained in B, the statement of monotonicity.  130 

Probability Theory satisfies the axioms of monotone measures, but in addition must satisfy the 131 

additivity requirement, which is a critical restriction for the use of expert opinions. As demonstrated by 132 

Klir (2006), additivity describes the circumstance in which probability measures can be obtained from 133 

subsets of X if bound within the disjoint set as shown below: 134 

    𝑃𝑃�𝐴𝐴 ∪ 𝐵𝐵� = 𝑃𝑃�𝐴𝐴� + 𝑃𝑃�𝐵𝐵�            (1) 135 

Equation (1) requires that any information provided about element or set ‘A’ also provides contrary 136 

evidence about the complementary event or set ‘Ā’. In Probability Theory, uncertainty is represented by 137 

this single probability measure. If either the probability of an event or set or the probability of its negation 138 

(or complement) is known, the additivity requirement guarantees that the probabilities of both are known. 139 

In the case of evidence theory, one expert might be prepared to assign a certain degree of evidence 140 

(sometimes conveniently viewed as confidence or belief), for instance, that a particular structure has been 141 

rendered uninhabitable following an earthquake. As an example, let this event be designated A, and let 142 

this belief be 30%. Because there is a lot of uncertainty and unknown about the details of the building’s 143 

condition, this same expert might be prepared to assign a belief, confidence or evidence of 40% that the 144 

building is inhabitable, designated Ā. In this case the expert does not have 100% evidence (belief or 145 

confidence) of the status of the structure. 146 

Possibility/Necessity Measures 147 
 148 
Possibility Theory differs from Probability Theory in that it explicitly recognizes the case when 149 

evidence or judgments support the possibility of one event or set, but does not necessarily implicate 150 



 

 

 

evidence regarding the contrary (Dubois 2006; Dubois and Prade 1988). In Possibility Theory, to 151 

characterize fully the uncertainty of A, uncertainty is represented by dual measures, termed possibility and 152 

necessity measures (Ayyub and Klir 2006): 153 

𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸({𝑥𝑥} = �1 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑥𝑥 ∈ 𝐸𝐸
0 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑥𝑥 ∈  𝐸𝐸�     𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 ∈ 𝑋𝑋                                 (2) 154 

𝑁𝑁𝑁𝑁𝑁𝑁(𝐸𝐸) = 1 − 𝑃𝑃𝑃𝑃𝑃𝑃(𝐸𝐸)                                                            (3) 155 

where all alternatives in set E are possible, and where 𝐸𝐸� is the complement of E. As shown, the Possibility 156 

measure is 1 when x is within E, and 0 when x is within anything other than E. The Necessity measure is 157 

then calculated by subtracting from 1 the possibility measure for anything other than E. 158 

These measures are founded on the basic concepts of Possibility Theory. Possibility Theory 159 

provides a mathematical framework to represent ignorance explicitly (Ross 2010). In this context, pairs of 160 

necessity and possibility measures are linked to the mathematical framework of Evidence Theory 161 

(Dempster-Shafer Theory). 162 

Evidence Theory (Dempster-Shafer Theory) 163 
Belief/Plausibility Measures 164 
 165 
Evidence Theory (Dempster-Shafer Theory) is based on a measure of degree of belief, called a 166 

belief measure, Bel(A), which expresses a degree of belief that the correct or true alternative belongs to 167 

the set A, from which a basic assignment or Mobius Measure, m(x), can be calculated. Mobius measures 168 

are related to the previously discussed belief and plausibility measures, and provide “an assessment of the 169 

likelihood of each set in a family of sets identified by the analyst” (Ayyub and Klir 2006). In other words, 170 

Mobius Measures are the evidence that is compiled for each event. Belief and plausibility measures are 171 

calculated as follows (Aven et al. 2014): 172 

𝐵𝐵𝐵𝐵𝐵𝐵�𝐴𝐴� = ∑ 𝑚𝑚�𝐵𝐵�                                                            𝐵𝐵⊆𝐴𝐴    (4) 173 

𝑃𝑃𝑃𝑃�𝐴𝐴� = ∑ 𝑚𝑚(𝐵𝐵)𝐵𝐵∩𝐴𝐴≠∅                                                        (5) 174 



 

 

 

in which the belief in A is the sum of all Mobius measures relating to B in which B is fully contained 175 

within or equal to A (recall that in the mathematical derivations, A and B are considered to be sets). The 176 

plausibility measure is then the sum of all Mobius measures relating to B in which A and B have any 177 

possible commonality. The plausibility measure Pl(A) represents not only the evidence represented by the 178 

belief Bel(A), but also the evidence associated with any sets which overlap with A. Hence, at a minimum, 179 

the plausibility will be as strong as indicated by a belief. From these equations, it is clear that the 180 

relationship between plausibilities and belief measures are related through the following (Ayyub and Klir 181 

2006): 182 

𝑃𝑃𝑃𝑃�𝐴̅𝐴� = 1− 𝐵𝐵𝐵𝐵𝐵𝐵�𝐴𝐴�                                                            (6) 183 

𝑃𝑃𝑃𝑃(𝐴𝐴) ≥ 𝐵𝐵𝐵𝐵𝐵𝐵(𝐴𝐴)                                                              (7) 184 

A degree of belief or evidential support of A, Bel(A), does not implicate disbelief of A̅. For this 185 

reason, Dempster-ShaferTheory differs from classical Probability Theory in that it provides a natural 186 

framework for modeling ignorance (Shafer 1976), which is  the difference between one and the sum of 187 

the belief and the belief of the complement (Ross 2010): 188 

Ignorance = 1 – [Bel(A) + Bel(A̅)]  
        

(8) 

For reference, the inverse relationship to Eq. 4 between beliefs and Mobius measures is given 189 

below (Klir 2006): 190 

𝑚𝑚�𝐴𝐴� = � (−1)�𝐴𝐴−𝐵𝐵�𝐵𝐵𝐵𝐵𝐵𝐵(𝐵𝐵)
𝐵𝐵⊆𝐴𝐴

 191 

                    (9) 192 

 193 

Belief Combination using Evidence Theory (Dempster-Shafer Theory) 194 
 195 
Another facet of Evidence Theory is the ability to combine information from multiple sources, 196 

which can be thought of as a joint message, or a joint evidence assignment of the two pieces of evidence 197 



