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Abstract

Epidemiologists use prediction models to downscale (i.e., interpolate) air pol-

lution exposure where monitoring data is insufficient. This study compares

machine learning prediction models for ground-level ozone during wildfires, eval-

uating the predictive accuracy of ten algorithms on the daily 8-hour maximum

average ozone during a 2008 wildfire event in northern California. Models were

evaluated using a leave-one-location-out cross-validation (LOLO CV) procedure

to account for the spatial and temporal dependence of the data and produce

more realistic estimates of prediction error. LOLO CV avoids both the well-

known overly optimistic bias of k-fold cross-validation on dependent data and

the conservative bias of evaluating prediction error over a coarser spatial reso-

lution via leave-k-locations-out CV. Gradient boosting was the most accurate

of the ten machine learning algorithms with the lowest LOLO CV estimated

root mean square error (0.228) and the highest LOLO CV R̂2 (0.677). Ran-

dom forest was the second best performing algorithm with an LOLO CV R̂2 of

0.661. The LOLO CV estimates of predictive accuracy were less optimistic than

10-fold CV estimates for all ten models. The difference in estimated accuracy

between the 10-fold CV and LOLO CV was greater for more flexible models like

∗Corresponding author
Email address: gwatson@ucla.edu (Gregory L. Watson)

Preprint submitted to Environmental Pollution May 27, 2021



gradient boosting and random forest. The order of estimated model accuracy

depended on the choice of evaluation metric, indicating that 10-fold CV and

LOLO CV may select different models or sets of covariates as optimal, which

calls into question the reliability of 10-fold CV for model (or variable) selection.

These prediction models are designed for interpolating ozone exposure, and are

not suited to inferring the effect of wildfires on ozone or extrapolating to pre-

dict ozone in other spatial or temporal domains. This is demonstrated by the

inability of the best performing models to accurately predict ozone during 2007

southern California wildfires.

Capsule: Flexible machine learning methods model ozone well during a wildfire.

LOLO CV more accurately estimates prediction error than 10-fold CV.

Keywords: Air Pollution, Exposure Model, Machine Learning, Ozone,

Wildfire

1. Introduction1

Ground-level ozone is toxic to humans, animals and plants and contributes2

significantly to climate change as the third most important greenhouse gas3

[1, 2, 3, 4, 5, 6, 7]. Short-term exposure is linked to increased mortality [3],4

decreased respiratory function, exacerbation of chronic obstructive pulmonary5

disease (COPD), bronchitis, emphysema and asthma [8, 9, 10, 11]. Long-term6

exposure has been linked with respiratory and cardiovascular mortality [12, 13],7

decreased lung function [14] and the progression of emphysema [15].8

Wildfires contribute to the formation of ozone in the lower atmosphere (tro-9

posphere) by releasing volatile organic compounds (VOCs) and nitrogen oxides10

(NOx), which react in the presence of sunlight to form ozone [16, 17]. Fires11

upwind of large population centers can expose millions or even tens of millions12

of people to ozone and other pollutants [18]. Climate change is expected to13

intensify wildfires, which will likely increase the prevalence of wildfire-related14

ozone exposure.[17, 19]15

The health effects of wildfire-induced ozone exposure are poorly understood.16
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A study of hospital admissions in Port, Portugal, in 2005 while wildfires were17

burning nearby, indicated ozone was significantly associated with cardiovascu-18

lar disease admissions, but not with respiratory admissions [20]. This analysis,19

however, did not control for weather or land-use covariates. During a bushfire20

in southeastern Australia, respiratory emergency department visits were signifi-21

cantly associated with PM10 (particulate matter 10 µm or smaller in diameter),22

but not with ozone [21].23

A key challenge facing epidemiological analyses of air pollution exposure is24

quantifying pollution concentrations where people live, which may be distant25

from regulatory monitoring sites. This is particularly difficult for wildfire-related26

pollution, because wildfires often ignite far from urban regulatory monitoring27

sites, and satellite evidence indicates that traditional monitoring networks are28

too sparse to capture smoke plume variation and dynamics [22]. Epidemiologists29

attempt to overcome this difficulty by constructing exposure models to predict30

pollution concentration at unmonitored locations and times. The prediction of a31

quantity across a domain, such as a spatial region, based on observations of that32

quantity at discrete locations within that domain is referred to as downscaling33

or interpolation, and is an example of infill prediction.34

The simplest downscaling exposure models rely upon the tendency of nearby35

observations to be more similar than those farther apart to interpolate between36

