
Turbulence Model Development Using Approximate

Bayesian Computation

by

Olga A. Doronina

M.S., Moscow Institute of Physics and Technology, 2014

B.S., Moscow Institute of Physics and Technology, 2012

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Mechanical Engineering

2020

Committee Members:

Peter E. Hamlington

Daven K. Henze

Debanjan Mukherjee

Ian Grooms

William Kleiber



Doronina, Olga A. (Ph.D., Mechanical Engineering)

Turbulence Model Development Using Approximate Bayesian Computation

Thesis directed by Prof. Peter E. Hamlington

Turbulent flows are present in a wide variety of real-world engineering problems, often by

design due to their favorable mixing characteristics. At the same time, however, these flows are

challenging to simulate due to the computational cost of resolving the wide ranges of spatial and

temporal scales associated with practical engineering applications. There are two main approaches

— large-eddy simulations (LES) and Reynolds averaged Navier Stokes (RANS) simulations — to

reduce the computational cost of such simulations, and both approaches use models to represent

unresolved small-scale processes and close the governing equations. To date, however, there is

still no universally accurate closure model for either LES or RANS, and the most widely used

models continue to employ empirical coefficients that have been calibrated for different flows and

geometries.

To achieve more flexible turbulence model calibration using a range of reference data sources,

in this dissertation we develop and demonstrate a method based on approximate Bayesian Compu-

tation (ABC). This approach provides probability distributions of calibrated parameters, and thus

naturally provides uncertainties in parameter estimates. Moreover, compared to full Bayesian anal-

yses, the ABC approach does not require the direct computation of a likelihood function, thereby

enabling substantially faster estimation of unknown parameters and the calibration of more com-

plicated models.

In this dissertation, we describe the ABC approach in detail, including the use of a Markov

chain Monte Carlo (MCMC) technique, calibration step, adaptive proposal, and a linear regression

correction. We demonstrate the baseline ABC method without MCMC by estimating unknown

boundary conditions in simulations of turbulent buoyant jets, where lower-dimensional experimental

measurements from laser absorption spectroscopy are used as reference data. Then, to demonstrate



iii

how the ABC approach can be applied to turbulence model calibration, we estimate parameters

for three different turbulence models.

First, ABC and MCMC methods are used to estimate values of model coefficients, as well

as their joint probability distributions, in a subgrid-scale nonlinear model for LES of turbulent

flows. The results from both a priori and a posteriori tests are provided for homogeneous isotropic

turbulence. We also demonstrate how parameters can be calibrated without external reference data

using ABC in an autonomic closure procedure.

Second, we use ABC and MCMC to estimate parameters in a nonequilibrium anisotropy clo-

sure for RANS simulations of unsteadily strained homogeneous flows. Unknown model parameters

are estimated based on turbulence kinetic energy reference data for four impulsively-sheared homo-

geneous turbulence test cases, as well as for periodically-sheared homogeneous turbulence with five

different shearing frequencies. The ABC and MCMC methods are shown to yield parameter values

for the nonequilibrium anisotropy closure that provide good agreement between model results and

reference data.

Finally, we demonstrate the ABC and MCMC approaches applied to a more complicated

inhomogeneous flow, in particular the axisymmetric transonic bump case, and calibrate parameters

in the RANS Menter Shear-Stress Transport model, using experiments as reference data.

In this dissertation, we thus demonstrate how the ABC approach can be applied to success-

fully calibrate a range of turbulence models, even those containing many parameters and partial

differential equations.



Contents

Chapter

1 Introduction 1

1.1 Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Primary Contributions of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Products in the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Approximate Bayesian Computation Metholodogy 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Explanation of the ABC Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Markov Chain Monte Carlo without Likelihood . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Adaptive Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Calibration Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Local-Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Flow Parameter Estimation Using Approximate Bayesian Computation 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Reference Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Burner Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Vertical Temperature Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Present Configuration of ABC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



v

3.4 Parameter Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Posterior Distributions and Estimated Parameters . . . . . . . . . . . . . . . 28

3.4.2 Temperature Profile and Field Comparisons . . . . . . . . . . . . . . . . . . . 33

3.4.3 Observing System Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Subgrid-Scale Model Calibration Using ABC-MCMC 38

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Subgrid-Scale Closure for Large-Eddy Simulations . . . . . . . . . . . . . . . . . . . 40

4.2.1 Inverse Problem with DNS as Reference Data . . . . . . . . . . . . . . . . . . 40

4.2.2 Autonomic Closure as an Inverse Problem . . . . . . . . . . . . . . . . . . . . 41

4.2.3 Approximate Bayesian Computation Autonomic Closure (ABC-AC) . . . . . 42

4.3 Reference Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Summary Statistics and Statistical Distance . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Results with DNS as Reference Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5.1 A Priori Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5.2 A Posteriori Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Autonomic Closure Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6.1 A Priori Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6.2 A Posteriori Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Nonequilibrium Turbulence Model Calibration Using ABC-MCMC 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Description of Nonequilibrium Turbulence Model . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Nonequilibrium Anisotropy Closure . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Stochastic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.3 Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



vi

5.3 Description of Nonequilibrium Homogeneous Test Cases . . . . . . . . . . . . . . . . 67

5.3.1 Impulsively-Strained Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.2 Periodically Sheared turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.3 Decaying Anisotropic Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.4 Straining, Relaxation, and Destraining . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.1 Impulsively-Strained Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.2 Periodically-Sheared Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5.1 1D Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Menter Shear-Stress Transport Model Calibration Using ABC-MCMC 77

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Description of Menter Shear-Stress Transport Two-Equation Model . . . . . . . . . . 79

6.3 Flow Solver and Test Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Parameter Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4.1 Calibration Step and Choice of Summary Statistics . . . . . . . . . . . . . . . 84

6.4.2 Results from ABC-MCMC Parameter Esimation . . . . . . . . . . . . . . . . 89

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Conclusions and Future Research 94

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



vii

Bibliography 97

Appendix

A Catalytic Burner 107

A.1 Physical experiments setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.1.1 Laser absorption spectroscopy (LAS) . . . . . . . . . . . . . . . . . . . . . . . 109

A.1.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.2 Numerical experiments setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.2.1 Large eddy simulations (LES) . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.2.2 LAS-equivalent model summary statistics . . . . . . . . . . . . . . . . . . . . 115



viii

Tables

Table

3.1 Catalytic burner operating conditions studied here, showing the burner power flux,

equivalence ratio φ, line-of-sight absorption-weighted time-averaged surface temper-

ature T0, and estimated bulk flow speed V0 of burner exit gases. . . . . . . . . . . . . 22

3.2 Maximum a posterior probability estimates from ABC of the burner inlet speed, heat

source strength, and heat source height for each of the cases. Parameter estimates are

obtained from the 5% acceptance rate full 3D posteriors, and values in parentheses

show the nearest simulation values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 MAP values from joint probability density functions. . . . . . . . . . . . . . . . . . . 49

6.1 Nominal values of Menter SST model coefficients. . . . . . . . . . . . . . . . . . . . . 80

6.2 Estimated parameters for SST model. . . . . . . . . . . . . . . . . . . . . . . . . . . 90



Figures

Figure

2.1 ABC rejection algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 ABC-MCMC algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 ABC-MCMC with calibration step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Vertical profiles of absorption-weighted time-averaged temperature above the cat-

alytic burner. Results are shown for the three experimental cases in Table 3.1.

Experimental uncertainties are based on instrument validation. The inset shows

temperature profiles normalized by T0 from Table 3.1. . . . . . . . . . . . . . . . . . 21

3.2 One-dimensional marginalized posteriors for Cases 1, 2 and 3 (top, middle, and

bottom rows, respectively) for inlet speed, heat source strength, and heat source

height (left, middle and right columns, respectively). Line colors correspond to the

percentage of accepted simulations, as determined by the rejection threshold ε. Raw

posteriors (i.e., before Gaussian kernel estimation) are shown by dark gray bars,

and prior distributions are shown by the lighter gray regions. Vertical red dash-dot

lines show the most probable parameter values from the full 3D posterior for a 5%

acceptance rate, summarized in Table 3.2. . . . . . . . . . . . . . . . . . . . . . . . . 29



x

3.3 Two-dimensional marginalized joint posteriors for Cases 1, 2 and 3 (top, middle, and

bottom rows, respectively) when ε is set to accept 5% of simulations. Columns show

joint posteriors for heat source strength and inlet speed (left), heat source height

and inlet speed (middle), and heat source strength and heat source height (right).

Colors represent the density of the posterior, with yellow and blue corresponding to

high and low densities, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Vertical profiles of temporally-averaged, line-of-sight, absorption-weighted tempera-

ture from LES using parameters in Table 3.2 (solid lines) and from the LAS (empty

circles) for each burner case. Error bars denote experimental uncertainty. . . . . . . 33

3.5 Probability density functions (pdfs) of temperature 1.05 cm above the burner from

LES for Cases 1–3 (a–c), showing results from all tested parameters (black lines) and

from the closest 5% of parameters, as determined using ABC (blue lines). The pdf

magnitudes for the top 5% results are decreased by a factor of 4 for display purposes.

Modes of the pdfs are shown by the vertical dash-dot lines, and the experimental

measurements at this height, with uncertainties of ±3%, are indicated by the red

shaded regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Example velocity fields and SGS stresses σij at the LES scale for pseudospectral HIT

data [61] used in a priori testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Marginal and joint probability density functions of accepted values of C1, C2, and

C3 for the three-term second order model from Eq. (4.5) trained using pdf of σij as

summary statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Marginal and joint probability density functions of accepted values of C1, C2, C3,

and C4 for the four-term second order model from Eq. (4.5) trained using pdf of σij

as summary statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



xi

4.4 Marginal and joint probability density functions of accepted values of C1, C2, and C3

for the three-term second-order model from Eq. (4.5) trained using pdf of production

σijSij as summary statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Marginal and joint probability density functions of accepted values of C1, C2, C3,

and C4 for the four-term second-order model from Eq. (4.5) trained using pdf of

production σijSij as summary statistics. . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Marginal and joint probability density functions of accepted values of C1, C2, and

C3 for the three-term second order model from Eq. (4.5) trained using a combination

of production pdf σijSij and pdf of σij as summary statistics. . . . . . . . . . . . . . 52

4.7 Marginal and joint probability density functions of accepted values of C1, C2, C3, and

C4 for the four-term second order model from Eq. (4.5) trained using a combination

of production pdf σijSij and pdf of σij as summary statistics. . . . . . . . . . . . . . 52

4.8 The comparison of truth summary statistics Sσ and SP with modeled summary

statistics S ′σ and S ′P produced by three- and four-parameter model with the MAP

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.9 Spectra of HIT LES forward runs with MAP model parameters from Table 4.1. . . . 54

4.10 Spectra distributions of stable forward runs: a) three parameters models, b) four

parameters models. The intensity of magenta lines indicates the probability of each

set to be sampled from posterior distribution. . . . . . . . . . . . . . . . . . . . . . . 55

4.11 Statistical characteristics of spectra distributions of stable forward runs. Shaded area

shows 75% confidence interval for each wavenumber k: a) three-parameters model,

b) four-parameters model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.12 Distribution of Reynolds stresses pdf and production pdf for four-parameter model:

a)trained on sigma summary statistic, b) trained on production summary statistic

and c) trained on combination of sigma and production summary statistics. . . . . . 56

4.13 Probability density functions of the deviatoric stresses at LES (red lines) and test

(green lines) scales, denoted σij and σ̂ij , respectively. . . . . . . . . . . . . . . . . . . 58



xii

4.14 Accepted values for the CS parameter in the first order model and corresponding

statistical distances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.15 Probability density functions of stresses σFij from the one-parameter first order model

in Eq. (4.18) at the LES scale (green lines) and the true LES scale stresses σij from

the DNS (red lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.16 Marginal and joint probability density functions of accepted values of CS , C2, and

C3 for the second order model in Eq. (4.19) at the test scale. Dashed green lines

show the mean of each marginal pdf, and dashed red lines show the location of the

MAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.17 Probability density functions of stresses σ′ij from the three-parameter second order

model in Eq. (4.19) at the LES scale (green lines) and the true LES scale stresses

σij from the DNS (red lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.18 Kinetic energy spectra obtained from LES of HIT using spectraLES and the second-

order model with coefficients from Eq. (4.21). . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Marginal and joint probability density functions of accepted values of C1, C2, Cε1

and Cε2 for initially isotropic impulsively-strained homogeneous turbulence cases. . . 71

5.2 The evolution of turbulence kinetic energy k(t)/k0 for the nonequilibrium model

(solid lines) and reference data (points) for (a) the initially isotropic impulsively-

strained homogeneous turbulence cases and (b) the periodically-sheared turbulence

cases. Model parameters are determined using reference data from the impulsively-

strained cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 The evolution of turbulence kinetic energy k(t)/k0 for the nonequilibrium model

(solid lines) and reference data (points) for (a) the initially isotropic impulsively-

strained homogeneous turbulence cases and (b) the periodically-sheared turbulence

cases. Model parameters are determined using reference data from the periodically-

sheared cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



xiii

5.4 Marginal and joint probability density functions of accepted values of C1, C2, Cε1

and Cε2 for the periodically-sheared homogeneous turbulence cases. . . . . . . . . . . 74

5.5 Example of noninformative statistics with the black line showing linear fit from

Eq.(5.17). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6 Example of informative statistics statistics with the black line showing linear fit from

Eq.(5.17). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.7 Informative statistics (black dots) and noninformative statistics (colored dots) for

impulsively-strained turbulence cases (Section 5.3.1) and C1 parameter (with other

parameters being fixed) in nonequilibrium anisotropy closure. . . . . . . . . . . . . . 76

5.8 1D posterior distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1 Axisymmetric transonic bump geometry and experiment schematic. . . . . . . . . . . 82

6.2 Experimental data and numerical result for the Menter SST model with nominal

coefficients from Table 6.1 of a) mean velocity and b) turbulent shear stress. . . . . . 83

6.3 Experimental data and numerical result for the Menter SST model with nominal

coefficients from Table 6.1 of pressure coefficient Cp. . . . . . . . . . . . . . . . . . . 83



xiv

6.4 Marginal posteriors for calibration step with β∗, σω1, β1, β2, a1 parameters and 7776

samples. Each row shows a posterior for different summary statistics: (a) pressure

coefficient, (b) mean velocity, (c) turbulent shear stresses profiles, (d) combination

of pressure coefficient and mean velocity profiles data, (e) combination of pressure

coefficient, mean velocity profiles, and turbulent shear stress profiles data, and (f)

combination of pressure coefficient, mean velocity profiles, and turbulent shear stress

profiles data with condition on separation and reattachment error to be less than

0.25. Line colors correspond to the percentage of accepted simulations, as determined

by the rejection threshold ε. Raw marginals for a 3% acceptance rate (i.e., before

Gaussian kernel density estimation) are shown by gray bars. Red dots show the

most probable parameter values from the full 5D posteriors for a 3% acceptance

rate. Vertical blue dashed lines show the nominal parameter values listed in Table 6.1. 86

6.5 Experimental data and numerical result of (a) mean velocity and (b) turbulent shear

stress for the Menter SST model with nominal coefficients from Table 6.1 and max-

imum values of the posterior shown in Figure 6.4. . . . . . . . . . . . . . . . . . . . . 87

6.6 Experimental data and numerical result of pressure coefficient Cp for the Menter SST

model with nominal coefficients from Table 6.1 and maximum values of the posterior

shown in Figure 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.7 Marginal posteriors for calibration step with β∗, σω1, β1/β
∗, β2/β

∗, a1 parameters and

28804 samples.Line colors correspond to the percentage of accepted simulations, as

determined by the rejection threshold ε. Raw marginals for a 3% acceptance rate

(i.e., before Gaussian kernel density estimation) are shown by gray bars. Vertical

blue dashed lines show the nominal parameter values listed in Table 6.1. . . . . . . . 89



xv

6.8 Marginal posteriors for calibration step with β∗, β1/β
∗, β2/β

∗, a1 and 20736 samples.

Line colors correspond to the percentage of accepted simulations, as determined

by the rejection threshold ε. Raw marginals for a 3% acceptance rate (i.e., before

Gaussian kernel density estimation) are shown by gray bars. Vertical blue dashed

lines show the nominal parameter values listed in Table 6.1. . . . . . . . . . . . . . . 89

6.9 Two-dimensional marginalized joint posteriors. Diagonal subplots show one-dimensional

marginal pdfs, upper-diagonal subplots show two-dimensional marginalized pdfs and

under-diagonal subplots show conditional pdfs taken at MAP values. Red dashed

lines represent the MAP values of 4D posterior. . . . . . . . . . . . . . . . . . . . . . 90

6.10 Experimental data and numerical result of (a) mean velocity and (b) turbulent shear

stress for the Menter SST model with nominal coefficients from Table 6.1 and maxi-

mum values of the posterior shown in Figure 6.4. The shaded area indicates the 75%

confidence interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.11 Experimental data and numerical result of pressure coefficient and mean velocity

profile for the Menter SST model with nominal coefficients from Table 6.1 and max-

imum values of the posterior shown in Figure 6.4. The shaded area indicates the

75% confidence interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.1 Schematic of the experimental setup for laser absorption spectroscopy above the

catalytic burner (a), and an image of the burner in operation, including laser optics

(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.2 Schematic showing the setup of the 3D LES domain (left), temperature field (i.e.,

volume rendering of a 500 K isosurface and additional volume rendering at higher

locations) of a single snapshot in time from a simulation with inlet mean temperature

of 1515 K and inlet speed of 0.38 m/s with no additional heat added above the burner

surface (middle), and speed field on the same temperature isosurface (right). . . . . 114



Chapter 1

Introduction

Many engineering problems spanning a wide range of application areas involve turbulent

fluid flow. Numerical simulations of such problems can significantly reduce the cost of engineering

design and can help to better understand the physics of the problem. However, turbulent flows

are challenging to simulate because of the high computational cost of resolving the full range of

relevant spatial and temporal scales present in high Reynolds number real-world flows.

There are two common approaches to reduce the cost of such simulations: (i) large-eddy

simulations (LES), which directly resolve turbulence on large scales and use subgrid-scale (SGS)

models to represent small-scale physics, and (ii) Reynolds averaged Navier-Stokes (RANS) ap-

proaches, which resolve only averaged quantities and model turbulent fluctuations. In both of

these approaches, however, there is no universally accurate turbulence model. All models rely on

empirical coefficients that must be calibrated for different flows and geometries. In this disserta-

tion, we find these coefficients using data-driven approaches based on experiments or high-fidelity

computational data.

Traditionally, turbulence model parameters have been determined through either direct in-

version of model equations, given some reference data, or using optimization techniques. Recently,

a direct inversion technique for RANS has been developed by Parish and Duraisamy [84] using a

machine learning approach. However, this approach becomes complicated for models with many

different parameters or when the model itself consists of partial differential equations. Oberkampf,

Trucano, and co-authors [80, 81, 82, 79] have advocated against optimization approaches in partic-
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ular, noting that model parameter estimates must necessarily include quantification of uncertainty,

especially given the uncertain nature of essentially all reference data (even if only due to statistical

non-convergence), as well as the approximate nature of SGS models (even for the most sophisticated

models).

Statistical methods, such as Bayesian approaches, provide an alternative path to model pa-

rameter calibration, giving a posterior probability distribution of unknown parameters. Cheung

et al. [17] was the first to apply Bayesian inference method to calibrate Spallart-Allmaras turbu-

lence model using velocity and skin friction experimental data. Oliver and Moser [83] extended this

work by adding more models and stochastic extensions. Ray and co-authors [90, 60, 91, 93, 92]

used a similar approach to calibrate RANS model parameters in more complex turbulent flow,

namely jet-in-crossflow. Zhang and Fu [128] combined the high-dimensional model representation

technique and the Gaussian process machine learning method to construct the surrogate model to

make Bayesian inference more affordable. Safta et al. [98] used a Bayesian approach to estimate a

joint distribution for LES sub-grid scale model parameters.

A benefit of the statistical Bayesian approach is that the posterior probability density also

naturally provides uncertainties associated with each estimated parameter, in contrast to other

inversion techniques that provide only a single point estimate for unknown parameters. However,

solving the full Bayesian problem requires knowledge of the likelihood function, which can be

difficult and/or costly to compute. In many cases, this likelihood function is approximated by a

Gaussian or surrogate model used to substitute the expensive CFD simulations.

In this dissertation, we outline the use of approximate Bayesian computation (ABC) and

Markov chain Monte Carlo (MCMC) methods to determine unknown model parameters and their

uncertainties. The ABC method approximates the posterior distribution of parameters without

using a likelihood function.

The ABC method was introduced and first widely applied in population genetics [6, 71, 122]

and molecular genetics [70]. Then it was implemented in other scientific areas such as astro-

physics [121, 14], chemistry [87], epidemiology [64, 130] and ecology [4]. More detailed recent
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reviews of the ABC approach are provided by Csilléry et al. [26], Marin et al. [68], Lintusaari et al.

[63], Sisson et al. [106] and, most recently, Beaumont [5]. The ABC method also has previously

been used in engineering contexts for the estimation of boundary conditions in complex thermal-

fluid flows [22, 21, 23], but here we will be the first to take advantage of both ABC and MCMC for

discovering model parameter values and uncertainties in multi-parameter turbulence closures.