 

 

 

(Shafer 1987). Thus, beliefs from multiple experts are combined by first computing their Mobius 198 

measures. Combining beliefs using the Dempster-Shafer Theory (or Dempster’s Rule of Combination) is 199 

well established (Klir 2006) by using Eq.10. 200 

𝑚𝑚1,2�𝐴𝐴� =
∑ 𝑚𝑚1(𝐵𝐵)∙𝑚𝑚2(𝐶𝐶)𝐵𝐵∩𝐶𝐶=𝐴𝐴

1−𝑐𝑐
          (10) 201 

Where the denominator is calculated using Eq.11 below:  202 

𝑐𝑐 = ∑ 𝑚𝑚1(𝐵𝐵) ∙ 𝑚𝑚2(𝐶𝐶)𝐵𝐵∩𝐶𝐶=⊘                    (11)   203 

  The numerator is determined by multiplying the belief in every event or event 204 

combination in which the only commonality is the event in question. Every combination is summed. The 205 

denominator is then determined by multiplying the belief in every event or event combination that has 206 

nothing in common, and summing the results. The results vary based on the evidence provided for the 207 

other events, as well as the amount of belief in a combination of events, as opposed to single events (i.e., 208 

the belief in the occurrence of either A and/or B versus the belief in A or B singly). Therefore, probability 209 

theory can be considered as a special case of evidence theory, with the former restricted to single events 210 

and the associated derivation of unions and intersections (Ayyub, 2001).  211 

The concepts of combining judgment from multiple experts in a mathematically-founded 212 

framework could be very powerful in combining engineering judgment with quantitatively- and 213 

qualitatively-based risk calculations. Field judgment in damage assessment and building vulnerability has 214 

great potential to take advantage of Evidence Theory combinations of belief and necessity, as is 215 

demonstrated by Ballent et al. (2018). 216 

Literature Review Conclusion 217 
 218 
As shown in the referenced literature, evidence theory expands traditional probability assessment 219 

by providing for two measures associated with events: the belief and the plausibility. By using a model 220 

that accounts for the uncertainty in the data, it is possible to achieve a more robust output. While the work 221 

above reinforces the idea that uncertainty is, perhaps, not being given the appropriate consideration in risk 222 



 

 

 

assessment, the alternatives to frequentist probability need now to be evaluated in authentic scenarios. 223 

Thus, this work aims to analyze Dempster Shafer Theory and its application to civil engineering to 224 

determine how such uncertainties can be acknowledged. 225 

Exploration of Dempster-Shafer Theory for Risk Assessment 226 

of Natural hazards 227 
 228 

Since its origination, Dempster-Shafer Theory has undergone a fairly small amount of exploration. 229 

Much of the available literature provides only Equations 10 and 11, along with a short example using two 230 

or three power sets. As a main goal of this research was to determine how Dempster-Shafer Theory could 231 

practically be put to use in civil engineering applications for natural hazard risk assessment in evaluating 232 

sustainable and resilient infrastructure, a comprehensive exploration was performed to determine trends 233 

and behavior. These include combining: 234 

 different sets of beliefs 235 

 identical sets of beliefs 236 

 power sets with missing information 237 

 power sets with extra confidence in combined events 238 

 power sets with varying amounts of ignorance 239 

 power sets with strongly conflicting beliefs. 240 

In order to give the reader an idea of the variations that will be explored, Figure 1 provides a simple flow 241 

diagram of these explorations. In these explorations, the symbols A, B and C will now be used to 242 

represent events (singletons, rather than sets), and AB, AC, BC and ABC as unions or combined events. It 243 

is important to caution the reader that the standard usage in evidence theory is to designate, e.g., AB as 244 

the union of beliefs, rather than employing the common probability symbol A∪B. This abbreviated form 245 

is consistent with the concept of power sets always being composed of unions. All examples throughout 246 

the paper will be based on these three singleton events and their combinations. It is noted that all of these 247 



 

 

 

variations begin with beliefs, rather than monotone measures. Asking experts to quantify their beliefs in 248 

various outcomes is the most natural way to solicit information from them. 249 

Combining Different Beliefs – A Practical Example 250 
 251 
Dempster-Shafter (Evidence) Theory can be used to combine the beliefs of multiple experts to 252 

achieve a combined Mobius measure, which can then be used to calculate a combined belief value. When 253 

experts provide a full power set of information (their belief for any single event and any combination of 254 

events), then the belief in single events along with any extra belief they have in combinations of events is 255 

redistributed to the event with the most information.  256 

As an example, five different individual expert opinions are shown in Table 1, along with their 257 

combined belief. It is important to note that the terms A, B, etc. in Table 1 represent events, as 258 

differentiated from A and B, where the underscore indicates sets. The information in Table 1 comes from 259 

a post-seismic damage assessment of the 2010 Port-au-Prince, Haiti earthquake. Aerial images were used 260 

to ask experts to assess their degree of belief in the degree of damage shown in the photograph (there 261 

were many photographs analyzed, and just one is presented here). The events were defined as shown 262 

below: 263 

A 0% - 33% damage 264 

B 34% - 66% damage 265 

C 67% - 100% damage 266 

AB 0% - 66% damage 267 

AC 0% - 33% damage or 67% - 100% damage 268 

BC 34% - 100% damage 269 

ABC 0% - 100% damage 270 



 

 

 

Events “AB”, “AC”, “BC”, and “ABC” signify an either/or relationship. All beliefs in “ABC”, 271 

then, are equal to 1 because that is the belief that either A, B, or C will happen. As these are the only 272 

options, at least one of them must occur. The belief values are shown for each expert, denoted as “b1” for 273 

expert 1, and so on. Recall that the belief value is what is provided by the expert. 274 

Table 1 presents the results from five experts. In each case, the beliefs were converted into 275 

monotone measures using Eq. 9, and then these measures were combined using Eqs. 10 and 11. The 276 

resulting combined monotone measures were then converted back into beliefs using Eq. 4. It can be seen 277 

that while combined ranges AB and BC had slightly higher results, the A range (0% - 33%) had almost as 278 

much belief, reaching about 95%. This is consistent with the actual ground-verified damage of 0% - 33%. 279 

