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One of the many data-sets required by scientists seeking to understand Earth’s climate is a

long term record of solar variability over a wide range of spectral regions. Measurements of solar

spectral irradiance (SSI) have been taken by two space-based missions: the SOlar Radiation and

Climate Experiment (SORCE) and the Total and Spectral Solar Irradiance Sensor (TSIS), both

primarily relying on two different implementations of the Spectral Irradiance Monitor (SIM) instru-

ment. While large spacecraft like SORCE (and TSIS) are effective, there are problems associated

with these types of missions; they are expensive and an instrument failure can put a continuous

data record at risk. A potential solution to this problem can be found in a new emergent tech-

nology in space-based observation, miniaturized single-instrument spacecraft colloquially known as

CubeSats. In order to explore this alternative, the Compact Spectral Irradiance Monitor (CSIM)

was built at LASP by professionals working with undergraduate students as a flight demonstration

mission. Because of the relatively cheap cost and higher acceptable risk, CSIM could also afford

to test new technologies. TSIS SIM measures SSI from 200nm to 2400nm (∼96% of the total solar

irradiance, TSI), and CSIM is the first to make measurements from 200 nm all the way to 2800

nm (97.4% of TSI). To maintain accuracy of solar measurements, the SIM instrument needs to be

corrected for optical degradation (common throughout all instruments measuring the sun directly).

In developing a correction method for CSIM, slightly different analysis methods were required com-

pared to TSIS and SORCE. Corrected data revealed that while this instrument is far from perfect,

it performed well enough to merit further investigation into this technology.
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Chapter 1

Introduction

While a long term data record of Total Solar Irradiance (TSI) exists, such a record cannot

capture any information about the spectral composition of solar variability. Therefore in order to

study the solar variability of the sun as a function of wavelength, a stable long term Solar Spectral

Irradiance (SSI) data set is required. This data set is crucial for understanding Earth’s climate

and atmosphere, which is the primary motivation for NASA missions taking these measurements.

Measurements of SSI are traditionally done via high budget missions such as SORCE and TSIS.

While effective thus far, there are potential problems associated with relying too heavily on large

scale missions. Since these missions depend on huge spacecraft buses to accommodate many in-

struments, they are very expensive to build and launch, which poses financial problems as well as

the risk of loss of continuity. For example, NASA’s original followup mission to SORCE, GLORY,

was lost in a launch failure, putting the continuation of the solar data record at risk. This is a

critical point; overlap analysis is key to reducing uncertainty of past measurements as well as for

maintaining the record. Therefore, a large gap between missions is unacceptable. A potential solu-

tion to these problems may exist. With the advent of satellite miniaturization, known colloquially

as CubeSats, spending hundreds of millions of dollars on multi instrument satellite buses can be

avoided by launching cheap miniature satellites with individual instruments instead. If able to

perform to the same stability requirements as high budget missions, they would reduce the cost

of making these measurements, open up high budget missions for other space experimentation,

and provide a solution for the data gap problem. The relatively cheap cost of these instruments
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makes launching a CubeSat constellation much more feasible, allowing for replaceability if a single

instrument fails. Thus there is significant interest in determining whether these CubeSats can meet

long-term stability requirements. This is the purpose behind CSIM, which was launched December

3rd, 2018 with the goal of advancing new technology and demonstrating unique capabilities of a

complete SSI mission with compact design and low mass [30].

Measurements are taken using a relatively simple instrument design. CSIM performs daily

solar SSI observations from 200-2800nm. The instrument design consists of two separate channels.

Each channel is exposed by opening a slit, which allows incoming solar radiation to hit a collimating

mirror, reflecting the radiation onto a prism,which disperses solar radiation onto a photodiode

detector focal plane. CSIM also contains an Electronic Substitution Radiometer (ESR), which is

a slow, robust absolute detector that periodically calibrates the photodiodes and provides a way

to track the degradation of the photodiode itself. To record an ESR measurement, solar radiation

follows the same optical path as described above, except the light from the prism is reflected onto a

separate focusing mirror (rather than the photodiode), which in turn points towards a bolometer.

Spectral resolution of CSIM is extremely similar to TSIS SIM [30]. The spectral resolution of TSIS

SIM ranges from 1 nm in the UV to 35 nm in NIR [26].

Measuring solar spectral variability over extremely long time scales requires continuous space-

based measurements with a high degree of stability. The primary issue with solar viewing instru-

ments is degradation [2]. Instrument degradation can have multiple causes with potentially un-

predictable effects. An example of a potential degradation source might be high energy proton

radiation, which would result in the degradation of the instrument electronics as well as the pho-

todiode. This would be modeled as a function of mission time. Another example might be the

polymerization of outgassed molecules onto optical surfaces. This may result in a buildup on sur-

faces, which in turn absorbs a wavelength dependent fraction of incoming solar radiation[2],[23],[25].

This buildup changes over the lifetime of the mission, and is most highly correlated with instrument

exposure time. This latter form of degradation is observed to outweigh all other aging effects and

in certain wavelength regions can result in measurements many orders of magnitude removed from
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stability requirements. This means that correcting this exposure dependent form of degradation is

essential for recording SSI measurements over long periods of time.

This degradation can be tracked by duty cycling multiple identical channels on the same in-

strument [6],[13],[15]. A primary channel, sometimes referred to as channel 1, other times referred to

as channel A, is exposed as frequently as is necessary to meet science requirements, approximately

once a day. A secondary channel (channel 2 or channel B) is exposed significantly less frequently

(approximately 10% of channel 1). This second instrument channel is thought to degrade less, based

on the theory that this degradation is primarily a function of exposure time. The best method for

correction has not been concretely identified [26]. A simple solution might be to assume channel

2 does not degrade at all; and thus a comparison of channel 1 measurements to channel 2 mea-

surements would allow for the adjustment of channel 1 data. A more realistic method is to assume

both are degrading at different orders of magnitude, thus requiring a model relating all possible

factors relating to instrument degradation. These factors may include accumulated exposure time,

mission time, exposure frequency, instrument temperature, solar variability, distance between the

instrument and the Sun, and instrument pointing [26]. Quantifying these factors would be difficult

even in a laboratory setting; the fact that these instruments are in space operating for potentially

longer than a decade makes the problem even more challenging. This issue notwithstanding, be-

cause degradation exceeds solar variability by potentially many orders of magnitude, any errors in

correction could potentially propagate and result in an inaccurate representation of solar behavior

over time. The fact that long-term trends identified by independent solar observing instruments

all differ suggest the scale of the challenge [7], [10],[20], [23], [26],[32].

There exist multiple missions measuring SSI at different resolutions and over different time

scales [7], but the primary mission of comparison for CSIM is TSIS. TSIS is the current gold

standard for SSI measurements; corrected integrated TSIS SIM SSI agrees with independent ob-

servations of TSI within 0.0045% [26]. In order to compare CSIM measurements with TSIS mea-

surements, a similar correction methodology is required for CSIM data. However with CSIM there

exists a problem previously unobserved on solar instruments; CSIM exhibited apparent data re-
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covery rather than data degradation in the first few months of the mission. This recovery was also

wavelength dependent; regions that usually don’t degrade ‘recovered’ much more than regions with

high degradation, potentially implying that the high degradation present at smaller wavelengths

overcame this recovery. This region of recovery was then followed by a pattern that appeared

similar to the degradation exhibited by SORCE and TSIS.

In this work I present a correction of degradation for CSIM based on a simplified version of

the method used on the TSIS SIM instrument, and with two different methods for dealing with

the recovery exhibited by CSIM. While the mission is still ongoing, preliminary conclusions suggest

that although the spacecraft has had many issues associated with the particular implementation of

the spacecraft bus design (such as pointing, bus voltage drops, loss of contact) the instrument itself

is still able to take SSI data to high precision, suggesting future CubeSat missions are potentially

a long term viable alternative to continuing this data record.



Chapter 2

Data and Method

2.1 Measurement Protocol

CSIM uses fast, high signal-to-noise ratio detectors that are able to measure the full spectrum

(200-2800 nm) in around 25 minutes. This translates to roughly half a second per data point with

photodiodes. The ESR measurement system is much slower, requiring about 10-50 seconds per

point, meaning measuring the full spectra takes about 14 orbits. In this paper data ranged from

March 25th, 2019 to November 22nd, 2020. For this range, accumulated exposure on CSIM Channel

1 was roughly 388 hours, whereas accumulated exposure on CSIM Channel 2 was around 43 hours.

For a diagram of this measurement process, see figure 2.1.

2.2 Data Processing

Although data underwent filtering in the initial processing pipeline, there were additional

steps taken in order to make spectral comparisons feasible. The initial data processing was per-

formed by LASP scientists. My work used Python to analyze the processed data retrieved from

LASP’s internal server.

Scans are separated by observation ID, and cover different wavelength regions. These scans

are mostly consistent in the wavelength region they cover, but due to the space-based nature of the

instrument, data is less perfect than would be collected in a lab, i.e. scan gaps and incompleteness

are more frequent. The primary observation IDs I worked with were 1,2,3,4, and 5, because they

covered the full spectrum. These wavelength regions were trimmed in order to avoid inconsistency.
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Figure 2.1: Here is a simplified diagram demonstrating measurement protocol for both photodiode
detectors and the ESR detector. The photodiode is able to complete a full scan in about 25 minutes
(0.5s per point) and is used for primary science. The ESR detector is an absolute detector, but is
slow and sporadic, taking about 10-50s per point. A full ESR scan is obtained only after 14 points.
This data is used to re-calibrate the photodiodes, since they aren’t absolute detectors. Of course
the actual instrument has many more components (dealing with operations and spacecraft health),
but this simplified measurement diagram is sufficient for the purposes of this analysis.



7

ID 1 was designated as the region covering 200-286nm, ID 2 = covered 286-387nm, ID 3 covered

387-900nm, ID 4 covered 900-1500nm, and ID 5 covered 1500-2300nm. Although CSIM is supposed

to be able to take data up to 2800 nm, data beyond 2300nm was omitted due too inconsistency.

Moreover, for the purposes of comparison this is a moot point; data from 2400-2800nm cannot

be compared to TSIS because TSIS SIM only goes to 2400nm. As data from 2300nm -2400nm

exhibits hardly any variability, this can be omitted from comparisons safely. Due to the precision

level of the instrument, the scans cannot measure the exact same regions every time, so in order to

account for this, each scan was interpolated to a standard wavelength grid (characterized by the

longest scan in any given wavelength region/ID). Doing so ensured that integrals over these regions

were accurate; if these integrals were performed on inconsistent wavelength grids they would be

inaccurate. Kappa calculations (described in detail in Chapter 3) were done by considering each

of these IDs independently. The full scan was built by taking the above data separated by ID and

combining them on the Julian day they were measured. Only scans that covered this entire region

were included in plots of all scans. This allowed for a complete set of all scans that covered the

entire region. Storing these values in a data frame allowed for easy access and manipulation. Solar

variability plots were generated using these full scans. Data was not filtered or removed from the

final data set, but in kappa calculations obvious outliers from the integrated spectra, determined

by a statistical z score greater than 3, were removed when determining kappa. This was done to

provide a cleaner fit, and the corrections were applied to the final spectra without the removing or

filtering of any data. The Python analysis program is attached in Appendix A with functions and

explanations.

The CSIM data set was retrieved from a LASP server, imported to a .csv file using IDL,

and then opened with a Python program. TSIS TSI, TSIS SIM, and NRLSSI2 (solar model) data

was taken from LISIRD (https://lasp.colorado.edu/lisird/), where solar data sets are available to

download in .csv format to the general public.
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2.3 Spacecraft Performance

CSIM experienced quite a few problems that negatively impacted its ability to carry out its

primary goal. There were three primary issues: SD Card failure, period noise interference, and

pointing offsets.

There was a delay in mission start due to the primary SD card failing. This occurred in mid-

January 2019 and resulted in loss of communication. It was several weeks before communications

were restored, and new programs and scripts were uploaded. These new commands switched

data storage to the redundant SD card, as well as building in new fail-safes to prevent SD card

failure from causing lock-out again. A second communications lock-out anomaly was experienced

in November 2019 (the same problem as the initial lock-out). However, the correct software patches

were in place that allowed for this SD card to be reset, and since then CSIM has not experienced

any anomalies of this type.

Another issue during the early time period was attempting to understand periodic noise in-

terference seen in the photodiode scans. The cause of this noise appeared to be related to the

battery heater circuit turning on and off, producing a slight DC voltage offset in the signal ampli-

fiers. Fortunately, since dark currents were monitored in the redundant channel, a DC correction

was applied to the measured signals, accounting for the periodic noise interference occurring dur-

ing channel 1 diode scans. This was implemented in data processing software and now has been

automated.

An issue that has proven more difficult to correct is CSIM’s poor solar pointing stability;

CSIM pointing offsets are larger than expected. The BCT pointing stability turned out to be

poorer than pre-launch estimates, resulting in poor azimuthal pointing. This is the most unfavorable

direction as this is the dispersion direction of solar radiation. In September 2019 a BCT star tracker

calibration scan was done to reset the instrument fine sun sensor to star tracker pointing. While

this initially worked, since then it has drifted back. Noise spikes in pointing data appear to correlate

with noise spikes in diode data.
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2.4 Solar Spectral Measurement Achievements

CSIM had excellent overlap with TSIS in the first three of weeks of its mission (see figure 2.1).

Instruments agreed to about 1% in absolute scale, which was a major achievement. The challenge

was then to test if CSIM could capture solar variability, which can vary greatly in magnitude over

long time scales. Solar variability can range up to 10% in the 200-300nm region, 1% in the 300-

400nm region, 0.1% in the 400-700nm (the bulk of the spectra) and 0.01% beyond 700nm. Stability

of 0.05% is required a year to quantify the spectral partitioning of irradiance variability, and this

must be maintained over solar timescales (i.e. a minimum of several years). Even though CSIM

performed very well in this short time period, the challenge is measuring extremely small differences

over long timescales, requiring an effective correction method.
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Figure 2.2: Here three weeks of continuous SSI observations of CSIM (blue) and TSIS (red) are
shown overplotted (∼ 21 daily spectra). All spectra are plotted on their native irradiance scale, with
no offsets or scaling applied. The left axes is shown on a log scale to demonstrate the magnitude
differences of the measurements. This is shown to demonstrate that CSIM and TSIS data measure
the full spectra to nearly the same precision level, an achievement in an of itself.



Chapter 3

Data Analysis

3.1 Kappa Method

The methodology used for correcting CSIM is an on-orbit analytic method similar to methods

for degradation correction on SORCE SIM and TSIS SIM, and involves duty cycling multiple

identical instrument channels to provide a mechanism for tracking optical degradation. SORCE

SIM only had two channels, and it was assumed that these identical channels degraded at the

same rate In order to test if this assumption was valid, TSIS was launched with three channels:

channel 1 exposed daily, channel 2 exposed at 10% the frequency of channel 1, and a third channel

exposed twice a year [26]. Comparisons of different degradation rates of these channels resulted

in significantly more precise corrections. CSIM, only having two channels, cannot perform this

analysis to the same level as TSIS, and thus is not expected to match TSIS requirements on its

own. Therefore assumptions and methods are more similar to those used on SORCE SIM. This

method for correction has been nicknamed “The Kappa Method.”

The Kappa Method for correction relies on a simplified model: the degradation is purely

from the reduced transmissivity of the optical system and as such is only a function of exposure

time and wavelength. .

On any given solar day, a scan taken at the same time by channel 2 and channel 1 would

theoretically measure the same irradiance.

IcorrectedCH1 = IcorrectedCH2 (3.1)
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The corrected irradiance would have the following form

Icorrected = Iuncorrected
degradationoptics

(3.2)

A key assumption here is that the thickness of the layer on the prism is increasing linearly with

exposure time, thus through Beer’s Law, the light transmitted through the layer is attenuated

exponentially. Thus a simplified expression for degradation is:

Degradationoptics = e−κ(λ)∗texposure (3.3)

Another assumption made with this analysis is that κ(λ) is the same regardless of instrument

channel (i.e. has the same degradation rate with exposure time) Through an analysis of TSIS data,

this is known to not be the case; however, as there is no third channel on CSIM to track this,

kappa is assumed to be the same for both channels. From coinciding measurements of channel 1

and channel 2 :

Iuncorrectedchannel1 ∗ e−κ(λ)∗texposurechannel1 = Iuncorrectedchannel2 ∗ e−κ(λ)∗texposurechannel2 (3.4)

IuncorrectedCH1
IuncorrectedCH2

= e−κ(λ)∗t−exposureCH2

e−κ(λ)∗t−exposureCH1
(3.5)

ln(IuncorrectedCH11
IuncorrectedCH2

) = −κ(λ) ∗ ∆texposure (3.6)

Thus by plotting the natural log of the ratio of irradiances (recorded simultaneously) against the

differences in exposure time, a kappa function can be determined. In order to account for the

fact that kappa is a function of wavelength, kappa was calculated for several wavelength regions,

integrated over small bands. The choice to integrate bands rather than perform this analysis at

each individual wavelength is due to two reasons, (1) integrated wavelength bands instead of SSI

minimizes error in ratios from both instrument noise and the fact that SSI measurements are

interpolated to a common wavelength grid, and (2) the degradation function (as seen on SORCE

and TSIS) is known to be a smooth function of wavelength. In this process, very small regions were
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specifically chosen in the high energy region (200-286nm, where kappa has significantly greater

magnitude of variability), and larger regions were chosen in the near infrared region (because here

kappa is smooth and close to zero). Choosing these wavelength regions accordingly allowed for the

generation of a kappa curve dependent on wavelength. This was then used to correct the solar

spectra (through Equation 3.6 above). Because CSIM exhibited data recovery in early regions, this

posed a problem to a standard kappa analysis. This problem was explored through two methods.

The first involves the standard kappa calculation over time with no attempt to treat the recovery

region as separate. The second involves a piecewise correction method for two independent regions,

the recovery region, spanning from mission start time to about January 2020, and the post-recovery

region, spanning from January 2020 to present. This was chosen precisely in order to obtain better

fits for kappa, but has the unfortunate problem of the first region having significantly fewer points

between channel 1 and 2 to compare. Another potential solution to this problem is to simply set

the mission start time to after the recovery disappeared. This could work, as overlap analysis can

still be performed with TSIS using the second region, but both regions are included in this paper.

To perform this analysis, 40 wavelength regions in between 200-286nm (since the degradation is

significantly greater in this area), and 10 wavelength regions each in the other primary four regions

(286-387nm, 387-900nm, 900-1500nm, 1500-2300nm) were chosen. Note how naturally this implies

larger wavelength regions as you move towards the less energetic regions of the spectrum. A process

was then automated to integrate these regions, find a slope for a each kappa, and calculate a kappa

curve.

3.2 Overall Kappa

An overall mission kappa was calculated using the method described above without any

attempt to account for the data recovery exhibited in the first few months of the mission. A plot

of overall kappa as a function of wavelength is shown in figure 3.1. As a sample, plots over two

wavelength bands are provided, one in the UV region (high energy) and one in the visible region

(low energy), to demonstrate the effectiveness of an overall kappa method (Figures 3.2 and 3.3).
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The overall mission kappa performs well in the UV, but not in the visible region. In the latter

region, a clear split is observed where recovery appears to stop, resulting in a poor average fit.

3.3 Two Stage Kappa

As an attempt to account for the problems associated with an overall kappa, a two stage piece-

wise kappa function was calculated. This was done by treating the solar spectral measurements

prior to January 2020 as the recovery region, and spectral measurements following January 2020

as the post-recovery region. Plots generated of these two kappa functions are shown in figure 3.4.

