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We analyze hydrodynamic enhancement of mass (or heat) release rate from small spherical particles 

within fluid flows from local flow shear-rate, with application to drug dissolution. Combining asymptotic 

theories in the high/low shear Peclet number limits in Stokes flow with 205 carefully-developed 

computational experiments, we develop accurate correlations for shear enhancement of Sherwood/Nusselt 

number (Sh/Nu) as a function of shear Peclet and Reynolds number (S*, ReS). The data spanned S* from 0 - 

500 and ReS from 0 - 10. In Stokes flow our correlations are highly accurate over the entire S* range, whereas 

for finite ReS < 1 accuracy is good for S* up to a few thousand. Shear enhancement results from highly 

three-dimensional spiraling flow created by particle spin. We develop a model for particle slip velocity that 

is inserted into the Ranz/Marshall correlation1 to show that shear-rate enhancement strongly dominates 

convection, a result important to drug dissolution. 

Keywords: Dissolution, drug dissolution, particle mass transfer, particle heat transfer, shear enhancement, 

convective enhancement. 

Introduction 

The general problem of heat and mass transfer from small particles transported within a fluid flow has 

broad technological applicability. Our application is the release of drug molecules from the surfaces of large 

collections of “small” drug particles (up to particle radius R ~100-150 m) moving within liquids in the 

gastro-intestinal tract (“in vivo”) and within impeller-driven dissolution measurement devices (“in vitro”).2 

Within the pharmaceutical sciences community, the rate of molecular drug transport from clouds of drug 

particles previously within capsules or tablets (“dissolution”) is a central determinant in the rate of drug 

absorption in the intestines. Because low drug solubility is common (as defined by the “BCS drug 

classification system”3), dissolution is often a rate-limiting step in absorption. Correspondingly, 

mathematical models of dissolution rate are central to pharmacokinetics model predictions of 

“bioavailability” and “bioequivalence.” 

As discussed in recent papers by Wang, et al.4,5, at the core of the prediction of dissolution-rate from 

large numbers of small drug particles over wide ranges of particle diameters is the prediction of molecular 

flux from the individual particles within the ensemble. For particles sufficiently small that diffusion is the 

leading order mechanism, the flux is appropriately normalized as follows: 
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Sh is the “Sherwood number,” where 
SN  is the average flux of molecules from the particle surface 

(moles/mass per unit area and time), CS is drug concentration at the drug particle surface (typically 

approximated at the aqueous solubility), Dm is the diffusivity of drug molecules in the solvent of choice, 

and R is the average particle radius. CB is the “bulk” (average) concentration of drug molecules in the 

solvent which, for unbounded dissolution, is the concentration at infinity (C). 

Defining the “diffusion layer thickness”   from Fick’s (or Fourier’s) law as 
" [ / ] [ ] /S m S m S BN D C n D C C      , (1) can be written equivalently as /Sh R  . It can be shown 

that Sh = 1 for a single spherical particle experiencing purely diffusion-driven dissolution in “sink” 

conditions (i.e., effectively within an infinite domain), implying R  .4,5 Effects that enhance the rate of 

release of molecules from the particle surface cause increases in Sherwood number Sh and reductions in 

diffusion-layer thickness  (relative to R). These considerations apply equally for mass and heat transfer 

where, for heat release, concentration is replaced by temperature, mass diffusivity by thermal diffusivity 

and Sherwood number by Nusselt number.

Confinement of molecules by a container surrounding the particle impacts the surface gradient in 

concentration and therefore creates deviations in Sh from 1. Furthermore, hydrodynamic enhancements to 

diffusion-driven dissolution occur in the presence of fluid flow relative to the particle surface, where Sh = 

1 is the leading term in the limit of zero particle radius. Thus, for small particles the normalized flux can be 

written 

 1 confine hydroSh      , (2) 

where 
confine  represents the modification of normalized flux from confinement and

hydro  represents 

enhancement in particle Sherwood number from hydrodynamic influences.  

Wang et al.4 derived a closed-form solution to 
confine for diffusion-dominated dissolution from a 

spherical particle in an impermeable spherical container using a quasi-steady-state approximation and 

compared with the exact solution to show that the “confinement effect” 
confine  is well approximated by the 

model. 
confine is generally a small enhancement for typical in vitro drug dissolution conditions, but can 

become significant when the volume of solid particles is not small relative to the container volume, as might 

be the case for drug dissolution in vivo. 

The hydrodynamic enhancements to dissolution rate, 
hydro , are functions of the appropriate particle 

Peclet and Reynolds numbers defined at the particle location with particle radius as an appropriate length 

scale. The most widely recognized hydrodynamic enhancement is “convective” enhancement associated 

with the magnitude of the relative velocity, U  u , between a moving particle and the surrounding 

flow. This “slip velocity” carries drug molecules into the wake which enhances surface flux and, 

correspondingly, increases concentration gradient at the particle surface and reduces the thickness of the 

surface diffusion layer. The result is an enhancement to the Sherwood number, conv .  

Ranz & Marshall1 designed a clever experiment to produce accurate data with which conv  was 

empirically parameterized for spherical particles with fixed surface concentration as a function of Peclet 

and Reynolds numbers, each defined with the magnitude of the relative (slip) velocity U  and average 

particle radius R: 

 
1/3 0.170.424 Reconv U UPe   , (3) 

where ( ) /U mPe U R D    and ( ) /URe U R     ( is the fluid kinematic viscosity). Thus, convective 

enhancement scales as 1/2
[( ) ]U R . (Ranz & Marshall wrote their correlation equivalently in terms of ReΔU 
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and Schmidt number Sc = ν/Dm.) We show in Appendix A that in the small particle limit, 
2~U R , so that 

3/2~conv R  for small particles. 

Whereas convective enhancement to heat and mass transfer from relative velocity (slip) between 

particle and flow is the most commonly addressed hydrodynamic effect, in the current study we analyze a 

different mechanism for hydrodynamic enhancement of dissolution that originates in the existence of fluid 

shear-rate at the location of the particle, Δshear. In the section below entitled “Physical Mechanisms” we 

show that the enhancement in surface flux results from vorticity-induced spin of fluid particles that 

generates a three-dimensional velocity field local to the particle surface, increasing the effective contact 

surface area for molecular flux. Using carefully developed high-resolution computational fluid dynamics 

with mass dissolution from spherical particles in the presence of uniform shear-rate, we develop empirical 

relationships between the Sherwood number and shear-rate-based Peclet and Reynolds numbers with 

Dirichlet boundary conditions. 

Based on the empirical correlations we develop here between normalized flux (Sh) and the shear Peclet 

and Reynolds numbers, we show in Appendix A that, although both convective and shear-rate effects vanish 

in the limit of vanishing particle size, 0.5/ ~shear conv R   so that shear-rate is both highly significant and 

is the dominant hydrodynamic enhancement to mass transfer in the small-particle dissolution limit. 

Furthermore, the small-particle limit is increasingly relevant given the current trend towards “micronization” 

of drug particles to enhance dissolution rates with low solubility drugs6. 

In the next section we describe former theoretical studies with asymptotic limits useful in the 

development of our correlations, and other relevant modeling studies. We then summarize our numerical 

approach (details are in Appendix B) and subtleties and care taken in the data generation process. From our 

simulations, we describe the essential physical mechanisms that underlie enhancement of mass transfer 

from local shear-rate and quantification of normalized flux (Sherwood number), vs. shear Peclet and 

Reynolds numbers. We then describe the development of our correlations with detailed analyses of the 

quality of the fit. We close by assessing sensitivity to changes in shear Peclet and Reynolds numbers, with 

details in Appendix C. Appendix A describes our model for slip velocity from which we present an analysis 

of shear-rate vs. convective enhancement to particle mass flux.  

Theoretical Background 

Here we consider a fluid particle feely suspended in a uniform unbounded shear flow, the second term 

in a Taylor series expansion of velocity relative to a moving solid particle. 

Nondimensional Parameters 

As previously discussed, the surface flux of molecules from small spherical drug particles normalized 

in the small-particle diffusion-dominated limit (the Sherwood number)  is given by Eq. 1. Dimensional 

analysis in the small-particle limit implies that Sherwood number is a function of the appropriate particle 

Reynolds and Peclet numbers: ( ,Re)Sh f Pe . Whereas the appropriate length scale in the diffusion-

dominated limit is particle radius R, the appropriate velocity scale depends on the mechanism underlying 

dissolution enhancement. Whereas for convective enhancement the velocity scale is slip velocity U , for 

shear-rate enhancement an appropriate velocity scale is SR, where S is flow shear rate at the particle and R 

is particle radius. Thus the particle shear Reynolds and Peclet numbers are given by: 
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where   and Dm are the diffusivities of momentum and mass, respectively. Note that we choose the symbol 
*S  for shear Peclet number ( *

SS Pe ) to emphasize what turns out to be the leading order influence of 

shear rate on dissolution from small particles at small particle Reynold numbers. By changing mass 

diffusivity to thermal diffusivity and Sherwood number to Nusselt number, the analyses and correlations in 

the current paper are applicable to heat transfer. 

As previously discussed, surface flux of molecules (or mass) "
SN  is appropriately normalized by 

( ) /m S BD C C R  in the diffusion-driven small-particle limit (bulk concentration BC  is zero in an 

unbounded fluid with zero concentration at infinity). A primary aim of the current study is to empirically 

determine the relationship  *,ReSSh Sh S  between normalized flux and the shear Peclet and Reynolds 

numbers for spherical drug particles within a simple unbounded shear flow with Dirichlet surface 

concentration and no-slip surface velocity boundary conditions. From our resulting correlations, shear  in 

Eq. (1) is found from 1shear Sh   , where Sh  is Sherwood number with shear-rate as the only 

hydrodynamic influence (Δconf = 0 in unbounded flow). 

Former Analytical and Modeling Studies 

The earlier efforts to characterize heat and mass transfer from particles in unbounded shear flows were 

asymptotic theories in the Stokes flow limit, beginning with Frankel and Acrivos7 who derived the 

following relationship between Sherwood/Nusselt number and shear Peclet number S* in the limit 
* 0S 

at zero Reynolds number with constant unbounded linear shear rate:  

 
1/2

0
*1Sh S  , (5) 

where the subscript 0 indicates Re 0S  . Frankel and Acrivos7 derived the proportionality constant  = A 

= 0.257. As discussed below, Batchelor8 used a different approach to derive the same asymptotic 

dependence for 
0

*( )Sh S  but with a proportionality constant  = B = 0.286, 10% higher than that in the 

Frankel/Acrivos result. We shall show that our results are consistent with the Batchelor coefficient. 