pollution monitor observations without the use of additional information (i.e.,37

without covariates). This tendency is an example of spatial (or space-time)38

dependence. Kriging is a very commonly used method for interpolating ob-39

servations, modeling air pollution concentrations as the best linear unbiased40

prediction (BLUP) given the data and mean and covariance functions selected41

by the researcher and estimated from the data [23]. Kriging tends to perform42

relatively well when monitoring data is dense, but model accuracy degrades at43

locations or times distant from monitor observations.44

To improve accuracy, especially when monitoring density is sparse, researchers45

have employed regression models that incorporate ancillary information as co-46

variates. These models are referred to as land use regression in the literature,47
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but the covariates need not pertain to land use, and increasingly include satel-48

lite retrievals, meteorological data, and less frequently the output of atmospheric49

chemistry numerical simulation models. Land use regression models have been50

used for modeling air pollution exposure at least since the Small Area Variations51

in Air quality and Health (SAVIAH) study in 1997 [24] with numerous exam-52

ples appearing subsequently. While these regression models include covariate53

information, they have often assumed linear, additive covariate effects. This54

assumption makes the effects easy to interpret but is too stringent to predict air55

pollution concentrations accurately. These models cannot accommodate non-56

linear effects or interactions between covariates unless they are specified by the57

analyst a priori. They also lack a mechanism for variable selection, requiring58

the analyst to manually select covariates or employ a separate variable selection59

procedure.60

These limitations have prompted the development of more flexible models61

that allow for nonlinear effects including spatially or spatiotemporally varying-62

coefficient models [25]. These models generally fit covariate effects with smooth63

functionals that need not be linear and may be indexed by space or space-time,64

which allows the covariate effects to differ across space and time. These models65

are an improvement over the very stringent restrictions set on covariate effects66

in linear, additive models, but they often rely on research code, making them67

less accessible to other researchers. In our experience we have also found that68

these more sophisticated models do not scale well to realistic space-time data69

settings.70

These challenges have motivated researchers to turn to more flexible models71

that do not require such stringent assumptions, including a variety of machine72

learning algorithms, which have been shown to be very useful for prediction [26],73

especially random forest [27], gradient boosting [28] and neural networks [29].74

They may lack the straightforward interpretability of linear regression, but this75

is of secondary concern when prediction is the primary objective, and variable76

importance scores have been developed for many such methods to quantify the77

contribution of each covariate.78
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Generalized additive models [30], support vector machines [31, 32], gradi-79

ent boosting [33] and deletion/substitution/addition [34] have been used to80

model particulate matter exposure. Neural networks [35, 36] and random forest81

[37, 38, 39] have been used to model both particulate matter and ozone concen-82

trations. A comparison of 11 machine learning models indicated that random83

forest, gradient boosting and bagged trees predict PM2.5 (particulate matter84

smaller than 2.5 µm in diameter) concentrations well during a wildfire event85

[22]. Random forest, boosting and Cubist performed well in a comparison of86

8 machine learning tools predicting PM2.5 in British Columbia [40]. Here we87

conduct a similar analysis using ten machine learning algorithms to model ozone88

exposure during a wildfire air pollution event for the first time, evaluating their89

predictive accuracy for use as land use regression models.90

Comparing and evaluating prediction models for dependent data is chal-91

lenging. Cross-validation (CV) and the bootstrap are commonly used model92

evaluation procedures that repeatedly fit a model to a training subset of the93

data and evaluate the accuracy of its predictions on a different, test subset,94

combining the performance across multiple test subsets into a nonparametric95

estimate of prediction error. For data that are spatially and temporally depen-96

dent (i.e., autocorrelated), however, these procedures can be overly optimistic,97

because of the dependence between training and test subsets [41].98

In the case of daily air pollution monitoring observations, we wish to es-99

timate the average error made by a downscaling model when predicting at a100

new location within the spatial domain of the data. Including observations in101

the training data that were taken at the same monitors as the test set obser-102

vations provides an unrealistic amount of information on the test data, because103

of the strong correlation between observations taken at the same location. This104

produces estimates of prediction error that are biased downward, especially for105

flexible models which tend to overfit to a greater degree than less flexible mod-106

els when trained on dependent data. The true prediction error associated with107

predicting at a new location would be greater than these estimates, because108

the model could not have been trained on any observations recorded at a new109
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location.110