This strong combined belief in event A occurs even though the average of the five experts for event A is 280 

only 0.248.   281 



 

 

 

By looking at the initial beliefs for each event and then the combined belief, it is evident that the 282 

combined belief is dependent on several factors. It is important to look at the starting individual event 283 

values, but also the amount of extra information provided with the belief in combined events. The added 284 

certainty that one may have in a combination of events without having to associate it with any individual 285 

event is filtered back to the single events when beliefs are combined. For example, examine event A. 286 

Each expert provides a belief value for the single event of A, but their beliefs for any combined event 287 

involving A (“AB” or “AC”) is almost always higher than simply the combination of those individual 288 

event beliefs. When these beliefs are combined, a high combined belief for the single event of A is 289 

produced. Through this process, experts are allowed to express uncertainty or ignorance on their belief of 290 

any single event without ignoring evidence they may have on combined events. 291 

Combining Identical Beliefs 292 

An interesting result of this calculation occurs when evidence from people with identical beliefs 293 

is combined. Rather than resulting in the combined expert belief equaling the identical individual beliefs, 294 

the combined belief is redistributed based on the strength of the original beliefs. The belief is distributed 295 

with priority on the events with the strongest starting belief and with the most amount of extra certainty 296 

from joint events. To illustrate this point, one set of beliefs was chosen and then duplicated to calculate 297 

the combined belief as if several experts had the exact same belief. Again, this example is based on three 298 

singleton events and their combinations. 299 

This examination was performed with the use of a computer program written in Matlab that 300 

combines expert beliefs using Dempster-Shafter Theory based on the number of experts. It should be 301 

noted that the program written for this purpose allows the combination of up to five experts. However, the 302 

results are continuous in that combining two sets of two experts with any pairing will yield the same 303 

result as combining 4 experts of the same beliefs. At this point it is also important to note that combining 304 

one set of two experts with one set of three experts does not yield the same result as combining five 305 

experts, as this weights the beliefs differently. This was verified via preliminary testing on the program. 306 



 

 

 

Using this, up to 20 experts were combined to analyze the trends. There are gaps at 7, 11, 13, 14, 17, and 307 

19 experts, as these numbers are not divisible by the available 1-5 expert combinations. It is worth noting 308 

that with just the equation for combining two experts, applied recursively, there would be a gap anytime 309 

the number of experts, n, is not equal to 2n .The results of this exploration are shown below in Table 2 310 

alongside the results of averaging the same set of beliefs using Probability Theory for comparison. The 311 

identical initial beliefs of the individual experts are shown in Table 2 with the combined belief of 20 312 

experts using both Evidence Theory and Probability Theory. 313 

Although the original power set of beliefs provides extra confidence in every double event 314 

beyond the confidence of any single event, the A event acquires the most combined evidence with every 315 

added expert. While A starts out with the highest single event belief in the power set in Table 2, it also 316 

gains the most from the extra belief associated with the combined events of AB and AC. Since every 317 

expert has more overall belief in event A than he or she does in B or C, the evidence for A will 318 

accumulate with each added expert, therefore the combined evidence value for A will continue to 319 

approach 1 and all other values will approach 0. The belief plot shown in Figure 2 reflects this compiled 320 

evidence in that the belief in any event involving A will approach 1, while any event absent of A will 321 

approach 0. This is expected, as the more evidence there is for A, the higher the belief is that any event 322 

where A is an option will occur. The trends shown in Figure 2 are interesting to examine. With each 323 

additional expert, the dominant beliefs for events A, AB and AC show steady increases, tending toward 324 

their asymptotic values of 1. The events C and BC, however, first show modest increases due to the 325 

strong shared initial belief in AC (C increases from 0.05 to about 0.20 while BC increases from 0.10 to 326 

slightly above 0.2), but then with more experts tend to decrease toward 0 as all of the belief is transferred 327 

to the events involving A, which is converging to 1. 328 

The implication of this aspect of Evidence Theory is very important. With probability theory, any 329 

number of experts all expressing for instance 15% belief in event A would result in a group belief of 15%, 330 

independent of any weighting scheme; perhaps with some expressed additional confidence in this result. 331 



 

 

 

But with EvidenceTheory, the more experts who express 15% belief in event A, the more total belief 332 

there is for event A. 333 

In comparing Evidence Theory to Probability Theory, note that as each expert provides more or 334 

less evidence (or their belief) of an event, the combined belief increases or decreases support for one 335 

event, rather than averaging each added belief. These results challenge the frequentist probability 336 

ideology that the most common output is the correct output. While it might seem logical that the group 337 

belief be identical to the comprising individual beliefs, Evidence Theory views the beliefs as evidence for 338 

or against each event. This evidence is then compiled for each event with each new expert’s belief, 339 

producing a joint belief. 340 

Mathematical Convergence for Identical Experts 341 
 342 

From the trends shown in Figure 2, it is interesting to determine when the beliefs converge to a 343 

particular event, a result that has heretofore not been derived as far as the authors can determine. The 344 

smooth curves derived for Figure 2 indicate that the mathematical derivation for 2n experts will 345 

characterize this behavior for a general number of experts. In order to keep the derivation manageable, 346 

and to obtain results that can easily be interpreted, the case of just two singleton events, A and B, will be 347 

considered. The derivation is general, but the inclusion of more events would make it difficult to get a 348 

physical feel for the solution. The combined monotone measure is given by Eqs. 10 and 11, where the 349 

events are now A, B and A∪B (again, recall that in those equations A and B represent sets for each 350 

expert, whereas for this derivation the notation will be that each set consists of three possible events, with 351 

those events being designated A, B and A∪B). Because the Mobius measures must sum to 1, the 352 

following relationship exists: 353 

𝑚𝑚𝑖𝑖(𝐴𝐴 ∪ 𝐵𝐵) = 1−𝑚𝑚𝑖𝑖(𝐴𝐴) −𝑚𝑚𝑖𝑖(𝐵𝐵) 354 

                 (12) 355 

In which i = the indicator for expert i. 356 



 