1.1 Overview of Dissertation

Details of the ABC approach, including the use of an MCMC technique, a calibration step,

an adaptive proposal, and a linear regression correction are described in Chapter 2. In Chapter 3,

a brief demonstration is provided of the baseline ABC rejection algorithm without MCMC for

boundary condition estimation in simulations of turbulent buoyant jets using experimental reference

data. This work was submitted to Experiments in Fluids titled “Flow Parameter Estimation Using

Laser Absorption Spectroscopy and Approximate Bayesian Computation” by Jason D. Christopher,

Olga A. Doronina, Daniel Petrykowski, Torrey R. S. Hayden, Caelan Lapointe, Nicholas T.

Wimer, Ian Grooms, Gregory B. Rieker, and Peter E. Hamlington.

An example of LES nonlinear model calibration using the ABC-MCMC method is provided

in Chapter 4. The parameters estimation for LES nonlinear model using higher fidelity direct nu-

merical simulation (DNS) data is summarized in a paper submitted to Physical Review Fluids titled

“Parameter Estimation for Subgrid-Scale Models Using Markov Chain Monte Carlo Approximate

Bayesian Computation” by Olga A. Doronina, Colin A. Z. Towery, and Peter E. Hamlington.

The results of using ABC in autonomic closure setup for LES nonlinear model were published in the

AIAA Scitech conference paper titled “Autonomic closure for turbulent flows using Approximate

Bayesian Computation” by Olga A. Doronina, Jason D. Christopher, Colin A. Z. Towery, Peter

E. Hamlington, and Werner J. A. Dahm.

The parameter estimation study for nonequilibrium RANS model using homogeneous tur-

bulent flow reference data is presented in Chapter 5. The preliminary results of this study was

published in AIAA Scitech conference paper titled “Turbulence model development using Markov
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chain Monte Carlo Approximate Bayesian Computation” by Olga A. Doronina, Colin A. Z.

Towery, Jason D. Christopher, Ian Grooms, and Peter E.Hamlington.

The demonstration of ABC-MCMC applied to Menter Shear Stress Transport (SST) RANS

model calibration for an axisymmetric transonic bump is presented in Chapter 6.

Finally, conclusions and possible future research directions are summarized in Chapter 7.

1.2 Primary Contributions of the Dissertation

This dissertation contains the following primary contributions:

(1) Development of a flexible ABC-MCMC tool for turbulence model calibration. This tool

includes functionality for an initial calibration step, an adaptive proposal, and corrections

using linear regression. An open-source package is provided on Github and the tool can

be configured for either a priori or a posteriori model calibration; both approaches are

demonstrated in this dissertation.

(2) Demonstration of ABC without MCMC for boundary condition estimation. Using the

baseline ABC rejection algorithm, we estimate inflow boundary conditions for a high-

temperature turbulent buoyant jet based on experimental measurements from laser absorp-

tion spectroscopy. This configuration, which has been studied previously by Christopher et

al. [20], is used as an example to demonstrate the use of kernel density estimation with mir-

roring in the selection of parameters from joint posterior distributions, as well as perform

an observing system experiment.

(3) Demonstration of nonlinear SGS model calibration for LES using the ABC method. We

use ABC-MCMC method to estimate joint posterior distributions of two nonlinear SGS

closure parameters using reference data from direct numerical simulations of homogeneous

isotropic turbulence. We show that the resulting parameter values give excellent agreement

with reference probability density functions of the SGS stress and kinetic energy production

rate in a priori tests, while also providing stable solutions in forward LES (i.e., a posteriori
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tests) for homogeneous isotropic turbulence. The ABC-MCMC method is thus shown to

be an effective and efficient approach for estimating unknown parameters, including their

uncertainties, in SGS closure models for LES of turbulent flows.

(4) Demonstration of ABC-MCMC in autonomic closure. We formulate and provide initial

results for an autonomic closure approach using approximate Bayesian computation. Using

test-scale filtering, the closure method is able to determine, on the fly, a non-parametric

relation for the subgrid-scale stresses at the test scale. It then uses this relation at the LES

grid-scale to achieve closure. Compared to prior implementations of autonomic closure,

this approach has low memory requirements and instead relies on substantial processing

power. Initial a priori and a posteriori tests on homogeneous isotropic turbulence indicate

that the new approach can be used to accurately and stably close the LES equations.

(5) Calibration of a nonequilibrium model in homogeneous turbulent flow using ABC-MCMC.

As reference data, we use turbulence kinetic energy data for four different impulsively

strained cases and periodically sheared turbulence with five different shearing frequencies.

The estimated parameters were found to be similar to, but not exactly the same as previ-

ously reported values, and gave good agreement between model results and the reference

data.

(6) Demonstration of ABC-MCMC on the RANS Menter SST model calibration. The Menter

SST model parameters are estimated using experimental data for the Bachalo-Johnson

axisymmetric transonic bump. We provide simulation results for estimated parameters as

well as a detailed description of the calibration step for ABC-MCMC and the choice of

summary statistics.

1.3 Research Products in the Dissertation

A number of research products are associated with this dissertation, as outlined in the fol-

lowing.
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Journal publications:

(1) Olga A. Doronina, Colin A. Z. Towery, and Peter E. Hamlington. Parameter Estimation

for Subgrid-Scale Models Using Markov Chain Monte Carlo Approximate Bayesian Com-

putation. Physical Review Fluids (submitted). 2020.

(2) Jason D. Christopher, Olga A. Doronina, Daniel Petrykowski, Torrey R. S. Hayden, Cae-

lan Lapointe, Nicholas T. Wimer, Ian Grooms, Gregory B. Rieker, and Peter E. Hamling-

ton. Flow Parameter Estimation Using Laser Absorption Spectroscopy and Approximate

Bayesian Computation. Experiments in Fluids (submitted). 2020.

(3) Olga A. Doronina, Colin A. Z. Towery, Ian Grooms and Peter E. Hamlington. Approx-

imate Bayesian Computation for Parameter Estimation in RANS Turbulence Models (in

preparation, current draft is Chapter 5 of this dissertation).

(4) Olga A. Doronina, Scott M. Murman, and Peter E. Hamlington. Parameter Estimation

for Menter SST RANS Model Using Approximate Bayesian Computation (in preparation,

current draft is Chapter 6 of this dissertation).

Conference papers:
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SST RANS Model Using Approximate Bayesian Computation. RMFM, 2020



7

(2) Olga Doronina, Scott Murman, and Peter Hamlington. Approximate Bayesian Computa-

tion for parameter estimation in RANS turbulence models. APS, 2019

(3) Olga Doronina and Peter Hamlington. Turbulence model development using Approximate-

Bayesian Computation. RMFM, 2019

(4) Olga A. Doronina, Colin A. Z. Towery, Jason D. Christopher, Ian Grooms, and Peter

E.Hamlington. Turbulence model development using Markov chain Monte Carlo Approxi-

mate Bayesian Computation. AIAA Scitech, 2019

(5) Olga Doronina, Colin Towery, and Peter Hamlington. Subgrid-scale model development

using Approximate Bayesian Computation. APS, 2018

(6) Olga Doronina, Colin Towery, and Peter Hamlington. On Markov chain Monte Carlo Ap-

proximate Bayesian Computation approach for subgrid-scale model development. RMFM,

2018

(7) Olga A. Doronina, Jason D. Christopher, Colin A. Z. Towery, Peter E. Hamlington, and

Werner J. A. Dahm. Autonomic closure for turbulent flows using Approximate Bayesian

Computation. AIAA Scitech, 2018
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Autonomic closure for turbulent flows using Approximate Bayesian Computation. APS,

2017

(9) Olga Doronina and Peter Hamlington. Parameter estimation for eddy-viscocity model using

Approximate Bayesian Computation. RMFM, 2017



Chapter 2

Approximate Bayesian Computation Metholodogy

2.1 Introduction

While the numerical simulation of turbulent flows (e.g., for the prediction of turbulent velocity

fields) is a forward problem, the estimation of turbulence model parameters given observed flow

data (i.e., “truth” or “reference” data) is an inverse problem. Thus, in order to calibrate the

parameters in a turbulence model, we need to solve an inverse problem.

One way to estimate unknown parameters is to use a statistical approach, such as a Bayesian

method. Bayesian methods define the “solution” of the inverse problem as the probability distribu-

tion of unknown parameters given the truth data. This probability distribution is usually referred

to as the posterior distribution, and the truth data is also referred to as observed data, which can

come from experiments or higher fidelity models.

Bayes’ theorem provides us with a posterior distribution by using a presumed prior distri-

bution and likelihood function. The prior distribution is formed using our knowledge of unknown

parameters. The likelihood function is the conditional density of the data given the parameters.

Thus, the practical application of Bayes’ theorem requires knowledge of the likelihood function,

which can be difficult and/or costly to compute. In many cases, this likelihood function is approx-

imated by a Gaussian distribution, which does not always reflect the actual likelihood function.

To avoid the costly calculation of the likelihood function, we can use likelihood-free methods

such as approximate Bayesian computation (ABC). ABC provides us with an approximation of a

posterior distribution but does not require the likelihood function to be known or estimated.
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In the present chapter, we outline the ABC method in detail and explain the underlying

assumptions. We also describe the ABC method with the Markov chain Monte Carlo (MCMC)

technique and a calibration step, named ABC-MCMC, which significantly reduces the number of

computations in the ABC algorithm. An adaptive proposal is introduced into the chain sampling in

the ABC-MCMC procedure to account for model parameter correlations and to further accelerate

the algorithm. Finally, we explain the local-linear regression technique, which acts as a post-

processing correction that reduces the bias in the posterior distribution of parameters.

All of these algorithms and techniques are used in the remaining chapters of this dissertation,

where we demonstrate the application of ABC-MCMC to turbulence model calibration.

2.2 Explanation of the ABC Approach

Statistical inference is a powerful instrument for solving inverse problems. Bayes’ theorem,

in particular, allows one to write posterior probability densities of model parameters c ∈ C given

data D as

P (c|D) =
L(D | c)π(c)∫

C L(D | c)π(c)dc
, (2.1)

where L(D | c) is the likelihood function and π(c) is the prior distribution of model parameters. A

benefit of the statistical Bayesian approach is that the posterior probability density also naturally

provides uncertainties associated with each estimated parameter in contrast to other inversion

techniques that provide only a single point estimate for unknown parameters.

However, explicit analytical expressions for the likelihood function L(D | c) are rarely avail-

able. When the model parameter space C is finite and of low dimension, one can get the posterior

density without an explicit likelihood function and without approximation using rejection sam-

pling algorithm (Algorithm 1), which was introduced by Rubin [97]. This algorithm samples model

parameters from prior distributions and compares model outcomes (or data) D′ with observed ref-

erence data D, which may come from experiments or a higher fidelity model. The algorithm accepts

parameters only if the modeled and reference data are exactly the same.
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Algorithm 1 Rejection sampling algorithm [97]

1: for i = 1 to N do
2: repeat
3: Sample ci from prior distribution π(c)
4: Calculate D′ = F(ci)
5: until D′ = D
6: accept ci

7: Using all accepted ci calculate joint pdf

In our case, however, the parameter space C is continuous and the model is imperfect, making

Algorithm 1 impossible to use in the form outlined above. As an alternative, the acceptance criterion

in Algorithm 1 can be relaxed to

d(D′,D) ≤ ε , (2.2)

where d(·) is a distance function measuring the discrepancy between modeled data D′ and given

data D. Sampled parameter values are accepted if the distance d is within some specified tolerance

ε. The distance function may be a Kullback-Leibler divergence, Hellinger distance, or simply a

mean-square error. The main idea of ABC is that if the distance between modeled and given

statistics, d(D′,D), is small enough, then the parameter c′ is sampled from the posterior.

Sample c′ from prior π(c)

Calculate D′ = F(c′)

Calculate S ′

Calculate d(S ′,S)

d(S ′,S) ≤ ε

Accept c′

i = 1 : N

no

yes

Figure 2.1: ABC rejection algorithm.

In order to reduce the dimensionality of the data

and, hence, the computational expense, instead of the full

observed data D, one can use summary statistics S(D),

such as the mean, standard deviation, or probability den-

sity function (pdf) of the data D. The choice of summary

statistics depends heavily on the problem and requires do-

main knowledge. Because of it, there is also a bit of an art

to designing a summary statistic. The main assumption

of ABC is that the summary statistic is sufficient enough,

such that P (c|S) = P (c|D).

A model summary statistic can then be compared

with the reference summary statistic using a statistical
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distance function. By applying the statistical distance function, d(S ′,S), introducing the acceptance

threshold ε, and using a summary statistic instead of the full data, we obtain the ABC rejection

sampling algorithm (Algorithm 2 and Figure 2.1 for schematic).

Algorithm 2 ABC rejection sampling algorithm

1: Calculate true summary statistic S
2: Sample N parameters ci from prior distribution π(c)
3: for each ci do
4: Calculate D′ = F(ci)
5: Compute summary statistic S ′
6: Calculate statistical distance d(S ′,S)
7: if d(S ′,S) ≤ ε then
8: accept ci

9: Using all accepted ci calculate joint pdf

It should be noted that while ABC is based on Bayes’ theorem, instead of determining the

true posterior, it provides an approximation to the posterior distribution using a distance function

and summary statistics [114], namely

Pε(c | S) = P
(
c | d(S ′,S) ≤ ε

)
. (2.3)

Under the assumption of sufficient summary statistics and if ε → 0, then Pε(c | S) → P (c | D).

However, in real life, too small of an ε is computationally impractical because it leads to too many

rejections. Relaxing the acceptance criterion and not using sufficient summary statistics results

in some bias in the final posterior distribution. Correction techniques such as local linear [6] and

nonlinear [8] regressions aim to correct the bias caused by a nonzero ε.

The primary advantages of the ABC approach are the low cost relative to full Bayesian

methods and the flexibility in parameter estimation for complex models. ABC does not require

a likelihood and allows one to work with simulator-based models which can contain unobservable

random quantities. A single set of parameters can be selected as a maximum a posteriori probability

(MAP) estimate, a mean value, or another characteristic statistic of the posterior distribution.
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2.3 Markov Chain Monte Carlo without Likelihood

Although Algorithm 2 is straightforward to implement, it can be computationally expensive

and inefficient. The number of accepted parameters, which, in fact, form the posterior distribution,

are only a small fraction of the total number of sampled parameters, and the region (in parameter

space) of accepted parameters rapidly shrinks as the number of parameters in the model increases.

Thus, most of the sampled parameters and evaluations of summary statistics do not contribute to

the posterior. However, this problem can be solved, and the sampling technique can be significantly

improved, by using Markov chain Monte Carlo (MCMC) methods.

The MCMC without likelihood method (or ABC-MCMC) introduced by Marjoram et al. [71],

is based on the Metropolis–Hastings algorithm, however, no likelihoods are used or estimated. For

an accepted parameter ci, the Metropolis–Hastings algorithm samples the next candidate parameter

using the proposal q(ci → c′). If d(S ′,S) ≤ ε, then the proposed parameters are accepted with

probability

h = min

[
1,
π(c′)q(ci → c′)
π(ci)q(c′ → ci)

]
. (2.4)

Using the detailed balance condition, Marjoram et al. [71] demonstrated that the chain has a

stationary distribution Pε (c | S). An outline of the ABC-MCMC method is provided in Algorithm 3

(Figure 2.2).

Algorithm 3 ABC-MCMC

1: Starting from accepted parameters c0.
2: i := 0
3: while i < N do
4: Sample c′ from proposal q(ci → c′)
5: Calculate D′ = F(ci)
6: Compute statistic S ′
7: Calculate statistical distance d(S ′,S)
8: if d(S ′,S) ≤ ε then

9: Accept c′ with probability h = min
[
1, π(c′)q(ci→c′)

π(ci)q(c′→ci)

]

10: if accepted then
11: Set ci = c′ and increment i

12: Using all accepted ci calculate the joint pdf.
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We choose the proposal distribution to be the Gaussian with the current parameter ci as

the mean value and covariance matrix C, i.e. q(ci → c′) = q(c′|ci, C). For a Gaussian proposal,

q(ci → c′) = q(c′ → ci) and h depends only on the prior. If the prior is uniform, then π(c) = π(c′),

and the Gaussian proposal leads to h = 1 for any c′. As a result, the algorithm reduces to a

rejection method with correlated outputs [71].

2.3.1 Adaptive Proposal

The choice of proposal distribution is crucial for the rate of convergence of the Metropolis

algorithm. A variable proposal with adapting size and spatial orientation could provide faster

convergence.

Sample c′ from
proposal q(ci → c′)

Calculate D′ = F(c′)

Calculate S ′

Calculate d(S ′,S)

d(S ′,S) ≤ ε

rand(0, 1) < h

Accept c′

Update proposal q

Until N samples accepted

no

yes

no

yes

Figure 2.2: ABC-MCMC algorithm.

We follow the adaptive proposal procedure outlined

by Haario et al. [43], where the covariance Ci in the Gaus-

sian proposal q(c′|ci, Ci) is updated during the process

using all previous steps of the chain as

Ci =





C0, if i < k

sdcov(c0, . . . , ci), if i ≥ k
, (2.5)

where k > 0 is the length of initial period without adap-

tation and sd is a constant depending on the parame-

ter space dimensionality as sd = (2.4)2/δ, where δ is

the dimensionality and initial covariance C0. This al-

gorithm does not require substantial additional compu-

tational cost, since the covariance cov(c0, . . . , ci) = covi

can be calculated using the recursive formula

covi =
i− 1

i
covi−1 +

1

i+ 1
(µi−1 − ci) (µi−1 − ci)

T , (2.6)

where µi = [1/(i+ 1)]
∑i

k=0 ck is the average of all previous accepted parameter values, which also
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satisfies the recursive formula

µi = µi−1 −
i

i+ 1
(µi−1 − ci) . (2.7)

Since the adaptive Metropolis (AM) algorithm is adaptive, it is no longer Markovian, but Haario

et al. [43] have shown that it has the correct ergodic properties and the accuracy of the AM

algorithm is close to the accuracy of the standard Metropolis algorithm given a properly chosen

proposal.

2.3.2 Calibration Step

The main advantage of the ABC-MCMC method is the high rate of acceptance, since we

start from an accepted parameter and stay in the acceptance region. However, for high dimensional

parameter spaces when the acceptance region is small, sampling the initial accepted parameters c0

can require many iterations.

The other problem of the ABC-MCMC algorithm is the same as for ABC rejection; namely,

the fixed acceptance threshold value ε must be defined before the simulation, and indeed before

the entire Markov chain is run. The choice of ε is important, since too large a tolerance interval

results in a chain that is dominated by the prior. On the other hand, too small a value leads to a

very small acceptance rate and also increase the initialization cost.

The proposal parameters such as the initial variance of the Gaussian must also be defined

a priori. The percent of accepted parameters in ABC-MCMC depends on the variance in the

proposal, such that a smaller variance leads to a larger number of accepted parameters, but more

iterations are required to explore the posterior and to converge.

To solve these problems, Wegmann et al. [122] suggested to use a calibration step before the

MCMC algorithm. In this step, a series of n1 simulations are performed, where the parameters are

sampled from their prior to obtain Pn1(d(S ′,S) | c,S ′), an approximation of the distance distribution

π(d(S ′,S) | c,S ′). This calibration step is used to adjust the range of the prior based on the range

of n1x1 parameters with smallest distances, where 0 < x1 < 1.
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Then we perform another calibration sampling n2 parameters from the prior within the new

range and obtain a distance distribution Pn2(d(S ′,S) | c,S ′). Using the second calibration step, we

can define a threshold distance, ε, such that P (d(S ′,S) ≤ ε) = x2, where x2 is the desired ratio of

the accepted simulations. We then randomly choose a sampled parameter for which d(S ′,S) ≤ ε

as a starting point c0 for the Markov chain. These simulations are also used to adjust the proposal

q(ci → c′) by setting initial covariance matrix C0 to be diagonal matrix with sdvar on diagonal,

where var is variance of sampled parameter for which d(S ′,S) ≤ ε . In our case, the initial q is

set to be a Gaussian distribution with standard deviation equal to the standard deviation of the

retained parameters from the second calibration step. The resulting algorithm is based on ABC-

MCMC with the calibration step from [122] and has an additional calibration step and an adaptive

proposal. This algorithm is shown in Figure 2.3 as Algorithm 4.

2.4 Regression

As mentioned before, a nonzero acceptance threshold, ε, and insufficient summary statistics

introduce some bias to the final posterior distribution. The bias related to ε is caused by the fact

that all parameters with d(S,S ′) ≤ ε are accepted and treated equally, regardless of the actual

value of d(S,S ′). Beaumont et al. [6] suggested improvements to the ABC algorithm to eliminate

this bias. The suggested correction techniques included smooth weighting based on d(S,S ′) and

local-linear regression adjustment. Both of these techniques can be applied in post-processing after

running the actual ABC algorithm. However, it is possible that the linear regression models are

not flexible enough to account for nonlinearity effects in the model parameters. A wider class of

nonlinear regression models was introduced by Blum and François [8], where a feed-forward neural

network was applied for the parameter estimations.