When dependence is restricted to observations within the same group or111

cluster, consistent (i.e., asymptotically unbiased) estimates of prediction error112

can be recovered by resampling groups rather than individual observations. It is113

unrealistic, however, to assume that spatially dependent data are nested within114

independent groups of observations. Modified cross-validation schemes have115

been used on pollution exposure data that partition the data into spatial grid116

cells [33] or monitor locations [42, 43]. Such approaches attempt to reduce the117

dependence between training and test data sets by placing all observations at a118

particular location or within a particular region into the same cross-validation119

fold. In this vein, we use leave-one-location-out (LOLO) cross-validation, which120

defines each CV fold as the observations recorded at a single monitor location121

[44]. This does not partition the data into independent groups, but estimates122

the error associated with predicting the time series of ozone observations at a123

new location, conditioning upon the observed monitor data. By using all the124

observations at a single location as the test set, LOLO CV ensures that no ob-125

servations from this location appear in the training set, which would result in126

unrealistically low estimates of prediction error. It also avoids the overly conser-127

vative bias of leave-k-locations-out CV, which tends to overestimate prediction128

error because it uses substantially fewer observations for model training.129

2. Materials and Methods130

2.1. Data131

One hundred ground-based ozone monitors administered by the United States132

Environmental Protection Agency (EPA) made hourly observations from which133

the daily maximum 8-hour averages were computed across northern California134

between May 6, 2008 and September 26, 2008 for a total of 13,487 observa-135

tions. We selected this time period with the goal of estimating ozone exposures136

before, during, and after a spate of wildfires that afflicted northern California137

in late June and July of 2008. The mean maximum 8-hour average concen-138
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Table 1: Covariates used to predict ozone.

Covariate Data Source

Monitor Latitude U. S. Environmental Protection Agency

Monitor Longitude U. S. Environmental Protection Agency

Elevation (m) National Digital Elevation Model

Date U. S. Environmental Protection Agency

Dew Point (◦K) Rapid Update Cycle

Boundary Layer Height (m) Rapid Update Cycle

Surface Pressure (Pa) Rapid Update Cycle

Relative Humidity (%) Rapid Update Cycle

Temperature at 2 m (◦K) Rapid Update Cycle

U-Component of Wind Speed (m/s) Rapid Update Cycle

V-Component of Wind Speed (m/s) Rapid Update Cycle

Inverse Distance to Nearest Fire (m−1) Fire Inventory from NCAR v1.5

Annual Average Traffic within 1 km Dynamap 2000, TeleAtlas

Agricultural Land Use within 1 km (%) 2006 National Land Cover Database

Urban Land Use within 1 km (%) 2006 National Land Cover Database

Vegetation Land Use within 1 km (%) 2006 National Land Cover Database

Normalized Difference Vegetation Index Landsat Data

Nitrogen Dioxide (log molecules/cm2) Ozone Monitoring Instrument Satellite

WRF-Chem Carbon Monoxide (log moles/day) WRF-Chem

WRF-Chem PM2.5 (log kg/day) WRF-Chem

WRF-Chem Ozone (log 8 Hour Maximum) WRF-Chem
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Figure 1: The daily empirical distribution of maximum daily 8-hour average ozone between

May 6 and September 26, 2008 at 100 northern California monitoring sites.

tration was 36.2 ppb, and the standard deviation was 13.6 ppb. During the139

study, the maximum 8-hour average exceeded 70 ppb 236 times and exceeded140

75 ppb 107 times. Most exceedances occurred while the fires were burning (153141

and 75 respectively), although this time period is one of high solar intensity142

when high concentrations of ozone are expected. It is not our objective, how-143

ever, to quantify the contribution of wildfires to ozone formation, but simply to144

downscale ozone concentrations during a wildfire event for subsequent epidemio-145

logical analysis. Figure 1 depicts the temporal evolution of monitor observations146

throughout this time period.147

Twenty-one covariates were also collected for the monitor locations, includ-148

ing location, elevation, date, atmospheric weather data (dew point, boundary149

layer height, surface pressure, relative humidity, temperature, and wind speed),150

inverse distance to the nearest fire, traffic, land use information (agricultural,151

urban, and vegetation), tropospheric nitrogen dioxide (NO2) vertical column152

density and predictions of daily total carbon monoxide concentration (CO),153

particulate matter (PM2.5) and daily maximum 8-hour average ozone. Table 1154

lists the covariates and their sources.155

Monitor elevation was determined from the 2010 National Elevation Dataset156
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for California. The date of each observation was encoded as the continuous co-157

variate, Julian date. The U.S. National Centers for Environmental Prediction’s158

