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ABSTRACT 
 
 
 

Rodman, Kyle C. (Ph.D., Geography)  

 

FOREST COVER CHANGE AND POST-FIRE RESPONSE IN THE SOUTHERN ROCKY 

MOUNTAINS 

 

Thesis directed by Distinguished Professor Thomas T. Veblen. 

 

Forests are some of the Earth’s most important ecosystems. They are sanctums of biodiversity, 

play a key role in nutrient cycling, and provide countless ecosystem services to humans. Recent 

studies have identified broad-scale changes in forest cover across the globe. A richer 

understanding of these changes can be developed by identifying specific causal mechanisms, 

placing recent shifts in forest cover in a historical context, and by using knowledge of the past 

and present to make inferences about the future. The goal of our research was to better 

understand the past, present, and future of forested ecosystems in the northern Front Range of 

Colorado (NFR) and in the Southern Rocky Mountains Ecoregion (SRME). In particular, this 

dissertation focused on the roles of historical land use, wildfire activity, and post-fire recovery in 

observed and projected changes in conifer forests. 

 To quantify the extent to which forest cover in the NFR changed 1938-2015 and to 

provide insight into possible potential drivers, we used high-resolution historical (c. 1938) and 

contemporary (2015) aerial photography to classify forested area across a 2932 km2 study area. 

We found that historical patterns of land use, as well as historical and contemporary fire activity 
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and subsequent post-fire recovery, played key roles in 20th-century changes in forest cover 

across the NFR. To better characterize the drivers of limited conifer recovery in low-elevation 

forests, we surveyed post-fire conifer seedling abundance, tree establishment, and seed cone 

production across 15 wildfires in southern Colorado and northern New Mexico. We then used 

these data to quantify potential bottlenecks to post-fire conifer recovery. Lastly, we combined 

these data with similar surveys in the SRME performed by three former graduate students in 

Colorado and Arizona. Using the combined dataset, we modeled the extent to which a warming 

climate is limiting post-fire recovery of two widespread conifer species and projected that further 

declines in resilience are likely through 2100. Our findings reinforce the historical importance of 

wildfire, anthropogenic impacts, and abiotic factors in the dynamics of forested landscapes in the 

southern Rocky Mountains. These same factors will remain important throughout the upcoming 

century. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

1.1 Justification 

Forests cover just 30 percent of the Earth’s land area, yet they provide habitat for more 

than 80 percent of terrestrial wildlife species (Bonan 2008, FAO 2015). Forests are also some of 

the most economically valuable ecosystems to humans, supplying myriad ecosystem services 

such as carbon sequestration, timber production, and water resource protection (Costanza et al. 

1997, Bonan 2008). Recent shifts in global forest area have been documented using a range of 

techniques (Hansen et al. 2013, Keenan et al. 2015, Song et al. 2018); human land use and 

anthropogenic climate change are now widely recognized as important drivers of these changes. 

The characterization of disturbance dynamics and successional processes helps to describe the 

mechanisms and consequences of forest change and to provide insight into what the future may 

hold. 

An understanding of specific drivers of ecosystem change is needed to better manage, 

protect, and conserve forests. These drivers of change can operate at a wide range of temporal 

scales; while a forest can persist beyond human time scales, it can also disappear in an instant 

and take decades to recover. Integrative research that combines historical ecology, contemporary 

observations, and forward modeling approaches helps to better describe the complexities of the 

causal mechanisms of forest change. In this dissertation, we utilized historical datasets (i.e., tree-

ring methods, historical aerial photographs, records of past land use), contemporary field 
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surveys, and future climate projections, to develop a more holistic picture of the past, present, 

and future of coniferous forests in the Southern Rocky Mountains. 

1.2 Background 

1.2.1 Forests and Disturbance Dynamics in the Southern Rocky Mountains 

The Southern Rocky Mountains Ecoregion (SRME) spans 144,462 km² area in southern 

Wyoming, Colorado, and northern New Mexico, USA, and forested ecosystems cover 56.3% of 

the total area (Homer et al. 2015). Across this broad area, vegetation differs substantially in 

composition, structure, and in its relationship with disturbance. In the southern and western 

portions of the study area, lower-elevation forests (Piñon-juniper woodlands) are dominated by 

two-needle piñon pine (Pinus edulis) and several juniper species (Juniperus spp). In the early 

2000s, extreme drought stress and outbreaks of piñon ips (the bark beetle Ips confusus) triggered 

widespread mortality of piñon pine throughout these low elevation forests and woodlands 

(Breshears et al. 2005). Historical fire activity in piñon-juniper woodlands was typically 

infrequent and stand-replacing (Baker and Shinneman 2004), though frequent surface fires may 

have occurred in piñon-juniper savanna sites, or those with thick, continuous grass cover 

(Romme et al. 2009a). In the south and west portions of the SRME, Gambel oak (Quercus 

gambelii) is also an important component of low-mid elevation forests, intermixing with piñon-

juniper vegetation at its lower extent, and ponderosa pine (Pinus ponderosa var. scopulorum) at 

its upper extent. Gambel oak exhibits a range of fire-adaptive traits, including the ability to 

resprout following mortality of the aboveground stems, as well as thick bark in larger size-

classes that permits survival of large stems during low-severity surface fires (Abella and Fulé 

2008, Kaufmann et al. 2016). Gambel oak is predicted to benefit from climate warming through 

increases in climatically suitable habitat throughout the region (Rehfeldt et al. 2006) and because 
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increases in fire activity allow for long-term site occupancy in high severity fire patches 

(Guiterman et al. 2017). 

Ponderosa pine and mixed-conifer forests span much of the middle elevations in the 

SRME. Pure stands of ponderosa pine are common in the southern and eastern portion of the 

region, but are less common on the western slope. Mixed-conifer forests are composed of 

ponderosa pine as well as Douglas-fir (Pseudotsuga menziesii var. glauca), white fir (Abies 

concolor var. concolor), lodgepole pine (Pinus contorta var. latifolia), quaking aspen (Populus 

tremuloides), Gambel oak, and blue spruce (Picea pungens). Mixed-conifer forests also include 

other species in the genera Abies, Juniperus, Picea, Pinus, and Populus that vary in importance 

throughout the region. Western spruce budworm (Choristoneura freemani), Douglas-fir bark 

beetle (Dendroctonus pseudotsugae), and mountain pine beetle (D. ponderosae) are all important 

insect pests that can cause tree mortality in ponderosa pine and mixed-conifer forests (Romme et 

al. 2006). Western spruce budworm and Douglas-fir bark beetle preferentially attack Douglas-fir 

(Hadley and Veblen 1993), while mountain pine beetle is most associated with mortality in pine 

species (e.g., lodgepole pine, ponderosa pine, and limber pine – Pinus flexilis). Throughout the 

2000s, mountain pine beetle caused widespread tree mortality in lodgepole pine forests 

throughout the SRME (Chapman et al. 2012). The historical effects of fire are widely-variable in 

ponderosa pine and mixed-conifer forests sometimes leading to divergent views of its role in 

structuring the landscape (Kaufmann et al. 2006, Veblen et al. 2012). However, it is generally 

agreed that frequent, low-severity fire was most common at low-elevation sites (Williams and 

Baker 2012a, Sherriff et al. 2014, Brown et al. 2015), and those that are adjacent to, or 

intermixed with, grasslands (Gartner et al. 2012). 
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In the highest elevation forests, the spruce-fir zone, dominant tree species include 

lodgepole pine, subalpine fir (Abies lasiocarpa), Engelmann spruce (Picea engelmannii), limber 

pine, bristlecone pine (Pinus aristata), and quaking aspen. White pine blister rust, a tree disease 

caused by the invasive fungus Cronartium ribicola, has the potential to drive widespread 

mortality of limber and bristlecone pine throughout this zone (Geils et al. 2010). Though 

mountain pine beetle activity has declined in recent years, spruce beetle (Dendroctonus 

rufipennis) activity has increased, leading to extensive mortality of Engelmann spruce in the 

northern and southwestern portions of the SRME (Hart et al. 2017). Wildfires are typically 

infrequent (> 200 years between events), large (> 1000 ha), and severe in spruce-fir forests, 

occurring only in times of extreme drought (Sibold and Veblen 2006, Sibold et al. 2006). 

Lodgepole pine, limber pine, and aspen are the most common early-seral species, and can give 

way to Engelmann spruce and subalpine fir over time on more productive sites (Veblen 1986). 

Across most elevational zones, riparian sites tend to be dominated by a mixture of broadleaf 

deciduous species (i.e., Populus spp. and Salix spp.). 

1.2.2 Human Land Use Change and Wildfire in the Southern Rocky Mountains 

Euro-American settlement in the southern portion of the SRME began in the late 1500s 

with the development of Spanish outposts in current-day New Mexico (Liebmann et al. 2016), 

but Native American communities were present in many areas for at least 11,000 years before 

present (Waters and Stafford Jr. 2007). Native peoples likely used fire to drive game throughout 

portions of the region (Veblen and Donnegan 2005, Baker 2009), though the overall effects of 

these activities on forests are not well understood. Native American activities may have 

increased fire activity in some areas, while decreasing fire activity in others (Liebmann et al. 

2016). The removal of Native American communities through war and disease triggered 
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afforestation and shifts in fire regimes in some areas (Liebmann et al. 2016). Widespread Euro-

American settlement in the Southern Rocky Mountains occurred much later c. late 1850s and 

coincided with the occurrence of the 1859 gold rush. This rapid increase in mining activity and 

industrialization triggered large fire years in forests of the heavily-mined northern Front Range 

(Veblen et al. 2000, Rodman et al. 2019). Logging impacts were also widespread. Logging 

activities in the late 1800s and early 1900s selectively-targeted larger, older trees for timber. 

Thus, few trees in national forests of the Colorado Front Range predate this 1850s period 

(Veblen and Donnegan 2005). Though widespread mining did not occur in some portions of the 

Southern Rocky Mountains, the impacts of these anthropogenic activities are obvious in repeat 

photographs in the northern Front Range and the San Juan Mountains (Veblen and Lorenz 1991, 

Zier and Baker 2006). Logging, grazing, and organized fire suppression reduced fire activity in 

many ponderosa pine and dry mixed-conifer forests throughout the region, though the initiation 

of fire exclusion varied from the 1850s to the 1920s depending on the location (Swetnam and 

Baisan 1996, Veblen et al. 2000, Fulé et al. 2009, Brown et al. 2015, Tepley and Veblen 2015). 

Rapid exurban development occurred in the SRME throughout the 1900s, particularly after 1950, 

and led to a drastic increase in the number of homes in fire-prone areas (Theobald and Romme 

2007, Platt et al. 2011). The long-term impacts of each of these processes are important to 

understand because they help to better contextualize historical forest conditions, recent forest 

changes, and the natural ranges of variability that are often targeted with ecological restoration. 

Since 1984, the area burned in large wildfires in the western United States (Dennison et 

al. 2014) and in the Southern Rocky Mountains has increased (Picotte et al. 2016). 

Anthropogenically-driven climate warming has lengthened fire seasons and increased fuel aridity 

(Jolly et al. 2015, Westerling 2016) and may account for 50 percent or more of the increase in 
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area burned in large wildfires since 1984 (Abatzoglou and Williams 2016). Fire activity is 

expected to continue to increase in the near-future (Liu et al. 2013), and the Rocky Mountain 

region is especially susceptible to these increases (Spracklen et al. 2009). While increased 

temperatures and drought stress influence wildfire activity directly, they can also negatively 

influence post-fire recovery, compounding the initial impacts of these disturbances (Enright et al. 

2015, Stevens-Rumann et al. 2018, Davis et al. 2019). Forest response to disturbance is a key 

metric when assessing ecosystem resilience (the ability to recover to a relatively similar state 

following an disturbance; Holling 1973, Millar and Stephenson 2015), and remains a crucial 

research need within the context of a warmer, drier future (Turner 2010). Research focusing on 

post-fire recovery processes in coniferous forests has rapidly expanded in recent years (Table 

1.1). However, this type of research can be improved through the better incorporation of 

interannual climate variability, the explicit consideration of different components of regeneration 

(e.g., seed cone production, seedling establishment, site suitability), the use of higher-resolution 

spatial data that better matches the operational scales of post-fire recovery processes, and the 

consideration of a range of future climate projections. 

1.3 Research Aims 

 This dissertation focuses on the dynamic nature of forested ecosystems in the northern 

Front Range of Colorado and across the Southern Rocky Mountains. In Chapter 2, a manuscript 

published in the journal Ecosphere and co-authored with Thomas Veblen, Sara Saraceni, and 

Teresa Chapman, we quantified changes in forest extent from 1938-2015 in a 2,932 km2 area in 

the northern Front Range of Colorado using high-resolution aerial imagery. We then compared 

patterns of forest gain and loss with records of human land use, characteristics of the biophysical 

environment, historical and modern fire history, and tree ring reconstructions of past climate. In 
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Chapter 3, a manuscript submitted to the journal Ecological Applications and co-authored with 

Thomas Veblen, Teresa Chapman, Monica Rother, Andreas Wion, and Miranda Redmond, we 

assessed potential limitations to post-fire recovery across 15 recent (1988-2010) wildfires in 

northern New Mexico and southern Colorado. In this study, we used a novel combination of field 

inventories, tree ring methods, image classification, and GIS modeling to quantify spatial and 

temporal variability in seed cone production, seed availability, seedling establishment, climate 

suitability, and post-fire seedling abundance across each landscape. In Chapter 4, a manuscript 

co-authored with Michael Battaglia, Marin Chambers, Paula Fornwalt, Zachary Holden, Thomas 

Kolb, Monica Rother, Jessica Ouzts, and Thomas Veblen, we combined two regionally-extensive 

datasets describing post-fire conifer seedling establishment and abundance. Using these data, we 

modeled the combined influence of terrain, interannual climate variability, and spatial variability 

in climate on post-fire recovery in montane forests of the Southern Rocky Mountains, 

reconstructing historical patterns of recovery and projecting future trends based on a range of 

climate projections. 
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Table 1.1. A summary of relevant studies that focused on the post-fire recovery of coniferous 
forests across the western United States. “Seedling Presence/Abundance” indicates if a study 
quantified post-fire recovery using field surveys of conifer seedling presence or abundance. 
“Ages” indicates if a study presented ages of seedlings using either tree-ring methods or plot 
remeasurements. “Seed” indicates if a study collected site-specific data on seed or seed cone 
production following fire. “Spatial Modeling” indicates if a study made projections of post-fire 
recovery throughout at least one fire, or if the study made inferences at the fire-level using GIS 
and/or remotely sensed datasets. “Climate or Proxy” indicates that a study used either gridded 
climate data, or proxies for climate (e.g., elevation, aspect) in an analysis of post-fire recovery. 
“GCMs” indicates if a study incorporated projections of future climate into an analysis in some 
way. 
 

Article State(s) 
Seedling 
Presence/ 

Abundance 
Ages Seed Spatial 

Modeling 

Climate 
or 

Proxy 
GCMs 

Bonnet et al. (2005) South Dakota Y N N N N N 

Savage and Mast (2005) 
Arizona, New 
Mexico Y Ya N N Nb N 

Donato et al. (2006) Oregon Y N N N N N 

Shatford et al. (2007) 
California, 
Oregon Y Ya N N Nb N 

Keyser et al. (2008) South Dakota Y N N N Nb N 
Donato et al. (2009) Oregon Y N N Y Y N 
Haire and McGarigal (2010) New Mexico Y N N Y Y N 
Roccaforte et al. (2012) Arizona Y N N N N N 
Dodson and Root (2013) Oregon Y N N N Y N 
Feddema et al. (2013) New Mexico N Ya N N Y Y 
Harvey et al. (2013) Wyoming Y N N N N N 
Savage et al. (2013) New Mexico Y Ya N N Y N 
Harvey et al. (2014a) Wyoming Y N N N N N 

Harvey et al. (2014b) 
Idaho, 
Montana Y N N N Y N 

Ritchie and Knapp (2014) California Y N N N N N 

Ouzts et al. (2015) 
Arizona, New 
Mexico Y N N N Nc N 

Chambers et al. (2016) Colorado Y N N Y Y N 
Donato et al. (2016) Wyoming Y N N Y Y N 

Harvey et al. (2016) 
Montana, 
Wyoming Y N N N Y N 

Kemp et al. (2016) 
Idaho, 
Montana Y N N N Y N 

Rother and Veblen (2016) Colorado Y N N N Y N 
Stevens-Rumann and 
Morgan (2016) Idaho Y N N N Y N 
Welch et al. (2016) California Y N N Y Y N 
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Coop et al. (2016) New Mexico Y N N N Nc N 
Owen et al. (2017) Arizona Y N N Y Y N 
Rother and Veblen (2017) Colorado N Y N N Y N 

Tepley et al. (2017) 
California, 
Oregon Y Ya N Y Y Y 

Ziegler et al. (2017) 
Colorado, 
South Dakota Y N N Y Y N 

Haffey et al. (2018) 
Arizona, New 
Mexico Y N N Y Y N 

Roccaforte et al. (2018) Arizona Y N N N N N 
Shive et al. (2018) California Y N N Y Y N 
Stevens-Rumann et al. 
(2018) Western U.S. Y N N N Y N 
Stoddard et al. (2018) Arizona Y N N N Nb N 
Davis et al. (2019) Western U.S. Y Y N N Y N 

Kemp et al. (2019) 
Idaho, 
Montana Y N N N Y Y 

Hankin et al. (2019) 
Idaho, 
Montana N Y N N Y N 

Young et al. (2019) California Y N N N Y N 
Rodman et al. In Review; 
Chapter 3 

Colorado, New 
Mexico Y Y Y Y Y N 

Chapter 4 

Colorado, New 
Mexico, 
Wyoming Y Y N Y Y Y 

a: Ages of seedlings were presented using tree-ring methods or repeated measurements that do not permit annual-
resolution estimates of establishment. 
b: Climate or climate proxies (e.g., elevation, aspect) were not directly included in the analysis, but recovery was 
qualitatively compared to climate records. 
c: Climate or climate proxies (e.g., elevation, aspect) were included in the analysis, but results of these analyses were 
not discussed or interpreted.  
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CHAPTER 2 
 
 

WILDFIRE ACTIVITY AND LAND USE DROVE 20TH CENTURY CHANGES IN FOREST 
COVER IN THE COLORADO FRONT RANGE 

 
2.1 Introduction 

Studies using forest inventories and remotely sensed data have identified declines in 

global forest area c. 1990s-2010s (Hansen et al. 2013, Keenan et al. 2015), though longer-term 

trends may differ in direction and magnitude (Song et al. 2018). Forests provide countless 

ecosystem services to humans, are sanctums of biodiversity, and play a key role in nutrient 

cycling (Stocker et al. 2013, FAO 2015), thus an understanding of the causes of forest change is 

an important research priority. Forest change is rarely a result of a single factor acting alone. The 

causes of land cover change vary across complex landscapes, and multiple potential drivers 

should be considered (Black et al. 2003). The attribution of forest cover change to specific 

natural and anthropogenic factors, at sufficient timescales to observe both abrupt losses and 

gradual recovery, is likely to improve conservation planning and the understanding of global 

change. 

Wildfire is one of the most important terrestrial disturbances (Bowman et al. 2009) and is 

a key determinant of the global distribution of forest vegetation (Bond et al. 2005). The effects of 

wildfire activity on forest cover change are complex because fire is expected to influence forest 

cover through both initial losses and subsequent recovery. From 1984 to 2015, warming and 

drying trends contributed to increases in the area burned in large wildfires across much of the 



 11 

western U.S. (Abatzoglou and Williams 2016). These increases in wildfire activity have occurred 

in tandem with poor post-fire recovery in many western conifer forests (Stevens-Rumann et al. 

2018). Seed tree - and therefore seed availability - is one of the primary drivers of post-fire 

recovery, particularly in forests composed of seed obligate species without fire-adapted canopy 

seed banks (Bonnet et al. 2005, Haire and McGarigal 2010, Harvey et al. 2016). Due to dispersal 

limitations, sites in the interior of large, high-severity patches may take decades or centuries to 

regain forest cover (Chambers et al. 2016, Baker 2018). Furthermore, a warm and dry climate 

can inhibit post-fire recovery of forests (Stevens-Rumann et al. 2018). Recent wildfire activity, 

combined with poor post-fire recovery, may be leading to forest cover declines through the 

western US at the onset of the 21st century. 

The longer-term history of fire activity also plays an important role in forest cover 

change. Slow recovery and conversion to non-forest cover types have been noted at varying 

spatial scales following 18th and 19th century fires in some coniferous forests in the Rocky 

Mountains (Stahelin 1943, Kaufmann et al. 2000, Huckaby et al. 2001). Thus, increases in the 

extent or density of some subalpine forests over the last century (e.g., Cocke et al. 2005, Zier and 

Baker 2006) may be partially explained by slow, yet continuous forest recovery following 

widespread high-severity fires in the 18th and 19th centuries. Forest cover increases have also 

been documented in some lower elevation montane forests where formerly frequent surface fires 

have declined during the 20th century (Schoennagel et al. 2004, Hessburg et al. 2005). Therefore, 

changes in fire occurrence during the 18th-20th centuries could account for a trend of increasing 

forest cover through different mechanisms (slow post-fire recovery from past severe fires vs. 

decreased thinning effects of surface fires) that are likely to vary in importance across the 

elevation gradient from lower elevation montane forests to higher elevation subalpine sites. 
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In addition to contemporary and historical fire activity, other factors have also played 

influential roles in forest cover change across the western U.S. over the past century. For 

example, moisture availability and changes in land use have been noted as important correlates 

with changes in dry forests of the northwest and southwest U.S. since the late 1800s (Merschel et 

al. 2014, Johnston 2017, Rodman et al. 2017). Extractive logging of large diameter trees has 

altered stand structure in many coniferous forests in the western U.S.; in some cases late 20th 

century forest cover may still be responding to timber extraction in the 19th and early 20th 

centuries (Naficy et al. 2010, Merschel et al. 2014, Collins et al. 2017). Historical mining activity 

also led to increases in soil disturbance, logging, and fire activity in many parts of the western 

U.S. in the late 1800s and early 1900s (Gruell 1983, 2001, Veblen and Lorenz 1991, Hessburg 

and Agee 2003, Dethier et al. 2018). More recently, exurban housing development has occurred 

throughout portions of the U.S. (Theobald and Romme 2007, Platt et al. 2011, Radeloff et al. 

2018), leading to forest fragmentation (Radeloff et al. 2005). 

To effectively disentangle the potential drivers of forest cover change, detailed data 

covering a range of ecosystem types, ownership designations, and human land uses are needed. 

Though the satellite record can provide maps of vegetation change since approximately 1972 

(i.e., the launch of Landsat 1), these data lack both temporal depth and high spatial resolution, 

which is particularly important when studying long-lived tree species and areas of sparse forest 

cover. Aerial surveys of agricultural and forested lands began throughout the United States in the 

1930s (Matthews 2005), and these photographs provide extensive records of land cover at a high 

(< 2 m) spatial resolution (Morgan et al. 2010). These data have been used in quantitative 

assessments of historical forest change in the western U.S. (e.g., Hessburg et al. 1999, Coop and 
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Givnish 2007, Lydersen and Collins 2018), and of the anthropogenic and biophysical factors 

influencing these changes (Asner et al. 2003, Black et al. 2003). 

We used historical and contemporary aerial photography to quantify changes in forest 

cover across a study area in the northern Front Range (NFR) of Colorado c. 1938-2015. The 

NFR (Fig. 2.1) is a region that has been shaped by human activities and by wildfire over the last 

several centuries (Veblen and Donnegan 2005, Addington et al. 2018), and provides both a data- 

and disturbance-rich case study of the potential causes of forest change throughout a complex 

landscape. Fire history (Sibold et al. 2006, Sherriff et al. 2014), historical stand densities 

(Battaglia et al. 2018), climate and tree growth (Villalba et al. 1994, Veblen et al. 2000, Lukas et 

al. 2014), and patterns of exurban development (Platt et al. 2011) are well-documented in this 

region, permitting a thorough analysis of the potential drivers of vegetation change throughout 

the 20th century. To date, there have been no landscape-scale studies which have attempted to 

characterize the relative influences of land-use, the abiotic environment, and wildfire to observed 

shifts in forest cover in the NFR. Indeed, there are few studies in similar conifer forest ecosystem 

in the western U.S. that have quantified changes in forest cover and implemented robust research 

designs to assess the contributions of multiple driving factors to 20th century forest change across 

broad biophysical gradients. Specifically, we asked the following questions: 1) How has the 

extent of forest cover changed across the NFR c. 1938-2015? 2) How do elevation, topographic 

heat load index, land ownership, and historical land use relate to spatial patterns of increase 

and decrease in forest cover? 3) How do changes in forest cover through the 20th century relate 

to known fire history across a range of fire regime types? 
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Fig. 2.1. Overview of study area, locations of urban areas, and recent wildfires (1978-2015) in 
the northern Front Range of Colorado. Background color shows the spatial distribution of the 
different life zones (lower montane [1,700-2,400 m], upper montane [2,400-2,800 m], and 
subalpine [2,800-3,500 m]). 
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2.2 Study Area 

2.2.1 Climate and Vegetation 

Our study area covers 2,932 km2 on the eastern slope of the northern Front Range (NFR) 

of Colorado, USA (Fig. 2.1). Elevations range c. 1,600-4,200 m and climate varies substantially 

along this gradient, with lower sites being much warmer and drier than sites found at high 

elevations. Across elevations, minimum temperatures in January range -17 to -5 °C and July 

maximums range 14 to 32 °C (PRISM 2018). Average precipitation is 400-1,300 mm/year, with 

spring months (March-May) being the wettest (35% of annual totals; PRISM 2018). The 

proportion of precipitation occurring as snowfall increases with elevation and snow depth 

typically peaks in April (Kittel et al. 2015). Recently, increases in temperature have been noted 

throughout much of Colorado (1.1 C° from 1977-2006), including the NFR (Lukas et al. 2014). 

Native vegetation in the study area begins with short grass prairie at the lowest sites (< 

1,700 m), transitioning into lower montane forests (1,700-2,400 m) principally dominated by 

ponderosa pine (Pinus ponderosa) with scattered Douglas-fir (Pseudotsuga menziesii) and Rocky 

Mountain juniper (Juniperus scopulorum) (Peet 1981, Addington et al. 2018). Upper montane 

forests range c. 2,400-2,800 m and are dominated by ponderosa pine, Douglas-fir, and lodgepole 

pine (Pinus contorta). At the highest forested sites (subalpine; 2,800-3,500 m), lodgepole pine, 

limber pine (Pinus flexilis), subalpine fir (Abies lasiocarpa), and Engelmann spruce (Picea 

engelmannii) are the dominant tree species, giving way to alpine vegetation at c. 3,500 m. 

Colorado blue spruce (Picea pungens) and several broad-leafed, deciduous tree species (e.g., 

narrowleaf cottonwood [Populus angustifolia] and willows [Salix spp.]) are common in riparian 

areas. Quaking aspen (Populus tremuloides) is also present in scattered locations either as a post-

fire seral component, or as the persistent dominant species in some areas (Peet 1981). 
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2.2.2 Disturbance History 

In low-elevation montane forests and interspersed grassland sites (below 2,260 m) in the 

NFR, fires were relatively frequent and of low- to moderate-severity prior to the 20th century 

(Sherriff et al. 2014, Brown et al. 2015). In contrast, middle and upper-elevation montane forests 

(2,260-2,800 m) were historically characterized by a mixed-severity fire regime, in which 

higher-severity patches of mortality (> 70% of canopy trees; 50 ha or larger) were more common 

(Schoennagel et al. 2011, Sherriff et al. 2014). Subalpine forests (2,800-3,500 m) typically 

burned infrequently (> 200 year intervals) and in large (> 1,000 ha) high-severity patches during 

exceptionally dry years (Buechling and Baker 2004, Sibold and Veblen 2006). Surface fires 

affected only 1-3% of the forested area in the subalpine zone (Sibold et al. 2006), although fire-

scar records do indicate more frequent small fires at the ecotone of forest with rocky alpine sites 

(Sherriff et al. 2001). 

The mid-late 1800s were a time of heightened fire activity across all zones in the NFR, 

concurrent with widespread droughts throughout the Rockies and expanding Euro-American 

settlement (Veblen et al. 2000, Sherriff et al. 2001, Kitzberger et al. 2007, Sherriff and Veblen 

2008, Schoennagel et al. 2011; Fig. 2.2). Following this period, fire activity in the NFR was 

fairly limited c. 1920 – 2000 likely due to a combination of direct fire suppression, fuel reduction 

due to livestock grazing, lack of combustible fuels in higher elevation, recently burned sites, and 

potentially less suitable climatic conditions for fire ignition and spread (Veblen et al. 2000, 

Sibold et al. 2006, Sherriff and Veblen 2008). Recent increases in fire activity have occurred 

since 1984 following a relatively fire quiescent period for most of the 20th century (Fig. 2.2).  

Insects and pathogens are also important components of stand dynamics in the NFR. In 

this region, western spruce budworm (Choristoneura freemani), Douglas-fir bark beetle 
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(Dendroctonus pseudotsugae), and mountain pine beetle (MPB; Dendroctonus ponderosae) are 

the most important potentially lethal insect pests of the lower and upper montane zones, whereas 

mountain pine beetle, spruce beetle (Dendroctonus rufipennis), and western balsam fir bark 

beetle (Dryocoetes confusus) are the primary lethal insects of the subalpine zone. Outbreaks of 

many of these insect species have occurred during the 1938-2015 time period of this study 

(Hadley and Veblen 1993, Chapman et al. 2012). Although such outbreaks have killed large 

numbers of trees in some areas (e.g., MPB in the 1970s and the early 2000s), post-outbreak 

release of advance regeneration and new tree establishment typically lead to rapid forest 

recovery (i.e., at a decadal scale; Veblen et al. 1991, Hadley and Veblen 1993, Collins et al. 

2011). 

2.2.3 Land Use History 

Human land use in the NFR has shifted over the last two centuries in ways that are likely 

to have influenced forest cover during the 1938-2015 study period. The mid-late 1800s and early 

1900s were associated with the removal of Native American communities (and their associated 

land-use practices; Simmons 2000), and with increases in logging, mining, and ranching impacts 

from Euro-Americans (Veblen and Lorenz 1986, Veblen and Donnegan 2005, Dethier et al. 

2018). The decline in Native American populations likely led to declines in intentional burning 

in certain areas, though historical ignitions due to lightning and humans are difficult to separate 

(Veblen et al. 2000). Past logging and mining have had complex impacts on forests in the NFR. 

Timber extraction and surface mining initially reduce forest cover. However, the longer-term 

effects of logging and mining depend on rates of succession and whether the site is converted to 

another land use such as ranching or residential development. 
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Fig. 2.2. Variability in wildfire activity, tree growth, and climate 1800-2015 in the study area in 
the northern Front Range of Colorado. Prior to 1984, proportion burned (a) is given as the 
proportion of montane fire history sites recording spreading fire in a given year (min two trees 
and 10% of trees within a site). For 1984-2015, proportion burned is based on the percent surface 
area of the montane zone (1,700-2,800 m) within Monitoring Trends in Burn Severity fire 
perimeters in each year. Sample depth (dashed line) gives the total number of fire-scarred 
recorder trees (across all sites) in a given year. Variability in tree growth is derived from residual 
tree ring chronologies of ponderosa pine (PIPO; b) and Engelmann spruce (PIEN; c). Summer 
vapor pressure deficit (VPD; d) is an indicator of summer (Jun-Aug) drought stress, while winter 
precipitation (PPT; e) is the sum of Nov-Dec (prior year) and January-May (focal year) 
precipitation across the study area. Snow water equivalent (SWE; f) is derived from a long-term 
record (1938-2015) of snow depth and water content collected May 1st each year within the 
study area. All tree ring and climate values (b-f) were re-scaled using z-score transformations. 
Grey lines and bars give annual values, while black lines show 10-year moving averages. 
Regional pluvials (blue overlay) and droughts (red overlay) were defined as extended periods 
(five or more years) in which moving 10-year moving averages of growth were above or below 
(respectively) the long-term mean for both ponderosa pine and Engelmann spruce. 
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Although fuels reduction due to livestock grazing contributed to decreased fire spread at 

some sites as early as the 1860s (e.g., Veblen et al. 2000, Brown et al. 2015), widespread fire 

exclusion in the NFR dates from approximately 1920 when automobile roads allowed effective 

access to the rugged topography of the region (Veblen and Lorenz 1986, Veblen and Donnegan 

2005). The more direct effects of early settlers on fire activity ranged from intentionally set fires 

during the early settlement and mining era (e.g., 1840s-1890s) to more effective fire suppression 

and exclusion at permanently settled sites in lower elevations (Veblen and Lorenz 1986, Veblen 

and Donnegan 2005). Exurban development has been widespread in the NFR since c. 1940, with 

home construction shifting over time from predominantly grass covered valley bottoms to 

forested slopes more prone to higher-severity fires (Platt et al. 2011). The effects of this 

development include forest removal for home sites and changes in fire frequency - more 

aggressive fire suppression but also an increased risk of human set fires.  

2.3 Methods 

2.3.1 Interannual and Interdecadal Trends in Climate, Wildfire, and Tree Growth 

 To provide important context for observed trends in forest cover throughout the study 

area, we compiled data describing interannual and interdecadal variability in climate, tree 

growth, and wildfire activity 1800-2015 (Appendix A). We characterized climate using gridded 

spatial data describing summer drought stress (i.e., vapor pressure deficit) and annual winter 

precipitation 1896-2015 (PRISM 2018), as well as field-derived measurements of snow depth 

and density 1938-2015 (snow water equivalent from the University Camp snow course ([40.03 

N, -105.57 W], 3,140 m; NRCS 2016). These components of climate are important to many 

forest processes in the Southwest U.S. and Southern Rocky Mountains (e.g., Williams et al. 