To evaluate the infinite Peclet number limit for Stokes flow, Acrivos9 argued that a freely suspended 

sphere in the limit of infinite shear Peclet number must be surrounded by a region of closed streamlines 

across which mass/heat is transferred by pure diffusion/conduction. For this reason, Sh asymptotically 

approaches a constant as *S  . Acrivos9 took advantage of the analogy between the sphere and cylinder 

in simple shear flow to solve the mass transfer problem with an approximate method that yielded the 

asymptotic Sherwood number 
0

4.5Sh

  in the limit *S   for Stokes flow, a value consistent with 

CFD simulations by Yang et al.10 

Batchelor8 followed these important works with an extensive analysis of the steady-state transfer rate 

of mass/heat from a spherical particle within fixed mean velocity gradient profiles to derive formulas for 

Sherwood/Nusselt number in pure strain and rotation, as well as in the limit * 0S   for uniform shear flow 

in the zero Reynolds number limit using a mathematical approach fundamentally different from that of 

Frankel and Acrivos7. As mentioned above, Batchelor8 derived the same asymptotic form as Frankel and 

Acrivos7 (Eq. 5) but with a different proportionality constant. 

The 1968 and 1971 theoretical studies above established the basis for the future studies on this subject. 

Using an advanced interpolation method, Polyanin and Dil’man11 developed the following approximate 
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correlation for shear-induced enhancement to the Sherwood number at ReS = 0 (Stokes flow) as an 

interpolation between the Frankel and Acrivos7 * 0S   result and the approximate finite *S   limit of 

Acrivos9:  

  1/2 1/2

0
* *1 0.26 1 0.057Sh S S   . (6) 

For small Peclet numbers 1/2

0
*1 0.26Sh S  , close to the Frankel and Acrivos7 formula at small S* but 

slightly higher than Acrivos9 in the limit *S  . 

Analytic solutions at finite Reynolds numbers are precluded by nonlinearity. Subramanian and 

Koch12,13 proved that at small finite Reynolds numbers, flow inertia breaks symmetry and produces open 

streamlines over neutrally-buoyant freely-suspended spheres in simple shear flow. As a result, unlike 

inertia-less flow ( Re 0S  ) where Sherwood number is finite in the limit *S  , Sh (eventually) increases 

without bound as *S  , even in the presence of only small levels of inertia. Subramanian and Koch13 

also showed the existence of streamlines that spiral towards the sphere around the axis of rotation and, 

taking into account the confinement of thermal gradients to thin thermal boundary layers at high 
*ReS S , 

they derived the following correlation that they state is applicable in the asymptotic limits Re 1s
 and 

2/5*Re 1/ ( )s S : 

   
1/3

1/2 *0.325 0.126Re Re (1)s sSh S O   . (7) 

The second inequality implies that Eq. (7) applies when 
5/2* 1 / ResS ; thus, since Re 1s  the 

Sherwood number must be extraordinarily high for applicability of Eq. (7), making it of minimal 

applicability to dissolution from small (drug) particles. Yang et al.10 provided additional analysis of the 

Subramanian and Koch12,13 high *ReS S thermal boundary layer theory, including additional visual 

presentations of spiraling streamline structure and the development of numerical simulations to evaluate 

and validate the theory. As mentioned above, their simulations at their highest Peclet number simulations 

are consistent with the Acrivos9 Stokes flow asymptotic estimate  4.5Sh  as *S  . They suggest 

that the influence of Reynolds number on Sherwood number is minimal when Re 0.1~S
  and significant 

when Re 1~S
 . We comment on this conclusion in this work. 

Longest and Kleinstreuer14 numerically simulated heat/mass transfer from a spherical droplet in a 

bounded simple shear flow with zero concentration on the walls. Using simulations in the range 

* ~ 0.006 19.2S   and Re ~ 0.003 8.0S  , they report the following approximate correlation by curve 

fitting their computational data:  
0.333

0.237 *1.0 0.386ResSh S  . However, this form cannot be correct 

since it implies that 1Sh   in Stokes flow independent of shear-rate. 

Aims of the Current Study 

Analytical methods cannot predict Sh(S*,ReS) at finite ReS or over the complete range of S* in Stokes 

flow. Our aim is to apply high-resolution numerical models to accurately predict dissolution from feely-

rotating spherical particles in unbounded linear shear flow at zero and finite ReS . To increase accuracy and 

to overcome numerical complications in modeling the Stokes flow limit, we provide the exact Stokes-flow 

solution to the lattice-Boltzmann method to estimate Sh vs. *S  at Re 0S  . We use the Acrivos9 analytical 

estimate 4.55Sh  to extend the correlation to the infinite *S  limit. We combine computational data in 

the ranges 
*0.01 500~ ~S  , 0 Re 10~ ~S

   with asymptotic theory to produce accurate correlations with 

specific application to drug dissolution. However, the results are more generally applicable to particulate 

flows with Re 10S  . 
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The Numerical Model 

Page limitations forced the details of the lattice-Boltzmann (LB) numerical method applied in the 

current study to be relegated to Appendix B. Here we summarize key issues surrounding the numerical 

model, grid resolution and the basic numerical method. 

We model dissolution from a freely suspended spherical particle in an unbounded flow with uniform 

shear-rate. As illustrated in Figure 1, we use a dual-grid lattice-Boltzmann CFD method to predict the flow 

field, concentration field and surface mass flux from a highly-resolved spherical particle with radius R 

placed symmetrically on the central plane of a Couette flow generated by two parallel plates moving in 

opposite directions with speed U, creating a background shear-rate /S U H  in the steady state. The 

sphere is allowed to freely spin from surface frictional stresses driven by local shear-induced vorticity. Drug 

molecules are modeled as a passive scalar concentration field with specified mass diffusivity Dm. The initial 

flow field is devoid of drug molecules and the concentration field evolves from molecules released into the 

fluid at the sphere surface according to Fick’s first law and driven by a Dirichlet boundary condition on 

scalar concentration. 

No-slip boundary conditions are applied on all solid surfaces and periodic boundary conditions are 

applied at the streamwise and spanwise boundaries. To minimize the influence from these boundaries, the 

length, width and height of the computational domain (2L, 2W, 2H) is well over an order of magnitude 

larger than the sphere diameter (discussed below). Approximately 205 simulations were carried out to 

produce computational data over the range of shear Reynolds number Re ~ 0 10S   and shear Peclet 

numbers S* ~ 0.01 - 500. This corresponds to Schmidt numbers ( * / ReSSc S ) between 2 and 500.  

The Lattice-Boltzmann Numerical Method  

Our LB model, mostly derived from advances by other researchers described in the literature (see 

references and details in Appendix B), has been used in several previous studies by Brasseur and colleagues 

with most details described and validated in Wang, et al.15. Briefly, our method is based on the D3Q15 

discretization form of the Boltzmann equation in statistical physics with the dependent variable being a 

particle distribution function  ,f tx,ξ  that quantifies the probability of an ensemble of fluid molecules 

at position x with velocity  at time t. Continuum-level velocity ( , )tu x  and density ( , )t x  are obtained 

from moments of ( , , )f tx ξ  over velocity-space . Distribution functions and macroscopic variables are 

Figure 1. Physical model: (a) A spherical particle is suspended in a simple shear flow and resolved by a 

fine grid (grey area) of lateral dimension 2h within a computational domain of size 2L x 2H x 2W with 

L/R = 25, W/R = H/R = 20 or 40. Shown is the y = 0 plane; (b) the dual-grid (lattice) structure showing 

the high degree of resolution in the fine grid surrounding the particle. Details are discussed in the text. 
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represented on a discretized grid, or “lattice,” and second order “bounce-back” boundary conditions are 

applied on boundary surfaces interpolated through the uniform cubical lattice cells. Furthermore, pressure 

does not appear explicitly in the Boltzmann equation and incompressible flow is modeled within a low-

Mach-number approximation with pressure made proportional to density. Compared with conventional 

boundary-fitted numerical methods for incompressible flow, the LB method handles complex geometries 

more easily and is more straightforward to parallelize due to the lack of a pressure term in the Boltzmann 

equation with corresponding local nature of interactions in physical space.  

To evolve the scalar concentration over time within the flow field, we apply the “moment propagation 

method” with which the scalar concentration  , t x  is propagated at the continuum level for each scalar 

using the discretized particle distribution function  ,f t x . Please see Appendix B for references and for 

details.  

Resolution and the Dual Lattice 

In Appendix B we provide an analysis to assure adequate resolution of the velocity and concentration 

fields, and in the application of our dual-lattice approach. Please refer to the section “Resolution and the 

Dual Lattice” for details and references. 

To minimize the influence of the boundary on the dissolution process, the relative distances to the 

boundaries of the computational domain to particle radius were maintained well over an order of magnitude 

(as large as possible within practical limits): L/R = 25, W/R = H/R = 20 (most cases) and 40 (5 lowest 

Reynolds number cases), as illustrated in Figure 1. Our aim was high-accuracy prediction of molecular 

release rate from a drug particle in an unbounded uniform shear flow. Special care was taken to minimize 

influences of confinement in the vertical on the flow and dissolution process. The domain was sufficiently 

long in the streamwise direction that steady state was reached before scalar released from the particle 

surface has reentered the computational domain. Since the concentration field never spread more than a 

couple diameters in the lateral direction, there was minimal influence of the lateral solid boundaries on the 

development and evolution of the scalar concentration field. Zero normal flux boundary conditions were 

applied on the lateral impermeable walls.  

To reduce the computational load from an exceptionally fine uniform grid through the entire 

computational domain as required by the LB method to resolve exceptionally well a spherical particle in a 

local shear flow, we applied a dual-lattice method with a “fine grid” placed in a sub-region surrounding the 

particle, as shown in Figure 1b with fine resolution of 44 lattice points over the particle diameter. The fine 

grid occupied a volume defined by h/R between 2.1 and 3.6 according to the Reynolds number, with h/R 

larger at the smallest Reynolds and Peclet numbers where diffusive effects are strongest. In the streamwise 

direction the fine grid extends to the domain boundaries, as illustrated in Figure 1. Outside this sub-region, 

the fine lattice couples to a lattice with resolution 6 - 10 times coarser than the fine lattice, depending on 

Reynolds/Peclet number. We evolved the momentum field to steady state before turning on the release of 

scalar concentration from the particle surface and continued to the steady equilibrium state at which point 

dissolution rate is calculated at *S  and ReS  controlled by specified shear rate, fluid kinematic viscosity 

and molecular diffusivity.  