As a sample, plots over the same two wavelength bands are provided for both the recovery and the

post-recover region, to demonstrate the effectiveness of a two stage kappa method (Figures 3.5 and

3.6). Overall, fits are improved. Note that fewer points in the recovery region imply less accurate

kappas.
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Figure 3.1: Plots of the generated kappa function are shown here over multiple wavelength ranges
to demonstrate the overall behavior of the degradation over wavelength. Note the degradation
follows exponential behavior as it approaches smaller wavelengths, and drops to nearly zero for
longer wavelengths.
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Figure 3.2: The top left (channel 1) and bottom left (channel 2) plots show the solar spectra
over this wavelength range. All spectra over full mission time are plotted on top of one another
here in order to show the level of degradation present. The top right plot has integrated data of
both channel 1 (blue) and channel 2 (red) for this particular wavelength region. Note the relative
stability of channel 2 as well as the percentage axis on the right. The bottom right plot shows the
natural log of the integrated ratios plotted over the change in exposure time in order to show kappa
is fit for this region. For this particular region, a linear fit performs relatively well. This region was
chosen in order to show the effects of high degradation, as well as demonstrate that recovery is not
visible here.
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Figure 3.3: The top left (channel 1) and bottom left (channel 2) plots show the solar spectra
over this wavelength range. All spectra over full mission time are plotted on top of one another
here in order to show the level of degradation present. The top right plot has integrated data of
both channel 1 (blue) and channel 2 (red) for this particular wavelength region. Note the relative
stability of channel 2 as well as the percentage axis on the right. The bottom right plot shows
the natural log of the integrated ratios plotted over the change in exposure time in order to show
kappa is fit for this region. A linear trend seems to poorly apply here; corrections are naturally
going to propagate a lot of error when attempting to average the recovery and post-recovery regions
together. This region was chosen in order to show the effects of mixed degradation and recovery.
There is a clear split when recovery stops and data appears to flatten.
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Figure 3.4: Plots of the generated kappa function are shown here over multiple wavelength ranges
to demonstrate the overall behavior of the degradation over wavelength. Note the degradation
follows exponential behavior as it approaches smaller wavelengths, and drops to nearly zero for
longer wavelengths. Also note that while the shapes of the two kappas are similar, the magnitudes
differ, which would have a significant impact on corrections.
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Figure 3.5: Here the performance level of the recovery region is shown. There are fewer comparison
points, implying less accuracy, but overall fit is good in both regions.
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Figure 3.6: Here the performance level of the post-recovery region is shown. There are many more
comparison points and overall fit is significantly improved in both regions. In the visible spectra,
correlation appears to be poor; however, I would draw attention to the percentage scale of the
integrated spectra. These points are hardly degrading, and correlation closer to zero is expected in
low degradation regions.



Chapter 4

Corrections

A small aside: on TSIS, instrument degradation is undetectable (<0.01% per year) at wave-

lengths longer than 1050nm, and so no correction applies at these wavelengths. For CSIM, the

recovery problem requires a correction at these wavelengths and so corrections are applied to the

entire spectrum.

4.1 Comparisons to TSIS TSI

4.1.1 Overall Kappa

The first check performed to verify the accuracy of a correction is to integrate the total spectra

and compare it to TSIS SIM’s Integrated Spectra as well as TSIS TIM (Total Irradiance Monitor).

The TSIS TIM measures the total solar irradiance (TSI) with extremely high absolute accuracy

(<0.02% uncertainty). An offset must be applied to TSIS Integrated SSI and CSIM Integrated

SSI to force agreement at the beginning of the mission. This offset comes from the fact that TIM

makes measurements of the entire solar spectrum as a single total irradiance value, whereass TSIS

SIM and CSIM focus on only a specific region of wavelengths. The measurements from both SIM

instruments cover the bulk of the spectra (>96% TSI), and the parts of the spectra missing (Far IR,

X-Ray, etc.) do not impact TSI trending significantly. As such, a constant offset is safe to apply.

This back-of-the-book type check is a good test to see if corrections are matching solar trending.

Plots of these regions are produced using both an overall correction and a two stage correction.

Corrections from the overall kappa method are shown in figure 4.1. CSIM Channel 2 was left
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uncorrected because its degradation was minimal.

4.1.2 Two Stage

A two stage integrated correction is shown in figure 4.2.

4.2 Wavelength Comparisons to an Empirical Solar Model

TSI comparisons are a necessary condition of agreement, but not a sufficient one. The

purpose of the CSIM measurement is not to provide a reference of total solar irradiance, it is to

analyze spectra (the spectral decomposition of the TSI). Therefore, it seems more apt to make

wavelength region comparisons. CSIM was compared to one extant instrument, TSIS SIM, and

the Naval Research Laboratory solar variability model for SSI (NRLSSI2) [5], which estimates

daily solar irradiance from 1882 through present day from 115 nm to 100 µm. The model is an

updated version of empirical models established in a series of papers [18][19][21]. Solar irradiance

is derived from relating the Magnesium II index, that serves as a proxy for facular brightening and

photometric sunspot index, to SSI observations on solar rotational timescales.

In order to make wavelength comparisons and simultaneously reduce noise associated with

single wavelength measurements over time, five wavelength regions were chosen: 200-240nm, 240-

310nm, 310-500nm, 500-700, 700-1800nm [26], integrated, and compared to the same regions on

TSIS and from the model.

Overall comparisons reveal CSIM’s performance is not great at the edges where the abso-

lute magnitude of solar irradiance is small. The reason why is simple, the smaller the absolute

measurement scale; the closer it is to the detection limit of the instrument. For example the UV

region composes such a small signal region of the measured spectrum that scattering effects due to

pointing issues, and slight errors in the correction are apt to manifest more clearly in this region

than the others. On the other hand, the far IR region hardly degrades at all, but it also has a lower

irradiance signal that is near the detection limit of the ESR detector, thus resulting in noisier mea-

surements. However, the visible region corrections result in measurements that are quite consistent
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Figure 4.1: The first plot contains CSIM Uncorrected Channel 1 data as well to provide a visual
for the level of degradation present over the total measured spectra. Note the scale of the axes;
the left axis is solar irradiance, the right axis is percentage difference, and the bottom axis is the
time in decimal year format. Note that the corrected Integrated SSI, while only differing by 0.1%
appears to still be trending negative compared to TSIS data, giving more credence to the idea that
an overall kappa will not work for CSIM Data. The second plot contains the same data as the first,
but omits the uncorrected spectra to give a sense of scale of the efficacy of the corrections.
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Figure 4.2: These plots contain the same data as before, the only difference being that CSIM Data
is corrected with a two-stage kappa. The initial downward trend shows that recovery region data
is not well corrected by this method. However, the integrated spectra farther along in mission time
no longer exhibits the downward trend that the overall kappa method had issues with. This gives
a slight clue that it is performing better over the long term than the overall kappa; however, the
noise level of this data suggests high uncertainty. The second plot contains the same data as the
first, but omits the uncorrected spectra to give a sense of scale of the efficacy of the corrections.
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with TSIS measurements.

The actual comparisons of course differ between the two correction methods which I will detail

below. Offsets are applied here to match CSIM CH1, CSIM CH2, TSIS SIM and the model at the

measurement start period, and this is due to calibration scale differences between CSIM data and

TSIS SIM Data. For comparison purposes, an offset is more than fair for plotting purposes since the

concern here is with a relative stability comparison, however do note that absolute measurements

do play an important role in an actual long term data record.

4.2.1 Overall Kappa

The SSI for five integrated wavelength bands is shown in figures 4.3, 4.4, 4.5, 4.6, and 4.7 with

corrections using an overall kappa method. There is poor agreement in the 200-240nm band; but

degradation on the order of 20% coupled with the high sensitivity of this region to both spacecraft

problems and errors in corrections means this result is not too surprising. Corrections do not follow

the general shape of SSI; this region begins by undercorrecting in the beginning and overcorrecting

towards the end, resulting in SSI data that is within a poor 8% margin of TSIS data. There is

significant improvement in the 240-300nm regions. Here the agreement in the early part of the

mission (prior to August 2019) is excellent (within 0.05%). However, the overcorrection problem

occurs again towards the end, resulting in differences of ∼0.6%. While not good, this is certainly

encouraging. Agreement in the primary visible region (300-500nm) is excellent. The shape matches

the shape of TSIS data as well as model data, and differences are on the order of 0.05%. In the

secondary visible region (500-700nm) agreement is poorer. While on the order of tenths of a percent,

the recovery effect mentioned previously is prominent. This recovery region is dealt with poorly

by an overall kappa, but post-recovery the mission agreement is significantly better (< 0.05%).

However, given the trending of this correction it must be observed over time to determine whether

this correction is actually accurate as the shape is not consistent with the shape of TSIS or model

data. In the near IR region, where the primary detector is the ESR and not a photodiode, CSIM

is known to be noisy. While within 0.1% of TSIS measurements, it is difficult to see trending.
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Figure 4.3: Comparison of overall kappa corrected CSIM channel 1 (green) to TSIS (blue), CSIM
channel 2 (yellow), uncorrected CSIM channel 1 (red) and NRLSSI2 (purple) for the 200-240nm.
Note percentage scale is on the right axis while absolute values are on the left axis. Here an
overall kappa performs poorly. The second plot contains the same data as the first, but omits the
uncorrected spectra to give a sense of scale of the efficacy of the corrections.
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Figure 4.4: Comparison of overall kappa corrected CSIM channel 1 (green) to TSIS (blue), CSIM
channel 2 (yellow), uncorrected CSIM channel 1 (red) and NRLSSI2 (purple) for 240-310nm. Note
percentage scale is on the right axis while absolute values are on the left axis. Here agreement is
excellent in the beginning, but over time becomes more inaccurate. The second plot contains the
same data as the first, but omits the uncorrected spectra to give a sense of scale of the efficacy of
the corrections.
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Figure 4.5: Comparison of overall kappa corrected CSIM channel 1 (green) to TSIS (blue), CSIM
channel 2 (yellow), uncorrected CSIM channel 1 (red) and NRLSSI2 (purple) for 310-500nm. Note
percentage scale is on the right axis while absolute values are on the left axis. Here the recovery
region is not well corrected, but data in the post recovery region fits in neatly between model and
TSIS data. The second plot contains the same data as the first, but omits the uncorrected spectra
to give a sense of scale of the efficacy of the corrections.
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Figure 4.6: Comparison of overall kappa corrected CSIM channel 1 (green) to TSIS (blue), CSIM
channel 2 (yellow), uncorrected CSIM channel 1 (red) and NRLSSI2 (purple) for 500-700nm. Note
percentage scale is on the right axis while absolute values are on the left axis. Here agreement is
poor in both the recovery region as well as the post-recovery region.
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Figure 4.7: Comparison of overall kappa corrected CSIM channel 1 (green) to TSIS (blue), CSIM
channel 2 (yellow), uncorrected CSIM channel 1 (red) and NRLSSI2 (purple) for 700-1800nm. Note
percentage scale is on the right axis while absolute values are on the left axis. Here data is noisy,
and appears to have a periodic trend in the beginning of the mission. The cause for this is as of yet
unknown. The second plot contains the same data as the first, but omits the uncorrected spectra
to give a sense of scale of the efficacy of the corrections.
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4.2.2 Two Stage Kappa

The SSI for the same five integrated wavelength bands is shown in figures 4.8, 4.9, 4.10, 4.11,

and 4.12 with corrections using a two stage kappa method. Overall there is significant improvement

with this method in the post-recovery region, but the recovery region is poorly corrected. This is not

very surprising; degradation coupled with recovery is extremely difficult to separate and quantify,

but after this recovery region has passed, a standard correction method works well.

There is poor agreement in the recovery region time period in the 200-240nm band, but

following this period, corrections perform extremely well; enough to match TSIS within 0.05%.

This gives further credence to the theory that the recovery region causes a majority of the problems

with an overall kappa correction. Corrections here also match the solar variability of TSIS and

model data extremely well, which is exciting given that this is a region where CSIM was expected

to perform poorly. A similar result was observed in 240-300nm regions. Here again the agreement

in the recovery region is poor (within 4%), but in the post-recovery region agreement once again

is incredible, within 0.05% of TSIS data. It captures the solar variability of the model and TSIS

measurements, thus boosting its credibility. Agreement in the primary visible region (300-500nm)

is excellent. Again the variability matches that of the TSIS data as well as model data, and

differences are between 0.05% in the pre-September 2019 period and within 0.025% in the post

September 2019 period. In the secondary visible region (500-700nm) agreement is also excellent.

The recovery region is partially corrected, and data following this appears to match TSIS and

model data while being within 0.05%. In the near IR region unfortunately the noise of CSIM

dominates. Data remains within 0.1% of TSIS measurements. This region also appears to be

following a periodic trend, meriting further investigation of this region and the initial assumptions

about the degradation function.
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Figure 4.8: Comparison of two-stage corrected CSIM channel 1 (green) to TSIS (blue), CSIM
channel 2 (yellow), uncorrected CSIM channel 1 (red) and NRLSSI2 (purple) for 200-240nm. The
blue line here indicates the divide in the recovery and post-recovery regions. Note percentage scale
is on the right axis while absolute values are on the left axis. Here initial trends are far over-
corrected, but post-recovery data matches TSIS and model data extremely well. The second plot
contains the same data as the first, but omits the uncorrected spectra to give a sense of scale of
the efficacy of the corrections.
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Figure 4.9: Comparison of two-stage corrected CSIM channel 1 (green) to TSIS (blue), CSIM
channel 2 (yellow), uncorrected CSIM channel 1 (red) and NRLSSI2 (purple) for 240-310nm. The
blue line here indicates the divide in the recovery and post-recovery regions. Note percentage scale
is on the right axis while absolute values are on the left axis. Here initial trends are over-corrected,
but post-recovery data matches TSIS and model data extremely well. The second plot contains the
same data as the first, but omits the uncorrected spectra to give a sense of scale of the efficacy of
the corrections.
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Figure 4.10: Comparison of two-stage corrected CSIM channel 1 (green) to TSIS (blue), CSIM
channel 2 (yellow), uncorrected CSIM channel 1 (red) and NRLSSI2 (purple) for 310-500nm. The
blue line here indicates the divide in the recovery and post-recovery regions. Note percentage scale
is on the right axis while absolute values are on the left axis. Here initial trends are compensated
for slightly. However, this appears to trend negative, implying that this region was slightly under-
corrected. Post-recovery data matches TSIS and model data extremely well. The second plot
contains the same data as the first, but omits the uncorrected spectra to give a sense of scale of
the efficacy of the corrections.
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Figure 4.11: Comparison of two-stage corrected CSIM channel 1 (green) to TSIS (blue), CSIM
channel 2 (yellow), uncorrected CSIM channel 1 (red) and NRLSSI2 (purple) for 500-700nm. The
blue line here indicates the divide in the recovery and post-recovery regions. Note percentage scale is
on the right axis while absolute values are on the left axis.Here the recovery region while somewhat
brought down does not match TSIS or model trending. The post-recovery region matches TSIS
and model data almost exactly. The second plot contains the same data as the first, but omits the
uncorrected spectra to give a sense of scale of the efficacy of the corrections.
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Figure 4.12: Comparison of two-stage kappa corrected CSIM channel 1 (green) to TSIS (blue),
CSIM channel 2 (yellow), uncorrected CSIM channel 1 (red) and NRLSSI2 (purple) for 700-1800nm.
Note percentage scale is on the right axis while absolute values are on the left axis.Here data is
noisy, and appears to have a periodic trend in the beginning of the mission. The cause for this is
as of yet unknown. Corrections here don’t appear to have much effect, but this is likely due to the
fact that degradation in these regions is close to zero. The second plot contains the same data as
the first, but omits the uncorrected spectra to give a sense of scale of the efficacy of the corrections.
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4.3 Short-term Solar Spectral Variability Comparison

A final test to determine the efficacy of the CSIM instrument is to compare measurements

of short-term solar variability. While ideally we would like to take a view on solar variability over

many years, without accurate corrections it is only reasonable to look at variability over the time-

span of a maximum of one month (assuming that this is in a period in which the instrument’s

degradation rate has slowed significantly). By comparing solar variability measurements to TSIS,

one can make another case for CSIM: It is able to track this solar variability very close to TSIS,

which is impressive considering the demonstration nature of the mission. In figure 4.13 a day with

some solar activity (a visible sunspot on July 23rd 2020) and a nearby date with more diffuse,

no visible sunspot solar activity (August 2 2020), are compared by taking a ratio of the spectra.

Over this < 2 week duration the change in CSIM optical degradation magnitude is small, meaning

uncorrected data can be used. This allows for a visualization of solar variability measurements

dependent on wavelength. This is demonstrated in the figure 4.14. While there is significant noise

in the 200-250 regions, The more frequent data occurs on the upper bound and aligns well with

TSIS. From 300-400nm, CSIM captures solar variability to the same level as TSIS. After 500nm

solar variability is extremely low, which is why these further regions are omitted here. In these

regions CSIM and TSIS data is fairly flat (aside from some noise spikes around 500nm for CSIM).

Both instruments have trouble capturing true solar variability after 1500nm (where models predict

relative changes on the order of <0.01%).



38

(a) Orange Flat Intensitygram of the sun on
July 24th 2020

(b) Colorized Magnetogram of the sun on July
24th 2020

(c) Orange Flat Intensitygram of the sun on
August 2 2020

(d) Colorized Magnetogram of the sun on Au-
gust 2nd 2020

Figure 4.13: July 24th shows a day where sunspot activity dominates. August 2nd shows
a day where faculae dominate. Images are from the NASA Solar Dynamics Observatory
(SDO) satellite showing the Helioseismic and Magnetic Imager (HMI) visible (orange-flat) “in-
tensitygram” (Left) and the corresponding HMI Colorized Magnetogram (Right) (SDO website:
https://sdo.gsfc.nasa.gov/)
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Figure 4.14: These plots demonstrate CSIM’s capability when comparing solar variability. Here
different wavelength regions are shown to give perspective on where CSIM is weak and where it
performs well. Note that while noisy in the higher energy regions, upper bounds from 225nm to
275nm match TSIS measurements.



Chapter 5

Discussion

CSIM was launched almost exactly 1 year after TSIS, with the goal of quantifying CSIM

capabilities by comparing it to TSIS, the primary science instrument for taking SSI data. However,

this comparison was complicated by the fact that CSIM exhibited different degradation trends than

have been previously seen. The primary culprit is of course the optical recovery effect. There are a

few ideas for why this recovery is observed in the data. One possibility deals with the mirror that

is used to reflect light onto the prism. This additional optical element likely propagates further

errors, and pointing is thought to have contributed to this. For example, if CSIM points in a certain

direction in the beginning of the mission, thus accumulating a degradation “layer” (or area) on the

mirror at a specific location, and then CSIM has large pointing issues farther in the mission, this

could result in parts of the mirror reflecting light that previously were untouched by solar radiation.

This new spot then ”burns” similar to the original ”burn” spot, but because it is relatively fresh,

transmissivity briefly increases, thus resulting in the recovery pattern shown. This naturally would

be more apparent in regions that don’t degrade as much, because the degradation in high energy

regions is so extreme that it overcomes this second optical effect. Of course this is a speculation,

because without fully understanding the sources of degradation (an open research question even

on TSIS) it is difficult to fully account for this effect. Such is the challenge of space based solar

viewing instrumentation designed to measure extremely small changes in solar radiation.

While an overall kappa method performed poorly, the two stage kappa method proved suc-

cessful, ignoring the recovery period. Kappa wavelength dependency is similar to TSIS SIM and
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SORCE SIM [24] [26]. Lacking the third channel present on TSIS, CSIM SSI data is not able to be

corrected to the same level as TSIS, nor are the uncertainties as clear. Quantifying uncertainties

on CSIM remains a non-trivial problem. If kappa comparison plots had more data points and

could thus demonstrate higher levels of correlation, a standard deviation method applied to the

degradation could potentially give error bars to corrected spectral data. While not accounting for

time dependence this would at least give a flat estimate of potential uncertainties associated with

corrections. However, attempting such a method with the current set of data results in error bars

that are far too large to be useful. This is complicated by CSIM’s many instrument problems,

including its pointing stability, spacecraft resets, and complex optical degradation trends. TSIS

uncertainties were quantifiable due to its third instrument channel [26], but without such a channel

on CSIM, an analysis of uncertainties remains unclear. For example, one key assumption made

in the analysis of CSIM that was proved false on TSIS was that the kappa function is the same

regardless of channel. On TSIS, channel 1 and channel 2 do not degrade at the same rate (the

fundamental assumption of the 2-channel, single kappa method). Considering these issues, CSIM

in the post-recovery region showed excellent agreement with TSIS and model data. While these

results itself cannot validate CSIM data, the lack of systematic difference between CSIM, TSIS SIM

and the model is a good sign for both CSIM data as well as TSIS data.