2012, Andrus et al. 2018). We also used tree ring chronologies from ponderosa pine and 
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Engelmann spruce (Villalba et al. 1994, Veblen et al. 2000) – two dominant conifers in the 

montane zone and subalpine zone, respectively – to extend the temporal coverage of the climate 

record to 1800. Lastly, we developed an index of fire activity in the montane zone using field-

derived fire history data (1800-1983; Sherriff et al. 2014) and recent wildfire perimeters (1984-

2015; Eidenshink et al. 2007). To visualize interdecadal trends in climate, tree growth, and 

wildfire activity, we also calculated 10-year moving averages of all annual values. 

2.3.2 Image Acquisition and Digitization 

The historical air photos used in this study were captured in flights of the NFR 

commissioned by the US Forest Service and Soil Conservation Service in 1938 and 1940 as part 

of broad-scale timber and resource inventories. These images have an approximate cartographic 

scale of 1:20,000, and over 1,700 individual scenes were scanned and digitized at 600 ppi by 

technicians from the University of Colorado library system. The average spatial resolution of 

these data is 1.1 m. Of the digitized images available through the University of Colorado, we 

selected a subset of 308 based on the availability of pre-existing fire history and stand age data 

(e.g., Sibold et al. 2006, Sherriff et al. 2014). This subset was primarily captured in 1938 and the 

1940 images represent only 8.6% of the final study area (Table 2.1), therefore we refer to these 

data as “1938 imagery” for simplicity. For comparison with historical imagery, we also acquired 

county-level mosaics of NAIP (National Agriculture Imagery Program) imagery from the area 

that were collected in fall 2015 (Table 2.1). These data have a 1 m spatial resolution and three 

spectral bands – one each in the red, green, and blue wavelengths (NAIP 2015). To use similar 

methods with 1938 and 2015 imagery, we created a single panchromatic band (the mean of red, 

green, and blue values) from NAIP data prior to image processing and classification. 
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Table 2.1. Collection dates and areas of coverage for historical and contemporary imagery 
throughout the northern Front Range of Colorado. 
 
 Flight Date Area (ha) Life Zones Covered 
Initial Imagery 5/8/38 39,602.8 Lower Montane 
 10/25/38 62,828.8 Lower/Upper Montane 
 10/26/38 140,236.0 Upper Montane/Subalpine 
 10/29/38 25,200.5 Subalpine 
 10/7/40 1,283.9 Lower Montane 
  10/9/40 24,022.4 Lower/Upper Montane 
NAIP 8/25/15 26,216.1 Subalpine 
 9/8/15 180,274.7 All 
 9/19/15 74,958.1 All 
 9/20/15 11,725.9 Subalpine 
 

2.3.3 Image Processing 

To aid in the identification of forested areas in the 1938 and 2015 images, we used a 

series of image processing steps to add supplemental information describing the texture and 

context surrounding each c. 1 m pixel. During these steps, we identified locally dark pixels 

(indicative of individual trees surrounded by bright grassland) and quantified local standard 

deviation in brightness using moving windows at multiple scales (sensu Coburn and Roberts 

2004; Fig. 2.3; Appendix A). We combined these two layers with the original greyscale imagery 

to create three-band composite imagery (Fig. 2.3d). The combination of brightness, local 

minima, and standard deviation emphasizes differences in spectral reflectance that facilitate the 

separation of different forest structures (e.g., individual trees and dense stands) from non-

forested areas. 

We projected each of the 1938 images to NAD 83, UTM 13N (the same projection as the 

NAIP images), and georeferenced them using metadata that described the approximate center 

location of each frame, scanning resolution, and cartographic scale. Next, we mosaicked the 

1938 imagery by merging overlapping areas along each N-S flight line, then merging adjacent 

flight lines into a single photomosaic. Lastly, we co-registered this mosaic to 2015 NAIP 
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imagery using 4,955 tie points that were homogeneously distributed throughout the image. We 

assessed the accuracy of this co-registration using an independent set of tie points (n = 100). 

These points were located at the nearest identifiable feature to 100 randomly located points 

throughout the mosaic. Mean horizontal error of these points was 23.6 m (standard deviation = 

17.2). Though larger than values of c. 7-16 m reported by two similar studies (e.g., Platt and 

Schoennagel 2009, Lydersen and Collins 2018), this alignment is reasonable considering the 

larger size of our study area. Still, change detection and further analyses were performed at an 

aggregated spatial resolution to account for this offset (described below). 

2.3.4 Image Segmentation and Classification 

Following image processing and mosaicking, we performed image segmentations and 

developed supervised classifications of the three-band composite imagery for each date (1938 

and 2015). These classifications were based on a hybrid approach of pixel- and object-based 

image analysis, where we used image segmentation to enhance pixel-level classification 

accuracy (i.e., “enhanced pixel classification” sensu Radoux and Bogaert 2017). First, we 

segmented three-band composites from each date (Fig. 2.3d) using the “segment mean shift” 

algorithm in ArcGIS v. 10.4 (ESRI 2016). We prioritized spectral similarity over spatial scale 

during segmentation parameter selection, which resulted in segments ranging in size from 

individual trees to entire forest stands. Next, we included a hillshade model (derived from a 10 m 

digital elevation model and resampled to c. 1 m; 1938 imagery) and a red-green index (RGI; 

2015 imagery) as additional bands to help account for topographic differences in illumination. 

RGI is a proxy for vegetation health in imagery covering the visible portion of the 

electromagnetic spectrum (Gartner et al. 2015); as a ratio of two bands, RGI is relatively 

insensitive to differences in illumination. We used a hillshade model as ancillary data in the 1938 
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classification because this serves as an additional way to account for topographic differences in 

illumination in panchromatic imagery. Finally, we assigned c. 1 m pixels in each set of imagery 

to forest or non-forest classes using support vector machines (SVMs; Fig. 2.3e). SVMs are a 

statistical learning algorithm that can identify non-linear decision boundaries between classes in 

multi-dimensional space (Hastie et al. 2009) and are commonly used in image classification. 

 
Fig. 2.3. Image classification workflow for an area near Boulder, CO (39.99 N, 105.29 W). 
Original imagery (a) was processed using an expanding window method to identify pixels darker 
than their surroundings (b), and to quantify local standard deviation (c). Next, these three images 
were merged to create a three-band composite, which we segmented to identify areas of 
relatively homogenous brightness, contrast, and variance (d). We then classified the segmented 
imagery using support vector machines to separate forest and non-forest cover types (e; forest 
shown in green). Following classification, we detected and removed shadows and bodies of 
water from the forest class by thresholding dark pixels with low local variance. 
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Following classification, we post-processed classified maps using thresholds of 

brightness and local standard deviation to identify and remove large shadows that could be 

misclassified as forest (Appendix A). We also masked lakes and reservoirs (USGS 2018), urban 

areas (from spatial data available through local government offices), and elevations above 3,500 

m (which have very little or no forest cover) from the final classifications. Of the total study 

area, 93.9% (2,713.2 km2) was left unmasked and included in further analyses. 

2.3.5 Data Aggregation 

To account for co-registration error and to permit additional analyses of the potential 

drivers of forest change, we aggregated the resolution of the 1 m classified maps to 250 m in 

each date. We selected a 250 m cell size (6.25 ha) because this extent is several times larger than 

our estimated co-registration error and corresponds to the coarsest-resolution dataset used in later 

analyses (i.e., Sohl et al. 2016). This 250 m resolution is also relevant for land managers, 

approximating the size of individual treatment units that are used in planning forest management 

activities in the NFR (Addington et al. 2018). Henceforth, we refer to these 250 m cells as ‘grid 

cells’. We performed this data aggregation by summing the areas of forest and non-forest (from 

the classified 1 m maps) in each grid cell; we then calculated forest cover in each grid cell as the 

sum of classified forest area divided by the sum of classified forest and non-forest area. This 

resulted in two maps of forest cover (1938 and 2015) with continuous values (0-100% in each 

grid cell) which were later used in change detection (as described below). To limit the influence 

of grid cells that had little overlap with the study area, we excluded cells with more than 50% of 

the area masked or beyond the extent of imagery (i.e., no data). Though this criterion removed 

15.4% of initial grid cells from later analysis, these cells contained less than 1% of the total 

classified area. Lastly, to provide a more detailed characterization of variability in forest cover 
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throughout the study area, we calculated the percentage of grid cells in different forest cover 

classes (20% bins) in both 1938 and 2015.  

2.3.6 Accuracy Assessment and Uncertainty Modeling 

We performed global and local accuracy assessments to quantify the classification 

accuracy of the SVMs, as well as the spatial variability in accuracy throughout the study area. 

For the global accuracy assessment (sensu Congalton 1991, Olofsson et al. 2014), we used 

manual photointerpretation at 2,000 randomly located points throughout each image (1938 and 

2015), and compared photointerpretation (“reference”) to predictions from the SVM 

classification. We then calculated user’s, producer’s, and overall accuracies following the 

protocol of Olofsson et al. (2014). Overall accuracy was 90.2% for the 1938 imagery and 89.4% 

for the 2015 imagery (Table A1). It should be noted however, that the reliability of 

photointerpretation in the 2015 classification is generally higher (because the 1938 imagery was 

of a slightly coarser resolution and was not perfectly preserved) and estimates of classification 

accuracy in 1938 are less certain than those in 2015. 

To develop local accuracy assessments, we used the 2,000 manual photointerpretation 

points, segmented and unsegmented pixel values at each point, and SVM-predicted classes to 

develop binomial generalized linear models (GLMs) of correct/incorrect classification (sensu 

Leyk and Zimmermann 2004, 2007; Appendix A). Adjusted deviance squared values (following 

Guisan and Zimmermann 2000) for the final GLMs were 0.32 for 1938 imagery and 0.28 for the 

2015 imagery. We then used these GLMs to predict the probability of correct classification in 

each 1 m pixel in the 1938 and 2015 imagery. Following GLM predictions, we calculated overall 

classification accuracy, forest accuracy, and non-forest accuracy as the predicted values from 1 

m pixels within each 250 m grid cell. Overall accuracy was calculated as the mean GLM-
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predicted probability of a correct classification across all classified pixels in a grid cell, while 

forest and non-forest accuracies were the mean values for all pixels assigned (in final SVM 

classifications) to each class in each grid cell (Fig. A1a-d). 

Accurate results of change detection analyses are contingent upon proper thematic 

representations of cover types (i.e., classification accuracy) and upon spatial alignment between 

datasets (i.e., co-registration error; Leyk et al. 2018). To identify grid cells that had directional 

changes in forest cover (1938-2015) that exceeded the potential influence of inaccurate 

classification and co-registration error, we merged our local accuracy assessments with Monte 

Carlo simulations of error in image alignment (Appendix A). Monte Carlo simulations consisted 

of 200 random shifts of the 1938 imagery to quantify the sensitivity of forest cover estimates to 

co-registration error. We then combined accuracy assessments and Monte Carlo simulations 

using the following formulas to calculate potential ranges of forest cover for each grid cell for 

each date: 

𝐿𝑜𝑤𝑒𝑟𝐹𝑜𝑟𝑒𝑠𝑡)*+, = 	 (%𝐴𝑐𝑐345678 ∗ 𝐹𝑜𝑟𝑒𝑠𝑡𝐴𝑟𝑒𝑎;8<)/𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝐴𝑟𝑒𝑎;8< 

𝑈𝑝𝑝𝑒𝑟𝐹𝑜𝑟𝑒𝑠𝑡)*+, = 	 (𝐹𝑜𝑟𝑒𝑠𝑡𝐴𝑟𝑒𝑎)*F8< + H𝑁𝑜𝑛𝐹𝑜𝑟𝑒𝑠𝑡𝐴𝑟𝑒𝑎)*F8< ∗ (1 −%𝐴𝑐𝑐M4N345678)O)/𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝐴𝑟𝑒𝑎)*F8< 

𝐿𝑜𝑤𝑒𝑟𝐹𝑜𝑟𝑒𝑠𝑡PQ)F = 	 (%𝐴𝑐𝑐345678 ∗ 𝐹𝑜𝑟𝑒𝑠𝑡𝐴𝑟𝑒𝑎)/𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝐴𝑟𝑒𝑎	 

𝑈𝑝𝑝𝑒𝑟𝐹𝑜𝑟𝑒𝑠𝑡PQ)F = (𝐹𝑜𝑟𝑒𝑠𝑡𝐴𝑟𝑒𝑎 + H𝑁𝑜𝑛𝐹𝑜𝑟𝑒𝑠𝑡𝐴𝑟𝑒𝑎 ∗ (1 −%𝐴𝑐𝑐M4N345678)O)/𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝐴𝑟𝑒𝑎 

Where LowerForest and UpperForest are the lower and upper estimates for forest cover at a 

given date (1938 or 2015), %Acc is the estimated classification accuracy for a given cover type, 

ForestArea and NonForestArea are the total area classified (by SVMs) as forest and non-forest, 

respectively, and ClassifiedArea is the total area classified as either cover type. Subscripts 6 and 

195 correspond to the 6th and 195th ranked estimates of forest cover (95% bounds) across the 

Monte Carlo simulations of co-registration error for the 1938 imagery. All values in the above 
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formulas were specific to each grid cell, thus identifying potential ranges of forest cover in each 

250 m area at each date (1938 or 2015).  

We determined that a grid cell had experienced a significant change in forest cover 1938-

2015 if the potential ranges of forest cover in 1938 and 2015 did not overlap. In other words, if a 

maximum estimate of 1938 forest cover was lower than the minimum estimate of 2015 forest 

cover, a grid cell was classified as Forest Gain. Similarly, if the maximum estimate of 2015 

forest cover was lower than minimum estimate of 1938 canopy cover, a grid cell was classified 

as Forest Loss. If the error bounds for the two dates overlapped, a cell was then classified as 

Little Change (generally less than 15% net change in forest cover). Following this, we manually 

reclassified 1,331 Forest Loss grid cells (3.0% of the total area) to Little Change because 

designation as Forest Loss in these cells was primarily due to lighting conditions in the 1938 

imagery (i.e., overestimates of 1938 forest cover due to topographic shading). 

2.3.7 Potential Drivers of Change in Forest Cover 

To assess the relative influences of several known drivers of change in forest cover, we 

performed a Random Forest analysis to predict forest change class (i.e., Little Change, Forest 

Gain, Forest Loss) in each grid cell as a function of 13 landscape variables relating to land use, 

land management, ownership designation, the abiotic environment, spatially modelled historical 

fire regime class, and recent wildfire activity (Table 2.2, Appendix A). We did not include 

gridded climate data in this analysis, instead using elevation and heat load index (derived from 

slope, aspect, and latitude; McCune and Keon 2002) as proxies for average moisture availability. 

Because the study area spans a single mountain range, elevation and aspect are strongly tied to 

climate and describe much of the variability in site moisture and vegetation (Peet 1981).  
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We performed the analysis of these 13 landscape variables and their relationship with 

forest change class in each grid cell using the ranger (Wright and Ziegler 2017), mlr (Bischl et 

al. 2016), and caret (Kuhn 2008) packages in R. We also tested for multicollinearity of 

predictors using the rfUtilities package (Evans et al. 2011). During model fitting, we tuned 

hyperparameters (i.e., “mtry” - the number of variables available for splitting and “ntree” - the 

total number of trees) for the final Random Forest analysis using five-fold cross-validation 

across a range of parameter values; selected values were “mtry” of 6, and “ntree” of 300. For 

ease of interpretation, permutation-based variable importance (mean decrease in accuracy) was 

relativized so as to sum to 1 (“relative importance”). We also characterized final model fit using 

percent classification accuracy from 100-fold cross-validation. While we present final results of 

these analyses at a 250 m resolution, we also quantified forest cover change, performed 

uncertainty thresholding, and completed an additional Random Forest analysis at a 1 km-

resolution using the same set of 13 predictors to assess the extent to which our results may be 

sensitive to spatial scale. 

Table 2.2. Variables included in Random Forest analysis used to identify potential drivers of 
forest cover change (1938-2015) in the study area in the northern Front Range of Colorado. 
 
Category Variable Definition Reason for Inclusion Source(s) 

Human 
Impacts 

Density of Mine Sites Kernel estimate of mine 
site density surrounding 
each grid cell. 

Historical mining 
activity influenced 
forests through 
increased logging 
activity and 
anthropogenic ignitions. 

USGS 
(2005) 

Land Cover Class 1938 Land cover class in each 
grid cell from 1938 
backcast model of land 
cover. 

Initial land cover in the 
study period could have 
important influences on 
forest cover change due 
to initial cover type and 
prior land-use legacies. 

Sohl et al. 
(2016) 
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Proportion Developed 
Land 

Proportion of each grid 
cell that was classified as 
developed in 2011 
National Land Cover 
Dataset (classes 21-24).  

Development, 
particularly in the 
wildland urban interface, 
increased rapidly 
through the study area in 
the 20th century.  

Homer et 
al. (2015) 

Proportion Treated Proportion of each grid 
cell that was treated using 
mechanical thinning 
and/or prescribed fire 
prior to September 2015. 

Silvicultural treatments 
are commonly used 
throughout forests in the 
western United States to 
reduce hazardous fuels 
around homes and to 
reduce forest densities. 

Caggiano 
(2017) 

Road Density Linear meters of road 
within each grid cell. 

Road density provides a 
proxy for development 
intensity and access to 
forested lands. 

USCB 
(2017) 

Ownership  
Designation 

Proportion City/County  
Open Space Land 

Proportion of each grid 
cell that is city- or 
county-managed open 
space. 

City and county open 
space lands receive high 
levels of recreational 
use. Slightly different 
management strategies 
are likely on these lands 
than other designations. 

COMaP 
(2010) 

Proportion NPS Land Proportion of each grid 
cell that is managed by 
the U.S. National Park 
Service. 

U.S. National Park 
Service lands are more 
highly regulated, less 
likely to have 
experienced extractive 
logging in the early 
1900s, and have lower 
rates of silvicultural 
treatment than many 
other designations. 

COMaP 
(2010) 

Proportion Private Land Proportion of each grid 
cell that is privately 
owned. 

Private lands likely have 
different management 
strategies and land use 
than do public lands in 
the study area, typically 
being smaller, more 
developed, and more 
highly fragmented. 

COMaP 
(2010) 

Proportion USFS Land Proportion of each grid 
cell that is managed by 
the U.S. Forest Service. 

U.S. Forest Service 
lands in the area are 
likely to experience 
heavy recreational use 
and more substantial 
rates of silvicultural 
treatment than many 
other land designations. 

COMaP 
(2010) 

Physical  
Environment 

Elevation (m) Mean elevation of each 
grid cell, as derived from 
10 m digital elevation 

Elevation is the 
strongest proxy for 
average climate in the 

USGS 
(1999) 
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model (DEM) of study 
area. 

study area. Elevation is 
highly correlated with 
both temperature and 
precipitation. 

Heat Load Mean heat load 
(combination of aspect, 
slope, and latitude) of 
grid cell as derived from 
10 m DEM. Higher 
values indicate generally 
higher levels of direct sun 
from the southwest. 

Heat load provides an 
estimate of incoming 
radiant intensity in an 
area and is an 
important control on 
local climate. 

McCune 
and Keon 
(2002) 

Wildfire Proportion Burned (1978-
2015) 

Proportion of each grid 
cell that burned between 
1978 and 2015 (time-
period in which reliable 
fire perimeter data is 
available). 

Recent studies have 
noted increases in area 
burned and limited post-
fire recovery in many 
sites through western 
United States. 

Eidenshink 
et al. 
(2007); 
USGS 
(2018) 

Proportion Low-Severity Proportion of each grid 
cell that was spatially 
modelled to have burned 
frequently and at low 
severity (few trees killed 
in each fire) as the 
dominant fire 
regime prior to 1920. 

Areas with historically 
frequent, low-severity 
fire regimes are those 
believed to be most 
affected by 20th century 
fire exclusion and are 
those in which 
restoration and fuels 
reduction objectives are 
believed to be most 
convergent. 

Sherriff et 
al. (2014) 

 
2.3.8 Comparison with Fire History 

In addition to the Random Forest model spanning the study area, we compared net forest 

change across specific montane and subalpine stands with previously collected field data 

describing fire history. Previous studies in the montane and subalpine zones of the NFR have 

compiled a combined total of 1,938 samples of fire-scarred trees and 13,832 tree ages from 

increment cores in an effort to reconstruct past fire activity and stand-origin dates (Veblen et al. 

2000, Sherriff and Veblen 2006, 2007, 2008, Sibold et al. 2006, Schoennagel et al. 2011, Gartner 

et al. 2012). Using these records, one of the most extensive datasets yet assembled to 

characterize fire history in a single region, we performed two separate analyses to quantify forest 

cover change within: 1) montane stands historically characterized by distinctly different fire 

regimes (low- vs. mixed-severity), and 2) subalpine stands with differing time since last stand-
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replacing fire. For each of these analyses, we performed a sensitivity assessment as described in 

Accuracy Assessment and Uncertainty Modeling to quantify potential ranges of forest cover. 

Sites in the NFR with a history of frequent, low-severity fire likely experienced a greater 

deviation from their natural ranges of variability during the fire-suppression era (c. 1920-present) 

than did sites with mixed- or high-severity fire regimes (Sherriff et al. 2014). For this reason, 

sites with a history of low- and moderate-severity fire are typically the highest priority for forest 

management activities such as mechanical thinning and low-intensity prescribed fire (Addington 

et al. 2018). To assess differences in the magnitude of 20th century forest cover change by 

historical fire regime class in fire-excluded sites throughout the montane zone, we compared net 

change in forest cover using a stand-specific procedure for forests dominated by a frequent, low-

severity fire regime (n = 6; 435.2 ha classified) with cover change in those dominated by a less 

frequent mixed-severity fire regime (n = 67; 3,618.8 ha classified). Stands were classified as 

low- or mixed-severity using a combination of tree establishment data and fire-scarred samples 

in a previous study of the montane zone in the Colorado Front Range (Sherriff et al. 2014). The 

difference in sample sizes between fire regime classes reflects the relative proportions of the 

modern landscape characterized by the respective fire regimes as well as the accessibility to 

study areas not impacted by logging and exurban development (a factor that guided initial plot 

selection). These locations were a subset of the original fire history sites described in Sherriff et 

al. (2014); we selected forest stands that were the most intensively surveyed (i.e., including site-

specific fire histories and/or stand age data), overlapped the area of the imagery, and did not 

overlap recent fire perimeters (1978-2015). For this analysis, sites within recent fire perimeters 

were removed because the focus of the montane fire history analysis was to quantify 20th century 

montane forest change resulting from fire exclusion and/or longer term post-fire recovery. 
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In forests characterized by infrequent, high-severity fires (e.g., subalpine forests in the 

NFR), stand attributes such as tree density and crown cover vary with time since fire (Veblen 

1986, Aplet et al. 1988, Donnegan and Rebertus 1999). Therefore, forest cover change c. 1938-

2015 could be expected to differ according to stand age. To test this idea, we compared 20th 

century forest cover change to stand age (time since last fire) in a 5076.2 ha area in Rocky 

Mountain National Park – the area of overlap between our imagery and the area studied by 

Sibold et al. (2006). Sibold et al. (2006) reconstructed fire history of individual forest stands 

greater than c. 8 ha using stand-origin methods supplemented with evidence from fire-scarred 

trees. The study area of this fire history reconstruction spans c. 2,500-3,500 m in elevation, 

though > 75% is in the subalpine zone (> 2,800 m) and the vast majority is influenced by higher-

severity fire (Sibold et al. 2007). For this analysis, we binned stands by age class and time since 

last known fire as follows: 1) prior to 1650 (stands without any recorded fire since 1650; 11.3% 

of the total), 2) 1650-1850 (stands originating after burning in 1650-1850 and prior to Euro-

American settlement of the region; 30.4%), 3) 1850-1900 (stands originating in 1850-1900 

during a period of enhanced fire activity and drought; 48.5%), 4) 1900-1938 (stands originating 

following fires early in the 20th century but before initial imagery; 7.0%), and 5) 1938-2015 

(stands that originated following fires during the study period, 2.9%).  
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Fig. 2.4. Summary of image classification and change detection results across the study area in 
the northern Front Range of Colorado. We classified forest cover (forest/non-forest) for each 1 m 
pixel in 1938 (a, b) and 2015 (c, d), and then compared percent forest cover at an aggregated 
scale between 1938 and 2015. Grid cells (250 m) that showed gains (blue), or losses (orange) of 
forest cover were classified based on directional changes in forest cover that exceeded the 
influence of inaccurate classification and sensitivity to co-registration error (e). 

2.4 Results 

2.4.1 Changes in Forest Cover and Contributing Factors 

Between 1938 and 2015, forest cover increased from 56.5% to 64.3% throughout the 

NFR, a net gain of 7.8% (Fig. 2.4, Table A2). However, there was notable spatial variability in 

forest cover change. Across the study area, 13.0% of 250 m grid cells were classified as Forest 

Loss, 39.4% were classified as Forest Gain, and 47.6% experienced Little Change (Fig. 2.4, 

Table A2). Increases in cover were greatest in the subalpine zone (16%), and were more limited 

in the upper montane (7.4%) and lower montane zones (4.5%). The percentage of total area in 

different cover classes also varied among zones in 1938 and 2015 (Fig. 2.5). While lower 

montane stands had a relatively uniform distribution across cover classes, the upper montane and 

subalpine zones had a greater percentage of stands with high canopy cover (i.e., > 60% cover; 

Fig. 2.5). 
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Fig. 2.5. Variability in forest cover across the study area in the northern Front Range of Colorado 
by life zone (lower montane, upper montane, and subalpine). Values represent the percentage of 
250 m grid cells in the study area with differing levels of forest cover (20% bin width) at each 
date (1938 and 2015). 
 

Of the total classified area (forest/non-forest) in the NFR, 14.3% overlapped with recent 

(1978-2015) fire perimeters. More than 70% of this fire activity occurred in the lower montane 

zone, which helps to explain lower increases in forest cover throughout this zone when compared 

to the upper montane and subalpine. Within recent fire perimeters, forest cover decreased from 

56.6% to 19.7%, a net loss of 36.9%. So, while forest cover generally increased in the northern 

Front Range (NFR) of Colorado 1938-2015, a proportion of these longer-term increases in cover 

has been offset by recent fire activity in the lower montane zone. The years of peak fire activity 

between 1800 and 2015 occurred in 1859 and 1860, where 22.5% and 18.4% of fire history sites 

in the montane zone recorded fire, respectively (Fig. 2.2a). Given that these two years were not 

abnormally dry (Fig. 2.2b, 2.2c) and that the sites recording fire were primarily within the upper 

montane area utilized for mining (Veblen et al. 2000), the sharp rise in fire activity probably 

reflects increased anthropogenic ignitions - 1859 marks the year of widespread increases in 

intensive mining activity throughout the study area. In the 1938-2015 period, 2012 was the 

largest year for fire activity, with fire perimeters intersecting 9.5% of the montane zone (Fig. 
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2.2a). This year had above-average summer drought stress, below-average winter precipitation, 

and below-average spring snowpack (May 1st SWE; Fig. 2.2). These periods of historical and 

contemporary fire activity had important influences on 20th century changes in forest cover. 

 The Random Forest analysis indicated that the proportion of area recently burned (1978-

2015) was the largest single contributor to forest cover change (Fig. 2.6a). When at least 70% of 

a grid cell intersected a recent fire perimeter, the cell was more likely to belong to the Forest 

Loss class than to other categories (Fig. 2.6b). In total, 78.1% of Forest Loss grid cells 

overlapped 1978-2015 fire perimeters. Elevation and proportion low-severity fire – related 

variables given the historical prevalence of frequent, low-severity fire at lower elevations – were 

the second and fourth most important predictors of forest cover change, respectively. Grid cells 

between c. 1700-2250 m and those historically dominated by low-severity fire (according to the 

spatial model in Sherriff et al. 2014) showed increased probabilities of membership in the Forest 

Gain class (Fig. 2.6c, 2.6e). Grid cells at the highest and lowest elevations (i.e., upper treeline 

and persistent grasslands), as well as mid-upper montane sites had lower probabilities of Forest 

Gain, but with some variability (Fig. 2.4, Fig. 2.6c). Grid cells with moderate to high heat load 

indices (HLI; i.e., SW slopes with average to above average levels of direct insolation) showed 

greater probabilities of Forest Gain than did cooler, NE-facing grid cells (Fig. A2). This 

relationship was consistent across elevations, with the exception of the grassland ecotone (< 

1,700 m) where cool and wet sites (i.e., HLI < 0.7) were most likely to be classified as Forest 

Gain. At the grassland ecotone, 70% of grid cells with HLI < 0.7 were classified as Forest Gain, 

as compared to 25.8% of grid cells on warm/dry sites (HLI > 0.7). Mine site density was the 

third ranked predictor overall, and the most important predictor related to land use, though 

effects varied nonlinearly from low to high mine densities (Fig. 2.6a, 2.6d). Grid cells with no 
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recorded mine locations in the vicinity (kernel density of mines = 0/grid cell) were most likely to 

belong to the Little Change class. In contrast, areas with low to moderate mining density (0-

0.125) had higher probabilities of Forest Gain. Sites with the highest mine densities (> 0.125) 

showed increased probabilities of membership to the Little Change class (Fig. 2.6a, 2.6d). 

Among the predictors with lower importance, general trends still existed (Fig. 2.6a, Fig. 

A2). For example, silvicultural treatments, primarily fuels mitigation conducted between 2006 

and 2015, led to decreased probabilities of Forest Gain (Fig. A2). Silvicultural treatments (c. 

2006-2015) occurred on c. 6% of the classified area throughout the NFR and were more common 

in the montane zone. Surprisingly, the differences in forest cover change among current land 

ownership classes and 1938 land cover types were relatively minor (Fig. 2.6a, Fig. A2). 

Similarly, proportion of developed land and road density were not strong predictors of forest 

change in our model (Fig. 2.6a), likely because some of these areas were developed prior to 1938 

or because some of this development took place in previously non-forested areas and thus did not 

lead to deforestation. 
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Fig. 2.6. Random Forest analysis (250 m resolution) of several potential drivers of forest cover 
change in the northern Front Range of Colorado, 1938-2015. Variable importance plot (a) gives 
the relative importance of each variable to the ensemble model, and partial dependence plots (b-
e) show the marginal effects of each of the top four predictors across their respective ranges. 
Partial dependence plots for the remaining predictors are given in Fig. A2. 
 

Cross-validation of the Random Forest model (at 250 m resolution) indicated that overall 

classification accuracy was 66.3% and that accuracy was highest for the Forest Loss class (Table 

A3). We also noted that our analyses of forest change were relatively insensitive to aggregation 

to a 1 km resolution. At this scale, 13.6% of 1 km cells were classified as Forest Loss, 44.9% 

were classified as Forest Gain, and 41.5% were classified as Little Change. The Random Forest 

analysis at a 1 km resolution yielded relatively similar rankings of variable importance, similar 

patterns in partial dependence (Fig. A3), and similar classification accuracy (65.2%) to analyses 

at the 250 m resolution. As might be expected, fine-scale drivers such as heat load index became 

less important at the coarser spatial resolution of 1 km (Fig. A3a) than they were at a 250 m 
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resolution (Fig. 2.6a). Patterns in the partial dependence of forest cover change on mine density 

(Fig. A3c) and on spatially modelled fire regime class (e.g., proportion of low-severity fire; Fig. 

A3e) also became more apparent at the 1 km resolution. 

 
Fig. 2.7. Net change in forest cover 1938-2015 by historical fire regime class in 73 fire-excluded 
montane stands in the northern Front Range of Colorado with stand-specific fire history 
reconstructions. Stands in the low-severity class were historically characterized by frequent 
surface fires, while stands in the mixed-severity class experienced occasional stand-replacing 
patches of wildfire and tend to exist at middle elevations in the study area. Values given are area-
weighted change in forest cover across all stands, and error bars represent the sensitivity of forest 
cover change to inaccurate classification and co-registration error. Example image pair (b, c) 
illustrates forest expansion into grasslands, as well as recent suburban development at a site 
typified by frequent, low-severity surface fires prior to 1920 (39.96 N, 105.27 W). 
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Fig. 2.8. Net change in forest cover (1938-2015) as it relates to time since last stand-replacing 
wildfire in higher elevation forest stands within a c. 5,000 ha area of Rocky Mountain National 
Park, CO (a). Error bars represent the sensitivity of each value to inaccurate classification and 
co-registration error. Areas in the 1938-2015 class are within a single wildfire that took place in 
1978 (the Ouzel Fire). Example image pair (b, c) shows a subarea with a recorded fire that 
occurred in the late 1800s and subsequent recovery through the 20th century (40.31 N, 105.59 
W). Fires in the subalpine zone typically burn infrequently (> 200 years) and at high-severity. 
 
2.4.2 Comparison of Changes in Forest Cover with Fire History 

In the comparison of forest cover change and stand-specific fire history (i.e., as opposed 

to the spatially modeled area) in the montane zone, we documented that fire-excluded stands 

with a history of frequent, low-severity surface fire (prior to 1920) showed greater increases in 

forest cover 1938-2015 (15.7% net change) than did stands with a history of mixed-severity fire 

(11.7% net change), corroborating results of the Random Forest analysis with respect to trends 

by elevation and spatially modelled fire regime (Fig. 2.7, Table A2). Sites within the low-

severity class were primarily at lower elevations or in close proximity to grasslands. 