 

 

Considering now the case of two experts, and noting that they have identical beliefs, Eqs. 10 and 357 

11 give the following results for the combined Mobius measure for event A: 358 

𝑚𝑚1,2(𝐴𝐴) =
[1 −𝑚𝑚1(𝐵𝐵)]2

1 − 2𝑚𝑚1(𝐴𝐴)𝑚𝑚1(𝐵𝐵)
 359 

                 (13) 360 

In which it is recalled that the mi values are identical for experts 1 and 2 (and the double subscript on the 361 

left side indicates that the result is for the first two experts combined). Because groups of two experts can 362 

continue to be combined for any number of experts satisfying 2n, the above equation can be recast in a 363 

recursive form: 364 

𝑚𝑚𝑗𝑗+1(𝐴𝐴) =
[1 −𝑚𝑚𝑗𝑗(𝐵𝐵)]2

1− 2𝑚𝑚𝑗𝑗(𝐴𝐴)𝑚𝑚𝑗𝑗(𝐵𝐵)
 365 

                  (14) 366 

In which the single subscript now represents the combined Mobius measure at the end of the jth and (j+1)st 367 

iteration (recall that j = 1 would represent combining two experts, j = 2 would be combining four experts, 368 

j = 3 would be eight experts, and so on).  369 

 370 

Of interest is the convergent behavior of Eq. (14) as j → ∞. This is determined by looking at the ratio 371 

mj+1(A)/mj(A). When this ratio is less than one, then the quantity mj+1(A) will tend to zero as j increases, 372 

and all the belief will be assigned to event B. The determining ratio of unity occurs when 373 

�1−𝑚𝑚𝑗𝑗(𝐵𝐵)�2 = 𝑚𝑚𝑗𝑗(𝐴𝐴){1− 2𝑚𝑚𝑗𝑗(𝐴𝐴)𝑚𝑚𝑗𝑗(𝐵𝐵)} 374 

                  (15) 375 

Solving this equation gives the value of mj(B) in terms of mj(A) for which the series converges to mj(A) 376 

→ 0. Of interest is the initial value of m1(B). This is given by the following quadratic equation: 377 

𝑚𝑚1
2(𝐵𝐵) + [2𝑚𝑚1

2(𝐴𝐴) − 2]𝑚𝑚1(𝐵𝐵) + [1−𝑚𝑚1(𝐴𝐴)] = 0 378 

                  (16) 379 



 

 

 

For which the quadratic solution is, 380 

𝑚𝑚1(𝐵𝐵) = 1 −𝑚𝑚1
2(𝐴𝐴) ∓ �𝑚𝑚1(𝐴𝐴)[1− 2𝑚𝑚1(𝐴𝐴) +𝑚𝑚1

3(𝐴𝐴) 381 

                  (17) 382 

Table 3 summarizes the minimum values of m1(B) required for specified values of m1(A) for the 383 

combined Mobius measures to converge to all belief in event B. Formally, m1(B) must be strictly greater 384 

than the values in the table for the belief to converge completely to event B. The results are somewhat 385 

surprising since the Mobius measures for B must be quite large for small values of evidence for A in 386 

order to overcome the values for the combined event A∪ 𝐵𝐵. 387 

Dealing with “Missing Information” 388 
 389 
The reason to consider how missing information is treated is that asking an expert for his or her 390 

belief in any combination of events might not be practical. For example, an expert is assessing a structure 391 

and has the following options: A is light damage, B is moderate damage, and C is extreme damage. 392 

Asking for one’s belief in any possible combination of these options, such as one’s belief that the 393 

structure has either light or extreme damage but not moderate damage (designated A∪C, or simply AC) 394 

does not make sense. This leaves the question of how to fill in the missing information of one’s belief in 395 

“A and/or C”. Several ways of handling this missing information were considered. A sample data set of 396 

five different experts’ beliefs was used, with the value of the belief in A or C being calculated differently 397 

each time. These beliefs were then combined to see how the different treatments of AC affected the trend 398 

of combined Mobius measures and beliefs. 399 

The initial evaluation was done with full power sets to provide combined values for comparison. 400 

That is, the belief values of AC were provided by the experts. For this particular data set, every expert’s 401 

belief in AC is more than just the sum of the beliefs in A and C, signifying that each expert has increased 402 

confidence in either one of those events occurring. 403 



 

 

 

The first attempt at filling the missing AC information was to set the combined belief of A and C 404 

equal to the sum of the individual beliefs in A and C. Using the idea of common probability, the belief in 405 

A or C should simply be the sum of the beliefs in A and C. However, since Dempster-Shafer Theory 406 

allows for extra belief in combined events rather than just the combination of single events, one needs to 407 

consider that the combined belief in A and C might be more than just the combined belief in the 408 

individual events. If extra information is provided for AB and BC, but AC is simply the sum of the 409 

individual beliefs in A and C, the combined beliefs for A and C will be negatively affected even if that is 410 

not the true belief of the experts. Since the provided beliefs for AC in the original power set did have 411 

extra information, the combined Mobius measures and beliefs were strongly influenced by the lack of 412 

extra information in this treatment. 413 

Therefore, the combined belief of AC was set equal to the belief in A, B, or C minus the belief of 414 

B alone (theoretically leaving behind the belief of AC). Again, this follows the general rule of probability 415 

in that one’s beliefs must add to 1. Therefore, the belief in 2 of 3 events should be 1 minus the belief of 416 

the third event. Since Dempster-Shafer Theory allows ignorance on the part of the single events and does 417 

not require these beliefs to sum to 1 (but can be no larger than 1), the calculated values of the belief in AC 418 

turned out much higher than the expert-provided beliefs. This led to overly inflated values of combined 419 

