
HONORS THESIS

Numerical Encoding of Symbolic Data:
Standard, State of the Art, and New Techniques

Perrin Ruth

Department of Applied Mathematics

University of Colorado - Boulder

Defended on Wednesday, March 24 2021

Committee Members

Thesis Advisor: Manuel E. Lladser, Department of Applied Mathematics (APPM)

Anne Dougherty, College of Arts and Sciences Honors Program & APPM

Youjian Liu, Department of Electrical, Computer, and Energy Engineering (ECEE)

Juan G. Restrepo, Department of Applied Mathematics (APPM)

Abstract

With an increasing prevalence of symbolic data comes a growing need for tools to study it. Nev-
ertheless, most data analysis techniques have been developed for numerical datasets, and the natural
numerical representation methods of symbolic data are highly dimensional. This motivates the problem
of representing symbolic data as low-dimensional numerical vectors.

An ordered subset of nodes in a graph is called resolving when each vertex is uniquely determined
by its distances to the set nodes. Multilateration is the process of representing any node by its distances
to the elements of a resolving set. The metric dimension of a graph is the cardinality of the smallest
resolving set; hence, the smallest dimension by which nodes in a graph may be represented as numerical
vectors via multilateration.

Multilateration of Hamming graphs has shown to be a promising method for representing symbolic
data numerically as low-dimensional vectors; however, this approach restricts the data to be words of
the same length. To overcome this limitation, we commit to a novel notion of Levenshtein graphs: the
vertices of these graphs are possibly words of varying size, and two vertices are connected by an edge
only when their edits distance is one.

In this thesis, we uncover various properties of Levenshtein graphs. We find necessary and sufficient
conditions for when the geodesic distance of these graphs is equivalent to the edit distance. Then, utilizing
strings with at most two runs, we construct bounds on the metric dimension of Levenshtein graphs and
a resolving set. We also characterize the automorphism group and determining sets of Levenshtein
graphs. Finally, as a proof of concept, we demonstrate how these tools may be applied to represent DNA
sequences numerically.

Table of Contents

1 Introduction 2

2 Hamming Graphs 4
2.1 Constructing resolving sets for Hamming graphs . 4
2.2 Verifying resolving sets of Hamming graphs . 4

3 Levenshtein Graphs 5
3.1 Definition of Levenshtein graphs . 6
3.2 Geodesic versus edit distance & Connectivity . 7

4 Runs and Resolvability of Levenshtein Graphs 9
4.1 Edit distance to a single run string . 9
4.2 Edit distance to a two runs string . 10

5 Metric Dimension of Levenshtein Graphs 12
5.1 Metric dimension lower bound . 12
5.2 Metric dimension upper bound . 13

6 Automorphism Group 14
6.1 Overview of automorphisms on Levenshtein graphs . 14
6.2 Automorphisms of typical Levenshtein graphs . 15

7 Determining Sets 19

8 DNA Resolving Sets 21

9 Discussion and Future Work 22

1 Introduction

Suppose you were studying a robot moving on a network and you wanted to track its position. If you were to
track a point on the plane you could use trilateration, where any such point can be uniquely identified by its
distances to three noncollinear points. Similarly, we could place “landmark” devices on our network so that
the robot could locate itself through its distances to these devices. It turns out that this problem is guaranteed
to have a solution, but the question remains: where are the best locations to place these landmarks? This
question has served as a classic inspiration for the theoretical study of the so-called resolving sets [16].

For a general unweighted graph G = (V,E), a set R ⊂ V is called resolving when for every pair of distinct
nodes u, v ∈ V there exists r ∈ R such that d(u, r) ̸= d(v, r), where d(·, ·) denotes the geodesic distance
between pairs of vertices in G. Note, we write u ∼ v if u and v are adjacent in G. The metric dimension of
a graph, β(G), is defined as the size of a smallest possible resolving set [13, 25]. See Figure 1.

The problem of finding the metric dimension of an arbitrary graph is NP-Complete [8, 12, 16]. Nevertheless,
it has been characterized for trees, paths, and complete graphs [7], among many other graph families [28]. It
is possible to estimate the metric dimension of a graph using the ICH algorithm [14], which runs inO(|V |3)
time with an approximation ratio of 1 + (1 + o(1)) ln |V |. Therefore, in cases when the distance matrix is
easily computable, e.g. on the order of thousands of nodes, the ICH algorithm serves as an effective method
for generating resolving sets.

In general, resolving sets are useful to embed graphs into Euclidean spaces, and the smaller the cardinality
of such a set, the smaller the dimension of the embedding. Indeed, if R = {r1, . . . , rn} of cardinality n
resolves G then the transformation ΦR : V → Rn defined as

ΦR(v) :=
(
d(v, r1), . . . , d(v, rn)

)
(1)

represents nodes in G as n-dimensional vectors, see Figure 1. The smallest possible dimension in which to
embed a graph in this way corresponds to its metric dimension. Resolving set based embeddings have various
advantages over other state-of-the-art methods: they are one-to-one, require comparatively low complexity
to be computed and, due to the triangular inequality, map nearby nodes inG to tuples with similar numerical
coordinates [29].

1

7

2 3

4

6

5

8

Figure 1: Visualization of a graph with a metric dimension of 2, because no single node multilaterates it
(i.e., given any node, there are at least two nodes at the same geodesic distance from it). The set of nodes
R = {5, 7} (colored red) forms a minimal resolving set because any node can be represented uniquely by
its geodesic distances to R. In fact, defining ΦR(v) :=

(
d(v, 5), d(v, 7)

)
, we find that ΦR(1) = (4, 2),

ΦR(2) = (3, 1), ΦR(3) = (2, 1), ΦR(4) = (1, 2), ΦR(5) = (0, 3), ΦR(6) = (2, 3), ΦR(7) = (3, 0),
ΦR(8) = (4, 1).

The Cartesian product of two graphsG1 = (V1, E1) andG2 = (V2, E2), denoted asG1□G2, has vertex set
V = V1 × V2, and two nodes (u1, u2), (v1, v2) ∈ V are neighbors if either u1 ∼ v1 in G1 and u2 = v2, or
u2 ∼ v2 in G2 and u1 = v1.

2

Hamming graphs have been of particular interest for the study of metric dimension. The Hamming graph
Hk;a may be defined in terms of Cartesian powers of the complete graph, i.e.:

Hk;a = K□k
a = Ka□ · · · □Ka︸ ︷︷ ︸

k terms

.

Nodes of Hk;a can be described by strings of a fixed length k over an alphabet of size a, where the geodesic
distance is the Hamming distance (See Sec. 2). For simplicity, unless otherwise specified, we always assume
our alphabet is of the form {0, 1, . . . , a− 1}.

Hamming graphs, while hosting a simple definition, appear in a number of applications. For a binary
alphabet, a = 2, the metric dimension problem on Hk;a is equivalent to the coin weighing problem first
introduced in [26]. Resolving sets of Hk;a can be used as solutions for the game of Mastermind as well [9].
Resolving sets of Hk;a allow strings of fixed length to be represented as numerical vectors. Furthermore,
many machine learning classification algorithms are restricted to numerical data and cannot accept symbolic
data like text or DNA. For this reason, resolving sets of Hamming graphs are useful for applying machine
learning classification problems to symbolic data, specifically genetic data, of fixed length [29]. For more
on the applications of Hamming graphs and resolving sets in general, we refer the reader to [9, 28].

Recall, an automorphism of a graphG = (V,E) is a bijection of its nodes onto themselves, σ : V → V , that
preserves edge structure, namely, u ∼ v if and only if σ(u) ∼ σ(v). The set of all possible automorphisms
of a graph G = (V,E), called the automorphism group of G, is denoted A(G).

One key property of Hamming graphs is that they have many symmetries or automorphisms. These
automorphisms are related to the convenient distance metric for nodes of Hamming graphs, and they stem
from properties of Cartesian products of graphs [6]. Additionally, automorphisms preserve distances between
nodes, so if the setR is resolving then so is σ(R). Interestingly, the notions of automorphisms and resolving
sets may be related further.

Determining sets were introduced independently by Boutin [3] and by Erwin and Harary as fixing sets [11].
Similar to how nodes can be identified by their distances to nodes of a resolving set, an automorphism can be
determined by its action on a determining set. This provides a method of studying the automorphism group
of a graph while only having to account for a potentially small set of nodes. Specifically, a set of nodes S
is said to be determining if for each distinct pair of automorphisms σ1, σ2 ∈ A(G) there exists some v ∈ S
such that σ1(v) ̸= σ2(v). The determining number of a graph, Det(G), is the size of a smallest determining
set.

It happens that every resolving set is also a determining set, i.e. Det(G) ≤ β(G) [3, 11]. However, the
difference between the determining number and the metric dimension of a graph can be quite large. In fact,
β(G)− Det(G) can grow on the order of Ω

(
2
5 |V |

)
[5]. The determining number has also been studied for

a few families of graphs including trees [5, 11] and Cartesian products of graphs [4, 5].

Thesis organization. In Section 2, we discuss some of the prominent methods for constructing resolving
sets for Hamming graphs. After this we are motivated by the problem of representing biological strings
of varying length as numerical vectors. In Section 3, we expand on the definition of Hamming graphs to
construct what we call, Levenshtein graphs. The nodes of Levenshtein graphs are strings of varying length
and, except for pathological cases, their geodesic distance is the well-known edit distance. In Section 4,
we show a formula to describe the Levenshtein distance of an arbitrary string to a string with at most two
runs. The tools in Section 4 are then used to prove results in Sections 5 and 6. In Section 5, we provide
bounds on the metric dimension of Levenshtein graphs, including a constructive resolving set. In Section 6,

3

we characterize the automorphism group of Levenshtein graphs. In Section 7, we discuss the determining
number of Levenshtein graphs. Finally, in Section 8, we then provide an example of embedding genetic data
using the techniques discussed in Section 5.