Rapid Update Cycle atmospheric prediction model provided hourly predictions159

of dew point, planetary boundary layer height, surface pressure, relative hu-160

midity, temperature, and the U and V components of wind speed, which were161

averaged into daily values [45].162

Inverse distance to the nearest fire was included as a covariate. The Fire163

Inventory from NCAR (FINN) v1.5 provided estimates of fire point locations164

in California during the study period [46]. Fire points occurring within 5 km165

of each other were clustered and circumscribed by a polygon using the ArcGIS166

Aggregate Points tool, and the distance between each monitoring site and the167

closest point on the nearest fire cluster polygon was determined on each day168

using the ArcGIS Near tool. On days with no fire in California, distance to the169

nearest fire was undefined. Conceptualizing this undefined distance as equivalent170

to the nearest fire cluster being infinitely far away, inverse distance to fire was171

defined as 0 for observations taken on days with no fires in California and as172

the inverse of the distance to the nearest fire cluster otherwise.173

Dynamap 2000, a TeleAtlas product, was used to compute the annual av-174

erage of roadway traffic within 1 km of each monitor [22]. The National Land175

Cover Database for 2006 [47] was used to calculate the percentage of urban176

development (codes 22, 23, and 24), agriculture (codes 81 and 82) and other177

vegetation (codes 21, 41, 42, 43, 52, and 71) within 1 km of each monitor.178

The normalized difference vegetation index (NDVI) quantifies the density179

of green vegetation on a scale between -1 and 1 by measuring the visible and180

near-infrared light reflected at a location via remote sensing. The chlorophyll181

in healthy vegetation absorbs most of the visible light and reflects much of the182

near-infrared light to which it is exposed, giving locations with more vegetation183

a higher NDVI score. NDVI for each monitor location was extracted from the184

NDVI remote sensing raster surface and included as a covariate.185

Nitrogen dioxide (NO2) was estimated on each day at monitor locations186

(if available) using the Berkeley High-Resolution (BEHR) NO2 tropospheric187
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column density retrieved from NASA’s Ozone Monitoring Instrument (OMI)188

satellite, which has an overpass time of 1:30 local time [48] and a resolution189

varying between 13 x 24 km to 42 x 162 km.190

Predictions of daily total carbon monoxide (CO) and PM2.5 and the maxi-191

mum daily 8-hour average ozone concentration were extracted for each day from192

the Weather Research and Forecasting with Chemistry (WRF-Chem) 3.2 model.193

WRF-Chem is a regional chemical transport model that simulates meteorology194

and behavior of atmospheric gases and aerosols [49, 50]. Appendix A in the195

supplemental material details the WRF-Chem inputs and options used for our196

simulations.197

2.2. Statistical Analysis198

Each observation comprises an outcome, yi, the log maximum 8-hour average199

ozone on a given day at a given monitoring location, and a vector of covariates,200

xi = (xi1, ..., xip)′, i = 1, ..., n, where n is the number of observations, and p is201

the number of covariates. The vector of outcomes, y = (y1, ..., yn)′, and the202

matrix of covariates, X = (x1, ...,xn)′, together compose the data, D = {X,y}.203

Ozone observations were log transformed to reduce the impact of heteroscedas-204

ticity (non-constant variance across the range of a variable), as data exploration205

revealed the variance was substantially greater than the mean at high values.206

The maximum daily 8-hour average ozone from the WRF chemical transport207

model (WRF-Chem) was also log transformed to have the same scale as the out-208

come. All other covariates were transformed to have a mean of 0 and variance209

of 1.210

Ten predictive algorithms were trained and evaluated on these data: elastic211

net regression, generalized additive models (GAM), gradient boosting, k-nearest212

neighbor regression, lasso regression, linear models, multivariate adaptive re-213

gression splines (MARS), neural network, random forest, and support vector214

machines with a radial basis kernel (SVM). All of the models except for neural215

networks were fit using models available in version 6.0 of the caret R package216

[51]. Neural networks were given special consideration on account of their grow-217
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ing popularity as machine learning prediction tools and especially the recent218

publication of papers using a neural network with inverse distance weighted con-219

volutional layers to predict ozone and particulate matter [35, 36]. We tested a220

neural network that mimicked those models, employing inverse distance weight-221

ing to create convolutional spatial, temporal and space-time layers using the222

keras R package [52]. These models were less accurate than a standard feedfor-223

ward neural network, and so we have reported the results of that network here.224