In higher elevation forests (primarily subalpine) in a subset of Rocky Mountain National 

Park with previously reconstructed fire history, forest cover change showed variation with time 

since fire (Fig. 2.8, Table A2). Younger stands – those that burned 1850-1938 – showed greater 

increases in forest cover than did older stands (i.e., sites with the last fire prior to 1850). These 
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results are likely due to continued but slow post-fire recovery in areas that burned in the century 

prior to the initial imagery c. 1938 (Fig. 2.8b-c). In the 1938 imagery, locations with clearly 

identifiable fires dating from the 1800s and early 1900s were evident elsewhere in the upper 

montane and subalpine zones of the NFR; many of these burned sites returned to forest cover in 

2015. Taken together, these results suggest that continued post-fire recovery from high-severity 

events in the late 1800s and early 1900s, and a near-absence of subalpine fires in the 20th 

century, are some of the major causes for the widespread increases in forest cover at higher 

elevations 1938-2015. The decline in forest cover for subalpine areas that burned 1938-2015 

(Fig. 2.8a; -31.9% net change) was driven by a 143 ha subset of the 1978 Ouzel Fire that 

overlapped with our imagery and the study area of Sibold et al. (2006). 

2.5 Discussion 

We quantified 20th century forest cover change in the northern Front Range of Colorado, 

a complex landscape spanning broad gradients in the abiotic environment, disturbance regimes, 

and in human influence. We then linked changes in forest cover to data describing elevation, heat 

load index, historical and contemporary fire history, and land use. The NFR experienced 

extensive changes in forest cover 1938-2015, but reasons for these changes are spatially varying 

and a complex combination of drivers was related to the observed changes in forest cover. 

However, we note three general findings: 

2.5.1 Changes in Forest Cover Were Influenced by Abiotic Factors and Human Influences 

Consistent with previous studies in the NFR and in California, USA (Platt and 

Schoennagel 2009, Lydersen and Collins 2018), we noted that forest cover changes varied with 

elevation and that mesic, N-facing grid cells (with lower heat load indices) showed lower 

increases in cover through the 20th century than did grid cells with other aspects. In many cases, 
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these more mesic slopes were covered by dense forest stands in the initial imagery, which limited 

potential increases. However, this relationship shifted at the lowest elevations. Similar to the 

findings of Mast et al. (1997), we found that N-facing slopes at the grassland ecotone were more 

likely to experience Forest Gain than were S-facing slopes in these elevations. It is logical that 

forest cover on S-facing sites at lower treeline is moisture-limited and thus forest cover remained 

low at these sites throughout the 20th century. Similarly, in Arizona and New Mexico, USA, 

increases in tree density during the fire exclusion era were more limited in xeric, moisture 

stressed sites (Rodman et al. 2017), indicative of broad-scale climatic controls on tree growth 

and establishment. Moisture stress may be less limiting to establishment at higher elevations in 

the montane zone (Chambers et al. 2016, Rother and Veblen 2016); instead, time since 

disturbance may be a more important driver of forest cover change at these higher sites.  

 Mining activity was the dominant historical anthropogenic impact on forest cover 

changes in the NFR. Mining activity beginning in the mid-1800s led to surface disturbance rates 

at least 50 times that of the natural rate of soil disturbance prior to the 19th century (Dethier et al. 

2018). Mining brought with it the removal of large diameter trees for railroad ties and timber, as 

well as increases in anthropogenic ignitions, all having important influences on forests (Veblen 

and Lorenz 1986, 1991, Veblen and Donnegan 2005). For example, 1859 and 1860 were the 

years of most widespread fire activity throughout the NFR c. 1800-2015 and 1859 marks the 

onset of intensive mining in the region (Veblen et al. 2000, Dethier et al. 2018). Throughout the 

NFR, areas with low to moderate mining density showed greater probabilities of Forest Gain 

through the 20th century, likely due to recovery from 1800s logging and burning. However, areas 

with the highest mining densities were more likely to demonstrate Little Change 1938-2015. We 

hypothesize that this effect could be attributed to two factors. First, areas of highest mining 
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density were more often privately owned and had higher densities of roads in both 1938 and 

2015 than many other areas in the NFR. Therefore, persistent fragmentation due to residential 

development and road construction is one likely mechanism for lower probabilities of Forest 

Gain on these intensively-mined sites. Second, severe ground disturbance and seed source 

limitations (due to substantial removal of large-diameter timber) may have led to prolonged 

forest recovery in sites with high mining density, even those without persistent development or 

road networks. This relationship between mining density and forest cover change is complex and 

merits further investigation. 

Like many areas throughout the western U.S., forest thinning and fire hazard mitigation 

have been prominent goals in forests in the NFR since the early 2000s (Caggiano 2017, 

Addington et al. 2018). Though silvicultural treatments were only documented in 6% of the 

NFR, these treatments influenced forest change in certain areas. For example, treatments were 

most common in the montane zone and, where present, led to decreased probabilities of Forest 

Gain 1938-2015. We did not perform analyses that separated silvicultural treatments by intensity 

or time since treatment, both of which are factors that would be likely to influence our results 

and would be useful in future studies. Similarly, we did not include data on sanitation or salvage 

harvests related to mountain pine beetle outbreaks in the 1970s or extractive logging prior to this 

time (Veblen and Donnegan 2005) and the influence of these events on forest change c. 1938-

2015 is difficult to assess. However, establishment of younger cohorts has been noted following 

historical logging and it is likely that these mid-20th century management activities would lead to 

an altered forest age structure (Veblen and Donnegan 2005) rather than a conversion of forest to 

non-forest c. 1938-2015.  
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Land ownership influences forest cover change in a multitude of ways, such as 

differences in patterns of development, the intensity of fire suppression activities, and differences 

in the degree of silvicultural treatment by land ownership category. Developed private lands 

make up the vast majority of the wildland urban interface (Theobald and Romme 2007), an area 

where fire suppression activities are particularly intense (Gorte 2013). Forest management 

activities also differ across management units. For example, Easterday et al. (2018) noted 

substantial differences in 20th century forest change by land ownership designation in California, 

likely as a result of differing long-term management strategies. In the NFR, rates of silvicultural 

treatment varied by ownership and were highest on city/county owned lands (12.2% of total 

city/county area), intermediate on US Forest Service lands (6%) and private lands (3.8%), and 

lowest on National Park Service lands (0.6%). Widespread and consistent implementation of 

silvicultural treatments has been difficult in the NFR due to the fragmented nature of land 

ownership and potential treatment inconsistencies across ownership designations (Calkin et al. 

2014). While silvicultural treatment, land ownership, and development intensity were not the 

most important variables in our analyses, we do not exclude potential influences from these 

factors given their known influence on ecological systems. 

2.5.2 20th Century Changes in Forest Cover Varied by Life Zone and Historical Fire Regime 

While forest cover increased 7.8% through the entire study area from 1938-2015, these 

increases were most pronounced in the subalpine zone and unburned portions of the lower 

montane zone. These findings align with what is known about patterns of historical fire activity 

and tree establishment across life zones in the NFR over the last two centuries. We noted that 

lower montane stands that were historically dominated by a frequent, low-severity fire regime (< 

2,260 m; Sherriff et al. 2014) showed greater increases in forest cover c. 1938-2015 (15.7% net 
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gain in forest cover) than did mid-upper montane sites with a history of mixed-severity fire 

(11.7%). Stand age data indicate that abundant tree establishment occurred during the early 

1900s throughout the lower montane zone (Sherriff and Veblen 2006, Battaglia et al. 2018). 

Because it may take several years for tree crowns to expand to a size that could be classified in 

the 1938 imagery (i.e., > 2 m crown diameter), some of this early 1900s establishment likely 

appeared to be forest cover increase during the 1938-2015 period of our study. In contrast, upper 

montane sites in the study area experienced abundant tree establishment in the mid-late 1800s 

following widespread mixed-severity fires and logging (Mast et al. 1998, Ehle and Baker 2003, 

Schoennagel et al. 2011, Battaglia et al. 2018). Thus, some of these mid-upper montane sites 

may have already appeared as closed forest and relatively dense stands in 1938, limiting 

potential increases 1938-2015. Still, continued establishment has occurred in some areas of the 

upper montane zone into the 2000s (Sherriff and Veblen 2006, Schoennagel et al. 2011), 

particularly areas experiencing past logging (Battaglia et al. 2018) or with low initial forest cover 

(Platt and Schoennagel 2009). 

A previous study using historical and contemporary air photos (1938 to 1999) in the 

montane zone of the NFR also identified greater increases in forest cover at low elevations in the 

montane zone than in the mid-upper montane (Platt and Schoennagel 2009). Yet there were 

important differences between our study and that of Platt and Schoennagel (2009). While this 

prior study identified no increases in forest cover in stands above 2,432 m, we documented 

substantial increases in forest cover for some areas in the upper montane and subalpine zones. In 

addition, the 4% overall increase in forest cover identified by Platt and Schoennagel (2009) is 

generally lower than that presented in this study (7.8% increase). These differences could be 

attributed to several factors. Classification scheme, spatial extents of image coverage, and dates 



 45 

of contemporary imagery differed between these studies, which could have affected final 

outcomes. Specific percentage estimates of forest cover change using historical air photos are 

imperfect due to the various limitations of these data (Platt and Schoennagel 2009, Lydersen and 

Collins 2018). These limitations make direct comparisons between studies difficult and further 

highlight the importance of methods that account for potential error and uncertainty in change 

detection. 

The pronounced increases in forest cover through the subalpine zone tell a complex story 

that may be linked to a combination of logging activities, widespread fires in the 1800s, and slow 

forest recovery from these events. In a portion of Rocky Mountain National Park (the study area 

of Sibold et al. 2006), we noted that forest cover increases were generally higher for stands that 

burned 1850-1938 than within stands originating prior to 1850. This rough classification of 

stands by age masks some of the ecological variability inherent to subalpine forests in the NFR, 

where rates and trajectories of forest succession vary strongly by site and with species 

composition (Veblen 1986, Rebertus et al. 1991, Donnegan and Rebertus 1999, Coop et al. 

2010). Still, it is notable that subalpine stands originating following abundant fire activity in the 

mid-late 1800s (Buechling and Baker 2004, Sibold and Veblen 2006, Sibold et al. 2006) showed 

much greater increases in forest cover than did older stands. Unlike sites in the lower montane 

zone, the direct impacts of organized fire suppression in subalpine forests are likely quite 

minimal given that these forests typically burn in extreme events during which suppression 

activities are difficult and that the period of active fire suppression is much shorter than a typical 

subalpine fire interval (Schoennagel et al. 2004, Naficy et al. 2016). While a small portion of the 

subalpine forests in the NFR had a history of frequent surface fire (e.g. 1-3%; Sibold et al. 2006) 

and tree invasion into subalpine meadows could have resulted from fire exclusion at these sites, 
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the thinning effects of surface fires in subalpine forests were relatively minor across the NFR 

landscape (Sibold et al. 2007). Thus, we conclude that forest cover in the subalpine zone in the 

NFR increased from 1938-2015 primarily as a result of continued recovery from fire, logging, 

and mining disturbances c. 1850-1938 rather than as a result of 20th century fire suppression. 

2.5.3 Contemporary Fire Activity Drove Observed Declines In Forest Cover 

Recent (1978-2015) fire activity was the largest single driver of forest change in our 

Random Forests analysis. Indeed, while forest cover increased throughout the study area 1938-

2015, areas within fire perimeters showed substantial declines. Recent wildfires have driven 

rapid and broad-scale changes in landscapes of the NFR, but these changes should be considered 

within the context of multiple management goals. On one hand, these past fires, considered in 

combination with poor post-fire recovery in severely burned areas (e.g., Chambers et al. 2016, 

Rother and Veblen 2016), portend a decline in forest cover into the future. Changes in fire 

activity and forest cover may also alter important ecosystem services (Rocca et al. 2014). 

However, severe wildfires can benefit many wildlife species (Hutto et al. 2016) and may 

moderate subsequent fire activity (Parks et al. 2014, Coop et al. 2016, Holsinger et al. 2016), 

thus acting as effective fuel treatments in a region with a high density of homes in fire prone 

areas (Platt et al. 2011). These are important considerations as climate warming is expected to 

lead to continued increases in wildfire activity throughout the Rocky Mountains (Spracklen et al. 

2009, Westerling et al. 2011, Liu et al. 2013). 

2.6 Study Limitations 

 Forest cover, the focus of this study, is not necessarily indicative of forest structure and 

composition. For example, a 250 m grid cell with 30% forest cover could encompass a wide 

range of stand densities, species compositions, and fine-scale spatial patterns, all of which are 
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ecologically meaningful and influence myriad ecosystem processes. Though temporal variability 

in climate probably played an important role in the observed changes in forest cover in the NFR 

through the 20th century, we did not directly quantify the influences of interannual and 

interdecadal climate variability on changes in forest cover. These analyses were not feasible 

given that we used only two sets of imagery spanning a broad time period. Instead, a review and 

synthesis of potential influences of climate on tree establishment, disturbance activity, and tree 

growth is provided in Fig. 2.2 and Appendix A. We addressed spatial variability in climate by 

including elevation and heat load index in our analyses. These variables are strong proxies for 

climate in the NFR. 

The seasonal timing of image acquisition has the potential to influence our results, as 

many quaking aspen and other broad-leafed deciduous trees at higher elevations in the study area 

likely had no leaves during the collection of 1938 imagery (collected primarily in late October 

after leaf abscission). Aspen is a fairly minor component of forests of the NFR (Peet 1981), and 

currently occupies only c. 7% of our study area in fragmented locations throughout the montane 

and subalpine zones (Veblen and Donnegan 2005, Rollins 2009). Still, some of the observed 

increases in forest cover in the upper montane and subalpine zones could reflect conversions of 

post-disturbance aspen cohorts in 1938 to conifer-dominated systems in 2015, rather than a 

conversion of non-forest to forest cover. 

Shadows cast by individual trees and topography likely led to variability in our estimates 

of forest cover across the NFR. Recognized by previous studies (e.g., Platt and Schoennagel 

2009, Lydersen and Collins 2018), shadows can influence the results of classification in 

greyscale imagery. For example, large shadows often appear to be dense homogenous stands of 

forest, while shadows from individual trees appear as extensions of the tree crowns. We 
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addressed these problems by removing large shadows and water bodies from the forest 

classification through post-classification correction, by using site-specific uncertainty thresholds 

to identify areas in which forest change exceeded classification error and uncertainty, and by 

manually correcting this classification when necessary. In most cases, aerial photos in 1938 and 

2015 appeared to have been collected under similar lighting conditions (mid-late morning near 

the spring or fall equinox), which permits a reasonable comparison through time.  

The classification of standing dead trees can also be problematic in greyscale imagery 

without spectral information in the red and near-infrared wavelengths. Our initial accuracy 

assessment indicated that misclassification of standing dead trees was an important source of 

classification error in 2015 imagery. For this reason, we corrected 2015 forest classifications 

within known burn perimeters using systematic photointerpretation (Appendix A). Though 

scattered tree mortality due to insects has occurred throughout much of the NFR c. 1996-2015 

(USFS 2015), widespread insect outbreaks (i.e., near-total mortality of large stands) are primarily 

confined to the northwest corner of the study area. We estimate these outbreaks influenced < 5% 

of the total study area based on manual photointerpretation and comparison with aerial detection 

survey data (USFS 2015). Insect outbreaks during the late 20th and 21st centuries have been 

generally much less widespread and of lower severity in our study area than in other regions in 

Colorado. Furthermore, forest recovery following insect mortality in the overstory can be 

relatively rapid due to post-outbreak release of advance regeneration as well as new tree 

establishment (Veblen et al. 1991, Hadley and Veblen 1993, Collins et al. 2011), thus conversion 

to non-forest is not the typical result of recent insect outbreaks in the NFR. Still, we 

acknowledge that the misclassification of standing dead trees in areas recently affected by insect 

mortality is a potential cause of error. 
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 One additional source of error that could not be fully accounted for was the degradation 

of original imagery in portions of the study area, particularly for the 1938-1940 imagery. Some 

scenes were well-preserved, yet others had evidence of fading and creases that may have led to 

local error in forest cover estimates. We addressed these problems by removing the outer edges 

of each scene prior to mosaicking (showing the greatest likelihood of fading and distortion), and 

by manually removing a small number of areas in which imagery was visibly degraded. Image 

degradation is an important consideration when working with historical aerial imagery in a GIS; 

automatic detection and removal of degraded areas in imagery may lead to improved results in 

the future.  

2.7 Conclusion 

Our study highlights that forest cover change is rarely the result of a single causative 

mechanism. Observed forest cover gains in the northern Front Range 1938-2015 were related to 

a complex combination of effects of elevation, heat load index, historical fire activity, and 19th 

century mining activity. The effects of fire history varied along the elevation gradient, with 

subalpine forests showing the greatest increases in cover in part due to recovery from fire 

activity in 1850-1938. In the montane zone, fire-excluded stands with a history of frequent, low-

severity surface fire showed a greater increase in cover than did stands with a history of mixed-

severity fire (15.7% vs 11.7%). No single driver of forest gain applied across the entirety of the 

study area. In contrast, forest loss was primarily driven by recent fire activity in the montane 

zone. Late 20th and early 21st century silvicultural treatments (e.g., forest thinning and prescribed 

fire), exurban development, and road construction have also played important roles in forest loss 

or in limiting gains in some areas. Changes in forest cover in the NFR c. 1938-2015 are a 

reflection of short-term (e.g., development, recent wildfire) and long-term (e.g., pulses of 
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historical fire activity, fire quiescence, climatic influences on tree establishment, and 1800s 

mining and logging) landscape legacies which are then overlaid upon variability in the abiotic 

environment. 
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CHAPTER 3 
 
 

LIMITATIONS TO RECOVERY FOLLOWING WILDFIRE IN DRY FORESTS OF 
SOUTHERN COLORADO AND NORTHERN NEW MEXICO, USA 

 
3.1 Introduction 

Over the past several decades, global-scale climate warming and extreme drought events 

have promoted increases in wildfire activity across a range of forest ecosystem types (Kasischke 

and Turetsky 2006, Brando et al. 2014, Singleton et al. 2018). Wildfire activity, in combination 

with the effects of warmer and drier conditions on tree regeneration processes, is increasing the 

potential for widespread forest losses (Enright et al. 2015, Stevens-Rumann et al. 2018). The rate 

of forest recovery following wildfire is a crucial parameter that controls the susceptibility of 

forests to type conversion (Tepley et al. 2018) and in dry coniferous forests of the western U.S. 

(i.e., lower-elevation forests with a dominant component of ponderosa pine [Pinus ponderosa]), 

early post-fire recovery differs drastically across biophysical gradients (Chambers et al. 2016, 

Rother and Veblen 2016, Kemp et al. 2019). Thus, forest resilience to wildfire (sensu Holling 

1973) is also likely to vary across complex mountainous landscapes. Spatially-explicit 

predictions of post-fire forest recovery (e.g., Tepley et al. 2017, Haffey et al. 2018, Shive et al. 

2018) can provide insight into relative differences in forest resilience across gradients in fire 

severity and in the physical environment. 

The empirical assessment of specific processes involved in regeneration (e.g., seed cone 

production, seedling germination, site suitability) will help to identify key bottlenecks to forest 
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persistence in a warmer, drier future (Enright et al. 2015, Davis et al. 2018b). For the successful 

establishment of seed-obligate conifers (i.e., those incapable of vegetative reproduction) 

following wildfire, seed must be produced and transported to a suitable site for germination and 

survival. Together, these processes define the regeneration niche (sensu Grubb 1977), which has 

a tremendous influence on the distribution of forests. Following recent wildfires throughout the 

western US, it has been noted that conifer seedling abundance is typically highest near surviving 

mature trees (Haire and McGarigal 2010, Chambers et al. 2016, Kemp et al. 2016, Tepley et al. 

2017) due, in part, to greater seed availability. While seed dispersal is influenced by tree height, 

seed characteristics, wind speed, and animal dispersal, seed availability is typically much higher 

in areas adjacent to mature trees (McCaughey et al. 1986). This spatial component is well-

documented, yet temporal variability in seed cone production of many conifers is poorly 

characterized and is critical for a comprehensive examination of seed availability in post-fire 

landscapes. Interannual variability in seed cone production is difficult to quantify (requiring 

either long-term monitoring or reconstruction based on persistent reproductive structures), and 

only a small number of studies have characterized annual seed cone production for a limited 

number of conifer species in the Southern Rocky Mountains (e.g., Shepperd et al. 2006, Mooney 

et al. 2011, Redmond et al. 2012, Buechling et al. 2016). 

Overstory forest cover and post-fire vegetation also have the potential to influence 

conifer establishment, growth, and survival through biotic interactions and microclimate 

modification. In mixed-species systems in which conifers coexist with resprouting angiosperm 

species, the cover of resprouting vegetation (shrubs and trees) typically increases with fire 

severity (Welch et al. 2016). Competing vegetation can reduce the growth rates of some conifers 

(Tepley et al. 2017) and may also inhibit seedling establishment, particularly for species such as 
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ponderosa pine (Pinus ponderosa) that regenerate well on bare mineral soil (Pearson 1942, 

Schubert 1976). Overstory canopy cover moderates the understory environment by reducing 

daily maximum temperatures and diurnal fluctuations (Davis et al. 2018a). These dampening 

effects have the potential to reduce the influence of climate variability on seedlings, particularly 

for more shade-tolerant tree species capable of establishing and surviving within densely 

forested, climatically-buffered sites (Dobrowski et al. 2015). 

In dry forests of the U.S. West, post-fire conifer seedling abundance is typically higher 

on more mesic sites such as north-facing slopes and higher elevations (Dodson and Root 2013, 

Rother and Veblen 2016, Tepley et al. 2017, Haffey et al. 2018, Shive et al. 2018, Kemp et al. 

2019). Post-fire recovery in conifer forests is also influenced by interdecadal trends in climate 

and by interannual climate variability. For example, recovery is less likely in fires that are 

followed by abnormally dry periods (Stevens-Rumann et al. 2018). One plausible mechanism is 

that seedling establishment for some montane conifer species is more likely in infrequent years 

with above-average moisture (Savage et al. 1996, League and Veblen 2006, Rother and Veblen 

2017, Davis et al. 2019). Douglas-fir (Pseudotsuga menziesii) and ponderosa pine seedling 

survival is also greater under cool and moist conditions (Rother et al. 2015), with extreme 

drought years of particular importance to regeneration failure (Young et al. 2019).  

An improved understanding of the potential limitations to post-fire conifer regeneration 

requires a synthetic approach that considers seed cone production, seedling establishment, and 

site suitability (Davis et al. 2018b). At 15 recent (1988 to 2010) fire events, we characterized 

annual seed cone production, resprouting of angiosperm trees, and conifer seedling 

establishment. We then combined these data with surveys of post-fire abundance for seedlings of 

two dominant coniferous tree species (Douglas-fir and ponderosa pine) and investigated the 
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influence of key biophysical factors in predicting seedling abundance across the 15 fire events. 

Finally, we used these data to develop spatial models of predicted seedling abundances within 

each fire to better infer landscape-scale patterns of conifer forest resilience to wildfire. 

Specifically, we asked: 1) How do seed cone production, conifer seedling establishment, and 

angiosperm resprouting vary following each fire? 2) Which factors best predict plot-level 

variability in post-fire conifer seedling abundance? 3) What percentage of each fire and of total 

burned area has recovered to meet tree density thresholds consistent with historical tree 

densities? 4) What is the proportion of fire area that is limited primarily by post-fire canopy 

cover rather than by site suitability? 

3.2 Methods 

3.2.1 Study Area and Site Selection 

Our study sites include 15 recent (1988-2010) wildfires occurring in dry forests of 

southern Colorado and northern New Mexico, USA (Fig. 3.1, Table 3.1). We selected these fires 

as a subset of all large (> 404 ha) wildland fires in this region occurring 1984-2010 (Eidenshink 

et al. 2007). We limited fire selection using the following criteria: 1) vegetation type – fires must 

have occurred in areas with dominant components of pine-oak, ponderosa pine, or dry mixed-

conifer vegetation types (Rollins 2009) and 2) accessibility – fires must have occurred on 

accessible public land, or on large private parcels for which we were permitted access. Fire 

severity, area burned, pre-fire vegetation (Table 3.1), and average climate vary across fires. 

Within fire perimeters, January minimum temperatures range -14.9 to -6.8 C° and July 

maximums range 18.1 to 30.2 C°. Annual precipitation ranges 35.1 to 104.9 cm, with a 

pronounced dry period in early summer (June and early July) in each fire site. Late-summer 

monsoons (mid-July to September) vary in importance across the study area and account for 30-
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45% of average annual precipitation, with increasing monsoonal contributions to the south and 

east (1981-2010 normals from the Parameter-Elevation Regression on Independent Slopes 

Model; PRISM 2018). 

 
Fig. 3.1. Map of the study area in southern Colorado and northern New Mexico, USA, showing 
the 15 fires surveyed for post-fire conifer abundance. Green shading shows the distribution of 
forests based on the 1992 National Land Cover Dataset (NLCD), which preceded most of the 
fires surveyed. 
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Table 3.1. Descriptions of the 15 surveyed fires in s. Colorado and n. New Mexico, USA. “Area” 
is the areal extent of mapped fire perimeters from the Monitoring Trends in Burn Severity 
program (Eidenshink et al. 2007). “High severity (%)” is the percentage of each fire that burned 
at high severity (total canopy mortality) based on satellite-derived burn severity thresholding 
with field validation. Pre-fire species composition is given for the three most prevalent species 
across sites (Douglas-fir, Gambel oak, and ponderosa pine), and represents the percentage of pre-
fire basal area belonging to a given species across all field plots in a given fire. 
 

Fire Summary Information Pre-Fire Species Composition Plots 

Name 
Area 
(ha) 

High 
Severity 
(%) Year 

Elevation 
(m) 

Douglas-
Fir     
(% BA) 

Gambel 
Oak   (% 
BA) 

Ponderosa 
Pine       
(% BA) n 

Borrego 5211.1 20.6 2002 2163-3111 11.2 0.2 71.8 40 
H12 1777.7 9.5 2010 2497-2964 18.2 2.2 77.4 40 
Hondo 3338.8 69.2 1996 2261-3605 10.9 0.8 59.1 31 
Lakes 1742.4 36.8 2002 2290-2673 43.1 0.3 38.8 40 
Mason 4461.0 70.2 2005 1861-2494 13.6 1.3 78.1 37 
Mato Vega 5311.8 60.9 2006 2568-3235 45.2 0 17.8 36 
Missionary 
Ridge 27890.5 34.4 2002 2010-3560 31.8 0.3 22.7 33 
Montoya 1665.5 45.4 2002 2437-2870 0 12.5 41.6 37 
Pine 
Canyon 1656.1 21.0 2005 2214-2645 0 3 70.3 36 
Ponil 
Complex 36050.8 31.7 2002 2027-2842 9.8 0.5 85.9 33 
Saw 1258.7 0 1988 2262-2485 11.8 9.7 82.4 38 
Spring 9730.3 48.6 2002 2316-2867 29.3 1.1 59.9 45 
Viveash 9093.4 62.7 2000 2418-3539 48.5 0.1 28.6 29 
West Fork 2199.8 14.8 2008 2196-2569 4.3 1.1 60.1 40 
York 1313.8 9.0 2001 2389-2800 5.8 2.7 85.3 40 

All Fires 
Total: 

112701.6 
Total: 

38.7 

Range: 
1988-
2010 

Range: 
1861-3605 

Total: 
23.0 Total: 1.7 Total: 55.7 

Total: 
555 

 

3.2.2 Cone Production, Conifer Seedling Establishment, and Angiosperm Resprouting 

To characterize interannual variability in ponderosa pine seed cone production, we used 

the cone abscission scar method (Forcella 1981, Redmond et al. 2016). We performed these 

surveys within 8 of the 15 fires, a subset that was selected to span the geographic and climatic 

range of our sites. Within each of these eight fires, we surveyed at least two stands (27 stands 

total) and 4-6 trees/stand (n = 154 total trees) for seed cone production. Most stands were located 

in close proximity (< 1 km) to post-fire regeneration plots (i.e., Regeneration Surveys), either in 
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unburned areas or fire refugia within burn perimeters. At the tree level, seed cone years were 

defined as years in which at least 25 cones were produced. At the fire level, years of widespread 

seed cone production were defined as years in which at least 50% of trees produced more than 25 

cones. To better understand synchrony in cone production, we also calculated pairwise Spearman 

rank correlation coefficients (of seed cone counts across years) between all trees surveyed for 

seed cone production (following Mooney et al. 2011). We then calculated the mean pairwise 

correlations of seed cone production for all trees (regional level), for trees within each fire (fire 

level), and trees within each stand (stand level) to better understand spatial scales of synchrony.  

To describe temporal variability in conifer establishment and angiosperm resprouting 

following each fire, we collected up to two destructive samples of post-fire stems in each field 

plot (total n = 695 successfully dated; field plot site selection and layout described in 

Regeneration Surveys). If present, Douglas-fir, ponderosa pine, or lodgepole pine seedlings were 

excavated below soil level. If fewer than two post-fire individuals of these species were present 

on a plot, we then harvested angiosperm (i.e., aspen, Gambel oak) stems below the soil level. 

Lab methods used to identify the establishment year of conifer samples follow the protocols of 

Telewski (1993) and Rother and Veblen (2017). For angiosperm stems, we determined the year 

of stem initiation from a single cross section near ground level. This likely approximates annual 

resolution given the rapid growth of these stems in the first few years following stem initiation. 

Following sample processing, we identified significant pulses of establishment for ponderosa 

pine and Douglas-fir with CharAnalysis (Higuera et al. 2010, Tepley and Veblen 2015), using a 

five-year window width and a 90th percentile probability threshold. We then qualitatively 

compared pulses of establishment with interannual climate variables believed to influence tree 

establishment. Because moisture during the growing season may benefit conifer seedling 
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establishment (Rother and Veblen 2017), we calculated values of climatic water deficit (CWD; 

Appendix B) at a 30 m resolution across all fires for April-September of each year (1981-2015). 

We then calculated the area-weighted mean CWD (across all sites combined) for each year and 

scaled annual values through time using z-score transformation. Similarly, El Niño events (i.e., 

the warm phase of the El Niño Southern Oscillation) have been associated with episodic conifer 

establishment in the Southern Rocky Mountains (League and Veblen 2006), perhaps because of 

increases in winter precipitation during these years (Kurtzman and Scanlon 2007). Therefore, we 

also obtained a Multivariate ENSO Index (MEI; Wolter and Timlin 2011) for the two month 

period of January-February (following League and Veblen 2006). 

3.2.3 Regeneration Surveys – Field Methods 

 Within each fire, we established 8-12 transects for surveys of post-fire seedling 

abundance, densities of resprouting angiosperms, and potential biophysical factors influencing 

post-fire recovery. Seedlings were defined as all conifers establishing following fire, but we did 

not survey first-year germinants because of the high mortality rates for these individuals. We 

stratified transect selection by dNBR(differenced Normalized Burn Ratio)-derived fire severity 

class (Eidenshink et al. 2007) and excluded any areas with post-fire reforestation activities. On 

each transect, we then established 4 plots (but in 18% of cases as few as 2 or as many as 6) with 

a 60 m systematic spacing and random offsets (10 m at a random azimuth). At each plot center (n 

= 555), we recorded the Euclidean distance to the closest mature conifer using a laser 

rangefinder. If these distances exceeded 500 m (the distance limitation of the instrument) or if 

live seed trees were not visible from plot center, we measured the distance from plot center to the 

closest mature conifer using 2014 or 2015 aerial imagery (USFS 2015). Following Harvey et al. 

(2016), we used a variable-sized plot design to survey post-fire abundances of conifer seedlings 
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and resprouting angiosperms. Plot sizes were species-specific and based on initial surveys of 

abundance. For tree species with fewer than 25 post-fire stems within the full 15 m radius 

circular plot (707 m2), we surveyed all stems. If more than 25 stems of a species were present in 

the full plot, sampling areas were reduced to the following: 25-100 stems - 120 m2, 101-500 

stems - 30 m2, > 500 stems - 10 m2. In low- and moderate-severity areas, we used bud scar 

counts (sensu Urza and Sibold 2013) or ring counts from increment cores to exclude seedlings 

and saplings that may have originated prior to the fire. To develop field-derived estimates of fire 

severity and to quantify pre- and post-fire forest structure, we also surveyed live and dead 

overstory trees (> 10 cm for conifers and > 5 cm for angiosperms) that likely pre-dated each fire 

(Table 3.2). Lastly, we quantified ground cover on each plot using four 1 m2 quadrats and noted 

any evidence of grazing or browse damage by cattle or other ungulates (Table 3.2). 

Table 3.2. Descriptions of predictor variables included in statistical models of post-fire seedling 
abundance for ponderosa pine and Douglas-fir across 15 fires in southern Colorado and northern 
New Mexico. Expected relationships of each variable with ponderosa pine (PIPO) and Douglas-
fir (PSME) abundances are shown with +/- signs, and variables that could be included in 
landscape models (used to spatially model seedling abundance) are denoted with (x). 

Category Variable Name Description PIPO  PSME  Landscape 
Model? 

Average  
Climate 

30-Year Average 
AET (Actual 

Evapotranspiration) 

Average AET 
(evaporative loss 
constrained by moisture 
availability) in the 
calendar year each 30 m 
cell based on downscaled 
monthly PRISM climate 
normals from 1981-2010 
(PRISM 2018) and a 
modified Thornthwaite 
water balance model. 
High AET is typical on 
warm sites with little 
moisture limitation. Low 
values are typical on dry 
sites or on cool sites with 
low evaporative demand. 

+ + or - 

x 

30-Year Average 
CWD (Climatic 

Water  
Deficit) 

Average CWD (the 
difference between 
potential and actual 
evapotranspiration) in 

- - 

x 
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the calendar year in each 
30 m area based on 
downscaled monthly 
PRISM normals from 
1981-2010 (PRISM 
2018) and a modified 
Thornthwaite water 
balance model. Higher 
values are common on 
sites experiencing strong 
moisture limitation 
(warm and dry). Low 
values are common on 
sites with little moisture 
limitation (i.e., cool/wet 
sites, or warmer sites 
with high available 
moisture). 