2 Hamming Graphs

The Hamming distance, h(u, v), between two strings u and v of the same length is the total number of
mismatches between them. For example, h(abc, acc) = 1. Up to a graph isomorphism, the Hamming graph
Hk;a, with k ≥ 1 and a ≥ 2 integers, has vertex set {0, . . . , a− 1}k, and two vertices u and v are neighbors
if and only if h(u, v) = 1; in particular, the geodesic distance between nodes in Hk;a is precisely their
Hamming distance. In this section, we discuss current methods for constructing resolving sets for Hamming
graphs and for reducing their size.

2.1 Constructing resolving sets for Hamming graphs

Recent work has shown that [15]:

β(Hk,a) ∼
2k

loga(k)
, as k → ∞.

Since the proof of this result is constructive, for large k, one should be able to expose a resolving set for
Hk,a of approximate size 2k/ loga(k). Note the diameter of Hk;a is k, so an embedding using a resolving
set R would map this Hamming graph into the set {0, 1, . . . , k}|R|. The number of bits required to represent
a node using this way is approximately

2k

loga(k)
⌈log2(k + 1)⌉ ≈ 2k log2(a).

Therefore, one only needs about twice as many computer bits to store one of the ak strings than a minimal
mapping to binary digits.

For an intermediate string length k, a resolving set may be found recursively using an algorithm in [29]:
starting from a resolving set of certain size s in Hk−r,a, a resolving set of size s+ r⌊a/2⌋ may be determined
for Hk,a inO(ar2) time. As seen in Figure 2, what distinguishes a large from an intermediate size k depends
on the alphabet size a. This can be used in tandem with the ICH algorithm, which can be used to effectively
produce a resolving set when k is relatively small.

2.2 Verifying resolving sets of Hamming graphs

Recently, a necessary and sufficient condition for resolvability in Hk,a has been given in terms of one-hot-
encodings in [17], which may be useful to identify unnecessary nodes in a resolving set and reduce its size.
Applied to a resolving set of size 82 of H8;20 from the recursive method described in [29], it was possible to
remove 5 nodes creating a resolving set of size 77 [17].

We note that not all of the nodes obtained using the asymptotic method in [15] are necessary either. For
instance, the following list of size 26 was generated using this method to generate a resolving set for H10,5;

4

0 10 20 30 40 50 60
a

0

200

400

600

800

1000

1200

1400

fir
st

 k

even a
odd a

Figure 2: Plot of the smallest k such that a resolving set for Hk,a, obtained using the constructive proof in
[15], is smaller than the one obtained using the algorithm in [29] with s = (a− 1) and r = (k − 1).

however, the string 2024004423 (displayed in italics) is produced twice by the method. In particular, H10,5

may be resolved using only 25 nodes.
0040144441, 0304034414, 0324113040, 0324144443, 0434300304, 0434334414,
1110401044, 1110404414, 1443101044, 1443104410, 2024004423, 2024004423,
2024040100, 2024043340, 2301004421, 2344104421, 3134100024, 3134104424,
3400404424, 4003010424, 4003044011, 4320010420, 4320044013, 4341131424,
4414104134, 4414131424

 .

3 Levenshtein Graphs

Hamming graphs may be limiting because of their restriction on equal length strings, and because the
Hamming distance is usually not relevant in biological settings. To overcome this limitation we may
consider the Levenshtein distance [18], also called edit distance.

The Levenshtein distance ℓ(u, v) between two strings u and v of possibly different lengths is the minimal
number of character substitutions, insertions, or deletions required to transform one string into the other.
Since the Hamming distance can be thought of as the minimal number of substitutions to transform one string
into the other, it follows for strings u and v of the same length, i.e. when |u| = |v|, that ℓ(u, v) ≤ h(u, v).

The Levenshtein distance can also be described as the least possible score (i.e. total number of mismatches,
or insertions and deletions aka indels) of an alignment between strings [10]. Indels are denoted with the
reserved character −. To fix ideas, equations 2-4 display three alignments between the strings 001 and 01.
The score of the alignment A in Equation 2 is two because the second 0 in the first row is mismatched with
the character 1 in the second row, and the 1 in the first row is aligned against an indel. Similarly, the scores
of alignments B and C are one. Since the score of any alignment between different strings must be one or

5

larger, B and C are optimal alignments and ℓ(001, 01) = 1.

A :=
0 0 1

0 1 − (2)

B :=
0 0 1

0 − 1
(3)

C :=
0 0 1

− 0 1
(4)

Optimal alignments can be determined and scored through a well-known dynamic programming approach,
which has been invented many times in different contexts [18, 21, 32]. For strings A = α1...αm and
B = β1...βn of lengths m and n, respectively, where αi and βj denote alphabet characters, this algorithm
computes the columns (or rows) of the matrix with entries di,j := ℓ(α1...αi, β1...βj) of dimensions (m×n)
via the recursion:

di,j = min
{
di−1,j−1 + [[αi ̸= βj]] , di−1,j + 1, di,j−1 + 1

}
,

where [[·]] is the indicator function of the proposition within. The time complexity of this algorithm isO(mn),
which is expensive for long pairs of strings. However, by focusing on the diagonals of the matrix (di,j), as
oppose to its columns or rows, it is possible to speed up the calculations to anO

(
ℓ(A,B) ·min{m,n}

)
time

complexity [30].

In Section 3.1, we use the edit distance to define a new notion of Levenshtein graphs similar to that of
Hamming graphs, and we compare it to other notions of Levenshtein graphs in the literature. In Section 3.2
we show Levenshtein graphs are connected and provide necessary and sufficient conditions for the geodesic
distance of two nodes to be equal to their edit distance.

3.1 Definition of Levenshtein graphs

In this manuscript, we adopt the following notion of Levenstein graph.

Definition 3.1. For integers 0 ≤ k1 ≤ k2 and a ≥ 2, the Levenshtein graph Lk1,k2;a has as vertices all
strings of a length between k1 and k2 (inclusive) formed using the characters in {0, . . . , a − 1}, and two
nodes u and v are connected by an edge only when ℓ(u, v) = 1. We denote the vertex and edge set of this
graph as Vk1,k2;a and Ek1,k2;a, respectively. (See figures 3 and 4.)

This definition could be extended to include a = 1, in which case the associated graph would be a path. We
impose the constraint that a ≥ 2 for technical reasons, and because paths are well studied graphs [7].

In what follows, we write Lk;a as shorthand for L0,k;a. Accordingly, we denote the vertex and edge set
of Lk;a as Vk;a and Ek;a, respectively. The empty string, denoted from now on as ϵ, is the only vertex of
length zero in this graph. We define La as the graph with vertex set ∪k≥1Vk;a where two nodes u and v are
neighbors if and only if ℓ(u, v) = 1. Observe that all nodes in La have finite length.

Varshney, Kusuma, and Goyal [31] implicitly use a notion of Levenshtein graph similar to ours, and point out
that, unlike Hamming graphs, Levenstein graphs cannot be represented as Cartesian products—which makes
their study particularly difficult. Various other notions of Levenshtein graphs have been considered in the
literature, usually motivated by specific applications. One common definition is that two nodes are neighbors
when their Levenshtein distance is underneath some bound. For instance, Pisanti, Et, and Diderot [23]
define Levenshtein graphs over a vertex set of arbitrary genes, and two genes u and v are joined by an edge

6

ϵ

0

1

2

000

001

010

011

100

101

110

111

Figure 3: Visual representation of L0,1;3 (left), and L3,3;2 (right). Note that graph L3,3;2 and H3;2 are
isomorphic.

when ℓ(u, v) ≤ t; which they use to test random graphs as viable models for genomic data. Instead, Sala
et al. [24] define the vertex set of Levenshtein graphs as {0, . . . , a − 1}k, and u and v are neighbors only
when ℓ(u, v) ≤ 2t; they use this to help expand on information about the number of common subsequences
and supersequences a pair of strings have. Zhong, Heinicke, and Rayner [33] define the vertex set of the
Levenshtein graph to have nodes corresponding to microRNAs in mice and people, and u and v are connected
by an edge only when ℓ(u, v) ≤ 3. Finally, Stahlberg [27] defines the vertex set of Levenshtein graphs from
all strings of a given set M as well as all strings that lie on a shortest path between two strings in M , and
nodes u and v are then joined by an edge if and only if ℓ(u, v) = 1.

ϵ

0

1

00

11

01 10

000

001 010 100

011 101 110

111

Figure 4: Visual representation of L3;2. The sub-graphs of all strings of fixed length are Hamming
graphs: the white, blue, red, and green nodes form H0,2, H1,2, H2,2, and H3,2, respectively. Observe that
ℓ(010, 101) = 2 < 3 = h(010, 101).

3.2 Geodesic versus edit distance & Connectivity

The geodesic distance between pairs of nodes in a Hamming graph is equal to their Hamming distance,
however, the Hamming distance between strings of equal length is not necessarily equal to their Levenshtein
distance. Consequently, the geodesic distance between pairs of nodes in an arbitrary Levenshtein graph is not
necessarily their edit distance (see Figure 4). In the remainder of this section we characterize the Levenshtein
graphs on which the geodesic and edit distance coincide between all pairs of nodes.

Ahead, the length of a path is understood as the number edges that compose it.

Lemma 3.2. Let k1 < k2. For all nodes u and v in Lk1,k2;a, there is a path of length ℓ(u, v) that connects u
with v. In particular, Lk1,k2;a is connected, and for all u, v ∈ Vk1,k2;a, d(u, v) ≤ ℓ(u, v).

