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Abstract 
 
 
 
     A Bayesian machine learning method was used to produce a skillful precipitation 

gauge correction for an unshielded gauge in the subalpine forest below Niwot Ridge, 

Colorado. A U.S. Climate Reference Network (USCRN) gauge provided the “true” 

reference precipitation accumulation from which a gauge correction was developed. The 

difference in daily precipitation between the USCRN gauge and the unshielded gauge, 

integral to a precipitation record extending back to FKZD, was modelled using 

hydrometeor characteristics, wind speed, and precipitation intensity and duration. 

Probability distributions of explanatory variables were estimated and used as likelihood 

information for a hierarchical Bayesian regression gauge correction (HBayeRGC) model. 

The HBayeRGC explains [\% of the unshielded gauge errors during an October DEF_ to 

May DEFZ gauge comparison period and provides a novel method for estimating 

precipitation gauge uncertainties. Error-prone precipitation gauges in windy mountain 

environments can be corrected with the HBayeRGC to improve understanding of 

mountain water resources.          
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Chapter A  
 
 
 

Introduction 
 

     Understanding the influence of climate change on the water cycle hinges on accurate 

and precise long-term observations of precipitation. Precipitation gauges, the only 

instruments directly measuring precipitation, suffer from substantial wind-induced errors 

if poorly shielded (Colli et al., DEF\a, DEF\b; Goodison et al., FKK[; Rasmussen et al., DEFF; 

Sevruk et al., DEEK; Sugiura et al., DEE\; Thériault et al., DEFZ). A standard method to 

correct for these errors is to apply a wind correction model that is derived from the 

differences between unshielded gauges and gauges with the World Meteorological 

Organization’s standard wind shield, the Double Fence Intercomparison Reference 

(DFIR) (Chen et al., DEFZ; Kochendorfer et al., DEFea, DEF[; Wolff et al., DEFZ; Yang et al., 

FKK[a, FKK[b, FKKK). Since a wind correction algorithm strongly depends on hydrometeor 

type, including diameter and fall speed into the correction approach is a novel means to 

reduce wind-induced errors (Thériault et al., DEFD). Equally important to accurate 

precipitation records is quantifying the uncertainty in accumulation. However, current 

gauge correction approaches miss the opportunity to estimate variable uncertainty, based 
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on the combination of all explanatory and unknown physical conditions, at the time scale 

of observation. The objectives of this thesis, is to further improve precipitation gauge 

corrections in error-prone complex terrain that specifically corrects an insufficiently 

shielded gauge in the Niwot Ridge, Colorado subalpine ecosystem with accurate reference 

precipitation data from a co-located DFIR gauge. To meet this objective, we develop a 

machine learning gauge correction model that includes hydrometeor, wind, and 

precipitation type and intensity predictor information. This novel approach provides 

meaningful uncertainty estimations for accumulated mountain precipitation and has the 

potential to improve our understanding of orographic precipitation patterns impacting 

precious water resources. 

     Large errors in precipitation measurement occur in mountain environments where 

high winds combine with frozen hydrometeors (i.e., snow) that are more susceptible to 

the influence of airflow around the gauge orifice (Colli et al., DEF\a, DEF\b; Thériault et 

al., DEFD, DEFZ). Accurately-measured precipitation in subalpine and alpine zones is 

critical to understanding the role of orographic enhancement of precipitation over 

mountain catchments that ultimately contribute significantly to water resources (eZ% of 

surface- and groundwater supplies in the Western United States, IPCC DEEe). 