Post-Fire 
Climate 

Three-Year Post-
Fire AET 

Estimated AET in each 
30m cell (in mm) based 
on downscaled monthly 
PRISM data in the three 
years after each fire 
(PRISM 2018) and a 
modified Thornthwaite 
water balance model. 

+ + or - 

x 

Three-Year Post-
Fire CWD 

Estimated CWD in each 
30m cell (in mm) based 
on downscaled monthly 
PRISM data in the three 
years after each fire 
(PRISM 2018) and a 
modified Thornthwaite 
water balance model. 

- - 

x 

Post-Fire AET 
Deviation 

The percent deviation 
between three-year post-
fire AET and 30-year 
average AET. An index 
of relative post-fire AET 
specific to each 30 m 
cell. 

+ + or - 

x 

Post-Fire CWD 
Deviation 

The percent deviation 
between three-year post-
fire CWD and 30-year 
average CWD. An index 
of relative post-fire 
CWD specific to each 30 
m cell. 

- - 

x 

Tree Canopy Canopy Cover 

The percent of total area 
radii of varying distances 
(30-600 m in 30m 
increments) from plot 
center classified as 
mature conifer cover. 

+ or - + 

x 
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Distance to Seed 
Tree 

Euclidean distance (m) 
from plot-center to 
nearest surviving conifer. 

- - 
 

Topography/ 
Terrain 

Topographic 
Position  
Index 

Index describing relative 
topographic position of 
each site. High values for 
ridgetops and low values 
for valley bottoms. 

+ or - - 

x 

Landform 
Classification 

Categorical variable 
combining topographic 
position, aspect, and 
soils at 30 m resolution. 
From Theobald et al. 
(2015) 

+ on  
intermediate 

slopes 

+ on  
cool/wet 
slopes 

x 

Biotic Interactions 

Grazing/Browsing 

Binary variable 
(presence/absence) of 
cattle grazing or ungulate 
browse damage on each 
plot 

- - 

 

Douglas-Fir  
Seedling Density – 

Post-Fire 

Density (seedlings/ha) of 
post-fire Douglas-fir 
establishment. Used only 
as predictor of ponderosa 
pine abundance. 

+ N/A 

 

Gambel Oak  
Sprout Density – 

Post-Fire 

Density (stems/ha) of 
post-fire Gambel oak 
resprouting. 

+ or - + 
 

Other Conifer  
Seedling Density – 

Post-Fire 

Density (stems/ha) of 
post-fire conifers of 
other species, 
specifically  fir, spruce, 
lodgepole pine, pinyon 
pine, and juniper. 

- - 

 

Fire Severity 

Percent BA 
Mortality 

Field-derived percent of 
pre-fire basal area killed 
during event. 100% 
indicates high-severity 
(canopy replacing) 
disturbance. 

+ or - - 

 

RdNBR 

Landsat-derived fire 
severity index using 
imagery pre- and post-
fire. Higher values 
indicate higher 
vegetation mortality in a 
30 m cell. From MTBS 
(Eidenshink et al. 2007) 
or calculated following 
standard protocol when 
striping present in 
original file. 

+ or - - 

x 

Pre-Fire  
Forest Structure Pre-Fire BA 

Combined basal area of 
live and dead overstory 
trees of all species in a 
given plot. Higher values 

+ + 
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are indicative of higher 
site productivity and 
greater stand age. 

Groundcover/Seedbed 

Bare Ground Percent cover of bare 
ground in 1 m2 quadrats. + -  

Percent Coarse 
Wood 

Percent cover of coarse 
wood in 1 m2 quadrats. + +  

Percent Forb Cover Percent cover of forbs in 
1 m2 quadrats. + +  

Percent Grass 
Cover 

Percent cover of 
graminoids in 1 m2 
quadrats. 

- + or - 
 

Percent Litter 
Cover 

Percent cover of litter in 
1 m2 quadrats. - +  

Percent Rock 
Cover 

Percent cover of rock in 
1 m2 quadrats. - -  

Percent Shrub 
Cover 

Percent cover of low (< 
1.4 m in height) shrubs 
in 1 m2 quadrats 

+ or - + 
 

 

3.2.4 Analytical Methods—Statistical Models of Post-fire Seedling Abundance 

To develop statistical models of post-fire seedling abundances for ponderosa pine and 

Douglas-fir, we used generalized linear mixed models (GLMMs; sensu Bolker et al. 2009) in the 

“glmmTMB” package (Brooks et al. 2017) in R (R Core Team 2018). These statistical models 

included data from the 555 regeneration plots across the 15 surveyed fires. Because of the 

hierarchical structure of data collection, we used nested random intercepts (transect within fire) 

to account for spatial dependence of plot data within each transect and across each fire. 

Semivariogram analysis showed very little spatial dependence of model residuals with this 

random effect structure (nugget:sill ratio near 1; Bivand et al. 2013). To account for differences 

in sampling area across plots (due to the variable-sized subplots used in this study), we also 

included an offset term of “log(subplot area)” for each species on each plot (Zuur et al. 2009). 

Following the development of initial zero-inflated GLMMs with a Poisson error structure, we 

used simulation-based tests of model residuals in the “DHARMa” package (Hartig 2018) in R to 
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examine issues of dispersion. Our initial models were underdispersed and we therefore used a 

generalized Poisson error structure - a preferred distribution in these cases (Hilbe 2014).  

Potential predictors in each GLMM included factors related to 30-year average climate, 

3-year post-fire climate, seed tree distance and percent cover, topography, biotic interactions, fire 

severity, pre-fire forest structure, and post-fire groundcover (Table 3.2). All spatially explicit 

predictors were obtained or created at a 30 m resolution. To quantify 30-year average and 3-year 

post-fire climate, we first performed a statistical downscaling (following Nalder and Wein 1998) 

of gridded climate data from PRISM (PRISM 2018), and next modeled potential 

evapotranspiration (PET), actual evapotranspiration (AET), and climatic water deficit (CWD) 

using monthly water balance models (Appendix B; Lutz et al. 2010). We quantified post-fire 

canopy cover using image processing (following Rodman et al. 2019) and classification of 1 m 

2014 and 2015 aerial photography from the National Agriculture Imagery Progam (USFS 2015; 

Appendix B). Overall accuracy for this classification was 90.2% at the level of a 1 m pixel 

(Table B1). We then aggregated the 1 m thematic maps to a 30 m resolution by extracting the 

percent cover of mature conifers in different neighborhood sizes (30-600 m radii in 30 m 

increments) surrounding the center of each field plot. We scaled and centered (z-score 

transformed) all continuous predictors prior to model fitting to facilitate direct comparison of 

standardized model coefficients and to improve model stability.  

We performed variable selection for our GLMMs of post-fire seedling abundance using 

an information-theoretic approach (Burnham and Anderson 2002). First, we fit initial models by 

developing GLMMs that included all potential predictors (Table 3.2) with the exception of those 

in highly correlated groups (e.g., groundcover, canopy cover in different radii). We then 

independently added predictors from each correlated group and used AIC (Akaike Information 



 64 

Criterion) to identify specific predictors in each group with the greatest explanatory power. After 

including these predictors, we then performed variable selection for final GLMMs by 

minimizing AIC while also balancing parsimony - in the case of two models with relatively 

similar AIC (i.e., DAIC < 2), we selected the simpler model. To assess final model fit, we used a 

k-fold cross-validation procedure in which each GLMM was iteratively fit with the majority of 

the data, while plots from a single transect were withheld as the test set. We repeated this process 

with each transect (143 folds). We were interested in the ability of models to correctly predict 

abundances that exceeded different density thresholds (see Analytical Methods – Spatial 

Modeling) and therefore used balanced classification accuracy to assess model fit in cross-

validation. For this, correct classification on a given plot indicates that model predictions were in 

agreement with observed seedling densities – where both exceeded or were below a given 

threshold. 

3.2.5 Analytical Methods—Spatial Modeling 

We developed an additional set of GLMMs to make spatially-explicit predictions of 

ponderosa pine and Douglas-fir seedling abundance at a 30 m resolution (hereafter “grid cells”) 

throughout each surveyed fire. This was done by conducting GLMM analyses similar to above 

that used only predictors that were characterized at a 30 m resolution over the entire area of each 

fire (hereafter “landscape models”), and thus excluded groundcover, pre-fire forest structure, 

local vegetation characteristics, and field-derived distances to seed trees (Table 3.2). These 

landscape models were then used with spatially continuous datasets (Table 3.2) to predict post-

fire seedling abundances in each grid cell throughout each fire (hereafter “spatial models”). 

Because Douglas-fir was only a minor component (< 10% basal area) of pre-fire basal area in 

five fires (Table 3.1), we excluded these fires from spatial modeling for this species. We present 
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spatial model results for each fire, the total fire area (summed across all fires), and the total high-

severity area (38.7% of total fire area). To identify these high-severity areas (i.e., grid cells with 

total canopy mortality), we used field-derived fire severity (percent basal area mortality) and 

Landsat-derived RdNBR (relative differenced normalized burn ratio; Miller et al. 2009) to 

develop GLMMs (binomial family with logit-link) of the probability of total canopy mortality in 

each grid cell within each fire. We classified high-severity areas as grid cells exceeding a 

predicted probability of 0.628 (the threshold that maximized Youden’s J statistic). Balanced 

classification accuracy of field plots with total canopy mortality was 84.4%. 

Following spatial model development, we quantified the percentage of each fire, of total 

fire area, and of total high-severity area that exceeded density thresholds of 25 ponderosa pine 

seedlings ha-1 and 10 Douglas-fir seedlings ha-1. These values correspond to some of the lowest 

reported stand densities in historical reconstructions of ponderosa pine and dry mixed-conifer 

forests throughout southern Colorado and the Southwest (Reynolds et al. 2013, Rodman et al. 

2017). Because historical reconstructions in dry forests of the Southwest generally predict lower 

forest densities than those of contemporary forests, these thresholds indicate whether initial post-

fire recovery in a grid cell reaches the lowest extent of what would be considered a ponderosa 

pine or dry mixed-conifer forest in this region. We also tested the sensitivity of model results and 

classification accuracies to different tree density thresholds; the 25 and10 seedlings ha-1 

thresholds, for ponderosa pine and Douglas-fir, respectively, yielded the highest balanced 

accuracies of those tested (Table B2, Table B3). Therefore, we primarily discuss results from 

these 25 and 10 density thresholds as an indicator of landscape variation in post-fire recovery. In 

spatial models, grid cells with predicted seedling densities below these thresholds were classified 

as “low regeneration”. To describe potential drivers of fire-level variability in these models, we 
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also calculated Spearman rank correlation coefficients between the percentage of each fire 

exceeding density thresholds and fire-level variables of: 1) percentage of each fire with total 

canopy mortality, 2) percentage of pre-fire basal area belonging to ponderosa pine or Douglas-

fir, and 3) mean 30-year CWD throughout the fire.  

Finally, to identify areas in which post-fire seedling abundances of Douglas-fir and 

ponderosa pine were limited by a lack of overstory trees following fire, we spatially modeled 

seedling abundances throughout each fire while assuming abundant canopy cover and holding all 

other predictor variables constant. Grid cells were then defined as “canopy limited” if they were 

predicted to have low regeneration in initial spatial models (with observed canopy cover), but 

exceeded density thresholds given modeled abundant canopy cover. Grid cells with low 

regeneration in both sets of spatial models were then interpreted to be limited by the other 

predictors (e.g., AET, CWD) in the landscape models and/or fire-level random effects. 

3.3 Results 

3.3.1 How Do Seed Cone Production, Conifer Seedling Establishment, and Angiosperm 

Resprouting Vary Following Each Fire? 

While the frequency and abundance of ponderosa pine cone production varied by fire, we 

estimate that ponderosa pine seed was widely available in most areas with surviving mature trees 

(Fig. 3.2). From 2003-2017 (the range of years that could be adequately assessed), 74% of all 

surveyed trees had at least two seed cone years and 40% had at least five seed cone years (Fig. 

3.2a). Each fire surveyed using the cone abscission scar method (n = 8) had multiple years of 

widespread seed cone availability following fire occurrence (Fig. 3.2b). These events occurred, 

on average, every 2-8 years at the fire-level. Seed cone production was asynchronous across fires 

(mean pairwise Spearman correlation; r = 0.09), though regionally important years occurred in 
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2006, 2009, 2012, 2015, and 2017 (Fig. 3.2c). Seed cone production was relatively synchronous 

within fires (mean r = 0.25, range = 0.08-0.40) and most synchronous within individual stands 

(mean r = 0.38, range = 0.02-0.64). Because of this widespread and relatively frequent seed cone 

production at the tree- and fire-level, we used spatial variability in canopy cover as a proxy for 

post-fire seed availability. 

 Lodgepole pine (which often have fire-adapted canopy seedbanks), as well as Gambel 

oak and aspen (which can re-sprout from established root systems following wildfire), showed 

abundant establishment immediately following individual fire events (Fig. 3.3). Specifically, 

96% of lodgepole pine samples and 54% of oak and aspen stems were dated within three years of 

fire occurrence. Still, stems of resprouting angiosperms continued to initiate for many years after 

some fires (Fig. 3.3). Only 23% of ponderosa pine and Douglas-fir establishment occurred within 

three years of fire occurrence. CharAnalysis of seedling establishment dates aggregated across 

the 15 fires identified significant regional pulses of ponderosa pine and Douglas-fir seedling 

establishment in 1995, 1998, 2007, 2010, and 2014 (Fig. 3.4a). Three of the five pulses (1995, 

1998, and 2007) occurred during years with below-average CWD during the growing season 

(Fig. 3.4b), and four of the five pulses (1995, 1998, 2007, and 2010) were associated with El 

Niño events (i.e., a positive MEI in January and February; Fig. 3.4c). No strong temporal 

associations were evident between ponderosa pine seed cone production and seedling 

establishment at broad scales (Fig. 3.4d). 
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Fig. 3.2. A summary of (a) tree- and (b, c) fire-level ponderosa pine seed cone production across 
8 of the 15 surveyed fires in southern Colorado and northern New Mexico (sites for which cone 
production data were collected using the cone abscission scar method). Tree-level cone 
production gives (a) the percentage of trees (across all sites; n = 154) exceeding different 
numbers of individual seed years (2003-2017), where seed years were defined as individual years 
with at least 25 cones produced by a given tree. Fire-level cone production gives (b) the 
proportion (bar heights) and number of post-fire years (numbers above each bar) with 
widespread cone production (> 25 cones produced on at least 50% of surveyed trees within a fire 
in a given year), as well as (c) the annual average cone production within each fire. Bar colors 
and fire names in (b) match lines in (c). Cone production prior to 2003 could not be reliably 
quantified using the cone abscission scar method. 
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Fig. 3.3. Annual patterns of conifer seedling establishment (for Douglas-fir, ponderosa pine, and 
lodgepole pine) and timing of resprouting (for aspen and Gambel oak) across each of the 15 
surveyed fires in southern Colorado and northern New Mexico. Counts are derived from 
destructive samples collected throughout each fire. Years of fire occurrence are shown with a 
and dashed line. The total number of seedlings and stems aged in each fire is given by n. 
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Fig. 3.4. A summary of conifer establishment, angiosperm resprouting, interannual climate 
variability (1988-2015), and ponderosa pine seed cone production across surveyed fires in 
southern Colorado and northern New Mexico. Destructively sampled seedlings (conifers) and 
stems (angiosperms) were collected throughout each fire and (a) dated with annual resolution. 
Bar colors correspond to each of the five sampled species, and bar heights correspond to the 
number of samples dated to each year. Triangles and vertical dashed lines show significant 
pulses of ponderosa pine and Douglas-fir establishment (1995, 1998, 2007, 2010, and 2014) 
based on CharAnalysis. Interannual climate variability was characterized with (b) CWD 
(climatic water deficit) during the growing season (April-September) and (c) the multivariate 
ENSO (El Niño Southern Oscillation) index (MEI). Lastly, (d) ponderosa pine establishment 
across all sites (green bars) is overlaid with mean seed cone production (from 27 stands 
throughout the region) in the year prior to seedling establishment (hollow circles). 
 
 
3.3.2 Which Factors Best Predict Plot-Level and Landscape-Level Variability in Conifer 

Seedling Abundance Following Wildfire? 

 In the full ponderosa pine model (with both field-derived and landscape variables 

included), 30-year average AET, 30-year average CWD, distance to seed source, percent basal 
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area mortality, post-fire vegetation, and pre-fire basal area were all included in the final models 

of post-fire seedling abundance (Fig. 3.5a). Abundance was highest in sites with low 30-year 

average CWD and high 30-year average AET, together indicative of productive areas with 

abundant moisture (Fig. 3.5a). Interestingly, 30-year averages of CWD and AET were better 

predictors of seedling abundance than were 3-year post-fire AET and CWD. Including these 

post-fire climate variables did not improve predictive accuracy. Plots that were adjacent to seed 

trees but also burned at higher severity (i.e., greater percent basal area mortality) had higher 

abundances of ponderosa pine (Fig. 3.5a). Grass cover and Gambel oak sprouting density were 

negatively related to ponderosa pine abundance, while pre-fire basal area and post-fire Douglas-

fir seedling density were positively related to ponderosa pine abundance (Fig. 3.5a). The full 

Douglas-fir model did not improve upon the landscape model (in terms of AIC), thus we only 

present the landscape model for Douglas-fir.  

 
Fig. 3.5. Standardized coefficients and significance levels for each of the predictors included in 
final generalized linear mixed models for predicting postfire conifer abundance. Error bars are ± 
one standard error of the coefficient estimate. Models were developed for ponderosa pine 
seedling abundance from (a) all potential predictors (both field-derived and the landscape 
variables), (b) ponderosa pine seedling abundance from landscape-level predictors only (for later 
use in spatial modeling) and (c) Douglas-fir seedling abundance from landscape-level predictors. 
We did not develop a model for Douglas-fir seedling abundance from field-based predictors 
because the landscape-level model outperformed all other competing models. Coefficients given 
are for the conditional models only and do not include zero-inflation terms or intercept 
coefficients. Orthogonal polynomial terms (non-linear predictors) are given with the variable 
name preceded by “poly” and variable interactions are given by linking two variable names with 
“x”. 
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Landscape models including only variables that were characterized at a 30 m resolution 

across each fire were relatively similar for each species, but also had some important differences 

(Fig. 3.5b, 3.5c; Fig. 3.6). The ponderosa pine landscape model included 30-year average CWD, 

30-year average AET, and canopy cover within 240 m, with average CWD being the most 

important predictor. Low 30-year average CWD and high 30-year average AET were again 

associated with higher ponderosa pine abundance (Fig. 3.5b, Fig. 3.6b, Fig. 3.6c). The Douglas-

fir landscape model was relatively simple and included only 30-year average CWD and canopy 

cover within a 60m radius. Canopy cover was more important than was 30-year average CWD 

for Douglas-fir (Fig. 3.5c). Similar to ponderosa pine, low 30-year average CWD was associated 

with high Douglas-fir abundance (Fig. 3.6e). The most notable difference between the two 

species was the relationship with canopy cover. Ponderosa pine abundance was highest in areas 

with intermediate (46%) canopy cover and the most influential neighborhood size was relatively 

broad - 240 m (Fig. 3.5b, Fig. 3.6a). A non-linear term for canopy cover led to a slightly 

improved model fit (DAIC = 1.8) and a more ecologically realistic response given the shade-

intolerant nature of ponderosa pine. In contrast, Douglas-fir abundance was highest in dense 

stands (100% cover) and a 60 m neighborhood size was most influential (Fig. 3.5c, Fig. 3.6d), 

consistent with overstory microclimatic buffering and the higher shade tolerance of this species. 

While the full model (i.e. field-derived and landscape variables) of ponderosa pine 

abundance had an improved fit when compared to the landscape model (DAIC = 11.8), the 

differences in classification accuracy from cross-validation were relatively minor (71.8% 

balanced accuracy for the full model vs. 70.6% for the landscape model; Table B1). In addition, 

30-year average AET, 30-year average CWD, and distance to seed tree were the three best 

predictors in the full ponderosa pine model (highest absolute values of standardized coefficients; 
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Fig. 3.5a), and field derived distance to seed tree was strongly related to canopy cover in a 240 m 

radius (r = -0.68). For Douglas-fir, the landscape model outperformed any full models and had a 

balanced classification accuracy of 77.3% (Table B2). Therefore, landscape models for 

ponderosa pine and Douglas-fir are useful to broadly generalize and predict post-fire seedling 

abundances throughout each fire. 

 
Fig. 3.6. Results of generalized linear mixed models that were used to predict post-fire seedling 
abundance of ponderosa pine and Douglas-fir across each of the surveyed fires in southern 
Colorado and northern New Mexico, USA. Predicted values (solid lines) represent the marginal 
effects of each predictor when assuming optimal values for the other predictors and mean values 
of random effects. Dotted lines are ± one standard error of prediction. Variables include (a, d) 
canopy cover - the percent surface area of mature conifers within a given radius, (b, e) 30-year 
average CWD (climatic water deficit) and (c) 30-year average AET (actual evapotranspiration) – 
measures of unmet evaporative demand and evaporation constrained by moisture availability, 
respectively. Variation among fires is shown with (f) random intercept coefficients for each 
species, where colors indicate positive (blue) or negative (red) deviations from the mean value 
across all sites. 
 
3.3.3 What Percentage of Each Fire and of Total Burned Area Has Recovered to Meet Tree 

Density Thresholds Consistent With Historical Ranges for Ponderosa Pine and Douglas-

Fir? 
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 Spatial models of post-fire seedling abundance for each species (developed from 

predictions using landscape models described above; Fig. 3.7, Fig. 3.8) indicated that a 

substantial percentage of the total burned area was unlikely to exceed density thresholds of 25 

ponderosa pine or 10 Douglas-fir seedlings ha-1. Across the fires studied, 41.8% and 68.5% of 

total fire area had ponderosa pine regeneration and Douglas-regeneration below the 25 and 10 

thresholds, respectively. In the portions of these fires with total canopy mortality (i.e., high-

severity), abundances were lower. We predicted that 57.3% and 79.4% of the total high-severity 

area did not exceed the 25 and 10 tree density thresholds for ponderosa pine and Douglas-fir, 

respectively (Table B1, Table B2).  

Recovery also varied substantially among fires. For example, the Montoya Fire had 0% 

of total fire area exceeding density thresholds for each species, while the Saw Fire had 100% 

(ponderosa pine) and 97.6% (Douglas-fir) of fire area exceeding density thresholds (Fig. 3.7, Fig. 

3.8; ponderosa pine median = 70.7%, Douglas-fir median = 27.2%). The differences among fires 

could be partially explained by pre-fire species dominance and other fire-level effects. For 

example, the percentage of fire area exceeding density thresholds was positively correlated with 

pre-fire basal area for each species at the fire-level (r = 0.55 for ponderosa pine, r = 0.38 for 

Douglas-fir) and negatively correlated with percentage of fire area with total canopy mortality (r 

= -0.50 for ponderosa pine, r = -0.52 for Douglas-fir). There were weaker relationships with 30-

year average CWD at the fire level (r = -0.15 for ponderosa pine, r = -0.25 for Douglas-fir), 

likely because CWD varies substantially throughout each burned landscape.  
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Fig. 3.7. Predicted ponderosa pine seedling abundances throughout each surveyed fire in 
southern Colorado and northern New Mexico based on the landscape GLMMs. The percentage 
values in each panel give the percentage of fire area exceeding a density threshold of 25 
seedlings ha-1, which corresponds to some of the lowest historically reported densities for this 
species in ponderosa-pine dominated forests of the Southern Rocky Mountains and Southwest 
(Rodman et al. 2017). Blue areas in each map exceed this threshold while red areas are below 
this threshold. 
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Fig. 3.8. Predicted Douglas-fir seedling abundances throughout each surveyed fire in southern 
Colorado and northern New Mexico based on the landscape GLMMs. The percentage values in 
each panel give the percentage of fire area exceeding a density threshold of 10 seedlings ha-1, 
which corresponds to some of the lowest historically reported densities for this species in dry 
mixed-conifer forests of the Southern Rocky Mountains and Southwest (Rodman et al. 2017). 
Blue areas in each map exceed this threshold while red areas are below this threshold. Fire 
names followed by (*) are those in which Douglas-fir represented less than 10% of pre-fire basal 
area (i.e., a minor component of forests present prior to the fire) and were excluded from some 
analyses. 
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3.3.4 What Is the Proportion of Fire Area That Is Limited Primarily by Post-Fire Canopy 

Cover Rather Than by Site Suitability? 

 The drivers of limited conifer regeneration vary by species and throughout each site. 

While post-fire canopy cover is clearly an important predictor of ponderosa pine seedling 

abundance, not all areas were predicted to exceed conservative density thresholds even given 

optimal levels of canopy cover. When other variables were held constant, we found that 25.4% 

of total fire area (112,706 ha) was predicted to have low regeneration of ponderosa pine due 

primarily to seed source limitation (i.e., limited canopy cover; Table B1). An additional 16.4% of 

fire area had low ponderosa pine regeneration due to 30-year average AET, 30-year average 

CWD, and fire-level random effects (Table B1). In contrast, Douglas-fir may be more strongly 

influenced by canopy cover. For Douglas-fir, 67.6% of the total fire area (69,816 ha) was 

classified as canopy limited (Table B2). 

3.4 Discussion  

Limited recovery of seed-obligate conifers has been widely documented following recent 

wildfires throughout the western U.S. (e.g., Harvey et al. 2016, Rother and Veblen 2016, Shive 

et al. 2018, Stevens-Rumann et al. 2018, Davis et al. 2019, Kemp et al. 2019), yet the spatial and 

temporal variability in factors limiting forest resilience to wildfire are still poorly understood. 

Our surveys of seed cone production, seedling establishment, and post-fire conifer abundance 

show that variability in post-fire abundance relates to gradients in fire severity and in the 

physical environment. Douglas-fir and ponderosa pine post-fire seedling abundances are 

typically highest on more mesic sites and in close proximity to residual overstory trees. Seed 

cone production was not a major limitation to post-fire recovery of ponderosa pine. We also 

noted that at a regional scale the five peak years of seedling establishment coincided with above 



 78 

average moisture availability. Together, the initial filter of seed availability (a combination of 

seed production and canopy cover) and the secondary filter of the physical environment limited 

conifer forest recovery across recent wildfires in southern Colorado and northern New Mexico, 

USA. 

3.4.1 Spatial and Temporal Limitations to Seed Availability and Other Effects of Canopy Cover 

Our findings pertinent to Question 1 indicate that the limited establishment of ponderosa 

pine following wildfires was not due to a lack of years of abundant seed cone production (i.e. 

mast years). Previous studies of seed cone production in ponderosa pine indicate that mast years 

may occur every 2-6 years or more (Maguire 1956, Krannitz and Duralia 2004, Shepperd et al. 

2006, Mooney et al. 2011), similar to our estimates of 2-8 years at the fire-level. Seed cone 

production was also more frequent at the tree-level. These findings are important because they 

indicate two things. First, the time interval between the initial disturbance and the time of 

surveys was long enough to allow for at least one widespread ponderosa pine seed cone year in 

each fire. Second, given the relatively frequent cone production (at the tree- and fire-level) 

observed in this study, the patterns of surviving trees are a useful proxy for spatial variability in 

ponderosa pine seed availability throughout the landscape. Still, temporal variation in seed 

availability and alignment with climate conditions suitable for germination is a poorly 

understood component of post-fire recovery (Savage et al. 1996, 2013, Petrie et al. 2017) 

needing further research.  

Canopy cover was among the factors best predicting post-fire Douglas-fir and ponderosa 

pine abundance, likely reflecting a combination of mechanisms. Most importantly, canopy cover 

influences spatial patterns in seed-availability, which is a necessary prerequisite for seedling 

germination and establishment. The overstory canopy also modifies temperature (Davis et al. 
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2018a), relative humidity (Paritsis et al. 2015), and light availability in the understory (Battaglia 

et al. 2002), all important to seedling survival harsh post-fire environments. While canopy 

moderation may benefit both ponderosa pine and Douglas-fir, Douglas-fir is better adapted to 

benefit from microclimatic buffering (sensu Dobrowski et al. 2015) given its greater ability to 

tolerate the shaded understories of densely forested areas (Bigelow et al. 2011). Related to this, 

we found that areas with high fire severity (high percent basal area mortality), but in close-

proximity to seed trees had high post-fire ponderosa pine seedling abundances, likely due to fire-

induced modifications of the seedbed and increased light availability on these sites (thus 

benefitting shade-intolerant ponderosa pine). Localized patches of high-severity fire may lead to 

abundant, aggregated establishment of ponderosa pine due to an adjacent seed source, the 

presence of a bare mineral seed bed, available light, and increased growing space (Sánchez 

Meador et al. 2009, Larson and Churchill 2012). Canopy cover, influencing seed availability and 

the understory environment, is one of the most important factors influencing recovery of seed-

obligate conifers in post-fire environments. 

3.4.2 Climate and Site Suitability as Constraints on Post-Fire Regeneration 

Average climate (described by 30 year CWD and AET) was a strong predictor of post-

fire abundance for both ponderosa pine and Douglas-fir. Consistent with the findings of other 

studies (e.g., Dodson and Root 2013, Chambers et al. 2016, Rother and Veblen 2016), we found 

that moisture-limited sites at low elevations and on southerly aspects typically had low conifer 

seedling abundances, even in areas adjacent to a seed source. Many previous studies have 

utilized individual climate variables such as precipitation and temperature or terrain variables 

such as aspect and elevation to analyze trends in post-fire conifer abundance. CWD and AET 

provide a more useful alternative because they effectively combine the influence of climate, 
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topography, and soils, and are functionally tied to the environmental conditions experienced by 

plants (Stephenson 1998, Dilts et al. 2015). While CWD provides an estimate of the intensity of 

drought stress because it estimates unmet atmospheric moisture demand, AET is an indicator of 

site productivity because high values are indicative of sites with high availability of moisture and 

energy (Dobrowski et al. 2015). When calculated at fine spatial resolutions that mirror the 

operational scales of post-fire recovery processes (as done in this study), AET and CWD are 

useful and complementary predictors of post-fire recovery in semi-arid landscapes and are 

helpful indicators of susceptibility to fire-driven conversions in vegetation. 

Interestingly, three-year post-fire CWD and AET had little predictive power in our 

models of seedling abundance, yet post-fire climate has been noted as an influential driver of 

post-fire recovery in other studies (Harvey et al. 2016, Stevens-Rumann et al. 2018). During 

interdecadal periods of drought, such as the early 2000s in the western U.S., it is believed that 

post-fire climate may become a less important driver of recovery, because conditions become 

universally unfavorable for seedlings (Stevens-Rumann et al. 2018). Given that many of our fires 

occurred in the early-mid 2000s, this is one possible explanation for differences between our 

findings and those of previous studies in regards to average post-fire conditions. Another 

possible explanation for our results is the consideration of average conditions in the 3 years post-

fire rather than individual extreme years. At an annual resolution, extreme drought years 

influence longer-term forest trajectories, likely by increasing seedling mortality (Young et al. 

2019), while wetter years lead to increased conifer establishment (Rother and Veblen 2017, 

Davis et al. 2019). In our study, the 1995, 1998, 2007, 2010, and 2015 establishment pulses 

coincided with below-average drought stress during the growing season or with the positive 

phase of ENSO (which is associated with wet winters in the study area; Kurtzman and Scanlon 
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2007). Similar effects of interannual climatic variability are now well-documented in conifer 

forests throughout the Southern Rocky Mountains and Southwestern United States (Savage et al. 

1996, League and Veblen 2006, Rother and Veblen 2017, Andrus et al. 2018, Davis et al. 2019). 

We also noted that establishment for ponderosa pine and Douglas-fir continued to occur for 

many years after fire occurrence. Taken together, these findings demonstrate that demographic 

models that tie interannual climate variability to specific components of the conifer reproductive 

cycle (e.g., Feddema et al. 2013, Savage et al. 2013, Petrie et al. 2017) may be more informative 

than 3-5 year post-fire climatic averages. 

Additional factors that helped to predict post-fire seedling abundance included seedbed 

characteristics, biotic interactions, and pre-fire forest density. For example, our results indicated 

that grass cover and Gambel oak density both had negative relationships with ponderosa pine 

abundance at the plot-level. Bunch grasses (e.g., Festuca arizonica) may compete with 

ponderosa seedlings for soil moisture (Pearson 1942), potentially limiting seedling abundance 

(Flathers et al. 2016). In contrast to our findings, previous studies have noted that ponderosa pine 

may have weak (Owen et al. 2017) or even strong (Ziegler et al. 2017) positive spatial 

associations with resprouting angiosperm trees in post-fire environments. Gambel oak is believed 

to facilitate the establishment of another southwestern pine species (i.e., Pinus edulis; Floyd 

1982) through microclimatic buffering and perhaps by attracting avian dispersers (such as 

corvids). Therefore, our finding of a negative relationship between Gambel oak density and 

ponderosa pine abundance may reflect the occupancy of different site types rather than 

competitive or inhibitory interactions between these species. We also noted that high pre-fire 

basal area and Douglas-fir post-fire seedling abundance were positively related to ponderosa 

seedling abundance, perhaps indicative of wetter sites with better growing conditions. Post-fire 
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seedling abundance is locally variable, likely reflecting variability in the seedbed, local 

vegetation, and growing conditions. 