Proof. We show something more general, namely, for any alignment between two nodes Lk1,k2;a, there is
a path of the same length as the alignment score that connects them, while visiting only nodes of a length
between the shortest and longest of the two.

7

Consider a fixed alignment A between two nodes u and v. Define δ := |u| − |v|. Since alignment scores
are invariant under permutations of their rows, as well as their columns, we may assume without any loss of
generality that |u| ≥ |v|, and that A is of the form:

A =
u0
v0

∣∣∣∣ u1
−δ

∣∣∣∣ u2−k

∣∣∣∣ −k

v2
;

where the ui’s and vi’s are nodes in Lk1,k2;a such that |u0| = |v0| ≥ 0, |u1| = δ, |u2| = |v2| = k for some
k ≥ 0, and −n denotes n consecutive gaps.

Let s0 denote the score of the alignment associated with u0 and v0 above. Clearly, we can construct a path
of length s0 from u = u0u1u2 to v0u1u2 substituting, one at a time, the mismatched characters in u0 by the
corresponding characters in v0. Since substitutions do not alter the length of a node, all nodes in this path
have length |u|.

Next, we can construct a path of length δ from v0u1u2 to v0u2 deleting, one at a time, the characters in u1.
In particular, the nodes in this path have a (decreasing) length between |v0u1u2| = |u| and |v0u2| = |v|,
inclusive.

To complete the proof we use the notation w(n) and w(n) to denote the prefix and suffix of length n of a word
w, respectively.

Finally, we can construct a path of length 2k from v0u2 to v0v2 = v, stitching the following paths of length 2.
When |v| < k2, each of these paths is obtained by inserting a character from v2, and subsequently deleting
another in u2. As a result, all nodes in these paths have a length between |v| and |v| + 1 ≤ k2, inclusive.
The short paths are:

v0 u
(k)
2 v2(0), v0 u

(k−1)
2 v2(0), v0 u

(k−1)
2 v2(1);

v0 u
(k−1)
2 v2(1), v0 u

(k−2)
2 v2(1), v0 u

(k−2)
2 v2(2);

...

v0 u
(1)
2 v2(k−1), v0 u

(0)
2 v2(k−1), v0 u

(0)
2 v2(k).

Similarly, when |v| = k2, each of these paths is obtained by deleting a character in v2, and subsequently
inserting a character from u2. All nodes in these paths have a length between |v| and |v| − 1 ≥ k1 inclusive.

Appending all the previous paths, we obtain a path from u to v of length s0 + δ + 2k, which is precisely the
score of A. This shows the lemma because each node in this path is contained in Lk1,k2;a.

Lemma 3.3. Let k1 < k2. For all nodes u and v in Lk1,k2;a, d(u, v) ≥ ℓ(u, v).

Proof. Clearly, d(u, v) = 0 if and only if ℓ(u, v) = 0. Thus, without loss of generality, we may assume
that n := d(u, v) ≥ 1. Due to Lemma 3.2, n is finite; in particular, there is in Lk1,k2;a a (simple) path
w0 = u, . . . , wn = v of length n that connects u and v. Since d(wi, wi+1) = ℓ(wi, wi+1) = 1, the triangular
inequality implies that:

d(u, v) =

n−1∑
i=0

d(wi, wi+1) =

n−1∑
i=0

ℓ(wi, wi+1) ≥ ℓ(u, v),

which shows the lemma.

8

Lemma 3.4. For all k ≥ 0, Lk,k;a = Hk;a; in particular, Lk,k;a is connected. Further, the geodesic distance
between every pair of nodes on Lk,k;a is equal to their Levenshtein distance if and only if k ≤ 2.

Proof. To show the first claim, it suffices to show that Lk,k;a and Hk,a have the same edges. Indeed, if
h(u, v) = 1 then u and v can be aligned perfectly except for one mismatch. In particular, ℓ(u, v) ≤ 1. But,
since u ̸= v, ℓ(u, v) > 0, hence ℓ(u, v) = 1. Conversely, if ℓ(u, v) = 1 then an optimal alignment between
u and v consists of a single mismatch, or a single indel. Since the latter is not possible because |u| = |v|,
h(u, v) = 1, which shows the claim.

Due to the first claim, d(u, v) = h(u, v) for all pairs of nodes u, v in Lk,k;a. We use this to show the second
claim, assuming, without loss of generality, that u ̸= v.

The second claim is trivial when k = 0. If k = 1 then, as we argued before, ℓ(u, v) = 1 = h(u, v) = d(u, v).
Instead, if k = 2 and h(u, v) = 1 then, as we just argued, ℓ(u, v) = 1 = h(u, v) = d(u, v). Otherwise, if
k = 2 but h(u, v) = 2 then Lemma 3.3 implies that 0 < ℓ(u, v) ≤ 2; however, ℓ(u, v) = 1 is not possible
because the optimal alignment between u and v would then have to use a single indel, which in turn is not
possible because u and v are of the same length. Hence, ℓ(u, v) = 2 and again ℓ(u, v) = h(u, v) = d(u, v).

Finally, if k > 2, and since a ≥ 2, there is in Lk,k;a a node u of length k formed by alternating 0’s and 1’s.
Let v be the flip of u. Then h(u, v) = k but ℓ(u, v) ≤ 2 because the strings −u and v− align perfectly
except for their ends; in particular, h(u, v) > ℓ(u, v) i.e. d(u, v) > ℓ(u, v).

Together, Lemmas 3.2–3.4 imply the following result.

Corollary 3.4.1. Levenshtein graphs are connected, and the geodesic distance between every pair of nodes
on Lk1,k2;a is equal to their Levenshtein distance if and only if k1 < k2 or k1 = k2 ≤ 2. Otherwise, if k > 2
then the geodesic distance in Lk,k;a is the Hamming distance.

4 Runs and Resolvability of Levenshtein Graphs

A run is a maximal substring of a single repeated character in a string. In this section, we study the
Levenshtein distance between an arbitrary string and another with limited runs. This will prove useful for
studying the resolvability of Levenshtein graphs and in turn, their automorphism group. In fact, in most
cases, it is sufficient to limit one string to either one or two runs.

In what follows, the total number of occurrences of an alphabet character α in a string w is denoted Nα(w),
whereas the number of runs in w is denoted r(w). For example, N0(01121) = 1, N1(01121) = 3,
N2(01121) = 1, and r(01121) = 4.

4.1 Edit distance to a single run string

Lemma 4.1. For all strings w, if k ≥ 0 and α is an alphabet character then

ℓ(w,αk) = max{|w|, k} −min{Nα(w), k}.

9

Proof. Assume that k > 0, otherwise the statement is trivial. The score of an alignment is its length
minus the number of matches in it. But the length of an alignment is at least the length of the longest
string, and the number of matches is at most the number of characters shared by the strings. In particular,
since the Levenshtein distance between w and αk is the score of some optimal alignment, we have that:
ℓ(w,αk) ≥ max{|w|, k} −min{Nα(w), k}. To complete the proof, it suffices to expose an alignment with
the same score as the right-hand side of this inequality.

Let n := Nα(ω). Assume first that αn is a prefix of w. We now consider two cases. If |w| ≤ k then
w = αnu, with Nα(u) = 0, and the following alignment between w and αk has the desired score:

αn

αn

∣∣∣∣ u

α|w|−n

∣∣∣∣ −k−|w|

αk−|w|

∣∣∣∣ .
Otherwise, if |w| ≥ k, let δ = min{n, k} and write w = αδuv, with |u| = k − δ and |v| = |w| − k. Now,
the following alignment has the desired score:

αδ

αδ

∣∣∣∣ u
αk−δ

∣∣∣∣ v

−|w|−k .

The previous argument assumes that αn is a prefix of w. If this is not the case, we may shuffle the columns
of the alignments to reproduce w on the top row but without altering their scores. From this, the lemma
follows.

4.2 Edit distance to a two runs string

Lemma 4.2. Let k, l, r ≥ 0 be integers. If w = w1 · · ·wk is a string of length k and α, β are different
alphabet characters then

ℓ(w,αlβr) = min
i0≤i≤i1

{
ℓ(w1 · · ·wi, α

l) + ℓ(wi+1 · · ·wk, β
r)
}
,

where i0 := max{0,min{l, k − r}} and i1 := min{k,max{l, k − r}}.

Proof. Define li := Nα(w1 · · ·wi) and ri := Nβ(wi+1 · · ·wk), for 0 < i < k. Further, define li := 0 and
ri := Nβ(w) for i ≤ 0, and li := Nα(w) and ri := 0 for i ≥ k.

Any alignment A between w and αlβr may be segmented as

A =
u0
v0

∣∣∣∣ u1
v1

,

where u0 and u1 correspond to a possibly empty prefix and suffix ofw, respectively, and v0 and v1 correspond
to the strings αl and βr, respectively. (u0, u1, v0, v1 may contain −’s.) Since this also applies to an optimal
alignment between w and αlβr, it follows that

ℓ(w,αlβr) = min
0≤i≤k

ℓ(w1 · · ·wi, α
l) + ℓ(wi+1 · · ·wk, β

r)

= min
0≤i≤k

max{l, i} −min{l, li}+max{r, k − i} −min{r, ri}

= min
0≤i≤k

k + |l − i|+ |k − r − i|+ |l − li| − li + |r − ri| − ri
2

,

10

where for the second identity we have used Lemma 4.1, and for the third one the well-known identities
max{a, b} = (a+ b+ |a− b|)/2, and min{a, b} = (a+ b− |a− b|)/2.