Training each prediction model produces a prediction rule η(x, DT ), which is a225

function of DT , the data on which it was trained, and a vector of covariates, x,226

mapping them to a prediction for y | x, which is often used as an estimator of227

E(y | x), the conditional expectation of y given x.228

The models were tuned, selected, and evaluated using cross-validated esti-229

mators of root mean square error (RMSE) and R2, which are both functions of230

the mean square error (MSE). The MSE of a prediction rule η(x, DT ), where231

DT is the data with which η was trained, may be estimated using a test data232

set DW as233

ˆMSE(DW , η(x, DT )) =
1

nw

∑
j∈DW

(yj − η(xj , DT ))2, (1)

where nw is the number of data points in DW . If DW and DT are disjoint,234

(i.e., if η was not trained using any part of DW ), then this is an out-of-sample235

estimator of the MSE. RMSE may be estimated by the square root of ˆMSE,236

and R2 is estimated by237

R̂2(DW , η(x, DT )) = 1−
ˆMSE(DW , η(x, DT ))

n−1w
∑

j∈DW
(yj − ȳw)2

, (2)

where ȳw = n−1w

∑
j∈DW

yj is the mean outcome in DW . For ease of notation,238

the function arguments for ˆMSE, ˆRMSE, and R̂2 are hereafter suppressed.239

Two different cross-validation (CV) strategies were employed for model eval-240

uation: 10-fold cross-validation and leave-one-location-out (LOLO) cross-validation.241

For 10-fold CV, the data were randomly partitioned into 10 non-overlapping242

subsets, each containing one tenth of the data. Each subset served as the test243
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data for models trained on the other nine tenths of the data, resulting in ten244

different pairs of training and test sets, with each observation appearing in one245

test set and the nine training sets not paired with that test set. This yielded 10246

estimates of MSE for each model, which were averaged into an overall estimate247

of MSE, from which the 10-fold CV estimates of RMSE and R2 were computed.248

Ten-fold cross-validation is widely used for estimating prediction error; how-249

ever, it is known to be overly optimistic for dependent data [41]. Data recorded250

by air pollution monitors are expected to exhibit spatial or space-time depen-251

dence. To more accurately estimate the downscaling error associated with pre-252

dicting ozone at an unobserved location, RMSE and R2 were estimated using253

LOLO CV, in which a model is trained on data from all but one location, and its254

prediction error is computed for the observations at the withheld location. This255

process is repeated with observations at each location serving as the withheld256

test set once, and the resulting errors are averaged into the LOLO CV estimate257

of prediction error. Unlike 10-fold CV in which observations are distributed258

among folds uniformly at random, LOLO CV ensures that no observations from259

the test location may appear in the training data. This provides a realistic260

estimate of the downscaling prediction error associated with predicting ozone261

observations at a new location within the same region as the monitoring data.262

Most predictive machine learning algorithms depend upon one or more pa-263

rameters whose values must be set prior to fitting the model. Algorithm per-264

formance can vary greatly depending on these parameter values, and it is often265

desirable to select values that optimize some criteria in an attempt to improve266

model performance. The process of choosing values for these parameters is often267

referred to as tuning and the parameters themselves as tuning parameters (or268

hyperparameters). In our analysis, most tuning parameter values were selected269

by comparing the performance of candidate values on 25 bootstrap samples of270

the data using the caret R package [51]. Parameters for k-nearest neighbors and271

GAM were specifically tuned for LOLO CV in an attempt to stabilize the LOLO272

CV prediction error, as these models made extremely poor LOLO predictions273

using bootstrap-selected tuning parameter values. Appendix C in the supple-274
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mental material details these tuning procedures and their results. Substantial275

effort was taken in selecting the number of layers, nodes, activation functions276

and distance weighting functions for the neural network. The most accurate277

model was a feedforward neural network with one hidden layer of 21 nodes278

using a rectified linear unit activation function without the inverse distance279

weighting functions and convolutional layers employed in previously published280

models [35, 36].281

To investigate the transferability of a model trained on data in one region282

to another, i.e., its ability to extrapolate rather than downscale, the predictive283

performance of the two best models trained on the 2008 northern California284

wildfire period—those two with the lowest LOLO CV estimates of RMSE—was285

evaluated on data collected during a 2007 wildfire event in southern California.286