Regression adjustment became a state of the art technique for ABC and a description of its

implementation can be found in [6, 7, 32, 68, 8]. In the following we outline the linear regression and

local-linear regression techniques from [6]. Linear regression is provided just to introduce the idea

of local-linear regression. An example of an application of local-linear regression to the turbulence
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Algorithm 4 ABC-MCMC with calibration step

1: procedure Calibration step(n, x)
2: Sample n parameters ci from prior distribution π(c)
3: Calculate statistical distance d(S ′,S) for each of ci
4: Define tolerance ε such that P (d(S ′,S) ≤ ε) = x
5: Randomly choose c0 from accepted points
6: Define Gaussian proposal kernel variance as variance of parameters with d(S ′,S) ≤ ε
7: procedure MCMC without likelihood(c0, ε, var)
8: while i < k do
9: Sample c′ from proposal q(ci, Ci)

10: Calculate D′ = F(c′, θ)
11: Compute statistic S ′
12: Calculate statistical distance d(S ′,S)
13: if d(S ′,S) ≤ ε then

14: Accept c′ with probability h = min
[
1, π(c′)q(ci→c′)

π(ci)q(c′→ci)

]

15: if accepted then
16: Set ci = c′, set i = i+ 1

17: Using all accepted ci calculate the joint pdf

Sample c′ from prior π(c)

Calculate D′ = F(c′)

Calculate S ′

Calculate d(S ′,S)

i = 1 : N

Define ε s.t.
P (d < ε) = x

Choose c0

Define initial
proposal q

Calculate S ′

Calculate D′ = F(c′)

Sample c′ from
proposal q(ci → c′)

Calculate d(S ′,S)

d(S ′,S) ≤ ε

rand(0, 1) < h

Accept c′

Update proposal q

Until N samples accepted

no

yes

no

yes

Figure 2.3: ABC-MCMC with calibration step.

model calibration can be found in Section 5.5.
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2.4.1 Local-Linear Regression

The posterior distribution of model parameters is a conditional distribution P (c|S). Since the

conditional distribution can be written in terms of a joint distribution and a marginal distribution,

i.e P (c|S) = P (S, c)/P (S), we can find a posterior distribution by estimating the joint density,

P (S, c), and dividing it by estimate of the marginal density, P (S), evaluated at S = S, where

S ≡ (s1, . . . , sq) is the truth summary statistics vector.

As a result of the ABC algorithm (Algorithm 2) we obtain m pairs (ci,S ′i) of sampled

parameter-vectors, ci, and the corresponding modeled summary statistics vectors, S ′i.

Linear regression is a well known technique used to fit a linear model to provided data, i.e.

find linear model coefficients, which minimize the error between the linear model and the data.

We can assume that the conditional density of the model parameters, can be described by a linear

model

ci = α+ (S ′i − S)Tβ + ζi, i = 1, . . . ,m, (2.8)

where ζi is the error between the linear model and the data, which is assumed to have a normal

distribution with zero mean and common variation (assumption of homoscedasticity), where α is

an intercept and β a vector of regression coefficients. The parameters α and β can be found using

least-square minimization, i.e. as parameters minimizing the sum

m∑

i=1

[
ci − α+ (S ′i − S)Tβ

]2
. (2.9)

The solution for this minimization problem is

(α̂, β̂) = (XTX)−1XT θ, (2.10)

where

X =




1 s′11 − s1 · · · s′1q − sq
...

...
. . .

...

1 s′m1 − s1 · · · s′mq − sq



, θ =




c1

...

cm



. (2.11)
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Thus, we can shrink the parameters ci in a linear manner as

c∗i = ci − (S ′i − S)T β̂ , (2.12)

which are now from the corrected posterior distribution P (c|S).

Local-linear regression relaxes the linearity assumption, i.e. we assume linearity only locally

around S. To achieve this we estimate the parameters (α, β) by minimizing the weighted least-

squares criterion instead of (2.9), i.e.

m∑

i=1

{
ci − α+ (S ′i − S)Tβ

}2
Kδ(d(S ′i,S)) , (2.13)

where Kδ is the kernel with bandwidth δ. Beaumont et al. [6] suggested to use the Epanechnikov

kernel as Kδ, namely

Kδ(t) =





cδ−1(1− (t/δ)2), t ≤ δ

0, t > δ

, (2.14)

where c is a normalization constant and δ ≤ ε. Other kernel functions can be used instead, e.g.

Gaussian kernel, if one wants smooth decrease to zero in parameter weights.

The solution for this minimization problem in Eq. (2.13) is

(α̂, β̂) = (XTWX)−1XTWθ, (2.15)

where W is the diagonal matrix with Kδ(d(S ′i,S)) on diagonal. Weighted by Kδ(d(S ′i,S)), the c∗i

from Eq. (2.12) provide an approximate sample from the posterior distribution.

Wegmann et al. [122] demonstrated that stationary distribution of the ABC-MCMC chain is

identical to the ABC algorithm posterior distribution and suggested to apply local-linear regression,

outlined above, to the posterior distribution obtained with ABC-MCMC algorithm. Wegmann et al.

[122] applied local-linear regression on a subsample of size t consisting of the samples associated

with the smallest distances d(S ′,S) generated by the Markov chain, thus, adding a postprocessing

correction to the ABC-MCMC algorithm.

An example of the local-linear regression correction applied to turbulence parameter calibra-

tion is provided in Section 5.5.



Chapter 3

Flow Parameter Estimation Using Approximate Bayesian Computation

3.1 Introduction

Despite ongoing advances in the quality and breadth of experimental measurements, the com-

plete characterization of many real-world engineering systems remains a considerable challenge. For

example, experimental diagnostics can now provide spatially and temporally resolved measurements

of temperature, velocity, chemical composition, and other properties, but few (if any) experiments

can provide fully resolved three-dimensional (3D) spatial and temporal fields over the entire sys-

tem domain simultaneously for all quantities of interest. Although numerical simulations can, in

principle, be used to complement experimental measurements and develop a more comprehensive

understanding of a system, physically accurate boundary conditions and fluid properties are re-

quired to ensure that the simulations are modeling a truly equivalent configuration. Once again,

however, such information is often difficult to obtain experimentally.

Traditionally, the challenge of estimating unknown parameters in real-world engineering sys-

tems has been addressed by proposing a priori distributions of parameter values, generating model

(e.g., simulation) data using parameters sampled from these distributions, and then calculating

likely distributions of true parameters using statistical inversions based on available reference or

experimental data [79, 80, 81, 82]. Various optimization methods have been used to perform these

inversions (e.g., Refs. [66, 99, 119, 85, 54]), but such techniques typically provide single values of

unknown parameters, with limited measures of uncertainty when using imperfect experimental data

and computational models.
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Bayesian methods naturally overcome this limitation by providing a probability distribution

of unknown parameters. For example, several studies have successfully performed parameter esti-

mation for engineering problems using full Bayesian methods [31, 78, 24, 116, 108]. However, such

methods require knowledge of the likelihood function which often requires extensive observations

or simplifying assumptions.

In this study, we demonstrate the use of approximate Bayesian computation (ABC) for es-

timating unknown parameters in the real-world turbulent thermal-fluid system, namely, the high-

temperature turbulent flow produced by an industrial catalytic burner. The catalytic burner ex-

amined here has been studied previously [51, 50] and is a scaled-down version of catalytic burners

commonly used for industrial heating of food products and polymer films. The catalytic burner

combusts a mixture of methane and desiccated air and an iron-chromium alloy catalyst mesh is

welded to an open-box metal frame. The catalyst is used to achieve more complete combustion

at lower temperatures, thereby reducing the presence of reactive products of incomplete combus-

tion and pollutants [25] in the burner exit gases. Experimental measurements were made using

wavelength modulation spectroscopy (WMS) which is a specialized form of laser absorption spec-

troscopy (LAS) and provides line-of-sight, absorption-weighted average temperature and chemical

species concentrations. More details about experiment setup and measuring techniques can be

found in Appendix A.

Although the LAS technique [51, 50, 52] can provide accurate, time-resolved temperature

measurements above the burner surface, limited information is available regarding the speed of gases

exiting the burner. The available LAS measurements suggest that there is incomplete combustion

within the catalytic burner, but specific details of the exit gas chemical composition are not available

because the approach does not probe all of the exit gas species. At the same time, the knowledge

of the speed of gases exiting the burner and the prevalence of reactive products of incomplete

combustion in the exit gases are essential parameters to set up the numerical simulations in a

configuration that is equivalent to the experiment.

Thus, in this chapter, we consider large eddy simulation to be a model in ABC algorithm
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Figure 3.1: Vertical profiles of absorption-weighted time-averaged temperature above the catalytic
burner. Results are shown for the three experimental cases in Table 3.1. Experimental uncertainties
are based on instrument validation. The inset shows temperature profiles normalized by T0 from
Table 3.1.

and estimate the flow speed and the prevalence of additional heat release above the burner due to

continued combustion. We demonstrate how the classical form of ABC algorithm, the acceptance-

rejection ABC algorithm (Algorithm 2, Figure 2.1), can be used to estimate these parameters. As

a reference data in ABC algorithm, we use available line-of-sight, absorption-weighted average tem-

peratures from LAS. In following, we discuss details of ABC set up and demonstrate the resulting

posterior distribution and estimated parameters. We also include an observing system experiment

to confirm the validity of the estimated parameters.

3.2 Reference Data

The reference data we are using in this study is line-of-sight, absorption-weighted average

temperatures measured using wavelength modulation spectroscopy (WMS). The WMS measure-

ments were made along the longest dimension of the burner at the midpoint of the burner width.

Vertical profiles of line-of-sight, absorption-weighted average temperature, used further as reference

data, were measured for three different burner operating powers and can be seen in Figure 3.1.
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Table 3.1: Catalytic burner operating conditions studied here, showing the burner power flux,
equivalence ratio φ, line-of-sight absorption-weighted time-averaged surface temperature T0, and
estimated bulk flow speed V0 of burner exit gases.

Case Power (W/cm2) φ T0 (K) V0 (m/s)

1 16 0.80 1494 0.37
2 27 0.85 1602 0.65
3 27 1.00 1667 0.62

3.2.1 Burner Operating Conditions

In this experiment, mass flow controllers were used to separately regulate the flow rates of

air and methane, allowing independent control of the burner power flux and equivalence ratio, φ.

The catalytic burner was operated at two power fluxes, and three values of φ, as summarized in

Table 3.1.

For the first case (denoted ‘Case 1’ herein), the power flux was 16 W/cm2 with φ = 0.80.

These conditions were thought to result in complete combustion within the catalyst, such that all

reactions were finished before hot products exited the burner. The temperature consistently de-

creased away from the burner surface for this case, indicating no significant heat addition. The line-

of-sight, absorption-weighted time-averaged temperature of the burner surface was T0 = 1494 K,

measured 0.5 mm above the surface assuming a laser beam width of 1 mm. Based on bulk mass-

flow measurements, the measured atmospheric pressure, and the assumed density and composition

(i.e., complete combustion was assumed) of gases exiting the burner, the inlet speed was estimated

as V0 = 0.37 m/s for this case. Although V0 is not measured directly in the experiments and will

not be used as reference data in the ABC algorithm, this estimate allows us to determine whether

the correct trends in V0 are captured by ABC and whether the predicted values have reasonable

magnitudes.

For ‘Case 2’, the inlet power was substantially increased as compared to Case 1, but with

a similar equivalence ratio; this case had a power flux of 27 W/cm2 and φ = 0.85. The resulting
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burner surface temperature was T0 = 1602 K and the inlet speed was estimated as V0 = 0.65 m/s.

Given the higher power and φ of this case, it was thought possible that continued combustion

could occur above the burner, although it will be seen in the following that the ABC parameter

estimation method predicts that this is unlikely based on the LAS temperature measurements.

Finally, the burner was operated for conditions that suggested the presence of continued

reactions above the burner. This case, referred to as ‘Case 3’, had an inlet power flux of 27 W/cm2

and φ = 1.00. This power flux was the same as for Case 2, but φ was significantly higher than either

Cases 1 or 2. Compared to Case 2, this results in a higher surface temperature, T0 = 1667 K, and

a lower estimated inlet speed, V0 = 0.62 m/s. The additional fuel entering the combustor in Case 3

causes additional chemiluminescence above the burner surface, indicative of continued combustion,

as well as detectable concentrations of OH; it will be seen in Section 5.4 that the ABC method

predicts additional heat release above the burner for this case.

3.2.2 Vertical Temperature Profiles

Vertical profiles of line of sight, absorption weighted time-averaged temperature for the three

experimental burner operating conditions are shown in Fig. 3.1. The time averaging spans the

entire 10 min time series obtained using LAS at each measurement height.

The temperature profiles in the main panel of Fig. 3.1 indicate that, from Case 1 to 3, the

temperature near the burner surface increases from roughly 1500 K to nearly 1700 K. Moreover,

the temperature remains high a greater distance above the burner for Case 3, and subsequently

decreases rapidly to match the temperatures seen for Case 2 farther from the burner. It should

be noted that we decreased the air flow rate in order to achieve a larger φ in Case 3, and thus

the estimated inlet speed of Case 2 was actually slightly higher than for Case 3, as indicated in

Table 3.1.

Differences in the profile shapes are more clearly indicated by the profiles of normalized

temperature T/T0 in the inset of Fig. 3.1, where the burner surface temperatures, T0, are given in

Table 3.1. In addition to further emphasizing the rapid decrease in temperature far from the burner
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in Case 3, the inset also indicates that there is an increase in temperature immediately above the

burner for this case. This is indicative of additional heat release due to continued combustion,

which is assumed to arise from reactive products of incomplete combustion exiting the burner at

these conditions.

The temperature profiles in Fig. 3.1 thus provide valuable information concerning the charac-

teristics of the flow field above the burner for different operating conditions, but these results also

lead to new questions about the magnitude and extent of additional heat release above the burner

for Case 3. Moreover, it is not possible based on the results in Fig. 3.1 to rule out additional,

although more moderate, heat release above the burner even for Cases 1 and 2.

In the following, we use ABC and LES to determine inflow speeds and whether additional

heat release is indeed implied by the profiles in Fig. 3.1. We will show, in particular, that only

Case 3 is likely to have additional heat release above the burner. Using LES, we then show that

the resulting parameter estimates enable accurate predictions of the vertical temperature profile

for each case, including the rapid decrease in temperature far from the burner for Case 3.

3.3 Present Configuration of ABC

Here we describe details of ABC setup such as choice of summary statistics, distance function

and acceptance criteria.

Based on the LAS measurements, we seek estimates for three parameters of the catalytic

burner system: the speed of gases exiting the burner, the intensity of heat addition above the

burner due to continued combustion of reactive chemical species in the exit gases, and the spatial

region over which heat addition occurs. The first of these properties is known only approximately

based on the measured mass flow rates and the assumed density of gases exiting the burner, while

the other two quantities are implied by the results shown in Fig. 3.1, particularly for Case 3. Each

of these properties are required to obtain a more complete understanding of the catalytic burner,

as well as to accurately model the burner using numerical simulations.

The LAS measurements described in Section 3.2 provide line-of-sight absorption-weighted
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temperature time series data D, which give the time-averaged vertical profiles of temperature

shown in Fig. 3.1; these profiles are the reference summary statistic S in the present demonstration

of ABC.

This choice of summary statistic is based on prior knowledge of the connection between

burner inlet speeds and vertical profiles of temperature in turbulent buoyant jets. In particular,

Christopher et al. [20] used reference data from numerical simulations to show that single-location

temperature measurements at heights within approximately 0.5 to 1.5 burner widths can be used

to infer inlet speeds. Here, we further improve our ability to predict the speed by using average

temperatures at multiple locations simultaneously.

The model data, D′, are obtained from 3D LES of the experimental configurations, allowing

the calculation of equivalent vertical profiles of time-averaged absorption-weighted temperature,

denoted S ′, at the same locations as in the experiments. Details of the numerical model are

provided in Appendix A.2.1 and the procedure by which LAS-equivalent statistics are calculated

from the model data is described in Section A.2.2.

The LES data were also adjusted to account for uncertainties inherent in the measurements.

For each sampled parameter c, a uniform random number between ±3% was selected independently

1,000 times, and this amount of uncertainty was added to the entire profile of temperature (assuming

that any bias observed in the experiment was correlated at all heights). The resulting modeled

summary statistics S ′, each with added uncertainty, were then compared with the reference values

S for each of the 1,000 randomly selected uncertainties, for each value of c. It should be noted,

however, that the variation in S ′ was generally larger due to variations in c, as opposed to variations

in the applied uncertainty.

For the distance function, d(S,S ′), we use the RMSE over all measurement locations. Other

metrics are also possible, such as the L1 and L2 norms, or the integrated difference in temperature

at all locations. However, we found that the posterior distributions were similar for each of these

metrics, and so here we only show results using RMSE, which is a robust and common metric for

computing statistical distances. Chai and Draxler [15] have also shown that RMSE is particularly
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appropriate for comparing model and reference data when the model error is assumed to be Gaus-

sian, as is likely the case here. Each measurement in the RMSE is given equal weighting despite the

fact that the measurements near the burner surface are very close together; the resulting additional

weight given to the near-surface region was intentional, since matching the lower portion of the

profile is key to determining whether continued combustion is present above the burner.

The choice of rejection threshold ε can have a substantial impact on the approximate posterior

distribution. Values of ε that are too large will result in the acceptance of too many sampled

parameters, giving a biased posterior that is similar to the prior distribution; that is, no additional

information is gained from the ABC method [20]. Conversely, an ε that is too small will result

in the rejection of all but a single case, giving a posterior with very low statistical confidence.

Although Marin et al. [67] and Lintusaari et al. [63] argue that a smaller ε is generally preferable,

the specific value is often largely determined by the available computational resources. Based on

the high computational cost of 3D LES, a relatively limited number [i.e., O(103)] of simulations

could be performed in the present study. Thus, using the same approach as in previous studies

(e.g., Refs. [113, 69, 67, 63, 95]), here we calculate approximate posteriors corresponding to various

values of ε to show convergence of the posterior as ε decreases. The value of ε is characterized here

by the percentage of sampled parameters retained in the posterior, where smaller values of ε give

lower acceptance rates.

Uniform distributions were used for the prior, π(c), where c is the vector of unknown param-

eters corresponding to the burner inlet speed, the intensity (or ‘strength’) of heat addition, and

the extent (or ‘height’) of heat addition above the burner. The prior must be sufficiently wide to

encompass realistic values of c, but narrow enough to keep the ABC procedure computationally

affordable. Based on the experimental estimates of V0 in Table 3.1, the range of inlet speeds in the

prior was 0.13 m/s to 0.8 m/s for Case 1 and 0.13 m/s to 1.13 m/s for Cases 2 and 3.

Heat addition due to ongoing reactions was modeled in the LES using a half-Gaussian source

term that peaks at the burner surface; this source term was parameterized by the total amount of

heat added in Watts (W), and by the standard deviation (or height) of the half-Gaussian distri-
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bution. The lower limit for heat addition was 0 W, indicating no additional combustion, and the

upper limit was determined from an energy balance based on how much power is going into the

system from the reactants and how much energy it would take to heat the gases to the measured

inlet temperature, giving a maximum value of 2500 W across all cases. The height of heat addition

is equivalent to three standard deviations of the half-Gaussian distribution, and corresponds to the

height at which the majority of the heat has been added. A lower limit of 0.01 m was chosen to

confine the heat addition very close to the burner and, based on previous experimental measure-

ments showing increasing temperature above the catalytic burner, the upper limit was chosen as

0.07 m.

We used a fixed burner surface temperature close to T0 from Table 3.1 for all simulations

of a given case. This decision was made to reduce the computational cost, since each unknown

parameter adds approximately an order of magnitude more simulations to the ABC method; the

number of simulations, N , needed to identify n parameters goes as N ∼ 10n. More importantly,

the temperature measurements at the lowest height are likely to accurately represent the exit

temperature of the burner since the laser skims the burner surface at the lowest measurement

height (i.e., at 0.5 mm).

During the ABC procedure, parameter values c were deterministically chosen to uniformly

sample the entire prior π(c), thereby reducing bias and effectively covering the entire parameter

space. This approach was chosen over other viable options (e.g., random draws, Latin hypercube

sampling, etc.) due to the cost of the 3D LES for each choice of c. In total, N ∼ 102 – 103

parameter values c were modeled using LES for each of the three experimental configurations.

3.4 Parameter Estimation Results

Here we calculate posterior distributions of inlet speed, heat source strength, and heat source

height using ABC for each of the three burner cases. The posteriors are calculated for four different

values of ε, corresponding to sampled parameter acceptance rates between 5% and 20%. A total of

N = 495 sampled parameters were modeled using LES for Case 1, while N = 693 parameters were



28

modeled for each of Cases 2 and 3.

Using parameter estimates from the posterior distributions, we are able to recover trends in

the experimentally estimated inflow speed V0, as well as predict additional heat release above the

burner for Case 3, indicating incomplete combustion within the catalyst at these conditions. We

then show that LES of the catalytic burner using the estimated parameter values provides modeled

vertical profiles of average temperature that agree closely with the LAS measurements for each

case. Finally, we present results from an observing system experiment, further demonstrating the

predictive power and effectiveness of the ABC method.

3.4.1 Posterior Distributions and Estimated Parameters

The primary outcome from ABC is the multi-dimensional posterior, P [c|d(S,S ′) ≤ ε], from

which we can estimate unknown parameter values and determine the degree of confidence in these

values. Here, c and the posterior represent three unknown parameters (i.e., inlet speed, heat source

strength, and heat source height). As a result, we show one- and two-dimensional (1D and 2D,

respectively) marginalized posteriors, computed using Gaussian kernel density estimation (KDE)

[103]. We also employ mirroring when the posteriors peak at the bounds of the prior P (θ). The

maximum a posterior probability (MAP) values from the full 3D posterior with KDE and mirroring

provide estimates of the unknown parameters, as summarized in Table 3.2.