Consider the functions f1, f2 : Z → Z defined as

f1(i) :=
k − l − r

2
+

|l − i|+ |k − r − i|
2

f2(i) :=
|l − li|+ l − li

2
+

|r − ri|+ r − ri
2

.

In particular, ℓ(w,αlβr) = min0≤i≤k f1(i) + f2(i). Next we show that this minimum is achieved at some
i0 ≤ i ≤ i1.

Observe that up to a constant summand, f1(i) is the average of the distance from i to l, and from i to k − r.
So f1(i) is strictly decreasing for i ≤ min{i, k − r}, and strictly increasing for max{i, k − r} ≤ i. In
particular, when restricted to the domain {0, . . . , k}, f1 is monotone decreasing to the left of i0 and monotone
increasing to the right of i1.

On the other hand, observe that f2(i) = g(l − li) + g(r − ri), where

g(x) :=
|x|+ x

2
, for x ∈ Z;

satisfies |g(x)− g(x−1)| ≤ 1. In particular, if wi+1 = α then |f2(i+1)− f2(i)| ≤ 1 because li+1 = li+1
and ri+1 = ri. Similarly, if wi+1 = β then |f2(i + 1) − f2(i)| ≤ 1 because li+1 = li and ri+1 = ri − 1.
Finally, if wi+1 /∈ {α, β} then li+1 = li and ri+1 = ri, hence f2(i+ 1) = f2(i). In either case, we find that
|f2(i+1)− f2(i)| ≤ 1 for 0 ≤ i < k. As a result, since f1 is integer-valued, f1+ f2 is decreasing for i ≤ i0
but increasing for i1 ≤ i, from which the lemma follows.

Remark 4.3. The proof of Lemma 4.2 can be adapted into an algorithm that finds the distance between
an arbitrary string u to a string of the form v = αlβr in O(|u|) time. This involves first noting that
f1(i) = |u| − l − r for i0 ≤ i ≤ i1, reducing the problem to minimizing f2 over the restricted domain.
This can be done through a loop where f2(i0) can be found directly and the remaining values can be found
recursively by finding f2(i + 1) − f2(i) through cases depending on li, ri, and ui+1. This is faster than
standard methods of finding the edit distance between strings which is of complexity O(|u||v|)), and beats
some more sophisticated methods as well. Indeed, by noting that ℓ(u, v) = O(max{|u|, |v|}), this is faster
than the diagonal method of order O(ℓ(u, v) ·min{|u|, |v|}) [30].

A number of papers suggest methods for effectively find the distance between run-length encoded strings with
the standard dynamic programming approach, including [2, 20].

By conditioning on the length of the input strings in lemmas 4.1-4.2, we obtain the following noteworthy
result.

Corollary 4.3.1. If u and v are strings of the same length, and u or v have at most two runs, then
ℓ(u, v) = h(u, v).

Proof. Suppose that |u| = |v| = k, and write u = u1 · · ·uk with u1, . . . , uk alphabet characters. Without
any loss of generality assume that r(v) ≤ 2.

If r(v) = 0 then u = v; in particular, ℓ(u, v) = 0 = h(u, v). Instead, if r(v) = 1 then v = αk for some
alphabet character α, and Lemma 4.1 implies that

ℓ(u, v) = k −Nα(u) =
k∑

i=1

[[ui ̸= α]] = h(u, v).

11

Finally, if r(v) = 2 then v = αlβk−l for some integer 1 ≤ l < k and alphabet characters α ̸= β. Hence,
from Lemma 4.2, and the previous result for when r(v) = 1, we find that

ℓ(u, v) = ℓ(u1 · · ·ul, αl) + ℓ(ul+1 · · ·uk, βk−l)

= h(u1 · · ·ul, αl) + h(ul+1 · · ·uk, βk−l) = h(u, v),

as claimed.

5 Metric Dimension of Levenshtein Graphs

Recall that a subset of nodes R in a graph G is said to resolve a pair of nodes u and v if there exists r ∈ R
such that d(u, r) ̸= d(v, r). Moreover, R is said to resolve the graph when it resolves all pairs of different
nodes. Lastly, recall that the metric dimension of a graph, β(G), is the size of the smallest resolving set.

In this section we show that

O

(
k2

loga k2

)
≤ β(Lk1,k2;a) ≤ O (ak2(k2 − k1 + 1)) .

Note, if ∆ = k2 − k1 + 1 ≈ k2, then Rk1,k2;a has quadratic growth in terms of the maximum string length
k2. However, if ∆ remains fixed then Rk1,k2;a grows linearly with the largest string length.

5.1 Metric dimension lower bound

By definition, if the diameter of a graph is δ then for every pair of nodes u and v, d(u, v) ∈ {0, 1, . . . , δ}
(where d(u, v) = 0 if and only if u = v). Thus, embedding a node u through a resolving set R maps it to an
element of the set {0, 1, . . . δ}|R|. Since this mapping is one-to-one we arrive at the following bound.

Lemma 5.1. ([16], Theorem 3.6) If G = (V,E) is a graph with metric dimension β and diameter δ then
|V | ≤ δβ + β.

Corollary 5.1.1. If k2 ≥ k1 and a ≥ 2 are non-negative integers then β(Lk1,k2;a) ≥ k2
loga(k2+1) .

Proof. Let β = β(Lk1,k2;a). Observe that the diameter of Lk1,k2;a is at most k2 because ℓ(u, v) ≤
max{|u|, |v|} for all pair of strings u and v. As a result, using Lemma 5.1, we obtain that

ak2 = |Vk2,k2;a| ≤ |Vk1,k2;a| ≤ kβ2 + β ≤ (k2 + 1)β.

The result follows now taking the logarithm in base a.

It may seem like Corollary 5.1.1 neglects the parameter k1. However, using that a ≥ 2, we find that

|Vk1,k2;a| =
k2∑

i=k1

ai ≤ ak2
∞∑
j=0

a−j =
ak2

1− 1/a
≤ 2ak2 ,

i.e., our estimate of |Vk1,k2;a| is within a factor of 2 of its true value.

By setting k1 = k2, Corollary 5.1.1 may be applied to Hamming graphs as well. In this case, the lower
bound of the Corollary is within a factor of 2 of the true asymptotic value (see Section 2.1). Accordingly,
we regard the lower bound of the Corollary a benchmark for the metric dimension of Levenshtein graphs.

12

5.2 Metric dimension upper bound

In this section we construct a resolving set Lk1,k2;a; in particular, this set cardinality is an upper bound the
metric dimension of Lk1,k2;a. We start by constructing a set nodes that resolves any pair of distinct nodes of
equal length.

Lemma 5.2. In Lk1,k2;a any pair of different strings of a same length k1 ≤ k ≤ k2 is resolved by the set

Rk,a :=

⌊a/2⌋−1∪
n=0

{
(2n)w(2n+ 1)k−w : w = 0, . . . , k

}
. (5)

Proof. Let u = u1 · · ·uk and v = v1 · · · vk be nodes in Lk1,k2;a of length k that differ at position j. Define
α := uj . Without loss of generality assume that α ̸= (a− 1) when a is odd.

Due to Corollary 3.4.1, the geodesic distance between pairs of nodes in Lk1,k2;a is either their Hamming
or Levenshtein distance. But, since nodes in Rk,a have at most two runs, Corollary 4.3.1 implies that
ℓ(u, r) = h(u, r) and ℓ(v, r) = h(v, r), for each r ∈ R. In other terms, the geodesic distance between u and
v to the nodes of Rk,a is always the Hamming distance.

If α is even, we claim that {αj−1(α+ 1)k−j+1, αj(α+ 1)k−j} resolves u and v. By contradiction suppose
otherwise, i.e. assume that

d(u, αj−1(α+ 1)k−j+1) = d(v, αj−1(α+ 1)k−j+1), and

d(u, αj(α+ 1)k−j) = d(v, αj(α+ 1)k−j).

If we define δ as the geodesic distance between u or v and αj−1(α+ 1)k−j+1 then

d(u, αj(α+ 1)k−j) = h(u, αj(α+ 1)k−j)

=

j∑
i=1

[[ui ̸= α]] +
k∑

i=j+1

[[ui ̸= α+ 1]] ± [[uj ̸= α+ 1]]

= δ − 1.

On the other hand, since vj ̸= α:

d(v, αj(α+ 1)k−j) = h(v, αj(α+ 1)k−j)

=

j∑
i=1

[[vi ̸= α]] +
k∑

i=j+1

[[vi ̸= α+ 1]] ± [[vj ̸= α+ 1]]

= 1− [[vj ̸= α+ 1]] + δ

≥ δ,

implying that d(u, αj(α + 1)k−j) ̸= d(v, αj(α + 1)k−j), which is a contradiction. So, {αj−1(α +
1)k−j+1, αj(α+ 1)k−j} resolves u and v.

Likewise, if α is odd, one can show that {(α− 1)i−1αk−i+1, (α− 1)iαk−i} resolves u and v. In either case,
we have found a subset of Rk,a that resolves u and v, which shows the lemma.

Corollary 5.2.1. Lk1,k2;a is resolved by a set of size O (ak2(k2 − k1 + 1)).

13

Proof. Consider the set of nodes

R :=

{
∪k2
k=k1

Rk,a ∪ {(a− 1)k2}, if a is odd;
∪k2
k=k1

Rk,a, if a is even.