Please see Appendix B for details and for an analysis of resolution. 
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Model for Zero Reynolds Number 

For the cases at Re 0S   (Stokes flow) with *S varying from zero to large values, we take advantage 

of the known analytical solution for velocity surrounding a spherical particle freely-suspended in an infinite 

simple shear flow16. To develop the most accurate Stokes flow correlation possible between Sh and *S  

within the LB framework, we assign the mass distribution functions values that produce the analytical 

solution (see Appendix B) on which the scalar concentration field evolves using the moment propagation 

method with fixed surface concentration. This approach both maximizes accuracy and greatly reduces 

computational cost. 

Physical Mechanisms for Enhancement of Scalar Flux 

We address basic mechanisms that underlie shear-induced enhancement in Figures 2 and 3.  Figure 2 

shows closely symmetric 3-D streamlines around a sphere at Re 0.1S   and *S = 10. Figure 2(a) shows 

streamlines initiated 3 radii upstream on an x-y plane displaced in z by 0.3R  that are associated with flow 

around the sphere outside the highly three-dimensional flow near the sphere surface shown in Figures 2 (b) 

and (c). Figures 2 (b,c) show highly three-dimensional streamlines entering from the side along the x axis 

driven by the spin of the particle at a rate proportional to the local shear rate. The 3D spiraling pattern in 

fluid particle trajectory near the surface forms a “rotation zone” region adjacent to the particle surface. At 

this finite Reynolds number, inertia causes the particles to move from the surface while mass conservation 

forces fluid from the sides of the particle to advect towards the sphere to fill the rotation zone. As a result, 

the streamlines in the rotation zone originate from the sides and spiral in towards the sphere and then out 

over the sphere surface. After leaving the rotation zone, the fluid particles combine with the outer non-

recirculating flow and travel downstream, a pattern consistent with Subramanian and Koch 12,13 who argued 

Figure 2. 3D streamline pattern around a spherical particle in a simple shear flow at ReS = 0.1， S* = 10. 

The color indicates scalar concentration with maximum and zero concentration given by red and blue, 

respectively. (a) Shows streamlines originating on an x-y plane 3 radii upstream of the sphere displaced 

in z by 0.3 radii; (b) and (c) show a streamline originating from a point transverse to the x-z plane that 

spirals around the rotation axis of the rotating sphere in helical fashion towards the sphere surface, 

continuing along the sphere surface to increasing effective surface area for mass transfer. 
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that when Reynolds numbers is finite fluid particles in the rotation zone centrifuge out and destroy the 

closed streamline pattern that exists at Re 0S  . 

The highly 3D spiraling flow pattern exists also at zero Reynolds number, induced by the shear-driven 

spin of the particle, increasing the effective surface area for transport and enhancing dissolution rate. The 

three-dimensionality of the surface streamlines and the corresponding effective surface area and dissolution 

enhancement increase with spin-rate. Enhancement of mass flux implies increase in average surface 

concentration gradient and reduction in diffusion-layer thickness (Eq. 1, “Introduction”). Furthermore, 

increased three-dimensionality to the flow adjacent to the particle surface suggests increasing heterogeneity 

in local mass flux. 

To clarify the topology of the flow around the 

sphere, in Figure 3 we plot the projected streamlines 

from the axial and vertical velocity components on 

streamwise-aligned vertical planes at different 

spanwise positions. The rotation zone around the 

sphere is connected horizontally to two recirculation 

zones separated by two lines of saddle points. 

Comparing different spanwise positions, the central 

rotation zone extends approximately one sphere radius 

in the spanwise direction at 1ReS . At this low 

Reynolds number, a nearly closed stream surface exists 

round the sphere, according the theories of Acrivos9 

and Subramanian and Koch.12,13 As Re 0S   the 

slight opening that allows streamlines to enter from the 

sides along the x axis (Figure 2) closes to form a closed 

stream surface across which transport is possible only 

through diffusion. At finite ReS  inertia introduces 

open streamlines and advective transport. 

Figure 4 shows isocontours of scalar concentration 

on the central plane illustrating the advection of 

released with the shear flow.  In Figures 4a,b *S  

changes from 10 to 100 with ReS  fixed at 0.1 while in 

Figure 3. Projected streamlines on x-z planes at 

different transverse positions. ReS = 0.1, S* = 10.  

Figure 4. Patterns of scalar concentration around a spherical particle in a simple shear flow. S* is 

varied from (a) to (b) at fixed ReS = 0.1 and ReS is varied from (b) to (c) with fixed S* = 100. 

Concentration is maximum at the particle surface (dark red) and zero far from the sphere (dark blue). 

Note that the computational domain is much larger than shown. 
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Figures 4b,c ReS changes from 0.1 to 1.0 with *S  fixed at 100. At fixed Reynolds number, higher S* 

corresponds to higher shear rate or lower diffusivity. Figures 4a,b show that the effective reduction in 

diffusivity leads to sharper, or less smooth, scalar distributions with possible cusp formation at an angle 

rotated from the principle strain direction (45) by vorticity towards the x axis. We anticipate sharper cusps 

with higher S*, implying larger variations in local surface flux over the surface of the particle with 

increasing S* . Comparing Figures 5b and 5c suggests that increasing inertia (ReS) may interfere with cusp 

formation, perhaps also reducing the highest gradients in surface heat flux. We observe that as ReS increases 

from 0.1 (b) to 1.0 (c), at fixed S* = 100, the isocontour pattern smooths somewhat, conceptually consistent 

with the corresponding reduction in Schmidt number with increasing ReS (at fixed S* ).  

Consider mass release and transport of molecules from particles within a flow with fixed fluid 

properties: fluid kinematic viscosity and scalar diffusivity. Then higher vs. lower local particle S*  (at fixed 

ReS ), or higher vs. lower ReS (at fixed S* ), can be interpreted as higher or lower flow shear-rate at the 

location of the particle. As a result, as local particle S* and ReS increase, so do local particle flow strain-

rate, vorticity magnitudes and particle spin-rate. In context with the discussion surrounding Figures 2 and 

3, then, increases in particle S* or ReS  correlate with the enhancement of net mass flux and higher 

Sherwood number. However, to assess the relative sensitivities in anticipated increases in Sh relative to 

increases in local particle *S  vs. ReS requires quantification, the primary aim in what follows. An objective 

in the current study is the development of practical correlations, *( , Re )SSh S , for dissolution from 

spherical drug particles in the presence hydrodynamic shear-rate over variations in S* and ReS  likely 

experienced by drug particle dissolution in the human intestinal track (in vivo) as well as within in vitro 

devices commonly used for product comparison.3,17 The final empirical relationships developed in this study 

will find applicability over a wide range of dissolution and heat-transfer processes where concentration or 

temperature are fixed and known on the particle surface. 

Quantitative Assessment of the Shear-rate Enhancement of Scalar Flux 

We created 205 simulations and data points in steady state with specified S* and ReS. From each 

simulation, we calculated the surface flux and Sherwood number Sh (Eq. (1) with CB = 0). In Figure 5 we 

plot Sh against S* at fixed ReS (Figure 5a,b) and we plot Sh against ReS at fixed *S , in linear and log scales 

(Figure 5c,d). Shear Reynolds number ReS  varies from 0 (the Stokes flow limit) to 10 and shear Peclet 

number S* from 0 to 500. Numerical instability limited the lowest Reynolds number range Re 0.1~S
  to 

* 10S  . 

The pure diffusion limit in an infinite domain is given by Sh = 1.4,5 Figure 5 shows that the enhancement 

of dissolution from hydrodynamic shear-rate is, quantitatively, a strong effect. A factor of two increase in 

surface flux from the diffusion limit occurs at quite low *S  ( 10), with additional enhancement associated 

with increasing ReS  (i.e., reducing Schmidt number). However, the sensitivity in the response of Sh to *S  

vs. ReS  is quite different. Figures 5(d) and 5(b) indicate that when * 10~S   there is very little dependence 

on Reynolds number, (up to Re 10S  ) while at higher shear Peclet numbers, * 100 200~S   ,  Reynolds 

number ~1-10 can lead to additional increases in Sh from the Stokes flow value from roughly 3 to roughly 

4 (~25%). 

From Figure 5(a) we learn that the rate of enhancement of dissolution rate is rapid in the transition from 

pure diffusion to small levels of flow shear-rate ( * 10~S  ). However, with further increases in shear-rate 

( *S exceeding ~10-100) the rate of growth in Sh slows considerably. The finite Acrivos 9 limit Sh 

4.5Sh  as *S   in Stokes flow is qualitatively consistent with the black Re 0S   curve in Figure 
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5(a). As previously discussed, flow inertia breaks the closed streamlines around the sphere12,13  with the 

consequence that Sh increases without bound in the limit *S   at finite ReS . Figure 5 suggests that 

the rate of growth in the high *S  limit increases with increasing ReS . 

Yang et al.10 suggest that the influence of Reynolds number on the Sherwood number is weak when 

Re 0.1S  . Figure 5 indicates that, whereas this may be the case when * 10 100~S   , when *S  exceeds 

100 or so there exists significant enhancement of Sh above the Stokes flow value even at Re 0.1S  . This 

additional inertia-induced enhancement increases with *S  more rapidly with increasing Re 0S  . However, 

Figure 5(b,c) shows that at fixed *S  the rate of increase in Sh with increasing ReS  is negligible when 
* 10S   or so, and modest at higher *S , up to * 500S  . 

 

Consider dissolution from typical drug particles. Specifically, consider the dissolution of 10 m and 

100 m ibuprofen drug particles in water at 20C, a common drug and typical size drug particle sizes during 

dissolution. As the drug particles move within the intestines, they experience variations in shear-rate up to 

~10-20 s-1 (Appendix A, based on Banco18). In in vitro testing devices, commonly required for FDA 

Figure 5. Variation of normalized surface flux (Sh) with shear Peclet (S*) and Reynolds (ReS) 

numbers,  numerical simulation, with linear and log scales. (a,b): Sh versus S* at fixed ReS; .(c,d): Sh 

versus ReS at fixed S*. The heavy solid red and blue curves in Figures (a), (b) and (d) show the 

variation in S*, ReS and Sh for dissolution of an ibuprofen drug particle of diameter 10 m (red) and 

100 m (blue) in water at 20C with shear-rate variation from 0 to 100 s-1. 
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certification, local shear-rates can easily exceed 100 s-1.17 In Figures 5(a) - (d) there are solid red and blue 

curves that show the variations in *S , ReS  and Sh for ibuprofen drug particles of diameter 10 m (red) 

and 100 m (blue) in water at 20C with shear-rate variation between 0 and 100 s
-1

. ReS
 never exceeds 

0.25 (Figure 5(d)) and the impact of shear Peclet number on the variation of Sh is a great deal stronger than 

that of Reynolds number. Indeed, for drug dissolution in vivo, the impact of ReS  is negligible and a 

correlation for the dependence of Sh on *S  in Stokes flow is sufficient for typical pharmaceutical 

applications. 