Mobius measures and beliefs. 420 

Finally, a value of the belief in AC was based on the provided individual values of A and C while 421 

also taking into account the provided extra information in AB and BC. The belief value of AC was 422 

calculated by summing the individual A and C belief values, then adding half of the extra belief assigned 423 

to AB and BC, with the assumption that half of the extra belief for AB was for A, and half of the extra 424 

belief for BC was for C. This is shown below in Eq. 18.  425 

𝐵𝐵𝐵𝐵𝐵𝐵(𝐴𝐴 ∪ 𝐶𝐶) = 𝐵𝐵𝐵𝐵𝐵𝐵(𝐴𝐴) + 𝐵𝐵𝐵𝐵𝐵𝐵(𝐶𝐶) + [𝐵𝐵𝐵𝐵𝐵𝐵(𝐴𝐴∪𝐵𝐵)−𝐵𝐵𝐵𝐵𝐵𝐵(𝐴𝐴)−𝐵𝐵𝐵𝐵𝐵𝐵(𝐵𝐵)]+[𝐵𝐵𝐵𝐵𝐵𝐵(𝐵𝐵∪𝐶𝐶)−𝐵𝐵𝐵𝐵𝐵𝐵(𝐵𝐵)−𝐵𝐵𝐵𝐵𝐵𝐵(𝐶𝐶)]
2

                          (18)  426 



 

 

 

While the true amount of expert belief associated with the individual events is dependent on each unique 427 

assessment, this method produced combined Mobius measures and beliefs that were the closest to the 428 

values calculated with the full expert-provided power set. A potential problem arises when the individual 429 

A and C beliefs combined with the calculated added information are large enough that this calculation 430 

leads to an AC belief greater than 100. If this is the case, the calculated belief in AC should logically be 431 

capped at 100. 432 

The Effects of Extra Confidence in Combined Events 433 
 434 
As stated, Dempster-Shafer Theory allows experts to acknowledge that they have ignorance about 435 

individual events, but be more confident in combined events. The effect of this extra confidence was 436 

examined to determine how having low individual beliefs but significant extra beliefs in combined events 437 

might weigh against having high individual beliefs with no extra confidence in combined events. Five 438 

different power sets of information with varying amounts of “extra confidence” were evaluated by 439 

repeatedly combining them, as though several experts had the same set of beliefs, to analyze trends. These 440 

power sets are shown in Table 4, based on the three singleton events and their combinations.  441 

The first power set gives event A a starting belief of 40%, and B and C comparatively low beliefs 442 

of 10%. In this first set, the belief in the double events is the sum of the single events; there is no added 443 

confidence. As expected, the combined belief in A, AB, and AC continued to grow while the belief in 444 

events B, C, and BC trended towards 0. The results of this test can be seen in Table 5 and Figure 3. 445 

The second power set had the same individual event beliefs, but the extra confidence in the 446 

combined event of BC was increased by 10% (from 0.2 to 0.3), as shown in the second power set in Table 447 

4. The results are similar to the original test, suggesting that 10% increase in added belief in BC was not 448 

significant enough to diminish the higher starting belief in event A. The combined belief of 10 experts 449 

still strongly supported A while belief in any event or event combination not containing A trended 450 

towards zero.  451 



 

 

 

The third power set added another increment of 10% belief to BC (from 0.3 to 0.4), making the 452 

belief in event A and the belief in BC equal, as shown in the third power set in Table 4. However, the 453 

combined belief in A still trended toward 1, while the belief in B and C briefly increased and then trended 454 

back down towards 0. This is still expected, as the beginning beliefs in AB and AC are still greater than 455 

the belief in BC. However, the combined belief in A of all 10 experts was just under 0.8; a noticeable 456 

decrease from the combined belief of nearly 1 in Table 5. 457 

The fourth power set increased the belief in BC by another 10% to a total of 50%, as shown by 458 

the fourth power set in Table 4. While the belief in B and C remain at 10%, the belief in BC now matched 459 

the beliefs in AB and AC. The trends were not clear after combining 10 experts with identical beliefs, so 460 

the test was extended through 20 experts. The beliefs in A, B, and C all trend towards 33%, with the 461 

belief in double events trending towards 67%.  The results of this extra belief are significant because even 462 

though A had a significantly higher starting belief than B and C, and the beliefs in AB, AC, and BC were 463 

all identical, B and C trended upwards while A trended down. This proved that this extra belief in BC is 464 

the turning point in extra confidence overtaking individual starting belief. However, these results are 465 

interesting because the added belief in BC does not necessarily give enough belief to B and C individually 466 

to have this effect. Since the belief in AB and AC are solely the sum of the individual beliefs in A and B, 467 

and A and C, respectively, it makes sense to split the extra belief in B and C and add it back to the starting 468 

beliefs of B and C. Following this theory, the starting beliefs of B and C would each gain 15%, putting 469 

them both at 25% and still less than the starting belief of A. This suggests that extra confidence in 470 

combined events is handled differently, and potentially more seriously, than starting beliefs in individual 471 

events.  472 

The fifth power set shown in Table 4 increased the starting belief in BC to 60%. Again, the 473 

individual belief in B and C remain low, but the belief in BC is now higher than AB or AC. This higher 474 

belief in BC than any other event dominates, driving the combined belief in A toward 0 (A is the only 475 

event not contained in BC). The corresponding belief for BC trends toward 1 (since the belief in ABC 476 



 

 

 

must equal 1, and with no belief in A, this is the same as the belief in BC). The beliefs in B and C trended 477 

significantly upward, while the belief in AB and AC stayed at 50%, evidently unaffected by the extra 478 

belief in BC, since with an increasing number of experts that extra belief in BC is now being distributed 479 

to B and C, as they trend toward 0.5 (joining AB and AC). Based on the previous test results, it was 480 

expected that B and C would outweigh the belief in A with this extra belief in BC. The results of this test 481 

can be seen in Table 6 and Figure 4. 482 

The purpose of these explorations was to examine how Dempster-Shafer Theory handles the extra 483 

confidence that one may have in the belief of either one of two options, rather than choosing between the 484 

two. The results are interesting in that the extra confidence in combined events appears to be more heavily 485 

weighted than the belief in single events. On one hand, this seems counterintuitive since the expert was 486 

not confident enough to assign any of the extra belief to the individual events, only to the chance of their 487 

either/or occurrence. On the other hand, this makes sense in that the expert is confident enough that one of 488 

the two will occur, but might be uncertain about the split between the individual events and is 489 

uncomfortable choosing to assign more belief to either of the two.  490 

Varying Amounts of Ignorance 491 
 492 
A key difference between Evidence (Dempster-Shafer) Theory and Probability is that Dempster-493 