We claim that R resolves Lk1,k2;a. To see this, let u and v be distinct vertices of Lk1,k2;a. If |u| = |v| = k
then u and v are resolved by Rk,a ⊆ R. Instead, if |u| ̸= |v|, we claim that {0k2 , 1k2 , . . . , (a − 1)k2} ⊂ R
resolves u and v. Otherwise, since k2 ≥ |u|, |v|, Lemma 4.1 would imply that

|u| =
a−1∑
α=0

Nα(u) =

a−1∑
α=0

(k2 − d(αk2 , u)) =

a−1∑
α=0

(k2 − d(αk2 , v)) =

a−1∑
α=0

Nα(v) = |v|,

which is not possible. In either case, there is a subset of R that resolves u and v; in particular, R resolves
Lk1,k2;a.

Finally, observe that

|Rk,a| =

{
1, if k = 0;

⌊a2⌋(k + 1), if k > 0.

As a result:

|R| ≤ 1 +

k2∑
k=k1

|Rk,a|

≤ 1 +
⌊a
2

⌋ k2∑
k=k1

(k + 1)

= 1 +
⌊a
2

⌋((k2 + 2

2

)
−
(
k1 + 1

2

))
,

from which the result follows.

6 Automorphism Group

In this section we characterize the automorphism group of all Levenstein graphs to aid in their future study.
In particular, in Section 6.1 we discuss the automorphism group of general Levenshtein graphs, and in
Section 6.2 we verify these results for typical Levenshtein graphs.

6.1 Overview of automorphisms on Levenshtein graphs

In what follows, ρ denotes the string reversal, i.e. if u = u1 · · ·uk is a string of length k ≥ 1
then ρ(u) := uk · · ·u1. By definition, ρ(ε) := ε. On the other hand, given an alphabet bijection
ξ : {0, . . . , a − 1} → {0, . . . , a − 1}, we define ξ(u) := ξ(u1) · · · ξ(uk) and ξ(ε) := ε. We refer to
any such transformation as a character bijection. As expected, we have the following result.

Proposition 6.1. The string reversal and character bijections are automorphisms of Lk1,k2;a.

14

Proof. Let ξ be a character bijection. Since ξ and ρ preserve string lengths, ξ(Vk1,k2) ⊂ Vk1,k2 and
ρ(Vk1,k2) ⊂ Vk1,k2 . Furthermore, since the character bijection associated with the alphabet bijection ξ−1 is
an inverse for ξ, and ρ is an involution, ξ and ρ are bijections from Vk1,k2 onto itself. It is convenient to
extend ξ to strings formed from the enlarged alphabet {0, . . . , a − 1,−}, defining ξ(−) = −. Likewise,
extend ρ to strings that may include indels besides alphabet characters.

Let u, v ∈ Vk1,k2 and A an alignment of length k ≥ 1 between them:

A =
α1 . . . αk

β1 . . . βk
.

Define

ξ(A) :=
ξ(α1) . . . ξ(αk)
ξ(β1) . . . ξ(βk)

;

which correspond to alignments between ξ(u) and ξ(v). Clearly, score(ξ(A)) = score(A), which implies
that ℓ(ξ(u), ξ(v)) ≤ ℓ(u, v), for all u, v ∈ Vk1,k2 and character bijection ξ. In particular, we can also assert
that ℓ(ξ−1(ξ(u)), ξ−1(ξ(v))) ≤ ℓ(ξ(u), ξ(v)), implying that ℓ(u, v) = ℓ(ξ(u), ξ(v)). A similar argument
shows that ℓ(u, v) = ℓ(ρ(u), ρ(v)), which completes the proof.

Proposition 6.1 suggests that Lk1,k2;a has at least 2[[k2≥2]] · a! automorphisms, where [[k2 ≥ 2]] indicates
whether there is a string that is not equal to its reversal (any string with two runs satisfies this). When k2 ≥ 2,
one can easily verify that each of these automorphisms is unique by observing how they act over the strings
0k2 , 1k2 , . . . , (a−1)k2 and 0k2−11. For finite Levenshtein graphs, the automorphism group can be described
as follows (which we refer to as Levenshtein graphs of Type 1, 2, and 3, respectively):

1. Lk1,k2;a, with k1 ̸= k2 and k2 ≥ 2: we show in the next section that the automorphism group contains
only the string reversal, character bijections, or compositions of both. In particular, Type 1 Levenshtein
graphs graphs have exactly 2 · a! automorphisms.

2. Lk,k;a = Hk,a: the automorphism group isA(Hk,a) = (×k
i=1Sa)⋊Sk [6], whereSx is the permutation

group of {0, 1, . . . , x − 1}. In other terms, the Hamming graph automorphisms are the composition
of character permutations with character-wise alphabet bijections. Accordingly, the automorphism
group has size (a!)kk!.

3. L0,1;a = Ka+1: in this case, bijections of the nodes onto themselves are the only automorphisms; in
particular, the automorphism group has size (a+ 1)!.

Compared to Hamming graphs (Type 2), typical Levenshtein graphs (Type 1) have relatively few automor-
phisms which, surprisingly, do not depend on k1 or k2. Levenshtein graphs of Type 3 form a degenerate
case, and are the only Levenshtein graphs where automorphisms do not necessarily preserve string lengths.

6.2 Automorphisms of typical Levenshtein graphs

This section is dedicated to show why the automorphism group of Type 1 Levenshtein graphs is so restrictive
in comparison to Type 2. We aim to prove that the automorphisms described in Proposition 6.1 are the
only automorphisms available to Levenshtein graphs of Type 1. For this purpose we remind that, since
automorphisms preserve edges, they also preserve the node degrees, and the distance between pairs of nodes.

Next, we discuss the degree of nodes on the infinite graph La. The next result can be generalized easily to
arbitrary Levenshtein graphs by restricting the length of the neighbors of a node.

15

Recall that the number of runs in a node u is denoted r(u).

Proposition 6.2. A node u on La has r(u) neighbors of length |u| − 1, |u|(a − 1) neighbors of length |u|,
and a+ |u|(a− 1) neighbors of length |u|+ 1. In particular, u has degree a+ r(u) + 2|u|(a− 1).

Proof. Recall that substitutions keep the length of a node, whereas deletions and insertions reduce and
increase, respectively, its length by one unit. In particular, u has |u|(a− 1) neighbors of length |u|, and r(u)
neighbors of length |u| − 1.

Let us now focus on the neighbors of u that can be reached due to a single insertion. An insertion may either
keep or increase the number of runs. The former occurs only if a run is enlarged by one character, and there are
r(u) ways to do so. The latter occurs only if a run is split by a character into two, or two consecutive runs are
separated by a single-character run, which can be done in (|u|+1)(a−1)−(r(u)−1) = a+|u|(a−1)−r(u)
ways. In particular, r(u) + a+ |u|(a− 1)− r(u) = a+ |u|(a− 1) nodes can be reached from u through a
single insertion. From this, the proposition follows.

The number of strings that can be created by a given number of insertions onto a given string, and a bound
on the number of strings that can be formed by a given number of deletions from a given string is discussed
in [19]. Surprisingly, the number of strings that can be created by inserting characters into a given string
does not depend on the number of runs of the string.

Lemma 6.3. If k1 +1 < k2 then any automorphism of Lk1,k2;a preserves the length of strings of length k2.

Proof. Let σ be an automorphism of Lk1,k2;a (recall the implicit assumption that a ≥ 2). We claim that
σ(Vk2,k2;a) ⊂ Vk1,k2−2;a ∪ Vk2,k2;a. By contradiction suppose that there is a node u such |u| = k2 and
|σ(u)| = k2 − 1. Then, due to Proposition 6.2:

deg(u) = r(u) + k2(a− 1)

deg(σ(u)) = r(σ(u)) + a+ 2(k2 − 1)(a− 1).

As a result, using that 1 ≤ r(w) ≤ |w| for any non-empty string w, we obtain that

deg(σ(u)) ≥ 1 + a+ 2(k2 − 1)(a− 1)

≥ 1 + a+ (k2 − 1)(a− 1) + (k2 − 1)

= k2 + k2(a− 1) + 1

> deg(u),

which is not possible because automorphisms preserve node degrees.

Finally, we show that σ(Vk2,k2;a) = Vk2,k2;a. For this note that no vertex in Vk2,k2−2;a can be a neighbor
of a vertex in Vk2,k2;a because any alignment between a word of length k2 − 2 and another of length k2
must include at least two indels. On the other hand, since Vk2,k2;a is the vertex set of Hk2;a, which is a
connected sub-graph of Lk1,k2;a, σ(Vk2,k2;a) is the vertex set of a connected subgraph of Lk1,k2;a. As a result,
since σ(Vk2,k2;a) ⊂ Vk1,k2−2;a ∪ Vk2,k2;a, either σ(Vk2,k2;a) ⊂ Vk1,k2−2;a or σ(Vk2,k2;a) ⊂ Vk1,k2;a. Since
the former inclusion is not possible because |Vk1,k2−2;a| < |Vk1,k2;a|, we must have σ(Vk2,k2;a) ⊂ Vk2,k2;a,
which shows the proposition.

Lemma 6.4. Let k1 ̸= k2 and k2 ≥ 2, and define X := {0k2 , . . . , (a − 1)k2}. If σ is an automorphism of
Lk1,k2;a then σ(X) = X .

16

Proof. Let σ be an automorphism of Lk1,k2;a.

We first show that σ(X) ⊂ Vk2,k2;a. Due to Lemma 6.3, this is direct when k1+1 < k2. Hence assume that
k1 + 1 = k2; in particular, Vk1,k2;a = Vk1,k1;a ∪ Vk2,k2;a. Suppose that σ(X) ∩ Vk1,k1;a ̸= ∅. Then, there
would be x ∈ X such that |σ(x)| = k1. In particular, due to Proposition 6.2, it would follow that

deg(σ(x)) = a+ 2(k2 − 1)(a− 1)

> a+ (k2 − 1)(a− 1)

= 1 + k2(a− 1)

= deg(x),

which it is not possible because automorphisms preserve node degrees. As a result, σ(X) ∩ Vk1,k1;a = ∅,
i.e. σ(X) ⊂ Vk2,k2;a, which shows the claim.