To validate the numerical methods and evaluate the accuracy of the numerical results, we compare in 

Figure 6 our results with those available in the literature as discussed in “Former Analytical and Modeling 

Studies” above. Using very different asymptotic methods, Frankel and Acrivos7 and Batchelor8 analytically 

derived the asymptotic dependence of Sherwood number for Stokes flow to scale on *S  in the limit 

* 0S  , with the two slightly different constants of proportionality (see “Former Analytical and Modeling 

Studies” and Eq. 5). Polyanin and Dil’man11 developed Eq. (7), an interpolation between the Frankel and 

Acrivos7 * 0S   limit and the approximate limit finite 4.5Sh   as *S   of Acrivos9 at ReS = 0. Figure 

6 shows that our data compare well with the three expressions in the limit * 0S  , however the Polyanin 

and Dil’man11 interpolation does not compare well with our computational data at intermediate shear Peclet 

numbers. We find that Batchelor’s proportionality constant in the expression derived by  Frankel and 

Acrivos7 and Batchelor8 for the * 0S   limit is a better fit to our data than the constant derived by Frankel 

and Acrivos7 (i.e., Eq. 5 with  = B). 

We do not compare Eq. (7) with our data because, as pointed out previously, the asymptotic limits 

under which the expression was derived do not apply to the parameter ranges for which our computational 

data were collected. We also do not show our comparisons with the expression presented by Longest and 

Kleinstreuer14 because, as pointed out previously, the expression is fundamentally incorrect in the Stokes 

flow limit. Consequently, the expression compares poorly over all with our data, both qualitatively and 

quantitatively. 

Clearly there is a need for accurate correlations that can be applied to mass and heat release from small 

particles (such as drug particles), particularly at finite shear Reynolds numbers and Peclet numbers far from 

the zero Peclet number theoretical limit. Reynolds and Peclet numbers far more common in practice. In the 

following sections, we use the asymptotic theories of Frankel and Acrivos7 and Acrivos9 to guide the 

development of correlations using our 205 carefully developed simulations as described above. 
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Acrivos9 approximate limit Sh  4.5 as . 
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Development of the Correlation at Zero Reynolds Number 

Given the dominance of the *S  in the determination of shear enhancement of dissolution rate, our 

strategy to develop a useful accurate empirical correlation for *( ,Re )SSh S  is to first develop the correlation 
* *

0( ) ( ,0)Sh S Sh S  for Stokes flow followed by development for Reynolds-number-dependent deviations 

from Stokes flow, Sh - Sh0.. Here we develop the correlation for 0Sh  

The variation of 
0Sh  with *S  is too complex to represent accurately with a single mathematical 

expression over all *S . We use the asymptotic theories (Eq. 5) to argue for square root dependence 
1/2

0
*~Sh S  in the limit * 0S   and the Acrivos9 theory to argue for the limit *4.5 as Sh S  . Thus, 

we search for three ranges in *S  with power-law dependence. 

In Figure 7(a) we plot 
0 1Sh   and 

04.5 Sh  against *S on log-log scales. These curves show power 

law dependence in the regimes * 5~S   and * 100~S  . Figure 7b, a log-log plot of Sh0 vs. *S  in the range *S  

~ 0.1 to 500, indicates that a power law is also a good approximation in the intermediate range *5 100S  . 

Standard linear least squares fit of  0ln 1Sh   vs. ln( *S ) in the range 
* 5S  ,  0ln Sh  vs. ln( *S ) in the 

range *5 100S   and  0ln 4.5 Sh  vs. ln( *S ) in the range * 100S   produces the following: 

 

 

 

 

0.504

0

0.192

0

0.349

0

1 0.290 *              0.1 * 5

1.206 *                   5 * 100

4.5 8.064 *         100 * 500

Sh S S

Sh S S

Sh S S


   

  

   

 (8) 

 

The low *S  correlation is very close to the *S  dependence predicted theoretically in the asymptotic limit. 

For consistency with this theoretical limit, we adjust the power on *S  slightly from 0.504 to 0.500. In 

addition, because we developed three fits independently in each of the three *S  ranges, the curves are not 

precisely continuous at the boundaries between the regimes, * 5S   and * 100S  . To force continuity at 

Figure 7. Least square fitting based on power laws at ReS = 0. (a) Sh -1 vs. S* for S* ≤ 5 and 

4.5 – Sh vs. S* for S* ≥ 100; (b) Sh vs. S* for 5 ≤ S* ≤ 100. 
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these two boundaries, we adjust the coefficient and power of the intermediate regime correlation slightly to 

produce our final correlations for Sh0: 

  final Sh0 correlation: 

 

 

 

0.5

0

0.187

0

0.349

0

1 0.290 *                * 5

1.219 *                   5 * 100

4.5 8.064 *         * 100

Sh S S

Sh S S

Sh S S


  

  

  

 (9) 

The asymptotic theories of Frankel/Acrivos7 and Batchelor8 produce the same 
1/2

0
*1Sh S   

prediction (Eq. 5), but with constants  that differ by about 10% (A = 0.257, B = 0.286). The constant we 

developed empirically (0.290) is much closer to the Batchelor constant consistent with the observation from 

Figure 6, indicating support for the Batchelor result.  

The Sh0 correlations above are compared with the computational data at Re 0S   in Figure 8 with both 

linear and log scales. Over the range of the data, the comparisons are excellent. Given that these correlations 

were determined using high-accuracy computational data over 3.5 orders magnitude change in *S  (from 

0.1 to 500) combined with an accurate asymptotic form in the zero *S  limit together with a reasonable 

analytical estimate for the infinite *S  limit, we argue that these correlations are reasonable over the entire 

range of shear Peclet numbers.  

In the low *S  regime, our results differ from *S  dependence in the * 0S   limit by only 0.5% at *S  

= 5 suggesting a reasonable *S  range of validity of the *S  dependence based on our data. Figure 8 

indicates that the correlations in Eq. (19) are accurate up to *S   500 where a power law 

fit our data well (Figure 7). We extend the power law behavior observed between *S  of 100 and 500 to 

infinity using the Acrivos9 estimate of 4.5 for the asymptotic limit. The relative difference between Sh0 at 
*S  = 500 and *S at infinity is only 20%, suggesting that the extension of the power law from *S  = 500 to 

4.5 at *S   is quite reasonable and produces estimates for Sh at high *S  that are as accurate as the 

Acrivos estimate for the asymptotic limit. 

Figure 8. The comparison of correlations in Eqs. (19) with the computational data obtained at ReS = 0. (a) 

linear and (b) logarithmic scales are shown. 
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Correlations for Non-zero Reynolds Numbers 

To develop the correlations for non-zero Reynolds numbers, we search for deviations from the zero 

Reynolds number correlations in Eq. (9) such that the finite Reynolds number correlations reduce to those 

at Re 0S   as ReS  decreases to 0. We anticipate, therefore, a degradation in confidence, compared to our 

correlations for Sh0, at higher Reynolds numbers. This will be particularly the case at higher *S , for two 

reasons. Firstly because it is proven that Sh increases indefinitely as *S   with unknown asymptotic 

form12,13. Secondly, because high Peclet numbers are accompanied by high Schmidt numbers which lead to 

numerical instability. Therefore, the highest *S  range over which our correlations can be reasonably 

extrapolated outside the parameter range of the data upon which our correlations are based 

( *0 500,  0 Re 10SS    ) degrades at Reynolds numbers “far” from Stokes flow, likely Reynolds 

numbers exceeding ~ (1)O . 

Given the lack of asymptotic theory upon which to anchor correlations at finite ReS , and given the 

increasing sparseness of the computational data in the * ReSS   parameter space at higher ReS  (see Figure 

5), we search for a single empirical relationship for Sh - Sh0, initially with a form consistent with the Ranz-

Marshall1 correlation for estimation of Sherwood (or Nusselt) number for convective enhancement of mass 

(or heat) transfer from spherical particles in the small-particle limit. This correlation, shown in Eq. (3), has 

the following form: 

    0 * Re
b ca

SSh Sh e S  , (10) 

equivalent to the following linear logarithmic form: 

      0ln ln * ln ReSSh Sh a b S c    . (11) 

We use the data at fixed values of ReS  to estimate the model coefficients a, b and c using standard 

multivariable linear least squares regression on Eq. (11) with our computational data. These coefficients 

are listed under “correlation 1” in Table 1. 

Table 1. Coefficients of correlations 1 and 2 

 a b c d 

correlation 1 -4.036 0.684 0.460  

correlation 2 -3.977 0.674 0.583 -0.032 

The resulting correlation is plotted in Figure 9 (a) and (b) on linear and log scales.  Comparison with 

the data appears qualitatively quite good up to Re 1S  . As expected, however, comparison visually 

degrades at higher 1Re ~S
  and * 200~S  . In an attempt to improve the comparison at higher ReS  and *S , 

we added a nonlinear term to Eq. (11) to produce 

          0ln ln * ln Re ln * ln ReS SSh Sh a b S c d S     . (12) 

This “correlation 2” has the following more complicated form in comparison with Eq. (10): 

 
** ln

0 ( ) Rea b c d S

SSh Sh e S   . (13) 

Again using multivariable linear least squares regression on Eq. (12) we find the coefficients a, b, c and d 

listed under “correlation 2” in Table 1 with the resulting correlation plotted in Figure 9 (c) and (d) on linear  
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and log scales. Visually, the improvement is evident at higher *S  and ReS  in comparison with correlation 

1  with the tradeoff of a significantly more complicated mathematical form for the correlation. 

Inserting the coefficients in Table 1 into Eqs. (11) and (12) produces the final forms of the two non-

zero ReS  correlations for Sherwood number as a function of Peclet and Reynolds numbers: 

   Correlation 1:  
0.684 0.460

0
*0.01767( ) ReSSh Sh S  , (14) 

   Correlation 2: 
** 0.674 0.583 0.032ln

0 0.01874( ) Re S

SSh Sh S   , (15) 

where 
*

0 0 ( )Sh Sh S  is given by Eq. (9). The hydrodynamic enhancement to the Sherwood number from 

local shear-rate, shear  in Eq. (1), is given by 1shear Sh    with Sh given by Eqs. (14) or (15) with Eqs. 

(13) for the zero Reynolds number Sherwood number, Sh0. 