The southern California data consisted of 5,978 daily 8-hour maximum ozone287

values recorded at 72 monitors between September 1, 2007 and November 28,288

2007.289

3. Results and Discussion290

Figure 2 graphically depicts the cross-validated estimates of RMSE and R2
291

for each algorithm using 10-fold CV and LOLO CV. In every case, the 10-fold292

CV ˆRMSE was lower than the LOLO CV ˆRMSE, and the 10-fold CV R̂2 was293

higher than the LOLO CV R̂2. Gradient boosting had the lowest 10-fold CV294

ˆRMSE (0.186 log ppm), lowest LOLO CV ˆRMSE (0.228 log ppm), highest295

10-fold CV R̂2 (0.784), and highest LOLO CV R̂2 (0.677). Random forest296

placed second in all four categories. The table in Appendix B lists exact values297

for ˆRMSE and R̂2 for each model. These results answer the two primary298

questions posed by this study, demonstrating that machine learning methods299

can downscale ozone during a wildfire with reasonable accuracy and identifying300

gradient boosting and random forest as performing particularly well.301

The 10-fold CV estimates of RMSE and R2 were optimistic compared to302

those of LOLO CV for all ten models. This over optimism of 10-fold CV is intu-303
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Figure 2: 10-fold and leave-one-location-out cross-validated estimates of RMSE and R2 for

downscaling ozone prediction models.

itive, because of the strong dependence between test and training observations304

from the same monitor location. The 10-fold CV estimators are also unreliable305

for model selection. The ordering of model performance is not invariant to the306

choice of evaluation criterion, which is demonstrated here by the evaluation of307

the neural network. It is the worst performing model when evaluated by LOLO308

CV, but is sixth best according to 10-fold CV. The ordering of GAM, MARS309

and k-nearest neighbors also differ, though the magnitude of those differences310

is not as substantial.311

The difference between the 10-fold and LOLO cross-validated estimates of312

performance was smaller for relatively inflexible models like lasso, elastic net,313

and linear regression than for the other models, whose greater flexibility enabled314

them to better exploit the more highly dependent folds of 10-fold CV. The large315

difference for k-nearest neighbor regression is due to the strong dependence316

between observations recorded at the same monitor location. In 10-fold CV,317

the nearest neighbors of an observation are very likely to be other observations318

taken at that location. In LOLO CV, no observations taken at the test location319
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Figure 3: The leave-one-location-out (LOLO) cross-validated estimates of RMSE averaged

over the study period (May 6, 2008–September 26, 2008) are plotted at each monitor location

for gradient boosting (left) and random forest (right). These average prediction error estimates

were then smoothed throughout the study region using a two-dimensional spline-on-sphere

smoother to provide a visual estimate of how downscaling predictive performance may vary

across the spatial domain.
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appear in the training data. It is no surprise that this yields substantially higher320

estimates of prediction error.321

Figure 4 plots 10-fold and LOLO CV predictions against observed daily 8-322

hour maximum average ozone for gradient boosting and random forest. The CV323

prediction for each point is the predicted value when it appears in the test fold324

of the CV procedure. Points that fall on the grey diagonal line are perfectly325

predicted. The tighter clustering of points around this line in the 10-fold CV326

plots corresponds to the more accurate predictions made when test set monitor327

locations are included in the training data.328

The neural network performed less well than in previous applications for329

predicting ozone and particulate matter over a spatial grid across the continental330

United States [35, 36]. The recent popularity of convolutional neural networks331

is largely due to their performance on image-processing problems. Gridded332

spatial (or space-time) data bear a much greater resemblance to image data333

than do the point process monitor data upon which they were evaluated here.334

It is also possible that alternate specifications of the network architecture could335

improve performance, but developing such a model goes well beyond the scope336

of this comparison, which is limited to readily available algorithms that do not337

require substantial expertise in model specification or implementation. At least338

in this context neural networks do not succeed as an automatically regularized339

statistical learning tool (i.e., as a black box), but their performance in other340

studies suggests they may work well as a highly specialized tool designed using341

domain knowledge specific to a particular application.342

The magnitude of the difference between the LOLO and 10-fold CV esti-343

mates of prediction error has meaningful consequences for estimating exposures344

for subsequent epidemiological analyses. Downscaled exposure is often used as345

the covariate of interest in analyses seeking to infer the health consequences346

of air pollution without accounting for prediction uncertainty. The more real-347

istic estimates of prediction error provided by LOLO CV offer better insight348

into whether it is reasonable to ignore this uncertainty. This may motivate349

improvements to epidemiological models to account for exposure measurement350
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Figure 4: 10-fold and leave-one-location-out (LOLO) cross-validated gradient boosting and

random forest predictions plotted against observed daily 8-hour maximum average ozone on

the log scale.