Unfortunately, the spatial gaps in mountain precipitation observations are larger than the 

~F km resolution required for mountain catchment hydrological models (Bales et al., 

DEE\) with gauges generally located in protected sites (e.g. forest clearings and gaps) that 

may or may not represent local average conditions (Strachan et al., DEF\). This specifically 

contributes to gaps in direct observations of mountain snow-atmosphere interactions 
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(Lehning et al., DEE[; Mott et al., DEFc) and necessitates high-quality data from gauges 

currently in operation. To understand the role of mountain precipitation in a changing 

climate, such as the effect that decreasing eEE mb winds in the Western United States 

have on orographic precipitation (Dettinger, DEFc), multi-decade precipitation gauge 

records in mountain environments need to be corrected for under- and overcatchment 

errors and uncertainties need to be quantified.  

     Extensive efforts have been put towards the development of precipitation gauge 

corrections to correct for wind-induced undercatchment errors of snow. From FK[\ to 

FKK_, the World Meteorological Organization (WMO) conducted a gauge 

intercomparison study that took place in F_ countries at D\ test sites and focused on the 

measurements of frozen hydrometeors (WMO Solid Precipitation Measurement 

Intercomparison; Goodison et al., FKK[). Correction procedures were then derived from 

the comparison results to correct for systematic errors in precipitation measurements 

(Sevruk et al., DEEK). For instance, the WMO intercomparison results were used to 

develop a precipitation adjustment function for wind-induced errors on the U.S. National 

Weather Service (NWS) [-inch standard manual gauge (Yang et al., FKK[b). To address 

wind-induced errors associated with automatically recording gauges, the WMO – Solid 

Precipitation Intercomparison Experiment (WMO – SPICE) began in DEFE. Both of the 

WMO intercomparison studies used the DFIR wind shield design to produce a gauge-

based precipitation reference for which unshielded or poorly shielded gauges were 

compared to. From three years of winter data (snow only) at the Hauleliseter test site in 

Norway, a continuous adjustment function, with estimated uncertainty and valid for wind 
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speeds up to DE m/s, was developed with a Bayesian model selection process (Wolff et al., 

DEFZ). The correction model presented by Wolff et al., DEFZ is the only method we are 

aware of that attempted to estimate uncertainty from joint probably distributions of 

model parameters. Rigorous testing of catch efficiency (CE, DFIR/poorly shielded) 

transfer functions performed in Kochendorfer et al. DEF[ suggests that the derived 

exponential decay function in (Kochendorfer et al., DEFeb), that includes air temperature, 

gauge height wind speed, and three fitted coefficients, is the best available correction for 

solid and mixed precipitation measurements from unshielded weighing gauges across a 

variety of sites.   

     Despite the fact that quantifying uncertainty in meteorological records is just as 

important as the accuracy of the records, few methods have focused on gauge-based 

precipitation uncertainty estimation. Most of the research on precipitation measurement 

uncertainty is focused on remote sensing (ground and satellite radar;  Michaelides et al., 

DEEK; Peleg et al., DEF_), regional downscaling and reanalysis of climate models (Cane et 

al., DEF_; Dai, DEE\; Langousis et al., DEF[), distributed hydrological models (Herrnegger 

et al., DEF[; Westrick et al., DEED; Winstral et al., DEF_), or spatial interpolation between 

gauges (Daly et al., DEFe; Diodato, DEEZ; Frei and Scha, FKK[; Lundquist et al., DEFZ; Sun 

et al., DEF[). Nevertheless, there is also ample opportunity to better understand gauge 

uncertainties. Gauge correction models and transfer functions provide a means to 

estimating uncertainties associated with gauges by empirically and/or statistically 

describing the inherent errors in measurements. However, most gauge correction 

methods thus far only allow for a single uncertainty term to be applied at each time step 
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in the record. For instance, despite demonstrating an increase in the error variation with 

increases in wind speed, Kochendorfer et al. DEFe only report a single uncertainty 

estimate for every _E-minute accumulation in their snow and mixed precipitation catch 

efficiency (defined as the ratio of reference gauge accumulation to non-reference gauge 

accumulation) transfer functions. Only applying a single uncertainty term is not 

appropriate when variation in the confidence of the correction or accumulation value is 

dependent on the set of conditions during the time period of observation. For example, 

we would expect to have lower confidence and higher uncertainty under high wind 

speeds with variable snowflake sizes and higher confidence and lower uncertainty under 

low wind speeds with dense graupel. Fortunately, applying Bayesian inference (i.e., 

machine learning) that reallocates credibility to select model coefficients with likelihood 

information provides a means to understanding the distribution of modeled estimates 