We should point out that in the least squares fitting procedure it was necessary to alleviate a concern 

with data selection in the accuracy of the linear regression procedure. As discussed in context with Figure 

5, the influence of Reynolds number on the Sherwood number is negligible when Re 0.1~S
  and 

* 100 200S   . Assume an error err  in the estimation of  0Sh Sh . Then truncated Taylor series 

produces      0 0 0ln ln / ...err errSh Sh Sh Sh Sh Sh        ,which implies that  0ln Sh Sh  is 

Figure 9. Comparison of computational data for Sh vs. S* at fixed Re 0S   with correlations 1 

(a,b) and 2 (c,d) on linear-linear (a,c) and log-log (b,d) scales. 
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amplified by the error divided by a large number,  01 Sh Sh , in the Stokes flow limit. Given that there 

is always some error in 0Sh Sh , we eliminated the data points in the regimes Re 0.1~S
  and 

* 5~S   from 

the regression procedure to improve accuracy. 

Analysis 

In Figure 10 we illustrate the quality of the fit to the computational data as a function of *S  for fixed 

ReS
 (Figure 10a) and as a function of ReS

 for fixed *S  (Figure 10b). Although the second correlation is 

superior at higher *S  and ReS  over the ranges of *S  and ReS  considered in this study, both correlations 

appear to reasonable predictions (keeping in mind the log axis), capturing the nonlinear features of the 

dependencies of Sherwood number on nondimensional shear rate, *S  (Peclet number) and on shear 

Reynolds number, ReS . For example, the sensitivity in Sh to variations in ReS  increases with the 

increasing S, from negligible sensitivity at ReS   roughly below 1 and *S  below roughly 10, to strong 

sensitivity at *S  roughly over 100. 

It is apparent subjectively from Figures 9 and 10 that there is a trend in the correlations to depart from 

the data at the highest Peclet and Reynolds numbers. To quantify the extent to which the correlations we 

developed match the data, we plot in Figure 11 the relative difference between the data and correlation at 

each data point, for correlation 1 vs. correlation 2. Several interesting observations can be made from this 

plot. Firstly, note that the relative difference is less than 2% at all *S  when ReS  is 1 or less and that there 

is very little difference between correlation 1 vs. correlation 2. This is the typical scenario, at least for drug 

release from typical sized drug particles, as illustrated in Figure 5 for dissolution of typical ibuprofen 

particles in water, where shear Reynolds number never exceeded 0.01 in vivo and 0.3 in vitro. Thus, for 

many practical applications the simpler of the two correlations, Eq. (14), is more than adequate.  

Secondly, we note that the curves at the Reynolds numbers of 2.5, 5, 7.5 and 10 produce a single group, 

separated from the lower Reynolds numbers, with a maximum relative difference between correlation and 

data of 6% with the more complicated correlation 2 (Eq. 15) and 12% with the simpler correlation (Eq. 14). 

However the 6% vs. 12% comparison is only a relevant comparison at the highest *S  of 500. At * 200~S   

the maximum difference between correlation and data is 4% for both correlations. Furthermore, we note 

that an unnatural oscillation in the curve *( ;Re )diff SS  for Re 2.5S   with peaks at *S   50 and 500. We 

believe this nonphysical characteristic is indicative of numerical stability concerns at the highest simulated 

Figure 10. Detailed comparison of the two finite Reynolds number correlations with the 

computational data, (a) as a function of  at fixed ReS, and (b) as a function of  for fixed . 
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values of *S  and ReS . For these simulations, grid resolution was increased by a factor of two in all 

directions in space and time, increasing the computational domain by a factor of two in all directions and 

an increase in computational load by a factor of over 16 for the highest ( *S , ReS ) simulations. 

 

Sensitivity and Application 

In Appendix C we quantify the sensitivities in the response of Sherwood number to changes in Peclet 

and Reynolds number. As has been discussed above in context with Figures 5 and 10, sensitivity in the 

response of Sherwood number to changes in Peclet and Reynolds number depends on the *S  and ReS  

regime, with greatest sensitivity to changes in *S  and ReS  tending to occur in the lower and higher *S  

ranges, respectively.  

In Appendix C we conclude that the highest sensitivity to changes in *S  occur roughly in the range 
* ~ 0S  to 20 at all ReS , with an apparent singularity at * 0S  . The range in *S  of high sensitivity 

increases gradually with increasing ReS . This is a significant result because the release of molecules from 

the surfaces of drug particles tends to occur at lower *S  with ReS  approaching zero. The high sensitivity 

to changes in *S  degrades rapidly with increasing *S  to small values at *S  exceeding roughly 200-300 at 

Reynolds numbers below ~1. However at these high *S  values, the sensitivity to *S  increases with 

increasing Re 1~S
 , especially at *S  exceeding ~400-500. The highest sensitivity of Sh to changes in ReS  

occurs at very low ReS  (relative to 1) with an apparent singularity at Re 0S  . The range in ReS  where 

Sh is highly sensitive to changes in ReS  increases with increasing *S , particularly at small ReS  and *S  > 

roughly 100. Conversely, sensitivity to changes in ReS  is very low at *S  below roughly 10. Sensitivity 

drops rapidly with increasing ReS , especially at lower *S . At *S < ~10, there is negligible sensitivity to 

changes in ReS . 

From an applications perspective, one might ask over what range of parameters the Stokes-flow 

correlations of Eq. (9) could be applied with good accuracy. In Appendix C we conclude that the Stokes 

flow model is reasonable (within 10%) over the entire * ~ 0 500S   range when Re 0.01S  , but is 

reasonable for * 100~S   when Re 0.5~S
 . 

 

Figure 11. Relative difference diff  in Sh between data points and the empirical curve fits 

(correlations) at the same  and  
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Discussion: Relative Importance of Convective vs. Shear-rate Enhancements 

An issue of major interest within the pharmaceutical scientists mathematical modeling community is 

the prediction of mass transfer from thousands of drug particles in vivo, a key issue being hydrodynamic 

enhancement of dissolution rate compared to pure diffusion in a stagnant fluid. Related to this is the 

potential importance of dissolution in vivo vs. within the in vitro test devices commonly used to quantify 

bioequivalence. Of specific concern in the in vivo vs. in vitro comparison is difference in hydrodynamic 

influences on dissolution. Because drug particles typically enter the flow environment with diameters < 

~100 m, and with the current trend towards “micronization,” prediction methods for pharmaceutical 

applications generally focus on dissolution of “small particles” and the dissolution limit 0R . 

Most mathematical models for drug dissolution are based on pure diffusion, sometimes with ad-hoc 

corrections based on an imprecisely-defined diffusion layer concept4. Wang et al.5 proposed a modeling 

strategy based on the normalized surface flux Sh (Eq. 1) with the extension given by Eq. (2) to include 

hydrodynamic effects. Historically the hydrodynamic influence discussed in the literature is “convection” 

or “slip,” the enhancement of transport of mass or heat from a surface from relative velocity between the 

fluid and surface across which mass/heat flux takes place19. For application to drug dissolution, relative 

velocity between fluid and particle (slip velocity magnitude, U) is primarily a result of density difference 

between particle and surrounding fluid (inertia) and the finite size of the particle. As mentioned in the 

Introduction, the standard empirical correlation for convective enhancement in Sherwood number for small 

spherical particles was developed by Ranz and Marshall1, Eq. (3) in the Introduction, which shows that 
1/21/3 0.17~ Re ~ [( ) ]conv u uPe U R   . Thus, to evaluate conv , a model for slip velocity magnitude, U  u , 

in particular its scaling on R, is required. 

Although drag force dominates particle weight on small drug particles, the slip velocity of drug particles 

is commonly incorrectly modeled as the settling velocity of the same particle in a stagnant fluid at steady 

state under the influence of gravity, a mechanism unrelated to the generation of slip velocity on drug 

particles in practice. In practice, the flows into which are embedded drug particles are driven in vivo by 

contractions of the intestinal wall (motility) and in the most common in vitro devices by the rotational 

motion of an impeller typically rotating 50-100 RPM.17 In Appendix A we develop a slip model for small 

spherical particles moving within a fluid flow to show that 
2~U R  in the small particle limit, implying 

that 
1/2 3/2~ [( ) ] ~conv U R R  .  

The current study has led to the development of the correlations in Eqs. (9) and (14) or (15) for 

hydrodynamic enhancement associated with shear rate at the location of a dissolving particle. In the limit 

0R , 
2

0~ 1 ~ / ~shear mSh SR D R  , so that / ~1/shear conv R    as 0R . Thus shear-rate 

enhancement dominates convective enhancement in the small-particle limit (e.g., as particles dissolve).  

Appendix A contains a detailed analysis of the importance  of convective and shear-rate enhancement 

of surface mass flux for particles over a wide range of radii. We show in Figure A5 the impact of both 

convective and shear-rate enhancement separately and relative to one another as a function of particle radius 

within a lattice-Boltzmann simulation of modeled intestinal flow parameterized to the human intestinal 

function. We conclude from this analysis that convective enhancement of dissolution rate is at most only a 

couple percent even for larger particles (diameters d > 200 μm), while enhancement by shear-rate is a 

leading order effect (10-50% for d ~ 40 - 200 μm) and fully dominates convective enhancement at all 

particle diameters up to a few hundred μm, but especially as particles dissolve. Recent, as yet unpublished, 

computational predictions of drug release from thousands of ibuprofen drug particles within intestinal 
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peristalsis20 suggest that hydrodynamic enhancement from convection is negligible in comparison to 

hydrodynamic enhancement from shear-rate. 

A fundamental distinction between hydrodynamic enhancement from shear-rate vs. convection is that, 

whereas convective enhancement disappears in Stokes flow (Eq. 3), enhancement from shear-rate can be 

strong at zero shear Reynolds number. Indeed, Figure 5 shows that, whereas shear-rate enhancement is 

insensitive to ReS  at small S*, there exists a strong sensitivity to small increases in *S  relative to 

dissolution in a stagnant fluid (i.e., pure diffusion). The essential mechanism underlying both the great 

sensitivity to shear-rate at low *S  and the dominance of shear-rate enhancement over convective 

enhancement for small particles, is the generation of a highly three-dimensional flowfield adjacent to the 

particle surface that is induced by particle spin, as shown in Figures 2 and 3, together with the transfer of 

the released molecules from the particle by shear (Figure 4). Particle spin is itself is a response to the vortical 

content of shear flow, content unrelated to the slip mechanism. Figures 6 and 13 (a) show that even at low 

normalized shear rate *S  local 3D spin-induced flow can generate major enhancements to surface mass 

(and heat) flux.  