Chapter 6

Conclusions

CSIM was launched as a flight demonstration mission during a period of solar minimum. To

holistically evaluate this performance it’s worth considering a few factors. First, this mission was

not built to nearly the same cleanliness standards as TSIS, because of the cost barrier associated

with trying to build ultraclean instrumentation. Second, many of the spacecraft issues were found

to be with manufacturing, something easily corrected when designing a second iteration. Third,

even when taking into account unexpected pointing effects, recovery effects, the SD card lockup,

CSIM in the post-recovery region with an appropriate correction method takes data to close to TSIS

standards, an impressive feat considering the significant reductions in cost, size, and development

time of CSIM.

The degradation correction for this instrument is based on a simple measurement-based

methodology used to make SORCE SIM and TSIS SIM corrections, but with modifications to

account for the recovery exhibited in lower-energy regions. A piecewise correction demonstrates

excellent agreement with TSIS SIM as well as the NRLSSI2 model (after January 2020), whereas

the measurement period prior to January 2020 has been difficult to correct adequately. This prior

region is also a time period of instability in CSIM’s overall performance, so it is perhaps not so

surprising that these factors have been difficult to quantify. On a positive note, these factors

can potentially be mitigated in future instrument design. The goal of this instrument was to

demonstrate new and innovative technologies and that long term SSI datasets could potentially be

continued via CubeSats. The results of CSIM are more than encouraging in this regard.
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Appendix A

Python Scripts Used To Analyze CSIM Data

A.1 Declarations and Packages

#Author: Ansh Desai

#guidance from Michael Chambliss

# Import all Packages

import pandas as pandas

import numpy as np

import time

import datetime

from datetime import date

from datetime import timedelta

from astropy.time import Time

from gwpy.time import tconvert

from scipy import integrate

import matplotlib.pyplot as plt

#import gwpy

from collections import Counter

from scipy import interpolate
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from scipy import stats

from numpy import array

from sklearn.linear_model import LinearRegression

import matplotlib.dates as mdates

from matplotlib.dates import DateFormatter

import math

A.2 load wavelength grid

def load_wavelength_grid(scan_times,full_scan):

"""

Creates a standard wavelength grid by picking the longest wavelength range

by going through every scan

Parameters

----------

scan_times : array

This is the array of scan times to index by

spacing: int

This indicates the cutoff spacing for scans

full scan: data frame

Contains the original scan data

Returns

-------

standard wavelength grid in Series form
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"""

max_range = 0

ids = full_scan[’OBS_ID’].values

id = ids[0]

for i in range(len(scan_times) - 1):

indices = np.where(full_scan[’SCAN_TIME’].values == scan_times[i])

scan = full_scan.iloc[indices]

scan = scan.drop_duplicates(subset=[’WAVELENGTH’])

if len(scan[’WAVELENGTH’].values) > max_range:

max_range = len(scan[’WAVELENGTH’].values)

std_wls = scan[’WAVELENGTH’]

return std_wls

A.3 interpolate scans

def interpolate_scans(std_wls,wl,irr,scan_time,id):

"""

Interpolates irradiance of scan to standard wavelength grid

Parameters

----------

std_wls : series

This is the wavelength grid to format to

wl : Series
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Wavelengths of the scan indexed by times

irr: Series

The solar irradiance that needs to be interpolated

obs_id: int

The observation id associated with the scan

n: int

this is the number of the scan

Returns

-------

DataFrame with Interpolated Scan

Each DataFrame contains irradiance values indexed by scan time [in gps]

and

wavelength. Columns with scan number, exposure time and id are also added.

"""

scan_std_wls = std_wls[std_wls.between(wl.min(), wl.max())]

interpolator = interpolate.interp1d(wl.values, irr, kind=’cubic’)

scan_interp_irr = interpolator(scan_std_wls.values)

time_interpolator = interpolate.interp1d(wl.values, wl.index)

int_times = time_interpolator(scan_std_wls.values)

scantime = np.repeat(scan_time,len(int_times))

obs_id = np.repeat(id,len(int_times))

if id == 1:

max_wl = 286

min_wl = 200
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if id == 2:

min_wl = 286

max_wl = 387

if id == 3:

min_wl = 387

max_wl = 900

if id == 4:

min_wl = 900

max_wl = 1500

if id == 5:

min_wl = 1500

max_wl = 2300

scan_std_wls = scan_std_wls.values

wavelength_filter = np.where((scan_std_wls >= min_wl) & (scan_std_wls <=

max_wl))

int_times = int_times[wavelength_filter]

scan_interp_irr = scan_interp_irr[wavelength_filter]

scan_std_wls = scan_std_wls[wavelength_filter]
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scantime = scantime[wavelength_filter]

obs_id = obs_id[wavelength_filter]

d = {’Times’: int_times, ’SIRR’: scan_interp_irr, ’Wavelengths’: scan_std_wls,

’scan’: scantime,’obs_id’: obs_id}

data = pandas.DataFrame(data=d)

return data

A.4 time convert

def time_convert(times,in_format,out_format):

"""

Uses astropy’s Time object to convert times

possibilities for input and output format are the same as astropy

https://docs.astropy.org/en/stable/time/

Parameters

----------

times : array,list

This is the array of times to convert

in_format: string

The format of the input times

out_format: string

The requested format for output
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Returns

-------

An array that contains all the times converted to the requested format

"""

epoch = 630719975

if in_format == ’gps’:

times = times + epoch

t = Time(times,format=in_format)

t.format = out_format

converted_times = t.value

return converted_times

A.5 plot scan

def plot_scan(scan,title):

"""

Plots a scan with aa title

Parameters

----------

scan : data frame

Contains a data frame with a scan (must have wavelength and sirr values)

title: string

This sets the title for the plot
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Returns

-------

Outputs a plot to the screen and as a file. Returns nothing.

"""

%matplotlib inline

wavelengths = scan[’Wavelengths’].values

sirr = scan[’SIRR’].values

fig,ax = plt.subplots()

ax.plot(wavelengths,sirr)

ax.set_xlabel(’Wavelength’)

ax.set_ylabel("Solar␣Irradiance␣per␣Wavelength␣(W/mˆ2␣/␣nm)")

ax.set_title(title)

fname = ’/Users/asm0945/Documents/IDL/CSIM/esr/plots/’

fname += str(title) + ’.png’

plt.show()

fig.savefig(fname)

A.6 find nearest

def find_nearest(array, value):

"""

A simple function to find the nearest value in an array to a given value
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Parameters

----------

array : array

This is the array of values to search through

value: int

This is the value to search the array for

Returns

-------

The element in an array that is closest to the given value

"""

array = np.asarray(array)

idx = (np.abs(array - value)).argmin()

return array[idx]

A.7 plot time series

def plot_time_series(wavelength,data):

"""

A function that plots the time series of a wavelength given the dataframe

Parameters

----------

wavelength : int

This is the requested wavelength for a time series
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data: dataframe

This is the dataframae containing the given scan information

Returns

-------

Outputs a plot to the screen, returns nothing

"""

%matplotlib inline

wavelengths = data[’Wavelengths’].values

closest_wl = find_nearest(wavelengths,wavelength)

indices = np.where(data[’Wavelengths’].values == closest_wl)

filtered_data = data.iloc[indices]

times = filtered_data[’Day’].values

times = time_convert(times,’jd’,’decimalyear’)

sirr = filtered_data[’SIRR’].values

filter_bad = np.where(sirr > 0.01)

times = times[filter_bad]

sirr = sirr[filter_bad]

plt.plot(times,sirr,’bo’)

plt.xlabel(’Time␣(Decimal␣Year)’)
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plt.ylabel(’SIRR␣(W/nm*mˆ2)’)

title = ’Time␣Series␣for␣Wavlength:␣’ + str(closest_wl)

plt.title(title)

plt.show()

return

A.8 get scan

def get_scan(scan,day):

"""

A function to retrieve a scan given a day

Parameters

----------

scan : data frame

This contains the full scan

day: iso string

This is a string in ISO format for which date the scan is requested.

Returns

-------

returns the longest scan on the requested day

"""

day = time_convert(day,’iso’,’jd’)
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day = int(day + 0.5)

day_indices = np.where(scan[’Day’].values == day)

day_indices = day_indices[0]

if len(day_indices) > 1:

day_scan = scan.iloc[day_indices]

day_scan = day_scan.sort_values(by=’Wavelengths’)

day_scan = day_scan.drop_duplicates(subset=[’Wavelengths’])

else:

day_scan = [-1]

return day_scan

A.9 get longest scan

def get_longest_scan(scans):

"""

A function to retrieve a scan given a day

Parameters

----------

scans : data frame

This contains a scan range to search
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Returns

-------

rreturns the scan number of the longest scan in a set of scans

"""

scan_times = scans[’scan’].values

x = Counter(scan_times)

longest_scan = x.most_common(1)[0][0]

return longest_scan

A.10 load tsis data

def load_tsis_data():

"""

A function to load TSIS SIM data into a dataframe

Parameters

----------

None

Returns

-------

Data frame containing the full set of scans

"""
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raw_scans = pandas.read_csv(’tsis_ssi_24hr.csv’)

wavelengths = raw_scans[’wavelength␣(nm)’].values

sirr = raw_scans[’irradiance␣(W/mˆ2/nm)’].values

days = raw_scans[’time␣(Julian␣Date)’].values

days = days.astype(np.int64)

d = {’Wavelengths’: wavelengths, ’SIRR’: sirr,’Day’:days}

df = pandas.DataFrame(data=d)

return df

A.11 load tsis tsi

def load_tsis_tsi():

"""

A function to load TSIS TIM data into a dataframe

Parameters

----------

None

Returns

-------

Data frame containing the full set of scans

"""

raw_scans = pandas.read_csv(’tsis_tsi_24hr.csv’)
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sirr = raw_scans[’tsi_1au␣(W/mˆ2)’].values

days = raw_scans[’time␣(Julian␣Date)’].values

days = days.astype(np.int64)

d = {’TSI’: sirr,’Day’:days}

df = pandas.DataFrame(data=d)

return df

A.12 load model data

def load_model_data():

"""

A function to load NRLSSI2 data into a dataframe

Parameters

----------

None

Returns

-------

Data frame containing the full set of model data

"""

raw_scans = pandas.read_csv(’nrl2_ssi_P1D.csv’)

wavelengths = raw_scans[’wavelength␣(nm)’].values
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sirr = raw_scans[’irradiance␣(W/mˆ2/nm)’].values

days = raw_scans[’time␣(days␣since␣1610-01-01)’].values

days = days.astype(np.int64)

year = 1610

month = 1

day = 1

epoch = (1461 * (year + 4800 + (month - 14)//12))//4 +(367 * (month - 2 - 12 *

((month - 14)//12)))//12 - (3 *((year + 4900 + (month - 14)//12)//100))

//4 + day - 32075

epoch = epoch - 3

days = days + epoch

d = {’Wavelengths’: wavelengths, ’SIRR’: sirr,’Day’:days}

df = pandas.DataFrame(data=d)

return df

A.13 remove bad scans

def remove_bad_scans(full_scan,id,channel):

"""

Removes incomplete scans from a set of scans in order to keep data clean

Parameters

----------

full_scan : dataframe

Contains the full scan of data to filter

id : int or string
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IDs 1,2,3,4,5

channel : int

Channel 1 or 2

Returns

-------

DataFrame with All Filtered Scans

The Final Data Frame contains all scans that fulfill length and

completeness requirements.

"""

small_dfs = []

scan_times = np.unique(full_scan[’scan’].values)

min_len = 1

if channel == 1:

if id == 1:

min_len = 1300

if id == 2:

min_len = 438

if id == 3:

min_len = 414

if id == 4:

min_len = 145

if id == 5:

min_len = 212
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elif channel == 2:

if id == 1:

min_len = 1300

if id == 2:

min_len = 438

if id == 3:

min_len = 414

if id == 4:

min_len = 145

if id == 5:

min_len = 2

for i in scan_times:

scan_indices = np.where(full_scan[’scan’].values == i)

scan = full_scan.iloc[scan_indices]

wl = scan[’Wavelengths’].values

if len(wl) > min_len:

small_dfs.append(scan)

filtered_scans = pandas.concat(small_dfs,ignore_index=True)

return filtered_scans

A.14 load scan
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def load_scan(channel,id):

"""

Reads in data from CSIM .csv files, filters it by channel and ID. Then it

reads through and

standardizes all data to a single wavelength grid, and filters out incomplete

scans. It returns

a data frame with scan time, wavelength, solar irradiance, exposure time, and

scan day

Parameters

----------

channel : int

Channel 1 or 2

id : int or string

IDs 1,2,3,4,5

Returns

-------

DataFrame with All Filtered Scans by ID

The Final Data Frame contains irradiance values indexed by scan time [in

gps] and

wavelength. Columns with scan number, observation ID, julian day, exposure

time are also added.

"""

pd_scans = pandas.read_csv(’pd_scans.csv’)

exp = pandas.read_csv(’csim_exposure.csv’)
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pd_scans = pd_scans.sort_values(by=[’TIME’],ignore_index=True)

#acceptable_ids = [1,2,3,4,5]

#pd_scans = pd_scans[pd_scans.OBS_ID.isin(acceptable_ids)]

pd_scans = pd_scans.loc[(pd_scans[’SIRR’] >= 0) & (pd_scans[’SIRR’] <= 2.5)]

#spacing was 14 and 50

id_scan = pd_scans.loc[pd_scans[’OBS_ID’] == id]

#

full_scan = id_scan.loc[id_scan[’CHANNEL’] == channel]

expCH1 = exp.loc[exp[’CHANNELID’] == 1]

expCH2 = exp.loc[exp[’CHANNELID’] == 2]

expCH1_time = expCH1[’TIME’]

expCH1_time_max = expCH1_time.max()

expCH1_time_min = expCH1_time.min()

expCH2_time = expCH2[’TIME’]

expCH2_time_max = expCH2_time.max()

expCH2_time_min = expCH2_time.min()

#default

max_time = expCH1_time_max

min_time = expCH1_time_min

if max_time > expCH2_time_max:
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max_time = expCH2_time_max

if min_time < expCH2_time_min:

min_time = expCH2_time_min

full_scan = full_scan.loc[(full_scan[’TIME’] <= max_time) & (full_scan[’TIME’]

>= min_time)]

if channel == 1:

expCH1 = expCH1.loc[(expCH1[’TIME’] <= max_time) & (expCH1[’TIME’] >=

min_time)]

exptimesCH1 = expCH1.TIME

exposureCH1 = expCH1.CUMULATIVE_EXPOSURE_SEC

exp_interpol = interpolate.interp1d(exptimesCH1,exposureCH1)

elif channel == 2:

expCH2 = expCH2.loc[(expCH2[’TIME’] <= max_time) & (expCH2[’TIME’] >=

min_time)]

exptimesCH2 = expCH2.TIME

exposureCH2 = expCH2.CUMULATIVE_EXPOSURE_SEC

exp_interpol = interpolate.interp1d(exptimesCH2,exposureCH2)

scan_times = np.unique(full_scan[’SCAN_TIME’].values)

print(’number␣of␣initial␣scans’,len(scan_times))

#Load in wavlength Grid

std_wls = load_wavelength_grid(scan_times,full_scan)

small_dfs = []
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for i in range(len(scan_times) - 1):

indices = np.where(full_scan[’SCAN_TIME’].values == scan_times[i])

scan = full_scan.iloc[indices]

if len(scan[’WAVELENGTH’].values) > 100:#this is a good scan probably

scan = scan.drop_duplicates(subset=[’WAVELENGTH’])

scan = scan.set_index(’TIME’)

wl = scan.WAVELENGTH

irr = scan.SIRR

scan_time = scan[’SCAN_TIME’].values[0]

data = interpolate_scans(std_wls,wl,irr,scan_time,id)

#print(’max after interpolation’,data.Wavelengths.max())

small_dfs.append(data)

filtered_scans = pandas.concat(small_dfs,ignore_index=True)

filtered_scans = remove_bad_scans(filtered_scans,id,channel)
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print(’channel:␣’,channel,’id␣’,id,’number␣of␣scans␣’,len(np.unique(

filtered_scans[’scan’].values)) - 1)

filtered_scan_times = filtered_scans[’Times’].values

days = time_convert(filtered_scan_times,’gps’,’jd’)

days = days.astype(int)

exposure = exp_interpol(filtered_scan_times)

#exposure = exposure / 3600

filtered_scans[’Day’] = days

filtered_scans[’Exposure’] = exposure

return filtered_scans

A.15 remove extra scans

def remove_extra_scans(full_scan):

"""

Read in the full set of scans and removes extra scans on a given observation

day

Parameters

----------

full_scan : data frame

Contains the data frame of all scanss
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Returns

-------

DataFrame with all extra scans removed

"""

small_dfs = []

uniq_days = np.unique(full_scan[’Day’].values)

for i in uniq_days:

scan_indices = np.where(full_scan[’Day’].values == i)

scan = full_scan.iloc[scan_indices]

scan_numbers = np.unique(scan[’scan’].values)

if len(scan_numbers) > 1: #multiple scans in one day

scan_number = get_longest_scan(scan)

scan = scan.iloc[np.where(scan[’scan’].values == scan_number)]

small_dfs.append(scan)

filtered_scans = pandas.concat(small_dfs,ignore_index=True)

return(filtered_scans)

A.16 load all scans

def load_all_scans(channel):

"""

Creates a full set of scans covering all wavelength ranges given channel

Parameters

----------

channel : int
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Channel 1 or 2

Returns

-------

DataFrame with All Filtered Scans

The Final Data Frame contains irradiance values indexed by scan time [in

gps] and

wavelength. Columns with scan number, observation ID, julian day, exposure

time are also added.

"""

scan1 = load_scan(channel,1)

scan2 = load_scan(channel,2)

scan3 = load_scan(channel,3)

scan4 = load_scan(channel,4)

scan5 = load_scan(channel,5)

#need to fix problem of multiple scans per day

scan1 = remove_extra_scans(scan1)

scan2 = remove_extra_scans(scan2)

scan3 = remove_extra_scans(scan3)

scan4 = remove_extra_scans(scan4)

scan5 = remove_extra_scans(scan5)
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days1 = scan1[’Day’].values

days2 = scan2[’Day’].values

days3 = scan3[’Day’].values

days4 = scan4[’Day’].values

days5 = scan5[’Day’].values

intersection1 = np.intersect1d(days1,days2)

intersection2 = np.intersect1d(intersection1,days3)

final_intersection = np.intersect1d(intersection2,days4)

final_intersection = np.intersect1d(final_intersection,days5)

scan1_indices = scan1.Day.isin(final_intersection)

scan2_indices = scan2.Day.isin(final_intersection)

scan3_indices = scan3.Day.isin(final_intersection)

scan4_indices = scan4.Day.isin(final_intersection)

scan5_indices = scan5.Day.isin(final_intersection)

scan1 = scan1.loc[scan1_indices]

scan2 = scan2.loc[scan2_indices]

scan3 = scan3.loc[scan3_indices]

scan4 = scan4.loc[scan4_indices]

scan5 = scan5.loc[scan5_indices]

all_scans = [scan1,scan2,scan3,scan4,scan5]
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full_scan = pandas.concat(all_scans,ignore_index=True)

full_scan.sort_values(by=[’scan’])

#full_scan = full_scan.rename({’scan’: ’scan_time’},axis=’columns’)

return full_scan

A.17 show dates

def show_dates(scan):

"""

Given a scan or set of scans, returns the dates of said scan(s) in iso format

Parameters

----------

scan: dataframe

This data frame can contain any number of scans

Returns

-------

Times in ISO format

"""

times = scan[’Day’].values

times = np.unique(times)

t = Time(times,format = ’jd’, out_subfmt = ’date’)

times = t.iso
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#print(times)

return times

A.18 show overlap dates

def show_overlap_dates():

"""

The purpose of this function is to print dates where both CSIM and TSIS have a

full set of scans.

This is intended to be a reference function for solar variability comparisons

Parameters

----------

None

Returns

-------

intersection

This intersection contains all dates in iso format where CSIM and TSIS

both had a full scan.

"""

tsis = load_tsis_data()

csim = load_all_scans(1)

csim_days = show_dates(csim)

tsis_days = show_dates(tsis)

intersection = np.intersect1d(csim_days,tsis_days)
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return intersection

A.19 z filter

def z_filter(array):

"""

Given an array, returns a filter for said array based on statistical z score.

Assuming relative consistency of data, data is filtered based on a z-score

threshold of 3.