(posterior distributions) at each time step in the model. In this study, we apply a Bayesian 

inference approach to estimate daily gauge accumulation uncertainties for a variety of 

wind speed and hydrometeor conditions during a F.Z-year comparison period at the 

Niwot Ridge subalpine forest site. 

     The ability of precipitation particles, especially snow, to fall into a gauge is dependent 

on the wind regime at the gauge inlet. The under-catchment of precipitation is a product 

of horizontal winds creating an updraft at the gauge inlet and deflecting particles away 

from the gauge (Goodison et al., FKK[). The turbulence above the gauge can also influence 

gauge catch (Colli et al., DEF\b) and is more of an issue in complex terrain (e.g. forested 

mountain slopes). Gauge and shield combinations that have the highest collection 
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efficiency, using a DFIR gauge as standard, also have the greatest reduction in horizontal 

wind speed from outside the shielding to the gauge orifice (Rasmussen et al., DEFF). 

Airflow modelling employing Reynolds-averaged Navier-Stokes and Large Eddy 

Simulation models have confirmed this observation by showing the decrease in updraft 

velocity near a shielded gauge along with demonstrating how hydrometeor trajectories 

are influenced by turbulent wind behavior above a shielded gauge (Colli et al., DEF\a) 

(Fig. F-F). It is important to note here that DFIR’s performance was determined through 

comparison with the bush-sheltered Tretyakov gauge in Valdai, Russia that consists of an 

extensive diameter of dense bushes manicured to gauge height. Given the importance of 

turbulence, it is plausible that the complex structure of air space within the surrounding 

bushes is highly efficient at dampening turbulent energy. The double fence design of the 

DFIR with a Single Alter shield dampens both turbulence and horizontal wind speed to 

obtain a high catch efficiency (Thériault et al., DEFZ) (Fig. F-D). 

 

 

 

 

 

 

 

 Figure 1-1: Airflow around the orifice of a standard precipitation gauge as 
mapped with laminar wind tunnel flow (Rasmussen et al. 2012). 
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     Due to increase drag and smaller gravitational force, snowflakes fall at a slower 

terminal velocity than rain drops, thus their trajectories are more influenced by updrafts 

and turbulence near the gauge. Specific temperature and humidity conditions in the 

atmosphere contribute to cloud ice particle growth (Fig. F-_) and generate a wide variety 

of snow hydrometeor crystal types. This variation in crystal size, shape, and density is 

highly correlated with the collection efficiency of gauges (Thériault et al., DEFD) and 

suggests that gauge under-catch is a combination of wind dynamics and physical 

parameters of hydrometeors.       

 

 

 

 

 

 

Figure 1-2: Airflow past gauges shielded with a.) single alter b.) double alter and c.) DFIR. The 
top vectors represent the free-stream air and bottom vectors (orange) represent wind speeds 
measured at gauge inlet (Rasmussen et al. 2012). 
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     This thesis demonstrates the value of applying a Bayesian machine learning approach 

to the precipitation gauge correction problem. We show that our gauge correction is not 

only an improvement over current methods, but is unique in providing reasonable gauge 

uncertainty estimates. We also show that information on hydrometeor diameter and fall 

velocities did not significantly improve gauge corrections, but provided more explanatory 

power than wind speed information and corroborates current understanding of particle 

flow around a gauge orifice. We develop this Bayesian gauge correction model using 

precipitation data from a subalpine forest gauge, contributing to a \\-year-long record, 

that contains large errors in part due to inadequate wind-shielding. Our gauge correction 

model both increases accuracy in, and provides uncertainty estimates for, the 

Temperature (°C) 
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Figure 1-3: Influence of temperature and excess vapor density on snow crystal shapes (plot courtesy of Katja 
Friedrich). Image on right was taken with the Multi-Angle Snowflake Camera (Garrett et al. 2012) and 
demonstrates a subset of possible sizes and shapes. 
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accumulation from an inadequately shielded gauge in a windy mountain environment 

with complex terrain features.  