We conclude that “shear-rate enhancement” to mass and heat transfer from particles embedded within 

complex fluid flows, in comparison to mass/heat release within a stagnant fluid, may be important in a wide 

variety of scenariosnot only within the pharmaceutical sciences, but more broadly within a wide range 

of engineering technologies that involve heat or mass transport from large numbers of particles within a 

fluid flow. It would be of interest to apply the correlations developed here, together with the Ranz/Marshall 

correlations and accurate appropriate models for slip velocity (Appendix A), to evaluate relative 

contributions to these and other mechanisms for heat and mass transfer from spherical and non-spherical 

particles in a wide range of practical applications over a wide range of particle Peclet and Reynolds numbers.  
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APPENDIX A: 

Convective vs. Shear-rate Enhancement with Application to in vivo Drug Dissolution, and 

a Slip Velocity Model 

As discussed in the Introduction, a primary application of the current study is the prediction of drug 

dissolution and differences in drug dissolution in the human intestines vs. in in vitro dissolution test devices 

commonly used in the pharmaceutical industry. The result from this study that shear-rate enhancement 

greatly dominates convective enhancement is of great importance to pharmaceutical modeling of drug 

dissolution. In this Appendix we provide the analysis underlying this important result. However to compare 

convective with shear enhancement requires a model for slip velocity that appears in the slip Peclet and 

Reynolds numbers, ( ) /U mPe U R D    and ( ) /URe U R     upon which the slip enhancement to 

Sherwood number depends. We develop such a model in the first section of this Appendix in context with 

our application to drug dissolution in the intestines.  

Our focus is on the ranges of UPe  and URe encountered by individual drug particles as they move 

within the intestinal fluid, approximately Newtonian incompressible fluid motions driven by the time-

varying deformations of the intestinal wall. The intestinal wall contain neutrally controlled muscle fibers to 

produce contractile patterns that force patterned fluid motions within the intestinal lumen. The most 

common contractile patterns are peristaltic and segmental. To identify the ranges of ΔU that typical drug 

particles experience in vivo, we briefly describe in the second section of this Appendix lattice-Boltzmann 

CFD of peristalsis and segmental contraction in the human intestines from which we estimated flowfields 

and ranges of ΔU encountered by typical ranges of drug particle sizes in vivo.  

Based on the first two sections in this Appendix, in the third section we present an analysis of the 

relative magnitudes of slip velocity enhancement of drug dissolution (convection) vs. shear-rate 

enhancement. This analysis is central to the final section of the manuscript entitled “Discussion: Relative 

Importance of Convective vs. Shear-rate Enhancements” where we argue that shear-rate enhancement 

strongly dominates convective enhancement in the small-particle limit for drug-particle dissolution in vivo. 

Here we explain this result in more detail for a range of particle sizes relevant to intestinal dissolution from 

drug particles. 

Please note that references specific to each Appendix are placed at the end of the appendix.  

Model for Slip Velocity 

In context with the flow environment associated with intestinal motility, described in more detail in the 

next section, we develop a model for U  |u| for use within the Ranz/Marshall2 correlation for convective 

enhancement to the Sherwood number given by Eq. (3) in the body of the manuscript as a function of slip 

Peclet and Reynolds numbers. Our model is based on the “point” particle model of Maxey and Riley1 which 

assumes particles small relative to the characteristic eddying scales of fluid motion (these scale on Rmax). In 

practice, our interest in dissolving drug particles focuses our attention on maximum particle radii ~100-300 

μm within intestinal lumen having characteristic radial dimensions ~ 1-2 cm after a meal (the “fed state”) 

and with characteristic collapse speeds c ~ 1-2 cm/s in the intestines (see next section, Figure A1). 

From an extensive history of development in the literature, Maxey and Riley1 developed the following 

Newton’s-law-based model for the acceleration of point particles: 
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In this equation V and u are particle and fluid velocity (at the same point), R is particle radius, F  and P

are fluid and particle density,   is fluid kinematic viscosity, g  is the gravitational acceleration and t is 

time. The operators d dt  and D Dt  denote time derivatives following the solid and fluid particles 

respectively (at the same point). The terms on the right-hand side of Eq. (A1) represent contributions from 

buoyancy force, fluid acceleration, added mass, Stokes drag, and “Basset history” which models memory 

effects (see Maxey and Riley1). 

We follow the analysis of Lasheras & Tio5 based on the following nondimensional parameters  
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where max~ ~1 2 cmL R   and ~ ~1 2 cm/sU c   are the characteristic fluid flow length and velocity 

scales (R is particle radius as before). St is the particle Stokes number.  parameterizes particle-to-fluid 

density ratio. Drug particles typically have particle-to-fluid density ratios in the range / ~ 0.5 2P F   , 

implying ~1 0.4  , with neutrally buoyant particles given by 2 3  . One may insert these characteristic 

ranges of parameters into the relation for Stokes number (Eq. A2) to find that for typical drug particles in 

vivo, 1St . 

Normalizing spatial coordinates, velocity, and time scales as 
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Eq. (A1) becomes36 
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Following Lasheras & Tio5, we expand the particle velocity for 1St  as 
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Substituting into Eq. (A5) and collecting terms of the same order in St  we obtain the following results for 
   ,
n

tV x  to n = 4: 
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Equations (A6) - (A9) characterize the dominant impacts on particle velocity. Since the effect of the 

Basset history first appears in  3
V  at  3/2O St , it is neglected in comparison to those of the other forces 

acting on the particle. Combining the other terms into (A5) yields the following expression for normalized 

slip velocity   u V u : 
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Eq. (A10) produces an estimate for normalized slip velocity   u V u  to order 3/2St . The first term, the 

leading order term, characterizes particle drag, whereas the second term, buoyancy force, exists only when 

particle density differs from fluid density. The third term models response to fluid inertia while the final 

two terms, organized into a single bracketed term, reflects consequences of finite particle size. Using the 

lattice-Boltzmann based simulations described earlier for peristaltic transport relevant to intestinal motility 

(and additionally simulations of segmental contraction), we estimated each of the terms in Eq. (A10) for 

drug particles over a wide range of particle diameters and density ratios. We find that whereas the second 

finite-size term is fully negligible even extending outside intestinal flow ranges, the finite-size term that 

contains the material derivative of the velocity Laplacian can be significant within human intestinal motility 

for particles with diameter exceeding roughly 200 m and particle densities roughly twice the fluid density 

or higher. To make the model more precise, we retain this term.  

Therefore, dropping only the second finite-size term in (A10) and unwrapping the normalized form of 

the equation, our model for slip velocity   u V u  in dimensional form is: 
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We have used this model to access convective hydrodynamic enhancement to dissolution in comparison to 

the enhancements by shear-rate as the primary focus of the current manuscript. This analysis is carried out 

in context with characteristic intestinal flowfields developed with CFD as described in the next section. 

Characteristic Intestinal Flowfields 

We developed our model for u specific to drug dissolution in the human intestinal flow environment 

where the flow is driven in vivo by patterned contractions of the muscles within intestinal wall, referred to 

as “motility.” Intestinal motility has two primary characteristics (in addition to quiescence): (1) peristalsis, 

or local axial mass movement of intestinal liquid by a traveling wall-contraction-wave pattern along the 

intestinal lumen, and (2) standing wave patterns that generate local mixing (without net transport) by 
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spatially alternating local contractions of the intestinal wall within segments, what we refer to as “segmental 

contractions.” The characteristic velocity and length scales of the patterns are similar in vivo as are the 

characteristic ranges of local velocity, strain-rate, vorticity and shear rate magnitudes. Although we have 

modeled both patterns and we reference the broader analysis for comparisons, to minimize space we 

summarize in this section CFD results for peristalsis. 

We model peristalsis as illustrated in Figure A1 in a frame of reference moving with a sinusoidal-

shaped peristaltic contraction wave moving to the right with constant wave speed c = 2 cm/s, max radius 

Rmax = 1.5 cm, and wavelength λ = 6 cm, numbers consistent with characteristic motility in the human 

intestines3. Applying periodic boundary conditions in the axial direction x we effectively calculate the fluid 

motions within an infinite number of repetitive sinusoidal “pockets” of intestinal liquid. The internal fluid 

velocity field drives flow radially towards and away from the tube surface and centerline velocity that scales 

on c. Whereas esophageal peristalsis is fully occluding, that is not the case in the intestines in the fed state;; 

we chose /Rmax = 0.11 consistent with quantifications in the rat intestines35. Intestinal (Newtonian) fluid 

viscosity is 10 10 times water and fluid density is that for water at 20C. See Banco3 for discussion on these 

parameters from the gastro-intestinal literature and for additional modeling detail specific to intestinal 

motility. The lattice-Boltzmann method described in the section “Numerical Model” of the manuscript, and 

in more detail in Wang et al.4, was applied to solve the flow field in the stationary state from which the 

different terms in the particle acceleration equation presented in Maxey and Riley1 were compared to justify 

our reduced model for u.  
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Figure A1. Physical models of the peristaltic contractile pattern used in our computational fluid 

dynamics (CFD) model to characterize the hydrodynamic flow fields experienced by drug particles 

in the small intestines. The modeled shape of the intestinal wall is axisymmetric (circular in cross 

section) and sinusoidal.  The sinusoidal pattern propagates to the right with wave speed c from 

strictly vertical motions of each material wall elements. All geometry and fluid motions are 

axisymmetric predicted with a 3D lattice-Boltzmann code. 
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Figure A2 shows instantaneous streamlines associated with peristaltic contraction in the steady frame 

of reference moving with the contraction waves (a) and associated shear-rate distribution (b). Note that 

peristalsis is associated with a recirculation region in which particles are confined and move with the 

propagating wave. Whereas maximum shear-rate is of order 10-20 s-1 (Figure A2(b)), the most probable 

shear-rate is closer in the range 4-5 s-1. (Similar ranges for shear rate are found with segmental contraction.) 

Flow quantities required for the estimation of relative velocity and flow shear rate of solid particles within 

were acquired from the simulated flow fields developed for peristalsis and compared to corresponding 

simulations for segmental contraction. In the next section we analyze the relative contributions of 

convection vs. shear-rate enhancement to using the slip velocity model applied to the CFD flowfields 

described in the current section. 

Analysis of Convective vs. Shear-rate Enhancement with Application to Drug Particle 

Dissolution 

From our lattice Boltzmann simulations of intestinal peristalsis (Figure A1), all terms in Eq. (A11) were 

calculated at all points in the computational domain over wide ranges of particle radii and density ratio. To 

estimate the overall enhancement to particle dissolution from slip velocity (convection), we averaged 

relevant quantities spatially over the computational domain and temporally over a single wave period. 

(Since u is frame-invariant, spatial averages in the steady frame of reference of Figure (A1) are equivalent 

to space-time averages in nonsteady frames.) For solid particle with radius R, the slip and shear-rate 

Reynolds numbers based on space-time averaged relative velocity u  and shear rate S  were defined 

as 

 Re U
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u
,  

2

ReS

R S
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where point-wise flow shear rate S was calculated by first identifying the direction of the local flow 

streamline at each point and then calculating the magnitude of the transverse velocity gradient. That is, 

/sS u n    with s and n are the local streamwise and transverse directions, respectively.  