Table 3.2: Maximum a posterior probability estimates from ABC of the burner inlet speed, heat
source strength, and heat source height for each of the cases. Parameter estimates are obtained from
the 5% acceptance rate full 3D posteriors, and values in parentheses show the nearest simulation
values.

Heat source properties
Case Inlet speed (m/s) Strength (W) Height (m)

1 0.30 (0.30) 0 (0) 0.040 (0.040)
2 0.61 (0.63) 50 (0) 0.042 (0.040)
3 0.48 (0.47) 726 (750) 0.047 (0.048)
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Figure 3.2: One-dimensional marginalized posteriors for Cases 1, 2 and 3 (top, middle, and bottom
rows, respectively) for inlet speed, heat source strength, and heat source height (left, middle and
right columns, respectively). Line colors correspond to the percentage of accepted simulations, as
determined by the rejection threshold ε. Raw posteriors (i.e., before Gaussian kernel estimation)
are shown by dark gray bars, and prior distributions are shown by the lighter gray regions. Vertical
red dash-dot lines show the most probable parameter values from the full 3D posterior for a 5%
acceptance rate, summarized in Table 3.2.

Figure 3.2 shows the 1D posteriors of the three unknown parameters for each of the three

burner cases. For Case 1, the posterior of the inlet speed approaches the bulk flow experimental

estimate of V0 = 0.37 m/s as ε decreases, as shown in Fig. 3.2(a). Although the mode of the posterior

for the smallest value of ε occurs at 0.3 m/s, which is lower than the experimental estimate, the
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rough correspondence nevertheless provides confidence in the accuracy of the ABC method. The

inverse relationship between the inlet speed and the heat source strength can be seen in the 2D

marginalized posteriors in Fig. 3.3 for ε corresponding to a 5% acceptance rate. The dominant

mode in the 2D posterior of heat source strength and inlet speed in Fig. 3.3(a) corresponds to

0 W and 0.3 m/s, respectively. However, there is also a non-zero probability of larger heat source

strengths as the inlet speed decreases, indicating that additional heat release can compensate for

lower inlet speeds. Nevertheless, the peak in the joint posterior at 0.3 m/s, with 0 W heat addition,

is the most probable condition corresponding to the experimental measurements for Case 1 (see

also Table 3.2). This is also confirmed by the 1D marginalized posterior of the heat source strength

shown in Fig. 3.2(b), which peaks at 0 W.

For the heat source height in Fig. 3.2(c), the posteriors generally provide less information

gain compared to the prior, and the resulting MAP value of the heat source height is 0.04 m, which

is in the exact middle of the prior. As ε decreases, however, a modal value of the heat source

height does begin to appear in Fig. 3.2(c) at the maximum possible value of the height allowed

by the prior. This modal value ensures that even if a simulation has some small amount of heat

addition, the additional heat is moved as far from the burner surface as possible. This is also

shown in Fig. 3.3(c), where smaller heat source heights correspond to very small values of the heat

source strength, and it is only for larger values of the height that larger values of the strength have

significant probabilities. Taken together, these results strongly suggest that there is no additional

heat release above the burner for Case 1, since the MAP values of the heat source strength and

height are 0 W and 0.04 m, respectively, and non-zero values of the strength are only estimated

using ABC when they occur far from the burner surface, where there is little impact on the resulting

temperature profiles.

Figures 3.2 and 3.3 show that the posterior distributions for Case 2 are qualitatively similar

to those for Case 1. However, the inlet speed estimation for Case 2, corresponding to 0.61 m/s

in Fig. 3.2(d), is larger than in Case 1 and is in good agreement with the experimental estimate

of V0 = 0.65 m/s for this case. The posteriors for Case 2 in Fig. 3.2(e) and Figs. 3.3(d) and (e)
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Figure 3.3: Two-dimensional marginalized joint posteriors for Cases 1, 2 and 3 (top, middle, and
bottom rows, respectively) when ε is set to accept 5% of simulations. Columns show joint posteriors
for heat source strength and inlet speed (left), heat source height and inlet speed (middle), and
heat source strength and heat source height (right). Colors represent the density of the posterior,
with yellow and blue corresponding to high and low densities, respectively.

indicate that the most probable heat source strength is very small, with a MAP value of 50 W. Once

again, there is also relatively little information gained about the most likely heat source height for

larger values, with a MAP value of 0.042 m, close to the center of the prior. For smaller values

of ε in Fig. 3.2(f) where non-zero values of the heat source strength are permissible for sufficiently

small inlet speeds [see Fig. 3.3(d)], the preferred heat source height is pushed far from the burner

surface, as shown in Figs. 3.3(e) and (f). These results suggest that there is a possibility of heat
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release above the burner for Case 2, but the heat source strength is so small (only 50 W) that it

has a nearly negligible effect on the overall temperature profile for this case.

The lack of substantial additional heat release predicted by ABC for Cases 1 and 2 is consis-

tent with previous experimental results [51, 50] that showed no signs of additional combustion in

the flow above the burner (i.e., low quantities of OH and no appreciable increase in temperature

above the surface). Posteriors for Case 3 are, however, substantially different. In particular, ABC

again provides a most probable inlet speed that is consistent with the trends in the experimental

estimates [see Fig. 3.2(g)], but the heat source strength now has a modal value between 500 and

1000 W, even for very small values of ε, as shown in Fig. 3.2(h). The marginalized posteriors [e.g.,

Fig. 3.2(i)] for the heat source height are qualitatively similar to those for Cases 1 and 2, but the

MAP value has shifted to a larger value of 0.047 m, away from the center of the prior. The MAP

value of the height is now much more significant since it corresponds to a non-zero value of the heat

source strength, as shown in Fig. 3.3(i). The non-zero value of the heat source strength indicated

by the Case 3 posteriors in Figs. 3.2 and 3.3 thus suggests that there is substantial additional heat

release due to continued combustion above the surface at these burner conditions.

It should be noted that the MAP inlet speeds predicted by ABC for Cases 1 and 2 are

similar to the estimated bulk flow speeds from the experiments. For Case 3, however, the predicted

value is lower than the experimental estimate. It is unclear whether this difference occurs due

to the modeling used in the LES, to the approximations used to experimentally estimate inlet

speeds (specifically, the assumption that combustion was complete when determining the exit gas

composition), or to the fact that there is likely additional heat release above the burner for this case.

However, it will be seen in the next section that the lower inlet speed for Case 3, when combined

with additional heat release, yields excellent agreement between the LES and experimental results,

providing confidence in the accuracy of the parameter estimates in Table 3.2.
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Figure 3.4: Vertical profiles of temporally-averaged, line-of-sight, absorption-weighted temperature
from LES using parameters in Table 3.2 (solid lines) and from the LAS (empty circles) for each
burner case. Error bars denote experimental uncertainty.

3.4.2 Temperature Profile and Field Comparisons

Using the parameter values in Table 3.2, LES was performed for each of the three experimental

burner configurations. The resulting vertical profiles of temperature are shown in Fig. 3.4, along

with the corresponding experimental measurements from Fig. 3.1. The LES results generally agree

closely with the experimental measurements, including the initial increase, and then rapid decrease,

in temperature above the burner for Case 3. It is emphasized that the agreement shown in Fig. 3.4

for Case 3 requires substantial heat addition to account for continued combustion. For Cases 1

and 2, by contrast, reasonable agreement is obtained with the experimental measurements without

including additional heat release above the burner, further indicating that continued combustion is

unlikely for these cases.

Given the agreement between the simulation and experimental results shown in Fig. 3.4, we

can be confident that we are performing LES for equivalent configurations to the experiments. The

resulting LES fields of velocity, temperature, and chemical species can then be used to develop a

more complete understanding of the real-world catalytic burner system.
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3.4.3 Observing System Experiment

As a final test of the predictive power of ABC, an Observing System Experiment (OSE)

[126, 11] was conducted. In this test, one of the experimental measurement heights was excluded

from the reference summary statistics S prior to performing ABC. During the ABC procedure,

parameter values giving the smallest distances d(S,S ′) were identified, where S ′ was again obtained

from LES and the RMSE was used for the distance function. The vertical profiles of temperature

corresponding to these parameter values were then used to estimate the missing experimental data

(which in this case was not used to generate the list of ‘best’ simulations). This approach thus

provides insight into how well ABC can predict missing experimental data.

Here we perform an OSE for each of the three experimental configurations. Because there is an

substantial change in the temperature gradient at approximately 1.05 cm above the burner surface,

as shown in Fig. 3.4, this measurement height was deemed difficult to predict and was consequently

removed from the reference summary statistics prior to performing ABC; similar tests can also be

performed excluding other measurement locations, or excluding multiple locations. Once again, ε

was set to accept 5% of the sampled parameters.

Figure 3.5 shows the resulting distributions of predicted temperature 1.05 cm above the

surface using all simulations, and using only the best 5% of simulations. For Cases 1 and 2

shown in Figs. 3.5(a) and (b), respectively, the modes of the full data distributions fall outside

the experimental data ranges of 1439 ± 43 K for Case 1 and 1538 ± 46 K for Case 2. For Case 3

in Fig. 3.5(c), the mode of the full distribution is at the upper end of the experimental range of

1681± 50 K.

By contrast, for the best 5% of simulations determined by ABC, the distribution modes are

each within the experimental ranges and fall close to the nominal experimental values in each case.

The temperatures predicted by ABC are 1433 K, 1550 K, and 1662 K for Cases 1–3, respectively,

corresponding to errors of 1% or less compared to the experimental results. It should also be noted

that the distributions in Fig. 3.5 are relatively narrow for the best 5% of simulations, with standard
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Figure 3.5: Probability density functions (pdfs) of temperature 1.05 cm above the burner from
LES for Cases 1–3 (a–c), showing results from all tested parameters (black lines) and from the
closest 5% of parameters, as determined using ABC (blue lines). The pdf magnitudes for the top
5% results are decreased by a factor of 4 for display purposes. Modes of the pdfs are shown by
the vertical dash-dot lines, and the experimental measurements at this height, with uncertainties
of ±3%, are indicated by the red shaded regions.

deviations of 55 K, 38 K, and 45 K for Cases 1–3, respectively, indicating high confidence in the

values of temperature predicted by ABC.

This OSE indicates that ABC is extremely effective at providing predictive information within

the domain where the simulation and reference data match, even when there is no corresponding
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reference data to inform the inference. In future efforts, this approach could be used to design exper-

iments with the fewest possible measurements such that the accuracy of the parameter estimation

is unaffected.

3.5 Conclusions

In this chapter, we demonstrated the use of ABC for estimating unknown characteristics of

real-world engineering systems, given spatially sparse measurements from experiments. Vertical

profiles of temporally averaged absorption-weighted temperature from LAS were combined with

ABC and LES to estimate the speed and heat addition characteristics of the high temperature

flow created by an industrially relevant catalytic burner. The ABC method was performed for

the burner operating at three different conditions, corresponding to different power fluxes and

equivalence ratios.

We show that ABC, when given LAS measurements and driven by LES, successfully predicts

trends in the inflow speed and also predicts continued combustion above the burner for the case

with the highest equivalence ratio. We selected most likely parameter values from the posterior

distributions provided by the ABC method and used these values to perform LES of the burner for

each of the three burner operating conditions. In each case, the LES results were in close agreement

with the experimentally measured vertical profiles of temperature. Additionally, using an OSE, we

showed that we were able to successfully predict a missing temperature from the experimental

data. We thus demonstrated the utility of the ABC approach for improving knowledge of real-

world systems, as well as for improving the physical fidelity of numerical simulations.

This study suggests several directions for future research. In particular, the ABC method

should now be tested on more complicated geometries, as well as extended to directly address

the chemical composition and subsequent finite rate combustion of the gases leaving the burner.

Furthermore, the present ABC approach can be used to simultaneously adjust boundary conditions,

fluid properties, and turbulence model parameters in a simulation to achieve a comprehensive

improvement in simulation accuracy. Lastly, the OSE performed here suggests that ABC could be
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used to design more efficient experimental campaigns with reduced measurement locations.



Chapter 4

Subgrid-Scale Model Calibration Using ABC-MCMC

4.1 Introduction

Large-Eddy Simulations (LES) have the potential to provide a nearly ideal blend of compu-

tational accuracy and low cost for the simulation of turbulent flows, but the predictive power of

such simulations depends on the accuracy of the closure models used to represent the subgrid scale

(SGS) fluxes. Attempts to develop such models from physics principles alone have thus far failed

to yield a universally accurate SGS model.

Consequently, the overwhelming majority of LES continues to be performed using classical

[107] or dynamic [36] Smagorinsky models, or with artificial dissipation from low-order numerical

schemes in what are termed implicit LES approaches. Attempts have been made to find the optimal

Smagorinsky constant using an optimization technique [76], Kriging-based response surface [56],

and a neural network [100].

However, such simple or non-physical models perform poorly in flows with complex physics

(e.g., combustion) and in situations where the fundamental principles underlying LES break down

(e.g., in near-wall regions where there is no longer a separation between energy input and dissipation

scales). At the same time, attempts to develop more sophisticated models are typically plagued

by the presence of many unknown model coefficients, which can be difficult to simultaneously

calibrate across different flows. Recently, Safta et al. [98] used a Bayesian approach to estimate a

joint distribution for the LES sub-grid scale Yoshizawa model parameters. Here, we apply the ABC-

MCMC method to discover model parameters and their uncertainties in nonlinear multi-parameter
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SGS closures using higher fidelity direct numerical simulation (DNS) data.

An autonomic closure approach was recently proposed by King et al. [57] as another way

to improve upon Smagorinsky-based models. In autonomic closure, test scale filtering is used to

provide training data that can be used to determine unknown coefficients in a high-dimensional non-

parametric relation for the unclosed stresses. In this sense, autonomic closure can be considered

a “data-driven” turbulence closure, except that the training data are provided internally to the

simulation, rather than externally from experimental or higher fidelity DNS data. In King et al.

[57], a Volterra series [12] was used to represent the closure relation and the unknown coefficients

in the series were obtained using an optimization procedure at the test scale. The resulting relation

was then applied at the LES grid scale to achieve closure. A priori tests [57] using DNS data for

homogeneous isotropic turbulence (HIT) have shown that autonomic closure is more accurate at

reproducing the exact SGS stress and production fields than a dynamic Smagorinsky model.

The primary challenge in autonomic closure is the need to solve an optimization problem at

the test scale, which requires the inversion of large matrices. There are a number of computational

algorithms that can perform this procedure with little difficulty, but at the expense of high memory

usage. In order to take advantage of the processing surplus available on many modern supercom-

puters, we propose to substantially reduce the memory requirements of autonomic closure by using

approximate Bayesian computation in place of the optimization step.

In the following, we solve the SGS closure inverse problem with the ABC-MCMC approach

using DNS as the reference data and provide results for a priori and a posteriori testing. We also

formulate an autonomic closure using the ABC method (ABC-AC) and test it in a priori and a

posteriori tests.
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4.2 Subgrid-Scale Closure for Large-Eddy Simulations

Coarse-graining of the Navier Stokes equations using a low pass filter, denoted (̃·), at scale

∆ gives the LES equations for an incompressible flow, which are written as [74]

∂ũi
∂xi

= 0,
∂ũi
∂t

+ ũj
∂ũi
∂xj

= − ∂p̃

∂xi
+ ν

∂2ũi
∂xj∂xj

− ∂τij
∂xj

, (4.1)

where ũi is the resolved scale velocity, p̃ is the resolved scale pressure normalized by density, ν is

the kinematic viscosity, and τij is the unclosed SGS stress tensor given by

τij = ũiuj − ũiũj . (4.2)

The grid scale ∆̃ is often termed the LES scale since this is the finest scale represented when using

the grid discretization as an implicit LES filter. The SGS stress τij prevents closure and, in order

to solve Eq. (4.1), an appropriate relation for τij must be found in terms of resolved scale quantities

only.

4.2.1 Inverse Problem with DNS as Reference Data

Closure of Eq. (4.1) can be achieved by modeling the deviatoric part of the stress tensor

σij = τij− 1
3τkkδij , which can be written in terms of an unknown, high-dimensional, non-parametric

functional Fij that takes as its arguments only quantities that can be expressed in terms of the

resolved-scale strain rate, S̃ij , and rotation rate, R̃ij , tensors; namely [88, 28]

σij(x, t) ≈ Fij
[
S̃ij(x + x′, t− t′), R̃ij(x + x′, t− t′)

]
for all x′ and t′ ≥ 0, (4.3)

where the resolved-scale strain and rotation rate tensors are given by

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
, R̃ij =

1

2

(
∂ũi
∂xj
− ∂ũj
∂xi

)
. (4.4)

It should be noted that the closure relation in Eq. (4.3) allows SGS stresses at location and time

(x, t) to depend on the resolved-scale strain and rotation rates, as well as their products, at any

point in the flow and at any prior time.
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As outlined by King et al. [57], the nonparametric functional Fij in Eq. (4.3) can be written as

a Volterra series [12] or any other appropriate high-dimensional nonparametric functional. Although

the Volterra series has been used previously to demonstrate the accuracy of autonomic closure [57],

the exact nonparametric representation of Fij can vary and is not fundamental.

As a demonstration of the ABC approach for determining SGS model coefficients, here we will

use the single point, single time nonlinear model introduced by Pope [88], which is given for generic

strain and rotation rate tensors, Sij and Rij [following similar definitions to those in Eq. (4.4)], as

Fij(Sij , Rij) =

4∑

λ=1

cλG
(λ)
ij , (4.5)

where cλ are coefficients that can depend on invariants of Sij , Rij , and their products up to second

order. It should be noted that the original formulation by Pope [88] extends to fifth order, but

here the model is truncated to second order for simplicity. The tensor bases G
(λ)
ij are formed from

products of Sij and Rij up to second order; namely [88]

G
(1)
ij = Sij ,

G
(2)
ij = SikRkj −RikSkj ,

G
(3)
ij = SikSkj −

1

3
δijSklSkl ,

G
(4)
ij = RikRkj −

1

3
δijRklRkl .

In order to obtain G̃
(λ)
ij at the LES grid scale, Sij and Rij are replaced by the appropriate resolved

scale values of the strain and rotation rate tensors [as given in Eqs. (4.4)].

Using data from experiments or direct numerical simulations (DNS), σij(x, t) can be calcu-

lated and denoted as reference data D. Thus, we obtain the inverse problem

Fij(c) = D , (4.6)

where the model parameters of Fij must be determined through an appropriate inversion technique.

4.2.2 Autonomic Closure as an Inverse Problem

The same functional from Eq. (4.3) can also be used to write down the closure relation at a

test scale ∆̂, where ∆̂ > ∆̃, as

σ̂ij(x, t) ≈ Fij
[
̂̃
Sij(x + x′, t− t′), ̂̃Rij(x + x′, t− t′)∀ x′ and t′ ≥ 0

]
. (4.7)
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The deviatoric test scale stress tensor is then given by σ̂ij = Tij − 1
3Tkkδij where Tij = ̂̃uiũj − ̂̃uî̃uj

represents the test scale stress tensor. The test scale strain and rotation rate tensors are written as

̂̃
Sij =

1

2

(
∂̂̃ui
∂xj

+
∂̂̃uj
∂xi

)
,
̂̃
Rij =

1

2

(
∂̂̃ui
∂xj
− ∂̂̃uj
∂xi

)
. (4.8)

Here, and in the following, (̂·) denotes a low-pass filter at test scale ∆̂. In order to obtain Ĝ
(λ)
ij

at the test scales, respectively, Sij and Rij are replaced by the appropriate test scale values of the

strain and rotation rate tensors [as given in Eq. (4.8)].

The advantage of using LES and test scales is that now we can calculate σ̂ij using only LES

data and we do not need to have DNS or experimental data. Thus, denoting reference data σ̂ij as

DLES we obtain the inverse problem

Fij(c) = DLES , (4.9)

and the model parameters of Fij can be determined through an appropriate inversion technique.

Once Fij is known at the test scale ∆̂, it is then projected to the grid scale ∆̃. The resulting

closure approach is similar to dynamic versions of classical closures such as the Smagorinsky model

[35, 62] and to scale-similarity models such as that by Bardina et al. [2], except that the relation

Fij is high-dimensional and nonparametric. That is, any of the terms or components in Fij could

be deemed unimportant during the inversion procedure, resulting in a fundamentally different

functional form.

In King et al. [57], optimization and a least squares technique were used to solve for the

unknown coefficients in the Volterra series formulation of Fij . However, the inversion process was

memory intensive and no uncertainty measures for the values of the unknown coefficients in Fij

were obtained. Here we instead use ABC combined with MCMC methods to determine Fij .

4.2.3 Approximate Bayesian Computation Autonomic Closure (ABC-AC)

Using concepts from autonomic closure and ABC, we propose the following combined closure

approach, denoted ABC-AC, at a particular time t. Here we neglect the use of prior time steps

for simplicity; the ABC-AC approach is easily extended to include information at earlier times.
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Note that in the following, we assume that an appropriate relation containing a set of N unknown

coefficients has already been selected for Fij . Moreover, we also assume that an N -dimensional

prior joint pdf has been formulated as an estimate of the distribution of the unknown coefficients;

typically, these priors are formulated as uniform or Gaussian distributions. The steps involved in

application of the ABC-AC approach to closure of the LES equations are as follows:

(1) Filter resolved scale quantities ũi and p̃ in order to obtain test scale quantities ̂̃ui and ̂̃p.

(2) Compute test scale deviatoric stresses σ̂ij using resolved scale quantities ũi.