Finally, since σ(X) ⊂ Vk2,k2;a, for each x ∈ X , Proposition 6.2 implies that deg(x) = 1 + k2(a − 1) and
deg(σ(x)) = r(σ(x)) + k2(a− 1). Since deg(x) = deg(σ(x)), we must have r(σ(x)) = 1, i.e. σ(x) ∈ X ,
which shows the lemma.

Lemma 6.5. Let k1 ̸= k2 and k2 ≥ 2. If σ(·) is an automorphism of Lk1,k2;a then the following apply.

1. There is a character bijection ξ such that, for every alphabet character α and string u ∈ Vk1,k2;a,
Nα(u) = Nξ(α)(σ(u)); in particular, σ(αk) = ξ(α)k for each alphabet characterα and k1 ≤ k ≤ k2.

2. For all u ∈ Vk1,k2;a, |σ(u)| = |u|.

3. For all u ∈ Vk1,k2;a with |u| = k2, r(σ(u)) = r(u).

Proof. Consider an automorphism σ of Lk1,k2;a, and let X be as in Lemma 6.4. In particular, σ(X) = X .
Since σ is bijective, there exists an alphabet bijection ξ : {0, . . . , a − 1} → {0, . . . , a − 1} such that
σ(x) = ξ(x)k2 , for each x ∈ X . As before, we denote the automorphism associated with ξ with the same
symbol.

Let α be an alphabet character, and u a node in Lk1,k2;a. Since αk2 ∈ X , it follows from Lemma 4.1 that

ℓ(σ(u), σ(αk2)) = ℓ(σ(u), ξ(α)k2) = k2 −Nξ(α)(σ(u)).

Since ℓ(u, αk2) = k2 −Nα(u), and we must have ℓ(u, αk2) = ℓ(σ(u), σ(αk2)), Property 1 follows. From
this, Property 2 is immediate because

|u| =
a−1∑
α=0

Nα(u) =
a−1∑
α=0

Nξ(α)(σ(u)) = |σ(u)|.

Finally, due to Property 2 and Lemma 4.1, if |u| = k2 then deg(σ(u)) = r(σ(u)) + k2(a − 1). Likewise,
deg(u) = r(u) + k2(a − 1). In particular, r(u) = r(σ(u)) because deg(u) = deg(σ(u)), which shows
Property 3.

The next result follows from [19, Theorem 4]. We note that the neighboring nodes in this lemma are called
supersequences of v because each is obtained inserting a character into it.

Lemma 6.6. (Adjusted from [19].) A node v in La is uniquely determined by three of its different neighbors
of length |v|+ 1.

17

Now we have all the ingredients to prove the following.

Theorem 6.7. Let k1 ̸= k2 and k2 ≥ 2. An automorphism ofLk1,k2;a is a character bijection, string reversal,
or a composition of both. In particular, |A(Lk1,k2;a)| = 2 a!.

Proof. Let σ be an automorphism of Lk1,k2;a, and ξ be the corresponding character bijection described in
Lemma 6.5. Observe that (ξ−1 ◦ σ) preserves character counts because, due to property (1) in the lemma,
Nα(u) = Nα((ξ

−1 ◦ σ)(u)) for each character α and u ∈ Vk1,k2;a.

Next observe the string 0k2−11. From properties (2) and (3) in Lemma 6.5, we find that (ξ−1◦σ)(0k2−11) is a
string of length k2 with two runs. In particular, since (ξ−1◦σ) preserves character counts, (ξ−1◦σ)(0k2−11) ∈
{0k2−11, 10k2−1}. If (ξ−1 ◦ σ)(0k2−11) = 10k2−1, define ψ := ρ, otherwise define ψ to be the identity. In
either case, ψ is its own inverse; in particular, if we define

ι := ψ ◦ ξ−1 ◦ σ = ψ−1 ◦ ξ−1 ◦ σ,

then
ι(0k2−11) = 0k2−11. (6)

We aim to show next that ι is the identity, focusing first on strings of length k2 with two runs. In fact, note
that ι preserves character and run counts because ψ and (ξ−1 ◦ σ) do. Hence, if α ̸= β are characters and
0 < k < k2 then

ι(αk2−kβk) ∈ {αk2−kβk, βkαk2−k}. (7)

First, let α = 0 and β = 1. Assume that ι(0k2−k1k) = 1k0k2−k for some 0 < k < k2. Then, using
Corollaries 3.4.1 and 4.3.1, and Equation 6, we find the following distances are

d(0k2−k1k, 0k2−11) = h(0k2−k1k, 0k2−11) = k − 1;

d(ι(0k2−k1k), ι(0k2−11)) = h(1k0k2−k, 0k2−11) = k + 1;

which is not possible because automorphisms preserve distances. Therefore ι(0k2−k1k) = 0k2−k1k, for all
0 < k < k2.

Second, if α = 1, β = 0, and ι(1k2−k0k) = 0k1k2−k for some 0 < k < k2, then ι(1k2−k0k) = 0k1k2−k =
ι(0k1k2−k), which is not possible because ι is one-to-one. Therefore ι(1k2−k0k) = 1k2−k0k, for all
0 < k < k2.

Third, let α ̸= 1 and β = 1. Assume that ι(αk2−k1k) ̸= αk2−k1k for some 0 < k < k2. Then, due to
Equation 7:

d(αk2−k1k, 0k2−k1k) = h(αk2−k1k, 0k2−k1k) = (k2 − k)[[α ̸= 0]] ;

d(ι(αk2−k1k), ι(0k2−k1k)) = h(1kαk2−k, 0k2−k1k)

=


k2, 0 < k < k2/2 and α ̸= 0;

2k, 0 < k < k2/2 and α = 0;

2(k2 − k), k2/2 ≤ k < k2.

In particular, d(αk2−k1k, 0k2−k1k) ̸= d(ι(αk2−k1k), ι(0k2−k1k)), which is a contradiction because ι must
preserve distances. So, ι(αk2−k1k) = αk2−k1k for all α ̸= 1 and 0 < k < k2.

18

Finally, let α ̸= β be arbitrary characters in the alphabet. If α = 1 let γ = 0, otherwise let γ = 1. Through
our second and third cases we have shown that ι(αk2−kγk) = αk2−kγk for all 0 < k < k2. Next, assume
that ι(αk2−kβk) ̸= αk2−kβk for some 0 < k < k2. Then, as we have argued before we find that:

d(αk2−kβk, αk2−kγk) = h(αk2−kβk, αk2−kγk) = k[[β ̸= γ]] ;

d(ι(αk2−kβk), ι(αk2−kγk)) = h(βkαk2−k, αk2−kγk)

=


k2, k2/2 ≤ k < k2 and β ̸= γ;

2(k2 − k), k2/2 ≤ k < k2 and β = γ;

2k, 0 < k < k2/2.

But then, once again we find that d(αk2−kβk, αk2−kγk) ̸= d(ι(αk2−kβk), ι(αk2−kγk)), which is not possible.
Consequently, for all α ̸= β and 0 < k < k2, ι(αk2−kβk) = αk2−kβk.

Thus far, we have shown that if u is a string where |u| = k2 and r(u) ≤ 2 then ι(u) = u.

LetRk2,a = {r1, . . . , rn} be as defined by Equation 5. Note, for any ri ∈ Rk2,a that |ri| = k2 and r(ri) = k2,
implying that ι(ri) = ri. Further, from Lemma 5.2, the transformation Φ(u) :=

(
d(u, r1), . . . , d(u, rn)

)
is

one-to-one over nodes of length k2. Consider an arbitrary node u such that |u| = k2. From Theorem 6.5,
we know that |ι(u)| = k2. As a result:

Φ(u) =
(
d(u, r1), . . . , d(u, rn)

)
=

(
d(ι(u), ι(r1)), . . . , d(ι(u), ι(rn))

)
=

(
d(ι(u), r1), . . . , d(ι(u), rn)

)
= Φ

(
ι(u)

)
.

In particular, since Φ is one-to-one over vectors of length k2, ι(u) = u for all node u such that |u| = k2.

Finally, we prove by induction k, with k1 ≤ k ≤ k2, that ι(v) = v for all v ∈ Vk,k2;a. The base case with
k = k2 was just shown above. Next, consider a k1 ≤ k < k2 and suppose that ι(v) = v, for all v ∈ Vk+1,k2;a.
If k = 0, property 2 of Lemma 6.5 implies that ι(ϵ) = ϵ; in particular, ι(v) = v for all v ∈ Vk,k2;a. Instead,
if k > 0, consider a string u of length k. From Proposition 6.2, u has a+ |u|(a− 1) ≥ 3 neighbors of length
k+1. Let v1, v2, and v3 be different neighbors of u of length k+1. By the inductive hypothesis: ι(vi) = vi,
for 1 ≤ i ≤ 3. So, since ι is an automorphism, v1, v2, and v3 are also neighbors of ι(u). But, from Lemma
6.6, we know that ι(u) and u can be identified uniquely by these three neighbors. Hence, ι(u) = u for all
|u| = k, i.e. ι(v) = v for all v ∈ Vk,k2;a.

The above shows that ι = ψ−1 ◦ ξ−1 ◦ σ is the identity. In particular, σ = ξ ◦ ψ, where ξ is a character
bijection and ψ is either the string reversion or the identity. This completes the proof of the theorem.