Primarily used to filter integrated set of spectra.

Parameters

----------

array : array

array containing mostly consistent dataset

Returns

-------

filter

this returns a numpy array with indices set to filter the given array

"""

z = np.abs(stats.zscore(array))

threshold = 3

filter = np.where(z < threshold)
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return(filter)

A.20 plot kappas

def plot_kappas(id):

"""

This function takes several integrated regions and finds a kappa calculation

for each of them

It also plots the time series spectra,the integrated spectra for channel 1 and

channel 2 based on exposure

time, a comparison spectra plotted by calendar time, as well as the kappa line

on top of the natural log vs

delta exposure time plot.

Parameters

----------

id : int

IDs 1,2,3,4,5

Returns

-------

A list with two elements. The first contains all the kappa values, the second

contains the average wavelength.

"""
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%matplotlib inline

ch1_data = load_scan(1,id)

ch2_data = load_scan(2,id)

uniq_daysCH2 = ch2_data[’Day’].values

uniq_daysCH1 = ch1_data[’Day’].values

uniq_days = np.intersect1d(uniq_daysCH1,uniq_daysCH2)

kappas = []

avg_wl = []

if id == 1:

abs_max = 286

abs_min = 200

divisor = 40

increment = (abs_max - abs_min) / divisor

max_sirrCH1 = 0.3

min_sirrCH1 = 0.0001

max_sirrCH2 = 0.3

min_sirrCH2 = 0.005

elif id == 2:

divisor = 10

abs_max = 387

abs_min = 286
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increment = (abs_max - abs_min) / divisor

max_sirrCH1 = 100

min_sirrCH1 = 0.05

max_sirrCH2 = 100

min_sirrCH2 = 0.05

elif id == 3:

abs_max = 900

abs_min = 387

divisor = 10

increment = (abs_max - abs_min) / divisor

max_sirrCH1 = 2.15

min_sirrCH1 = 0.7

max_sirrCH2 = 2.15

min_sirrCH2 = 0.7

elif id == 4:

divisor = 10

abs_max = 1500

abs_min = 900

increment = (abs_max - abs_min) / divisor

max_sirrCH1 = 100

min_sirrCH1 = 0.1

max_sirrCH2 = 100

min_sirrCH2 = 0.1

elif id == 5:

divisor = 10

abs_max = 2300

abs_min = 1500
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increment = (abs_max - abs_min) / divisor

max_sirrCH1 = 100

min_sirrCH1 = 0.06

max_sirrCH2 = 100

min_sirrCH2 = 0.06

increment = int(increment)

j = abs_min

for d in range(divisor):

print(j)

int_sirrCH1 = []

int_sirrCH2 = []

scan_timesCH1 = []

scan_timesCH2 = []

exp_CH1 = []

exp_CH2 = []

fig, ax = plt.subplots(2,2)

for i in range(len(uniq_days)):

CH1indices = np.where(ch1_data[’Day’].values == uniq_days[i])

scanCH1 = ch1_data.iloc[CH1indices]

scan_number = get_longest_scan(scanCH1)

CH1indices = np.where(scanCH1[’scan’].values == scan_number)

scanCH1 = scanCH1.iloc[CH1indices]

scanCH1 = scanCH1.sort_values(by=[’Wavelengths’],ignore_index=True)
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scanCH1 = scanCH1.loc[(scanCH1[’SIRR’] >= min_sirrCH1) & (scanCH1[’

SIRR’] <= max_sirrCH1)]

scanCH1 = scanCH1.loc[(scanCH1[’Wavelengths’] >= j) & (scanCH1[’

Wavelengths’] <= j + increment)]

wavelengthsCH1 = scanCH1[’Wavelengths’].values

sirrCH1 = scanCH1[’SIRR’].values

if sirrCH1.size > 0:

temp_int = integrate.trapz(sirrCH1,wavelengthsCH1)

int_sirrCH1.append(temp_int)

scan_timesCH1.append(scan_number)

exp_CH1.append(np.average(scanCH1[’Exposure’].values))

ax[0,0].plot(wavelengthsCH1,sirrCH1)

ax[0,0].set_xlabel(’Wavelength␣(nm)’)

ax[0,0].set_ylabel(’IRR␣((W/mˆ2)/nm)’)

ax[0,0].set_title(’Solar␣Irradiance␣Channel␣1’)

for i in range(len(uniq_days)):

CH2indices = np.where(ch2_data[’Day’].values == uniq_days[i])

scanCH2 = ch2_data.iloc[CH2indices]

scan_number = get_longest_scan(scanCH2)

CH2indices = np.where(scanCH2[’scan’].values == scan_number)

scanCH2 = scanCH2.iloc[CH2indices]

scanCH2 = scanCH2.sort_values(by=[’Wavelengths’],ignore_index=True)
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scanCH2 = scanCH2.loc[(scanCH2[’SIRR’] >= min_sirrCH2) & (scanCH2[’

SIRR’] <= max_sirrCH2)]

scanCH2 = scanCH2.loc[(scanCH2[’Wavelengths’] >= j) & (scanCH2[’

Wavelengths’] <= j + increment)]

wavelengthsCH2 = scanCH2[’Wavelengths’].values

sirrCH2 = scanCH2[’SIRR’].values

if sirrCH2.size > 0:

temp_int = integrate.trapz(sirrCH2,wavelengthsCH2)

int_sirrCH2.append(temp_int)

scan_timesCH2.append(scan_number)

exp_CH2.append(np.average(scanCH2[’Exposure’].values))

ax[1,0].plot(wavelengthsCH2,sirrCH2)

ax[1,0].set_xlabel(’Wavelength␣(nm)’)

ax[1,0].set_ylabel(’IRR␣((W/mˆ2)/nm’)

ax[1,0].set_title(’Solar␣Irradiance␣Channel␣2’)

scan_timesCH1 = np.array(scan_timesCH1)

scan_timesCH2 = np.array(scan_timesCH2)

int_sirrCH1 = np.array(int_sirrCH1)

int_sirrCH2 = np.array(int_sirrCH2)

csim_expCH1 = np.array(exp_CH1)
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csim_expCH2 = np.array(exp_CH2)

nan_filterCH1 = ˜np.isnan(int_sirrCH1)

nan_filterCH2 = ˜np.isnan(int_sirrCH2)

int_sirrCH1 = int_sirrCH1[nan_filterCH1]

int_sirrCH2 = int_sirrCH2[nan_filterCH2]

scan_timesCH1 = scan_timesCH1[nan_filterCH1]

scan_timesCH2 = scan_timesCH2[nan_filterCH2]

csim_expCH1 = csim_expCH1[nan_filterCH1]

csim_expCH2 = csim_expCH2[nan_filterCH2]

zero_filterCH1 = np.where(int_sirrCH1 > 0)

zero_filterCH2 = np.where(int_sirrCH2 > 0)

int_sirrCH1 = int_sirrCH1[zero_filterCH1]

int_sirrCH2 = int_sirrCH2[zero_filterCH2]

scan_timesCH1 = scan_timesCH1[zero_filterCH1]

scan_timesCH2 = scan_timesCH2[zero_filterCH2]

csim_expCH1 = csim_expCH1[zero_filterCH1]

csim_expCH2 = csim_expCH2[zero_filterCH2]



82

int_filterCH1 = z_filter(int_sirrCH1)

int_filterCH2 = z_filter(int_sirrCH2)

int_sirrCH1 = int_sirrCH1[int_filterCH1]

int_sirrCH2 = int_sirrCH2[int_filterCH2]

scan_timesCH1 = scan_timesCH1[int_filterCH1]

scan_timesCH2 = scan_timesCH2[int_filterCH2]

csim_expCH1 = csim_expCH1[int_filterCH1]

csim_expCH2 = csim_expCH2[int_filterCH2]

if int_sirrCH1[0] > int_sirrCH2[0]:

diff = int_sirrCH1[0] - int_sirrCH2[0]

int_sirrCH2 = int_sirrCH2 + diff

elif int_sirrCH2[0] > int_sirrCH1[0]:

diff = int_sirrCH2[0] - int_sirrCH1[0]

int_sirrCH1 = int_sirrCH1 + diff

intersection = np.intersect1d(scan_timesCH1,scan_timesCH2)

maskCH1 = np.isin(scan_timesCH1,intersection)

maskCH2 = np.isin(scan_timesCH2, intersection)

mask_int_sirrCH1 = int_sirrCH1[maskCH1]

mask_csim_expCH1 = csim_expCH1[maskCH1]

mask_int_sirrCH2 = int_sirrCH2[maskCH2]
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mask_csim_expCH2 = csim_expCH2[maskCH2]

mask_scan_timesCH1 = scan_timesCH1[maskCH1]

mask_scan_timesCH2 = scan_timesCH2[maskCH2]

y = mask_int_sirrCH1

y0 = y[˜np.isnan(y)][0]

def to_percent(y):

return (y - y0) / y0 * 100

def from_percent(y):

return y

wavelength_title = ’␣over␣band:␣’+ str(j) + "␣-␣" + str(j+increment)

times = time_convert(mask_scan_timesCH1,’gps’,’decimalyear’)

times2 = time_convert(mask_scan_timesCH1,’gps’,’decimalyear’)

ax[0,1].plot(times,mask_int_sirrCH1,’bo’)

ax[0,1].plot(times,mask_int_sirrCH2,’ro’)

ax[0,1].set_xlabel(’Times␣(decimal␣year)’)

ax[0,1].set_ylabel(’Integrated␣Solar␣Irradiance␣(W/mˆ2)’)
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title = ’Integrated␣Time␣Comparison’ + wavelength_title

ax[0,1].set_title(title)

y = mask_int_sirrCH1

y0 = y[˜np.isnan(y)][0]

sec_ax = ax[0,1].secondary_yaxis(’right’, functions=(to_percent,

from_percent))

sec_ax.set_ylabel(’Percent␣Change’)

delta = mask_csim_expCH1 - mask_csim_expCH2

ratio = mask_int_sirrCH1 / mask_int_sirrCH2

ratio = np.log(ratio)

delta = delta.reshape(-1,1)

model = LinearRegression().fit(delta,ratio)

ax[1,1].plot(delta,ratio,’go’)

x_vals = np.array(ax[1,1].get_xlim())
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m = model.coef_[0]

b = model.intercept_

y_vals = m * x_vals + b

ax[1,1].plot(x_vals,y_vals)

ax[1,1].set_xlabel(’Delta␣Exposure␣Time␣(s)’)

ax[1,1].set_ylabel(’ln(int_CH1/int_CH2)’)

title = ’Kappa’ + wavelength_title

r_squared = model.score(delta,ratio)

r_string = ’rˆ2␣value␣=␣’ + str(round(r_squared,3))

ax[1,1].annotate(r_string, (np.average(delta), np.average(ratio)))

ax[1,1].set_title(title)

fig.tight_layout()

fig.set_figwidth(15)

fig.set_figheight(10)

fname = ’/Users/asm0945/Documents/IDL/CSIM/esr/plots/overall_kappa/kappa_’

+ str(j) + ’.png’

fig.savefig(fname)

plt.show()

fig, ax = plt.subplots(2)
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ax[0].plot(csim_expCH1,int_sirrCH1,’bo’)

ax[0].set_xlabel(’Exposure␣Time␣(s)’)

ax[0].set_ylabel(’Integrated␣Solar␣Irradiance␣Channel␣1␣((W/mˆ2))’)

title = ’Integrated␣Solar␣Irradiance␣Channel␣1’ + wavelength_title

ax[0].set_title(title)

y = int_sirrCH1

y0 = y[˜np.isnan(y)][0]

sec_ax = ax[0].secondary_yaxis(’right’, functions=(to_percent,

from_percent))

sec_ax.set_ylabel(’Percent␣Change’)

ax[1].plot(csim_expCH2,int_sirrCH2,’ro’)

ax[1].set_xlabel(’Exposure␣Time␣(s)’)

ax[1].set_ylabel(’Integrated␣Solar␣Irradiance␣Channel␣2␣((W/mˆ2))’)

title = ’Integrated␣Solar␣Irradiance␣Channel␣2’ + wavelength_title

ax[1].set_title(title)

y = int_sirrCH2

y0 = y[˜np.isnan(y)][0]

sec_ax = ax[1].secondary_yaxis(’right’, functions=(to_percent,

from_percent))

sec_ax.set_ylabel(’Percent␣Change’)
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fig.tight_layout()

plt.show()

kappas.append(m)

avg = (j + (j+increment)) / 2

avg_wl.append(avg)

j = j + increment

print(kappas)

print(’kappas␣returned’,kappas)

print(avg_wl)

result = []

result.append(kappas)

result.append(avg_wl)

return result

A.21 get kappas

def get_kappas(id):

"""

This performs the same analysis as plot_kappas, but without outputting plots.
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Parameters

----------

id : int

IDs 1,2,3,4,5

Returns

-------

A list with two elements. The first contains all the kappa values, the second

contains the average wavelength.

"""

ch1_data = load_scan(1,id)

ch2_data = load_scan(2,id)

uniq_daysCH2 = ch2_data[’Day’].values

uniq_daysCH1 = ch1_data[’Day’].values

uniq_days = np.intersect1d(uniq_daysCH1,uniq_daysCH2)

kappas = []

avg_wl = []

if id == 1:
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abs_max = 286

abs_min = 200

divisor = 40

increment = (abs_max - abs_min) / divisor

max_sirrCH1 = 0.3

min_sirrCH1 = 0.0001

max_sirrCH2 = 0.3

min_sirrCH2 = 0.005

elif id == 2:

divisor = 10

abs_max = 387

abs_min = 286

increment = (abs_max - abs_min) / divisor

max_sirrCH1 = 100

min_sirrCH1 = 0.05

max_sirrCH2 = 100

min_sirrCH2 = 0.05

elif id == 3:

abs_max = 900

abs_min = 387

divisor = 10

increment = (abs_max - abs_min) / divisor

max_sirrCH1 = 2.15

min_sirrCH1 = 0.7

max_sirrCH2 = 2.15

min_sirrCH2 = 0.7

elif id == 4:



90

divisor = 10

abs_max = 1500

abs_min = 900

increment = (abs_max - abs_min) / divisor

max_sirrCH1 = 100

min_sirrCH1 = 0.1

max_sirrCH2 = 100

min_sirrCH2 = 0.1

elif id == 5:

divisor = 10

abs_max = 2300

abs_min = 1500

increment = (abs_max - abs_min) / divisor

max_sirrCH1 = 100

min_sirrCH1 = 0.06

max_sirrCH2 = 100

min_sirrCH2 = 0.06

increment = int(increment)

j = abs_min

for d in range(divisor):

int_sirrCH1 = []

int_sirrCH2 = []

scan_timesCH1 = []

scan_timesCH2 = []

exp_CH1 = []
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exp_CH2 = []

plt.figure(0)

for i in range(len(uniq_days)):

CH1indices = np.where(ch1_data[’Day’].values == uniq_days[i])

scanCH1 = ch1_data.iloc[CH1indices]

scan_number = get_longest_scan(scanCH1)

CH1indices = np.where(scanCH1[’scan’].values == scan_number)

scanCH1 = scanCH1.iloc[CH1indices]

scanCH1 = scanCH1.sort_values(by=[’Wavelengths’],ignore_index=True)

scanCH1 = scanCH1.loc[(scanCH1[’SIRR’] >= min_sirrCH1) & (scanCH1[’

SIRR’] <= max_sirrCH1)]

scanCH1 = scanCH1.loc[(scanCH1[’Wavelengths’] >= j) & (scanCH1[’

Wavelengths’] <= j + increment)]

wavelengthsCH1 = scanCH1[’Wavelengths’].values

sirrCH1 = scanCH1[’SIRR’].values

if sirrCH1.size > 0:

temp_int = integrate.trapz(sirrCH1,wavelengthsCH1)

int_sirrCH1.append(temp_int)

scan_timesCH1.append(scan_number)

exp_CH1.append(np.average(scanCH1[’Exposure’].values))

for i in range(len(uniq_days)):

CH2indices = np.where(ch2_data[’Day’].values == uniq_days[i])
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scanCH2 = ch2_data.iloc[CH2indices]

scan_number = get_longest_scan(scanCH2)

CH2indices = np.where(scanCH2[’scan’].values == scan_number)

scanCH2 = scanCH2.iloc[CH2indices]

scanCH2 = scanCH2.sort_values(by=[’Wavelengths’],ignore_index=True)

scanCH2 = scanCH2.loc[(scanCH2[’SIRR’] >= min_sirrCH2) & (scanCH2[’

SIRR’] <= max_sirrCH2)]

scanCH2 = scanCH2.loc[(scanCH2[’Wavelengths’] >= j) & (scanCH2[’

Wavelengths’] <= j + increment)]

wavelengthsCH2 = scanCH2[’Wavelengths’].values

sirrCH2 = scanCH2[’SIRR’].values

if sirrCH2.size > 0:

temp_int = integrate.trapz(sirrCH2,wavelengthsCH2)

int_sirrCH2.append(temp_int)

scan_timesCH2.append(scan_number)

exp_CH2.append(np.average(scanCH2[’Exposure’].values))

scan_timesCH1 = np.array(scan_timesCH1)

scan_timesCH2 = np.array(scan_timesCH2)

int_sirrCH1 = np.array(int_sirrCH1)

int_sirrCH2 = np.array(int_sirrCH2)

csim_expCH1 = np.array(exp_CH1)

csim_expCH2 = np.array(exp_CH2)
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nan_filterCH1 = ˜np.isnan(int_sirrCH1)

nan_filterCH2 = ˜np.isnan(int_sirrCH2)

int_sirrCH1 = int_sirrCH1[nan_filterCH1]

int_sirrCH2 = int_sirrCH2[nan_filterCH2]

scan_timesCH1 = scan_timesCH1[nan_filterCH1]

scan_timesCH2 = scan_timesCH2[nan_filterCH2]

csim_expCH1 = csim_expCH1[nan_filterCH1]

csim_expCH2 = csim_expCH2[nan_filterCH2]

zero_filterCH1 = np.where(int_sirrCH1 > 0)

zero_filterCH2 = np.where(int_sirrCH2 > 0)

int_sirrCH1 = int_sirrCH1[zero_filterCH1]

int_sirrCH2 = int_sirrCH2[zero_filterCH2]

scan_timesCH1 = scan_timesCH1[zero_filterCH1]

scan_timesCH2 = scan_timesCH2[zero_filterCH2]

csim_expCH1 = csim_expCH1[zero_filterCH1]

csim_expCH2 = csim_expCH2[zero_filterCH2]

int_filterCH1 = z_filter(int_sirrCH1)
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int_filterCH2 = z_filter(int_sirrCH2)

int_sirrCH1 = int_sirrCH1[int_filterCH1]

int_sirrCH2 = int_sirrCH2[int_filterCH2]

scan_timesCH1 = scan_timesCH1[int_filterCH1]

scan_timesCH2 = scan_timesCH2[int_filterCH2]

csim_expCH1 = csim_expCH1[int_filterCH1]

csim_expCH2 = csim_expCH2[int_filterCH2]

if int_sirrCH1[0] > int_sirrCH2[0]:

diff = int_sirrCH1[0] - int_sirrCH2[0]

int_sirrCH2 = int_sirrCH2 + diff

elif int_sirrCH2[0] > int_sirrCH1[0]:

diff = int_sirrCH2[0] - int_sirrCH1[0]

int_sirrCH1 = int_sirrCH1 + diff

intersection = np.intersect1d(scan_timesCH1,scan_timesCH2)

maskCH1 = np.isin(scan_timesCH1,intersection)

maskCH2 = np.isin(scan_timesCH2, intersection)

mask_int_sirrCH1 = int_sirrCH1[maskCH1]

mask_csim_expCH1 = csim_expCH1[maskCH1]

mask_int_sirrCH2 = int_sirrCH2[maskCH2]

mask_csim_expCH2 = csim_expCH2[maskCH2]
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mask_scan_timesCH1 = scan_timesCH1[maskCH1]

mask_scan_timesCH2 = scan_timesCH2[maskCH2]

delta = mask_csim_expCH1 - mask_csim_expCH2

ratio = mask_int_sirrCH1 / mask_int_sirrCH2

ratio = np.log(ratio)

delta = delta.reshape(-1,1)

model = LinearRegression().fit(delta,ratio)

#using y = mx+B

m = model.coef_[0]
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kappas.append(m)

avg = (j + (j+increment)) / 2

avg_wl.append(avg)

j = j + increment

result = []

result.append(kappas)

result.append(avg_wl)

return result

A.22 solar var

def solar_var(date1,date2,channel):

"""
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The purpose of this function is to plot solar variability of TSIS and CSIM

given two dates and the

channel to analyze.