(3) Using σ̂ij as truth data DLES, run the ABC algorithm (Algorithm 2) to obtain a joint

posterior distribution of model parameters.

(4) From the estimated posterior, choose the modal value of the parameters; these parameters

then give a statistically-accurate estimate for Fij .

(5) Apply Fij at the LES scale to achieve closure.

4.3 Reference Data

In this section, we apply the ABC-MCMC approach outlined in Chapter 2 to the inverse

problem stated in Section 4.2. The reference data in the following examples are taken as a 2563

subsample of 10243 pseudospectral HIT DNS data at Reλ = 433 from the John Hopkins Turbulence

Database [61]. The filtering required in a priori tests is accomplished using spectrally sharp filtering

at k
∆̃

= 30 for LES filtering and at k
∆̂

= 15 for test filtering. Example velocity fields and SGS

stresses σij at the LES scale for pseudospectral are shown on Figure 4.1.
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(a) Velocity fields at the full DNS resolution, and at LES and test scales (left to right).
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(b) SGS deviatoric stress (σij) fields at the LES scale.

Figure 4.1: Example velocity fields and SGS stresses σij at the LES scale for pseudospectral HIT
data [61] used in a priori testing.

4.4 Summary Statistics and Statistical Distance

The summary statistics S used in the ABC-MCMC analysis are pdfs of the deviatoric stresses

σij and a pdf of the production P = σijSij . Since the model still does not exactly represent the flow

physics, we can consider the result of the model to have some uncertainty due to the modeling. To

introduce this uncertainty, we randomly pick 105 data points out of 2563 for each iteration in the

ABC-MCMC algorithm to calculate modeled summary statistics. This makes our model stochastic

and reduces the amount of computations.

Summary statistics of the deviatoric stresses, denoted as Sσ, consist of six pdfs Sij , one pdf

for each i, j component of the stress tensor. We calculate these pdfs on [-0.3, 0.3]. The statistical

distance d(S ′σ,Sσ) can be calculated many different ways. Here we show results using the Mean
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Square Error (MSE) of the logarithms of the pdfs. The MSE distance is given by

d(S ′σ,Sσ) =
∑

i,j|j≥i
d
(
S ′ij ,Sij

)
=
∑

i,j|j≥i

(
lnS ′ij − lnSij

)2
, (4.10)

where the summation is over all i and j such that j ≥ i, which gives six independent terms in the

summation; this summation approach is necessary since the stress tensors are symmetric and the

terms with i 6= j should not be double counted in the combined distance metric.

Another common statistical distance is the Kullback-Leibler (KL) divergence. Autonomic

closure results provide the comparison of KL and MSE distances. The KL distance is given by

dKL(S ′σ,Sσ) =
∑

i,j|j≥i
d
(
S ′ij ,Sij

)
=
∑

i,j|j≥i

(
Sij
∣∣lnSij − lnSFij

∣∣) . (4.11)

It is emphasized that, in the present tests, Sij represents the pdf of the reference deviatoric stresses

and S ′ij represents the pdf of the modeled deviatoric stresses.

Summary statistics of the production field, P = σijSij , are denoted as SP , which is a pdf of

the production field. The production pdfs are calculated on [-5, 5]. Thus, the distance function

is simply the MSE distance between the logarithms of the reference pdf SP and the logarithms of

modeled pdf S ′P ,

d(S ′P ,SP ) =
(
lnS ′P − lnSP

)2
. (4.12)

4.5 Results with DNS as Reference Data

4.5.1 A Priori Testing

The a posteriori distribution of the SGS closure coefficients in Eq. (4.5) is calculated using

the ABC-MCMC algorithm described in Section 2.3 and the DNS data described in Section 4.3 as

reference data. It should be noted that we use only 105 data points to evaluate the modeled pdfs

in the ABC-MCMC algorithm. Then the maximum a posteriori distribution (MAP) estimate is

used as the proposed parameter vector for the SGS closure model.

In a priori testing, we evaluate the model using the sampled parameters and all 2563 data
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points and directly compare the modeled deviatoric stresses and production pdfs with the corre-

sponding pdfs of the reference data.

We start with a demonstration of the a posteriori distribution and a priori testing results for

the training procedure using only deviatoric stresses summary statistics. However, despite the fact

that Eq. (4.5) models the deviatoric stresses, it is important that the model can correctly reproduce

not only the deviatoric stresses pdfs but also the dissipation process. One of the advantages of the

proposed algorithm is that the statistics it is trained on can be easily changed. Taking this into

account, we also demonstrate how the proposed coefficients change if a posterior distribution is

obtained using only production summary statistics, or a combination of deviatoric stresses and

production summary statistics.

4.5.1.1 Training on deviatoric stresses

First, we ensure that for a first-order simplification of the closure relation in Eq. (4.5), the

approach can recover the coefficient CS used in the Smagorinsky model [107]. We then obtain

coefficients for the three- and four-parameter second-order truncations of Eq. (4.5) (the fourth

basis function, G
(4)
ij is sometimes omitted in second-order stress models) and show their posterior

pdfs.

For the first-order version of the full model in Eq. (4.5), it can be shown based on the

classical Smagorinsky model that c1 = −2(CS∆)2|S̃| where CS is the Smagorinsky coefficient and

|S̃| ≡
√

2S̃ijS̃ij . The first order model can thus be written as

σ′ij = C1∆2|S̃|S̃ij , (4.13)

where C1 is the unknown that will be estimated using the MCMC-ABC approach.

It should be noted that an expected value of CS can be obtained from the DNS data using

kinetic energy arguments, giving

C2
S =

[
ε

∆〈|S̃|3〉

]
, (4.14)
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where ε = 2νSijSij is the true kinetic energy dissipation rate and 〈·〉 is an average. Using this

relation, the data give CS = 0.22. In order for the ABC-MCMC approach to be deemed successful,

it should recover a value close to this CS .

For the first-order model, we sampled 103 samples of C1 from a uniform prior. The parameter

value resulting in the minimum distance is C1 = −0.0639, which gives CS =
√
−C1/2 = 0.18. This

value for CS is reasonably close to the dissipation-based value CS = 0.22 from Eq. (4.14).

A similar analysis can be performed for the second-order model from Eq. (4.5). The cali-

bration step used 103 and 104 samples for the three- and four-parameter models, respectively, and

a uniform prior was initially bounded as C1 ∈ [−0.3, 0.0], C2 ∈ [−0.5, 0.5], C3 ∈ [−0.2, 0.2] and

C4 ∈ [−0.2, 0.2].

Figure 4.2 shows the resulting posterior pdfs for a three-parameter second-order model, and

Figure 4.3 shows the posterior pdfs corresponding to a four-parameter model. In order to facilitate

visualization of these posteriors, we show marginal pdfs for each parameter on diagonal subplots.

2D marginalized joint pdfs are shown on overdiagonal subplots and conditional pdfs are shown on

subplots below the diagonal.

For both three- and four-parameter cases, the three- or four-dimensional posterior pdfs,

respectively, are calculated using kernel density estimation (KDE) with a Gaussian kernel and

bandwidth defined by Scott’s Rule [104, 105].

For the three-parameter model, the ABC-MCMC approach provides a value of C1 close to

−0.069, resulting in a value of CS = 0.186 and for the four-parameter case C1 = −0.0432, which

corresponds to CS = 0.147. The marginal pdfs for C2 are bimodal with peaks at C2 = ±0.1; this

indicates that the sign of C2 is of no importance compared to the magnitude. The marginal pdf of

C3 in the three-parameter case peaks near zero, indicating that this term is of negligible importance

compared to the other two terms in the three-term second-order closure relation. Finally, in the

four-parameter model, the marginal pdf of C3 and C4 in Figure 4.3 are symmetric and strongly

correlated. This strong correlation is a good example of when the proposal kernel with adaptive

covariance (see Section 2.3.1) can improve the acceptance rate of the ABC-MCMC algorithm.
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Figure 4.2: Marginal and joint probability density functions of accepted values of C1, C2, and C3

for the three-term second order model from Eq. (4.5) trained using pdf of σij as summary statistics.
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Figure 4.3: Marginal and joint probability density functions of accepted values of C1, C2, C3,
and C4 for the four-term second order model from Eq. (4.5) trained using pdf of σij as summary
statistics.
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C1 C2 C3 C4

Trained on sigma
3 parameters -0.069 0.07 0.00556 –
4 parameters -0.0432 0.018 0.036 0.036

Trained on production
3 parameters -0.0474 -0.036 -0.2886 –
4 parameters -0.0366 -0.09 -0.1262 0.2158

Trained on sigma and production
3 parameters -0.0402 0.27 -0.1598 –
4 parameters -0.0318 –0.0144 -0.198 -0.198

Table 4.1: MAP values from joint probability density functions.

The maximums of the three- or four-dimensional posterior pdfs are taken as the estimated

parameters for the model. These MAP parameters are shown in Figures 4.2 and 4.3, and the values

are listed in Table 4.1. A comparison between truth and MAP modeled summary statistics are

shown in Figure 4.8(a). The performance of the four-parameter model is improved in comparison to

the three-parameter model. This demonstrates that the fourth basis function, G
(4)
ij is important in

the second-order model. We can see that despite good agreement in the deviatoric stresses pdfs, the

model cannot correctly reproduce back-scattering (positive production). This limitation is caused

by training only on deviatoric stresses pdfs without taking into account the correct modeling of the

dissipation process.

4.5.1.2 Training on Production

In this section, we focus only on the correct modeling of the dissipation process and use only

the production pdf as a summary statistic for the ABC-MCMC algorithm. We provide results for

the three- and four-parameter models from Eq. (4.5).

Similar to training on the deviatoric stresses summary statistics, the calibration step uses

103 and 104 samples for the three- and four-parameter models, but a uniform prior was initially

bounded as C1 ∈ [−0.3, 0.0], C2 ∈ [−0.5, 0.5], C3 ∈ [−0.5, 0.2] and C4 ∈ [−0.2, 0.5].

Figures 4.4 and 4.5 show the resulting posterior pdfs for the three- and four-parameter second-

order models. The marginal pdf of C2 is no longer bimodal in the four-parameter model, and it

peaks near zero, indicating that this term is of negligible importance compared to the other three
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terms in the four-term second-order closure relation.

Summary statistics produced by the three- and four-parameter models with the MAP pa-

rameters (Figure 4.8 (b)) match production pdf reasonably well, but the deviatoric stresses pdfs

have worse agreement, especially for the diagonal elements of the tensor. This shows that training

only on the production pdf is not sufficient to correctly reproduce the deviatoric stresses.

4.5.1.3 Training on a Combination of Deviatoric Stresses and Production

The ABC-MCMC algorithm flexibility also allows us to combine summary statistics. Thus,

we can train the algorithm on both the deviatoric stresses and production summary statistics

simultaneously. Thus, our acceptance criterion is:

[
αd(S ′σ,Sσ) + β d(S ′P ,SP )

]
≤ ε , (4.15)

where α and β are weights. One can change these weights according to the importance of different

summary statistic components. For the three-parameter model, we used α = 1 and β = 3.

Similar to the previous case, the calibration step used 103 and 104 samples for the three- and

four-parameter models, respectively, and a uniform prior was initially bounded as C1 ∈ [−0.3, 0.0],

C2 ∈ [−0.5, 0.5], C3 ∈ [−0.5, 0.2] and C4 ∈ [−0.5, 0.5]. Figures 4.6 and 4.7 show the resulting

posterior pdfs for the three- and four-parameter second-order models. The marginal pdf of C2

in the four-parameter case is no longer bimodal and peaks near zero, indicating that this term is

of negligible importance compared to the other three terms in the four-term second-order closure

relation.

Finally, the comparison of truth and MAP modeled summary statistics (Figure 4.8 (c))

demonstrates that the second order model from Eq. (4.5) cannot satisfy matching both deviatoric

stresses and production pdfs simultaneously.



51

(a)

(e)

−0.4 −0.2 0.0
C3

(i)

(b)

−0.09

−0.06

−0.03

C
1

(c)

−0.4

−0.2

0.0

0.2

0.4
C

2
(d)

−0.4

−0.2

0.0

0.2

0.4

C
2

(f)

−0.09 −0.06 −0.03

C1

−0.4

−0.2

0.0

C
3

(g)

−0.4 −0.2 0.0 0.2 0.4

C2

(h)

0.0e+00

3.0e-04

6.0e-04

9.0e-04

1.2e-03

1.5e-03

1.8e-03

0e+00

5e-04

1e-03

2e-03

2e-03

3e-03

Figure 4.4: Marginal and joint probability density functions of accepted values of C1, C2, and C3

for the three-term second-order model from Eq. (4.5) trained using pdf of production σijSij as
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S ′σ and S ′P produced by three- and four-parameter model with the MAP parameters.

4.5.2 A Posteriori Testing

A posteriori testing was performed using spectralLES1 , a pseudospectral LES solver for

model testing and development written in pure Python that is based on an open-source, pure

Python code, spectralDNS, 2 written by Mortensen and Langtangen [77]. Initial a posteriori tests

have focused on whether models learned from the ABC approach can be stably integrated into

forward LES runs. Second, we compared the deviatoric stresses and production pdfs from these

LES runs with the corresponding pdfs from the reference DNS data.

Simulations were initialized using a random initial velocity field with a prescribed isotropic

energy spectrum, and turbulence is subsequently sustained using spectrally-truncated linear forcing

of wavenumber shells k = 2 and k = 3. Simulations were performed using the same domain, energy

1 https://github.com/phamlington/teslapy/tree/master/spectralLES
2 https://github.com/spectralDNS/spectralDNS/blob/master/spectralDNS3D_short.py

https://github.com/phamlington/teslapy/tree/master/spectralLES
https://github.com/spectralDNS/spectralDNS/blob/master/spectralDNS3D_short.py
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Figure 4.9: Spectra of HIT LES forward runs with MAP model parameters from Table 4.1.

injection rate, viscosity, and LES filter scale as the DNS data described in Section 4.3 used for

model learning and using a 643 uniform grid. For comparison, we also ran a simulation using the

static Smagorinsky model with the standard Smagorinsky constant value CS =?.

The resulting kinetic energy spectra of the HIT LES simulations with model coefficients

defined as MAP values from Table 4.1 are shown in Fig. 4.9. Parameters trained on the deviatoric

stresses summary statistics result in spectra similar to the Smagorinsky model spectra, while the

spectra of simulations with parameters trained on production tend to have higher values for higher

wavenumbers. This is caused by the fact that training on the production pdf causes the algorithm

to match production and dissipation at the LES scale only.

To study the propagation of uncertainty in the model parameters in forward runs, we sampled

100 parameter sets from each of the six posterior pdfs reported in Section 4.5.1 using a Monte Carlo

acceptance-rejection method and ran the described above HIT LES simulations for each of these

parameter sets. Figure 4.10 shows the resulting kinetic energy spectra distributions for stable

forward runs. Figure 4.12 shows the resulting distribution of deviatoric and production pdfs for

the four-parameter case.
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a)trained on sigma summary statistic, b) trained on production summary statistic and c) trained
on combination of sigma and production summary statistics.

4.6 Autonomic Closure Results

In the following, a priori tests of the ABC-AC approach are performed using the same HIT

DNS data described in Section 4.3. First, we ensure that for a first-order simplification of the

closure relation in Eq. (4.5), the approach can recover the coefficient CS used in the Smagorinsky

model. We then obtain coefficients from a three-term second-order truncation of Eq. (4.5) and

show that the resulting model can be stably integrated in forward runs.
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4.6.1 A Priori Testing

Both first-order and the three-term second-order versions of the full model in Eq. (4.5) are

tested here, giving the test-scale representations

σ̂′ij = c1
̂̃
Sij [1st order] , (4.16)

σ̂′ij = c1
̂̃
Sij + c2

(
̂̃
Sik
̂̃
Rkj − ̂̃Rik ̂̃Skj

)
+ c3

(
̂̃
Sik
̂̃
Skj −

1

3
δij
̂̃
Skl
̂̃
Slk

)
[2nd order] . (4.17)

Analogous to models in Section 4.5, it can be shown that C1 = −2(CS∆̂)2|̂̃S| where CS is the

Smagorinsky coefficient and
̂̃
S ≡

(
2
̂̃
Sij
̂̃
Sij

)1/2

. In order to facilitate comparisons with prior work,

we similarly rewrite Eqs. (4.16) and (4.17) in terms of CS as

σ̂′ij = −2(CS∆̂)2|̂̃S|̂̃Sij , (4.18)

σ̂ij = −2(CS∆̂)2|̂̃S|̂̃Sij + C2∆̂2

(
̂̃
Sik
̂̃
Rkj − ̂̃Rik ̂̃Skj

)
+ C3∆̂2

(
̂̃
Sik
̂̃
Skj −

1

3
δij
̂̃
Skl
̂̃
Slk

)
, (4.19)

where ∆̂ is introduced into the last two terms in order to render C2 and C3 non-dimensional. Note

that since Fij is expressed here using parametric functions, these preliminary tests do not provide

a full demonstration of the power of ABC-AC, but are nevertheless important as initial tests of the

method.

The statistics used in the ABC analysis are pdfs of the test scale deviatoric stresses σ̂ij (as

shown in Figure 4.13), which are denoted Sij since there is a pdf for each (i, j) component of the

stress tensor. It is emphasized that, in the present tests, Sij represents the pdf of truth σ̂ij and S ′ij
represents the pdf of modeled σ̂′ij , both of which are computed at the test scale ∆̂.

Analogous to Eq. (4.14) but using test scale filter size ∆̂ and strain rate tensor
̂̃
S instead of

LES scale quantities, we obtain the true expected CS = 0.22.

For the first order model, Figure 4.14 shows how the distance d(S ′ij ,Sij) depends on CS for

N = 1000 samples of CS from its uniform prior U(0, 0.4), using a tolerance of ε = 25 for the KL

distance and ε = 150 for the MSE distance. In both cases, the parameter value resulting in the

minimum distance is close to the true value CS = 0.22. More specifically, the values obtained

are CS ≈ 0.216 for the KL distance and CS ≈ 0.215 for the MSE distance. These values of CS
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Figure 4.14: Accepted values for the CS parameter in the first order model and corresponding
statistical distances.

determined at the test filter scale can then be applied at the LES (i.e., grid) scale to approximate

the unclosed stresses σij , namely

σFij = −2(CS∆̃)2|S̃|S̃ij . (4.20)

Figure 4.15 shows the resulting pdfs of σij and σ′ij , revealing reasonable agreement between the

modeled and true stresses at the LES scale.

A similar analysis for the second-order model in Eq. (4.19) gives the posterior pdfs shown

in Figure 4.16. In order to facilitate visualization of the three dimensional posterior, marginalized
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Figure 4.15: Probability density functions of stresses σFij from the one-parameter first order model
in Eq. (4.18) at the LES scale (green lines) and the true LES scale stresses σij from the DNS (red
lines).

joint pdfs over one and two parameters are shown for each of CS , C2 and C3. Both the mode and

mean of the marginal pdf for CS show that, once again, the ABC approach provides a value of CS

close to 0.2. The marginal pdf for C2 is bimodal with peaks at C2 = ±0.1. Finally, the marginal

pdf of C3 peaks near 0, indicating that this term is of negligible importance compared to the other

two terms in the second order closure relation.

Using the values of Ci that give the minimum distance in the statistics, the second order

model parameters at the test scale are found to be

Cs = 0.18 , C2 = −0.088 , C3 = −0.0015 . (4.21)

These values can then be applied at the LES scale to give the pdfs of σ′ij at the LES scale shown in

Figure 4.17. Once again, the second order model gives close agreement between the modeled and
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true stresses.

4.6.2 A Posteriori Testing

Using the parameter values identified in the previous section, a posteriori testing of the

learned model is performed using pseudospectral LES solver, named spectralLES, described in

Section 4.5.2. Initial a posteriori tests have simply focused on whether models learned from the

ABC approach can be stably integrated in forward runs, and Figure 4.18 shows that, using the

second order model with coefficients given in Eq. (4.21), kinetic energy spectra converge to a stable

spectrum at sufficiently long times.

4.7 Conclusions

Approximate Bayesian computation and Markov chain Monte Carlo methods have been used

to estimate parameter values, as well as their uncertainties, in subgrid-scale closure models for LES

of turbulent flows. The models tested include nonlinear SGS closures with up to four parameters.

A priori tests results using homogeneous isotropic turbulence have been presented. A posteriori

results are presented for each discovered model using the spectraLES.

We have also provided initial results for an autonomic closure approach using approximate

Bayesian computation. Using test-scale filtering, the closure method is able to determine, on the fly,

a non-parametric relation for the subgrid-scale stresses at the test scale and then uses this relation

at the LES grid scale to achieve closure. Initial a priori and a posteriori tests on homogeneous

isotropic turbulence indicate that the new approach can be used to accurately and stably close the

LES equations. Compared to prior implementations of autonomic closure, this approach has low

memory requirements and instead relies on the substantial processing power available on GPGPUs.

This shift in computational load is achieved using approximate Bayesian computation, a relatively

new technique for determining unknown parameters in high dimensional problems.
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Chapter 5

Nonequilibrium Turbulence Model Calibration Using ABC-MCMC

5.1 Introduction

The overwhelming majority of Reynolds averaged Navier-Stokes (RANS) simulations continue

to be performed using classical equilibrium models, such as the k-ε and k-ω models (see Speziale

and So [110] for a review), where the Boussinesq (or gradient transport) hypothesis is used to relate

the unclosed Reynolds stresses to the local instantaneous mean strain rate tensor via an isotropic

eddy viscosity. However, these models are known to perform poorly in flows with even moderately

complex physics, and particularly in flows with rapid spatial or temporal variations in mean flow

properties [46, 47, 44, 45]. At the same time, attempts to develop more sophisticated models are

typically plagued by the presence of many unknown model parameters, which can be difficult to

simultaneously calibrate.