     This thesis is structured as follows: In chapter D, the subalpine study site is described 

with a focus on the dynamical mountain winds and the long-term precipitation record at 

the site. In chapter D, the instruments and datasets used in this study are described. The 

Niwot Ridge CF gauge errors and justification for a correction are presented in chapter _. 

Chapter c walks the reader through the correction model development and the details of 

the Bayesian inference method. The gauge correction results and uncertainty estimation 

are shown in chapter Z with model statistics comparing a variety of gauge correction 

approaches. In chapter \, the results of the study are discussed and the thesis concludes 

in chapter e with implications that our novel gauge correction and uncertainty estimation 

has on understanding the role of mountain precipitation in a variable and changing 

climate.  
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Chapter B  
 
 
 

Study Site, Datasets, and Instruments 
 

!.#   Study Site 

 
     The precipitation gauges and meteorological instruments used in this study were 

located in a subalpine forest at an elevation of _E_E m above sea level (cE°ED’FF”N 

FEZ°_D’_D”W) on a ~ Z% east-facing slope near Niwot Ridge, Colorado (Fig. D-F). This site, 

known as “CF”, was established in FKZD by the Institute of Arctic and Alpine Research 

(INSTAAR) and the Mountain Research Station (MRS) of the University of Colorado, 

Boulder with initial meteorological measurements of temperature, precipitation, and 

wind speed (among others). In FKKE the Niwot Ridge Long Term Ecological Research 

(LTER, National Science Foundation) site was established and has subsequently provided 

substantial resources for the maintenance and collection of long-term climate data on 

Niwot Ridge; an important endeavor where long-term (decadal) trends in air temperature 

and precipitation are viewed as the primary driving variables of ecological change 

(Greenland, FK[K; Suding et al., DEFZ). The climatological conditions at CF are potentially 

representative of the Colorado Front Range subalpine climate zone with average annual 
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(FKZ_ – DEFc) temperature of F.e°C and precipitation of \[E +/- F_E mm (+/- F standard 

deviation) (Kittel et al., DEFZ; MRS and LTER long-term climate records). However, the 

precipitation record at CF is questionable given the gauge inter-comparisons conducted in 

this thesis that compare the long-term precipitation record to newer gauges at the site.  

     The CF study site experiences high wind speeds associated with its geographic position 

[._ km east of the Continental Divide (~c,EEE m a.s.l.) and DF km west of the eastern high 

plains of Colorado (~F\ZE m a.s.l.). In the winter, winds blow primarily from a west-

northwest direction (Fig. D-D). The mean of the maximum daily wind speed 

(instantaneous measurement recorded at Z second intervals; indication of gust strength) 

for December, January, and February (D-J-F) from the historical record (FK\\-FK[D) is 

DE._ m/s (Fig. D-_). Contemporary measurements of wind direction and speed above the 

forest canopy (located on D\ m tower) further highlight that the strongest winds occur 

during the winter months (D-J-F) from a west-northwest direction (mean above canopy 

wind speed of e.F_ m/s (Blanken et al., DEEK)) and are often associated with the passage 

of storm systems. However, wind speeds are dampened near the ground (mean D-J-F 

windspeed of c.\c m/s; anemometer approximately \ m above the ground) due to the 

natural wind fencing of the forest. Average annual wind speed, from daily averages of 

wind speed, at CF between FKKE and DEF_ (period with minimal data gaps) was D.e m/s. 
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Figure 2-1: Location of the Niwot Ridge LTER and the subalpine (“C1”) meteorological station. Map adapted from 
Jennings et al. 2017. 