Parameters

----------

date1,date2 : string

two dates in iso format

channel: int

The instrument channel to look at. Either 1 or 2

Returns

-------

Outputs two spectra plots of CSIM (one per date), two spectra plots of TSIS (

one per date)

the solar variability for both spacecraft, and three comparison plots. Returns

nothing

"""

%matplotlib inline

test = 0

full_scan = load_all_scans(channel)

scan1 = get_scan(full_scan,date1)

if len(scan1) == 1:

print(’No␣scan␣found␣on␣’ + date1)

test = 1
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scan2 = get_scan(full_scan,date2)

if len(scan2) == 1:

print(’No␣scan␣found␣on␣’ + date2)

test = 1

if test == 1:

print(’could␣not␣complete␣ratio’)

return

else:

plot_title1 = ’Solar␣Irradiance␣on␣’ + date1

plot_title2 = ’Solar␣Irradiance␣on␣’ + date2

plot_scan(scan1,plot_title1)

plot_scan(scan2,plot_title2)

#default assume day 1 has min and max

min_wl = scan1[’Wavelengths’].min()

max_wl = scan1[’Wavelengths’].max()

if min_wl < scan2[’Wavelengths’].min():
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min_wl = scan2[’Wavelengths’].min()

if max_wl > scan2[’Wavelengths’].max():

max_wl = scan2[’Wavelengths’].max()

scan1 = scan1.loc[scan1.Wavelengths.between(min_wl,max_wl)]

scan2 = scan2.loc[scan2.Wavelengths.between(min_wl,max_wl)]

sirr1 = scan1[’SIRR’].values

sirr2 = scan2[’SIRR’].values

wavelengths1 = scan1[’Wavelengths’].values

wavelengths2 = scan2[’Wavelengths’].values

print(len(sirr1))

print(len(sirr2))

if len(sirr1) != len(sirr2):

wavelength_grid = np.intersect1d(wavelengths1,wavelengths2)

scan1_indices = scan1.Wavelengths.isin(wavelength_grid)

scan2_indices = scan2.Wavelengths.isin(wavelength_grid)

scan1 = scan1.loc[scan1_indices]

scan2 = scan2.loc[scan2_indices]
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sirr1 = scan1[’SIRR’].values

sirr2 = scan2[’SIRR’].values

else:

wavelength_grid = wavelengths1

ratio = ((sirr2 / sirr1) - 1)*100

if np.average(sirr1) > np.average(sirr2):

ratio = ((sirr1 / sirr2) - 1)*100

ratio_filter = np.where((ratio < 10) & (ratio > -0.5))

ratio = ratio[ratio_filter]

wavelength_grid = wavelength_grid[ratio_filter]

fig, ax = plt.subplots()

line = ax.plot(wavelength_grid,ratio)



101

ax.set_xlabel(’Wavelength␣(nm)’)

ax.set_ylabel(’((Max/Min)␣-␣1)*100␣(%)’)

plot_title = ’CSIM␣Solar␣Variability␣between␣’ + date1 + ’␣and␣’ + date2

ax.set_title(plot_title)

plt.show()

fname = ’/Users/asm0945/Documents/IDL/CSIM/esr/plots/csim_solarvar_’

fname += str(date1) + ’-’ + str(date2) + ’.png’

fig.savefig(fname)

shorten_indices = np.where(wavelength_grid < 400)

shortened_wavelengths = wavelength_grid[shorten_indices]

shortened_ratio = ratio[shorten_indices]
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fig, ax = plt.subplots()

line = ax.plot(shortened_wavelengths,shortened_ratio)

ax.set_xlabel(’Wavelength␣(nm)’)

ax.set_ylabel(’((Max/Min)␣-␣1)*100␣(%)’)

plot_title = ’CSIM␣Solar␣Variability␣between␣’ + date1 + ’␣and␣’ + date2

ax.set_title(plot_title)

plt.show()

fname = ’/Users/asm0945/Documents/IDL/CSIM/esr/plots/short_csim_solarvar_’

fname += str(date1) + ’-’ + str(date2) + ’.png’

fig.savefig(fname)

#plot TSIS ones now
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test = 0

tsis_scan = load_tsis_data()

tsis_scan1 = get_scan(tsis_scan,date1)

if len(tsis_scan1) == 1:

print(’No␣scan␣found␣on␣’ + date1)

test = 1

tsis_scan2 = get_scan(tsis_scan,date2)

if len(tsis_scan2) == 1:

print(’No␣scan␣found␣on␣’ + date2)

test = 1

if test == 1:

print(’could␣not␣complete␣ratio␣for␣TSIS’)

return

else:

plot_title1 = ’TSIS␣Solar␣Irradiance␣on␣’ + date1

plot_title2 = ’TSIS␣Solar␣Irradiance␣on␣’ + date2

plot_scan(tsis_scan1,plot_title1)

plot_scan(tsis_scan2,plot_title2)

tsis_sirr1 = tsis_scan1[’SIRR’].values
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tsis_sirr2 = tsis_scan2[’SIRR’].values

tsis_ratio = ((tsis_sirr2 / tsis_sirr1) - 1)*100

if np.average(sirr1) > np.average(sirr2):

tsis_ratio = ((tsis_sirr1 / tsis_sirr2) - 1)*100

tsis_wavelengths = tsis_scan1[’Wavelengths’].values

tsis_ratio_filter = np.where((tsis_ratio < 10) & (tsis_ratio > -10))

tsis_ratio = tsis_ratio[tsis_ratio_filter]

tsis_wavelengths = tsis_wavelengths[tsis_ratio_filter]

fig, ax = plt.subplots()

line = ax.plot(tsis_wavelengths,tsis_ratio)

ax.set_xlabel(’Wavelength␣(nm)’)

ax.set_ylabel(’((Max/Min)␣-␣1)*100␣(%)’)

plot_title = ’TSIS␣Solar␣Variability␣between␣’ + date1 + ’␣and␣’ + date2



105

ax.set_title(plot_title)

plt.show()

fname = ’/Users/asm0945/Documents/IDL/CSIM/esr/plots/tsis_solarvar_’

fname += str(date1) + ’-’ + str(date2) + ’.png’

fig.savefig(fname)

#show shorter version

#plt.figure(1)

shorten_indices = np.where(tsis_wavelengths < 400)

shortened_tsis_wavelengths = tsis_wavelengths[shorten_indices]

shortened_tsis_ratio = tsis_ratio[shorten_indices]

fig, ax = plt.subplots()

line = ax.plot(shortened_tsis_wavelengths,shortened_tsis_ratio)

ax.set_xlabel(’Wavelength␣(nm)’)

ax.set_ylabel(’((Max/Min)␣-␣1)*100␣(%)’)
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plot_title = ’TSIS␣Solar␣Variability␣between␣’ + date1 + ’␣and␣’ + date2

ax.set_title(plot_title)

plt.show()

fname = ’/Users/asm0945/Documents/IDL/CSIM/esr/plots/short_tsis_solarvar_’

fname += str(date1) + ’-’ + str(date2) + ’.png’

fig.savefig(fname)

#show a combined plot of tsis and csim solar variability

fig, ax = plt.subplots(3)

ax[0].plot(shortened_tsis_wavelengths,shortened_tsis_ratio,label=’TSIS’)

ax[0].plot(shortened_wavelengths,shortened_ratio,’ro’,alpha=0.5,label=’

CSIM’,markersize=2)
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ax[0].set_xlabel(’Wavelength␣(nm)’)

ax[0].set_ylabel(’((Max/Min)␣-␣1)*100␣(%)’)

ax[0].set_title("200nm-400nm")

plot_title = ’Solar␣Variability␣between␣’ + date1 + ’␣and␣’ + date2

fig.suptitle(plot_title,size=20)

#shorten

shorten_indices = np.where(shortened_tsis_wavelengths > 230)

shortened_tsis_wavelengths = shortened_tsis_wavelengths[shorten_indices]

shortened_tsis_ratio = shortened_tsis_ratio[shorten_indices]

shorten_indices = np.where(shortened_wavelengths > 230)

shortened_wavelengths = shortened_wavelengths[shorten_indices]

shortened_ratio = shortened_ratio[shorten_indices]

ax[1].plot(shortened_tsis_wavelengths,shortened_tsis_ratio,label=’TSIS’)

ax[1].plot(shortened_wavelengths,shortened_ratio,’ro’,alpha=0.5,label=’

CSIM’,markersize=2)
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ax[1].set_xlabel(’Wavelength␣(nm)’)

ax[1].set_ylabel(’((Max/Min)␣-␣1)*100␣(%)’)

ax[1].set_title("225nm-400nm")

#shorten to show different range

shorten_indices = np.where(shortened_tsis_wavelengths > 300)

shortened_tsis_wavelengths = shortened_tsis_wavelengths[shorten_indices]

shortened_tsis_ratio = shortened_tsis_ratio[shorten_indices]

shorten_indices = np.where(shortened_wavelengths > 300)

shortened_wavelengths = shortened_wavelengths[shorten_indices]

shortened_ratio = shortened_ratio[shorten_indices]

ax[2].plot(shortened_tsis_wavelengths,shortened_tsis_ratio,label=’TSIS’)
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ax[2].plot(shortened_wavelengths,shortened_ratio,’r’,alpha=0.5,label=’CSIM

’)

ax[2].set_xlabel(’Wavelength␣(nm)’)

ax[2].set_ylabel(’((Max/Min)␣-␣1)*100␣(%)’)

ax[2].set_title("300nm-400nm")

ax[0].legend()

fig.set_figwidth(8)

fig.set_figheight(10)

fig.tight_layout()

#fig.subplots_adjust(top=0.95)

plt.show()

fname= ’/Users/asm0945/Documents/IDL/CSIM/esr/plots/

csim_tsis_solarvar_comparison.png’

fig.savefig(fname)
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return

A.23 two stage kappa

def two_stage_kappa(scanCH1,scanCH2,id,key):

"""

This function takes several integrated regions and finds a kappa calculation

for each of them

It also plots the time series spectra,the integrated spectra for channel 1 and

channel 2 based on exposure

time, a comparison spectra plotted by calendar time, as well as the kappa line

on top of the natural log vs

delta exposure time plot. This function does this by splitting the spectra at

the global variable exposure split

Parameters

----------

scanCH1: dataframe

This data frame contains the entire data frame of channel 1 at a given ID

scanCH2: dataframe

This data frame contains the entire data frame of channel 2 at a given ID

id : int

IDs 1,2,3,4,5
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Returns

-------

A list with two elements. The first contains all the kappa values, the second

contains the average wavelength.

"""

plot = 0

%matplotlib inline

ch1_data = scanCH1

ch2_data = scanCH2

uniq_daysCH2 = ch2_data[’Day’].values

uniq_daysCH1 = ch1_data[’Day’].values

uniq_days = np.intersect1d(uniq_daysCH1,uniq_daysCH2)

kappas = []

avg_wl = []

if id == 1:

abs_max = 286

abs_min = 200

divisor = 40
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increment = (abs_max - abs_min) / divisor

max_sirrCH1 = 0.3

min_sirrCH1 = 0.0001

max_sirrCH2 = 0.3

min_sirrCH2 = 0.005

elif id == 2:

divisor = 10

abs_max = 387

abs_min = 286

increment = (abs_max - abs_min) / divisor

max_sirrCH1 = 100

min_sirrCH1 = 0.05

max_sirrCH2 = 100

min_sirrCH2 = 0.05

elif id == 3:

abs_max = 900

abs_min = 387

divisor = 10

increment = (abs_max - abs_min) / divisor

max_sirrCH1 = 2.15

min_sirrCH1 = 0.7

max_sirrCH2 = 2.15

min_sirrCH2 = 0.7

elif id == 4:

divisor = 10

abs_max = 1500

abs_min = 900
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increment = (abs_max - abs_min) / divisor

max_sirrCH1 = 100

min_sirrCH1 = 0.1

max_sirrCH2 = 100

min_sirrCH2 = 0.1

elif id == 5:

divisor = 10

abs_max = 2300

abs_min = 1500

increment = (abs_max - abs_min) / divisor

max_sirrCH1 = 100

min_sirrCH1 = 0.06

max_sirrCH2 = 100

min_sirrCH2 = 0.06

increment = int(increment)

j = abs_min

for d in range(divisor):

#unacceptable_wavs =

[959,1108,1257,1514,1602,811]#[248,252,254,260,262,266,270,288,256,264,272,292,296,300,304,308,320,324,328,332,340,344,348,352,356,360,364,368,298,280,316,325,361,360,419,517,394,418,442,466]

#if j in unacceptable_wavs or (j == 810 and id == 5):

# continue

print(j)

int_sirrCH1 = []

int_sirrCH2 = []

scan_timesCH1 = []
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scan_timesCH2 = []

exp_CH1 = []

exp_CH2 = []

if plot == 0:

fig, ax = plt.subplots(2,2)

for i in range(len(uniq_days)):

CH1indices = np.where(ch1_data[’Day’].values == uniq_days[i])

scanCH1 = ch1_data.iloc[CH1indices]

scan_number = get_longest_scan(scanCH1)

CH1indices = np.where(scanCH1[’scan’].values == scan_number)

scanCH1 = scanCH1.iloc[CH1indices]

scanCH1 = scanCH1.sort_values(by=[’Wavelengths’],ignore_index=True)

scanCH1 = scanCH1.loc[(scanCH1[’SIRR’] >= min_sirrCH1) & (scanCH1[’

SIRR’] <= max_sirrCH1)]

scanCH1 = scanCH1.loc[(scanCH1[’Wavelengths’] >= j) & (scanCH1[’

Wavelengths’] <= j + increment)]

wavelengthsCH1 = scanCH1[’Wavelengths’].values

sirrCH1 = scanCH1[’SIRR’].values

if sirrCH1.size > 0:

temp_int = integrate.trapz(sirrCH1,wavelengthsCH1)

int_sirrCH1.append(temp_int)

scan_timesCH1.append(scan_number)

exp_CH1.append(np.average(scanCH1[’Exposure’].values))
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if plot == 0:

ax[0,0].plot(wavelengthsCH1,sirrCH1)

if plot == 0:

ax[0,0].set_xlabel(’Wavelength␣(nm)’)

ax[0,0].set_ylabel(’IRR␣((W/mˆ2)/␣nm)’)

ax[0,0].set_title(’Solar␣Irradiance␣Channel␣1’)

for i in range(len(uniq_days)):

CH2indices = np.where(ch2_data[’Day’].values == uniq_days[i])

scanCH2 = ch2_data.iloc[CH2indices]

scan_number = get_longest_scan(scanCH2)

CH2indices = np.where(scanCH2[’scan’].values == scan_number)

scanCH2 = scanCH2.iloc[CH2indices]

scanCH2 = scanCH2.sort_values(by=[’Wavelengths’],ignore_index=True)

scanCH2 = scanCH2.loc[(scanCH2[’SIRR’] >= min_sirrCH2) & (scanCH2[’

SIRR’] <= max_sirrCH2)]

scanCH2 = scanCH2.loc[(scanCH2[’Wavelengths’] >= j) & (scanCH2[’

Wavelengths’] <= j + increment)]

wavelengthsCH2 = scanCH2[’Wavelengths’].values

sirrCH2 = scanCH2[’SIRR’].values

if sirrCH2.size > 0:

temp_int = integrate.trapz(sirrCH2,wavelengthsCH2)
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int_sirrCH2.append(temp_int)

scan_timesCH2.append(scan_number)

exp_CH2.append(np.average(scanCH2[’Exposure’].values))

if plot == 0:

ax[1,0].plot(wavelengthsCH2,sirrCH2)

if plot == 0:

ax[1,0].set_xlabel(’Wavelength␣(nm)’)

ax[1,0].set_ylabel(’IRR␣((W/mˆ2)/nm’)

ax[1,0].set_title(’Solar␣Irradiance␣Channel␣2’)

if len(int_sirrCH2) > 2 and len(int_sirrCH1) > 2:

scan_timesCH1 = np.array(scan_timesCH1)

scan_timesCH2 = np.array(scan_timesCH2)

int_sirrCH1 = np.array(int_sirrCH1)

int_sirrCH2 = np.array(int_sirrCH2)

csim_expCH1 = np.array(exp_CH1)

csim_expCH2 = np.array(exp_CH2)

nan_filterCH1 = ˜np.isnan(int_sirrCH1)

nan_filterCH2 = ˜np.isnan(int_sirrCH2)
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int_sirrCH1 = int_sirrCH1[nan_filterCH1]

int_sirrCH2 = int_sirrCH2[nan_filterCH2]

scan_timesCH1 = scan_timesCH1[nan_filterCH1]

scan_timesCH2 = scan_timesCH2[nan_filterCH2]

csim_expCH1 = csim_expCH1[nan_filterCH1]

csim_expCH2 = csim_expCH2[nan_filterCH2]

zero_filterCH1 = np.where(int_sirrCH1 > 0)

zero_filterCH2 = np.where(int_sirrCH2 > 0)

int_sirrCH1 = int_sirrCH1[zero_filterCH1]

int_sirrCH2 = int_sirrCH2[zero_filterCH2]

scan_timesCH1 = scan_timesCH1[zero_filterCH1]

scan_timesCH2 = scan_timesCH2[zero_filterCH2]

csim_expCH1 = csim_expCH1[zero_filterCH1]

csim_expCH2 = csim_expCH2[zero_filterCH2]

int_filterCH1 = z_filter(int_sirrCH1)

int_filterCH2 = z_filter(int_sirrCH2)

int_sirrCH1 = int_sirrCH1[int_filterCH1]

int_sirrCH2 = int_sirrCH2[int_filterCH2]
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scan_timesCH1 = scan_timesCH1[int_filterCH1]

scan_timesCH2 = scan_timesCH2[int_filterCH2]

csim_expCH1 = csim_expCH1[int_filterCH1]

csim_expCH2 = csim_expCH2[int_filterCH2]

if int_sirrCH1[0] > int_sirrCH2[0]:

diff = int_sirrCH1[0] - int_sirrCH2[0]

int_sirrCH2 = int_sirrCH2 + diff

elif int_sirrCH2[0] > int_sirrCH1[0]:

diff = int_sirrCH2[0] - int_sirrCH1[0]

int_sirrCH1 = int_sirrCH1 + diff

intersection = np.intersect1d(scan_timesCH1,scan_timesCH2)

maskCH1 = np.isin(scan_timesCH1,intersection)

maskCH2 = np.isin(scan_timesCH2, intersection)

mask_int_sirrCH1 = int_sirrCH1[maskCH1]

mask_csim_expCH1 = csim_expCH1[maskCH1]

mask_int_sirrCH2 = int_sirrCH2[maskCH2]

mask_csim_expCH2 = csim_expCH2[maskCH2]

mask_scan_timesCH1 = scan_timesCH1[maskCH1]

mask_scan_timesCH2 = scan_timesCH2[maskCH2]
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wavelength_title = ’␣over␣band:␣’+ str(j) + "␣-␣" + str(j+increment)

base = mask_int_sirrCH1[0]

if plot == 0:

times = time_convert(mask_scan_timesCH1,’gps’,’decimalyear’)

#times = mask_scan_timesCH1

ax[0,1].plot(times,mask_int_sirrCH1,’bo’)

ax[0,1].plot(times,mask_int_sirrCH2,’ro’)

ax[0,1].set_xlabel(’Times␣(decimal␣year)’)

ax[0,1].set_ylabel(’Integrated␣Solar␣Irradiance␣(W/mˆ2)’)

title = ’Integrated␣Spectra␣Time␣Comparison’ + wavelength_title

ax[0,0].set_title(title)

y = mask_int_sirrCH1

y0 = y[˜np.isnan(y)][0]

def to_percent(y):

return (y - y0) / y0 * 100

def from_percent(y):

return y

sec_ax = ax[0,1].secondary_yaxis(’right’, functions=(to_percent,

from_percent))



120

sec_ax.set_ylabel(’Percent␣Change’)

delta = mask_csim_expCH1 - mask_csim_expCH2

ratio = mask_int_sirrCH1 / mask_int_sirrCH2

ratio = np.log(ratio)

delta = delta.reshape(-1,1)

model = LinearRegression().fit(delta,ratio)

m = model.coef_[0]

b = model.intercept_

if plot == 0:

ax[1,1].plot(delta,ratio,’go’)

x_vals = np.array(ax[1,1].get_xlim())

#using y = mx+B

y_vals = m * x_vals + b
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ax[1,1].plot(x_vals,y_vals)

ax[1,1].set_xlabel(’Delta␣Exposure␣Time␣(s)’)

ax[1,1].set_ylabel(’ln(int_CH1/int_CH2)’)

title = ’Kappa’ + wavelength_title

ax[1,1].set_title(title)

r_squared = model.score(delta,ratio)

r_string = ’rˆ2␣value␣=␣’ + str(round(r_squared,3))

ax[1,1].annotate(r_string, (np.average(delta), np.average(ratio)))

fig.tight_layout()

fig.set_figwidth(15)

fig.set_figheight(10)

fname = ’/Users/asm0945/Documents/IDL/CSIM/esr/plots/

two_stage_kappa/two_stage_kappa_’ + str(j) + str(key) + ’.png’

fig.savefig(fname)

plt.show()
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if plot == 0:

fig, ax = plt.subplots(2)

ax[0].plot(csim_expCH1,int_sirrCH1,’bo’)

ax[0].set_xlabel(’Exposure␣Time␣(s)’)

ax[0].set_ylabel(’IRR((W/mˆ2))’)

title = ’Integrated␣Solar␣Irradiance␣Channel␣1’ + wavelength_title

ax[0].set_title(title)

y = int_sirrCH1

y0 = y[˜np.isnan(y)][0]

sec_ax = ax[0].secondary_yaxis(’right’, functions=(to_percent,

from_percent))

sec_ax.set_ylabel(’Percent␣Change’)

ax[1].plot(csim_expCH2,int_sirrCH2,’ro’)

ax[1].set_xlabel(’Exposure␣Time␣(s)’)

ax[1].set_ylabel(’IRR␣((W/mˆ2))’)

title = ’Integrated␣Solar␣Irradiance␣Channel␣2’ + wavelength_title

ax[1].set_title(title)

y = int_sirrCH2

y0 = y[˜np.isnan(y)][0]

sec_ax = ax[1].secondary_yaxis(’right’, functions=(to_percent,

from_percent))
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sec_ax.set_ylabel(’Percent␣Change’)

plt.show()

kappas.append(m)

avg = (j + (j+increment)) / 2

avg_wl.append(avg)

j = j + increment

else:

print(’no␣scans␣in␣this␣region’)

j = j + increment

print(kappas)

print(’kappas␣returned’,kappas)

print(avg_wl)

result = []

result.append(kappas)

result.append(avg_wl)

return result

A.24 two stage correction
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def two_stage_correction(channel):

"""

This function runs the two stage kappa analysis for every wavelength,

generates a kappa curve

and then applies corrections to the entire set of spectra.