The present chapter outlines the use of the ABC-MCMC method to determine unknown

parameters and their uncertainties in a four-parameter RANS closure model that is specifically

intended for use in simulations of nonequilibrium flows where the Reynolds stress anisotropy tensor

is misaligned with the local instantaneous mean strain rate tensor (thereby precluding the use of

an isotropic eddy viscosity and traditional equilibrium closures).

In the following, we briefly describe the nonequilibrium RANS model, review the test cases

considered and present the model parameter estimations. Conclusions and directions for future

work are provided at the end.
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5.2 Description of Nonequilibrium Turbulence Model

Application of an ensemble average to the Navier-Stokes equations yields the RANS equa-

tions, which are expressed for an incompressible constant viscosity flow as

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

(
2νSij

)
− ∂

∂xj

(
u′iu
′
j

)
, (5.1)

where Sij = (1/2)(∂ui/∂xj + ∂uj/∂xi) is the mean strain rate tensor and u′iu
′
j is the unclosed

Reynolds stress tensor. The Reynolds stress can be written in terms of isotropic and anisotropic

(or deviatoric) parts as

u′iu
′
j =

2

3
kδij + kaij , (5.2)

where k is the turbulence kinetic energy and aij is the Reynolds stress anisotropy tensor. Because

the governing equation for k includes relatively few unclosed terms, the primary challenge in RANS

modeling is to represent the tensor aij , which is unclosed. A number of models have been proposed

for this tensor, including various nonlinear eddy viscosity models [37, 118, 34], but by far the most

widely used models continue to be equilibrium models where it is assumed that aij ∝ Sij . Such

models include the classical k-ε and k-ω models as well as their many variants (see Speziale and So

[110] for a review).

However, it is now widely understood that equilibrium models become inaccurate in com-

plex flows, and, in particular, those flows with rapid spatial and temporal variations in mean

flow properties [46]. Such “nonequilibrium” turbulent flows arise in many practical applications,

including supersonic and hypersonic vehicles where interactions occur between shock waves and

turbulent boundary layers as well as internal combustion engines where pistons rapidly strain the

flow. The nonequilibrium turbulence effects introduced in such flows can be significant and require

new modeling approaches.

5.2.1 Nonequilibrium Anisotropy Closure

The nonequilibrium turbulence model considered here was identified by Hamlington and Ihme

[45] as a nearly ideal model, in terms of both accuracy and computational simplicity, for capturing
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the effects of rapid straining in piston-driven and rapidly-compressed flows. This model is expressed

as

∂aij
∂t

+ uk
∂aij
∂xk

= −α1
ε

k
aij + α2Sij , (5.3)

where ε is the kinetic energy dissipation rate and the coefficients α1 and α2 are given by

α1 =
P

ε
− 1 + C1 , α2 = C2 −

4

3
, (5.4)

where P ≡ −kaijSij is the kinetic energy production rate. The model parameters C1 and C2 in

Eq. (5.4) have traditionally been tied to the choice of pressure-strain correlation model [58, 111],

but here they will be treated as unknowns determined by the ABC-MCMC procedure.

It should be noted that the model in Eq. (5.3) has a rigorous basis in the exact anisotropy

transport equation and accounts for both the return to isotropy of unstrained turbulence [i.e.,

the first term on the right-hand side of Eq. (5.3)] and the generation of anisotropy in strained

turbulence [i.e., the second term on the right-hand side of Eq. (5.3)]. This model is also the basis

for the quasi-analytical nonequilibrium anisotropy model outlined in [46, 47].

All of the test cases considered here are homogeneous, which permits subtantial simplifications

to the RANS and anisotropy closure equations. In particular, since spatial derivatives of turbulent

fluctuating variables are identically zero in homogeneous turbulence, the Reynolds stresses have no

effect on the evolution of ui in Eq. (5.1) and the spatial derivative of aij on the left-hand side of

Eq. (5.3) is also identically zero. As a result, for homogeneous flows where Sij varies in time only,

the evolution of aij is given by

daij
dt

=

(
k

ε
aijSij + 1− C1

)
ε

k
aij +

(
C2 −

4

3

)
Sij , (5.5)

where aij = aij(t) is a function of time only and Eq. (5.4) has been used to replace the αi coefficients

appearing in Eq. (5.3). Similarly, in homogenenous turbulent flows k = k(t) and ε = ε(t) also

depend only on time and their dynamics are represented here using the standard equations employed
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in classical k-ε models; namely

dk

dt
= −kaijSij − ε , (5.6)

dε

dt
= −Cε1εaijSij − Cε2

ε2

k
, (5.7)

where Cε1 and Cε2 are additional unknown parameters that will be learned using the ABC-MCMC

procedure.

The system of nonlinear and coupled ordinary differential equations represented by Eqs. (5.5)–

(5.7) constitutes the nonequilibrium turbulence anisotropy closure examined in this study. Quan-

tities of interest resulting from this model, such as turbulence kinetic energy and anisotropy mag-

nitude, are denoted F(c) and depend on the unknown model parameters c = (C1, C2, Cε1, Cε2).

5.2.2 Stochastic Modeling

The nonequilibrium anisotropy closure described in the previous section is strictly determinis-

tic given appropriate initial conditions and a prescribed temporally varying mean strain rate tensor

Sij(t). However, as described by Oliver and Moser [83], treating the coefficients of the turbulence

model as random variables accounts only for the uncertainty in those coefficients but does not

account for the uncertainty in the model itself.

Following Oliver and Moser [83], because the present nonequilibrium model still does not

exactly represent the flow physics, we can consider the result of the model to have some uncertainty

due to the modeling. Then the following form represents the stochastic model

F(c, θ) = F(c) + ε(θ), (5.8)

where c is, once again, a vector of turbulence model parameters and ε is a random vector field

depending on the random parameter θ.
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5.2.3 Inverse Problem

Using reference data D from experiments or higher fidelity simulations, we can write the

inverse problem

F(c, θ) = D , (5.9)

where the model parameters c must be determined through an appropriate inversion technique.

Once again, both F and D represent quantities of interest such as the turbulence kinetic energy

k. Due to the complexity of the model, inversion of Eq. (5.9) is made difficult using optimization

approaches. Here we instead use ABC, combined with MCMC methods, to determine c.

5.3 Description of Nonequilibrium Homogeneous Test Cases

The nonequilibrium anisotropy closure described in Section 5.2 is applied here to predict the

turbulence response in a range of different nonequilibrium homogeneous turbulence test cases which

are grouped into two categories: (i) impulsively strained turbulence, and (ii) periodically-sheared

turbulence. Four different straining cases are considered in the first category, and five different

shearing frequencies are considered in the second category.

5.3.1 Impulsively-Strained Turbulence

For each of the impulsively-strained cases considered here, the turbulence is assumed to be

initially isotropic and unstrained such that aij = 0 and Sij = 0 for t < 0. For t ≥ 0, the turbulence

is then subjected to a constant mean strain rate tensor Sij with a characteristic magnitude S.

At time t = 0, it is assumed that k = k0 and ε = ε0, and the initialization of each case is

completed by defining Sk0/ε0. The four impulsively-strained cases examined here correspond to

different forms of Sij and comprise the pure shear case from Bardina et al. [3] as well as the plane

strain, axisymmetric expansion, and axisymmetric contraction cases from Lee and Reynolds [59],

as outlined in the following. It should be noted that each of these cases were also examined by

Girimaji [37].
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• Pure shear: Reference data are available from the large-eddy simulation (LES) by Bardina

et al. [3] for Sk0/ε0 = 3.4, with Sij given for t ≥ 0 by

Sij =




0 S/2 0

S/2 0 0

0 0 0



. (5.10)

• Plane strain: Reference data are available from the direct numerical simulations (DNS) by

Lee and Reynolds [59] for Sk0/ε0 = 0.5, with Sij given for t ≥ 0 by

Sij =




S 0 0

0 −S 0

0 0 0



. (5.11)

• Axisymmetric expansion: Reference data are available from the (DNS) by Lee and Reynolds

[59] for Sk0/ε0 = 5.59, with Sij given for t ≥ 0 by

Sij =




S 0 0

0 −S/2 0

0 0 −S/2



. (5.12)

• Axisymmetric contraction: Reference data are available from the DNS by Lee and Reynolds

[59] for Sk0/ε0 = 0.41, with Sij given for t ≥ 0 by

Sij =




−S 0 0

0 S/2 0

0 0 S/2



. (5.13)

5.3.2 Periodically Sheared turbulence

For initially isotropic turbulence subjected to time-periodic shear at t = 0, Sij is given by

Sij =
S

2




0 sin(ωt) 0

sin(ωt) 0 0

0 0 0



, (5.14)
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where ω is the shearing frequency. For Sk0/ε0 = 3.3 and ω/S = 0.125, 0.25, 0.5, 0.75 and 1.0, DNS

results from Yu and Girimaji [127] can be used as reference data.

5.3.3 Decaying Anisotropic Turbulence

We consider arbitrary flow subjected to a constant applied strain Sij for all t < 0, which is

then impulsively removed at t = 0. Experimental results for decaying anisotropic turbulence have

been obtained by Choi and Lumley [19] for initially plane-strained turbulence.

5.3.4 Straining, Relaxation, and Destraining

A more complex test of the nonequilibrium turbulence response to an imposed mean strain

Sij(t) is provided by experimental results of Chen et al. [16] for the straining, relaxation, and de-

straining of initially-isotropic homogeneous turbulence. This test effectively combines the impulsive

straining cases in Section 5.3.1 and the decaying case in Section 5.3.3. In the experiment by Chen

et al., S22(t) = S11(t) and all other components of the imposed mean strain are zero.

5.4 Results

In the following, we demonstrate the application of the ABC method to determine parameters

c = (C1, C2, Cε1, Cε2) for the inverse problem in Eq. (5.9). The result of this model is the turbulence

kinetic energy k for the test cases described in Section 5.3. The noise ε(θ) in the model has

a Gaussian prior distribution with a mean of 0 and a standard deviation equal to 0.0008. As

summary statistics S ′, we use a set of values ki of the kinetic energy k at the points ti where the

reference data are provided. The distance ρ is defined as the maximum error among the considered

cases between the modeled kinetic energy and the reference data; namely

ρ(S ′ − S) = max
cases

(
max |S ′ − S|

)
. (5.15)

The following results are obtained using Algorithm 4 outlined in Section 2.3. Since we do

not have any prior information about the parameter values, the prior distribution π(c) is taken to
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be uniform. Therefore, for the calibration step, we used n = 104 uniformly distributed parameter

samples to obtain an approximation of the distance distribution Pn(ρ|c,S ′). We set the desired

ratio of accepted parameters x = 0.05 to define the threshold d for further simulations and the

initial covariance matrix cov0 for the MCMC proposal q(c0, cov0).

In the MCMC component of Algorithm 4, we start 24 chains with initial parameters c0

randomly picked from the accepted parameters in the calibration step. These chains work using

the defined threshold d and the adaptive proposal q until each of them accept 105 parameters.

Thus, in our posterior distribution, we have 2.4× 106 accepted parameters. To construct the joint

pdf, we used a kernel density estimation technique with a Gaussian kernel and a bandwidth defined

using Scott’s rule [104].

5.4.1 Impulsively-Strained Turbulence

Figure 5.1 shows the posterior distribution for parameters c given the reference data for the

four impulsively-strained turbulence cases. In order to facilitate visualization of the four dimen-

sional posteriors for the four-parameter nonequilibrium closure model, marginal pdfs are shown on

the diagonal subplots in Figure 5.1 for each of C1, C2, Cε1, and Cε2. Two dimensional marginalized

joint pdfs are shown on the off-diagonal subplots of Figure 5.1. The maximum a posteriori (MAP)

values of the unknown parameters, determined using reference data for the four impulsively-strained

cases, are c = (C1, C2, Cε1, Cε2) = (1.4, 0.71, 1.854, 1.9125). Confidence intervals (90%) for these

parameters are indicated by vertical blue dashed lines on Figure 5.1.

Using these parameter values, Figure 5.2 shows the evolution of the turbulence kinetic energy

k(t)/k0 for each of the initially isotropic impulsively-strained homogeneous turbulence cases, as well

as for the periodically-sheared turbulence cases. The model performance with these parameters is

shown by solid lines and reference values for each case are indicated by points. The results for

the impulsively-strained homogeneous turbulence cases (Figure 5.2(a)) are in good agreement with

the reference data, while the results for the periodically-sheared turbulence cases (Figure 5.2(b))

do not agree as closely with the reference data. This is expected, however, since, to construct the
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Figure 5.1: Marginal and joint probability density functions of accepted values of C1, C2, Cε1 and
Cε2 for initially isotropic impulsively-strained homogeneous turbulence cases.
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Figure 5.2: The evolution of turbulence kinetic energy k(t)/k0 for the nonequilibrium model (solid
lines) and reference data (points) for (a) the initially isotropic impulsively-strained homogeneous
turbulence cases and (b) the periodically-sheared turbulence cases. Model parameters are deter-
mined using reference data from the impulsively-strained cases.
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posterior distribution of unknown parameters, only impulsively-strained homogeneous turbulence

cases were used.

5.4.2 Periodically-Sheared Turbulence

Similarly, we performed training of model parameters on the periodically-sheared turbulence

cases described in Section 5.3 for five different shearing frequencies; namely, ω/S = 0.125, 0.25, 0.5,

0.75 and 1.0. Figure 5.4 shows the resulting posterior pdfs and the corresponding MAP values are

c = (C1, C2, Cε1, Cε2) = (2.3, 0.75, 2.050, 2.34). Once again, confidence intervals (90%) for these

parameters are indicated by vertical blue dashed lines on Figure 5.4.

Figure 5.3(b) compares the model results for the five periodically-sheared cases. Compared

to the results in Figure 5.2(b) for model parameters estimated using the impulsively-strained cases,

Figure 5.3(b) shows that there is an improvement in the agreement for the low frequency cases.

It should be noted that the amplitude of k is significantly different for low and high frequency

cases, thus, defining the distance function ρ as the maximum difference between k values makes

the algorithm focus on the lower frequency cases more, because of the higher amplitude of error as

well. To avoid this issue, one could instead define the distance function as the maximum difference

between log(k) values, which will be explored in the future.

Finally, model results for the four impulsively-strained turbulence cases are shown in Figure

5.3(a). The agreement with reference data is now worse than in Figure 5.2(a), because the model

has been trained only on the periodically-sheared turbulence cases.

5.5 Regression

The local-linear regression described in Section 2.4 can be applied to the posterior distribution

we get using the ABC-MCMC algorithm. In the following we provide an example of linear regression

applied to the calibration of a nonequilibrium anisotropy closure model with three fixed parameters.

We plan to extend it to a full four-parameter model application in the future.
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5.5.1 1D Linear Regression

We reduce the problem to one parameter c = c (in the following examples we calibrate

parameter C1 in the nonequilibrium anisotropy closure) and the linear fit is then

f = α̂+ (S ′ − S)T β̂, (5.16)

where S = (s1, . . . , sq) is the vector of truth summary statistics.

If we perform linear regression on each component sj of the summary statistic vector S

independently, simplifying Eq. (5.16) to

fj = α̂j + (s′j − sj)T β̂j , j = 1, . . . , q , (5.17)

we notice that some sj are not informative, i.e. the distance d(s′ij , sj) does not have a clear linear

trend of change with ci, as shown in Fig. 5.5.

To measure how good the linear fit in Eq. (5.17) is, we can calculate the R2 value (coefficient

of determination) of the fit following the standard definition. The coefficient of determination is

defined as

R2 ≡ 1− SSres
SStot

, (5.18)

where SStot is the total sum of squares and SSres is the sum of squares of residuals defined as

SStot =

m∑

i=1

(fi − c)2 , SSres =

m∑

i=1

(ci − fi)2 , (5.19)

where c is the mean value of sampled parameters, ci, and summation is performed over m sampled

parameters.

We can see that R2 can be very small, e.g. s9 and s15 shown in Figure 5.5, and high, e.g. s30

and s24 shown in Fig. 5.6. Defining an informative statistic as a statistic with R2 > 0.85, we show

which components of the summary statistics vector for the impulsively-strained turbulence cases

(Section 5.3.1) are informative statistics for the C1 parameter with other parameters being fixed

in the nonequilibrium anisotropy closure. Figure 5.8 shows the posterior distribution of parameter

c1. A wider posterior is observed without regression and a very narrow posterior with regression.

This reduces the uncertainty of the parameter estimates.
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Figure 5.3: The evolution of turbulence kinetic energy k(t)/k0 for the nonequilibrium model (solid
lines) and reference data (points) for (a) the initially isotropic impulsively-strained homogeneous
turbulence cases and (b) the periodically-sheared turbulence cases. Model parameters are deter-
mined using reference data from the periodically-sheared cases.
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Cε2 for the periodically-sheared homogeneous turbulence cases.
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Figure 5.5: Example of noninformative statistics with the black line showing linear fit from
Eq.(5.17).

5.6 Conclusions

In this study, model parameter values and uncertainties have been estimated for a nonequi-

librium anisotropy closure model using approximate Bayesian computation (ABC) and a Markov

chain Monte Carlo (MCMC) approach. The ABC-MCMC approach was applied to turbulent ki-

netic energy reference data for four different impulsively-strained cases, and for periodically-sheared

turbulence with five different shearing frequencies. The estimated model parameters were found to

be similar to, but not exactly the same as, previously reported values and gave good agreement be-

tween model results and the reference data. Ultimately, the ABC-MCMC approach demonstrated

here is shown to be an effective and efficient method for estimating unknown model parameters as

well as their uncertainties, in potentially complex turbulence closure models.
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Figure 5.6: Example of informative statistics statistics with the black line showing linear fit from
Eq.(5.17).
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Chapter 6

Menter Shear-Stress Transport Model Calibration Using ABC-MCMC

6.1 Introduction

Despite ongoing advances in the availability of high performance computing resources, the

vast majority of industrial and engineering fluid flow problems are still simulated using Reynolds-

averaged Navier Stokes (RANS) approaches. Although progress has been made in recent years on

the development of computationally efficient large eddy simulation (LES) and hybrid RANS/LES

approaches, RANS simulations are likely to remain common in engineering practice for many years

to come, primarily because of their substantially lower computational cost compared to LES. Tech-

niques such as optimization and uncertainty quantification are also becoming increasingly important

components of the engineering design process, but such techniques often require thousands of simu-

lations (or more), and RANS remains the only viable option for such large numbers of calculations.

The primary difficulty with RANS simulations is the requirement that a physically accurate,

computationally stable model be provided for the unclosed Reynolds stresses that appear in the

RANS equations. A wide variety of RANS closure models have been suggested over the years but,

despite all efforts to create a robust and accurate model, no universal turbulence model exists.

Moreover, essentially all RANS models rely on empirical coefficients that must be calibrated for

different flows and geometries. Historically, these coefficients were defined by applying a model to

a simplified turbulent flow with a known analytical solution, but such flows are often only distantly

related to real-world practical applications.

The development of improved methods for inferring model parameters from available exper-
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imental or higher fidelity data is an active area of research, with recent focus, in particular on

backward inference or data-driven approaches [125]. Probabilistic approaches such as Bayesian

methods can also be used to solve the inverse statistical problem that is the core of model parame-

ter calibration, and such approaches are attractive because they provide not only model parameter

values but also their uncertainties.

Cheung et al. [17] was the first to apply Bayesian inference method to calibrate Spalart-

Allmaras turbulence model using velocity and skin friction experimental data. Oliver and Moser

[83] extended this work by adding more models and stochastic extensions. Ray and co-authors

[90, 60, 91, 93, 92] used a similar approach to calibrate RANS model parameters in a more complex

turbulent flow, namely jet-in-crossflow. Zhang and Fu [128] combined the high-dimensional model

representation technique and the Gaussian process machine learning method to construct a surro-

gate model to make Bayesian inference more affordable. As a demonstration of their method, they

calibrated various parameters in the Menter shear stress transport (SST) model using surface drag

measurements and velocity profiles from hypersonic turbulent flows over a flat plate as reference

data.

In this study, we demonstrate the use of approximate Bayesian computation (ABC) for

calibration of parameters in the Menter SST model. The ABC approach is attractive because

it avoids the need to explicitly define or estimate a likelihood function, and can be combined

with various acceleration techniques, such as Markov chain Monte Carlo (MCMC) methods and

adaptive proposals for the Markov chains. The ABC-MCMC algorithm used here is identical to

that described in Chapter 2 and used in Chapters 4 and 5. However, compared to Chapter 5,

where the simplified cases of homogeneous flows are used to calibrate unknown parameters in

nonequilibrium anisotropy RANS model, here we use a more complicated inhomogeneous flow;

namely, an axisymmetric transonic bump with experimental results provided by by Bachalo and

Johnson [1]. Recently, Schaefer et al. [101] and Zhao et al. [129] performed an uncertainty and

sensitivity analysis of this model for different turbulent flows, and we perform a related calibration

study prior to initiating Markov chains in order to determine which of the model parameters to
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include in the estimation procedure.