Figure 2-2: Wind rose showing the frequency of 0.5 hour mean wind speed (m/s) and wind direction during the 
winter months of December, January, and February. Data from a 26-meter tall tower near C1 from December 1, 
2007 to February 29, 2008 (Blanken et al. 2009). Only winter months shown due to higher prevalence of flow 
separation between top of canopy and ground level during the summer months.  
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      The CF subalpine location experiences cold snowy winters with the average 

temperature below E °Celsius between mid-October through mid-April. Precipitation is 

common in all months throughout the year (Fig. D-c) and generally, more than half of the 

precipitation falls as snow in any given year (Figs. D-Z and D-\). Due to the wide range of 

sub-zero (°Celsius) temperatures, a large variety of frozen hydrometeors sizes and shapes 

are produced (Fig. D-e demonstrates this dynamic during one storm event). Additionally, 

most snow precipitation events are associated with strong winds (Fig. D-[) due to greater 

synoptic scale air pressure gradients in winter. The combination of high winds, significant 
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Figure 2-3: Boxplots of instantaneous maximum wind speed for C1 by month. Data are from the 1966-
1982 period and from an anemometer ~ 6 meters above the ground recording peak gusts at 5 second 
intervals. Blue points are monthly averages of the maximum wind speeds recorded during 5-minute 
periods by the USCRN at ~1.5 meters above the ground during the October 01, 2013 to May, 2015 
gauge comparison period used in this study. 
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snowfall, and variable aerodynamics of hydrometeors potentially drive large errors in the 

annual liquid water accumulation at the LTER subalpine site. 
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Figure 2-4: C1 Daily precipitation records. a.) The mean monthly precipitation of daily means for the 1953 – 
2014 C1 long-term record (LTER-Belfort unshielded gauge) as blue bars and, b.) The daily total precipitation 
from 5-minute precipitation records for the 2013-2014 water year from U.S. Climate Reference Network gauge 
near C1. Black line in b. is a local polynomial regression demonstrating the trend in daily precipitation for the 
2013-2014 water year. Black points in a. are the mean daily precipitation for each month during the 2013-2014 
water year. 
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Figure 2-5: Average yearly total precipitation at 0.1 °C temperature bins for the 2004 – 2016 period (total for 
each bin/12 years) at the C1 site. Precipitation and air temperature data are from the US Climate Reference 
Network (USCRN) “Boulder 14 W” station located near C1. 



 

  16 

 
 

  

Air Temperature (°C) 

To
ta

l P
re

ci
pi

ta
tio

n 
(m

m
) 

Figure 2-6: Total precipitation at 0.1 °C temperature bins for the 2013-2014 water year at the C1 site. To 
determine representativeness of the 2013-2014 water year (period used in this study) to the recent 
decade average, the yearly average total precipitation for the same temperature bins over the 2004 – 2016 
period are plotted as red points (data from Fig. 2-5 above). Precipitation and air temperature data are 
from the US Climate Reference Network (USCRN) “Boulder 14 W” station located near C1. 

Snow Rain 
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Figure 2-7: Hydrometeor diameter and fall speed distribution for a spring storm (April 16, 2015) where the air 
temperature started out near -1.5°C and reached -6°C at the end of the event; transitioning from rain, mixed, to 
snow precipitation types. The green line represents the empirical rain line for diameter and fall speed (Locatelli 
and Hobbs, 1974); all values on, near, or to the left of this line represent rain and all values to the right of this 
line represent graupel and snow particles. Data are from laser optical disdrometer at the C1 LTER site. 
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     In this study, we focus on the October F, DEF_ to May FD, DEF_ period to maximize the 

temporal overlap of the USCRN and LTER-Geonor records with that of the CF-

disdrometer. Focusing on this period has allowed us to fully investigate the influence 