Shafer Theory does not require one to assign all of his or her belief to any individual or combination of 494 

events. Ignorance is allowed and, accordingly, the sum of one’s beliefs is often less than unity. The 495 

impact of the amount of ignorance one can have was explored to determine how combining experts with 496 

relatively low beliefs might differ from combining experts with higher, though proportional, beliefs. For 497 

the purposes of identifying trends, one set of beliefs was repeatedly combined until the combined expert 498 

belief no longer had any ignorance, or all 100% of the belief was accounted for among the three single 499 

events. In these examples, the singleton events A, B and C will continue to be used. 500 

 The first examination uses a set of beliefs that has a large amount of ignorance. There was only 501 

10% belief for the single events and 20% for the double events (the sum of their respective single events 502 



 

 

 

with no extra confidence). This leaves 70% of one’s belief unassigned. As stated previously, the belief in 503 

A, B, or C must always be 100% as there are no other events that may occur. This set of beliefs required 504 

20 experts to reach a point when the belief of the individual events did sum to 100% (with a belief of 505 

~33% for each individual event) and there was no longer any ignorance, as probability would require. The 506 

combined beliefs can be seen in Table 7.  507 

 508 
These results demonstrate how partial evidence is handled with Dempster Shafer Theory. While initially, 509 

the experts have very little belief assigned to any single event, the same small amount of belief is assigned 510 

to each event. This means that the same amount of evidence, although in small increments, is compiled 511 

for each event until the maximum amount of evidence is reached (33% for each event if dealing with 3 512 

events). With this set of starting beliefs, 20 experts are required to contribute beliefs in order to compile 513 

enough evidence to reach 33% for each event. While in theory an infinite number of experts would be 514 

needed to reach the asymptotic values, it is noted that with 9-10 experts the beliefs are within a relative 515 

error of 10% of their asymptotic values {e.g., 0.30 compared to 0.33, and 0.60 compared to 0.65). 516 

 Another power set with less ignorance was tested to observe the difference in how many experts 517 

were required to reduce the ignorance to zero. Each individual event was assigned a belief of 20% with 518 

the double events again being the sum of their respective individual events (40%), leaving 40% of the 519 

belief unassigned. This set of beliefs required 8 experts to reach a combined belief with no ignorance.   520 

 The final test had starting beliefs with almost no ignorance. Each starting individual event belief 521 

was 30%, and each double event was assigned a belief of 60%. Only 10% of the belief was left 522 

unassigned. This relatively high power set only required 2 experts to reach a combined belief with no 523 

remaining ignorance.  524 

 Understanding how ignorance is handled is important because allowing ignorance is a key 525 

component of Dempster-Shafer Theory that makes it a contending alternative to probability. The tests 526 

above suggest that the ignorance provided by experts is retained in their combined belief until enough 527 



 

 

 

evidence is provided to allow otherwise. When there is substantial ignorance in the starting beliefs, many 528 

experts are required to contribute their belief to reach a combined belief that no longer has ignorance. The 529 

higher the starting beliefs, the lower the number of experts required to reach a full combined belief power 530 

set with no ignorance. While no absolute rules were developed for the number of experts required to 531 

remove ignorance completely, explorations such as these could be used to develop guidelines for 532 

particular applications. 533 

Conflicting Expert Opinion 534 
 535 

Conflicting belief has been a noted weak point of Dempster-Shafer Theory (Xin et al. 2005). 536 

Ayyub and Klir (2006) offer alternative methods, replacing Eq. 10 with a term scaled to conflict or 537 

distributing the degree of conflict to the set of outcomes. The use of these alternatives may be important 538 

when there is a high degree of conflict. It has not been pursued here since the applications envisioned in 539 

natural hazard risk assessment for infrastructure should not in general lead to a high degree of conflict. 540 

Equations 10 and 11 have straightforward interpretations in terms of the inclusion of all terms with any 541 

overlap in Eq. 10 and terms with no overlap in Eq. 11.  To determine how the equations outlined in this 542 

paper handle conflicting opinion, a series of basic tests was performed. In each case, the three singleton 543 

events A, B and C and their combinations are considered. The first test assigned absolute belief in event A 544 

to one expert and absolute belief in event B to a second. The belief in combined events is the sum of the 545 

individuals. In such cases of 100% conflicting belief, this theory is not able to compute a joint belief as 546 

there is no commonality between the two experts, from which the numerator in Eq. 10 originates.  547 

 The second test assigns near absolute belief to the same events as the first, but with 1% 548 

ignorance. In this case, Dempster-Shafer Theory essentially takes the average of the provided beliefs as 549 

there is nearly no commonality between the experts, but both admit some small ignorance. Since 550 

Probability Theory would handle these beliefs in a similar method, this seems like a natural result. The 551 

results are outlined in Table 8. 552 



 

 

 

 553 

 A third test was carried out by assigning three experts 50% belief in different events. Rather than 554 

producing an average combined belief, the result was a 25% joint belief in each individual event (larger 555 

than the 16.67% that an average would yield) and a 50% belief in each combined event, as seen in Table 556 

9. This result reflects a notable difference in how probability and Dempster-Shafer Theory deal with 557 

multiple inputs and significant ignorance. 558 

 In order to analyze how larger quantities of conflicting beliefs are handled, one expert was 559 

assigned absolute belief (100%) in event C, which was combined with three other experts that all had 560 

strong belief (90%) in A. This test is of significant interest because even though it seems there is more 561 

overall belief in event A, the first expert’s absolute belief in C allows no ignorance or commonality, and 562 

therefore trumps the less-than-absolute belief that the other three experts had in event A. The resulting 563 

combined belief was 100% belief in C and 0% in A. Again, the idea of ignorance plays a significant role 564 

in Dempster-Shafer Theory that probability would ignore.  565 

The implications of this complete (or near) confidence of a single expert, in this case for event C, requires 566 

comment. In a democratic process. It would be possible for a single expert to negate the opinions of other 567 

experts by assigning such complete belief to the outcome preferred by this one expert. For instance, in the 568 

case of the first example in this paper, one expert could “decide” how much damage is revealed from the 569 

aerial photography. Such an outcome would be at least as bad as the shortcoming of probability theory of 570 

ignoring the extra strength of belief from consistent experts. Further considerations of such limitations 571 

deserve continued evaluation and study before one can be fully comfortable in promoting the use of 572 