In the following, we briefly describe the RANS Menter SST model in Section 6.2 and the ax-

isymmetric transonic bump simulation case in Section 6.3. Then we provide a detailed description of

the calibration step and choice of summary statistics for the ABC-MCMC algorithm. Model param-

eter estimation results are presented in Section 6.4, and conclusions and discussion are provided at

the end. Ultimately, this study provides the most comprehensive and realistic demonstration of the

ABC-MCMC turbulence model parameter estimation method that is the focus of this dissertation.

6.2 Description of Menter Shear-Stress Transport Two-Equation Model

The classical Menter SST model is a two-equation eddy-viscosity RANS model introduced

by Menter [75] in 1994. It is based on the baseline model [75] (BSL model), which combines a

Wilcox k− ω model [124] in the near-wall region and a standard k− ε model in the wake region of

the boundary layer. This model blending was introduced to take advantage of a superior behavior

of the k − ω model in the logarithmic part of the boundary layer in equilibrium adverse-pressure-

gradient flows and compressible flows, and the freestream independence of the k − ε model in the

outer part of the boundary layer. For convenient use, the k − ε model is transformed into the

k − ω formulation, which differs from the original k − ω model by a cross-diffusion term in the ω

equation, and also has different coefficients. Using the same transport equations, the Menter SST

model incorporates Bradshaw’s hypothesis that the principal turbulent shear-stress is proportional

to the turbulent kinetic energy k.

In this study, we follow the nomenclature of NASA Langley Turbulence Modeling Resource

(TMR),1 and the complete formulation and explanation of the model can be found in [75]. The

transport equations for k and ω are

∂(ρk)

∂t
+
∂(ρujk)

∂xj
= P − β∗ρωk +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
, (6.1)

∂(ρω)

∂t
+
∂(ρujω)

∂xj
=
γ

νt
P − βρω2 +

∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
+ 2(1− F1)ρσω2

1

ω

∂k

∂xj

∂ω

∂xj
, (6.2)

1 https://turbmodels.larc.nasa.gov/sst.html

https://turbmodels.larc.nasa.gov/sst.html
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Table 6.1: Nominal values of Menter SST model coefficients.

Coefficient σk1 σk1 σω1 σω2 β1 β2 β∗ κ a1

Nominal value 0.85 1.0 0.5 0.856 0.075 0.828 0.09 0.41 0.31

where ui is the mean velocity, ρ is the density, νt = µt/ρ is the turbulent kinematic viscosity and

F1 is the blending function, such that F1 = 1 in the near-wall region, activating the original k − ω

model, and F1 = 0 away from the surface, activating the transformed k− ε model. The F1 function

is defined as

F1 = tanh(arg4
1), arg1 = min

[
max

( √
k

β∗ωd
,
500ν

d2ω

)
,

4ρσω2k

CDkωd2

]
,

CDkω = max

(
2ρσω2

1

ω

∂k

∂xj

∂ω

∂xj
, 10−20

)
,

(6.3)

where d is the distance from the wall and arg1 goes to zero far enough from walls because of the d

or d2 factors in the denominators of all three terms. Thus, the cross-diffusion term with (1 − F1)

in Eq. (6.2) disappears near the wall.

The coefficients φ = (γ, β, σk, σω) are different for each part of the blended model, with φ1

denoting values for the k−ω model and φ2 for the k− ε model. The combined model in Eqs. (6.1)

and (6.2) thus uses a single φ defined as

φ = F1φ1 + (1− F1)φ2 . (6.4)

Closure coefficients and their nominal values are provided in Table 6.1.

Other closure coefficients are defined using the values in Table 6.1 as

γ1 =
β1

β∗
− σω1

κ2

√
β∗

, γ2 =
β2

β∗
− σω2

κ2

√
β∗

. (6.5)

The turbulence kinetic energy production P in Eqs. (6.1) and (6.2) is defined as

P = τij
∂ui
∂xj

, where τij = µt

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
− 2

3
ρkδij . (6.6)

In the k − ε and k − ω two-equation models, the principal shear-stress τ := −ρu′v′ is usually

computed as τ = µt(∂u/∂y). However, based on Bradshaw’s assumption, the shear stress in the
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boundary layer is proportional to the turbulent kinetic energy k as τ = ρa1k, with a1 being constant.

Taking this into account, Menter [75] defined the turbulent eddy viscosity as

µt =
ρa1k

max(a1ω,ΩF2)
, (6.7)

where Ω =
√

2RijRij with Rij = 1/2 (∂ui/∂xj − ∂uj/∂xi) is the absolute vorticity and F2 is the

second blending function

F2 = tanh(arg2
1) , arg2 = max

( √
k

β∗ωd
,
500ν

d2ω

)
. (6.8)

In an adverse-pressure-gradient boundary layer, production of k is larger than its dissipation (Ω >

a1ω) and the second term in the parenthesis of Eq. (6.7) becomes dominant over the first term,

which is the conventional eddy-viscosity formulation µt = ρk/ω in a k − ω model.

6.3 Flow Solver and Test Problem

To calibrate Menter SST model coefficients, we use the axisymmetric transonic bump case

with reference data obtained from the experimental results provided by Bachalo and Johnson [1].

This is a widely used test case for shock-induced separated flow, followed by reattachment. The

axisymmetric bump in this experiment is a circular-arc bump with a height of 1.905 cm and a

length of 20.32 cm attached to a cylinder that is 15.24 cm in diameter. The flow has a freestream

Mach number M = 0.875, a temperature of T = 540◦R and a combination of shock and trailing-

edge adverse-pressure-gradient causes flow separation with reattachment downstream of the bump

(creating a separation bubble). The Reynolds number Re = 2.763 × 106 is calculated based on

the freestream velocity Uinf and the bump length c. All of the computational case parameters are

provided by the TMR website2 and Figure 6.1(a) shows a schematic of the experiment.

All flow solutions in this chapter were obtained using the modified NASA OVERFLOW code

version 2.2n3 . OVERFLOW is a compressible 3D flow solver that solves the time-dependent RANS

equations using multiple overset structured grids. The code can also operate in two-dimensional or

2 https://turbmodels.larc.nasa.gov/axibump_val.html
3 https://overflow.larc.nasa.gov/

https://turbmodels.larc.nasa.gov/axibump_val.html
https://overflow.larc.nasa.gov/
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(a) Axisymmetric bump experiment schematic. (b) Axisymmetric transonic bump geometry

Figure 6.1: Axisymmetric transonic bump geometry and experiment schematic.

axisymmetric mode. It has been broadly verified and validated [18, 55] and is widely used across

the aerospace industry. The modifications allow the code to read turbulence model coefficients

from the parameters file in order to perform the ABC-MCMC algorithm.

For axisymmetric problems, OVERFLOWcan be configured in an axisymmetric mode with a

three-plane grid. The center plane lies on the x, z plane and the other two planes lie at ±1◦

rotations from this plane. The geometry and grid configuration are shown in Figure 6.1(b), taken

from the TMR website. All computational solutions were obtained using a computational grid with

721 × 321 cells on the center plane provided by the TMR website. Each simulation ran for 5000

time steps, requiring ∼ 1.5 CPU hours using 16 processors.

This axisymmetric transonic bump case has been used previously for Menter SST model

validation in OVERFLOW [55] and is thus ideally suited for the calibration of the SST model parameters

in the present work. Uncertainty quantification for the Menter SST model coefficients [101] has

also been performed for this case using the same computational grid as that used here.

Experimental data for these profiles and OVERFLOW result for the Menter SST model with

nominal coefficients from Table 6.1 are provided in Figs. 6.2 and 6.3.



83

-0.25 0 0.25 0.5 0.75 1 1.25 1.5

u/Uinf

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
y
/c

a)a)a)a)a)a)a)a)

x/c = −0.25
x/c = 0.688
x/c = 0.813

x/c = 0.938
x/c = 1.0
x/c = 1.125

x/c = 1.25
x/c = 1.375
overflow nominal

-0.02 -0.015 -0.01 -0.005 0

u′v′/U2
inf

b)b)b)b)b)b)b)b)
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coefficients from Table 6.1 of a) mean velocity and b) turbulent shear stress.
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coefficients from Table 6.1 of pressure coefficient Cp.
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6.4 Parameter Estimation Results

The ABC-MCMC algorithm with an adaptive proposal used in this study is identical to that

described and used in previous chapters of this dissertation. Consequently, we do not re-state the

details of the approach. In the following, we provide extensive detail on the calibration step and

selection of summary statistics prior to initiating Markov chains; it will be seen that this initial

step allows us to reduce the number of unknown parameters calibrated in the model, thereby

substantially reducing the computational cost. Final parameter estimates from the ABC-MCMC

approach and comparisons with experimental data are provided at the end of this section.

6.4.1 Calibration Step and Choice of Summary Statistics

Schaefer et al. [101] in their uncertainty quantification study of the Menter SST model co-

efficients demonstrated that five parameters (β∗, σω1, β
∗/β1, β

∗/β2, a1) make the most significant

contribution to axisymmetric transonic bump simulation results. Based on this analysis, we chose

the parameters β∗, σω1, β1, β2, a1 for ABC-MCMC calibration. In this calibration step we uniformly

sampled n = 7, 776 parameters samples (uniform grid with 6 samples per dimension).

The advantage of the relatively simple rejection ABC method used in the calibration step

is that sampling does not depend on the acceptance criteria. Thus, for each sampled parameter

we can store the model output and measure the distance between truth and modeled summary

statistics after all simulations have been performed. This allows us to build posterior distributions

for various summary statistics and threshold values, and to choose the best statistics and thresholds

for the parameter estimation using Markov chains.

For the axisymmetric transonic bump case, we consider experimental data provided by Bachalo

and Johnson [1] and shown in Figures 6.2 and 6.3 to be the reference data. Thus, the available refer-

ence data are comprised of the pressure coefficient Cp, mean velocity u/Uinf , turbulent shear stress

profiles (u′v′)/U2
inf , and separation and reattachment points. The experiment provides eight mean

velocity and turbulent shear stresses profiles at x/c = −0.25, 0.688, 0.813, 0.938, 1.0, 1.125, 1.25, 1.375.
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This reference data can be considered as true summary statistics S.

Correspondingly, as modeled summary statistics, S ′, we considered pressure coefficient data,

mean velocity data, and shear stresses data, interpolated at points where the reference data are

provided. Turbulent shear stresses were calculated during post-processing as

u′v′ = −µt
ρ

(
∂u

∂y
+
∂v

∂x

)
, (6.9)

where the turbulent eddy viscosity, µt, was taken from SST model calculation.

We define the distance function simply as 2-norm of difference between true summary statis-

tics S and modeled summary statistics S ′, that is

d(S ′,S) =

[∑

i

(
S ′i − Si

)2
]1/2

, (6.10)

where i span over data points where the reference data are provided.

Figure 6.4(a)-(c) shows marginal posteriors from the ABC rejection algorithm for β∗, σw1, β1, β2

and a1 using the three different summary statistics (i.e., pressure coefficient, mean velocity and tur-

bulent shear stresses profiles). This figure shows that the marginal posteriors for β2 and a1 have

completely different maximum a posterior probability (MAP) values depending on whether Cp or

the shear stress are used in the ABC approach. This indicates that the SST model may not be

able to simultaneously predict Cp and shear stresses with a high degree of precision using the same

parameter values.

To combine available reference data, we normalize it by maximum and number of data points

of each reference data. The distance function thus becomes

d(S ′,S) =

[∑

k

1

Nk

∑

i

(S ′ki − Ski
maxi Ski

)2
]1/2

, (6.11)

with the separation and reattachment error defined as

errsep =
[
(x′sep − xsep)2 + (x′reattach − xreattach)2

]1/2
. (6.12)

Figure 6.4(d)-(e) shows marginal posterior distribution after combining the available reference

data, in particular: (d) combination of pressure coefficient and mean velocity profiles data, (e)
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Figure 6.4: Marginal posteriors for calibration step with β∗, σω1, β1, β2, a1 parameters and 7776
samples. Each row shows a posterior for different summary statistics: (a) pressure coefficient, (b)
mean velocity, (c) turbulent shear stresses profiles, (d) combination of pressure coefficient and mean
velocity profiles data, (e) combination of pressure coefficient, mean velocity profiles, and turbulent
shear stress profiles data, and (f) combination of pressure coefficient, mean velocity profiles, and
turbulent shear stress profiles data with condition on separation and reattachment error to be less
than 0.25. Line colors correspond to the percentage of accepted simulations, as determined by the
rejection threshold ε. Raw marginals for a 3% acceptance rate (i.e., before Gaussian kernel density
estimation) are shown by gray bars. Red dots show the most probable parameter values from the
full 5D posteriors for a 3% acceptance rate. Vertical blue dashed lines show the nominal parameter
values listed in Table 6.1.
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Figure 6.5: Experimental data and numerical result of (a) mean velocity and (b) turbulent shear
stress for the Menter SST model with nominal coefficients from Table 6.1 and maximum values of
the posterior shown in Figure 6.4.

combination of pressure coefficient, mean velocity profiles, and turbulent shear stress profiles, and

(f) the same as (e), but with the condition that the separation and reattachment error be less

than 0.25. These figures show that the resulting marginals have maxima that are mixtures of the

maxima from the marginals of each of the summary statistics individually.

To compare results for different summary statistics, we estimated MAP values of joint prob-

ability distributions with 3% accepted parameters (shown with red dots in Figure 6.4) for all six

summary statistics presented in Figure 6.4 and ran forward simulations with these parameters. Fig-

ure 6.5 shows the corresponding velocity and turbulent shear stress profiles and Figure 6.6 shows

the resulting pressure coefficient profile. The model with MAP values recovers experimental results

in velocity and shear stress profiles noticeably better than the model with nominal values from

Table 6.1.

Based on this comparison, we pick the combination of pressure coefficient, mean velocity
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Figure 6.4

profiles, and turbulent shear stress profiles data with condition on separation and reattachment

error to be the summary statistics for all following results.

It should be noted that we noticed a strong linear correlation between β∗ and β1 and switched

to calibration of parameters β∗, σω1, β1/β
∗, β2/β

∗, a1 instead. This calibration had n = 28, 804

samples (i.e., a uniform grid with 6, 13, 6, 7, 8 samples per parameter correspondingly). Figure 6.7

shows the marginal distributions for this calibration. The bigger number of samples in σω1 was

chosen to demonstrate that the marginal distribution of this parameter is close to uniform. Thus,

to reduce the amount of computation, we removed σω1 from calibrated parameters and set its value

to the nominal value σω1 = 0.5.

The last calibration step for four parameters β∗, β1/β
∗, β2/β

∗, a1 had 20,736 samples (i.e.,

uniform grid with 12 samples per dimension). Figure 6.8 shows marginal distributions for this

calibration. Using this posterior distribution we can define necessary characteristics for the MCMC

aspect of the ABC-MCMC algorithm. We set the threshold ε such that P (d(S ′,S) ≤ ε) = 0.03

(i.e., maximum distance value of 3% accepted parameters), defined the standard deviation of the

initial Gaussian kernel for the chains as 0.25 of the standard deviation of the posterior formed by

accepting 3% of the tested parameters. The starting parameter values for the chains were randomly

sampled from these posteriors.
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Figure 6.8: Marginal posteriors for calibration step with β∗, β1/β
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∗, a1 and 20736 samples.
Line colors correspond to the percentage of accepted simulations, as determined by the rejection
threshold ε. Raw marginals for a 3% acceptance rate (i.e., before Gaussian kernel density estima-
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in Table 6.1.

6.4.2 Results from ABC-MCMC Parameter Esimation

We ran 200 independent Markov chains, each starting from different parameter values ran-

domly sampled from the accepted parameters (with 3% acceptance rate) in the calibration step.

For an initial period of k = 100 chain steps, the chain kernel ran without kernel adaptation. The

total number of accepted parameters in the chains is 116,327. Figure 6.9 shows marginal (diagonal

subplots), 2D marginalized (overdiagonal subplots) and 2D conditional (below diagonal) poste-

rior pdfs. The estimated parameters are MAP values of the joint posterior distribution shown in

Figure 6.9, with red dashed lines and their values listed in Table 6.2.
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Table 6.2: Estimated parameters for SST model.

Coefficient β∗ β1/β
∗ β2/β

∗ a1

Nominal value 0.09 0.833 0.92 0.31
Estimated values 0.14 1.212 10.17 0.268

The comparison of mean velocities and turbulent shear stress profiles of the numerical sim-

ulation with estimated parameters and nominal parameters and experimental data is shown in

Figure 6.10. Once we obtained the posterior distribution of model parameters we can propagate

their uncertainty through the model to estimate uncertainty intervals on the output quantity of

interest. To do that we use Monte Carlo Sampling algorithm. Given the probability distribution of

model parameters, we draw 199 samples from this distribution and evaluate the model to obtain the

modeled quantity of interest. Then we estimate the distribution of the propagated samples. The
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Figure 6.10: Experimental data and numerical result of (a) mean velocity and (b) turbulent shear
stress for the Menter SST model with nominal coefficients from Table 6.1 and maximum values of
the posterior shown in Figure 6.4. The shaded area indicates the 75% confidence interval

shaded area in Figures 6.10 and 6.11 indicates the 75% confidence interval for each distribution.

Ultimately, the final parameter values from the ABC-MCMC procedure shown in Table 6.2

are substantially different than the nominal values. This correspond to a substantial overall im-

provement in the ability of the SST model to predict experimental velocity and shear stress profiles,

as shown in Figure 6.10, at the expense of slightly reduced agreement with the experimental mea-

surements of Cp. However, the flexibility of the ABC-MCMC method allows a user to easily adjust

the weighting of different terms in the combined distance function such that improved agreement

of Cp, or improvements in only a certain region of the flow (e.g., prior to flow separation), can be

prioritized.
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6.5 Conclusions

In the present study, we demonstrate the use of the approximate Bayesian computation with

Markov chain Monte Carlo (ABC-MCMC) algorithm for calibration of the RANS Menter SST

model parameters. We use a complicated inhomogeneous flow, namely, an axisymmetric transonic

bump, with experimental results provided by Bachalo and Johnson [1], as reference data and the

RANS of the axisymmetric transonic bump as a model in the ABC-MCMC algorithm.

We provide a detailed description of the calibration step for ABC-MCMC and the choice of

summary statistics. The ABC rejection algorithm, used in the calibration step, has a noticeable

advantage. It provides us with an opportunity to compare different summary statistics and distance

functions. This comparison revealed that the model with the same set of parameters is unable to

match all reference data fields. In our calibration step, ABC provides different estimated parameters

for different summary statistics constructed from available reference data.

After combining available reference data with equal weights and condition on separation

and reattachment points error into summary statistics used in the ABC-MCMC algorithm, the

estimated model parameters gave good agreement between model results and the reference data.
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Once we obtained the posterior distribution of model parameters, we propagate their uncer-

tainty through the model to estimate uncertainty intervals on the output quantity of interest.

Ultimately, the ABC-MCMC approach demonstrated here is shown to be an effective and

efficient method for estimating unknown model parameters, as well as their uncertainties, in po-

tentially complex turbulence closure models.



Chapter 7

Conclusions and Future Research

This dissertation demonstrates the estimation of turbulence model parameters using approxi-

mate Bayesian computation (ABC). Many recent studies of model parameter estimation and uncer-

tainty quantification focus on statistical approaches. For example, Bayesian inference can be used

to provide posterior distributions of unknown parameters, but knowledge of the likelihood function

is required, which can be expensive to compute. By contrast, ABC uses a series of approximations

to estimate the posterior without knowing or estimating the likelihood function. Applying ABC

to turbulence model parameter estimation reduces the computational burden of Bayesian inference

and provides a flexible tool for model calibration.

In this dissertation, we described the ABC methodology in detail, including the baseline

algorithm, a Markov chain Monte Carlo (MCMC) technique, calibration step, adaptive proposal,

and a linear regression correction. To demonstrate how ABC can be applied to turbulence model

calibration, we estimated model parameters for three different turbulence models. In the follow-

ing, we provide additional more specific conclusions resulting from the research described in this

dissertation, and also provide several directions for future research.

7.1 Conclusions

As a result of the research described herein, we can state the following conclusions:

(1) The ABC-MCMC approach is shown to be an effective and efficient method for estimating

unknown model parameters, as well as their uncertainties.
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(2) ABC-MCMC can be applied to potentially complex turbulence closure models, such as

models with partial differential equations.

(3) The MCMC procedure and adaptive proposal accelerate the ABC process and reduce the

requirement for computational resources during the model parameter estimation.

(4) The summary statistics are a crucial component of ABC. These statistics must be suffi-

ciently sensitive to changes in model parameters and must represent the dependence of the

underlying reference data on these parameters.

(5) The acceptance-rejection ABC algorithm, despite its computational expensiveness, has a

noticeable advantage. Since parameter samples in this algorithm are independent of each

other, we can store the output from the simulations with each sampled parameter and

experiment with different choices of the summary, distance function metric, and tolerance,

to see how this affects our results. Thus, the calibration step in ABC-MCMC algorithm

can provide not only hyper-parameters for the chains, but also design the best summary

statistics and distance function.

(6) All of the estimation studies of turbulence model parameters in this dissertation demon-

strate that models are often unable to simultaneously match all reference data fields, and

ABC provides different estimated parameters for different summary statistics constructed

from available reference data. As such, ABC provides an additional understanding of the

model behavior and its ability to reconstruct the real turbulence flow.