3.4.3 Landscape-Scale Variability in Resilience to Wildfire 

 Spatial variability in conifer abundance could be effectively predicted throughout each 

fire using statistical models developed from field data and broad-scale spatial datasets. Using 

these models, we determined that ponderosa pine and Douglas-fir regeneration was limited in 

large percentages (41.8% and 68.5%, respectively) of the total area burned throughout 15 recent 

wildfires in southern Colorado and northern New Mexico, USA. Importantly, there was also 

pronounced variability in post-fire recovery among fires, and individual fire events ranging 

widely in post-fire recovery (with both species ranging from 0-100% across fires), which makes 

broad generalizations about causal mechanisms difficult. Still, much of this limited regeneration 

could be attributed to post-fire canopy cover of mature conifers and variability in the physical 

environment (specifically 30-year average AET and CWD). Spatial models such as those 

developed in this study provide an effective means of scaling plot-level observations to spatially 

extensive post-fire landscapes (Tepley et al. 2017, Haffey et al. 2018, Shive et al. 2018), thus 

permitting broader inferences about susceptibility to post-fire vegetation type conversion. 

Projections of future shifts from forest to non-forest vegetation types are inherently 

uncertain due to unknown future climatic variability as well as uncertainties about rates and 

specific drivers of vegetation change. Because our surveys were performed in relatively recent 

burn areas (1988-2010), it may be too early to suggest that transitions to non-forest vegetation 

types are permanent (Baker 2018). Still, the spatial variability in predicted abundances across our 

study area indicates that some site types (e.g., xeric sites and those in the interior of high-severity 

patches) are more vulnerable to vegetation type conversions than others. Forest response to 
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wildfire is often presented as a simplistic binary outcome of resilient versus non-resilient based 

on observations over periods of one to a few decades, yet a more nuanced approach to forest 

resilience considers rates of recovery, which can then create spatial gradients of “relative 

resilience” across the landscape (Tepley et al. 2017, 2018, Shive et al. 2018). Given the 

importance of canopy cover and 30-year average CWD in predicting abundances of both 

ponderosa pine and Douglas-fir, results from the current study imply that under continued 

warming and altered fire activity, some forested areas in the southwestern United States are 

likely to undergo fire-driven conversions to non-forested vegetation. 

3.5 Adaptation and Management Implications 

Continued climate warming will increase the vulnerability of many low-elevation forests 

to conversion to non-forest vegetation types (Parks et al. 2019), and this presents complex 

challenges to land managers. Adequately addressing these challenges requires consideration of 

societal values and forest ecosystem services, as well as the best possible technical understanding 

of the potential for success of a variety of possible management interventions. Potential 

management options include actions that attempt to forestall change through enhanced 

ecosystem resistance to fire effects, interventions aimed at improving post-fire resilience, and 

actions such as assisted migration aimed at facilitating transitions to ecosystems that are more 

compatible with a changing climate (Millar et al. 2007, Halofsky et al. 2014). All management 

interventions have considerable risk due to the uncertainties in predicting the rate and pattern of 

future climate change and the complexity of climate impacts on ecosystem dynamics. Therefore, 

a diverse range of approaches to adaptation and management should be considered (Millar et al. 

2007, Baker 2018). Currently, reforestation is one of the most common management responses to 

large severe fires in the western United States (North et al. 2019), and the effectiveness of post-
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fire planting can vary widely (e.g., 0-70% survival in fires throughout the Southwest; Ouzts et al. 

2015); seedling survival may be particularly sensitive to moisture availability and hydraulic 

stress (Rother et al. 2015, Simeone et al. 2019). The potential for successful reforestation can 

benefit from the type of site-specific research on regeneration processes presented in the current 

study. If reforestation of recently-burned areas remains an important goal, planting should be 

prioritized for sites where available seed sources are too distant to be sufficient and seedling 

survival is likely to be highest, now and into the future (i.e., relatively cool/wet sites). Our results 

are also important in informing discussions among stakeholders of the likelihood of future 

changes in the extent of forest cover, the probable changes in forest ecosystem services, and the 

costs and benefits of a range of adaptation strategies. 

3.6 Conclusion 

The factors limiting forest recovery to wildfire vary by species and across gradients in 

fire severity and the physical environment. Because seed cone production was relatively 

widespread and frequent across our sites, the canopy cover of surviving mature conifers is a 

reliable proxy for seed availability and may be one of the most important factors driving post-fire 

recovery. Thirty-year averages of actual evapotranspiration and climatic water deficit were also 

strong predictors of post-fire conifer abundance in our study area. Statistical models using 

surviving canopy cover and water balance metrics indicated that the factors that most strongly 

predicted post-fire seedling abundance differed by species, but that in general abundances were 

highest on wetter sites and near surviving trees. Anthropogenic climate change has led to 

increases in wildfire area burned throughout much of the western U.S. (Abatzoglou and Williams 

2016) and these trends are likely to continue (Liu et al. 2013, Kitzberger et al. 2017), 

highlighting the importance of understanding the patterns of ecosystem recovery following these 
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events. Post-fire recovery in dry forests should be considered holistically, through an improved 

understanding of the factors defining a species’ regeneration niche and driving conifer seedling 

regeneration: seed cone production, seedling establishment, biotic interactions, spatial patterns of 

overstory trees, and spatial and temporal variation in moisture availability.   
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CHAPTER 4 
 
 

A CHANGING CLIMATE IS SNUFFING OUT POST-FIRE FOREST RECOVERY IN THE 
SOUTHERN ROCKY MOUNTAINS 

 
4.1 Introduction 

 The impacts of climate change on plants are pervasive and widespread. Climate warming 

is driving changes in species phenologies (Cleland et al. 2007), increases in mortality rates (van 

Mantgem et al. 2009), altered interspecific interactions (Tylianakis et al. 2008), and shifts in 

species distributions (Parmesan and Yohe 2003, Chen et al. 2011). Given the tremendous 

importance of plant life to Earth’s ecosystems and to humans, a better understanding of these 

effects is needed to facilitate adaptation and mitigation planning. Species distribution models 

(SDMs) and demographic models are two commonly-used approaches that aid in understanding 

and projecting the influence of climate on plant species ranges. SDMs relate georeferenced 

observations of the presence or abundance of a species with potential biophysical predictors 

using a range of statistical learning methods (Guisan and Zimmermann 2000, Franklin 2010). 

Demographic models (e.g., Enright et al. 2015, Conlisk et al. 2017, Petrie et al. 2017) take an 

alternative approach, focusing instead on processes or life stages that may be differentially 

constrained by climate. Key limitations of the SDM approach include the poor incorporation of 

species dispersal in limiting future projections, the lack of direct ties to species physiology, and 

potential disequilibrium between existing species distributions and climate (Pearson and Dawson 

2003). In contrast, demographic models can target important bottlenecks to population 
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persistence that are directly tied to physiological and reproductive processes, but they may be 

poorly parameterized during the modeling process due to a lack of available data. While SDMs 

and demographic models offer obvious benefits and drawbacks, both can be improved by 

targeting the most climatically-sensitive life stages and situations in which a species is most 

prone to local extinction. 

Wildfire is the dominant terrestrial disturbance (Bowman et al. 2009) and represents a 

crucial indirect pathway by which climate can affect plant communities. Wildfire activity has 

increased throughout the western United States since the 1980s, and a large percentage of these 

increases has been attributed to the influence of anthropogenic climate change (Abatzoglou and 

Williams 2016). A warming climate also hinders post-fire forest recovery, and high-severity fires 

that are followed by warm, dry periods are less likely to recover to a pre-fire forested state 

(Harvey et al. 2016, Stevens-Rumann et al. 2018). In the absence of disturbance, many forested 

ecosystems have the potential for resilience to climate warming (sensu Holling 1973) through 

system inertia. Tree species are sensitive to the environmental conditions present during early 

stages of their life cycle (Grubb 1977), yet they are capable of tolerating a relatively wide range 

of conditions in mature life stages (Dobrowski et al. 2015), well-outside of their climatic 

optimum. Microclimatic buffering (Davis et al. 2018a) and localized species dominance (i.e., 

legacy effects) are two potential mechanisms by which species could persist in their current 

range and continue to establish under a warming climate. High-severity wildfire, in combination 

with a changing climate, “breaks the legacy lock” (sensu Johnstone et al. 2010) of the prior 

system state and can drive rapid shifts in local vegetation. The integration of fire activity and 

post-fire recovery into projections of future vegetation dynamics is therefore crucial to 

effectively predict changes in forested ecosystems throughout the western United States. 
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In this study, we identified species-specific responses to wildfire and climate variability 

in the climatically-sensitive seedling stage for two widely distributed conifers (Douglas-fir – 

Pseudotsuga menziesii var. glauca, and ponderosa pine – Pinus ponderosa var. scopulorum), and 

modeled spatiotemporal trends in post-fire establishment and abundance. We did this using two 

complementary and spatially-extensive datasets that span the Southern Rocky Mountains, USA. 

Specifically, we asked the following questions: 1) How do annual patterns of post-fire tree 

seedling establishment relate to interannual climate variability, and what biophysical factors are 

most strongly associated with post-fire seedling abundance in recent fires? 2) What proportion 

of the Southern Rocky Mountains Ecoregion has exceeded estimated climatic thresholds for 

seedling establishment in the recent (1981-2015) period and how might this change under a 

range of climate projections and emission scenarios? 3) What sites in the Southern Rocky 

Mountains are most susceptible to regeneration failure in the 21st century due to increases in 

drought stress? 

4.2 Methods 

4.2.1 Study Area 

 This study focuses on the montane zone of the Southern Rocky Mountains Ecoregion 

(SRME; EPA Level III Ecoregion 21; Omernik and Griffith 2014). The SRME spans 144,462 

km² of topographically-complex terrain in southern Wyoming, Colorado, and northern New 

Mexico, USA. Forested landscapes cover 56.3% of the SRME (Homer et al. 2015), and the 

montane zone makes up 77.3% of the forested area (Fig. 4.1). Here, we define the montane zone 

using 12 cover types in the 2014 LANDFIRE environmental site potential (ESP) dataset (Rollins 

2009; Table C1). ESP represents neither the current or historical vegetation type, but rather the 

potential vegetation that could be supported on a site given the current biophysical environment. 
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This provides a useful means of identifying the montane zone through time because the area does 

not change throughout the historical period of analysis and provides a consistent baseline of 

comparison for future changes. Climate in the montane zone of the SRME is widely variable. 

Average annual precipitation ranges 236 to 1562 mm, January minimum temperature ranges -

20.3 to -5.4 C, and June maximum temperature ranges 13.85 to 30.5 C (PRISM 2018). Dominant 

tree species in the montane zone include ponderosa pine, Douglas-fir, white fir (Abies concolor 

var. concolor), lodgepole pine (Pinus contorta var. latifolia), quaking aspen (Populus 

tremuloides), Gambel oak (Quercus gambelii), and blue spruce (Picea pungens). The montane 

zone also include other species in the genera Abies, Juniperus, Picea, Pinus, and Populus that 

vary in importance throughout the region. 

 
Fig. 4.1. Site map showing the locations of the 22 surveyed fires, as well as a summary of past 
climate and future climate scenarios in the Southern Rocky Mountains Ecoregion. In the site 
map, montane forests are shown in green, while other forests are shown in grey. Non-forest 
vegetation and other land cover types within the region are shown in white. Solid circles identify 
fires in which post-fire seedling abundance and seedling establishment data were collected, while 
open circles identify fires with only post-fire abundance surveys. Line graphs show observed 
(1981-2015) and projected future (2021-2099) trends in annual actual evapotranspiration (AET; 
evaporation constrained by moisture availability) and climatic water deficit (CWD; unmet 
evaporative demand) across the region. Transparent lines give annual values, while solid lines 
give 10-year running means. Future trends are based on three coupled atmosphere-ocean general 
circulation models (GCMs) and two representative concentration pathways (RCPs) spanning a 
range of potential 21st-century trajectories. 
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4.2.2 Field Data 

We combined data from five prior studies that described annual patterns of conifer 

seedling (i.e., all juvenile trees originating following fire) establishment or post-fire seedling 

abundance (Ouzts et al. 2015, Chambers et al. 2016, Rother and Veblen 2016, 2017, Rodman et 

al. In Review) to develop a regionally extensive database of post-fire recovery in the montane 

zone of the SRME. Specifically, we focused on two widespread conifers (i.e., Douglas-fir and 

ponderosa pine) that vary in shade-, drought-, and fire-tolerance (Burns and Honkala 1990). In 

total, this dataset is comprised of 723 destructively-sampled seedlings (Douglas-fir n = 98; 

ponderosa pine n = 625) spanning sites in 20 fires, and 1301 field plots used to survey post-fire 

abundance in 22 fires (Fig. 4.1, Fig. C1, Table C2). Destructively-sampled seedlings were dated 

at an annual resolution following the protocol described by Telewski (1993) and Rother and 

Veblen (2017). Field surveys of post-fire conifer abundance differed slightly among studies, but 

similar data were collected in each of the 1301 field plots. Specifically, each study recorded 

georeferenced observations of post-fire abundance by species and field-derived distance to 

nearest seed tree. When not recorded in the field, distance to seed source was quantified using 

aerial photo interpretation (n = 48; e.g. Rodman et al. In Review). 

4.2.3 Spatial Data 

We acquired or developed spatial datasets describing topography/terrain, soils, fire 

severity, and climate to be used as predictors in statistical models (Appendix C). We calculated 

topographic position index (TPI; Weiss 2001) and heat load index (HLI; McCune and Keon 

2002) using 1 arc-second (c. 30 m) digital elevation models from the National Elevation Dataset. 

We also acquired data describing soil texture (percent clay content), soil pH, and available water 

capacity from POLARIS (Chaney et al. 2016). Finally, we acquired satellite-derived data 
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describing fire severity (the relative differenced Normalized Burn Ratio) for each fire from the 

Monitoring Trends in Burn Severity program (Eidenshink et al. 2007). Following acquisition or 

calculation, all topographic, soils, and fire severity data were projected to UTM Zone 13N, 

resampled to a 60 m resolution (to permit comparisons with field data), and aligned to the same 

grid. 

We obtained gridded climate data from GridMET (Abatzoglou 2013) and MACA 

(Abatzoglou and Brown 2012) for each year of the historical (1981-2015) and future climate 

periods (2006-2099) (Appendix C). Future projections were derived from 19 coupled 

atmosphere-ocean general circulation models (GCMs) from the fifth Coupled Model 

Intercomparison Project (CMIP5) that had been bias-corrected and downscaled to 2.5 arc-minute 

resolution using GridMET (c. 4 km; Abatzoglou and Brown 2012). We used two different RCPs 

(representative concentration pathways) for each GCM. RCPs estimate changes in radiative 

forcing (D W/m2) at the tropopause from 1750-2100. RCP 4.5 assumes moderate increases in 

emissions through 2040, followed by declines. RCP 8.5 assumes substantial increases in 

emissions through 2100 (Riahi et al. 2011). 

We developed annual layers of three climate variables from GridMET and MACA data. 

These were AET (actual evapotranspiration), annual CWD (climatic water deficit), and total 

precipitation during the April-September growing season. AET is an indicator of site 

productivity because it identifies areas with the simultaneous availability of energy and moisture, 

key limitations to plant growth; CWD is the difference between potential and actual 

evapotranspiration and is an indicator of drought stress experienced by plants (Stephenson 1998, 

Lutz et al. 2010). Growing season precipitation may be beneficial to seedling establishment 

across a broad elevational range in the SRME (Rother and Veblen 2017, Andrus et al. 2018). 
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After the initial development of these layers at a 4 km resolution, we selected three GCMs that 

span the range of projected changes in CWD over the 2006-2099 period (Appendix C). 

Following this, we statistically downscaled historical climate variables and future projections 

(i.e., three GCMs with two RCPs) to a spatial resolution of 250 m using gradient and inverse 

distance squared (GIDS) interpolation (Nalder and Wein 1998, Flint and Flint 2012). The 

development and statistical downscaling of gridded climate data are further described in 

Appendix C. As an exploratory analysis, we analyzed trends in historical and future AET and 

CWD across the SRME using Mann-Kendall trend tests with the variance correction approach of 

Hamed and Rao (1998) to address serial autocorrelation in each time series. 

4.2.4 Statistical Analysis – Annual Seedling Establishment 

To quantify the importance of interannual climate variability in the establishment of 

ponderosa pine and Douglas-fir, we used annual establishment dates from the 723 destructively-

sampled seedlings spanning 20 fires. First, we aggregated counts of establishing seedlings (by 

year and by species) to the level of individual fires because of differences between the plot 

designs of Rodman et al. (In Review) and Rother and Veblen (2017). As potential predictors of 

annual seedling establishment, we extracted CWD, AET, and precipitation during the April-

September growing season in each year (1981-2015) in each fire perimeter. Following this, we 

scaled and centered these values on zero in each fire (using z-score transformation) based on 

historical baseline period of 1981-2015, thus identifying relative differences between the climate 

of each year in each fire and the historical average. Lastly, we created a variable of “time since 

fire”, representing the number of years between fire occurrence and seedling establishment. 

We modeled counts of establishing seedlings in each year in each fire we using boosted 

regression trees (BRTs) with a Poisson loss function. In addition to annual climate variables and 
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time since fire, we also included “fire ID” as a categorical term in the model to account for 

differences in sample design and number of total samples in each fire site. We used the 

“gbm.step” function in the “dismo” package (Hijmans et al. 2017) in R (R-Core-Team 2018) to 

select the optimal number of trees in each BRT model. We used a learning rate of 0.001, a step 

size of 5 for each species, and a complexity parameter of 2 (allowing for two-way variable 

interactions; Elith et al. 2008). The final number of trees in each model was 545 for ponderosa 

pine and 825 for Douglas-fir. We assessed the accuracy of BRTs by comparing observed and 

predicted abundances, both for the entire dataset and with 10-fold cross-validation. 

4.2.5 Statistical Analysis – Post-Fire Abundance Surveys 

We also developed statistical models to predict post-fire conifer seedling abundances for 

each species using 1301 field plots throughout the 22 fires. For this, we used both generalized 

linear mixed models (GLMMs; Bolker et al. 2009) and BRTs. GLMMs were developed using the 

“glmmTMB” package (Brooks et al. 2017) in R (R-Core-Team 2018). We used zero-inflated 

models with a generalized Poisson error structure and random intercepts by fire. We used 

seedling count in each field plot as the response variable with an offset term for “log(plot area)” 

to account for differences in sampling areas. We then selected variables for the final GLMMs 

using a spatially stratified cross-validation, in which models were fit using data from 21/22 fires 

and the remaining fire was withheld as a test set (i.e., 22 folds). Variables were selected for 

inclusion in the final GLMMs if they improved cross-validated accuracy and also predicted 

ecologically-realistic relationships that matched prior understanding in the published literature. 

For BRTs, we used a modified version of the “gbm.simplify” function in the “dismo” package 

(Hijmans et al. 2017) in R (R-Core-Team 2018) to automatically select the subset of variables 

that led to the greatest predictive accuracy using the same spatially stratified cross-validation 



 94 

approach applied to GLMMs. For the assessment of accuracy and variable selection in cross-

validation, we used square root transformations of both predicted and observed seedling densities 

to minimize the influence of extreme outliers. GLMMs outperformed BRTs and ensemble 

models for the prediction of post-fire abundance (Table C7). Therefore, we present only the 

results of GLMMs for post-fire abundance models. 

4.2.6 Historical Reconstruction and Future Projection Using Annual Establishment Models 

Because BRTs of annual establishment data identified non-linear thresholds for the 

establishment of each species, we built a simple GIS model to identify 250 m grid cells in each 

year of the historical period, as well as each year in future GCMs, that exceeded establishment 

thresholds for AET, CWD, and growing season precipitation. For this GIS model, we developed 

maps of establishment suitability for each year in the historical period (1981-2015), and each 

future year (2021-2099) in each GCM and RCP combination. For each map, we identified areas 

with climatic conditions suitable for establishment as 250 m grid cells in the montane zone of the 

SRME with 1) above-average growing season precipitation, 2) above-average AET, and 3) 

below-average CWD relative to 1981-2015 historical averages in each cell. We summarized 

establishment suitability across the region in each year as the percent surface area of the montane 

zone in the SRME exceeding each of the three climatic thresholds. Thus, high values in a given 

year indicate climatic conditions beneficial to seedling establishment for each species across 

much of the montane zone, while low values indicate the opposite. We then analyzed temporal 

trends in model projections for the 1981-2015 historical period and 2021-2099 GCMs using 

Mann-Kendall trend tests with variance correction. 

4.2.7 Historical Reconstruction and Future Projection Using Post-Fire Abundance Models 
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We used fitted GLMMs to make projections for post-fire ponderosa pine and Douglas-fir 

seedling abundance at a 60 m resolution across the montane zone for each historical year (1981-

2010) and for each future GCM and RCP combination (2021-2080). We restricted this analysis 

to these years to allow for three 30-year periods (i.e., 1981-2010, 2021-2050, 2051-2080) that 

could be directly compared. Terrain variables used in statistical models were held constant across 

years in projections. Minimum distance to seed tree was set at a constant value of 10 m in all 60 

m cells in each year to focus the analysis on the limitations of the biophysical environment while 

assuming the availability of a nearby seed source. Similarly, we assumed that models were 

predicting seedling density for each species five years following fire. In the historical period 

(1981-2010), 30-year average climate variables were based on cell-specific averages in the 1981-

2010 period, and thus average climate did not vary by year during the historical period. For 

future scenarios, we used a 30-year moving average (centered around the focal year) of each 

climate variable in each cell in each year. Maximum post-fire CWD was the highest z-score 

value (based on cell-specific historical values) of CWD in the five years following the focal year. 

We assessed the adequacy of post-fire seedling abundance in each year using minimum 

historical tree density thresholds of 20 ponderosa pine ha-1, and 5 Douglas-fir ha-1. To develop 

these thresholds, we compiled data from three published studies that reconstructed 1800s forest 

density and species composition in the Southern Rocky Mountains Ecoregion (Fulé et al. 2009, 

Rodman et al. 2017, Battaglia et al. 2018). We then used the 5th percentile of species-specific 

1800s densities for plots that had ponderosa pine or Douglas-fir presence, respectively. Using 

these low historical densities assesses whether post-fire seedling densities could be expected to 

reach the lowest extent of what would be considered a montane forest in this region. See 

Appendix C for a further discussion of density thresholds. Using these thresholds, we then 
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quantified the number of years in each 30-year period (1981-2010, 2021-2050, 2051-2080) in 

which a 60 m cell was projected to have seedling densities exceeding these historical tree density 

thresholds. In future projections, this was done for each GCM, and values in each 60 m cell were 

taken as the mean value across GCMs, within a given RCP. 

4.3 Results 

4.3.1 Historical Trends and Projected Future Changes in AET and CWD 

In the 1981-2015 historical period, annual CWD increased (Kendall’s correlation t = 

0.30, p < 0.01) and annual AET showed slight declines (t = -0.14, p = 0.24) across the SRME 

(Fig. 4.1). Future climate scenarios exhibited similar trends through time. Of the 19 GCMs 

initially studied, 18 predict 21st-century increases in annual CWD in RCP 4.5, and all predict 

increases in annual CWD in RCP 8.5 (Table C4). Future trends in annual AET were more muted 

(Table C3), likely because AET is predicted to increase at upper elevations and decrease at lower 

elevations, which is not captured when analyzing regional averages. Still, 17 of 19 GCMs 

predicted moderate increases in annual AET in both RCP 4.5 and 8.5. The selected CMIP5 

GCMs that were used for further analysis were GFDL ESM2G (Dunne et al. 2012; hereafter 

"GFDL"), CSIRO MK3.6.0 (Jeffrey et al. 2013; hereafter "CSIRO"), and IPSL CM5A MR 

(Dufresne et al. 2013; hereafter "IPSL"). These GCMs span the range of 21st century climate 

projections in the region (Table C3, Table C4). From 2021-2099, GFDL and CSIRO predict 

increases in AET in both RCP 4.5 and 8.5. IPSL predicts no trends in AET in RCP 4.5 and 

predicts declines in AET in RCP 8.5. CWD is predicted to increase in all GCMs and RCPs, 

with the exception of GFDL in RCP 4.5 which predicts slight declines in CWD over the 2021-

2099 period (Fig. 4.1; Table C5). 

4.3.2 Annual Climatic Drivers of Post-Fire Seedling Establishment 
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Based on our analysis of annual establishment dates and interannual climate variability, 

we found that the relationship between climate and establishment was remarkably consistent 

between species (Fig. 4.2). Years with below-average CWD, above-average AET, and above-

average precipitation during the April-September growing season were associated with increases 

in Douglas-fir and ponderosa pine seedling establishment. Annual CWD and AET were the most 

influential variables for each species, having higher variable importance than any other 

predictors in each boosted regression tree models. Unsurprisingly, BRT models performed better 

on training data than on independent test data, but observed and predicted values were still 

positively correlated in cross-validation. For the ponderosa pine model, the correlation of 

observed to predicted values with the training data was 0.60 and the cross-validated correlation 

was 0.18. For the Douglas-fir model, the correlation with the training data was 0.57 and the 

cross-validated correlation was 0.23. 

 
Fig. 4.2. The influence of interannual climate variability on post-fire establishment for Douglas-
fir and ponderosa pine, two dominant coniferous species in the montane zone of the Southern 
Rockies. Derived from boosted regression tree analyses, each subfigure shows the marginal 
influence of a given predictor (y-axis) across the range of values observed in the data (x-axis). X-
axis values at which a solid line is above zero (i.e., dotted lines) indicate a positive relationship 
between that variable and counts of establishing seedlings, while values at which the solid line is 
below zero indicate a negative relationship. Percentages in each subpanel give the relative 
importance of each variable for each species after excluding site-level effects. Tick marks at the 
bottom of each subfigure give decile values showing the ranges of observed data. 
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4.3.3 Factors Predicting Post-Fire Tree Seedling Abundance 

For each species, wetter sites and those closest to seed trees had higher post-fire tree 

seedling abundances (Fig. 4.3). Thirty-year average CWD was an influential predictor of both 

ponderosa pine and Douglas-fir abundances, and lower values of 30-year CWD (common on 

higher, wetter sites) were associated with higher post-fire abundances (Fig. 4.3b, 4.3g). 

Abundances for each species were also higher when fires were not followed by an extreme 

drought year (low values of maximum post-fire CWD; Fig. 4.3c, 4.3h). Max post-fire CWD led 

to improved predictive accuracy of GLMMs when compared to individual wet years or 5-year 

averages (not shown). Terrain variables were also important for each species. Heat load was 

predictive of Douglas-fir abundance, where abundance was higher on northeasterly aspects with 

lower heat loads (Fig. 4.3i). Similarly, valley bottoms (low values of topographic position in a 15 

x 15 cell neighborhood) had higher abundances of Douglas-fir (Fig. 4.3j). We also identified an 

interaction between precipitation and topographic position for ponderosa pine, where valley 

bottoms had higher seedling abundances on sites with lower average growing season 

precipitation, and ridgetops had higher abundances on sites with average growing season 

precipitation exceeding 450 mm (Fig. 4.3e). GLMMs for ponderosa pine had a correlation of 

0.46 between observed and predicted values in the training data and 0.22 in spatially stratified 

cross-validation. The Douglas-fir model performed slightly better. GLMMs for Douglas-fir and 

had a correlation of 0.61 between observed and predicted values in the training data and 0.25 in 

cross-validation. 
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Fig. 4.3. Predicted values of post-fire abundance for Douglas-fir and ponderosa pine based on 
generalized linear mixed models of 1301 field plots in 22 wildfires in the Southern Rocky 
Mountains Ecoregion. Black lines give predicted abundances for each value of a predictor when 
assuming the mean value of random effects and of other predictors. Dotted lines give 95% 
prediction intervals surrounding each predicted value. The colored contour plot (e) shows the 
interaction between topographic position and precipitation for ponderosa pine, where the effect 
of topographic position is dependent upon average precipitation; the colored scale indicates 
seedlings/ha. 
 
4.3.4 Past and Future Trends in Annual Suitability for Conifer Seedling Establishment 

The percent surface area of the montane zone considered suitable for establishment (i.e., 

exceeding annual establishment thresholds for AET, CWD, and April-September precipitation) 

varied through time. Historically, the early 1980s, 1998, and 2014-2015 were the years in which 

climatic conditions were most suitable to widespread establishment throughout the region, while 

2000-2003 had no areas that exceeded these thresholds in the montane zone. Much of the 2000s 

had low values, with slight increases from 2005-2008 (Fig. 4.4). Despite recent increases in 2014 

and 2015, there were overall declines in establishment suitability over the 1981-2015 period (t = 

-0.29, p = 0.062). Future trends in annual establishment suitability varied by GCM and emissions 

scenario. In RCP 4.5, the moderate emissions scenario, one of the three GCMs predicted 2021-

2099 declines in annual establishment suitability (IPSL: t = -0.14, p = 0.055), while two of the 

three predicted levels generally consistent with the 1981-2015 historical average (GFDL: t = 

0.09, p = 0.215; CSIRO: t = -0.02, p = 0.762). In RCP 8.5, one GCM predicted little change in 
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the area of the montane zone with suitable climate (GFDL: t = -0.08, p = 0.217), while the other 

two predicted substantial declines (CSIRO: t = -0.23, p = 0.023; IPSL: t = -0.36, p = 0.016). 

Notably, in RCP 8.5, the number of years with any area considered suitable for establishment 

declines drastically after 2040 in IPSL and 2075 in CSIRO. 

 
Fig. 4.4. The percent surface area of the montane zone in the Southern Rocky Mountains 
Ecoregion with above-average actual evapotranspiration, below-average climatic water deficit, 
and above average precipitation in the April-September growing season in each year. These 
annual climatic establishment thresholds were identified in boosted regression tree analyses. 
Observed values (1981-2015) are derived from GridMET. Future trends (2021-2099) are based 
on three coupled atmosphere-ocean general circulation models (GCMs) and two representative 
concentration pathways (RCPs) initiated in 2006 and spanning a range of potential trajectories. 
Transparent lines give annual values, while solid lines give 10-year running means to show 
trends through time. 
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Fig. 4.5. Summary of spatial models predicting post-fire tree seedling abundance across the 
montane zone of the Southern Rocky Mountains Ecoregion in 1981-2010 (historical), and 2021-
2080 (potential climate scenarios from three coupled atmosphere-ocean general circulation 
models [GCMs] and two representative concentration pathways [RCPs 4.5 and 8.5]). We used 
generalized linear mixed models to predict post-fire abundance across the region at a 60 m 
resolution in each year 1981-2010 (i.e., historical) based on average climate, interannual climate 
variability, and topography. We also projected seedling abundances in each year from 2021-
2080. Map colors and density plots (below each map) show the number of years in which each 
60 m cell was predicted to exceed historical density thresholds (20 ponderosa pine/ha and 5 
Douglas-fir/ha) in each 30-year time period.  
 
4.3.5 Spatiotemporal Models of Susceptibility to Regeneration Failure in the 21st Century 

We projected broad declines in post-fire seedling abundances for Douglas-fir and 

ponderosa pine across the SRME from 2021-2080. While the majority of the montane zone was 

predicted to have seedling abundances exceeding historical density thresholds of 20 ponderosa 

pine ha-1 and 5 Douglas-fir ha-1 in theoretical fires occurring in each year of the 1981-2010 
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period, the number of years in which most 60 m cells were projected to exceed these thresholds 

was lower under the three GCMs. Future projections of post-fire seedling abundance indicate 

that there would be declines in the early portion of the 21st century (2021-2050) under RCP 4.5, 

but these declines would generally stabilize in the 2051-2080 period. In contrast, GCMs using 

RCP 8.5 (the high emissions scenario) showed continued and drastic declines in predicted post-

fire abundances throughout the 21st century (Fig. 4.5). Under RCP 8.5, sites at the highest 

elevations in the montane zone are the only areas predicted to have post-fire recovery that 

consistently exceeds historical density thresholds. Increases in 30-year average CWD and max 

post-fire CWD were the primary reasons for these projected changes in the future. 

4.4 Discussion and Conclusion 

Increasing wildfire activity, in combination with poor post-fire recovery, has the potential 

to drive widespread conversions from forested to non-forested vegetation types across the 

western United States. To assess spatial and temporal variation in post-fire recovery, we used 

demographic models of post-fire tree seedling establishment and correlative SDMs of post-fire 

seedling abundance for two widely-distributed conifers in the Southern Rocky Mountains 

Ecoregion (SRME). Both sets of models were developed using extensive field datasets and high-

resolution climate surfaces. Using these methods, we confirmed the expectations that 1) forest 

resilience to wildfire has experienced climate-driven declines in the Southern Rocky Mountains 

Ecoregion (SRME) over the 1981-2015 period, and 2) further declines in resilience across the 

SRME are likely, with some sites being more susceptible to declines in resilience than others. 

 We found that ponderosa pine and Douglas-fir seedling establishment was greater in 

years with above-average AET, below-average CWD, and above-average precipitation during 

the April-September growing season. Years most beneficial to the establishment of each species 
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were those in which moisture and energy were widely available and drought stress was minimal. 

These types of climate conditions became increasingly infrequent throughout the 1981-2015 

period. Because seedlings are sensitive to climate conditions early in life, the seedling stage is a 

crucial bottleneck to population persistence (Grubb 1977, Dobrowski et al. 2015). Our findings 

align with those of the few studies that have related annual patterns of conifer seedling 

establishment to interannual climate variability in the western U.S. (Savage et al. 1996, League 

and Veblen 2006, Rother and Veblen 2017, Andrus et al. 2018, Davis et al. 2019, Rodman et al. 

In Review). Infrequent years with climate conditions conducive to seedling germination and 

survival may have critical implications for subsequent forest trajectories (Davis et al. 2016). In 

this sense, stage-structured demographic models that predict seedling establishment and survival 

based on interannual climate variability (e.g., Feddema et al. 2013, Petrie et al. 2017) are a useful 

approach to assessing forest sensitivity to a warming climate. These models can be further 

improved with the incorporation of site-specific empirical data as was done in the present study. 