Dempster-Shafer theory. 573 

 A fourth test was performed to determine at what level of confidence expert 1’s belief in event C 574 

gives way to the other three experts’ belief in event A. Keeping the first three experts’ belief in event A at 575 

90%, the confidence that expert 1 has in C was varied from 90% to 100%. When expert 1’s confidence 576 

drops below around 99.5%, the combined belief shifts towards event A. Any belief above 99.5% does not 577 



 

 

 

leave enough ignorance to allow for the other three expert’s beliefs to influence the combined belief. This 578 

last scenario demonstrates how different belief measures are from probability. Belief measures represent 579 

one’s confidence in a certain outcome. When this confidence is near 100%, this is taken almost as fact of 580 

what will happen, rather than just an estimate. The remaining ignorance is so small that other beliefs less 581 

than 100% are considered negligible or not likely enough to occur. 582 

Summary of Program Explorations 583 
 584 

 The series of explorations performed on the MatLab programs and the new mathematical 585 

derivation helped determine how Dempster-Shafer (Evidence) Theory behaves in specified situations and 586 

in which scenarios it might be applicable. Several key outcomes were determined throughout this 587 

exploration, many of which highlighted the contrast between this theory and basic probability. Combining 588 

expert beliefs using Evidence Theory yields a significantly different result from simple averaging; as 589 

more and more beliefs contribute, one event will eventually reach a joint belief of 100%, while all other 590 

single events will have 0%. Several other aspects influence the joint belief, including any amount of 591 

ignorance the experts may have (a total belief less than 100%), how much extra belief he or she has in the 592 

joint events versus the single events, and how conflicting the contributing beliefs are. The ignorance 593 

allowed in beliefs less than 100% act as a sort of weighting measure – experts with more ignorance do not 594 

influence the joint belief as strongly as experts who assign 100% of their belief. The confidence level of 595 

the contributing experts influences how many experts are required to reach total belief in a definitive 596 

answer. For example, a small number of very confident experts with similar beliefs might have a joint 597 

belief of 100% in one event, while a larger group of less certain experts may yield a more ambivalent 598 

result. When contributing beliefs are strongly conflicting, the amount of ignorance present plays a key 599 

role. One expert who very strongly believes in event A (little to no ignorance) combined with another 600 

expert who has a moderately high belief in event B (slightly more ignorance), will yield a joint belief that 601 

strongly backs event A, even though the contributing beliefs in A and B are both high. Another key 602 

outcome of conflicting belief is that when there is no possible overlap, for example if one expert has 603 



 

 

 

100% belief in A and one has 100% belief in B, Dempster-Shafer Theory is not capable of calculating a 604 

joint belief.  605 

 Overall, these results were able to provide a general foundation for the behavior and trends of 606 

Dempster Shafer Theory under several conditions. This basis allows for further real-world testing in 607 

practical risk situations, such as the survey instrument used by Ballent et al. (2018). 608 

Conclusion 609 
 610 
 A primary goal of this paper was to further understand the role of uncertainty and expert belief in 611 

assessing natural hazard risk for sustainable and resilient built environments, and to analyze potential 612 

frameworks with which this uncertainty might be captured. While a variety of frameworks have been 613 

presented in previous publications, the exploration program that was executed and analyzed in this paper 614 

offers a more comprehensive understanding of Evidence (Dempster Shafer) Theory and how such a 615 

theory would react given various realistic inputs. Evidence Theory provides significantly different results 616 

in subjective cases when compared to the frequentist alternative of probability. Such results often provide 617 

a much more definitive and involved joint belief that takes into account aspects such as what confidence 618 

levels the experts have, any extra belief there may be in a wider range of events, and how conflicting the 619 

contributing beliefs are. Using a method that contains these nuances could yield significantly different 620 

results when compared to probability. The rules of probability, namely additivity, handle a potential 621 

doubt, or lack of belief, in an event as evidence to its contrary. Many of the cases examined in this paper 622 

involved some level of ignorance, and its influence was not insignificant. By using a framework that 623 

acknowledges such a lack of belief as ignorance, rather than belief of the contrary, it is potentially 624 

possible to achieve more meaningful results. The results discussed in this paper suggest that Dempster-625 

Shafer Theory is a viable, if not preferential, treatment of cases that involve uncertainty.  626 

 Dempster-Shafer Theory was put through several trials in this paper to determine general trends 627 

and behaviors, but many unknowns remain. The particular equation analyzed here showed some 628 



 

 

 

limitations, such as with strongly conflicting beliefs that have no commonality. Alternatives might 629 

provide an improvement in such situations, and should be investigated further. 630 

 The main applications of Dempster-Shafer Theory considered in this research are within the field 631 

of natural hazard assessment, but the possibilities extend far beyond that. Subjective investigations and 632 

assessments are unavoidable in many fields, as no two locations, projects, communities, and 633 

environments are exactly the same. These circumstances present the challenge of recognizing and 634 

accounting for such uncertainties. A mathematical framework such as Dempster-Shafer Theory that 635 

allows for this uncertainty has the potential to change the outcome of civil engineering decisions on a 636 

large scale. Nevertheless, such a radical change in handling expert opinion and evidence must explore 637 

unintended consequences, such as dominance by a single expert, along with the potentially significant 638 

benefits. 639 
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Fig. 1. Flow Diagram of Explorations for Number of Experts, Extra Belief and Confidence 705 
Fig. 2. Belief of Combined Experts with Identical Beliefs 706 
Fig. 3. Joint Expert Beliefs with No Extra Confidence in Combined Events 707 
Fig. 4. Joint Belief Power Sets with 40% Extra Confidence in Combined Events 708 
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Table 1. Combined Belief of Experts with Different Individual Beliefs 711 
 712 