hydrometeor characteristics have on gauge errors. Furthermore, USCRN Z-min records 

did not begin until DEF_ (only daily data between DEE_ and DEFD) and it was deemed 

important for the goals of this work to understand how intensity and duration of 

precipitation events drive gauge errors; information only gleaned from sub-daily 

precipitation records. Especially when the value of daily uncertainty estimation is 

considered, this thesis shows that developing a highly skillful gauge correction model on 
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Figure 2-8: Precipitation events for the 2013 calendar year by mean wind speed and mean precipitation. The 
events are shown by precipitation type: pink = mixed, green = rain, and blue = snow. Precipitation type is 
classified by applying a +2°C and -2°C cutoff. Events were selected by applying a rolling slope function across 
precipitation accumulation to find break points; the rate of precipitation for a given time point (5-minute 
resolution) is determined by considering slope of accumulation 60 minutes before and after that point. For each 
event, mean precipitation and mean wind speed are calculated. Data are from the US Climate Reference 
Network (USCRN) station at the site. 
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only cEE days of precipitation, a timeframe that exceeds or closely matches recent gauge 

correction efforts, is a valid compromise to a less skillful correction model developed on 

many years of data. Additionally, working with a shorter precipitation period allows for 

easier detection of gaps and investigation of errors in the record. Given that our gauge 

correction was developed on a water year (DEF_-DEFc) that is representative of the average 

precipitation, wind, and temperature dynamics at the site (Fig. D-_, D-Z and D-e) there are 

opportunities to apply the correction results presented here across the entire Niwot Ridge 

subalpine precipitation record. 

 

!.!   Datasets and Instruments 

!.!.#  LTER Long-term precipitation gauges 

     The LTER CF site has one of the longest subalpine precipitation records in North 

America and provides unique insight into the impacts of climate change on mountainous 

precipitation. Specifically, the climate dynamics of Niwot Ridge, which critically includes 

CF precipitation, influences plant community transitions zones (Suding et al., DEFZ) and 

impacts the ecosystem fluxes of energy, water, and carbon dioxide across the Niwot 

mountain catchment zone (Knowles et al., DEFZ). The position of CF, roughly KEE m 

below and [._ km east of the continental divide, dictates that the CF precipitation record 

is regionally relevant to the eastern slopes of the Colorado Front Range but also provides 

a general understanding of orographic precipitation across the leeward slopes of the 

Rocky Mountains. 
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     Precipitation data have been recorded at the CF subalpine site from FKZD to the 

present. There are however many temporal gaps in the data due to instrument 

malfunctions or recording errors that have been addressed with gap-filling measures (see 

Kittel et al., DEFZ  for details). Given the site-specific nature of wind-induced errors in 

precipitation measurements, the correction developed in this study focuses on the recent 

record without any multi-site gap-filling to ensure a properly trained model; ongoing 

work is seeking to combine corrections and improved gap-filling approaches. Another 

potential source of error not addressed in this study are instrument and siting changes. 

From FKZD to FK\c an unshielded U.S. Weather Bureau standard totalizing gauge operated 

at this site and required manual recordings of accumulation (Fig. D-[a). In FK\F, a Belfort 

Universal weighing gauge with a potentiometer scale, _Dc cmD orifice, and chart recorder 

was installed (Fig. D-[b). After three years of comparison with the totalizing gauge, the 

weighing gauge became the operating gauge at CF. Despite the fact that the original 

Weather Bureau gauge was operated in an opening with little tree cover and the Belfort 

was installed in a [-m diameter forest clearing in close proximity, no significant shifts in 

precipitation patterns were detected (Kittel et al., DEFZ). In DEEE, a Geonor TDEEB (same 

as USCRN but without wind shielding) was installed at CF to compare the Belfort with 

modern instrumentation (Fig. D-[c). Our approach here is to focus on improving the 

accuracy and uncertainty estimation of the CF precipitation record by using data without 

gaps from the newer Geonor gauges. Doing so allows us to empirically incorporate local 

physical conditions (wind, temperature, hydrometeor types) relevant to producing 
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physically based correction model and avoid confounding effects of comparing different 

gauge types. 