7 Determining Sets

In Section 6 we found the automorphism group of an arbitrary Levenshtein graph. To prove Theorem 6.7,
we used determining sets on individual subgraphs. While we no longer need to discover the automorphism
group of Levenshtein graphs, we have now the tools to find their determining number. Since determining sets
are a relatively new topic that are useful for studying automorphisms, we discuss the determining number of
Levenshtein graphs and compare it to other known families of graphs. (A graph with a trivial automorphism
group has a determining number of 0.)

19

Following the notation of Section 6, we split Levenshtein graphs into three categories. The determining
number of the complete graph Kn (Type 3) is known, specifically Det(Kn) = (n− 1) [3]. Tight bounds on
the determining number of Hamming graphs (Type 2) and other Cartesian products of graphs is given in [4].

This Section is devoted to discussing the determining number of Levenshtein graphs of Type 1. In Theorem
6.7, we showed implicitly for these graphs that {0k2 , 1k2 , . . . , (a − 1)k2 , 0k2−11} is a determining set; in
particular, Det(Lk1,k2;a) ≤ a + 1. Furthermore, we showed that any automorphism of these Levenshtein
graphs can be written as σ = µ ◦ψ, where µ is in the character bijection group and ψ is in the string reversal
group. For the rest of this section we commit to the following definition of determining set.

Definition 7.1. For a graph G = (V,E), a set of nodes D ⊂ V is called determining when the identity is
the only automorphism σ ∈ A(G) such that σ(x) = x, for all x ∈ D.

First, for the degenerate case with a = k2 = 2 and k1 ̸= k2, it can be shown by an exhaustive test that
Det(Lk1,2;2) = ⌈ a

k2
⌉ + 1 = 2. In this case, {01, 00} is one of a few minimal determining sets. In what

remains of this section, we characterize the determining number of the remaining Type 1 Levenshtein graphs.

Lemma 7.2. If k1 ̸= k2 and k2 ≥ 2 then at least (a− 1) of the a alphabet characters must be represented
in a determining set of Lk1,k2;a.

Proof. Let D = {d1, ..., dn}, with n ≥ 1, be a determining set, and S the set of alphabet characters that
occur at least once in D, i.e., S = {(di)j : 1 ≤ i ≤ n, 1 ≤ j ≤ |di|}. If |S| < a − 1 then there would
exist at least two distinct alphabet characters α, β /∈ S. Let µ be the character bijection that swaps α and
β, i.e. µ(α) = β and µ(β) = α, but acts as the identity on every other character. Then, µ(d) = d, for all
d ∈ D; in particular, since µ is not the identity, D could not be a determining set. Since this is not possible,
|S| ≥ a− 1, which shows the lemma.

Lemma 7.3. If k1 ̸= k2 and k2 ≥ 2 then Det(Lk1,k2;a) ≥
⌈

a
k2

⌉
.

Proof. Let D = {d1, ..., dn}, with n ≥ 1, be a determining set, and S the set of alphabet characters that
occur at least once in D. Define ℓ0 = 0 and ℓi =

∑i
j=1 |di| for 1 ≤ i ≤ n.

We claim that ℓn ≥ a. By contradiction, assume that ℓn < a. Since ℓn ≥ |S|, Lemma 7.2 implies that
ℓn = |S| = a − 1. In particular, up to a character bijection, we may assume that S = {0, . . . , a − 2}, and
that di = ℓi−1 . . . (ℓi− 1) for 1 ≤ i ≤ n. Consider the character bijection µ such that µ(a− 1) = a− 1, and
µ(j) = ℓi + ℓi−1 − 1 − j for ℓi−1 ≤ j ≤ ℓi − 1 and 1 ≤ i ≤ n. In particular, µ acts as a reversal on each
string in D. Then (µ ◦ ρ)(di) = di, for all 1 ≤ i ≤ n, hence (µ ◦ ρ) must be the identity. However, this is
not possible because (µ ◦ ρ)(0(a− 1)) = (a− 1)(a− 2). Hence ℓn ≥ a, which implies the lemma because
n · k2 ≥

∑n
i=1 |di| = ℓn ≥ a.

Theorem 7.4. If k1 ̸= k2, k2 ≥ 2, and (k2, a) ̸= (2, 2), then Det(Lk1,k2;a) =
⌈

a
k2

⌉
.

Proof. Define n := ⌈ a
k2
⌉; in particular, n ≥ 1. Due to Lemma 7.3, it suffices to construct a determining set

of size n, for which we consider three cases. First, if k2 ≥ a, define D := {d} where

d :=

{
0k2−11, a = 2;

0k2−a+21 · · · (a− 2), a ≥ 3.

20

Since at least a − 1 alphabet characters are represented in d, the identity is the only character bijection
that preserves d. On the other hand, if σ = µ ◦ ρ, where µ is any character bijection then, for a = 2,
σ(d) = µ(1)µ(0)k2−1 with k2 − 1 ≥ 2; in particular σ(d) ̸= d. Similarly, if a ≥ 3 then σ(d) =
µ(a− 2) · · ·µ(1)µ(0)k2−a+2 with k2 − a+ 2 ≥ 2, and again σ(d) ̸= d. Therefore, D is a determining set.

Second, if 2 < k2 < a, let D := {d1, . . . , dn} be of cardinality n such that d1 := 0012 . . . (k2 − 2),
d1, . . . , dn are of length k2, and every character in {0, . . . , a − 2} is used by at least one node in D. Since
a−1 alphabet characters are represented inD, the identity is the only character bijection that maps each di to
itself. However, if σ = µ◦ρ, where µ is any character bijection, then σ(d1) = µ(k2−2) · · ·µ(1)µ(0)2 ̸= d1.
So, D is a determining set.

Finally, if k2 = 2; in particular, a ≥ 3, let D = {d1, . . . , dn} be of cardinality n such that d1 := 01,
d2 := 12, d1, . . . , dn are of length 2, and every character in {0, . . . , a− 2} is used by at least one node inD.
Once again, since at least a − 1 alphabet characters are represented in D, the identity is the only character
bijection that maps each di to itself. Next, let σ = µ ◦ ρ, where µ is any character bijection. If σ(01) = 01
then µ(1) = 0. If this is the case then σ(12) = µ(2)0 ̸= 12, i.e. either σ(01) ̸= 01 or σ(12) ̸= 12. Hence
D is determining and the theorem follows.

8 DNA Resolving Sets

As an illustrative example, we apply the results from Section 5.2 to genomic data.

First, consider the task of embedding DNA strings of the fixed length k = 105. To do this, we will
multilaterate the Levenshtein graph Lk,k;4 = Hk;4. Using Corollary 5.2.1 we can construct the resolving set

Rk;4 =
{
AωCk−ω, GωT k−ω : ω = 0, 1, 2, . . . , k

}
of size 2(k + 1) = 212. For comparison, if we were to use the recursive method described in Section 2.1
(where we first set s = a − 1 and r = k − 1, with a = 4), we would uncover a resolving set of size 211.
Additionally, we could use the asymptotic method described in Section 2.1 to construct a resolving set of
Hk;a of size 116. While the resolving set produced by Corollary 5.2.1 is the largest of these methods, it is
still comparable in size. In contrast, if we were to embed our strings numerically with k-mer counts using
a sliding windows of size 8 the resulting dimension of our embedding would have 48 = 65536 dimensions.
Instead, using one-hot encodings we would need a vector of dimension 4 · 105 = 420.

Next, consider the task of representing DNA strings of length between k1 = 90 and k2 = 120 as numerical
vectors. This requires studying the metric dimension of the Levenshtein graph Lk1,k2;4, which can no longer
be understood through known methods for Hamming graphs. Applying Corollary 5.2.1 gives the resolving
set

Rk1,k2;4 =

k2∪
k=k1

Rk;4

of size 2
∑k2

k=k1
(k + 1) = 6572. The number of nodes in Lk1,k2;4 is

∑k2
k=k1

4k ≈ 2.4 · 1072. Therefore, it
is infeasible to use a brute force algorithm to remove nodes of Rk1,k2;4 and verifying the resolvability of the
resulting set. However, it is possible to remove approximately half the nodes of Rk1,k2;4 while keeping it
resolving. We include the construction here but omit the proof.

21

Observe the DNA character bijection defined by θ(A) := C, θ(C) : G, θ(G) := T , and θ(T) := A. Then
the set

R′
k1,k2;4 =

(k2−k1)/2∪
i=0

θi(Rk2−2i;4)

resolves also Lk1,k2;4 and is of size 2
∑(k2−k1)/2

i=0 (k2 − 2i + 1) = 3392. It is possible to remove a few
more nodes as follows. Assume u and v are nodes that are unresolved by X = {Ak2 , Ck2 , Gk2 , T k2}.
Then following the proof of Corollary 5.2.1, we know that |u| = |v|. Additionally, for each DNA base α:
ℓ(αk2 , u) = k2 − Nα(u) = k2 − Nα(v) = ℓ(αk2 , u), implying that Nα(u) = Nα(v). Lemma 4.1 then
implies that ℓ(αk, u) = ℓ(αk, v), for every character α and k ≥ 0, because ℓ(αk, w) only depends on |w|
and Nα(w). Therefore u and v are unresolved by every single run string, and every single run string outside
of X is unnecessary. Removing {Ak, Ck, Gk, T k : k = 90, 92, . . . , 118} accounts for approximately 2% of
the nodes in R′

k1,k2;a
resulting in a resolving set of size 3332.

With a substantial amount of training data, one could use dna2vec to find an embedding of k-mers of varying
length [22]. This embedding has many nice properties, e.g. addition of vectors from dna2vec [22] is
related to concatenation. In contrast, multilateration of Levenshtein graphs has the benefit of creating low
dimensional embeddings that are readily available.