Correlative models developed using an SDM approach provided additional insight into 

the factors that influence spatial and temporal variability in post-fire seedling abundance. We 

found that distance to seed source, average climate (i.e., 30-year average CWD and 30-year 

average precipitation), individual drought years (i.e., max post-fire CWD), aspect-driven heat 

load, and topographic position all influenced landscape-scale variability in post-fire abundance. 

These findings are in agreement with the results of prior studies in the western U.S. that illustrate 

the importance of seed availability (Haire and McGarigal 2010), average climate (Tepley et al. 

2017), post-fire climate (Harvey et al. 2016, Stevens-Rumann et al. 2018), and terrain (Welch et 

al. 2016) to the post-fire recovery of conifer forests. The overlaid patterns of each these biotic 
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and abiotic factors create complex responses to wildfire across heterogeneous landscapes, 

throughout which recovery differs substantially in abundance and rate. 

 Across a range of GCMs and emissions scenarios, we projected that further declines in 

establishment suitability and post-fire abundance are likely across the SRME. Considering the 

importance of altered recovery trajectories in a warmer and increasingly fire-prone future, it is 

surprising that a relative paucity of prior research has projected trends in post-fire recovery of 

conifer forests based on future climate scenarios (e.g., Feddema et al. 2013, Tepley et al. 2017, 

Kemp et al. 2019). It has been suggested that warming is likely to lead to overall declines in 

post-fire conifer seedling establishment and abundance, but that increasing temperatures could 

benefit regeneration at some sites, particularly those near the cold end of the species range 

(Feddema et al. 2013, Petrie et al. 2017, Kemp et al. 2019). Still, other research has indicated 

near-universal declines in future post-fire seedling abundances due to increasing CWD (Tepley 

et al. 2017). While there is potential that fire and a warming climate may facilitate range shifts at 

the leading edge of a species’ distribution, the combined effects of pre-fire species dominance 

and extreme drought events may constrain the potential for range shifts (Young et al. 2019). Our 

study indicated that increases in average CWD and post-fire drought stress (i.e., max post-fire 

CWD) were likely to drive future declines in establishment and abundance across much of the 

region. Importantly, shifts in average climate are likely to drive increases in the frequency of 

years that are considered extreme relative to the historical record in a given area (McCullough et 

al. 2016). This has critical implications for the establishment of tree species that are sensitive to 

interannual climate variability (F. Davis et al. 2016, Andrus et al. 2018, K. Davis et al. 2019).  

Future climate velocity is likely to exceed the dispersal capabilities and capacities for 

genetic adaptation of many plant species (Quintero and Wiens 2013, Batllori et al. 2017). 
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Therefore, we primarily focused on questions of resilience and in-situ population persistence 

following wildfire, and made no assumptions about dispersal into new habitat in higher-elevation 

areas or about species’ ability to adapt to rapid environmental change. Species that are most 

likely to successfully migrate to newly suitable sites are those with light, wind-borne seeds 

capable of travelling broad distances (Normand et al. 2011), and both ponderosa pine and 

Douglas-fir have relatively heavy seeds that are unlikely to disperse across broad distances based 

solely on wind or water (McCaughey et al. 1986). Both species are also relatively long-lived, and 

rates of genetic adaptation are relatively slow for long-lived plant species. However, localized 

genetic differences already present in a population (Beckman and Mitton 1984, Jump and 

Peñuelas 2005) as well as phenotypic plasticity (Nicotra et al. 2010), may foster resistance and 

resilience to drought. Likewise, avian- and mammal-mediated dispersal (Vander Wall 2008) 

offer hope for the migration of ponderosa pine and Douglas-fir into newly suitable sites. 

 One additional factor that was not considered in this study but is relevant to the question 

of post-fire resilience, is the influence of climate warming on area burned, fire size, and fire 

severity. While warm, dry years are strongly tied to area burned in the western U.S. (Littell et al. 

2009, 2016), the influence of warming on fire severity is less clear (Abatzoglou et al. 2017). In 

addition to the influences of fire weather, severity is also driven by a complex combination of 

fuels characteristics and topography (Holden et al. 2009, Dillon et al. 2011, Krawchuk et al. 

2016). Still, some studies have documented increases in fire severity in recent years (Miller et al. 

2009b, Singleton et al. 2018). Severity is a crucial parameter that influences post-fire seedling 

abundance by influencing the availability of seed sources for dispersal into recently burned areas. 

Full canopy removal would also lead to increased daytime temperatures and greater diurnal 

fluctuations (Davis et al. 2018a), likely contributing to increases in seedling mortality. In our 
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analyses, we attempted to isolate the influence of climate on post-fire recovery by assuming that 

a nearby seed source was available in any given fire event. If climate warming increases fire size 

and severity, in addition to reducing climatic suitability for establishment, dramatic declines in 

post-fire resilience are likely in many coniferous forests (Savage et al. 2013, Parks et al. 2019).  

 One of our most striking findings was the difference in future projections of post-fire 

recovery between RCP 4.5 and RCP 8.5. While RCP 4.5 assumes moderate growth in emissions 

through 2040, followed by declines, RCP 8.5 assumes rapid increases in emissions that continue 

through 2100 (Riahi et al. 2011). Models of annual establishment suitability and post-fire 

seedling abundance indicated similar trends in RCP 4.5 and 8.5 through mid-century, but showed 

strong divergence beyond that point. These findings echo those of two prior studies that 

demonstrate the importance of emissions scenario to projected effects on regeneration processes 

and on post-fire abundances (Petrie et al. 2017, Tepley et al. 2017). While committed warming is 

likely to lead to increases in wildfire activity and declines in post-fire resilience throughout the 

Southern Rocky Mountains, there may be the potential to mitigate the most extreme climate 

impacts through emissions reductions in the next two decades. The magnitude of ecological and 

societal impacts of a changing climate is dependent upon future emissions trajectories (IPCC 

2014, USGCRP 2017).    
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CHAPTER 5 
 
 

SUMMARY AND CONCLUSIONS 
 
5.1 Changes in Forest Extent and the Important Role of Wildfire 

 The distribution of forested ecosystems is influenced by historical dynamics as well as 

contemporary processes. The goals of this dissertation were to assess the extent to which forests 

have changed throughout the 20th century due to human land use and wildfire activity, to 

quantify the factors limiting post-fire conifer forest recovery in recently-burned areas, and to 

project future trends in post-fire recovery throughout the region. To accomplish these goals, we 

combined geospatial approaches, tree-ring analyses, field ecology, and statistical modeling in 

study areas spanning the Southern Rocky Mountains Ecoregion in southern Wyoming, Colorado, 

and northern New Mexico. 

To quantify forest cover change across of forests in the northern Front Range of Colorado 

(NFR), we used supervised classifications of 1938 and 2015 aerial imagery across a landscape 

with a complex history of disturbance and human land use (Chapter 2; Rodman et al. 2019). 

There are many approaches to reconstructing historical forest change, including tree-ring 

methods (Fulé et al. 1997, Battaglia et al. 2018), historical forest inventories (Moore et al. 2004), 

repeat photographs (Veblen and Lorenz 1991), and general land office surveys (Williams and 

Baker 2012b). While our approach using historical air photos is more temporally-limited than 

some other methods, it offers the advantages of high spatial resolution (c. 1 m) and seamless 

spatial coverage across broad areas. Using these data, we found that slow recovery from 19th 
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century fires was a key driver of observed increases in forest cover at upper elevations, and the 

exclusion of formerly frequent fire was a contributor to increases in forest cover at lower 

elevations. Historical logging and mining activity also appeared to play an important role in 

observed changes. Recent fire activity was the largest single driver of forest loss. Our findings 

can contribute to discussions surrounding local land management issues because forest 

restoration and fire mitigation based on historical conditions are common goals in the NFR 

(Dickinson et al. 2014, Addington et al. 2018), and an understanding of historical changes and 

causative mechanisms of change helps to inform these management activities (Veblen et al. 

2012). In addition, this research contributes to the broader ecological literature through novel 

methods of image processing, uncertainty analysis, change-detection, and by combining 

remotely sensed data with extensive fire history records. This research also provides an example 

workflow that may be repeated in other regions in which historical aerial photography 

collections are available. 

For conifer seedlings to establish following fire, seed must be produced and transported 

to a suitable site for germination and longer-term survival. These characteristics of the post-fire 

environment – seed availability and site suitability – vary across both space and time. While the 

factors limiting conifer regeneration in recent wildfires throughout the western U.S. are widely 

discussed in the literature, few studies have empirically assessed each of these drivers in a single 

area to identify key bottlenecks to post-fire recovery. Throughout 15 wildfires in southern 

Colorado and northern New Mexico, USA, we performed field surveys of post-fire seedling 

abundance and recent seed cone production, and used tree-ring methods to quantify temporal 

variation in seedling establishment, and resprouting. We then used classification of 1 m aerial 

imagery, downscaled climate surfaces, and monthly water balance models, to quantify spatial 
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variability in post-fire canopy cover and site suitability. We found that temporal variation in seed 

cone production was not a key bottleneck to post-fire recovery, but that seedling germination and 

establishment were more likely in wet years. In addition, post-fire seedling abundances were 

highest on mesic sites and adjacent to surviving trees, though they were relatively low across a 

substantial proportion of the total fire area. This study is the first of its kind to use site-specific 

data to assess the potential limitation of seed cone production on post-fire forest recovery. In 

addition, this is one of just a small number of studies in the western U.S. that have dated tree 

establishment at an annual resolution (e.g., Savage et al. 1996, League and Veblen 2006, Rother 

and Veblen 2017, Andrus et al. 2018, Davis et al. 2019), which is key when assessing the effects 

of interannual climate variability on forest recovery to disturbance. 

It is now recognized that a warming climate is inhibiting post-fire recovery across conifer 

forests in the western U.S. (e.g., Stevens-Rumann et al. 2018, Davis et al. 2019). To address 

these ideas in pine-oak, ponderosa pine, and mixed-conifer forests in the Southern Rocky 

Mountains, we combined field data collected in five prior studies (Ouzts et al. 2015, Chambers et 

al. 2016, Rother and Veblen 2016, 2017, Rodman et al. In Review) and used these data to 

develop two sets of statistical models. For these models, we incorporated terrain variables, 

average climate, and interannual climate variability (i.e., annual AET, CWD, growing season 

precipitation, and post-fire drought) throughout the region to predict post-fire seedling 

establishment and abundance. Key in this process was the development of high-resolution (c. 

250 m) climate surfaces for the historical (1981-2015) and future (2006-2099) periods. Climate 

futures were based on three coupled atmosphere-ocean general circulation models (GCMs) and 

two representative concentration pathways (RCPs) spanning a range of potential 21st century 

trajectories. We then reconstructed past trends and made future projections of post-fire conifer 
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forest recovery. Our models of past trends suggested that climate suitability for establishment 

declined throughout the 1981-2015 period as interannual climate became increasingly unsuitable 

for establishment. However, during this same historical period, post-fire abundances were 

predicted to exceed minimum historical tree densities in most sites during most fire years, given 

an available seed source. However, models using future climate scenarios project additional 

declines in establishment suitability and post-fire abundance throughout much of the region. 

Because results strongly differed by RCP, the ecological effects of climate warming appear 

dependent on emissions scenario. The combination of demographic modeling and species 

distribution modeling (SDM) is a novel approach to the problem of predicting climate impacts on 

forested ecosystems. Because years of above average moisture availability are important to 

seedling establishment across broad geographic and elevational gradients (Andrus et al. 2018, 

Davis et al. 2019), the better incorporation of interannual climate variability into is a particularly 

important contribution of this study. In addition, few studies have incorporated GCMs into 

projections of future post-fire recovery in the western U.S. (Feddema et al. 2013, Tepley et al. 

2017, Hansen et al. 2018, Kemp et al. 2019).  

Together, the individual chapters in this dissertation reveal some of the key climate-

related and non-climatic mechanisms that explain 20th-21st century changes in forest cover in the 

northern Front Range of Colorado and in the Southern Rocky Mountains. Episodes of increased 

fire activity as well as periods of fire quiescence both act as agents of change in these forests, 

and historical fire activity influenced observed patterns of forest gain c. 1938-2015. 

Contemporary fire activity and slow forest recovery were the primary drivers of forest loss in 

this same time period. Forest recovery has been limited throughout recent fires, likely due the 

combination of inadequate seed availability in high-severity patches as well as increasingly 
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unsuitable climate for seedling establishment and recovery. There is substantial uncertainty in 

projecting future trends in these processes. Still, with further warming, fire activity is likely to 

increase throughout the western U.S. and the potential for recovery following these events is 

likely to decline. The consideration of past trends in forest cover, as well as contemporary 

processes, will improve our ability to understand and predict the potential for future changes in 

western U.S. forests. 

5.2 Implications to Management 

  There is broad interest in using a knowledge of the how past landscape conditions reflect 

climate-dependent and climate-independent processes in the context of understanding of 

potential future climate impacts on forests and forest management in the western United States 

(Hayward et al. 2012). Management for “historical fidelity”, based on historical reference 

conditions, is a broadly-used approach (Hobbs et al. 2010). However, biological invasions and a 

warming climate are likely to lead to novel ecosystem assemblages and processes throughout the 

western U.S., calling into question the idea of using the natural ranges of variability (sensu 

Landres et al. 1999, Keane et al. 2009) and historical reference conditions as a sole basis for 

management (Hayward et al. 2012). Given the uncertainty of future trends and trajectories, 

managers can benefit from using a range of approaches informed by the best available science 

(Millar et al. 2007, Millar and Stephenson 2015). Following the classification of Millar et al. 

(2007), these approaches can broadly be categorized into 1) management activities that attempt 

to forestall change and increase ecosystem resistance to disturbance, 2) management activities 

that foster resilience and improve the ability of ecosystems to return to a prior state following 

disturbance, and 3) actions that facilitate transitions to ecosystem types that are more capable of 

tolerating current or future climate and disturbance. Importantly, each of these types of 
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approaches can range from aggressive human intervention to “no action”, and all potential 

approaches may be appropriate under certain circumstances (Hobbs et al. 2010). The research in 

this dissertation helps to inform multiple management strategies throughout forested landscapes 

in the Southern Rocky Mountains. 

 Forest restoration and fuels reduction are common practices in forests throughout the 

western United States and could best be categorized as management activities that attempt to 

foster resistance to disturbance and improve historical fidelity (Millar et al. 2007, Hobbs et al. 

2010) . Our quantification of 21st century forest change in the northern Front Range of Colorado, 

in combination with a knowledge of fire history, have the potential to improve the site-specificity 

of these types of treatments in the region; we have made these data publicly available. 

Identifying areas in which forests increased in extent and density primarily due to the exclusion 

of previously frequent, low-severity fire regimes, helps to identify sites in which the goals of 

restoration (i.e., improving historical fidelity) and fuels reduction (i.e., reducing fire hazard) are 

most congruent (Platt et al. 2006). Importantly, the initial time period used in this study (c. 1938) 

did not capture a natural landscape. At this point, the NFR had already been highly altered by 

mining, logging, and other factors, and therefore our findings must also be supplemented with a 

historical knowledge of place. In addition, changes in forest cover are just one piece of an 

integrative management framework that must also incorporate a range of social and cultural 

values. In the Colorado Front Range, an area with high densities of homes and valuable water 

resources in fire-prone areas (Theobald and Romme 2007, Platt et al. 2011, Calkin et al. 2014), 

protection of these resources should likely take precedent over strict adherence to the natural 

ranges of variability. 
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 Resilience to disturbance is a widely-discussed topic in theoretical ecology (Holling 

1973, Carpenter et al. 2001, Scheffer et al. 2012), and in forest management (Derose and Long 

2014). The work in this dissertation helps to identify the scenarios under which forests are most 

resilient to wildfire (i.e., mesic sites adjacent to surviving trees), and when transitions to 

alternative vegetation types are likely (i.e., the interior of high-severity patches and xeric sites). 

Reforestation is an example of a management approach involving aggressive human intervention 

to foster resilience. Reforestation treatments should not be required within 200 m of a surviving 

forest, assuming that seed will be available for natural regeneration in these areas (North et al. 

2019), though the threshold distance also depends on seed size and dispersal characteristics 

(McCaughey et al. 1986). Beyond this distance, reforestation may be an appropriate goal in more 

mesic sites, where seedling survival is likely to be highest. These more mesic sites can be 

identified using the types of high-resolution climate surfaces we have developed in each of the 

15 studied fires. “No action” can also be an appropriate management approach to resilience in 

some areas, particularly those in which natural regeneration is most likely. Though site 

preparation and shrub control may increase the ease of planting and subsequent seedling survival 

(Lanini and Radosevich 1986), heavy equipment use may lead to soil erosion and compaction, 

and the loss of coarse wood in activities such as salvage logging may also inhibit natural 

regeneration (Donato et al. 2006).  

 Given the potential for rapid changes in climate, response options that facilitate 

transitions to new, better-adapted ecosystem types are appropriate in many places. Relaxation of 

seed-transfer zones, a component of current reforestation practices in national forests of the 

United States that restrict seed used for reforestation to relatively local provenances, is one such 

approach. More flexible seed transfer zones (sensu Mckenney et al. 2009, Potter and Hargrove 
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2012) would allow for the use of more drought-adapted genotypes of pre-fire species in post-fire 

reforestation activities. A more aggressive approach would be to experiment with assisted 

migration, in which tree species, generally from lower latitudes and elevations, would be used as 

a component of post-fire reforestation (Williams and Dumroese 2013). For example, in fires in 

low or mid-elevation sites in the Colorado Front Range, piñon pine and juniper species are likely 

more suited to future climate than are ponderosa pine or Douglas-fir, even in locations in which 

piñon and juniper were not present prior to the fire. Lastly, “no action” can be a suitable 

management approach to facilitate transitions. Gambel oak and other resprouting shrubs are 

becoming increasingly dominant in recently burned sites in northern New Mexico and southern 

Colorado. These species may be quite resilient to future climate (Rehfeldt et al. 2006) and to 

future fire activity (Coop et al. 2016). So, while attempts to reforest these types of sites (i.e. 

persistent shrublands) through aggressive management actions such as brush control and planting 

may return some areas to forested cover, alternative states of vegetation may be more appropriate 

in a warmer, increasingly fire-prone future. All management approaches should be accompanied 

with an appropriate sense of humility (Hobbs et al. 2010) and the recognition that we have an 

incomplete scientific understanding of forested ecosystems and of the magnitude of future 

changes in climate. 

5.3 Broader Applicability and Future Research Directions 

 While our analyses were constrained to sites in the Southern Rocky Mountains, the 

concepts, methods, and analytical approaches used in this dissertation may also be useful in other 

regions. Beginning c. 1930, aerial photographs were collected for the purpose of natural resource 

inventory throughout the United States and many other nations. These data provide a high 

resolution and spatially continuous record of land cover in the early 1900s that can be used to 
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quantify changes in natural ecosystems and the impacts of human activity across broad 

landscapes. The methods described in Chapter 2 provide a means by which ancillary data (e.g., 

fire history and records of land use) and uncertainty in change detection can be better 

incorporated into these types of studies. Similarly, while Chapters 3 and 4 focus on specific 

forest types within the Southern Rocky Mountains, wildfire and successional processes occur in 

nearly every terrestrial ecosystem. A multi-scaled approach that identifies specific spatial and 

temporal constraints to post-fire recovery (as described in Chapters 3 and 4) may help to identify 

sites that are most likely to convert to alternative states of vegetation in other fire-prone 

ecosystems and regions throughout the world. 

 This dissertation focused on historical dynamics of forest cover, recent fire activity, and 

post-fire recovery in the Southern Rocky Mountains. Related to these ideas and, more broadly, to 

the changing dynamics of forest ecosystems, there remain many important questions to be 

answered. Relevant to historical forest change and the natural ranges of variability, forest 

managers are increasingly trying to incorporate a knowledge of fine-scale and broad-scale spatial 

patterns into silvicultural treatments. I am currently working with Teresa Chapman on a project 

to quantify landscape-scale spatial patterns in the 1938 aerial images used in Chapter 2. There is 

also the potential to combine these data with other historical datasets in the region such as tree-

ring reconstructions (Battaglia et al. 2018) and General Land Office records (Williams and Baker 

2012a) to quantify changes in forests of the NFR at a range of spatial and temporal scales. 

 Chapters 3 and 4 in this dissertation focused on potential limitations to post-fire recovery 

and projected future trends in post-fire recovery due to a warming climate. Though we 

considered the influence of interannual climate variability on tree seedling establishment, a more 

robust demographic framework (sensu Enright et al. 2015, Davis et al. 2018b) that incorporates 
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climatic influences on multiple components of tree regeneration (i.e., seed cone production, 

seedling establishment, and seedling survival) would be a fruitful area for future research. 

Previous studies of this kind have primarily relied on literature review to parameterize models, 

often relying on studies performed in very localized areas to characterize the importance of 

interannual climate variability on the processes of seed cone production by mature trees,  

seedling establishment, and seedling survival (Feddema et al. 2013, Petrie et al. 2017). Site-

specific data on seed cone production and seedling establishment, such as those presented in 

Chapter 3, may be used to develop data-driven demographic models that could then be used to 

model the influence of climate on tree regeneration. I am currently involved in two projects that 

are related to this. First, I will be collecting additional data on seed cone production this summer 

and continuing collaborations with Miranda Redmond and Andreas Wion at Colorado State 

University to better characterize climatic influences on seed cone production. Second, I am 

involved in a collaborative international research project with Neal Enright and Joe Fontaine at 

Murdoch University in Perth, Australia, as well as Brian Harvey at the University of 

Washington, to describe and model the influence of demographic processes on post-fire tree 

regeneration. 

 Animal dispersal is a key area for future research in fire ecology and in climate change 

impacts on plants. Because ponderosa pine, Douglas-fir, and many other conifers have relatively 

large, heavy seeds, animal-mediated seed dispersal may be the best hope for seedling 

establishment in the interior of large patches of high-severity fire, and in new areas outside of 

existing species ranges. Plant species that have been best able to track previous changes in 

climate are those with light, wind-borne propagules capable of traveling broad distances (e.g., 

ferns, Normand et al. 2011). However, many conifers are known to be dispersed by avian and 
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mammal species (Ligon 1978, Hutchins and Lanner 1982, Vander Wall 2008), and animal-

mediated dispersal likely facilitated the migration of large-seeded tree species at the end of the 

Pleistocene (Johnson and Webb 1989). The extent to which animal-mediated dispersal will be 

able to aid tree species in establishing in large, high-severity fire patches, and in tracking 

changes in climate, will have important implications for future species distributions. 

 If species are unable to migrate, in-situ adaptation will become crucial to avoid extinction 

(Jump and Peñuelas 2005). Adaptation can potentially involve many components, including the 

genotypic and phenotypic diversity already present in a population and the capacity of a 

population to rapidly evolve or to change phenotypic expression through plasticity (Nicotra et al. 

2010). Both of these components of adaptation are typically discussed with respect to the ability 

of a plant population to tolerate novel climatic conditions and to endure drought. However, the 

ability to survive disturbance is also an important driver of local population persistence. 

Individuals and populations in certain portions of the landscape – refugia – are more likely to 

survive disturbances such as wildfire (Krawchuk et al. 2016, Meigs and Krawchuk 2018). 

Similarly, some species and local populations may be more resistant to disturbances than others, 

and traits such as bark thickness can help to identify variation in fire resistance (Pausas 2015, 

Pellegrini et al. 2017). During summer 2019, we plan to collect data on bark thickness and other 

demographic traits that promote resistance to wildfire.  
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APPENDIX A 
 
 

SUPPLEMENTARY MATERIAL FOR CHAPTER 2 – WILDFIRE ACTIVITY AND 
LAND USE DROVE 20TH CENTURY CHANGES IN FOREST COVER IN THE COLORADO 

FRONT RANGE 
 
A.1 Comparison Of Changes In Forest Cover With Interannual And Interdecadal Trends 

In Wildfire And Climate 

Because of the potential importance of historical fire activity in driving broad-scale 

changes in forest cover, we created a fire activity index that quantifies interannual variability in 

fire activity in the study area c. 1800-2015 using a combination of field-derived fire history data 

(Sherriff et al. 2014) and burn perimeters from the Monitoring Trends in Burn Severity program 

(MTBS; Eidenshink et al. 2007). During the 1800-1983 time-period, this index reflects the 

proportion of montane fire history sites from Sherriff et al. (2014) that experienced spreading 

fires in a given year (i.e., at least 10% of samples and a minimum of two trees scarred within a 

stand). From 1984-2015, the index is based on the proportion of the montane zone intersecting 

MTBS fire perimeters in each year. We focused specifically on the montane zone because 

identifying important fire years in the subalpine zone would require extensive cohort mapping 

throughout the NFR, and because fire activity in the subalpine has been very limited through the 

last century. Given the widespread distribution of fire history sites throughout the NFR, fire 

history data are fairly compatible with remotely sensed data (i.e., MTBS data) and provide a 

useful approximation of important regional years of fire activity and general trends c. 1800-2015. 

To develop time-series of winter precipitation (November-Decembert-1 and January-

Mayt) and summer (June-August) drought stress (vapor pressure deficit [VPD] - the difference 

between the actual- and saturation-vapor pressure) 1896-2015, we extracted gridded data from 

the Parameter elevation Regression on Independent Slopes Model (PRISM; PRISM 2018), using 
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monthly values from each year 1895-2016. We used all 4 km PRISM cells intersecting the study 

area and created a time-series of monthly climate c. 1895-2015 for each cell. We standardized 

values in each cell over time using z-score transformations, and then calculated the average z-

score across all 4-km cells in each year. These data describe relative summer drought stress and 

relative abundance of winter precipitation across the entirety of the study area, for each year 

1896-2016. The first year of the record in PRISM, 1895, was excluded from the final time series 

because data were unavailable for the start of the water year (i.e., fall-early winter 1894). Winter 

precipitation and summer drought stress (i.e., summer VPD) are recognized as two of the 

strongest drivers of myriad processes important to forests (Williams et al. 2012, 2015). 

Independently and in tandem, these components of climate have been linked to bark beetle 

activity (Hart et al. 2014, 2017), wildfire activity (Littell et al. 2009), and tree regeneration 

(Rother and Veblen 2017, Andrus et al. 2018) throughout the Southern Rocky Mountains. We 

also obtained a long-term (1938-present; May 1st of each year) record of snow depth and snow 

water equivalent (SWE) from the University Camp snow course ([40.03 N, -105.57 W], 3,140 m; 

NRCS 2016). Though these data represent May 1st SWE at only a single point on the landscape, 

they are strongly correlated with similar snow course data in other parts of the NFR (Andrus et 

al. 2018). 

To describe trends in climate prior to 1896, and to characterize the relationship between 

climate and tree growth in the NFR, we also obtained residual tree-ring chronologies describing 

interannual variability in tree growth for both ponderosa pine (Pinus ponderosa) and Engelmann 

spruce (Picea engelmannii). These are two of the most important tree species in the study area, 

and span much of the forested range of the NFR. Originally developed by Villalba et al. (1994) 

and Veblen et al. (2000) these chronologies were updated by new sampling in 2015 and 2008, 
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respectively; dendroclimatic signals were separated from local site factors and competition 

effects using linear and non-linear detrending of raw ring-width measurements, and 

autoregressive modelling using either the ARSTAN software (Cook and Holmes 1986) or dplR 

package in R (Bunn 2008). Using these data, we calculated Pearson correlation coefficients to 

quantify the strength of the dendroclimatic relationships among residual chronologies from each 

of the species with winter precipitation, summer VPD, and snowpack in late spring (May 1st 

SWE). This analysis is meant to demonstrate the importance of different components of 

interannual climate to tree radial growth across the range of life zones present in our study. 

Though non-stationarity in space is recognized limitations of these relationships (e.g., Villalba et 

al. 1994), these data are still useful in describing trends in growth and the ways in which climatic 

correlates vary among species present throughout the NFR. We also present climate and tree 

growth data that were smoothed using a 10-year mean to emphasize mid- and low-frequency 

climatic trends rather than high-frequency variability. These data allow graphical comparisons of 

interdecadal climate variability throughout the time-period of our analysis, as well as depictions 

of the 19th century climatic conditions leading to the forests present in 1938. Using these data, 

we identified pluvials as time periods in which 10-year running means of radial growth (for both 

Pinus ponderosa and Picea engelmannii) were above average in at least 5 consecutive years. 

Droughts were defined as the inverse – at least 5 consecutive years of negative growth departures 

for both species using the smoothed time series. 

A.1.1 Interannual and Interdecadal Variability in Fire Activity, Climate, and Tree Growth 

Fire activity in the study area varied widely throughout the 1800-2015 time-period (Fig. 

2.2a). The proportion of sites recording spreading fires increased through the 1800s, then general 

declines were evident. While some sites recorded fire exclusion in the late 1800s, many 
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continued to burn until c. 1920, with some isolated fire activity after this date. Residual 

chronologies for Engelmann spruce and ponderosa pine were correlated with components of 

interannual climate (Fig. 2.2b, 2.2c). In the 1896-2015 period, the Engelmann spruce residual 

chronology was negatively correlated with summer vapor pressure deficit (VPD; r = -0.45) and 

showed a slight negative correlation with winter precipitation (r = -0.10). In contrast, the 

ponderosa pine residual chronology was positively correlated with winter precipitation (r = 0.58) 

and had a slight negative correlation with summer VPD (r = -0.08). May 1st SWE was positively 

related to residual chronologies of ponderosa pine (r = 0.36) and less so for Engelmann spruce (r 

= 0.16). These trends reflect general differences in relationships between radial growth and 

climate for mature ponderosa pine and Engelmann spruce in our study area, and the correlation 

between the chronologies for the two species was low (r = 0.12). Summer drought stress 

increased from 1896 to 2015 (correlation of year and VPD = 0.33), with the period of greatest 

summer VPD occurring in the early 2000s. During this same period, winter precipitation 

increased slightly (r = 0.15). From 1938-2015 (the period of available data), SWE from the 

University Camp Snow Course declined (r = -0.23) likely reflecting increasing spring and 

summer temperatures (and earlier snowmelt) rather than a reduction in winter precipitation. 

A.1.2 Influences of Interannual and Interdecadal Climate Variability on Forest Cover 

Though climate was not a direct focus of this study, previous literature suggests that 

interannual and interdecadal variability in climate likely played a role in changes in forest cover 

through the 20th century. Tree growth, pulses of establishment, fire activity, and bark beetle 

outbreaks – important drivers of forest change in the Southern Rocky Mountains – are all closely 

tied to climate. Pluvial periods in the early 1900s and 1980s-1990s (Fig. 2.2; in conjunction with 

fire exclusion and altered livestock grazing practices) may have helped to trigger pulses of 
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establishment in the lower montane zone (Mast et al. 1998, Sherriff and Veblen 2006). These 

pulses of establishment (e.g., early 1900s, 1980s-1990s) were also identified in a montane site in 

the southern Front Range (Boyden et al. 2005), suggesting that interdecadal periods of beneficial 

climate may lead to synchronous recruitment across broad spatial scales. Ponderosa pine in 

particular is known to establish episodically during years with beneficial climatic conditions 

(League and Veblen 2006, Rother and Veblen 2017). In contrast, tree establishment in more 

mesic upper montane sites may be more strongly limited by growing space than by climate 

(sensu Ehle and Baker 2003), as evidenced by the abundant establishment of conifers following 

wildfires during a period of relative drought in the 1800s (Sherriff and Veblen 2006, 

Schoennagel et al. 2011, Battaglia et al. 2018). In the subalpine zone of the NFR, Engelmann 

spruce and subalpine fir tend to establish with relative synchrony during years of above average 

snowpack and/or cool, wet summers, again suggestive of broad-scale climatic controls (Andrus 

et al. 2018).  

Wildfire activity, the largest driver of forest loss in our study area from 1938-2015, is 

known to correlate strongly with temperature and/or precipitation. In the NFR, sites within the 

lower montane zone historically experienced broad-scale and synchronous fire activity during 

dry years with antecedent moisture, primarily because these prior wet years led to abundant fine 

fuels in a relatively fuel-limited system (Veblen et al. 2000, Sherriff and Veblen 2008). In 

contrast, upper montane and subalpine forests primarily burn in years of extreme drought, and 

are not as dependent on antecedent precipitation (Sibold and Veblen 2006, Sherriff and Veblen 

2008). Bark beetle (e.g., Dendroctonus and Ips spp.) activity is also heavily influenced by 

climate, and insect outbreaks have been triggered by recent droughts throughout the Southern 

Rocky Mountains (Chapman et al. 2012, Hart et al. 2014, 2017).  Episodic tree mortality is also 
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driven by extreme drought events in the NFR and sometimes lagged by ten years or so following 

droughts (Bigler et al. 2007), representing an additional link between climate and tree death. We 

theorize that interannual and interdecadal periods of drought act as important controls on broad-

scale forest cover in the NFR, primarily by triggering broad-scale disturbance and mortality 

events that respond to climate.  

A.2 Image Processing, Segmentation and Classification 
 

Image texture and contrast can aid in the classification of remotely sensed imagery 

(Richards 2013). To provide ancillary data for use in our image classifications, we used an 

expanding-window approach (sensu Coburn and Roberts 2004) to calculate two metrics relating 

to texture and edge contrast. Moving window processing was conducted across many spatial 

scales (3x3, 5x5, 7x7, 9x9, 11x11, 13x13, and 15x15 pixel windows) surrounding each c. 1 m 

cell, thus providing relevant information for forest patches of different sizes.  