Event b1 b2 b3 b4 b5 Combined b 

A 0.58 0.25 0.059 0.25 0.1 0.953 
B 0.17 0.31 0.24 0.13 0.2 0.023 
C 0.042 0 0 0 0.033 0.01 

AB 0.75 0.63 0.59 0.63 0.47 0.976 
AC 0.83 0.63 0.47 0.63 0.53 0.983 
BC 0.21 0.31 0.24 0.13 0.33 0.034 

ABC 1 1 1 1 1 1 
Note: b is belief 713 
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Table 2. Combining Identical Expert Beliefs Using Dempster-Shafer Theory and Probability 716 
Theory 717 
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 722 

  723 

Event Initial Beliefs 
(1 expert) 

Combined Beliefs 
 (20 experts) 

Probability Evidence 
bel m m bel m bel 

A 0.15 0.15 0.15 0.15 0.92 0.92 
B 0.00 0.00 0.00 0.00 0.00 0.00 
C 0.05 0.05 0.05 0.05 0.08 0.08 

AB 0.20 0.15 0.05 0.20 0.00 0.92 
AC 0.40 0.20 0.20 0.40 0.01 1.00 
BC 0.10 0.05 0.05 0.10 0.00 0.08 

ABC 1.00 0.50 0.50 1.00 0.00 1.00 



 

 

 

Table 3. Minimum Evidence for Event B per Expert for Convergence to Event B  724 
 725 

m1(A) m1(B) m1(A∪𝑩𝑩) 
0.1 0.707 0.193 
0.2 0.611 0.189 
0.3 0.592 0.108 
0.4 0.515 0.089 
0.5 0.5 0 
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Table 4. Belief Power Sets with Different Levels of Extra Confidence in Combined Events 732 
 733 

Event Set 1 Set 2  Set 3 Set 4 Set 5 
A 0.4 0.4 0.4 0.4 0.4 
B 0.1 0.1 0.1 0.1 0.1 
C 0.1 0.1 0.1 0.1 0.1 

AB 0.5 0.5 0.5 0.5 0.5 
AC 0.5 0.5 0.5 0.5 0.5 
BC 0.2 0.3 0.4 0.5 0.6 

ABC 1 1 1 1 1 
 734 
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Table 5. Combined Expert Beliefs with No Extra Confidence in Combined Events 737 
 738 

# of 
Experts 1 2 3 4 5 6 8 9 10 

A 0.4 0.59 0.71 0.79 0.86 0.91 0.96 0.97 0.98 
B 0.1 0.11 0.10 0.08 0.06 0.04 0.02 0.01 0.01 
C 0.1 0.11 0.10 0.08 0.06 0.04 0.02 0.01 0.01 

AB 0.5 0.70 0.80 0.87 0.92 0.95 0.98 0.99 0.99 
AC 0.5 0.70 0.80 0.87 0.92 0.95 0.98 0.99 0.99 
BC 0.2 0.22 0.19 0.15 0.11 0.08 0.04 0.03 0.02 

ABC 1 1 1 1 1 1 1 1 1 
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Table 6. Combined Belief Power Sets with 40% Extra Confidence in Combined Events 743 
 744 

# of 
Experts 1 2 3 4 5 6 8 9 10 

A 0.4 0.32 0.26 0.21 0.16 0.13 0.08 0.07 0.05 
B 0.1 0.18 0.24 0.30 0.34 0.37 0.42 0.43 0.45 
C 0.1 0.18 0.24 0.30 0.34 0.37 0.42 0.43 0.45 

AB 0.5 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
AC 0.5 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
BC 0.6 0.68 0.74 0.80 0.84 0.87 0.92 0.93 0.95 

ABC 1 1 1 1 1 1 1 1 1 
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Table 7. Combined Experts Belief Power Sets with Ignorance of 70% 747 

 748 

 749 

 750 

  751 

# of 
Experts 1 2 3 4 5 6 8 9 10 12 15 16 18 20 

A 0.1 0.16 0.20 0.23 0.25 0.26 0.28 0.29 0.30 0.31 0.32 0.32 0.32 0.33 
B 0.1 0.16 0.20 0.23 0.25 0.26 0.28 0.29 0.30 0.31 0.32 0.32 0.32 0.33 
C 0.1 0.16 0.20 0.23 0.25 0.26 0.28 0.29 0.30 0.31 0.32 0.32 0.32 0.33 

AB 0.2 0.32 0.40 0.45 0.49 0.52 0.57 0.58 0.60 0.61 0.63 0.63 0.65 0.65 
AC 0.2 0.32 0.40 0.45 0.49 0.52 0.57 0.58 0.60 0.61 0.63 0.63 0.65 0.65 
BC 0.2 0.32 0.40 0.45 0.49 0.52 0.57 0.58 0.60 0.61 0.63 0.63 0.65 0.65 

ABC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 



 

 

 

Table 8. Conflicting Expert Belief and 1% Ignorance in Combined Beliefs 752 
 753 

Event Expert 1 
Belief 

Expert 2 
Belief 

Combined 
Belief 

A 99.0% 0.0% 49.8% 
B 0.0% 99.0% 49.8% 
C 0.0% 0.0% 0.0% 

AB 99.0% 99.0% 99.5% 
AC 99.0% 0.0% 49.8% 
BC 0.0% 99.0% 49.8% 

ABC 100.0% 100.0% 100.0% 
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Table 9. Conflicting Expert Belief and 50% Ignorance in Combined Beliefs 758 
 759 

Event Expert 1 
Belief 

Expert 2 
Belief 

Expert 3 
Belief 

Combined 
Belief 

A 50% 0% 0% 25% 
B 0% 50% 0% 25% 
C 0% 0% 50% 25% 

AB 50% 50% 0% 50% 
AC 50% 0% 50% 50% 
BC 0% 50% 50% 50% 

ABC 100% 100% 100% 100% 
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Fig. 1. Flow Diagram of Explorations for Number of Experts, Extra Belief and Confidence 763 
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Fig. 2. Belief of Combined Experts with Identical Beliefs 765 
  766 
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Fig. 3. Joint Expert Beliefs with No Extra Confidence in Combined Events 768 
  769 
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Fig. 4. Joint Belief Power Sets with 40% Extra Confidence in Combined Events 771 
 772 
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