The dependence of Re U  on particle radius PR  and density ratio 
p f   in our intestinal peristalsis 

model (Figure A1) is presented in Figure A3. Note that the isocontours are symmetric about 1p f    

and that slip Reynolds number increases with increasing R  at fixed 
p f   and with 1p f    at fixed 

(a) (b) 

Figure A2. (a) shows instantaneous streamlines and (b) shows isocontours of instantaneous shear rate in 

a frame of reference moving with the peristaltic wave at wave-speed c, the steady frame of reference. 

/R
max

 = 0.11, c =  2 cm/s. 
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R . Note also that the fact that Re 0U   when particles are neutrally buoyant ( 1p f   ) reflects finite 

particle size on slip velocity. 

We define hydrodynamic enhancements to the Sherwood number (normalized flux) as Δ. The 

Ranz/Marshall correlation for hydrodynamic slip enhancement of normalized surface flux (Sherwood 

number, Sh) was given in the manuscript (Eq. 3): 1/3 0.170.424 Reconv u uPe   , where Peclet number 

Pe Re ~1000ReU U USc    with Sc being the Schmidt number (typically ~103 for dissolution of drug 

molecules in intestinal fluid). Thus, both slip Reynolds number and Peclet number directly impact 

enhancement. Figure (A3) indicates that particle slip Reynolds numbers are extremely small for particle 

diameters up to 200-300 μm (R ~ 100-150 μm): max Re U is of order 10-4 for the largest and heaviest 

particles in the density range ~ 0.5 2p f   , and more typically ~10-5 for dissolving particles less than 

100 μm in diameter. As importantly, these extremely low slip Reynolds numbers imply that maximum 

particle Peclet numbers are typically ~ 0.01 - 0.1, with Peclet numbers of dissolving micronized drug 

particles much lower. Thus, the Ranz/Marshall correlation indicates maximum enhancement of drug 

particle dissolution in the intestines of order conv ~ 0.01-0.04. We conclude that the influence of convection 

on hydrodynamic enhancement of drug dissolution in vivo is likely small or negligible. 

Unlike the impact of convection on hydrodynamic enhancement of dissolution which disappears at zero 

slip Reynolds number, hydrodynamic enhancement from local flow shear-rate has a strong dependence on 

shear Peclet number S* at zero shear Reynolds number ReS (Eq. (9) in the manuscript) that is quite sensitive 

to changes in S* at low S*. Figure A4 shows that, although both ReS  and * 3~10 ReSS  asymptotically 

approach zero in the limit 0R , S* is not small (relative to 1) for typical drug particle sizes in intestinal 

flow. Note that S* and ReS  are independent of 
p f  . 

Figure A3. Dependence of Re
ΔU

 on particle radius and density ratio with peristalsis with a liquid 

with the density of water at 20C and viscosity of 10 cps.  /R
max

 = 0.11 and c = 2 cm/s. 
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Using the correlations for Sh(S*,ReS) in unbounded shear flow given by Eq. (15) in the manuscript, 

which use the zero Reynolds number correlation Sh0(S*) given by Eq. (9), we estimated averaged 

hydrodynamic enhancement to the Sherwood number from shear-rate, Δconv,= Sh - 1, using the Peclet and 

Reynolds numbers defined by Eq. (A12) for the simulations of intestinal peristalsis described earlier. These 

are compared with hydrodynamic enhancement from convection, Δconv, in Figure A5. In Figure A5(a) Δconv 

and Δconv are plotted separately against particle radius R to show that whereas convective enhancement to 

discussion is at most a couple percent for the larges particles and fully negligible for more typical drug 

particles, enhancement from shear-rate is a significant effect typically above 10% and as much as 50% for 

the largest drug particles. Whereas (a) shows that both effects disappear in the limit 0R , Figure A5(b) 

shows that hydrodynamic enhancement by shear rate fully dominates convective enhancement as drug 

particles dissolve. Furthermore, shear enhancement dominates convective enhancement to over an order of 

magnitude even in the large-particle limit. We repeated this analysis using computer simulations of 

Figure A4.  Dependence of  Re
S
 and  S

*
 on particle radius within liquid at the density of water at 

20C and viscosity of 10 cps for peristaltic contractions with /R
max

 = 0.11, c = 2 cm/s, Sc = 1000. 

(b) (a) 

Figure A5. (a) Hydrodynamic augmentation to Sherwood number () from shear-rate (
shear

) and 

convection (
conv

); (b) Ratio of hydrodynamic augmentation from shear-rate relative to convection 

(
shear

/
conv

) as a function of particle radius and particle-to-fluid density ratio. Peristaltic contractions, 

/R
max

 = 0.11, c = 2 cm/s, Sc = 1000.  
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intestinal segmental contractions parameterized for the human intestines to draw the same conclusions as 

describe here for peristaltic intestinal motility. 

We conclude that for application to drug dissolution in vivo hydrodynamic enhancement is important, 

convective enhancement is small or negligible, and shear enhancement fully dominates convective 

enhancement with the dominance increasing as the drug particle dissolves. Indeed, as pointed out in the 

“Discussion and Concluding Remarks” section of the manuscript, because 
1/21/3 0.17~ Re ~ [( ) ]conv u uPe U R    

and, from Eq. (A11) 2~U R , 
3/2~conv R . In contrast, Eqs. (19) and (24) or (25), in the limit 0R , 

~shear R  so that / ~1/shear conv R   in the limit 0R , consistent with Figure A5(b). 

We conclude that for application to drug dissolution in vivo hydrodynamic enhancement is important, 

convective enhancement is small or negligible, and shear enhancement fully dominates convective 

enhancement with the dominance increasing as the drug particle dissolves. Indeed, as pointed out in the 

“Discussion and Concluding Remarks” section of the manuscript, because 
1/21/3 0.17~ Re ~ [( ) ]conv u uPe U R    

and, from Eq. (A11) 2~U R , 
3/2~conv R . In contrast, Eqs. (19) and (24) or (25), in the limit 0R , 

~shear R  so that / ~1/shear conv R   in the limit 0R , consistent with Figure A5(b). 
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APPENDIX B: 

Details of the Numerical Method and the Stokes Flow Limit 

The Basic Lattice-Boltzmann Numerical Method for Momentum 

Description of the lattice-Boltzmann numerical method relevant to the current application is given in 

Wang, et al.1, which also describes validation experiments for the multigrid strategy and moving boundary 

conditions in 2D. Excellent reviews of several of the issues discussed in this section are given by Chen and 

Doolen2 and Aidun and Clausen3. 

As described in more detail in Wang, et al., we developed a 3D numerical method based on a multigrid 

strategy within the lattice-Boltzmann (LB) framework. The LB method for evolution of the momentum 

field can be viewed as an explicit finite difference representation of the continuous Boltzmann equation 

(Shan, et al.4) with the dependent variable being a particle distribution function  ,f tx,ξ  that quantifies 

the probability of an ensemble of fluid molecules at position x with velocity  at time t. Continuum-level 

velocity ( , )tu x  and density ( , )t x  are obtained from moments of  ,f tx,ξ  over velocity-space . 

Distribution functions and macroscopic variables are represented on a discretized grid, or “lattice,” and 

boundary conditions are of the “immersed boundary” type. Furthermore, pressure does not appear explicitly 

in the Boltzmann equation and incompressible flow is modeled within a low-Mach-number approximation 

with pressure made proportional to density. Compared with conventional boundary-fitted numerical 

methods for incompressible flow, the LB method handles complex geometries more easily and is more 

straightforward to parallelize due to the lack of a pressure term in the Boltzmann equation with 

corresponding local nature of interactions in physical space.  

The LB equation for  ,f tx,ξ with the Bhatnagar-Gross-Krook (BGK) representation for the collision 

operator (Bhatnagar, et al.5, Chen & Doolen2, Aidun & Clausen3) is a form of the Boltzmann equation 

discretized in velocity space  and time t on a spatial lattice discretized in x: 

        
1

, , , ,eqf t t t f t f t f t     

       x e x x x . (B1) 

 ,f tx  is the particle distribution function at location x and time t  discretized in velocity 
e , where  

is an integer over the number of discretized velocities. The LHS of Eq. (B1) describes the “streaming” of 

particle distribution functions between a lattice node x and its neighboring nodes with velocity 
e , 

characterizing bulk exchange of momentum locally in physical space from bulk advection and molecular 

diffusion. The RHS of Eq. (B1) describes the mixing, or “collision” of molecules that drive the flow locally 

towards the equilibrium particle distributions ( , )eqf t x . The collision step in the LB algorithm models the 

diffusion of momentum. with the low Mach number approximation applied to ( , )eqf t x  (below). As is 

typical, the RHS of Eq. (B1) uses the BGK model5 for the collision process with which the distribution 

functions ( , )f t x  relax towards ( , )eqf t x  at a characteristic diffusion time scale   that is related to the 

fluid viscosity (see Chen & Doolen2). Once found, the discretized particle distribution function  ,f tx  

provides the continuum-level velocity and density fields as moments over discretized velocity 
e : 

 ( , ) ( , ),   ( , ) ( , )t f t t f t  
 

   x x u x x e . (B2) 

In the LB method spatial and temporal discretization are connected and the lattice must be uniform and 

velocity discretized to allow “streaming” of particle distributions functions between points defined on the 
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lattice at each time step. In 3D the continuum velocity vector  can be discretized into 15, 19 or 27 

components, eα
3,6 (referred to as D3Q15, D3Q19 and D3Q27). We applied the D3Q15 approach largely to 

minimize computational load, with the recognition that our flow structure is relatively simple and our flow 

Reynolds numbers relatively low, generally order 1 or less. Discussions in the literature7,8 suggest that the 

primary issue with number of discretization components is potential lack of rotational invariance and, 

correspondingly, incorrect precisions of anisotropic flow structure. These references7,8 indicate that these 

differences only appear at Reynolds numbers two or more orders of magnitude and higher and with high 

degrees of complexity in the flow topology. It was felt that in the current study the flow topography was 

sufficiently simple and the Reynolds numbers sufficiently low that the differences in precision among the 

three methods would be negligible. 

For D3Q15, the velocity discretization is given by: 

      
 







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

,1,1,1

,1,0,0,0,1,0,0,0,1

,0

e    

14to7
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











  (B3) 

The equilibrium distribution function within the low Mach number approximation (Chen & Doolen2; Qian, 

et al.6) is given by 

 

2 2

2 4 2

( )9 3 ( )
( , ) ( , ) 1 3

2 2

eqf t w t
c c c

 
 

   
    

 

e u e u u u
x x , (B4) 

where w
 are weighting factors. For D3Q15 these are: 0 2 / 9w  , 1/ 9w   for ~1 6   and 

1/ 72w   for ~ 7 14  . /c x t   is the basic speed on the lattice. 