Our first metric identifies pixels that are darker than their surroundings (hereafter “local 

minima”). To identify local minima, we calculated the mean and standard deviation of pixel 

brightness at each scale (3-15 pixel windows). A pixel was considered to be darker than its 

surroundings if its brightness value was lower than the window mean minus two standard 

deviations. These calculations were made for each window size for each pixel, then summed 

across all window sizes (thus, local minima values range 0-7, where 7 indicates that a pixel is 

darker than its surroundings across all moving window sizes; Fig. 2.3b). Local minima values 

were helpful in classifying individual trees on brightly lit ridgetops, south-facing hillslopes, or in 

grassland-dominated areas.  

For the second metric, we calculated the sum of standard deviation values across all 

window sizes (Fig. 2.3c). Standard deviation of pixel brightness is a simple version of local 
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texture that can improve forest classification in high-resolution imagery. While standard 

deviation is more computationally efficient than many other texture metrics (e.g., entropy based 

on grey-level co-occurrence matrices), it may still yield comparable performance in classification 

(Coburn and Roberts 2004). Standard deviation appeared helpful in separating dark forest stands 

(low brightness, moderate variance) from more homogenous areas (low brightness, low variance; 

i.e., water bodies, shadows).  

We combined these three layers (brightness, local minima, and standard deviation) to 

create a three-band composite image (Fig. 2.3d). We completed these image processing steps in 

Python 2.7 using the GDAL (Geospatial Data Abstraction Library 2017), SciPy (Oliphant 2007), 

and NumPy (Hugunin 1995) modules. NAIP imagery was processed similarly (minima and 

standard deviation calculated using a greyscale image of the average brightness across all bands). 

 Prior to classification, we also performed an image segmentation on the three-band 

composite imagery (brightness, local minima, standard deviation) using the segment mean shift 

algorithm in ArcGIS 10.4 (ESRI 2016). Segmentation is a useful procedure when attempting to 

identify homogeneous areas or features (i.e., objects) in data with high spatial resolution, where 

pixels are smaller than the objects of interest (such as individual trees and forest stands in high-

resolution aerial imagery; Blaschke 2010). We selected segmentation parameters iteratively on a 

subset of the imagery to create a segmentation that identified individual trees in open areas as 

objects, but also considered large homogeneous areas of forest cover to be objects. In this sense, 

we prioritized spectral similarity rather than sensitivity to scale, and primarily used segmentation 

as a noise-reduction technique to reduce misclassification of individual pixels within 

homogeneous areas. Final segmentation parameters were the same for both time periods. We 
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allowed objects to be as small as 3 contiguous pixels, a size threshold (2-3 m in diameter) at 

which an adult tree might be realistically separated from an individual shrub. 

 Following segmentation, we identified training areas for classification of four distinct 

forest and non-forest cover types. These classes were: 1) dense, dark, and homogeneous forests, 

2) smaller forest patches with moderate brightness values and high values for local minima and 

standard deviation, 3) very bright surfaces (roads, bare ground) and, 4) moderately bright 

grassland or non-forest vegetation. Using these training areas, and ancillary data from DEM 

hillshade values (for historical air photos) and a red-green index (NAIP), we performed a 

supervised classification of the segmented image using support vector machines. Support vector 

machines (SVMs) are a statistical learning algorithm commonly used in remote sensing, that can 

identify non-linear decision boundaries between classes in multi-dimensional space, making few 

distributional assumptions (Hastie et al. 2009). Following classification, we merged all distinct 

forest classes (1 and 2), and all distinct non-forest classes (3 and 4), to create a binary forest/non-

forest layer at c. 1 m resolution. We then identified shadows as pixels with brightness and 

standard deviation values less than 10 and buffered these pixels by 7 m in all directions 

(equivalent to the largest window size used in our image processing; Fig. 2.3e). Shadows in 

either time period were combined with spatial data identifying lakes, reservoirs (USGS 2018), 

incorporated urban areas, and elevations above 3500 m (USGS 1999), and these areas were 

masked from the analysis for both 1938 and 2015. In addition, we manually removed areas of 

degraded imagery that could not be reliably classified in the 1938 imagery (i.e., fading, creases, 

handwriting on original prints). Of the total study area, 93.9% (2713.19 km2) was left unmasked 

and classified and was included in later analysis. Finally, we manually reclassified a small 

number of forest areas that were, by visual interpretation, bare ground on dark hillsides or in lush 
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meadows. This manual reclassification had relatively minor effects, resulting in net reductions of 

estimated 1938 forest cover and 2015 forest cover by 1.09% and 0.45%, respectively. Forest 

cover in recently burned areas (for the 2015 classification) was also corrected using a systematic 

photointerpretation that was completed for another study meant to identify the presence of live 

seed trees in recent burn areas (T. Chapman, unpublished data). Initial estimates of classification 

accuracy in this project exceed 97%. Following processing and classification, the 1938 

classification was resampled from 1.1 to 1 m using nearest neighbor interpolation to facilitate 

direct comparison with 2015 NAIP. 

A.3 Accuracy Assessment and Uncertainty Modeling 

To permit comparisons with previous studies, we performed a traditional accuracy 

assessment of our image classifications for both historical and contemporary imagery (sensu 

Congalton 1991, Olofsson et al. 2014). Because we used a combination of object- and pixel-

based classification techniques, where segmentation was primarily used to reduce noise and 

enhance pixel-level classification accuracy, we based our methods for accuracy assessment on 

the recommendations of Olofsson et al. (2014) and Radoux and Bogaert (2017) for enhanced 

pixel-level accuracy assessments. First, we randomly located 2,000 points through each 

classified map (4,000 total), with a minimum spacing of 400 m to prevent points from being 

located within the same segmented object. We then used manual photointerpretation at each 

point to identify the cover type of a specific 1 m pixel (forest/non-forest) and compared this 

reference to the predicted cover type from the final classification. Indicator variograms of 

classification accuracy (correct/incorrect) for points at a minimum 400 m spacing had nugget to 

sill ratios near 1, indicating little spatial dependence of classification error at scales greater than 
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400 m. Overall agreement between the reference class and predicted class was 90.2% for the 

1938 imagery, and 89.4% for the 2015 imagery (Table A1). 

Table A1. Confusion matrices of classification accuracy of 1938 and 2015 aerial imagery in the 
northern Front Range, CO, based on manual photointerpretation at 2,000 randomly located 
points. Cell values are given for proportion of total map area in each class. Area proportions, 
accuracy metrics, and 95% confidence intervals were calculated following the recommended 
protocol of Olofsson et al. (2014). 
  1938 Classification 

                            Reference Class  
  Non-Forest Forest User's Acc. 
Predicted 
Class Non-Forest 0.371 0.064 85.29 ± 2.36 

 Forest 0.034 0.531 93.98 ± 139 
 Prod.'s Acc. 91.61 ± 1.78 89.24 ± 1.78 90.20 ± 1.29 

 
 
   2015 Classification 

   Reference Class  
  Non-Forest Forest User's Acc. 
Predicted  
Class Non-Forest 0.310 0.048 86.63 ± 2.51 

 Forest 0.058 0.584 90.90 ± 1.57 

 Prod.'s Acc. 84.12 ± 1.36 92.44 ± 2.07 
89.37 ± 

1.35 
 

Accurate results of change detection analyses are contingent upon spatial alignment (i.e., 

co-registration error) and accurate thematic representations of cover types (i.e., classification 

accuracy; Leyk et al. 2018). To account for these effects, we performed an uncertainty analysis 

in which we used a combination of Monte Carlo simulations of co-registration error and spatial 

models of classification accuracy (derived from binomial GLMs; sensu Leyk and Zimmermann 

2004, 2007) to develop lower and upper estimates of forest cover for each 250 m cell in each 

time period. We used binomial GLMs to predict classification accuracy for each 1m pixel using 

the following: 1) raw pixel brightness (unsegmented) across all bands, 2) segmented pixel values 

across all bands, 3) the difference between segmented and unsegmented values in each band 
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(essentially the effect of smoothing on each pixel), as well as 4) the predicted class and relevant 

interaction terms. We extracted these independent predictors at each of the manual 

photointerpretation points used in the traditional accuracy assessment, as well as the binary 

dependent variable of correct/incorrect classification. We selected final variables for each GLM 

using Akaike’s Information Criterion (AIC) and likelihood ratio tests. For each of these binomial 

models, we used c-log-log link functions to account for unbalanced sampling of the dependent 

variable that was heavily skewed in favor of correct classification (Zuur et al. 2009). Following 

fitting of the final models, we tested for homogeneity of variance and spatial independence of 

residuals in each GLM using the “DHARMa” package in R (Hartig 2018), and found no 

evidence for violations of model assumptions. Adjusted deviance squared (following Guisan and 

Zimmermann 2000) for the final GLMs were 0.32 for 1938 imagery, and 0.28 for the 2015 

imagery. We used these models to make predictions of the probability of an accurate 

classification for each 1 m cell across each date, and then calculated the overall accuracy, forest 

accuracy, and non-forest accuracy using all predicted values within each 250 m grid cell. Overall 

accuracy in each grid cell was calculated as the mean probability of a correct classification 

across all classified pixels, while forest and non-forest accuracies were the mean values for all 

pixels assigned to each class (Fig. A1a-d). 
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Fig. A1. Steps to identify cells with significant increases or decreases in forest cover in the 
northern Front Range of Colorado 1938-2015. Classification accuracy was modeled locally for 
each cell in 1 m imagery (a, b) using generalized linear models meant to predict the probability 
of a correct classification in a given grid cell (b). Overall accuracy (c, d; 1938 and 2015, 
respectively), as well as the accuracy for forest and non-forest classes were taken as the mean 
probability across all classified 1 m cells in each 250 m grid cell. Lastly, 1938 imagery was 
randomly shifted 200 times to simulate the effects of co-registration error (e; values given as the 
standard deviation of net forest change 1938-2015 across all simulations). Example shown is for 
1 km grid cells, but the final analysis was also performed at the 250 m resolution. 
 

We also quantified and incorporated the sensitivity of forest cover estimates to error in 

image co-registration. Using an independent set of tie points not used in co-registration (n = 

100), we fit several potential distribution functions to the values of co-registration error (normal, 

exponential, Weibull, gamma, and log-normal). Through comparisons of root-mean-square error 

and visual interpretation of histograms and qqplots, we determined that distances of co-

registration error were best approximated with a log-normal distribution (mean = 2.92 and sd = 

0.73 on the log scale). We then drew 200 random samples of offset distance from this log-normal 

distribution, as well as 200 random azimuth values (0-360 from a uniform distribution) to 

perform a Monte Carlo simulation of sensitivity to co-registration error. Over these 200 
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simulations, each of the 250 m aggregated cells was shifted by a random distance and azimuth to 

extract the estimate of percent forest canopy cover in 1938 from that new location. We used the 

6th and 195th ranked simulations (out of 200) to construct 95% confidence intervals of forest 

cover for each 250 m grid cell in the 1938 imagery. 

Lastly, we combined modeled classification accuracy and the simulations of co-

registration error using a series of decision rules to determine if forest cover change exceeded 

potential error in each 250 m grid cell. Error bounds were defined as follows: 

𝐿𝑜𝑤𝑒𝑟𝐹𝑜𝑟𝑒𝑠𝑡)*+, = 	 (%𝐴𝑐𝑐345678 ∗ 𝐹𝑜𝑟𝑒𝑠𝑡𝐴𝑟𝑒𝑎;8<)/𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝐴𝑟𝑒𝑎;8< 

𝑈𝑝𝑝𝑒𝑟𝐹𝑜𝑟𝑒𝑠𝑡)*+, = 	 (𝐹𝑜𝑟𝑒𝑠𝑡𝐴𝑟𝑒𝑎)*F8< + H𝑁𝑜𝑛𝐹𝑜𝑟𝑒𝑠𝑡𝐴𝑟𝑒𝑎)*F8< ∗ (1 −%𝐴𝑐𝑐M4N345678)O)/𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝐴𝑟𝑒𝑎)*F8< 

𝐿𝑜𝑤𝑒𝑟𝐹𝑜𝑟𝑒𝑠𝑡PQ)F = 	 (%𝐴𝑐𝑐345678 ∗ 𝐹𝑜𝑟𝑒𝑠𝑡𝐴𝑟𝑒𝑎)/𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝐴𝑟𝑒𝑎	 

𝑈𝑝𝑝𝑒𝑟𝐹𝑜𝑟𝑒𝑠𝑡PQ)F = (𝐹𝑜𝑟𝑒𝑠𝑡𝐴𝑟𝑒𝑎 + H𝑁𝑜𝑛𝐹𝑜𝑟𝑒𝑠𝑡𝐴𝑟𝑒𝑎 ∗ (1 −%𝐴𝑐𝑐M4N345678)O)/𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝐴𝑟𝑒𝑎 

Where LowerForest and UpperForest are the lower and upper estimates for forest cover at a 

given date (1938 or 2015), %Acc is the estimated classification accuracy for a given cover type, 

ForestArea and NonForestArea are the total area classified (by SVMs) as forest and non-forest, 

respectively, and ClassifiedArea is the total area classified as either cover type. Subscripts 6 and 

195 correspond to the 6th and 195th ranked estimates of forest cover (95% bounds) across the 

Monte Carlo simulations of co-registration error for the 1938 imagery. All values in the above 

formulas were specific to each grid cell, thus identifying potential ranges of forest cover in each 

250 m area at each date (1938 or 2015).  

We determined that a grid cell had experienced a significant change in forest cover 1938-

2015 if the potential ranges of forest cover in 1938 and 2015 did not overlap. In other words, if a 

maximum estimate of 1938 forest cover was lower than the minimum estimate of 2015 forest 

cover, a grid cell was classified as Forest Gain. Likewise, if the maximum estimate of 2015 

forest cover was lower than minimum estimate of 1938 canopy cover, a grid cell was classified 
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as Forest Loss. If the error bounds for the two time-periods overlapped, a cell was then classified 

as Little Change (generally less than 15% net change). Following thresholding, we manually 

reclassified 1,331 Forest Loss grid cells (3.0% of the total area) to Little Change because 

designation as Forest Loss in these cells was primarily due to lighting conditions in the 1938 

imagery (i.e., overestimates of 1938 forest cover due to topographic shading). 

A.4 Data Processing and Selection of Variables that Potentially Drive Forest Change 

 To assess the relative influences of several potential drivers of forest change, we 

performed a Random Forest analysis at the 250 m scale to predict forest change class (Little 

Change, Forest Gain, Forest Loss) as a function of 13 landscape variables relating to land use, 

land management, ownership designation, the physical environment, and historical and recent 

wildfire activity (Table 2.2). The following is a description of these datasets, and the ways in 

which they were processed prior to performing our analyses.  

Related to land use, we acquired mine location data for the study area from the USGS 

Mineral Resource Data System (USGS 2005). We then created a spatial kernel estimate of mine 

density using Scott’s rule of thumb for bandwidth selection, which is appropriate for illustrating 

gradual trends in density of point locations through space (Scott 1992, Baddeley and Turner 

2005). We used the spatstat package in R to perform kernel density estimation (Baddeley and 

Turner 2005). We also acquired estimates of land cover type in 1938 in each 250 m cell from a 

spatially explicit model of historical land cover (Sohl et al. 2016). This model was created using 

backcasting at a 250 m spatial resolution and annual time scale, with the National Land Cover 

Dataset and numerous historical data sources (e.g., Census of Agriculture, historical housing 

density) as inputs (Sohl et al. 2016). Visual comparison of this model with our data suggested a 

good match between predicted cover types and those present in the 1938 imagery. We also 
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included the proportion of developed land in each grid cell from the most recent iteration (2011) 

of the National Land Cover Dataset (Homer et al. 2015). Proportion treated area was extracted 

from a regional database of silvicultural treatment activities (e.g., thinning and prescribed fire) c. 

2006-2016, but including some activities prior to this date (Caggiano 2017). We excluded any 

silvicultural treatments occurring outside the time period of image coverage (1938-2015), and 

treatments that were related to invasive weed management or other activities that would have 

minimal influence on the forest overstory. Lastly, we calculated road density using the TIGER 

primary and secondary road layers (USCB 2017) as the linear distance of TIGER roads (m) per 

grid cell. 

 We extracted four variables related to land ownership designation from the COMaP 

(Colorado Ownership, Management, and Protection) dataset. COMaP is the most comprehensive 

dataset of land ownership at the state level, and incorporates data from numerous agency partners 

(COMaP 2010). We derived four variables from this dataset for each grid cell – proportion 

city/county open space, proportion National Park Service land, proportion private land, and 

proportion US Forest Service land. These are the four largest land ownership categories in the 

study area and represent four differing sets of land-use histories and management strategies. 

 To describe characteristics of the physical environment, we used 10 m digital elevation 

models from the National Elevation Dataset (USGS 1999). We extracted the mean elevation (m) 

from each grid cell, as well as the mean heat load index (calculated at a 10 m resolution). Heat 

load index (HLI) is a combined variable incorporating transformed aspect (NE to SW), slope, 

and latitude. HLI is typically used to estimate moisture stress and radiant intensity on a given 

site, with higher values representing steep, SW-facing slopes, and low values representing steep 

NE-facing slopes (McCune and Keon 2002). We calculated HLI using the spatialEco (Evans 
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2017) and raster (Hijmans 2015) packages in R, and used an exponential transformation of 

equation 1 defined in McCune and Keon (2002). 

 Finally, we obtained spatial data describing recent and historical fire activity. We 

acquired spatial data identifying recent fire perimeters from the monitoring trends in burn 

severity program (all fires larger than c. 400 ha occurring 1984-2015; Eidenshink et al. 2007), 

“historical perimeters” from the USGS geospatial multi-agency coordination dataset (all fires 

larger than 40 ha 2000-2015; USGS 2018), and other data from local and regional land 

management offices (extending the record to 1978). We merged these datasets into a single layer, 

removing fires represented multiple times, and used the merged data to calculate the proportion 

of each grid cell that burned 1978-2015. We acknowledge that records for large fires since 1984 

are more complete than for other events, however, previous research has documented very little 

fire activity in this region c. 1938 – late 1970s (Veblen and Donnegan 2005, Collins et al. 2006; 

Fig. 2.2). Furthermore, while the exclusion of fires less than 40 ha may ignore many individual 

fire events, large events make up the majority of the area burned in the NFR. A simple 

comparison with the national wildland fire occurrence database (USGS 2018; which includes 

many smaller fires without polygonal data identifying fire perimeters) suggested that our dataset 

omitted less than 5% of total area burned on public lands in the NFR during the 1980-2015 

period. To assess the influence of historical fire regimes on 20th century forest change, we also 

incorporated the spatial model of low severity fire created by Sherriff et al. (2014). This dataset, 

at 30 m resolution in raster format, was created using 232 fire history sites through the Colorado 

Front Range and is currently the most detailed model of montane fire history in our study area. 

We calculated proportion low severity as the proportion of each 250 m grid cell predicted to have 

been dominated by frequent, low severity fire prior to the onset of fire exclusion c. 1920. 
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In addition to these variables, we also explored factors such as bark beetle (Dendroctonus 

and Ips spp.) presence and severity, climate (PRISM 2011), and satellite-derived growing season 

length and amplitude (USGS 2015). These variables were excluded either because they 

explained a very small proportion of total variance (bark beetle activity) or because they were 

strongly correlated with elevation and thus added no additional explanatory power (gridded 

climate data and satellite-derived phenology). While bark beetle outbreaks have occurred in 

portions of our study area, the severity and extent of infestation are generally much lower than in 

other portions of Colorado, such as the western slope of the Front Range and in the San Juan 

Mountains (USFS 2015). 
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A.5 Summary of Changes in Forest Cover and Results of Random Forest Analyses 

Table A2. Summary of net changes in forest cover c. 1938-2015 in the northern Front Range of 
Colorado. Unless otherwise stated, values given are in percent forest cover out of the total 
mapped area for a given date. “Unburned Areas” represent the entire study area after excluding 
locations within known fire perimeters (1978-2015). “Grid Cells” are 250 m cells (n = 44,464) 
that we classified as Forest Gain, Forest Loss, and Little Change based on directional changes in 
forest cover exceeding the influence of inaccurate classification and co-registration error. 
Montane and subalpine fire histories are for stands within the study area with stand-specific fire 
history records, where lower and upper bounds represent minimum and maximum values in the 
change detection (based on sensitivity to inaccurate classification and co-registration error). 
 

Forest Cover 1938 2015 Net Change 

Entire Study Area 56.5 64.3 7.8 
Burned Areas 56.6 19.7 -36.9 
Unburned Areas 57.2 71.6 14.4 
Lower Montane (1700-2400 m) 46.6 51.1 4.5 
Upper Montane (2400-2800 m) 62.2 69.6 7.4 
Subalpine (2800-3500 m) 65.4 81.4 16 

Grid Cells Forest Gain Little Change Forest Loss 

Entire Study Area 39.4 47.6 13.0 

Montane Fire History Lower Bound Net Change Upper Bound 

Low-Severity Class 4.4 15.7 26.4 
Mixed-Severity Class -2.4 11.7 20.2 

Subalpine Fire History Lower Bound Net Change Upper Bound 

Last Fire Before 1650 3.8 13.4 19.5 
Last Fire 1650-1850 0 9.6 16.2 
Last Fire 1850-1900 6.5 19.9 27.6 
Last Fire 1900-1938 14.6 27.2 34.1 
Last Fire 1938-2015 -42.7 -31.9 -17.3 
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Fig. A2. Further results of Random Forest analysis at 250 m resolution. Partial dependence of 
forest change class (significant gain, significant loss, little change) on 13 landscape variables 
relating to land use, ownership, abiotic environment, historical fire regime, and recent (1978-
2015) fire activity. The four variables of greatest relative importance at this scale of analysis 
(proportion burned, elevation, density of mine sites, and proportion low severity fire regime) are 
also presented in Fig. 2.6 in the manuscript. 
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Table A3. Confusion matrix from Random Forest classification based on 13 landscape predictors 
of forest change class (1938-2015) in the study area in the Colorado Front Range. Cell values are 
the number of 250m grid cells included in the final analysis. 
  Reference Class 

  Forest Loss Little Change Forest Gain User's Acc. (%) 

Predicted Forest Loss 4290 922 143 80.11 

Class Little Change 1259 14570 6765 64.49 

 Forest Gain 230 5656 10629 64.36 

 Prod.'s Acc (%) 74.23 68.90 60.61 Overall = 66.32 
 
 

 

 

Fig. A3. Random Forest analysis of several potential drivers of forest cover change in the 
northern Front Range of Colorado, 1938-2015 at a 1 km scale of analysis. Results are presented 
at this scale (in addition to the 250 m scale included in the main text) for comparison and 
assessment of scale-dependent relationships. Variable importance plot (a) gives the relative 
importance of each variable in the ensemble model, and partial dependence plots (b-e) show the 
marginal effects of each of the top four predictors across their respective ranges. 
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APPENDIX B 
 
 

SUPPLEMENTARY MATERIAL FOR CHAPTER 3 – LIMITATIONS TO 
RECOVERY FOLLOWING WILDFIRE IN DRY FORESTS OF SOUTHERN COLORADO 

AND NORTHERN NEW MEXICO, USA 
 

B.1 Description of Climate Downscaling Methods and Water Balance Calculations 

To characterize climate and moisture availability throughout each fire, we performed a 

statistical downscaling of gridded climate data and combined these data with a monthly water 

balance model. First, we used spatial gradient and inverse distance squared interpolation (GIDS; 

following Nalder and Wein 1998, Flint and Flint 2012) of monthly climate data from the 

Parameter-Elevation Regression on Independent Slopes Model (PRISM; PRISM 2018). GIDS-

products developed using similar methods have been shown to be tightly correlated with 

independent validation data (McCullough et al. 2016). To describe long-term average climate 

across each site, we used monthly 30-year climate normals (800 m initial resolution) of 

maximum temperature, minimum temperature, and precipitation for the 1981-2010 period. To 

describe climatic conditions following each fire, we also used PRISM annual data (4 km initial 

resolution) for all months during the first three years following fire. This three-year time-period 

has been shown to be important for the prediction of post-fire conifer establishment in related 

studies (Harvey et al. 2016, Stevens-Rumann et al. 2018). Post-fire data were first downscaled to 

800 m, then all layers (post-fire climate and 30-year climate normals) were downscaled from 800 

m to 270 m to 90 m to 30 m using GIDS with digital elevation models from the national 

elevation dataset (USGS 1999) as ancillary data. 

Following statistical downscaling, we calculated monthly actual evapotranspiration 

(AET), potential evapotranspiration (PET) and climatic water deficit (CWD; the difference 

between PET and AET) using the modified Thornthwaite water balance model described by Lutz 
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et al. (2010). We obtained soils data from POLARIS (Chaney et al. 2016), and calculated 

available water capacity (one of the inputs in the water balance model) as the product of soil 

depth and fractional water capacity in the top 200 cm of soil. We also calculated heat load index 

(HLI) (sensu McCune and Keon 2002) – a proxy for topographic variation in incoming 

shortwave radiation and heating – and used these data as a terrain modifier on PET following 

Lutz et al. (2010). AET, PET, and CWD were developed at a monthly time step and we derived 

predictors from these data using: 1) the summed annual values of AET and CWD from 30-year 

normal (Fig. 3.5, Fig. 3.6), 2) the average annual values of AET and CWD in the three years 

following a given fire, and 3) the percent deviation between 1 and 2 as an index of relative post-

fire drought (Table 3.2).  

Important limitations of these methods should be acknowledged. The water balance 

model of Lutz et al. (2010) relies on a modified Thornthwaite-Mather estimate of potential 

evapotranspiration (PET) to calculate PET, AET, and CWD. This method of estimating of PET 

is primarily based on temperature, however, solar radiation-based (e.g., Priestley-Taylor) and 

combination (e.g., Penman-Montieth) methods of calculating PET may provide more realistic 

estimates of evaporative demand than do temperature-based approaches. However, radiation-

based and combination approaches require detailed inputs of incoming solar radiation, relative 

humidity, and/or wind speed (Xu and Singh 2002, Chen et al. 2005). These data are not available 

at the 30 m resolution used in this study and would be computationally intensive to model at this 

resolution across broad landscapes. Furthermore, the Lutz et al. (2010) equations incorporate 

heat load index (McCune and Keon 2002) to modify PET estimates by accounting for aspect-

driven differences in incoming radiation - this partially accounts for the drawbacks of the 

Thornthwaite-Mather approach. 
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B.2 Description of Aerial Image Classifications to Quantify Mature Conifer Canopy Cover 

Throughout Each Fire 

We created thematic maps of the cover of surviving mature conifers throughout each fire 

using image classification of 4-band aerial imagery collected in 2014 (for NM) or 2015 (for CO) 

(NAIP; USFS 2015). To add supplementary information describing image texture and image 

texture, we processed the 4-band imagery using multi-scaled moving windows (following 

Coburn and Roberts 2004, Rodman et al. 2019; summed values from window sizes of 3, 5, 7, 9, 

11, 13, and 15 pixels). Following image processing, this led to a 7-band image composite 

consisting of the following: visible bands (red, green, and blue wavelengths), near-infrared, 

NDVI (normalized difference vegetation index), local standard deviation of brightness in the 

visible bands, and local standard deviation of NDVI (Fig. B1). Local standard deviation of NDVI 

was particularly helpful in the classification as it helped to identify vegetated areas (high NDVI) 

near shadows (low NDVI), which is typical of large mature trees in aerial imagery.  

We then classified this 7-band composite image as forest/non-forest using a semi-

supervised workflow within each fire. First, each 1 m pixel was assigned to one of 12-20 classes 

using an ISODATA (Iterative Self-Organizing Data Analysis Technique) unsupervised cluster 

algorithm. We then merged these classes into forest/non-forest categories and used a 3x3 pixel 

majority filter for post-classification correction. Following classification, we removed non-

vegetated areas from the forest class using NDVI (normalized difference vegetation index) 

thresholding at a 1 m resolution. Lastly, we removed areas that had no live seed trees using a 30 

m manual photointerpretation completed for a previous study (initial accuracy >97%; T. 

Chapman unpublished data), with RdNBR thresholding, and a final manual photointerpretation 

to identify any additional misclassified areas. Following classification, we performed an 
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accuracy assessment using a total of 1,000 randomly-located points. These points were stratified 

throughout each fire (where the number of points in a fire was based on fire area), and with 

balanced sampling based on predicted cover type (i.e., forest/non-forest). At each point, we 

performed manual photointerpretations of NAIP imagery (USFS 2015), supplemented by higher 

resolution satellite imagery (c. 0.4 m) available through ArcGIS 10.4 (ESRI 2016) to determine 

reference classes. We then developed a confusion matrix of area proportions in each cover type 

following the methods of (Olofsson et al. 2014). Overall accuracy was 90.2% and user’s 

accuracies exceeded 90% for each cover type (Table B1). Producer’s accuracy for the forest 

class was lower (68.2%); however, this was primarily due to use of area proportions and the 

greater prevalence of the non-forest cover type as compared to forest cover. Calculation of this 

same value using raw counts of photointerpretation points led to a producer’s accuracy > 90%.  

 Following image classifications, we then quantified canopy cover throughout each fire at 

a range of neighborhood sizes (30 – 600 m radii in 30 m increments) surrounding each 30 m grid 

cell. We did this in an effort to better understand the importance of different scales of canopy 

cover in predicting conifer seedling abundance (Table 3.2, Fig. 3.5, Fig. 3.6). At each scale (i.e., 

circular radius around the center of each grid cell), canopy cover was calculated as the following: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡	𝐶𝐶7STU6	V =
𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑	𝑓𝑜𝑟𝑒𝑠𝑡	𝑎𝑟𝑒𝑎V

(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑	𝑓𝑜𝑟𝑒𝑠𝑡	𝑎𝑟𝑒𝑎V) + (𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑	𝑛𝑜𝑛𝑓𝑜𝑟𝑒𝑠𝑡	𝑎𝑟𝑒𝑎V)
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Fig. B1. Steps involved in image processing and classification of 2014 and 2015 NAIP imagery 
for each fire. Panels of (a) true color and (b) false color composites show the four spectral bands 
in green, blue, red, and near-infrared wavelengths. To improve pixel-level classification of 
mature conifer trees in each fire, we processed these data to calculate (c) the normalized 
difference vegetation index (NDVI), (d) the local standard deviation of visible bands, and (e) the 
local standard deviation of NDVI. The (f) final classified image shows tree (green) and non-tree 
(grey) pixels following image classification and thresholding using systematic 
photointerpretation and RdNBR (Landsat-derived fire-severity; relative differenced Normalized 
Burn Ratio) thresholding. Example scene is from the Mato Vega fire at 105.27 W, 37.59 N.  
 
 
Table B1. Accuracy assessment from image classifications of 2014 and 2015 NAIP Imagery 
throughout each fire. We used c. 1000 points of manual image interpretation stratified by 
predicted class and throughout each fire. Values given are area proportions (proportion of total 
mapped area estimated to belong to each combination), as well as percent overall, user’s, and 
producers’s accuracies following Olofsson et al. (2014). 
  Reference Class 

  Non-Forest Forest User's Acc. 

Predicted  
Class 

Non-Forest 0.730 0.080 90.13 
Forest 0.019 0.172 90.24 
Prod.'s Acc. 97.52 68.21 Overall = 90.15 
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B.3 Results of Cross-Validation, Sensitivity Analysis, and Spatial Models of Ponderosa Pine 

and Douglas-fir Seedling Abundance 

 
Table B2. Sensitivity analysis of different stocking levels and the results of spatial models of 
post-fire ponderosa pine seedling abundance. “Balanced Accuracy” gives the balanced 
classification accuracy results from cross-validation at each stocking threshold. Selected 
thresholds discussed in the main text are delineated with (*). 

 

Stocking 
Threshold 
Seedlings/ha 

Percent Area Below 
 Threshold ("Low 
Regeneration") 

Percent Area  
Canopy 
Limited  

Balanced Accuracy 
(%) - CV 

Total Area 5 4.75 3.94 61.92 
 *25 41.77 25.39 70.55 
 50 73.12 32.62 67.27 
 100 92.82 12.92 64.62 
 200 98.3 0.48 56.22 
High Severity  
Only 5 6.28 5.15 N/A 
 25 57.27 38.47 N/A 
 50 83.12 50.17 N/A 
 100 98.09 18.17 N/A 
 200 99.56 0.72 N/A 
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Table B3. Sensitivity analysis of different stocking levels and the results of spatial models of 
post-fire Douglas-fir seedling abundance. “Balanced Accuracy” gives the balanced classification 
accuracy results from cross-validation at each stocking threshold. 

 

Stocking 
Threshold 
Seedlings/ha 

Percent Area Below 
 Threshold ("Low 
Regeneration") 

Percent Area  
Canopy 
Limited 

Balanced Accuracy 
(%) - CV 

Total Area 2 20.46 20.45 72.8 
 *10 68.49 67.56 77.33 
 20 83.82 81.51 75.52 
 40 94.64 90.08 69.52 
 80 97.68 87.37 63.46 
High Severity  
Only 2 33.77 33.76 N/A 
 *10 79.35 78.28 N/A 
 20 89.97 87.36 N/A 
 40 99.58 94.47 N/A 
 80 99.84 89.14 N/A 
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Fig. B2.  An example showing the spatially continuous predictor datasets used in spatial 
modeling of post-fire seedling abundance for the Ponil Complex fire near Raton, NM. Forest 
cover (based on classifications of aerial imagery), 30-year averages of annual actual 
evapotranspiration (AET), and annual climatic water deficit (CWD) were used to model post-fire 
seedling abundance for each species at 30 m resolution across each fire. 
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APPENDIX C 
 
 

SUPPLEMENTARY MATERIAL FOR CHAPTER 4 – A CHANGING CLIMATE IS 
SNUFFING OUT POST-FIRE FOREST RECOVERY IN THE SOUTHERN ROCKY 

MOUNTAINS 
 

C.1 Description of Vegetation Classes in Montane Zone 

Table C1. LANDFIRE vegetation types included in the definition of the montane zone used in 
this study. Data were from the 2014 LANDFIRE classification of environmental site potential 
(ESP). ESP represents neither the current or historical vegetation type, but rather the potential 
vegetation that could be supported on a site given the current biophysical environment.  
 