(7) Once we obtained the posterior distribution of model parameters we can propagate their

uncertainty through the model to estimate uncertainty intervals on the output quantity

of interest. To do that, we use Monte Carlo Sampling algorithm. Given the probability

distribution of model parameters, we draw samples from this distribution and evaluate

the model to obtain the modeled quantity of interest and estimate the distribution of the

propagated samples.
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7.2 Future Research

The research described in this dissertation suggests a number of important directions for

future research, including:

(1) The efficiency of the ABC-MCMC algorithm can be further improved by incorporating an

adaptive threshold ε into the MCMC procedure, as recently proposed by Vihola and Franks

[115].

(2) The local linear regression can be applied to multi-parameter models to improve accuracy

while reducing the dependence on the choice of ε.

(3) The performance of the ABC algorithm relies on a user’s ability to summarize high-

dimensional system responses into a few informative, low-dimensional summary statistics.

To reduce this subjective component in the ABC algorithm, one can explore automatic ways

of choosing informative statistics. For example, the recent study by Åkesson et al. [131]

proposes a convolutional neural network architecture for automatically learning informative

summary statistics of temporal responses.

(4) The ABC approach is highly parallelizable and does not require communication between

processes. The main computational effort is thus spent on evaluating the model with sam-

pled parameters. Consequently, if the model can fit into the memory of a general purpose

graphical processing unit (GPGPU), the baseline ABC and ABC-MCMC algorithms can

be substantially accelerated.



Bibliography

[1] W. D. Bachalo and D. A. Johnson. Transonic, turbulent boundary-layer separation generated
on an axisymmetric flow model. AIAA journal, 24(3):437–443, 1986.

[2] J. Bardina, J. Ferziger, and W. C. Reynolds. Improved subgrid scale models for Large Eddy
Simulation. AIAA paper, No. 80-1357, 1980.

[3] J. Bardina, J. H. Ferziger, and W. C. Reynolds. Improved turbulence models based on Large
Eddy Simulation of homogeneous, incompressible turbulent flows. Technical Report TF-19,
Thermosciences Division Department of Mechanical Engineering Stanford University, 1983.

[4] Mark A Beaumont. Approximate Bayesian Computation in evolution and ecology. Annual
review of ecology, evolution, and systematics, 41:379–406, 2010.

[5] Mark A. Beaumont. Approximate Bayesian Computation. Annual review of statistics and
its application, 6:379–403, 2019.

[6] Mark A. Beaumont, Wenyang Zhang, and David J. Balding. Approximate Bayesian Compu-
tation in population genetics. Genetics, 162(4):2025–2035, 2002.

[7] Mark A. Beaumont, Jean-Marie Cornuet, Jean-Michel Marin, and Christian P. Robert. Adap-
tive Approximate Bayesian Computation. Biometrika, 96(4):983–990, 2009.

[8] Michael G. B. Blum and Olivier François. Non-linear regression models for Approximate
Bayesian Computation. Statistics and Computing, 20(1):63–73, 2010.

[9] M. A. Bolshov, Y. A. Kuritsyn, and Y. V. Romanovskii. Tunable diode laser spectroscopy as
a technique for combustion diagnostics. Spectrochimica Acta Part B: Atomic Spectroscopy,
106:45–66, 2015.

[10] J. M. Bonnie and G. Sanford. Computer program for calculation of complex chemical equi-
librium compositions and applications. User’s Manual and Program Discription, 1996.

[11] François Bouttier and Graeme Kelly. Observing-system experiments in the ecmwf 4d-var
data assimilation system. Quarterly Journal of the Royal Meteorological Society, 127(574):
1469–1488, 2001.

[12] S. Boyd and L. Chua. Fading memory and the problem of approximating nonlinear operators
with Volterra series. IEEE Trans. Circuit Syst., 32:1150, 1985.



98

[13] T. Cai, T. Tan, G. Wang, W. Chen, and X. Gao. Gas temperature measurements using
wavelength modulation spectroscopy at 1.39 µm. Optica Applicata, 39(1), 2009.

[14] Ewan Cameron and A. N. Pettitt. Approximate Bayesian Computation for astronomical
model analysis: a case study in galaxy demographics and morphological transformation at
high redshift. Monthly Notices of the Royal Astronomical Society, 425(1):44–65, 2012.

[15] T. Chai and R. R. Draxler. Root mean square error (rmse) or mean absolute error (mae)?–
arguments against avoiding rmse in the literature. Geoscientific Model Development, 7(3):
1247–1250, 2014.

[16] Jun Chen, Charles Meneveau, and Joseph Katz. Scale interactions of turbulence subjected
to a straining-relaxation-destraining cycle. Journal of Fluid Mechanics, 562:123–150, 2006.

[17] Sai Hung Cheung, Todd A. Oliver, Ernesto E. Prudencio, Serge Prudhomme, and Robert D.
Moser. Bayesian uncertainty analysis with applications to turbulence modeling. Reliability
Engineering & System Safety, 96(9):1137–1149, 2011.

[18] Marissa L. Childs, Thomas H. Pulliam, and Dennis C. Jespersen. Overflow turbulence model
resource verification results. Technical Report NAS-2014-03, NASA Ames Research Center,
2014.

[19] K.-S. Choi and J. L. Lumley. Return to isotropy of homogeneous turbulence revisited. In
Turbulence and Chaotic Phenomena in Fluids, pages 267–272, 1984.

[20] J. D. Christopher, N. T. Wimer, C. Lapointe, T. R. S. Hayden, I. Grooms, G. B. Rieker, and
P. E. Hamlington. Parameter estimation for complex thermal-fluid flows using approximate
bayesian computation. Physical Review Fluids, 3:104602, 2018.

[21] Jason D. Christopher, Caelan Lapointe, Nicholas T. Wimer, Torrey R. S. Hayden, Ian
Grooms, Gregory B. Rieker, and Peter E. Hamlington. Parameter estimation for a tur-
bulent buoyant jet with rotating cylinder using Approximate Bayesian Computation. In 23rd
AIAA Computational Fluid Dynamics Conference, page 3629, 2017.

[22] Jason D. Christopher, Caelan Lapointe, Nicholas T. Wimer, Torrey R. S. Hayden, Ian
Grooms, Gregory B. Rieker, and Peter E. Hamlington. Parameter estimation for a turbulent
buoyant jet using Approximate Bayesian Computation. In 55th AIAA Aerospace Sciences
Meeting, page 0531, 2017.

[23] Jason D. Christopher, Cealan Lapointe Nicholas T. Wimer, Torrey R. S. Hayden, Ian Grooms,
Gregory B. Rieker, and Peter E. Hamlington. Parameter estimation for complex thermal-fluid
flows using Approximate Bayesian Computation. Physical Review Fluids, 3:104602, 2018.

[24] P. G. Constantine, Q. Wang, A. Doostan, and G. Iaccarino. A surrogate accelerated Bayesian
inverse analysis of the HyShot II flight data. AIAA Paper, AIAA-2011-2037, 2011.

[25] S. A. Cottilard. Catalytic combustion. Nova Science Publ., 2011.
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Appendix A

Catalytic Burner

A.1 Physical experiments setup

The catalytic burner examined here has been studied previously [51, 50] and is a scaled-down

version of catalytic burners commonly used for industrial heating of food products and polymer

films. The catalytic burner is 0.25 m long by 0.075 m wide and combusts a mixture of methane

and desiccated air. An iron-chromium alloy catalyst mesh is welded to an open-box metal frame.

The catalyst is used to achieve more complete combustion at lower temperatures, thereby reducing

the presence of reactive products of incomplete combustion and pollutants [25] in the burner exit

gases. To premix the oxidizer and fuel, the reactants pass through a bed of glass spheres within

a cylindrical flame arrestor mounted beneath the combustor. A schematic of the present burner

experiment is shown in Fig. A.1(a), and a photograph of the burner in operation, with accompanying

laser optics, is shown in Fig. A.1(b).

Experimental measurements were made using wavelength modulation spectroscopy (WMS),

which provides line-of-sight, absorption-weighted average temperature and chemical species con-

centrations. As shown in Fig. A.1, the WMS measurements were made along the longest dimension

of the burner (termed the ‘length’ herein and denoted by the z-axis) at the midpoint of the burner

width (i.e., the center of the x-dimension of the burner). Vertical profiles (i.e., as a function of

height above the burner along the y-axis) of line-of-sight, absorption-weighted average temperature

were measured for three different burner operating powers; these profiles provide reference data for

the ABC parameter estimation described in Section 3.4.
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Figure A.1: Schematic of the experimental setup for laser absorption spectroscopy above the cat-
alytic burner (a), and an image of the burner in operation, including laser optics (b).
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A.1.1 Laser absorption spectroscopy (LAS)

Tunable diode laser absorption spectroscopy (TDLAS) was used to perform in situ temper-

ature measurements in the flow above the catalytic burner. This method provides a non-intrusive,

quantitative, absolute, time-resolved, robust, and portable sensor [41] to measure temperature at

different locations in the flow. Other laser-based techniques such as Raman or Rayleigh scatter-

ing and laser induced fluorescence can also provide quantitative spatial and temporal information

[27, 72, 102, 33, 65, 73]. However, such measurements often require large optical setups that are

not ideal for industrial applications. The use of TDLAS herein is thus motivated by the practical

feasibility of this approach for characterization and control of real-world industrial systems.

From a quantitative perspective, Beer’s law can be used to model the transmitted intensity

of the laser through the absorbing gases and is given as

It(t) = I0(t) exp[−α(λ)] , (A-1)

where It(t) is the intensity of the transmitted modulated light after it passes through the absorbing

gases, I0(t) is the incident (i.e., un-attenuated) intensity, λ(t) is the wavelength of the laser as a

function of time, and α(λ) is the absorbance of the probed molecular species as a function of wave-

length. As discussed below, the absorbance depends on the gas temperature, species concentration,

pressure, and pathlength, and thus by measuring the incident and transmitted laser intensities, the

gas properties can be determined.

In this study, we use WMS, a specialized form of TDLAS, to obtain in situ temperature

measurements. This method has been used previously to measure temperature and species mole

fractions in a variety of combustion environments, from shock tubes to atmospheric flames [86, 30,

13, 117, 53, 109, 89, 9, 49, 40]. Compared to traditional TDLAS, where the wavelength of a diode

laser is tuned across one or two quantum transitions of the target species, WMS uses additional

high frequency signals and signal isolation to reduce noise for real-world systems.

To conduct WMS, a fast modulation is applied to the injection current of a tunable diode laser,

which results in rapid wavelength and intensity variations of the laser light. A lock-in amplifier



110

isolates the series of harmonics in the signal measured at the detector, which occur due to the

fast intensity modulation and the effects of absorption. The second harmonic is especially useful

because it is distinctly sensitive to absorption. In particular, normalizing the second harmonic

signal (denoted 2f) by the first harmonic (denoted 1f) creates a ratio (i.e., 2f/1f) that is sensitive

to absorption, but insensitive to intensity fluctuations. This ratio makes the sensor robust in harsh

environments and enables calibration-free absolute measurements [94].

Although the specific shape of an absorption transition is also dependent on the other non-

absorbing gases present in the system (e.g., CO2, CO, etc., in combustion systems), the integrated

absorbance is independent of the collision partner, and is therefore a more useful quantity to

measure. The integrated absorbance is extracted from the measured 2f/1f ratio using an approach

similar to that described in Refs. [49, 112, 39]. Using the measured WMS 2f/1f signal as a baseline,

the simulated 2f/1f signal is adjusted until the two signals are in close agreement. In particular, the

Voigt line-shape profile parameters (i.e., line-center, integrated area, Doppler width, and Lorentz

width) are adjusted in a nonlinear fitting code until the profiles match. The spectral database

HITRAN 2012 and the validated line parameters from Goldenstein et al. [38] are used to create

initial estimates for the Voigt parameters.

Temperature is calculated using the integrated absorbances that emerge from the fitted Voigt

profiles for two different measured H2O transitions. This technique, called two-line thermometry

[48], calculates temperature using the ratio of integrated absorbances from WMS fits to the two

H2O transitions. Integrated absorbance, A, is computed over the laser pathlength as

Ai(p, T ) = p

∫ L

0
Si(T, x)χabs(x)dx , (A-2)

where p is the total pressure (assumed constant for the entire pathlength), Si(T, x) is the line

strength of the ith probed transition at temperature T and location x, χabs(x) is the species mole

fraction of the absorbing gas, and L is the total pathlength of the laser beam.

The ratio of the integrated absorbances A1 and A2 of two H2O absorption features yields a
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quantity, R, that depends only on the temperature, namely

R = A1/A2 = f(T ) . (A-3)

The ratio of the two H2O absorption transitions is directly related to temperature, despite the fact

that each individual integrated absorbance is independently related to species mole fraction. Based

on a ratio of the signal absorbed at the two different wavelengths (and hence for two different quan-

tum transitions), a temperature can be calculated [51]. The resulting temperature is, effectively,

an absorption-weighted average temperature over the laser pathlength (or ‘line of sight’).

A.1.2 Experimental setup

The present WMS measurements use two NEL Inc. distributed feedback diode lasers centered

on H2O absorption transitions at 1391.7 nm and 1468.9 nm. These absorption transitions have

two primary advantages that make them ideal for temperature measurements in this system. First,

they have a large difference in the lower state energy (1045 cm−1 and 3319 cm−1, respectively); this

optimizes the temperature sensitivity at elevated temperatures. Second, Goldenstein and Hanson

[38] have previously validated these line strength parameters, thus providing ideal conditions for

fitting the Voigt profiles.

The lasers are combined and simultaneously passed across the long dimension of the burner

(i.e., the lasers initially travel above the burner for 0.25 m parallel to the z-axis). To increase the

signal-to-noise ratio, the combined laser is reflected twice, causing the laser to pass over the burner

three times, creating an effective path length of 0.75 m. The sensor was previously validated in a

controlled system for known conditions [51]; temperature measurements were found to be accurate

within 3% up to approximately 1300 K. Above this temperature, uncertainties were extrapolated

using the nonlinear relationship between absorption and temperature from Eq. (A-3). A fume hood

was located several feet above the burner to evacuate exhaust gases, producing a negligible impact

on the high-temperature flow close to the burner surface. Calibration data, along with additional

setup information and data processing techniques, can be found in Hayden et al. [51].
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To obtain vertical profiles of temperature, a ‘y’-shaped optical stage was mounted on a scissor

jack, enabling vertical translation of the laser beam along the y-axis (see Fig. A.1). Measurements

were taken at heights of 0.5 mm to 10.5 mm above the burner in 2 mm increments, then 10.5 mm

to 150.5 mm above the burner in 10 mm increments. All measurements were performed along the

length (i.e., z-axis) of the burner centered across the burner width (i.e., 37.5 mm from the edge in

the x direction; see Fig. A.1). This resulted in temperature measurements at 20 vertical positions.

The tighter measurement spacing close to the burner provides additional information in the region

most likely to contain sustained combustion after the gases pass through the catalytic mesh. Data

are averaged for 10 mins at each height to remove any slow transients in burner conditions or room

air fluctuations.

A.2 Numerical experiments setup

A.2.1 Large eddy simulations (LES)

To accurately represent the flow physics above the catalytic burner while maintaining suffi-

cient computational affordability so that up to O(103) distinct choices of c could be sampled, 3D

LES was used for the computational model. The fireFOAM solver [120] in OpenFOAM version 4

[42, 123] was used to perform the LES.

The computational configuration consisted of a non-reacting heated, buoyant jet with a rect-

angular exit matching the size of the catalytic burner described in Section A.1. The low-pass

filtered compressible Navier-Stokes equations were solved with second-order accuracy in space and

time, in conjunction with mass, enthalpy, and species conservation equations. The LES equations

were closed using a dynamic one-equation eddy SGS model. Coupling between the pressure and

velocity was accomplished using the PIMPLE algorithm, which combines the Pressure-Implicit with

Spliting of Operators (PISO) and Semi-Implicit Method for Pressure Linked Equations (SIMPLE)

algorithms. Heat transfer mechanisms represented in the LES include conduction, transport of tem-

perature by advection of chemical species, and radiative losses (approximated using the discrete
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ordinate method).

The LES equations were solved on a 3D grid with approximately 2.4×106 hexahedral control

volumes stretched vertically to enhance the resolution near the burner, resulting in a finest vertical

resolution of approximately 0.8 mm. The grid was uniform in horizontal directions. The computa-

tional domain is shown in Fig. A.2(a). The domain dimensions (0.35 m long by 0.175 m wide by

1.2 m tall) were chosen to allow the bottom-driven jet to exit the domain primarily vertically at

the top boundary. The burner inflow was centered at the bottom of the domain and was 0.25 m

long and 0.075 m wide, corresponding to the dimensions of the catalytic burner shown in Fig. A.1.

Time stepping was adaptive and controlled by a maximum Courant-Friedrichs-Lewy (CFL)

of 0.4. After a sufficiently long period to allow the flow field to fully develop, mean statistics

for temperature were computed over a duration of 1 s. Samples obtained using this time period

were found to be within approximately 1% of samples obtained over a 20 s averaging period, while

allowing many more simulations to be performed for different parameters c. Example temperature

and speed fields from one such simulation are shown in Figs. A.2(b) and (c), respectively.

To account for the possibility of continued combustion within the domain, heat release was

modeled above the combustor by adding a source term to the enthalpy equation in fireFOAM. Heat

was added using a half-Gaussian distribution with the peak occurring at the burner surface, then

trailing off in intensity as height increases above the burner (i.e., in the y-direction), as shown in

Fig. A.2(a). Heat was applied uniformly in the 0.075 m by 0.25 m region directly above the burner;

at x and z-locations beyond the edge of the burner, the heat addition was set to zero.

Inlet conditions were fixed at close to the temperatures measured at the combustor surface

(i.e., close to T0 in Table 3.1). The exact values of T0 from Table 3.1 were not used in the simulations

because the experimental measurements provide absorption weighted temperatures, rather than the

unweighted temperatures required in the simulations, and because the lowest experimental mea-

surement was still 0.5 mm above the burner surface. We thus increased the temperature boundary

condition slightly compared to T0 in each simulation; we found that surface temperatures of 1515 K,

1610 K, and 1685 K were sufficient to provide reasonable agreement between the experimental and
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Figure A.2: Schematic showing the setup of the 3D LES domain (left), temperature field (i.e.,
volume rendering of a 500 K isosurface and additional volume rendering at higher locations) of a
single snapshot in time from a simulation with inlet mean temperature of 1515 K and inlet speed
of 0.38 m/s with no additional heat added above the burner surface (middle), and speed field on
the same temperature isosurface (right).

simulation results at the first measurement height of 0.5 mm. The composition of the exit gases

was determined by specifying equilibrium products of complete combustion. Mass fractions of N2,

O2, H2O and CO2 were fixed accordingly, as specified by the NASA software Chemical Equilibrium

Analysis (CEA) [10]. The equivalence ratio, φ, was set in the simulations to match the values in

Table 3.1 for each of the three experimental cases.

It should be noted that, although the presence of continued combustion in the burner exit

gases is not consistent with equilibrium conditions at the burner surface, the true composition of

the exit gases is unknown. However, the assumption of chemical equilibrium is acceptable in the

present study because combustion is not directly modeled in the LES, and the exact composition of

the species at the inlet thus has limited impact on the conclusions of the analysis. Additionally, the

calculation of absorption-weighted equivalent summary statistics using the LES data, as described

in the next section, does not depend on the absolute quantity of H2O present in the domain, but

instead depends on the distribution of H2O, which is assumed to enter the domain uniformly in

space and time.
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A.2.2 LAS-equivalent model summary statistics

To effectively compare the experimental and LES results, as is required for ABC, we con-

structed summary statistics from the LES that were equivalent to the line-of-sight absorption-

weighted average LAS measurements. Although a spatial average over the LES computational cells

through which the laser passes would be the simplest option for computing these statistics, this

approach neglects the nonlinear relationship between temperature and absorption, as well as the

effect of spatial variations in the H2O mole fraction.

Consequently, we calculated the integrated absorbance that would occur for each of the

two lasers passing through the LES domain. To accomplish this conversion, linestrengths (i.e.,

the amount of laser absorption) were determined for the range of temperatures observed in the

LES using the reference temperature linestrengths in Ref. [38], with the partition function from

[96]. Based on 3D fields of temperature and H2O mole fraction from the LES, line strengths were

integrated for each laser using spatially resolved temperatures along the laser paths, with each line

strength weighted by the normalized H2O mole fraction. We then used the ratio of integrated line

strengths for each laser to determine a line-of-sight absorption-weighted average temperature, as

given by Eq. (A-3), at a given height.

Temperatures were recorded from the LES at the center of the burner in the x-direction,

3.75 cm from the burner edge, parallel to the z-axis at each of the LAS measurement heights. At

each output time, the temperature and H2O mole fraction at each height were used to calculate a

line of sight absorption weighted average temperature. These time series were averaged to obtain

LAS-equivalent temperatures; the resulting vertical profiles of average temperature comprise the

modeled summary statistics Ŝ that are compared with the LAS summary statistics shown in Fig. 3.1.

The LES data were also adjusted to account for uncertainties inherent in the measurements.

For each sampled parameter c, a uniform random number between ±3% was selected independently

1,000 times, and this amount of uncertainty was added to the entire profile of temperature (assuming

that any bias observed in the experiment was correlated at all heights). The resulting modeled
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summary statistics S ′, each with added uncertainty, were then compared with the reference values

S for each of the 1,000 randomly selected uncertainties, for each value of c. It should be noted,

however, that the variation in S ′ was generally larger due to variations in c, as opposed to variations

in the applied uncertainty.
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