Parameters

----------

channel : int

1 or 2

Returns

-------

A dataframe with corrected data

"""

corr_dfs = []

ids = [1,2,3,4,5]

k_bef = []

k_aft = []

wl = []

for i in ids:

scanCH1 = load_scan(1,i)

scanCH2 = load_scan(2,i)

first_halfCH1 = scanCH1.iloc[np.where(scanCH1[’Exposure’].values <=

exposure_split)]
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second_halfCH1 = scanCH1.iloc[np.where(scanCH1[’Exposure’].values >

exposure_split)]

result_bef = two_stage_kappa(first_halfCH1,scanCH2,i,’region_one’)

result_aft = two_stage_kappa(second_halfCH1,scanCH2,i,’region_two’)

k_bef += result_bef[0]

k_aft += result_aft[0]

wl += result_bef[1]

wl += [2300,2400]

k_aft += [0,0]

k_bef += [0,0]

print(’first␣region␣kappas’,k_bef)

print(’second␣region␣kappas’,k_aft)

print(’wavelengths’,wl)

k_bef_function = interpolate.interp1d(wl,k_bef,kind=’cubic’)

k_aft_function = interpolate.interp1d(wl,k_aft,kind=’cubic’)

wl_grid = np.linspace(201,2400,3000)

fig, ax = plt.subplots(3,2)

ax[0,0].plot(wl_grid,-k_bef_function(wl_grid),’r’)

ax[0,0].set_xlabel(’Wavelength␣(nm)’)

ax[0,0].set_ylabel(’Kappa’)

title = ’First␣Region␣Overall␣Kappa’

ax[0,0].set_title(title)
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ax[0,1].plot(wl_grid,-k_aft_function(wl_grid),’b’)

ax[0,1].set_xlabel(’Wavelength␣(nm)’)

ax[0,1].set_ylabel(’Kappa’)

title = ’Second␣Region␣Overall␣Kappa’

ax[0,0].set_title(title)

wl_grid_low = wl_grid[np.where((wl_grid > 210) &(wl_grid < 280))]

wl_grid_high = wl_grid[np.where((wl_grid > 280) &(wl_grid < 700))]

ax[1,0].plot(wl_grid_low,-k_bef_function(wl_grid_low),’r’)

ax[1,0].set_xlabel(’Wavelength␣(nm)’)

ax[1,0].set_ylabel(’Kappa’)

title = ’First␣Region␣Kappa␣210-280’

ax[1,0].set_title(title)

ax[1,1].plot(wl_grid_low,-k_aft_function(wl_grid_low),’b’)

ax[1,1].set_xlabel(’Wavelength␣(nm)’)

ax[1,1].set_ylabel(’Kappa’)

title = ’Second␣Region␣Kappa␣210-280’

ax[1,1].set_title(title)
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ax[2,0].plot(wl_grid_high,-k_bef_function(wl_grid_high),’r’)

ax[2,0].plot()

ax[2,0].set_xlabel(’Wavelength␣(nm)’)

ax[2,0].set_ylabel(’Kappa’)

title = ’First␣Region␣Kappa␣280-700’

ax[2,0].set_title(title)

ax[2,1].plot(wl_grid_high,-k_aft_function(wl_grid_high),’b’)

ax[2,1].set_xlabel(’Wavelength␣(nm)’)

ax[2,1].set_ylabel(’Kappa’)

title = ’Second␣Region␣Kappa␣280-700’

ax[2,1].set_title(title)

fname = ’/Users/asm0945/Documents/IDL/CSIM/esr/plots/two_stage_kappas.png’

fig.tight_layout()

fig.set_figwidth(10)

fig.set_figheight(15)

fig.savefig(fname)

plt.show()
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all_scans = load_all_scans(channel)

uniq_days = np.unique(all_scans[’Day’].values)

for i in uniq_days:

scan = all_scans.iloc[np.where(all_scans[’Day’].values == i)]

scan = scan.loc[(scan[’Wavelengths’] >= 201)]

wavelengths = scan[’Wavelengths’].values

exp_time = scan[’Exposure’].values

if max(exp_time) > exposure_split:

kappas = k_aft_function(wavelengths)

else:

kappas = k_bef_function(wavelengths)

scans = scan[’scan’].values

obs_id = scan[’obs_id’].values

sirr = scan[’SIRR’].values

denom = np.exp(kappas*exp_time)

#print(’denominator’,denom)

corr_sirr = sirr / denom

day = np.repeat(i,len(corr_sirr))

d = {’SIRR’: corr_sirr, ’Wavelengths’: wavelengths, ’Day’: day, ’Exposure’

: exp_time, ’scan’: scans, ’obs_id’: obs_id}

data = pandas.DataFrame(data=d)

corr_dfs.append(data)

corrected_scans = pandas.concat(corr_dfs,ignore_index=True)



129

return corrected_scans

A.25 kappa correction

def kappa_correction(channel):

"""

This function runs the overall mission kappa analysis for every wavelength,

generates a kappa curve

and then applies corrections to the entire set of spectra.

Parameters

----------

channel : int

1 or 2

Returns

-------

A dataframe with corrected data

"""

plot = 0
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corr_dfs = []

kaps = []

wavs = []

if plot == 0:

result1 = plot_kappas(1)

kaps += result1[0]

wavs += result1[1]

result2 = plot_kappas(2)

kaps += result2[0]

wavs += result2[1]

result3 = plot_kappas(3)

kaps += result3[0]

wavs += result3[1]

result4 = plot_kappas(4)

kaps += result4[0]

wavs += result4[1]

result5 = plot_kappas(5)

kaps += result5[0]

wavs += result5[1]

if plot == 1:

result1 = get_kappas(1)

kaps += result1[0]

wavs += result1[1]

result2 = get_kappas(2)

kaps += result2[0]

wavs += result2[1]

result3 = get_kappas(3)
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kaps += result3[0]

wavs += result3[1]

result4 = get_kappas(4)

kaps += result4[0]

wavs += result4[1]

result5 = get_kappas(5)

kaps += result5[0]

wavs += result5[1]

wavs += [2300,2400]

kaps += [0,0]

print(’kappas’,kaps)

print(’wavelengths’,wavs)

kappa_function = interpolate.interp1d(wavs,kaps,kind=’cubic’)

#plot kappa functions

wl_grid = np.linspace(201,2400,3000)

fig, ax = plt.subplots(3)

ax[0].plot(wl_grid,-kappa_function(wl_grid),’r’)

ax[0].set_xlabel(’Wavelength␣(nm)’)

ax[0].set_ylabel(’Kappa’)

title = ’Overall␣Mission␣Kappa’

ax[0].set_title(title)
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wl_grid_low = wl_grid[np.where((wl_grid > 210) &(wl_grid < 280))]

wl_grid_high = wl_grid[np.where((wl_grid > 280) &(wl_grid < 700))]

ax[1].plot(wl_grid_low,-kappa_function(wl_grid_low),’r’)

ax[1].plot()

ax[1].set_xlabel(’Wavelength␣(nm)’)

ax[1].set_ylabel(’Kappa’)

title = ’Overall␣Kappa␣210-280’

ax[1].set_title(title)

ax[2].plot(wl_grid_high,-kappa_function(wl_grid_high),’r’)

ax[2].plot()

ax[2].set_xlabel(’Wavelength␣(nm)’)

ax[2].set_ylabel(’Kappa’)

title = ’Overall␣Kappa␣280-700’

ax[2].set_title(title)

fname = ’/Users/asm0945/Documents/IDL/CSIM/esr/plots/overall_kappa.png’

fig.tight_layout()

fig.set_figwidth(10)

fig.set_figheight(15)

fig.savefig(fname)
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plt.show()

all_scans = load_all_scans(channel)

uniq_days = np.unique(all_scans[’Day’].values)

for i in uniq_days:

scan = all_scans.iloc[np.where(all_scans[’Day’].values == i)]

scan = scan.loc[(scan[’Wavelengths’] >= 201)]

wavelengths = scan[’Wavelengths’].values

kappas = kappa_function(wavelengths)

exp_time = scan[’Exposure’].values

scans = scan[’scan’].values

obs_id = scan[’obs_id’].values

sirr = scan[’SIRR’].values

denom = np.exp(kappas*exp_time)

#print(’denominator’,denom)

corr_sirr = sirr / denom

day = np.repeat(i,len(corr_sirr))

d = {’SIRR’: corr_sirr, ’Wavelengths’: wavelengths, ’Day’: day, ’Exposure’

: exp_time, ’scan’: scans, ’obs_id’: obs_id}

data = pandas.DataFrame(data=d)

corr_dfs.append(data)

corrected_scans = pandas.concat(corr_dfs,ignore_index=True)
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return corrected_scans

A.26 plot total integrated spectra

def plot_total_integrated_spectra(full_scan,key):

"""

This function takes in a full set of scans, a key for filtering purposes

and integrates over the entire wavelength region to view a time series

Parameters

----------

full_scan : data frame

This data frame contains an entire set of scans

Returns

-------

A list of two elements, each element being a list. The first is the time in

julian days and the second is the integrated spectra corresponding to each

day

"""

int_spectra = []

uniq_days = np.unique(full_scan[’Day’].values)

for i in uniq_days:

indices = np.where(full_scan[’Day’].values == i)

scan = full_scan.iloc[indices]
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sirr = scan[’SIRR’].values

wavelengths = scan[’Wavelengths’].values

if len(wavelengths) > 1000:

temp = integrate.trapz(sirr,wavelengths)

#if temp > 1500:

# print(scan[’Wavelengths’].values)

int_spectra.append(temp)

int_spectra = np.array(int_spectra)

if key == ’TSIS’:

filter_indices = np.where(int_spectra > 1308)

int_spectra = int_spectra[filter_indices]

uniq_days = uniq_days[filter_indices]

elif key == ’CH2’:

filter_indices = np.where((int_spectra > 1280) & (int_spectra < 1360))

int_spectra = int_spectra[filter_indices]

uniq_days = uniq_days[filter_indices]

y = int_spectra

y0 = y[˜np.isnan(y)][0]

def to_percent(y):

return (y - y0) / y0 * 100

def from_percent(y):

return y
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fig, ax = plt.subplots()

uniq_days = time_convert(uniq_days,’jd’,’decimalyear’)

ax.plot(uniq_days,int_spectra,’bo’)

ax.set_xlabel(’Time␣(Decimal␣Year)’)

ax.set_ylabel(’Solar␣Irradiance␣((W/mˆ2))’)

title = ’Total␣Integrated␣Solar␣Irradiance’

ax.set_title(title)

sec_ax = ax.secondary_yaxis(’right’, functions=(to_percent, from_percent))

sec_ax.set_ylabel(’Percent␣Change’)

plt.show()

result = [uniq_days,int_spectra]

return result

A.27 plot all time series

def plot_all_time_series(wavelength,corr_scans,all_scans,all_scansCH2,tsis_scans,

model):

"""

This function takes in all data sets and plots the time series of all given a

particular wavelength
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Parameters

----------

wavelength : int

The requested wavelength to plot

corr_scans: dataframe

This is the dataframe containing all corrected scans (using an overall

mission kappa)

all_scans: dataframe

This is the dataframe containing all uncorrected CSIM channel 1 scans

all_scansCH2: dataframe

This is a dataframe containing all uncorrected CSIM channel 2 scans

tsis_scans: dataframe

This is a dataframe containing all corrected TSIS Channel 1 Data

model: dataframe

This is a dataframe containing all model data

Returns

-------

Nothing. Outputs plots to a screen and a folder.

"""

%matplotlib inline

#plots time series given a wavelength
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#First TSIS data

tsis_wavelengths = tsis_scans[’Wavelengths’].values

closest_wl = find_nearest(tsis_wavelengths,wavelength)

indices = np.where(tsis_scans[’Wavelengths’].values == closest_wl)

filtered_tsis_data = tsis_scans.iloc[indices]

tsis_times = filtered_tsis_data[’Day’].values

tsis_times = time_convert(tsis_times,’jd’,’decimalyear’)

tsis_sirr = filtered_tsis_data[’SIRR’].values

initial_tsis_filter = np.where(tsis_sirr > 0.01)

tsis_times = tsis_times[initial_tsis_filter]

tsis_sirr = tsis_sirr[initial_tsis_filter]

#model data

model_wavelengths = model[’Wavelengths’].values

closest_wl = find_nearest(model_wavelengths,wavelength)

indices = np.where(model[’Wavelengths’].values == closest_wl)

filtered_model_data = model.iloc[indices]

model_times = filtered_model_data[’Day’].values

model_times = time_convert(model_times,’jd’,’decimalyear’)

model_sirr = filtered_model_data[’SIRR’].values
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#Then Channel B Uncorrected Data

csimCH2_uncorr_wavelengths = all_scansCH2[’Wavelengths’].values

closest_wl = find_nearest(csimCH2_uncorr_wavelengths,wavelength)

indices = np.where(all_scansCH2[’Wavelengths’].values == closest_wl)

filtered_uncorrCH2_data = all_scansCH2.iloc[indices]

csimCH2_uncorr_times = filtered_uncorrCH2_data[’Day’].values

csimCH2_uncorr_sirr = filtered_uncorrCH2_data[’SIRR’].values

csimCH2_uncorr_times = time_convert(csimCH2_uncorr_times,’jd’,’decimalyear’)

initial_ch2_filter = np.where(csimCH2_uncorr_sirr > 0.01)

csimCH2_uncorr_times = csimCH2_uncorr_times[initial_ch2_filter]

csimCH2_uncorr_sirr = csimCH2_uncorr_sirr[initial_ch2_filter]

#Then Uncorrected Data

csim_uncorr_wavelengths = all_scans[’Wavelengths’].values

closest_wl = find_nearest(csim_uncorr_wavelengths,wavelength)

indices = np.where(all_scans[’Wavelengths’].values == closest_wl)

filtered_uncorr_data = all_scans.iloc[indices]

csim_uncorr_times = filtered_uncorr_data[’Day’].values

csim_uncorr_sirr = filtered_uncorr_data[’SIRR’].values

csim_uncorr_times = time_convert(csim_uncorr_times,’jd’,’decimalyear’)
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#Then Corrected Data

csim_corr_wavelengths = corr_scans[’Wavelengths’].values

closest_wl = find_nearest(csim_corr_wavelengths,wavelength)

indices = np.where(corr_scans[’Wavelengths’].values == closest_wl)

filtered_corr_data = corr_scans.iloc[indices]

csim_corr_times = filtered_corr_data[’Day’].values

csim_corr_times = time_convert(csim_corr_times,’jd’,’decimalyear’)

csim_corr_sirr = filtered_corr_data[’SIRR’].values

#filter TSIS Times

intersection = np.intersect1d(csim_uncorr_times,tsis_times)

mask = np.isin(tsis_times,intersection)

temp = tsis_sirr[mask]

intersection2 = np.intersect1d(csim_corr_times,tsis_times)

mask2 = np.isin(tsis_times,intersection2)

temp2 = tsis_sirr[mask2]

temp_times = tsis_times[mask]
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indices = np.where(tsis_times > temp_times[0])

tsis_sirr = tsis_sirr[indices]

tsis_times = tsis_times[indices]

diff = np.average(temp[:5]) - np.average(csim_uncorr_sirr[:5])

csim_uncorr_sirr = csim_uncorr_sirr + diff

diff2 = np.average(temp[:5]) - np.average(csimCH2_uncorr_sirr[:5])

csimCH2_uncorr_sirr = csimCH2_uncorr_sirr + diff2

intersection2 = np.intersect1d(csim_corr_times,tsis_times)

mask2 = np.isin(tsis_times,intersection2)

diff3 = np.average(temp2[:5]) - np.average(csim_corr_sirr[:5])

csim_corr_sirr = csim_corr_sirr + diff3

#make sure model starts on same day

intersection = np.intersect1d(model_times,tsis_times)

mask = np.isin(model_times,intersection)

model_times = model_times[mask]

model_sirr = model_sirr[mask]

#offset to match TSIS
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model_diff = tsis_sirr[0] - model_sirr[0]

model_sirr = model_sirr + model_diff

print(’Offset␣of␣’ + str(model_diff) + ’␣applied␣to␣model␣data␣to␣match␣TSIS’)

print(’Offset␣of␣’ + str(diff) + ’␣applied␣to␣uncorrected␣channel␣1␣data␣to␣

match␣TSIS’)

print(’Offset␣of␣’ + str(diff2) + ’␣applied␣to␣uncorrected␣channel␣2␣data␣to␣

match␣TSIS’)

print(’Offset␣of␣’ + str(diff3) + ’␣applied␣to␣corrected␣channel␣1␣␣data␣to␣

match␣TSIS’)

# then filter all for outliers

#Filters Based on Statistical Z Score

tsis_z = np.abs(stats.zscore(tsis_sirr))

csim_uncorr_z = np.abs(stats.zscore(csim_uncorr_sirr))

csim_corr_z = np.abs(stats.zscore(csim_corr_sirr))

csimCH2_uncorr_z = np.abs(stats.zscore(csimCH2_uncorr_sirr))

temp = np.argsort(tsis_z)

temp = tsis_z[temp]

n = 5
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largest = temp[-n:]

#print("{} largest values:".format(n), largest)

temp = np.argsort(csim_uncorr_z)

temp = csim_uncorr_z[temp]

n = 5

largest = temp[-n:]