ID Code Name 
1011 Rocky Mountain Aspen Forest and Woodland 
1024 Madrean Lower Montane Pine-Oak Forest and Woodland 
1050 Rocky Mountain Lodgepole Pine Forest 
1051 Southern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest and Woodland 
1052 Southern Rocky Mountain Mesic Montane Mixed Conifer Forest and Woodland 
1054 Southern Rocky Mountain Ponderosa Pine Woodland 
1061 Inter-Mountain Basins Aspen-Mixed Conifer Forest and Woodland 
1107 Rocky Mountain Gambel Oak-Mixed Montane Shrubland 
1117 Southern Rocky Mountain Ponderosa Pine Savanna 
1166 Middle Rocky Mountain Montane Douglas-fir Forest and Woodland 
1167 Rocky Mountain Poor-Site Lodgepole Pine Forest 
1179 Northwestern Great Plains-Black Hills Ponderosa Pine Woodland and Savanna 
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C.2 Study Area Map and Table Describing Sites and Sample Depth 

 

Fig. C1. The locations of the 22 recent (1988-2010) wildfires that occurred in the Southern 
Rocky Mountains Ecoregion (EPA Level III Ecoregion 21). Numbers on map correspond to 
“Map ID” in Table C2. 
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Table C2. A summary of post-fire field surveys of conifer establishment and abundance 
throughout 22 recent wildfires in the Southern Rocky Mountains Ecoregion. “Map ID” 
corresponds to numbers in Fig. C1. “N. destructive samples” denotes the number of seedlings 
collected within each fire perimeter for the analysis of annual establishment. “Field Plots” gives 
the number of individual plots used to survey post-fire seedling abundances of ponderosa pine 
and Douglas-fir in each fire. 
 

Map ID Fire Name Area (ha) Fire Year 
N. Destructive Samples 

Field Plots Ponderosa Pine Douglas-Fir 
1 Hensel 5843.3 2002 0 0 39 
2 Bobcat 3695.2 2000 0 0 117 
3 Overland 1308.0 2003 86 5 94 
4 Eldorado 404.9 2000 75 8 50 
5 High Meadows 3887.9 2000 62 12 89 
6 Buffalo Creek 3962.7 1996 81 5 120 
7 Hayman 52373.2 2002 68 11 205 
8 Mason 4461.0 2005 16 2 37 
9 Mato Vega 5311.8 2006 3 6 36 
10 Miss. Ridge 27890.5 2002 12 5 33 
11 Spring 9730.3 2002 25 0 45 
12 H12 1777.7 2010 32 0 40 
13 York 1313.8 2001 16 0 40 
14 Saw 1258.7 1988 7 10 38 
15 West Fork 2199.8 2008 4 2 40 
16 Ponil Complex 36050.8 2002 19 1 39 
17 Hondo 3338.8 1996 1 0 31 
18 Montoya 1665.5 2002 1 0 45 
19 Pine Canyon 1656.1 2005 38 0 39 
20 Borrego 5211.1 2002 44 1 45 
21 Lakes 1742.4 2002 18 13 48 
22 Viveash 9093.4 2000 17 17 31 
 

Total 184176.8 1988-2010 625 98 1301 
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C.3 Methods of Developing and Downscaling Climate Datasets for the Historical Period 

and for Future Scenarios 

 To develop gridded datasets of annual AET (actual evapotranspiration), annual CWD 

(climatic water deficit), and precipitation during the growing season (April-September) used in 

the final analyses, we first developed all datasets (1980-2015 historical data and 2006-2099 

GCM estimates) at a 4 km spatial resolution. We then quantified trends in each of the 19 GCMs 

to reduce the number of GCMs analyzed to 3. Finally, we downscaled historical and future 

climate grids to c. 250 m resolution using the high-resolution climate grids of Holden et al. 

(2016) and 250 m digital elevation models from the national elevation dataset (USGS 1999). 

AET, CWD, and growing season precipitation are three different but biologically-relevant 

constraints on the distribution of vegetation. AET is an indicator of site productivity because it 

identifies areas with simultaneous availability of energy and moisture, key limitations to plant 

growth. CWD describes relative drought stress through the landscape, as influenced by broad-

scale climatic factors of precipitation and temperature, as well as fine- and mid-scale drivers of 

incoming solar radiation and available water capacity of the soil (Stephenson 1998, Lutz et al. 

2010). Growing season precipitation may be beneficial to seedling establishment across a broad 

elevational and geographic range (Rother and Veblen 2017, Andrus et al. 2018, Davis et al. 

2019). 

 Our approach of developing these climatic datasets has several important methodological 

advantages over previous approaches in species distribution modeling. First, given the 

topographic complexity inherent to the study area, data resolutions that better capture aspect-

level differences are needed to accurately reflect the spatial variability in climate that is 

experienced by plants (Flint and Flint 2012, Franklin et al. 2013). In mountainous landscapes, 
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resolutions of 270 m or higher have been recommended for this purpose (Franklin et al. 2013). 

To our knowledge, the future projections of AET, CWD, and growing season precipitation 

developed in the present study are the highest-resolution data of this kind in the Southern Rocky 

Mountains Ecoregion. Lastly, because the historical data (GridMET) we used in our analyses 

were used for bias correction and downscaling of our future projections (Abatzoglou and Brown 

2012), and all 4 km data (historical climate and future projections) were processed and further 

downscaled using the same steps (described below), historical and future climate data should be 

directly comparable. 

C.3.1 Developing AET and CWD Layers at 4 km Resolution 

 We obtained monthly or daily datasets of maximum temperature, minimum temperature, 

precipitation, and potential evapotranspiration (PET) from the GridMET dataset (Abatzoglou 

2013) for the 1980-2015 period. PET was calculated using the Penman-Montieth method, which 

estimates reference evapotranspiration using incoming solar radiation, temperature, humidity, 

and wind speed (Walter et al. 2000). These same variables were obtained from statistically-

downscaled datasets (MACA; Abatzoglou and Brown 2012) derived from 19 coupled 

atmosphere-ocean general circulation models (GCMs) and two representative concentration 

pathways (RCPs 4.5 and 8.5) from the fifth Coupled Model Intercomparison Project (CMIP5). 

These data were acquired from model runs in 2006-2099. All datasets that were acquired at daily 

temporal resolution were aggregated to monthly values either based on the mean (e.g., 

temperature) or sum (e.g., precipitation) of daily values. Growing season precipitation in each 

year was calculated as the sum of monthly precipitation values from April-September. 

 Next, we used historical climate data and future projections to develop annual estimates 

of AET and CWD for the historical (1981-2015) period and for each future scenario (from 2006-
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2099). In conjunction with PET data from GridMET and MACA, we used the monthly water 

balance equations of Dobrowski et al. (2013) to model monthly AET and CWD across the 

Southern Rocky Mountains Ecoregion at a 4 km resolution. Available water capacity in the top 

200 cm of soil was derived as the product of fractional water capacity and soil depth from 

POLARIS (Chaney et al. 2016). The resulting soil layer was then aggregated to a 4 km resolution 

and aligned with GridMET. For the first year in the historical period (1981) and in each GCM 

(2006), snow depth and soil moisture were initiated in each 4 km cell with December values 

from a prior year of water balance modeling. Monthly values of AET and CWD were summed in 

each 4 km cell by calendar year to develop annual grids. 

C.3.2 Selecting GCMs Based on Predicted Trends 

 Due to limitations of computation and data storage, we reduced the number of GCMs 

considered in further analyses from 19 to 3. We did this by analyzing the direction and 

magnitude of trends in AET and CWD across the region in each GCM and emissions scenario. 

First, we calculated the annual mean value across all 4 km grid cells in the Southern Rocky 

Mountains for each variable, in each GCM and RCP. We then assessed trends in each GCM and 

RCP combination through time using the Theil-Sen slope estimator (Theil 1950, Sen 1968). The 

Theil-Sen slope is the median slope of lines between all pairs of points, and is a common non-

parametric technique used to assess the magnitude of trends through time. Next, to rank GCMs 

according to future projections, we calculated the mean Theil-Sen slope for each GCM in RCP 

4.5 and 8.5. We then selected the GCMs that had the lowest ranked (Dunne et al. 2012), median 

ranked (Jeffrey et al. 2013), and highest ranked (Dufresne et al. 2013) averages of Theil-Sen 

slopes of CWD through time (Table C3, Table C4). CWD was used in GCM selection because a 

preliminary analysis indicated that this variable was a more important predictor in our analyses 
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than was AET. We selected these three GCMs in an effort to show the broadest range of 

potential climate trajectories in the region a necessarily limited sample. We did not use an 

ensemble of all GCMs because this masks the simulated interannual variability in future climate 

and interannual variability was a key component of our modeling framework. 

C.3.3 Statistical Downscaling From 4 km to 250 m 

 Lastly, we used gradient and inverse distance squared (GIDS) interpolation (Nalder and 

Wein 1998, Flint and Flint 2012) to statistically downscale the 4 km climate variables (i.e., AET, 

CWD, and growing season precipitation) from the historical period and future projections. For 

AET and CWD, we used as ancillary data the average values of AET and CWD during the 1981-

2015 historical period from the 250 m grids described in Holden et al. (2016, 2018). For growing 

season precipitation, we used 30 m digital elevation models from the national elevation dataset 

(NED; USGS 1999), aggregated and aligned to the grids of Holden et al. (2016, 2018) as 

ancillary data in downscaling. When compared to station data and independent validation data, 

GIDS outputs have been shown to better represent local climate conditions in complex terrain 

than do coarse-scale climate grids (Flint and Flint 2012, McCullough et al. 2016). Furthermore, 

visual assessment of downscaled data demonstrates that GIDS preserves spatial variability of 

climate patterns present in each year (e.g., wet conditions in the northern end of the study area 

and dry conditions in the south) better than interpolators that use a single global relationship (i.e., 

robust regression). The local flexibility of the method also allows for an improved representation 

of localized factors such as cold-air pooling.  
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Table C3. Trends in actual evapotranspiration (AET; evaporation constrained by moisture 
availability) across the Southern Rocky Mountains using 19 coupled atmosphere-ocean general 
circulation models (GCMs) and two representative concentration pathways (RCPs). RCPs 4.5 
and 8.5 indicate different levels of change in radiative forcing (D W/m2) and represent two 
potential future trajectories - a peak in anthropogenic emissions in 2040, or rapid increases in 
emissions through 2100, respectively. AET was calculated at a 4 km resolution throughout the 
Southern Rocky Mountains, and trends were calculated using Theil-Sen slopes of annual mean 
AET across the region for each year (2006-2099). “Average” gives the mean of slopes from both 
RCPs. GCMs selected for later analyses are shown in bold. 
 

Actual Evapotranspiration 

GCM 
RCP 4.5  RCP 8.5 Average 

Theil-Sen 
Rank 

Theil-Sen 
Rank 

Theil-Sen 
Rank 

Slope Slope Slope 
BCC_CSM 1.1(m) 0.1 16 0.6 11 0.35 12 
BNU-ESM 0.25 14 0.87 5 0.56 10 
CanESM2 0.99 2 1.79 1 1.39 1 
CCSM 4.0 0.61 7 0.6 10 0.61 9 
CNRM-CM5 0.59 8 0.78 8 0.69 6 
CSIRO-Mk 3.6.0 0.47 9 0.87 6 0.67 8 
GFDL-ESM2G 0.85 4 0.91 4 0.88 4 
GFDL-ESM2M -0.22 18 0.41 13 0.10 16 
HadGEM2-CC365 0.38 11 0.26 16 0.32 13 
HadGEM2-ES365 0.27 13 0.35 14 0.31 14 
INMCM 4.0 0.31 12 -0.85 18 -0.27 18 
IPSL-CM5A-LR 0.04 17 0.14 17 0.09 17 
IPSL-CM5A-MR -0.43 19 -1.55 19 -0.99 19 
IPSL-CM5B-LR 0.45 10 0.59 12 0.52 11 
MIROC-ESM-CHEM 1.12 1 1.09 2 1.11 2 
MIROC-ESM 0.86 3 0.96 3 0.91 3 
MIROC5 0.17 15 0.3 15 0.24 15 
MRI-CGCM3 0.67 6 0.7 9 0.69 6 
NorESM1-M 0.71 5 0.79 7 0.75 5 
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Table C4. Trends in climatic water deficit (CWD; unmet evaporative demand of the atmosphere) 
across the Southern Rocky Mountains based on 19 coupled atmosphere-ocean general circulation 
models (GCMs) and two representative concentration pathways (RCPs). RCPs 4.5 and 8.5 
indicate different levels of change in radiative forcing (D W/m2) and represent two potential 
future trajectories - a peak in anthropogenic emissions in 2040, or continuous increases in 
emissions through 2100, respectively. CWD was calculated at a 4km resolution throughout the 
Southern Rocky Mountains and trends were calculated using Theil-Sen slopes of annual mean 
CWD across all cells in the region for each year (2006-2099). “Average” gives the mean of 
slopes from both RCPs. Selected GCMs are shown in bold. 
 

Climatic Water Deficit 

GCM 
RCP 4.5 RCP 8.5 Average 

Theil-Sen 
Rank 

Theil-Sen 
Rank 

Theil-Sen 
Rank 

Slope Slope Slope 
BCC_CSM 1.1(m) 1.28 9 2.45 12 1.87 12 
BNU-ESM 1.19 10 2.3 15 1.75 13 
CanESM2 0.43 17 1.65 19 1.04 18 
CCSM 4.0 0.8 14 2.39 13 1.60 15 
CNRM-CM5 1.3 8 2.99 9 2.15 7 
CSIRO-Mk 3.6.0 1.42 6 2.64 11 2.03 10 
GFDL-ESM2G -0.59 19 1.89 18 0.65 19 
GFDL-ESM2M 1.35 7 2.73 10 2.04 9 
HadGEM2-CC365 1.57 5 4.46 3 3.02 3 
HadGEM2-ES365 1.75 4 4.15 4 2.95 4 
INMCM 4.0 0.66 15 4.12 5 2.39 6 
IPSL-CM5A-LR 1.92 3 4.5 2 3.21 2 
IPSL-CM5A-MR 2.38 1 6.45 1 4.42 1 
IPSL-CM5B-LR 1.1 11 2.15 16 1.63 14 
MIROC-ESM-CHEM 0.63 16 3.35 7 1.99 11 
MIROC-ESM 1.04 12 3.2 8 2.12 8 
MIROC5 1.95 2 3.79 6 2.87 5 
MRI-CGCM3 0.36 18 1.96 17 1.16 17 
NorESM1-M 0.84 13 2.35 14 1.60 16 
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Table C5. Results of Mann-Kendall trend tests for climate variables derived from each of the 
selected GCMs under each emissions scenario. Kendall’s correlation coefficients (t) were 
calculated between each climate variable and time, and p is the p-value of the test for a 
monotonic trend after accounting for serial autocorrelation. 
 
  RCP 4.5 

 AET CWD 
 t p t p 

GFDL 0.25 0.007 -0.15 0.018 
CSIRO 0.14 0.077 0.11 0.092 
IPSL 0.01 0.921 0.18 0.020 

 
 

RCP 8.5 
 AET CWD 
 t p t p 

GFDL 0.20 < 0.001 0.18 0.003 
CSIRO 0.16 0.034 0.37 < 0.001 
IPSL -0.31 < 0.001 0.61 < 0.001 

 

C.4 Development of Other Spatial Datasets Used In Predicting Post-Fire Abundance 

 In addition to gridded climate data (described in Appendix C.3), we developed or 

acquired several spatial datasets for use in predictive models of post-fire seedling abundance 

throughout the Southern Rocky Mountains Ecoregion. These additional datasets related to 

topography, soils, or fire severity, and are discussed below. We selected these datasets because 

these variables have known influences on plant growth, the distribution of vegetation, and, 

specifically, tree seedling establishment and abundance. 

 We first developed terrain variables of heat load index (HLI) and topographic position 

index (TPI). HLI is a proxy for aspect-driven solar heating, while TPI helps to quantify exposure 

and moisture availability. Climatic variables of AET and CWD include some of these effects, 

they are generally calculated at a coarser spatial scale, and thus including terrain variables 

allowed us to incorporate fine and mid-scale topographic effects to identify potential hot spots of 
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post-fire abundance. HLI combines slope, folded aspect, and latitude to estimate solar heating at 

a given location. To calculate HLI, we used equation 1 of McCune and Keon (2002) with 30 m 

digital elevation models (DEMs) from the national elevation dataset (NED; USGS 1999). We 

then aggregated these data to 60 m to align with the resolution of final spatial models. Higher 

values are typical on southwesterly slopes, while low values are common on northeasterly 

slopes. Moderate values are common in flatter terrain and on northwesterly and southeasterly 

aspects. Next, we calculated TPI at two spatial scales that characterize fine-scale (3 x 3 cell 

neighborhood) and coarse-scale (15 x 15 cell neighborhood) topographic effects. TPI was also 

developed using 30 m DEMs from NED, and is calculated as the difference between the 

elevation of a cell and the mean elevation in its surrounding neighborhood (i.e., a 3 x 3 or 15 x 

15 cell neighborhood; Weiss 2001). Higher TPI indicates that a cell is at a relatively higher 

topographic position than its surroundings (i.e., ridgetops), while lower values are indicative of 

topographic low points such as valley bottoms or depositional basins. Importantly, TPI is scale-

dependent. Calculation in larger window sizes identifies coarse-scale topographic features, while 

calculation in small window sizes identifies localized depressions and high points in fine-scale 

topography. 

 We also acquired data describing soil characteristics and fire severity. Soils data were 

acquired from POLARIS (Chaney et al. 2016) at a 30 m spatial resolution. POLARIS has 

important advantages over many spatial datasets describing soil characteristics in the continental 

United States because it is spatially contiguous (i.e., does not have the large gaps present in 

NRCS gSSURGO data) and provides a broad suite of chemical, textural, and structural variables 

(Chaney et al. 2016). We extracted percent clay content and soil pH as two additional predictors 

because of their potential influence on seedlings (Puhlick et al. 2012). Both variables were 



 190 

extracted at a 30 m resolution and later aggregated to 60 m. We also acquired data on fire 

severity from the Monitoring Trends in Burn Severity interagency program (MTBS; Eidenshink 

et al. 2007). MTBS provides fire perimeters, thematic maps of burn severity, and LANDSAT-

derived burn-severity indices for all fires larger than 400 ha in the United States. Specifically, we 

used the relative differenced Normalized Burn Ratio (RdNBR) (Miller and Thode 2007). As a 

relativized index, RdNBR better accounts for the initial state of vegetation in heterogeneous 

environments than other burn severity indices such as dNBR (Miller et al. 2009a) or dNDVI. 

Following acquisition, we aggregated these data to 60 m. 

Table C6. Summary of variables included in analyses of post-fire conifer abundance. Variables 
are grouped into categories representing a range of potential factors driving post-fire recovery. 
Expected relationships among each variable and species (Douglas-fir – Pseudotsuga menziesii, 
and ponderosa pine – Pinus ponderosa) combination are indicated with a + or -. “Citation(s)” 
give a selection of recent studies that have investigated the influence of a specific variable on 
conifer establishment or post-fire recovery dynamics. 
 

   Expected Relationship  
Category Variable Description Douglas-

Fir 
Ponderosa 
Pine 

Citation(s) 

Time Since Fire Time Since 
Fire 

Number of years between 
fire occurrence and time of 
field surveys 

- - (Tepley et al. 
2017, Shive et 
al. 2018) 

Fire Severity/ 
Forest Cover 

Minimum 
Distance to 
Seed Tree 

Field-derived distance to 
closest mature conifer. 
When not possible to 
collect in the field (n = 48), 
distances were derived 
from aerial image 
interpretation. Values were 
square root transformed 
prior to analysis to 
incorporate a non-linear 
effect. 

- - (Chambers et 
al. 2016, 
Rother and 
Veblen 2016) 

RdNBR Relative differenced 
Normalized Burn Ratio 
(RdNBR), an index of fire 
severity derived from 
LANDSAT imagery in the 
near-infrared and 
shortwave-infrared 
portions of the spectrum 

- +/- (Welch et al. 
2016) 
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Topography/Terrai
n 

Heat Load 
Index 

Index combining slope, 
aspect, and latitude to 
estimate differences in 
solar heating due to terrain 
variability. Higher values 
indicate greater solar 
heating. Calculated 
following equation 2 from 
McCune and Keon (2002) 
using 30 m digital 
elevation models and 
aggregated to 60 m. 

- +/- (Stevens-
Rumann et al. 
2018) 

Topographic 
Position 
Index (3 x 3) 

Elevation of an area 
relative to its surroundings. 
Higher values indicate 
ridgetops and lower values 
indicate valley bottoms. 
Calculated following 
Weiss (2001) using 30 m 
digital elevation models 
and aggregated to 60 m. 3 
x 3 cell window is 
indicative of local 
topographic position. 

- +/- (Owen et al. 
2017, Ziegler 
et al. 2017) 

Topographic 
Position 
Index (15 x 
15) 

Elevation of an area 
relative to its surroundings. 
Higher values indicate 
ridgetops and lower values 
indicate valley bottoms. 
Calculated following 
Weiss (2001) using 30 m 
digital elevation models 
and aggregated to 60 m. 15 
x 15 cell window is 
indicative of broader-scale 
topographic position. 

- +/- (Owen et al. 
2017, Ziegler 
et al. 2017) 

Soils Soil pH A measure of acidity and 
alkalinity of soils. Derived 
from POLARIS soils 
database 

- - 

 
 

(Puhlick et 
al. 2012) 

 

Soil Texture 
- Percent 
Clay Content 

A measure of soil texture. 
Clay content leads to 
greater water holding 
capacity and cation 
exchange capacity, but 
shrink/swell may also 
reduce seedling survival. 
Derived from POLARIS 
soils database 

- - (Puhlick 
et al. 
2012) 
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Average Climate 30-Year 
Average 
Climatic 
Water Deficit 
(CWD) 

The difference between 
potential and actual 
evapotranspiration (in mm) 
based on downscaled 
monthly GridMET normals 
(aggregated from daily 
data; 1981-2010), Penman-
Montieth equations of 
PET, the water balance 
model of Dobrowski et al. 
(2013). Higher values are 
common on sites 
experiencing strong 
moisture limitation (warm 
and dry), while low values 
are common on sites with 
little moiture limitation 
(i.e., cool/wet sites, or 
warmer sites with high 
available moisture). 

- - (Dobrowski et 
al. 2015, 
Tepley et al. 
2017) 

30-Year 
Average 
Actual 
Evapotra-
nspiration 
(AET) 

Estimated annual actual 
evapotranspiration (in mm) 
based on downscaled 
monthly GridMET normals 
(aggregated from daily 
data; 1981-2010), Penman-
Montieth equations of 
PET, the water balance 
model of Dobrowski et al. 
(2013). High values are 
typical on warm sites with 
little moisture limitation, 
while low values are 
typical on warm sites with 
strong moisture limitation, 
or on cool sites with 
minimal 
evapotranspiration. 

+/- + (Dobrowski et 
al. 2015, Shive 
et al. 2018) 

30-Year 
Average 
Growing 
Season 
Precipitation 
(PPT-GS) 

Average total precipitation 
(in mm) from April-
September based on 
downscaled monthly 
GridMET normals 
(aggregated from daily 
data; 1981-2010). 

+ + (Welch et al. 
2016, Rother 
and Veblen 
2017) 

Post-Fire Climatea Average 
CWD in First 
Five Years 
After Fire 

Mean annual CWD from 
five years after fire 
occurrence. Calculated 
using same methods as 30-
year average CWD. 

- - (Harvey et al. 
2016, Stevens-
Rumann et al. 
2018)b 

Average 
AET in First 
Five Years 
After Fire 

Mean annual AET from 
five years after fire 
occurrence. Calculated 
using same methods as 30-
year average AET. 

+/- + None 
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Average 
PPT-GS in 
First Five 
Years After 
Fire 

Mean total precipitation 
from April-September in 
first five years after fire. 

+ + None 

Maximum 
PPT-GS in 
First Five 
Years After 
Fire 

Total precipitation from 
April-September in wettest 
of first five years after fire. 

+ + None 

Minimum 
PPT-GS in 
First Five 
Years After 
Fire 

Total precipitation from 
April-September in driest 
of first five years after fire. 

+ + (Young et al. 
2019) 

Maximum 
CWD in First 
Five Years 
After Fire 

Annual CWD in driest of 
first five years after fire. 

- - None 

Minimum 
CWD in First 
Five Years 
After Fire 

Annual CWD in wettest of 
first five years after fire. 

- - None 

Maximum 
AET in First 
Five Years 
After Fire 

Maximum value of annual 
AET in first five years after 
fire. 

+/- + None 

Minimum 
AET in First 
Five Years 
After Fire 

Minimum value of annual 
AET in first five years after 
fire. 

+/- + (Young et al. 
2019) 

a: All values for post-fire climate were scaled and centered to z-scores specific to each 250 m climate grid cell 
(relative to 1981-2015 historical period) prior to analysis. 
b: Cited studies show a relationship with 3-year post-fire climate. However, we used a 5-year time period because 
observed establishment for Douglas-fir and ponderosa pine continued after for several years following fire in our 
sites, and because 5-year post-fire climate variables led to an improved model fit and higher cross-validated 
accuracy. 
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Table C7. Comparison of predictive accuracy for BRTs (boosted regression trees) 
and GLMMs (generalized linear mixed models) of post-fire abundances for 
ponderosa pine and Douglas-fir. RMSE (root mean squared error) and r (Pearson’s 
correlation coefficient) are based on comparisons between observed and predicted 
values in the full dataset (i.e., full) and in spatially stratified cross-validation (i.e., 
test; 22 folds). Lower RMSE and higher r indicate a stronger relationship between 
observed and predicted values and a better model fit. 
 

Method 

Ponderosa Pine Douglas-Fir 
RMSE 
(Full) 

RMSE 
(Test) 

r 
(Full) 

r 
(Test) 

RMSE 
(Full) 

RMSE 
(Test) 

r 
(Full) 

r 
(Test) 

BRT  10.75 10.51 0.39 -0.12 8.34 8.58 0.75 0.11 
GLMM 9.72 10.40 0.46 0.22 7.09 8.00 0.61 0.25 
Hybrid 9.21 10.33 0.47 0.19 6.66 8.21 0.61 0.20 

 

 

Table C8. Model summary table from GLMMs of post-fire ponderosa pine seedling abundance. 
We used zero-inflated models with a generalized Poisson error structure and random intercepts 
by fire. Variables were not scaled prior to analysis, therefore coefficients represent the predicted 
change in seedling abundance for each unit change in a given predictor. 
 

 Model Term Coefficient P-Value 
Conditional Model Intercept -2.384 0.210 

 Distance to Seed Tree -0.094 < 0.001 

 Years Since Fire -0.121 0.001 

 30-Year Average Precipitation 0.009 0.014 

 Topographic Position Index (TPI) -0.055 0.130 

 30-Year Climatic Water Deficit (CWD) -0.003 0.005 

 Max Post-fire CWD (Z-Score) -1.459 < 0.001 

 Average Precipitation * TPI < 0.001 0.210 

    
Zero-Inflation Model Model Term Coefficient P-Value 

 Intercept -2.055 < 0.001 
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Table C9. Model summary table from GLMMs of post-fire Douglas-fir seedling abundance. We 
used zero-inflated models with a generalized Poisson error structure and random intercepts by 
fire. Variables were not scaled prior to analysis, therefore coefficients represent the predicted 
change in seedling abundance for each unit change in a given predictor. 
 

 Model Term Coefficient P-Value 
Conditional Model Intercept -2.384 0.210 

 Distance to Seed Tree -0.184 < 0.001 

 30-Year Climatic Water Deficit (CWD) -0.010 < 0.001 

 Topographic Position Index (TPI) -0.032 < 0.001 

 Heat Load Index (HLI) -4.513 < 0.001 

 Max Post-fire CWD (Z-Score) -1.098 0.011 

    
Zero-Inflation Model Model Term Coefficient P-Value 

 Intercept -2.235 0.003 
 

C.5 Justification for Use of Historical Density Thresholds to Assess Resilience to Wildfire 

 In this study, we elected to use tree density thresholds that represent near-minimum 

historical densities in the montane zone of the Southern Rocky Mountains as a method of 

assessing resilience to wildfire. We were motivated to do this for several reasons. First, 

silvicultural stocking thresholds on many forests are currently based on timber management 

principles, and these stocking densities tend to be unreasonably high (Welch et al. 2016, North et 

al. 2019). Timber production on federally-owned lands has declined since the 1980s (Howard 

and Jones 2016), and is generally a lower priority than many other management goals in the 

Southern Rocky Mountains. Many studies use “replacement density” (i.e., the mature overstory 

density of forests on each site prior to the fire; e.g., Rother and Veblen 2016, Stevens-Rumann et 

al. 2018) as a logical threshold as the assessment of resilience. However, tree density (i.e., stems 

ha-1) is not broadly quantified throughout montane forests in the region. Furthermore, density 

reduction treatments are a common practice in montane forests throughout the region (Reynolds 
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et al. 2013, Addington et al. 2018), and pre-fire tree densities may be higher than those desired 

by forest managers (Dickinson et al. 2014).  

Historical minimum tree densities, as used in this study, are a useful alternative approach 

because they represent the lowest stem densities that might be considered to be ponderosa pine 

or mixed-conifer forests in the Southern Rocky Mountains. Because there is also no 

consideration of seedling mortality or recruitment rates, historical tree densities represent a very 

low threshold for resilience and conservatively estimate the area that is experiencing 

regeneration failure. Any potential biases using these thresholds would be in failing to detect 

areas that are unlikely to regenerate to a forested state. We set these thresholds by combining 

data from three published studies that used tree-ring reconstructions to estimate late 1800s tree 

density in montane forests throughout the Southern Rocky Mountains (Fulé et al. 2009, Rodman 

et al. 2017, Battaglia et al. 2018). From these data, we used the 5th percentile of species-specific 

densities for Douglas-fir and ponderosa pine (5 and 20 trees ha-1, respectively) from plots with 

species presence (i.e., excluding zero counts). In Table C10, we present the means and ranges of 

values reported in these studies, as well as a summary of similar studies that reconstructed stand 

densities in the montane zone of the Southern Rocky Mountains using tree-ring methods, general 

land office records, tree morphology, and/or early forest inventory data (sensu Woolsey 1912). 
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Table C10. Summary of stand density reconstructions in Colorado and New Mexico, USA using 
four different techniques (i.e., tree-ring reconstructions, tree morphology, early forest inventory 
data, and General Land Office (GLO) data). Values given are reported or calculated mean, with 
total range in parentheses. 
 

Citation PIPO PSME Total 
Density Sizes  Year(s) Method Study Area 

Fulé et al. 
(2009) a 

67.4 
(60.8-
78.8) 

20.7 
(18.3-
26.7) 

141.6 
(127.1-
146.7) 

> 0 cm 
DBH 1870 Tree rings 

San Juan 
Mountains, 
Colorado 

Romme et al. 
(2009)b NA NA 

43.6 (11-
98) 

Unspe
cificed 1900 

Tree 
morphology 

San Juan 
Mountains, 
Colorado 

Williams and 
Baker (2012)c NA NA 

216.9 (0-
?) 

> 10 
cm 
DBH c. 1880 

General Land 
Office records 

Front Range, 
Colorado 

Matonis et al. 
(2014)d NA NA 

49.5 
(12.4-
135.9) 

> 15.2 
cm 
DBH 1875 Tree rings 

Uncompahgre 
Plateau, 
Colorado 

Brown et al. 
(2015)e 96 (0-320) 0 

96 (0-
320) 

> 0 cm 
DBH 1860 Tree rings 

Front Range, 
Colorado 

Rodman et al. 
(2017)f 

181.9 
(114.3-
250.4) 

8.9 (0-
29.5) 

140.9 
(35-

314.3) 
> 0 cm 
DBH 

1880; 
1890 

Tree rings; 
early forest 
inventories 

Northern and 
Western New 
Mexico  

Baker et al. 
(2017) - Pine NA NA 

168.0 
(64.2-
306.4) 

> 10 
cm 
DBH 

1881-
1902 

General Land 
Office records 

Uncompahgre 
Plateau, 
Colorado 

Baker et al. 
(2017) - Dry 
Mixed-
Conifer NA NA 

195.2 
(84.0-
353.4) 

> 10 
cm 
DBH 

1881-
1902 

General Land 
Office records 

Uncompahgre 
Plateau, 
Colorado 

Baker et al. 
(2017) - Wet 
Mixed-
Conifer NA NA 

422.5 
(64.2-
998.3) 

> 10 
cm 
DBH 

1881-
1902 

General Land 
Office records 

Uncompahgre 
Plateau, 
Colorado 

Battaglia et 
al. (2018) 

98.8 (0-
344.8) 

34.1 (0-
555.4) 

142.4 (0-
767.8) 

> 4 cm 
DBH 1860 Tree rings 

Front Range, 
Colorado 

a: Reported values taken from site-level means, where each site was composed of several individual plots that likely 
had a wider range. 
b: True minimum and maximum range of values were not reported. Minimum and maximum values are the site-level 
means +- two standard errors. 
c: Minimum value was taken from map showing some previously unforested area in the study area. The maximum 
value was not reported. 
d: Reported densities exclude aspen and other angiosperms due to more rapid decomposition. 
e: Sites included in this study are also included in Battaglia et al. (2018), but minimum tree sizes included are 
different in each study. Therefore, both are reported here. 
f: Many of these sites were also included in Reynolds et al. (2013) and Moore et al. (2004) 
 