9 Discussion and Future Work

Motivated by biological classification problems, we have provided a preliminary study of Levenshtein
graphs to show that they can be used to embed symbolic data as numerical vectors. Leveraging strings
with at most two runs, we were able to demonstrate multiple properties of Levenshtein graphs including
their automorphism group and bounds on their metric dimension. Unfortunately, smaller resolving sets of
Levenshtein graphs than those discovered in Sec. 5 and Sec. 8 have remained elusive.

Figure 5: Plot of the approximate metric dimension of Lk;a for various values a and k using the ICH
algorithm. These values are normalized by ak and appear to converge to 0.5.

Numerical trials through the ICH algorithm suggest that the true metric dimension of the graph Lk;a may
not be quadratic but sublinear in the maximal string length k (see Figure 5). Of course, the data for these
trials is limited by the exponential growth of Levenshtein graphs, which has prevented us to test this claim
for larger values of the parameters k and a. Nevertheless, we venture to conjecture the following.

22

Figure 6: Binary matrices of values ℓ(1u, 0v) − ℓ(u, v) for u, v ∈ Vk;2 with k = 5 (left), k = 6 (middle),
and k = 7 (right). White pixels denote a 0, black pixels a 1, and in each case the nodes in Vk;2 are sorted in
lexicographic order.

Conjecture 9.1.
β(Lk;a) = o(ak2).

To motivate this claim, we provide an incomplete method for generating resolving sets of Levenshtein graphs.
This method relies on the recursion used for calculating edit distances. In particular, ifR = {r1, r2, . . . , rn}
resolves Lk1,k2;2 then R+ := {0} × R = {0r1, 0r2, . . . , 0rn} is effective at resolving Lk1+1,k2+1;2. To
generalize this further, note it is trivial to extend a resolving set on L1,k;2 to Lk;2. From Ukkonen [30], if α
and β are characters and u and v are strings then

ℓ(αu, βv) ∈ {ℓ(u, v), ℓ(u, v) + 1}. (8)

When restricted to α = β, Equation 8 simplifies to ℓ(αu, αv) = ℓ(u, v). Thus, if the pair u, v ∈ Vk1,k2;a
is resolved by R, then 0u and 0v are resolved by R+. Additionally, one can verify through Lemma 4.2
that every pair of strings with different first character, say 0u and 1v, is resolved by the set {01k2 , 1k2+1}.
However, due to Equation 8, strings of the form 1u and 1v have embeddings of the form (see Equation 1):

ΦR+(1u) = ΦR(u) + e⃗u;

ΦR+(1v) = ΦR(v) + e⃗v;

where e⃗u, e⃗v are binary vectors of dimension |R|. So, it is possible for 1u and 1v to be not be resolved by
R+—but only when the embedding ΦR(u) is within a binary perturbation of ΦR(v). By studying these
binary perturbation we may be able to understand which pairs of strings are unresolved R+ ∪ {01k2 , 1k2+1}
and find new strings that resolve them (see Figure 6). Depending on the number of nodes required to
adapt this set into a resolving set of Lk1+1,k2+1;a, it may be possible to develop resolving sets that satisfy
Conjecture 9.1.

To better characterize the metric dimension of Levenshtein graphs, it may be useful to consider a random
graph model with a “community structure.” Indeed, note that nodes of length i in Lk;a can only connect to
nodes of length i and i±1 (see Figure 4) This resembles a so-called “ordered” Stochastic Block Model (SBM)
network. This random graph model splits n nodes into k communities according to a probability vector
p ∈ (0, 1)k, where a node is in community i with probability pi. Further, a pair of nodes in communities i
and j are joined by an edge with probability Q(i, j) [1]. In the context of Levenshtein graphs, pi should be
proportional to ai, and Q ∈ [0, 1]k×k should be a symmetric matrix such that Q(i, j) = 0 when |i− j| > 1.
Following Proposition 6.2, we should set Q(i, i) := |u|(a−1)

ai
and Q(i, i+ 1) := |u|(a−1)+a

ai+1 .

23

Due to the various real-world applications of the general SBM, such as email and political blog networks,
learning to multilaterate these graphs with high probability may elucidate new node classification algorithms
in networks that are well-described by an SBM.

Acknowledgement. This research has been partially funded by the NSF IIS grant No. 1836914.

References

[1] E. Abbe, Community detection and stochastic block models: recent developments, The Journal of
Machine Learning Research, 18 (2017), pp. 6446–6531.

[2] O. Arbell, G. M. Landau, and J. S. Mitchell, Edit distance of run-length encoded strings, Informa-
tion Processing Letters, 83 (2002), pp. 307 – 314.

[3] D. L. Boutin, Identifying graph automorphisms using determining sets, The Electronic Journal of
Combinatorics, (2006), pp. R78–R78.

[4] , The determining number of a Cartesian product, Journal of Graph Theory, 61 (2009), pp. 77–87.

[5] J. Cáceres, D. Garijo, M. L. Puertas, and C. Seara, On the determining number and the metric
dimension of graphs, The Electronic Journal of Combinatorics, (2010), pp. R63–R63.

[6] F. A. Chaouche and A. Berrachedi, Automorphisms group of generalized Hamming graphs, Elec-
tronic Notes in Discrete Mathematics, 24 (2006), pp. 9 – 15. Fifth Cracow Conference on Graph Theory
USTRON ’06.

[7] G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann, Resolvability in graphs and the
metric dimension of a graph, Discrete Applied Mathematics, 105 (2000), pp. 99 – 113.

[8] S. A. Cook, The complexity of theorem-proving procedures, in Proceedings of the Third Annual ACM
Symposium on Theory of Computing, STOC ’71, New York, NY, USA, 1971, ACM, pp. 151–158.

[9] J. Cáceres, M. C. Hernando, M. Mora, I. Pelayo, M. Puertas, C. Seara, and D. Wood, On the
metric dimension of Cartesian products of graphs, SIAM J. Discrete Math., 21 (2007), pp. 423–441.

[10] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids, Cambridge University Press, 1998.

[11] D. Erwin and F. Harary, Destroying automorphisms by fixing nodes, Discrete Mathematics, 306
(2006), pp. 3244 – 3252.

[12] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman & Co., New York, NY, USA, 1979.

[13] F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Combin, 2 (1976), p. 1.

[14] M. Hauptmann, R. Schmied, and C. Viehmann, Approximation complexity of metric dimension
problem, Journal of Discrete Algorithms, 14 (2012), pp. 214 – 222. Selected papers from the 21st
International Workshop on Combinatorial Algorithms (IWOCA 2010).

24

[15] Z. Jiang and N. Polyanskii, On the metric dimension of Cartesian powers of a graph, Journal of
Combinatorial Theory, Series A, 165 (2019), pp. 1 – 14.

[16] S. Khuller, B. Raghavachari, and A. Rosenfeld, Landmarks in graphs, Discrete Applied Mathe-
matics, 70 (1996), pp. 217 – 229.

[17] L. Laird, R. C. Tillquist, S. Becker, and M. E. Lladser, Resolvability of Hamming graphs, arXiv
preprint arXiv:1907.05974, (2019).

[18] V. I. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals, in Soviet
Physics Doklady, vol. 10, 1966, pp. 707–710.

[19] V. I. Levenshtein, Efficient reconstruction of sequences from their subsequences or supersequences,
J. Comb. Theory Ser. A, 93 (2001), pp. 310–332.

[20] V. Mäkinen, E. Ukkonen, and G. Navarro, Approximate matching of run-length compressed strings,
Algorithmica, 35 (2003), pp. 347–369.

[21] S. B. Needleman and C. D. Wunsch, A general method applicable to the search for similarities in
the amino acid sequence of two proteins, Journal of Molecular Biology, 48 (1970), pp. 443–453.

[22] P. Ng, dna2vec: Consistent vector representations of variable-length k-mers, 2017.

[23] N. Pisanti, E. Et, and V. D. Diderot, Recent duplications in genomes: A graph theory approach,
(1998).

[24] F. Sala, R. Gabrys, C. Schoeny, and L. Dolecek, Three novel combinatorial theorems for the
insertion/deletion channel, in 2015 IEEE International Symposium on Information Theory (ISIT),
IEEE, 2015, pp. 2702–2706.

[25] P. J. Slater, Leaves of trees, Congr. Numer, 14 (1975), p. 37.

[26] S. Söderberg and H. S. Shapiro, A combinatory detection problem, The American Mathematical
Monthly, 70 (1963), pp. 1066–1070.

[27] F. Stahlberg, Discovering Vocabulary of a Language through Cross-Lingual Alignment, PhD thesis,
Karlsruhe Institute of Technology, 2011.

[28] R. C. Tillquist, R. M. Frongillo, and M. E. Lladser, Metric Dimension, Scholarpedia, 14 (2019),
p. 53881. revision #190769.

[29] R. C. Tillquist and M. E. Lladser, Low-dimensional representation of genomic sequences, Journal
of Mathematical Biology, 79 (2019), pp. 1–29.

[30] E. Ukkonen, Algorithms for approximate string matching, Information and Control, 64 (1985), pp. 100–
118.

[31] L. R. Varshney, J. Kusuma, and V. K. Goyal, On palimpsests in neural memory: An information
theory viewpoint, IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 2
(2016), pp. 143–153.

[32] R. A. Wagner and M. J. Fischer, The string-to-string correction problem, Journal of the ACM
(JACM), 21 (1974), pp. 168–173.

[33] X. Zhong, F. Heinicke, and S. Rayner, miRBaseMiner, a tool for investigating miRBase content,
RNA biology, 16 (2019), pp. 1534–1546.

25