17



error.351

The increased accuracy of LOLO CV comes at a computational cost. When352

the number of locations exceeds 10, LOLO CV is more computationally ex-353

pensive than 10-fold CV. In this analysis, there are 100 monitor locations and354

therefore 100 folds in LOLO CV, corresponding to approximately 10 times the355

computational burden of 10-fold CV. Grouping monitor locations into folds is356

an appealing strategy to alleviate this burden [43], however, it estimates pre-357

diction error over a different spatial resolution than LOLO CV, and will result358

in overly conservative estimates.359

The top two models, gradient boosting and random forest, are both ensem-360

bles of tree-based models that provide very flexible mean structures. Their excel-361

lence suggests that the mean structure characterizing the relationship between362

covariates and ozone likely includes interactions, non-linearities and possibly363

discontinuities. These results do not demonstrate that the underlying chemi-364

cal processes by which ozone forms are similarly complicated, but that seems365

likely. The 10-fold CV estimates of RMSE and R2 were similar to, although366

slightly lower than, those reported in a similar analysis of machine learning ex-367

posure models for PM2.5 during the same wildfire time period [22]. Tree-based368

ensembles were also the best performing models in that study, suggesting that369

algorithms with flexible mean structures can produce useful exposure models370

for ozone and PM2.5 during wildfire events. Traditional exposure models have371

focused on modeling the dependence between observations, while employing a372

simple mean structure. The machine learning models evaluated here assume in-373

dependent observations, but offer much greater flexibility in modeling the mean.374

This approach is expected to provide more accurate predictions distant from375

the observations on which the model was trained than methods that rely upon376

the dependence between observations. Combining the flexible mean structure377

of tree-based ensembles with the dependence structures of traditional spatial378

statistics models is a promising avenue for future work.379

An interesting related analysis would be assessing the effect wildfires have380

on ozone formation. Doing so would require additional numerical simulations381
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from the WRF-Chem model that exclude wildfire emissions from its inputs.382

With the data currently available to us, it is impossible to disentangle the effect383

of wildfires from the other inputs of the WRF-Chem model. This inferential384

problem is also quite different from the downscaling task which is the focus of385

this study and may require an entirely different modeling approach. A model386

that provides excellent downscaling predictions may not be useful for drawing387

scientific inference.388

Another interesting question is whether ozone formation was NOx-limited389

or VOC-limited. During a wildfire the chemical regime is primarily determined390

by the amount and conditions of the wildfire fuel, leading to rapid changes in391

NOx and VOC sensitivity from day to day and even within the course of a392

day. Understanding this would require a fully separate chemical analysis of air393

quality conditions in northern California that is beyond both the scope of this394

paper and the scope of our data, as we lack data on VOC concentrations. One395

previous study, however, examined the changes that occurred in atmospheric396

chemistry when wildfire plumes interacted with urban pollution during these397

fires [53].398

We also lack information on chlorofluorocarbon (CFC) emissions, which399

break down ozone and thus influence ozone concentrations. If data on these400

compounds were available during the study period, we could include them as401

covariates in an attempt to improve predictions. The absence of data on VOC402

and CFC emissions does not invalidate the downscaling enterprise. Downscal-403

ing models are constructed to combine the available information, whether from404

observational processes or complex computational models like WRF-Chem, into405

accurate predictions within a particular domain. They are not scientific models406

and do not necessarily imply anything about the chemical or physical mecha-407

nisms by which pollutants form and move. Using flexible models strictly for408

downscaling also protects us from biases in the WRF-Chem output. We need409

not validate the accuracy of the WRF-Chem simulations; we simply rely on410

the models to learn the relationship between this output and observed ozone411

concentrations.412
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Figure 5: Pairwise normalized gradient boosting and random forest variable importance scores

for models trained on the full data. The light grey line denotes equal importance in the two

models.

Figure 5 plots covariate importance scores for random forest and gradient413

boosting models fit to the full data. Random forest variable importance was cal-414

culated as the mean decrease in residual sum of squares resulting from splitting415

on that covariate averaged across all the trees of the forest. Variable impor-416

tance for gradient boosting was calculated by permuting that covariate’s values417

and computing the average difference in MSE between predictions made with418

permuted and un-permuted values [54]. The variable importance scores for the419

two models were normalized to sum to one for ease of comparison. Most covari-420

ates are close to the grey diagonal, which indicates equal importance in the two421

models. Longitude, WRF-Chem ozone and time were the three most important422

covariates for both models. WRF-Chem is constructed to estimate atmospheric423

ozone and so it is not surprising that it has a high importance score. Longitude,424