The no-slip boundary condition is most commonly implemented using a first-order “bounce-back” 

boundary condition applied on a discretized boundary elements that are, by construction, placed half way 

between the lattice nodes; the particle distribution function representing collections of molecules traveling 

towards these elements are “bounced back” to the same node, thus creating net zero momentum transport 

at that boundary element in that direction. Moving boundaries require the addition of motion-generated 

momentum using an approach first advanced by Ladd9. Given that the flows with which we apply the LB 

approach are typically driven by the motion of the boundaries, higher-order accuracy at the boundaries 

desirable. We therefore apply a second-order improvement to the bounce-back boundary condition 

advanced by Lallemand and Luo10 that incorporates interpolation to the precise location of the boundary 

discretized within each lattice cell: if the streaming distance to a solid boundary is less than half the lattice 

dimension, the particle distribution functions are interpolated before propagation, while if greater than half 

the lattice dimension, interpolation is conducted after propagation, bounce-back and collision. 

Evolution of the Concentration Field 

To evolve the scalar concentration over time within the flow field, we apply the “moment propagation 

method” developed by Frenkel and Ernst11, Lowe and Frenkel12, and Merks et al.13 with which the scalar 

concentration  , t x  is propagated at the continuum level for each scalar using the discretized particle 

distribution function  ,f tx  as follows: 

       *, , ,t t P t t t t 


         x x e x , (B5) 
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where  
 
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and * 1 6 mD

c x
   . (B7) 

t+ implies after streaming but before collision. The moment propagation method is limited by an upper 

bound in Peclet number to maintain numerical stability, which requires 
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. (B8) 

The Dirichlet boundary condition  ,surface St C x  is applied at the particle surface. 

Resolution and the Dual Lattice  

As described in the body of the manuscript, to minimize the influence of the boundary on the dissolution 

process, the relative distances to the boundaries of the computational domain to particle radius were 

maintained well over an order of magnitude (as large as possible within practical limits): L/R = 25, W/R = 

H/R = 20 (most cases) and 40 (5 lowest Reynolds number cases), as illustrated in Figure 1. Our aim was 

high-accuracy prediction of molecular release rate from a drug particle in an unbounded uniform shear flow. 

Special care was taken to minimize influences of confinement in the vertical on the flow and dissolution 

process. The domain was sufficiently long in the streamwise direction that steady state was reached before 

scalar released from the particle surface has reentered the computational domain. Since the concentration 

field never spread more than a couple diameters in the lateral direction, there was minimal influence of the 

lateral solid boundaries on the development and evolution of the scalar concentration field. Zero normal 

flux boundary conditions were applied on the lateral impermeable walls. 

To dramatically reduce the computational load from an exceptionally fine uniform grid through the 

entire computational domain as required by the LB method to resolve exceptionally well a spherical particle 

in a local shear flow, we applied a dual-lattice method. With this approach a “fine grid” is placed in a sub-

region surrounding the particle, as shown in Figure 1b, with fine resolution of 44 lattice points over the 

particle diameter. The method to transfer mass and momentum between the find and coarse grids within 

the multi-grid strategy was developed by Filippova and Hanel14. We apply the improved method by Yu et 

al.15 . Detailed conservation tests by Wang et al.1 show that the methods works exceptionally well. 

The fine grid occupies a volume extending between approximately 1 to 3 particle radii from the particle 

in the two lateral directions. Specifically, the fine lattice region was between h/R of 2.1 and 3.6 according 

to the Reynolds number, with h/R between 3.3 and 3.6 at the smaller Reynolds and Peclet numbers where 

diffusive effects are strongest, and between 2.1 and 2.6 at the higher Reynolds numbers. In the streamwise 

direction the fine grid extends to the domain boundaries, as illustrated in Figure 1. Outside this sub-region, 

the fine lattice couples to a lattice with resolution 6 - 10 times coarser than the fine lattice, depending on 

Reynolds/Peclet number. 
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To demonstrate the quality of the resolution we apply to minimize numerical error, we show in Figure 

B1 plots of streamwise velocity component along vertical lines in two cases at the extremes in the shear 

Reynolds number range calculated with the LB method for our analysis and at the highest Schmidt number 

(Sc) in each case. The gradients near the particle surface are much higher in the high Reynolds/Schmidt 

number case than in the low Reynolds number case. In both cases the highest gradient regions in velocity 

and scalar concentration are very well resolved. At the interface between the fine and coarse grids the 

transition is smooth.  

The spherical particle is freely suspended in our Couette flow with spin in response to stress exerted by 

the fluid on the particle surface expressed as the local exchange of momentum between neighboring “fluid” 

and “solid” nodes16. We evolved the momentum field to steady state before turning on the release of scalar 

concentration from the particle surface and continued to the steady equilibrium state at which point 

dissolution rate is calculated at *S  and ReS
 controlled by specified shear rate, fluid kinematic viscosity 

and molecular diffusivity. “Steady state” was defined as the time when the normalized rate of change in 

dissolution rate is below 0.01%: 

 
41 1 ( ) ( )

10
( )

dQ Q t t Q t

SQ dt SQ t t





 
  , (B9) 

where Q is the dissolution rate (mass/time) at time t and S is the flow shear-rate. 

Model for Zero Reynolds Number 

For the cases at Re 0S   (Stokes flow) with *S  varying from zero to large values, we take advantage 

of the known analytical solution for velocity surrounding a spherical particle freely-suspended in an infinite 

simple shear flow17, which is given in spherical coordinates as: 

(a) (b)

Figure B1. Plots of streamwise velocity and scalar concentration values on lattice nodes along vertical 

lines (see Figure 1) to demonstrate resolution quality in this study and the transition between the fine 

and coarse lattices: (a) ReS = 10, Sc = 40 (S* = 400), plotted from the top of the spherical particle (x = 0, 

z = R) at each lattice node; (b) ReS = 10-4, Sc = 10 (S* = 0.001), plotted from the front of the spherical 

particle (x = -R/2, z = 0) at each lattice node. 
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where   is defined from the -y axis and  in the x-z plane (Figures 1, 2 in the main manuscript). To develop 

the most accurate Stokes flow correlation possible between Sh and *S  within the LB framework, we assign 

the mass distribution functions values that produce the solution given by Eq. (B10) on which the scalar 

concentration field evolves using the moment propagation method with fixed surface concentration. More 

specifically,  ˆ ,f t t  x e  in Eq. (B6) is determined for steady state (i.e., equilibrium) by inserting the 

expressions in Eq. (B10) into the equilibrium distribution function, Eq. (B4) over the computational domain. 

Because the analytic solution for the particle distribution functions were available, there was no need to 

provide boundary conditions for velocity. Boundary conditions were only required for concentration, ϕ. 

This approach both maximizes accuracy and greatly reduces computational cost. 
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APPENDIX C: 

Sensitivity and Application 

As was discussed in the manuscript in context with Figures 5 and 10, sensitivity in the response of 

Sherwood number to changes in Peclet and Reynolds number depends on the *S  and ReS  regime, with 

greatest sensitivity to changes in *S  and ReS  tending to occur in the lower and higher *S  ranges, 

respectively. We quantify these sensitivities in Figures A1 (a) and (b) through the derivatives of Sh with 

respect to *S  and ReS  which, using Eqs. (14) and (15) in the manuscript, are given by, 

Correlation 1: 
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Correlation 2: 
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where the coefficients are given in Table 1 and the function Sh0( *S ) is given by Eqs. (9) in the manuscript. 

Isocontour plots of   *Sh S   and   ReSSh  are shown in Figures C1(a) and (b). Equations (C1) - 

(C4) indicate the existence of singularities in the sensitivity to *S  at * 0S   and the sensitivity to ReS  at 

Re 0S  . Thus we anticipate strong sensitivities in these two limits. 

Using the red-yellow isocontours as an indicator of “highest” sensitivity, Figure C1(a) shows that the 

highest sensitivity to changes in *S  occur roughly in the range * ~ 0S  to 20 at all ReS , with an apparent 

singularity at * 0S  . The range in *S  of high sensitivity increases gradually with increasing ReS . This 

is a significant result because the release of molecules from the surfaces of drug particles tends to occur at 

lower *S  with ReS  approaching zero. The high sensitivity to changes in *S  degrades rapidly with 

increasing *S  to small values at *S  exceeding roughly 200-300 at Reynolds numbers below ~1. However 

at these high *S  values, the sensitivity to *S  increases with increasing Re 1~S
 , especially at *S  exceeding 

~ 400-500. 

Again using the red/yellow isocontours as a marker of highest sensitivity, Figure C1(b) indicates that 

the highest sensitivity to changes in ReS  occurs at very low ReS  (relative to 1) with an apparent 

singularity at Re 0S  . The range in ReS  where Sherwood number is highly sensitive to changes in ReS  

increases with increasing *S , with high sensitivity particularly apparent at small ReS  when *S  exceeds 

roughly 100. Conversely, sensitivity to changes in ReS  is very low at *S  below roughly 10. Sensitivity 

drops rapidly with increasing ReS especially at lower *S . At *S  below ~10, there is negligible sensitivity 

to changes in ReS  

From an applications perspective, one might ask over what range of parameters the Stokes-flow 

correlations of Eq. (9) in the manuscript could be applied with good accuracy. We address this question in 

Figure C1 (b) and (c) where we plot the relative deviation of Sh from Sh0: 
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Using 10% deviation as demarcation of “reasonable” accuracy, Figure 1(c) shows that reasonable accuracy 

is obtained using the Stokes flow correlation at “small” *S , at “small” ReS  and especially in a broader 

range of * 50~S   when Re 1~S
 . Given that ReS  rarely, if ever, approaches 1 for typical drug particle 

dissolution (see Figure 5), in Figure C1(d) we expand Figure C1(c) for the region Re 1S  . We observe that 

the Stokes flow model is reasonable (within 10%) over the entire * ~ 0 500S   range when Re 0.01S   

(unlikely at * 500S  , see Figure 5 in the manuscript), but is reasonable for * 100~S   when Re 0.5~S
 , 

which is quite likely. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C1. (a),(b) Isocontours of the derivative of Sh with respect (a) S* and (b)  as indicators of 

sensitivity in Sh to changes in S* and ReS. (c),(d): Isocontours of the relative deviation  in Sherwood 

number from the Stokes flow correlation, Eq. (19) in the manuscript. Fig. (d) is an expanded version of 

(c) at , typical of dissolution form drug particles and where differences from the Stokes flow 

correlation are relatively minor. In all figures the more accurate correlation 2 was used. 