#print("{} largest values:".format(n), largest)

temp = np.argsort(csim_corr_z)

temp = csim_corr_z[temp]

n = 5

largest = temp[-n:]

#print("{} largest values:".format(n), largest)

threshold = 5

tsis_filter = np.where(tsis_z < threshold)

csim_uncorr_filter = np.where(csim_uncorr_z < threshold)

csim_corr_filter = np.where(csim_corr_z < threshold)

csimCH2_filter = np.where(csimCH2_uncorr_z < threshold)

csim_corr_sirr = csim_corr_sirr[csim_corr_filter]

csim_corr_times = csim_corr_times[csim_corr_filter]

csim_uncorr_sirr = csim_uncorr_sirr[csim_uncorr_filter]

csim_uncorr_times = csim_uncorr_times[csim_uncorr_filter]

tsis_sirr = tsis_sirr[tsis_filter]
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tsis_times = tsis_times[tsis_filter]

csimCH2_uncorr_sirr = csimCH2_uncorr_sirr[csimCH2_filter]

csimCH2_uncorr_times = csimCH2_uncorr_times[csimCH2_filter]

y = csim_uncorr_sirr

y0 = y[˜np.isnan(y)][0]

def to_percent(y):

return (y - y0) / y0 * 100

def from_percent(y):

return y

fig, ax = plt.subplots()

line5 = ax.plot(model_times,model_sirr,’o’,color=’purple’,label=’NRL2␣Model’,

markersize=2)

line = ax.plot(tsis_times,tsis_sirr,’bo’,label=’TSIS␣Corrected’,markersize=2)

line2 = ax.plot(csim_uncorr_times,csim_uncorr_sirr,’ro’,label=’CSIMA␣

Uncorrected’,markersize=2)
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line3 = ax.plot(csim_corr_times,csim_corr_sirr,’go’,label=’CSIMA␣Corrected’,

markersize=2)

line4 = ax.plot(csimCH2_uncorr_times,csimCH2_uncorr_sirr,’o’,color=’orange’,

label=’CSIMB␣Uncorrected’,markersize=2)

ax.set_xlabel(’Time␣(Decimal␣Year)’)

ax.set_ylabel(’SIRR␣(W/nm*mˆ2)’)

title = ’Time␣Series␣of␣Irradiance␣at␣’ + str(wavelength) + ’nm’

ax.set_title(title)

sec_ax = ax.secondary_yaxis(’right’, functions=(to_percent, from_percent))

sec_ax.set_ylabel(’Percent␣Change’)

ax.legend()

plt.show()

fname = ’/Users/asm0945/Documents/IDL/CSIM/esr/plots/csimtsis_timeseries’

fname += str(wavelength) + ’nm.png’

fig.savefig(fname)

fig, ax = plt.subplots()
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y = csim_corr_sirr

y0 = y[˜np.isnan(y)][0]

ax.plot(model_times,model_sirr,’o’,color=’purple’,label=’NRL2␣Model’,

markersize=2)

ax.plot(tsis_times,tsis_sirr,’bo’,label=’TSIS’,markersize=2)

ax.plot(csim_corr_times,csim_corr_sirr,’go’,label=’CSIMA␣Corrected’,markersize

=2)

ax.plot(csimCH2_uncorr_times,csimCH2_uncorr_sirr,’o’,color=’orange’,label=’

CSIMB␣Uncorrected’,markersize=2)

ax.set_xlabel(’Time␣(Decimal␣Year)’)

ax.set_ylabel(’SIRR␣(W/nm*mˆ2)’)

title = ’Time␣Series␣of␣Irradiance␣at␣’ + str(wavelength) + ’nm’

ax.set_title(title)

ax.legend()

sec_ax = ax.secondary_yaxis(’right’, functions=(to_percent, from_percent))

sec_ax.set_ylabel(’Percent␣Change’)

plt.show()

fname = ’/Users/asm0945/Documents/IDL/CSIM/esr/plots/corr_csimtsis_timeseries’

fname += str(wavelength) + ’nm.png’
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fig.savefig(fname)

return

A.28 plot all time series two stage

def plot_all_time_series_two_stage(wavelength,corr_scans,all_scans,all_scansCH2,

tsis_scans,model):

"""

This function takes in all data sets and plots the time series of all given a

particular wavelength

This particular version is designed for two stage kappa, as offsets have to be

applied differently

Parameters

----------

wavelength : int

The requested wavelength to plot

corr_scans: dataframe

This is the dataframe containing all corrected scans (using an two stage

mission kappa)

all_scans: dataframe

This is the dataframe containing all uncorrected CSIM channel 1 scans

all_scansCH2: dataframe

This is a dataframe containing all uncorrected CSIM channel 2 scans
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tsis_scans: dataframe

This is a dataframe containing all corrected TSIS Channel 1 Data

model: dataframe

This is a dataframe containing all model data

Returns

-------

Nothing. Outputs plots to a screen and a folder.

"""

%matplotlib inline

#plots time series given a wavelength

#First TSIS data

tsis_wavelengths = tsis_scans[’Wavelengths’].values

closest_wl = find_nearest(tsis_wavelengths,wavelength)

indices = np.where(tsis_scans[’Wavelengths’].values == closest_wl)

filtered_tsis_data = tsis_scans.iloc[indices]

tsis_times = filtered_tsis_data[’Day’].values

tsis_times = time_convert(tsis_times,’jd’,’decimalyear’)

tsis_sirr = filtered_tsis_data[’SIRR’].values

initial_tsis_filter = np.where(tsis_sirr > 0.01)
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tsis_times = tsis_times[initial_tsis_filter]

tsis_sirr = tsis_sirr[initial_tsis_filter]

#model data

model_wavelengths = model[’Wavelengths’].values

closest_wl = find_nearest(model_wavelengths,wavelength)

indices = np.where(model[’Wavelengths’].values == closest_wl)

filtered_model_data = model.iloc[indices]

model_times = filtered_model_data[’Day’].values

model_times = time_convert(model_times,’jd’,’decimalyear’)

model_sirr = filtered_model_data[’SIRR’].values

#Then Channel B Uncorrected Data

csimCH2_uncorr_wavelengths = all_scansCH2[’Wavelengths’].values

closest_wl = find_nearest(csimCH2_uncorr_wavelengths,wavelength)

indices = np.where(all_scansCH2[’Wavelengths’].values == closest_wl)

filtered_uncorrCH2_data = all_scansCH2.iloc[indices]

csimCH2_uncorr_times = filtered_uncorrCH2_data[’Day’].values

csimCH2_uncorr_sirr = filtered_uncorrCH2_data[’SIRR’].values

csimCH2_uncorr_times = time_convert(csimCH2_uncorr_times,’jd’,’decimalyear’)

initial_ch2_filter = np.where(csimCH2_uncorr_sirr > 0.01)
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csimCH2_uncorr_times = csimCH2_uncorr_times[initial_ch2_filter]

csimCH2_uncorr_sirr = csimCH2_uncorr_sirr[initial_ch2_filter]

#Then Uncorrected Data

csim_uncorr_wavelengths = all_scans[’Wavelengths’].values

closest_wl = find_nearest(csim_uncorr_wavelengths,wavelength)

indices = np.where(all_scans[’Wavelengths’].values == closest_wl)

filtered_uncorr_data = all_scans.iloc[indices]

csim_uncorr_times = filtered_uncorr_data[’Day’].values

csim_uncorr_sirr = filtered_uncorr_data[’SIRR’].values

csim_uncorr_times = time_convert(csim_uncorr_times,’jd’,’decimalyear’)

#Then Corrected Data

csim_corr_wavelengths = corr_scans[’Wavelengths’].values

closest_wl = find_nearest(csim_corr_wavelengths,wavelength)

indices = np.where(corr_scans[’Wavelengths’].values == closest_wl)

filtered_corr_data = corr_scans.iloc[indices]

csim_corr_times = filtered_corr_data[’Day’].values

csim_corr_times = time_convert(csim_corr_times,’jd’,’decimalyear’)

csim_corr_sirr = filtered_corr_data[’SIRR’].values

csim_corr_exp = filtered_corr_data[’Exposure’].values



151

#filter TSIS Times

intersection = np.intersect1d(csim_uncorr_times,tsis_times)

mask = np.isin(tsis_times,intersection)

temp = tsis_sirr[mask]

diff2 = np.average(temp[:5]) - np.average(csimCH2_uncorr_sirr[:5])

csimCH2_uncorr_sirr = csimCH2_uncorr_sirr + diff2

intersection2 = np.intersect1d(csim_corr_times,tsis_times)

mask2 = np.isin(tsis_times,intersection2)

temp2 = tsis_sirr[mask2]

temp_times = tsis_times[mask]

indices = np.where(tsis_times > temp_times[0])

tsis_sirr = tsis_sirr[indices]

tsis_times = tsis_times[indices]

exp_break = np.where(csim_corr_exp > exposure_split)

csim_corr_region2 = csim_corr_sirr[exp_break]

csim_corr_times2 = csim_corr_times[exp_break]
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intersect3 = np.intersect1d(csim_corr_times2,tsis_times)

mask3 = np.isin(tsis_times,intersect3)

temp3 = tsis_sirr[mask3]

diff4 = np.average(temp3[:5]) - np.average(csim_corr_region2[:5])

diff = np.average(temp[:5]) - np.average(csim_uncorr_sirr[:5])

csim_uncorr_sirr = csim_uncorr_sirr + diff

intersection2 = np.intersect1d(csim_corr_times,tsis_times)

mask2 = np.isin(tsis_times,intersection2)

diff3 = np.average(temp2[:5]) - np.average(csim_corr_sirr[:5])

for i in range(len(csim_corr_exp)):

if csim_corr_exp[i] < exposure_split:

csim_corr_sirr[i] = csim_corr_sirr[i] + diff3

else:

csim_corr_sirr[i] = csim_corr_sirr[i] + diff4
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#make sure model starts on same day

intersection = np.intersect1d(model_times,tsis_times)

mask = np.isin(model_times,intersection)

model_times = model_times[mask]

model_sirr = model_sirr[mask]

#offset to match TSIS

model_diff = tsis_sirr[0] - model_sirr[0]

model_sirr = model_sirr + model_diff

print(’Offset␣of␣’ + str(model_diff) + ’␣applied␣to␣model␣data␣to␣match␣TSIS’)

print(’Offset␣of␣’ + str(diff) + ’␣applied␣to␣uncorrected␣channel␣1␣data␣to␣

match␣TSIS’)

print(’Offset␣of␣’ + str(diff2) + ’␣applied␣to␣uncorrected␣channel␣2␣data␣to␣

match␣TSIS’)

print(’Offset␣of␣’ + str(diff3) + ’␣applied␣to␣corrected␣channel␣1␣(region␣1)␣

data␣to␣match␣TSIS’)

print(’Offset␣of␣’ + str(diff4) + ’␣applied␣to␣corrected␣channel␣1␣(region␣2)␣

data␣to␣match␣TSIS’)
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# then filter all for outliers

#Filters Based on Statistical Z Score

tsis_z = np.abs(stats.zscore(tsis_sirr))

csim_uncorr_z = np.abs(stats.zscore(csim_uncorr_sirr))

csim_corr_z = np.abs(stats.zscore(csim_corr_sirr))

csimCH2_uncorr_z = np.abs(stats.zscore(csimCH2_uncorr_sirr))

temp = np.argsort(tsis_z)

temp = tsis_z[temp]

n = 5

largest = temp[-n:]

#print("{} largest values:".format(n), largest)

temp = np.argsort(csim_uncorr_z)

temp = csim_uncorr_z[temp]

n = 5

largest = temp[-n:]

#print("{} largest values:".format(n), largest)

temp = np.argsort(csim_corr_z)

temp = csim_corr_z[temp]

n = 5
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largest = temp[-n:]

#print("{} largest values:".format(n), largest)

threshold = 5

tsis_filter = np.where(tsis_z < threshold)

csim_uncorr_filter = np.where(csim_uncorr_z < threshold)

csim_corr_filter = np.where(csim_corr_z < threshold)

csimCH2_filter = np.where(csimCH2_uncorr_z < threshold)

csim_corr_sirr = csim_corr_sirr[csim_corr_filter]

csim_corr_times = csim_corr_times[csim_corr_filter]

csim_uncorr_sirr = csim_uncorr_sirr[csim_uncorr_filter]

csim_uncorr_times = csim_uncorr_times[csim_uncorr_filter]

tsis_sirr = tsis_sirr[tsis_filter]

tsis_times = tsis_times[tsis_filter]

csimCH2_uncorr_sirr = csimCH2_uncorr_sirr[csimCH2_filter]

csimCH2_uncorr_times = csimCH2_uncorr_times[csimCH2_filter]
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fig, ax = plt.subplots()

y = csim_uncorr_sirr

y0 = y[˜np.isnan(y)][0]

def to_percent(y):

return (y - y0) / y0 * 100

def from_percent(y):

return y

line5 = ax.plot(model_times,model_sirr,’o’,color=’purple’,label=’NRLSSI2’,

markersize=2)

line = ax.plot(tsis_times,tsis_sirr,’bo’,label=’TSIS␣Corrected’,markersize=2)

line2 = ax.plot(csim_uncorr_times,csim_uncorr_sirr,’ro’,label=’CSIMA␣

Uncorrected’,markersize=2)

line3 = ax.plot(csim_corr_times,csim_corr_sirr,’go’,label=’CSIMA␣Corrected’,

markersize=2)

line4 = ax.plot(csimCH2_uncorr_times,csimCH2_uncorr_sirr,’o’,color=’orange’,

label=’CSIMB␣Uncorrected’,markersize=2)
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ax.set_xlabel(’Time␣(Decimal␣Year)’)

ax.set_ylabel(’SIRR␣(W/nm*mˆ2)’)

title = ’Time␣Series␣of␣Irradiance␣at␣’ + str(wavelength) + ’nm’

ax.set_title(title)

sec_ax = ax.secondary_yaxis(’right’, functions=(to_percent, from_percent))

sec_ax.set_ylabel(’Percent␣Change’)

ax.legend()

plt.show()

fname = ’/Users/asm0945/Documents/IDL/CSIM/esr/plots/

csimtsis_timeseries_twostage_’

fname += str(wavelength) + ’nm.png’

fig.savefig(fname)

fig, ax = plt.subplots()

y = csim_corr_sirr

y0 = y[˜np.isnan(y)][0]
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ax.plot(model_times,model_sirr,’o’,color=’purple’,label=’NRLSSI2’,markersize

=2)

ax.plot(tsis_times,tsis_sirr,’bo’,label=’TSIS’,markersize=2)

ax.plot(csim_corr_times,csim_corr_sirr,’go’,label=’CSIMA␣Corrected’,markersize

=2)

ax.plot(csimCH2_uncorr_times,csimCH2_uncorr_sirr,’o’,color=’orange’,label=’

CSIMB␣Uncorrected’,markersize=2)

ax.set_xlabel(’Time␣(Decimal␣Year)’)

ax.set_ylabel(’SIRR␣(W/nm*mˆ2)’)

title = ’Time␣Series␣of␣Irradiance␣at␣’ + str(wavelength) + ’nm’

ax.set_title(title)

ax.legend()

sec_ax = ax.secondary_yaxis(’right’, functions=(to_percent, from_percent))

sec_ax.set_ylabel(’Percent␣Change’)

plt.show()
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fname = ’/Users/asm0945/Documents/IDL/CSIM/esr/plots/

corr_csimtsis_timeseries_twostage_’

fname += str(wavelength) + ’nm.png’

fig.savefig(fname)

return

A.29 integrate region

def integrate_region(start_wl,end_wl,spectra):

"""

This function integrates a spectra over a particular wavelength range

Parameters

----------

start_wl : int

The beginning of the wavelength region

end_wl: int

The end of the wavelength region

spectra: dataframe

This is the dataframe containing all spectral data for integrating

Returns
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-------

Returns a list containing two numpy arrays, one with decimalyear time data and

one with corresponding integrated spectra

"""

int_spectra = []

uniq_days = np.unique(spectra[’Day’].values)

for i in uniq_days:

indices = np.where(spectra[’Day’].values == i)

scan = spectra.iloc[indices]

wl_indices = np.where((scan[’Wavelengths’].values > start_wl) & (scan[’

Wavelengths’].values < end_wl))

scan = scan.iloc[wl_indices]

sirr = scan[’SIRR’].values

wavelengths = scan[’Wavelengths’].values

if len(wavelengths) > 2:

temp = integrate.trapz(sirr,wavelengths)

int_spectra.append(temp)

int_spectra = np.array(int_spectra)

uniq_days = time_convert(uniq_days,’jd’,’decimalyear’)

result = [uniq_days,int_spectra]

return result

A.30 int regions comparison two stage
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def int_regions_comparison_two_stage(start_wl,end_wl,corr_scans,all_scans,

all_scansCH2,tsis_scans,model):

"""

This function takes in all data sets and plots the time series of an

integrated region of a given start and end wavelength

This particular version is designed for two stage kappa, as offsets have to be

applied differently

Parameters

----------

start_wl : int

The requested start of the wavlength range to compare

end_wl: int

The requested end of the wavelength range to compare

corr_scans: dataframe

This is the dataframe containing all corrected scans (using a two stage

mission kappa)

all_scans: dataframe

This is the dataframe containing all uncorrected CSIM channel 1 scans

all_scansCH2: dataframe

This is a dataframe containing all uncorrected CSIM channel 2 scans

tsis_scans: dataframe

This is a dataframe containing all corrected TSIS Channel 1 Data

model: dataframe

This is a dataframe containing all model data
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Returns

-------

Nothing. Outputs plots to a screen and a folder.