latitude and time can proxy for unobserved factors, but also calibrate the effect425

of other covariates similar to space- or time-varying coefficient models. This426

calibration may be especially important for the numerical outputs of the WRF-427
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Chem model. Longitude is likely particularly important because it can be used428

to index many of the significant geographical features of northern California429

that run approximately North-South, including the coast, San Joaquin Valley,430

coastal and Sierra Nevada mountain ranges. These geographical features may431

be associated with important, unobserved information that is not captured by432

the other covariates including VOC and CFC concentrations.433

Neither model when trained on the northern California 2008 wildfire data434

accurately predicted ozone exposure in southern California in 2007. The pre-435

dictions from both models had negative R̂2, indicating that their predictions436

were less accurate (i.e., had higher estimated MSE) than the sample mean of437

the southern California ozone monitors, which by definition has an R̂2 of 0. In438

fairness to gradient boosting and random forest, in an out-of-domain prediction439

problem, the sample mean is unknown, and therefore cannot be used as a pre-440

diction rule. When downscaling gradient boosting and random forest models441

were fit to the 2007 southern California wildfire data, they had LOLO CV errors442

comparable to the LOLO CV errors reported above. These models accurately443

downscaled ozone observations during the southern California wildfire (just as444

they did for the northern California data), but they did not extrapolate well445

outside of the domain in which they were trained.446

This is not surprising and illustrates the proper interpretation of our mod-447

eling efforts, which is statistical downscaling (i.e., interpolating) within the ob-448

served space-time domain. The substantial decrease in predictive accuracy be-449

tween within-domain (i.e., downscaling) and out-of-domain (i.e., extrapolating)450

predictive performance suggests that the relationships between covariates and451

ozone exposure differ in space and time and demonstrates the dangers of using a452

downscaling model for extrapolation. Within the observed space-time domain,453

space and time can proxy for unobserved spatially-indexed covariates in flex-454

ible models like gradient boosting and random forest, improving downscaling455

predictions, but impeding straightforward extrapolation to different space-time456

domains where the relationship between these unmeasured covariates and space-457

time may be different. One referee suggested that the difference in ozone pre-458
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Figure 6: The extrapolation error made by gradient boosting and random forest models trained

on the 2008 data and predicting ozone during the 2007 southern California fire. The mean

RMSE at each location is smoothed throughout the study region using a two-dimensional

spline-on-sphere smoother.

cursors between regions, specifically whether ozone formation is NOx-limited or459

VOC-limited, is likely one such unobserved, spatially-indexed covariate hinder-460

ing spatial extrapolation.461

As a further check, we repeated this extrapolating procedure excluding lati-462

tude, longitude and time from the covariates. The domains of the other covari-463

ates were comparable between the two data sets, with the exception of a few464

low values for surface pressure in the southern California data. Excluding spa-465

tial and temporal covariates improved predictive accuracy, reducing LOLO CV466

ˆRMSE from 0.587 to 0.499 for gradient boosting and 0.544 to 0.462 for random467

forest. As expected, space-time covariates improve downscaling predictions but468

worsen extrapolating predictions, because the unobserved information indexed469

by these covariates differs in other regions and at different times.470

The scale on which prediction is performed is also important and application471

specific. In this analysis we performed prediction on the log scale to normal-472

ize the variance, but also because it balances large and small errors allowing473
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accurate predictions to be made at both large and small concentrations. We474

believe this is a natural scale for the intended subsequent applications of our475

predictions in epidemiological analyses of pollution health effects. Prediction476

on the untransformed, original scale would more heavily weight predictions at477

high ozone concentrations. This may be useful for some applications, but we478

prefer to balance predictive accuracy at low and high concentrations for our479

application.480

The comparison performed here demonstrates that machine learning predic-481

tion algorithms, especially ensembles of tree models like gradient boosting and482

random forest, can accurately downscale ozone concentrations during wildfire483

events. We believe they would downscale ozone similarly well in the absence484

of wildfire events. The models we consider here, however, did not accurately485

extrapolate beyond the space-time domain on which they were trained. This486

analysis also demonstrates that the choice of evaluation metric is critical to un-487

derstanding predictive performance. Metrics that ignore the dependent struc-488

ture of the data, including k-fold CV, are overly optimistic and unreliable for489

model selection. LOLO CV is a superior alternative that accounts of the spatial490

dependence of the data in evaluating model predictive performance, resulting491

in more reliable estimates of predictive performance.492
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