"""

tsis_integrated = integrate_region(start_wl,end_wl,tsis_scans)

model_integrated = integrate_region(start_wl,end_wl,model)

ch1_corr_integrated = integrate_region(start_wl,end_wl,corr_scans)

ch1_uncorr_integrated = integrate_region(start_wl,end_wl,all_scans)

ch2_integrated = integrate_region(start_wl,end_wl,all_scansCH2)

tsis_days = tsis_integrated[0]

int_tsis_spectra = tsis_integrated[1]

ch1_corr_days = ch1_corr_integrated[0]

int_ch1_corr_spectra = ch1_corr_integrated[1]

ch1_uncorr_days = ch1_uncorr_integrated[0]

int_ch1_uncorr_spectra = ch1_uncorr_integrated[1]

ch2_days = ch2_integrated[0]

int_ch2_spectra = ch2_integrated[1]

model_days = model_integrated[0]

int_model_spectra = model_integrated[1]
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intersection = np.intersect1d(ch2_days,model_days)

mask = np.isin(model_days,intersection)

temp_times = model_days[mask]

indices = np.where(model_days > temp_times[0])

int_model_spectra = int_model_spectra[indices]

model_days = model_days[indices]

#offset all to match TSIS TSI

intersection = np.intersect1d(tsis_days,ch2_days)

mask = np.isin(tsis_days,intersection)

temp_times = tsis_days[mask]

indices = np.where(tsis_days > temp_times[0])

int_tsis_spectra = int_tsis_spectra[indices]

tsis_days = tsis_days[indices]
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diff = int_model_spectra[0] - int_tsis_spectra[0]

int_tsis_spectra = int_tsis_spectra + diff

day_break = np.where(ch1_corr_days > day_split)

int_ch1_corr_spectra_region2 = int_ch1_corr_spectra[day_break]

ch1_corr_days2 = ch1_corr_days[day_break]

intersect3 = np.intersect1d(ch1_corr_days2,tsis_days)

mask3 = np.isin(tsis_days,intersect3)

temp3 = int_tsis_spectra[mask3]

diff5 = temp3[0] - np.average(int_ch1_corr_spectra_region2[:5])

diff2 = int_model_spectra[0] - np.average(int_ch1_corr_spectra[:5])
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diff3 = int_model_spectra[0] - int_ch1_uncorr_spectra[0]

int_ch1_uncorr_spectra = int_ch1_uncorr_spectra +diff3

diff4 = int_model_spectra[0] - int_ch2_spectra[0]

int_ch2_spectra = int_ch2_spectra + diff4

for i in range(len(ch1_corr_days)):

if ch1_corr_days[i] < day_split:

int_ch1_corr_spectra[i] = int_ch1_corr_spectra[i] + diff2

else:

int_ch1_corr_spectra[i] = int_ch1_corr_spectra[i] + diff5

print(’Offset␣of␣’ + str(diff) + ’␣applied␣to␣tsis␣data␣to␣match␣NRLSSI2’)
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print(’Offset␣of␣’ + str(diff2) + ’␣applied␣to␣corrected␣channel␣1␣data␣region

␣one␣to␣match␣NRLSSI2’)

print(’Offset␣of␣’ + str(diff5) + ’␣applied␣to␣corrected␣channel␣1␣data␣region

␣two␣to␣match␣TSIS␣SIM’)

print(’Offset␣of␣’ + str(diff3) + ’␣applied␣to␣uncorrected␣channel␣2␣data␣to␣

match␣NRLSSI2’)

print(’Offset␣of␣’ + str(diff4) + ’␣applied␣to␣uncorrected␣channel␣1␣␣data␣to␣

match␣NRLSSI2’)

#filter tsis data because it is bad

if start_wl == 200:

tsis_min = 1.25

elif start_wl == 240:

tsis_min = 18

elif start_wl == 310:

tsis_min = 275.5

elif start_wl == 500:

tsis_min = 338.5

elif start_wl == 700:

tsis_min = 608

else:

tsis_min = 0
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tsis_filter = np.where(int_tsis_spectra > tsis_min)

tsis_days = tsis_days[tsis_filter]

int_tsis_spectra = int_tsis_spectra[tsis_filter]

#filter channel 2 data because it is bad

if start_wl == 200:

ch2_min = 0

elif start_wl == 240:

ch2_min = 0

elif start_wl == 310:

ch2_min = 275.5

elif start_wl == 500:

ch2_min = 338.5

elif start_wl == 700:

ch2_min = 608

else:

ch2_min = 0
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ch2_filter = np.where(int_ch2_spectra > ch2_min)

ch2_days = ch2_days[ch2_filter]

int_ch2_spectra = int_ch2_spectra[ch2_filter]

y = int_ch1_corr_spectra

y0 = y[˜np.isnan(y)][0]

def to_percent(y):

return (y - y0) / y0 * 100

def from_percent(y):

return y

fig, ax = plt.subplots(2)

ax[0].plot(model_days,int_model_spectra,’o’,color=’purple’,label=’NRLSSI2’,

markersize=2)

ax[0].plot(tsis_days,int_tsis_spectra,’bo’,label=’TSIS’,markersize=2)

ax[0].plot(ch1_corr_days,int_ch1_corr_spectra,’go’,label=’CSIMA␣Corrected’,

markersize=2)

ax[0].plot(ch1_uncorr_days,int_ch1_uncorr_spectra,’ro’,label=’CSIMA␣

Uncorrected’,markersize=2)

ax[0].plot(ch2_days,int_ch2_spectra,’o’,color=’orange’,label=’CSIMB␣

Uncorrected’,markersize=2)

ax[0].set_xlabel(’Time␣(Decimal␣Year)’)
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ax[0].set_ylabel(’IRR␣(W/mˆ2)’)

title = str(start_wl) + ’␣nm␣-␣’ + str(end_wl) + ’␣nm’

fig.suptitle(title)

ax[0].legend()

ax[0].axvline(x=day_split)

sec_ax = ax[0].secondary_yaxis(’right’, functions=(to_percent, from_percent))

sec_ax.set_ylabel(’Percent␣Change’)

y = int_ch1_corr_spectra

y0 = y[˜np.isnan(y)][0]

ax[1].plot(model_days,int_model_spectra,’o’,color=’purple’,label=’NRLSSI2’,

markersize=2)

ax[1].plot(tsis_days,int_tsis_spectra,’o’,color=’blue’,label=’TSIS’,markersize

=2)

ax[1].plot(ch1_corr_days,int_ch1_corr_spectra,’o’,color=’green’,label=’CSIMA␣

Corrected’,markersize=2)

ax[1].plot(ch2_days,int_ch2_spectra,’o’,color=’orange’,label=’CSIMB␣

Uncorrected’,markersize=2)

ax[1].set_xlabel(’Time␣(Decimal␣Year)’)

ax[1].set_ylabel(’IRR␣(W/mˆ2)’)

sec_ax = ax[1].secondary_yaxis(’right’, functions=(to_percent, from_percent))
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sec_ax.set_ylabel(’Percent␣Change’)

fig.set_figwidth(8)

fig.set_figheight(10)

fig.tight_layout()

fig.subplots_adjust(top=0.95)

ax[1].axvline(x=day_split)

plt.show()

fname = ’/Users/asm0945/Documents/IDL/CSIM/esr/plots/region_’ + str(start_wl)

+ ’_’ + str(end_wl) + ’_two_stage.png’

fig.savefig(fname)

A.31 int regions comparison

def int_regions_comparison(start_wl,end_wl,corr_scans,all_scans,all_scansCH2,

tsis_scans,model):

"""

This function takes in all data sets and plots the time series of an

integrated region of a given start and end wavelength

This particular version is designed for the overall mission kappa

Parameters

----------

start_wl : int

The requested start of the wavlength range to compare

end_wl: int
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The requested end of the wavelength range to compare

corr_scans: dataframe

This is the dataframe containing all corrected scans (using an overall

mission kappa)

all_scans: dataframe

This is the dataframe containing all uncorrected CSIM channel 1 scans

all_scansCH2: dataframe

This is a dataframe containing all uncorrected CSIM channel 2 scans

tsis_scans: dataframe

This is a dataframe containing all corrected TSIS Channel 1 Data

model: dataframe

This is a dataframe containing all model data

Returns

-------

Nothing. Outputs plots to a screen and a folder.

"""

tsis_integrated = integrate_region(start_wl,end_wl,tsis_scans)

model_integrated = integrate_region(start_wl,end_wl,model)

ch1_corr_integrated = integrate_region(start_wl,end_wl,corr_scans)

ch1_uncorr_integrated = integrate_region(start_wl,end_wl,all_scans)

ch2_integrated = integrate_region(start_wl,end_wl,all_scansCH2)

tsis_days = tsis_integrated[0]

int_tsis_spectra = tsis_integrated[1]
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ch1_corr_days = ch1_corr_integrated[0]

int_ch1_corr_spectra = ch1_corr_integrated[1]

ch1_uncorr_days = ch1_uncorr_integrated[0]

int_ch1_uncorr_spectra = ch1_uncorr_integrated[1]

ch2_days = ch2_integrated[0]

int_ch2_spectra = ch2_integrated[1]

model_days = model_integrated[0]

int_model_spectra = model_integrated[1]

intersection = np.intersect1d(ch2_days,model_days)

mask = np.isin(model_days,intersection)

temp_times = model_days[mask]

indices = np.where(model_days > temp_times[0])

int_model_spectra = int_model_spectra[indices]

model_days = model_days[indices]
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#offset all to match TSIS TSI

intersection = np.intersect1d(tsis_days,ch2_days)

mask = np.isin(tsis_days,intersection)

temp_times = tsis_days[mask]

indices = np.where(tsis_days > temp_times[0])

int_tsis_spectra = int_tsis_spectra[indices]

tsis_days = tsis_days[indices]

diff = int_model_spectra[0] - int_tsis_spectra[0]

int_tsis_spectra = int_tsis_spectra + diff

diff2 = int_model_spectra[0] - int_ch1_corr_spectra[0]

int_ch1_corr_spectra = int_ch1_corr_spectra + diff2

diff3 = int_model_spectra[0] - int_ch1_uncorr_spectra[0]
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int_ch1_uncorr_spectra = int_ch1_uncorr_spectra +diff3

diff4 = int_model_spectra[0] - int_ch2_spectra[0]

int_ch2_spectra = int_ch2_spectra + diff4

print(’Offset␣of␣’ + str(diff) + ’␣applied␣to␣tsis␣data␣to␣match␣NRLSSI2’)

print(’Offset␣of␣’ + str(diff2) + ’␣applied␣to␣corrected␣channel␣1␣data␣to␣

match␣NRLSSI2’)

print(’Offset␣of␣’ + str(diff3) + ’␣applied␣to␣uncorrected␣channel␣2␣data␣to␣

match␣NRLSSI2’)

print(’Offset␣of␣’ + str(diff4) + ’␣applied␣to␣uncorrected␣channel␣1␣␣data␣to␣

match␣NRLSSI2’)

#filter tsis data because it is bad

if start_wl == 200:

tsis_min = 1.25

elif start_wl == 240:

tsis_min = 18

elif start_wl == 310:

tsis_min = 275.5



175

elif start_wl == 500:

tsis_min = 338.5

elif start_wl == 700:

tsis_min = 608

else:

tsis_min = 0

tsis_filter = np.where(int_tsis_spectra > tsis_min)

tsis_days = tsis_days[tsis_filter]

int_tsis_spectra = int_tsis_spectra[tsis_filter]

#filter channel 2 data because it is bad

if start_wl == 200:

ch2_min = 0

elif start_wl == 240:

ch2_min = 0

elif start_wl == 310:

ch2_min = 275.5
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elif start_wl == 500:

ch2_min = 338.5

elif start_wl == 700:

ch2_min = 608

else:

ch2_min = 0

ch2_filter = np.where(int_ch2_spectra > ch2_min)

ch2_days = ch2_days[ch2_filter]

int_ch2_spectra = int_ch2_spectra[ch2_filter]

y = int_ch1_corr_spectra

y0 = y[˜np.isnan(y)][0]

def to_percent(y):

return (y - y0) / y0 * 100

def from_percent(y):

return y

fig, ax = plt.subplots(2)

ax[0].plot(model_days,int_model_spectra,’o’,color=’purple’,label=’NRLSSI2’,

markersize=2)

ax[0].plot(tsis_days,int_tsis_spectra,’bo’,label=’TSIS’,markersize=2)
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ax[0].plot(ch1_corr_days,int_ch1_corr_spectra,’go’,label=’CSIMA␣Corrected’,

markersize=2)

ax[0].plot(ch1_uncorr_days,int_ch1_uncorr_spectra,’ro’,label=’CSIMA␣

Uncorrected’,markersize=2)

ax[0].plot(ch2_days,int_ch2_spectra,’o’,color=’orange’,label=’CSIMB␣

Uncorrected’,markersize=2)

ax[0].set_xlabel(’Time␣(Decimal␣Year)’)

ax[0].set_ylabel(’IRR␣(W/mˆ2)’)

title = str(start_wl) + ’␣nm␣-␣’ + str(end_wl) + ’␣nm’

fig.suptitle(title,size=20)

ax[0].legend()

sec_ax = ax[0].secondary_yaxis(’right’, functions=(to_percent, from_percent))

sec_ax.set_ylabel(’Percent␣Change’)

y = int_ch1_corr_spectra

y0 = y[˜np.isnan(y)][0]

ax[1].plot(model_days,int_model_spectra,’o’,color=’purple’,label=’NRLSSI2’,

markersize=2)

ax[1].plot(tsis_days,int_tsis_spectra,’o’,color=’blue’,label=’TSIS’,markersize

=2)

ax[1].plot(ch1_corr_days,int_ch1_corr_spectra,’o’,color=’green’,label=’CSIMA␣

Corrected’,markersize=2)
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ax[1].plot(ch2_days,int_ch2_spectra,’o’,color=’orange’,label=’CSIMB␣

Uncorrected’,markersize=2)

ax[1].set_xlabel(’Time␣(Decimal␣Year)’)

ax[1].set_ylabel(’IRR␣(W/mˆ2)’)

sec_ax = ax[1].secondary_yaxis(’right’, functions=(to_percent, from_percent))

sec_ax.set_ylabel(’Percent␣Change’)

fig.set_figwidth(8)

fig.set_figheight(10)

fig.tight_layout()

fig.subplots_adjust(top=0.95)

plt.show()

fname = ’/Users/asm0945/Documents/IDL/CSIM/esr/plots/region_’ + str(start_wl)

+ ’_’ + str(end_wl) + ’.png’

fig.savefig(fname)

A.32 plot all integrated spectra

def plot_all_integrated_spectra(corr_scans,all_scans,all_scansCH2,tsis_scans,

tsis_TSI,key):

"""

This function takes in all data sets and plots the total integrated spectra in

order to make

total solar irradiance comparisons
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Parameters

----------

corr_scans: dataframe

This is the dataframe containing all corrected scans (using an overall

mission kappa)

all_scans: dataframe

This is the dataframe containing all uncorrected CSIM channel 1 scans

all_scansCH2: dataframe

This is a dataframe containing all uncorrected CSIM channel 2 scans

tsis_scans: dataframe

This is a dataframe containing all corrected TSIS Channel 1 Data

tsis_TSI: dataframe

This is a dataframe containing all TSIS TIM data

key: string

Intended to change figure output names depending on which corrected data

set is being plotted.

Returns

-------

Nothing. Outputs plots to a screen and a folder.

"""

tsis_result = plot_total_integrated_spectra(tsis_scans,’TSIS’)

ch1_uncorr_result = plot_total_integrated_spectra(all_scans,’’)

ch1_corr_result = plot_total_integrated_spectra(corr_scans,’’)
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ch2_result = plot_total_integrated_spectra(all_scansCH2,’CH2’)

tsis_days = tsis_result[0]

int_tsis_spectra = tsis_result[1]

ch1_corr_days = ch1_corr_result[0]

int_ch1_corr_spectra = ch1_corr_result[1]

ch1_uncorr_days = ch1_uncorr_result[0]

int_ch1_uncorr_spectra = ch1_uncorr_result[1]

ch2_days = ch2_result[0]

int_ch2_spectra = ch2_result[1]

tsi_days = tsis_TSI[’Day’].values

tsi_days = time_convert(tsi_days,’jd’,’decimalyear’)

tsi_irr = tsis_TSI[’TSI’].values

intersection = np.intersect1d(ch2_days,tsi_days)

mask = np.isin(tsi_days,intersection)

temp_times = tsi_days[mask]
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indices = np.where(tsi_days > temp_times[0])

tsi_irr = tsi_irr[indices]

tsi_days = tsi_days[indices]

zero_filter = np.where(tsi_irr > 0)

tsi_days = tsi_days[zero_filter]

tsi_irr = tsi_irr[zero_filter]

#offset all to match TSIS TSI

intersection = np.intersect1d(tsis_days,ch2_days)

mask = np.isin(tsis_days,intersection)

temp_times = tsis_days[mask]

indices = np.where(tsis_days > temp_times[0])

int_tsis_spectra = int_tsis_spectra[indices]

tsis_days = tsis_days[indices]
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diff = tsi_irr[0] - int_tsis_spectra[0]

int_tsis_spectra = int_tsis_spectra + diff

diff2 = tsi_irr[0] - np.average(int_ch1_corr_spectra[:5])

int_ch1_corr_spectra = int_ch1_corr_spectra + diff2

diff3 = tsi_irr[0] - np.average(int_ch1_uncorr_spectra[:5])

int_ch1_uncorr_spectra = int_ch1_uncorr_spectra +diff3

diff4 = tsi_irr[0] - np.average(int_ch2_spectra[:5])

int_ch2_spectra = int_ch2_spectra + diff4

print(’Offset␣of␣’ + str(diff) + ’␣applied␣to␣tsis␣data␣to␣match␣TSIS␣TSI’)

print(’Offset␣of␣’ + str(diff2) + ’␣applied␣to␣corrected␣channel␣1␣data␣to␣

match␣TSIS␣TSI’)

print(’Offset␣of␣’ + str(diff3) + ’␣applied␣to␣uncorrected␣channel␣2␣data␣to␣

match␣TSIS␣TSI’)

print(’Offset␣of␣’ + str(diff4) + ’␣applied␣to␣uncorrected␣channel␣1␣␣data␣to␣

match␣TSIS␣TSI’)
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y = int_ch1_uncorr_spectra

y0 = y[˜np.isnan(y)][0]

def to_percent(y):

return (y - y0) / y0 * 100

def from_percent(y):

return y

fig, ax = plt.subplots(2)

title = ’Total␣Solar␣Irradiance␣Time␣Series’

fig.suptitle(title,size=20)

ax[0].plot(tsi_days,tsi_irr,’o’,color=’purple’,label=’TSIS␣TSI’,markersize=2)

ax[0].plot(tsis_days,int_tsis_spectra,’bo’,label=’TSIS’,markersize=2)

ax[0].plot(ch1_corr_days,int_ch1_corr_spectra,’go’,label=’CSIMA␣Corrected’,

markersize=2)

ax[0].plot(ch1_uncorr_days,int_ch1_uncorr_spectra,’ro’,label=’CSIMA␣

Uncorrected’,markersize=2)

ax[0].plot(ch2_days,int_ch2_spectra,’o’,color=’orange’,label=’CSIMB␣

Uncorrected’,markersize=2)

ax[0].set_xlabel(’Time␣(Decimal␣Year)’)
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ax[0].set_ylabel(’IRR␣(W/mˆ2)’)

ax[0].legend()

sec_ax = ax[0].secondary_yaxis(’right’, functions=(to_percent, from_percent))

sec_ax.set_ylabel(’Percent␣Change’)

y = int_ch1_corr_spectra

y0 = y[˜np.isnan(y)][0]

ax[1].plot(tsi_days,tsi_irr,’o’,color=’purple’,label=’TSIS␣TSI’,markersize=2)

ax[1].plot(tsis_days,int_tsis_spectra,’o’,color=’blue’,label=’TSIS’,markersize

=2)

ax[1].plot(ch1_corr_days,int_ch1_corr_spectra,’o’,color=’green’,label=’CSIMA␣

Corrected’,markersize=2)

ax[1].plot(ch2_days,int_ch2_spectra,’o’,color=’orange’,label=’CSIMB␣

Uncorrected’,markersize=2)

ax[1].set_xlabel(’Time␣(Decimal␣Year)’)

ax[1].set_ylabel(’IRR␣(W/mˆ2)’)

sec_ax = ax[1].secondary_yaxis(’right’, functions=(to_percent, from_percent))

sec_ax.set_ylabel(’Percent␣Change’)
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fig.set_figwidth(8)

fig.set_figheight(10)

fig.tight_layout()

fig.subplots_adjust(top=0.95)

plt.show()

fname = ’/Users/asm0945/Documents/IDL/CSIM/esr/plots/tsi_time_series_’ + key +

’.png’

fig.savefig(fname)

A.33 Analysis Code

#The following is the code I ran to generate the plots and perform a comparison

analysis

date1 = ’2020-07-24’

date2 = ’2020-08-02’

solar_var(date1,date2,1)

tsis_scans = load_tsis_data()

model = load_model_data()

tsis_TSI = load_tsis_tsi()

all_scans = load_all_scans(1)

all_scansCH2 = load_all_scans(2)

#global variable to define where split happens

day_split = 2020.0
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times = time_convert(all_scans[’Day’].values,’jd’,’decimalyear’)

exposure_split = all_scans.iloc[np.where(times > day_split)].Exposure.min()

corr_scans = kappa_correction(1)

two_stage_corr_scans = two_stage_correction(1)

plot_all_integrated_spectra(corr_scans,all_scans,all_scansCH2,tsis_scans,tsis_TSI

,’overall’)

plot_all_integrated_spectra(two_stage_corr_scans,all_scans,all_scansCH2,

tsis_scans,tsis_TSI,’two-stage’)

int_regions_comparison(200,240,corr_scans,all_scans,all_scansCH2,tsis_scans,model

)

int_regions_comparison(240,310,corr_scans,all_scans,all_scansCH2,tsis_scans,model

)

int_regions_comparison(310,500,corr_scans,all_scans,all_scansCH2,tsis_scans,model

)

int_regions_comparison(500,700,corr_scans,all_scans,all_scansCH2,tsis_scans,model

)

int_regions_comparison(700,1800,corr_scans,all_scans,all_scansCH2,tsis_scans,

model)

int_regions_comparison_two_stage(200,240,two_stage_corr_scans,all_scans,

all_scansCH2,tsis_scans,model)

int_regions_comparison_two_stage(240,310,two_stage_corr_scans,all_scans,

all_scansCH2,tsis_scans,model)
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int_regions_comparison_two_stage(310,500,two_stage_corr_scans,all_scans,

all_scansCH2,tsis_scans,model)

int_regions_comparison_two_stage(500,700,two_stage_corr_scans,all_scans,

all_scansCH2,tsis_scans,model)

int_regions_comparison_two_stage(700,1800,two_stage_corr_scans,all_scans,

all_scansCH2,tsis_scans,model)
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