     The detection of long-term trends in mountain precipitation is difficult due to large 

interannual variability in precipitation in mountain regions across the globe (Napoli et 

al., DEFK). This is especially true for the Niwot Ridge CF long-term (FKZD-DEFc) record that 

has no significant trend in precipitation but very large differences in total precipitation 

from year to year (Fig. D-e). The CF record highlights the need for long-term records to 

avoid incorrect extrapolation of the record. The lack of a multi-decade precipitation 

trends have been seen elsewhere across the western U.S.; a dynamic that could be 

indicative of the influence that individual storms, driven by global atmospheric 

circulation patterns that change from season to season, have on orographic enhancement 

of precipitation (Dettinger et al., DEEc). Furthermore, recent efforts have been devoted to 

understanding mountain precipitation patterns in light of the synoptic scale conditions 

represented in global climate models (Wu et al., DEFe). Future predictions of CF 

precipitation are thus dependent on a record with accurate measurements at a sub-hourly 

temporal resolution (historical precipitation recorded daily) that is capable of correlating 

precipitation accumulation with individual storm characteristics (i.e. pressure gradients 

and wind speed).   
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Figure 2-9: The Niwot Ridge C1 precipitation record. Blue line denotes a slight negative linear trend of -
0.93 mm/year (P-value: 0.347) and gray shaded area represents the 95% confidence interval in the 
trend. Data are from the totalizing and Belfort gauges. 

C1 Belfort Universal weighing-bucket 
gauge (with chart recorder) in forest 
opening w/o shield. 

A US Weather 
Bureau totalizing 
gauge similar to 

the gauge used at 
C1 between 1952 
and 1964. Total 

accumulated 
precipitation is 

measured 
manually at a 

minimum of once 
per day (The 

National Weather 
Service). 

Geonor T200B 
installed at the C1 
site in 2000 and is 
the gauge used to 
develop the 
correction model 
in this study. 

a.) 
 

b.) 
 

c.) 
 

Figure 2-10: Images of the C1 gauges. 
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!.!.!  USCRN sDFIR gauge 

     To meet the observational need to measure precipitation at high spatial and temporal 

resolutions across the United States, the U.S. Climate Reference Network (USCRN) was 

developed by the National Oceanic and Atmospheric Administration (NOAA). This 

system of standardized climate observing stations provides long-term observations of 

precipitation, temperature, and wind speed at FcZ stations (some may still be planned) 

across the US. Fortunately, for the sake of improving past, current, and future records of 

precipitation for the Niwot Ridge subalpine, a USCRN site was established near CF in 

DEE_. At CF and most other locations in the USCRN observation network, precipitation is 

measured with a Geonor vibrating wire strain gauge with load cells that continuously 

weigh a collection bucket (Geonor T-DEEB, DEE cmD orifice). The load cell frequencies are 

converted to collection bucket weight and equivalent depth of liquid precipitation is 

calculated; a source of error generally not accounted for but potentially important (Katja 

Friedrich, personal correspondence). A Z-minute average of the depth plus a wetness 

sensor measurement (presence or absence of precipitation: Vaisala DRDFFA Rain 

Detector) are used to generate Z-minute precipitation amounts (mm/Z-min). The 

weighing gauge is immediately surrounded by a Single Alter wind shield and placed 

within a small Double Fence Intercomparison Reference shield (sDFIR, two-thirds the 

diameter of the DFIR; Fig. D-FD). Additionally, the USCRN system consists of a _-cup 

anemometer for wind speed and three aspirated/solar shielded air temperature sensors. 

These additional meteorological sensors are mounted at approximately F.Z meters above 

ground surface and represent gauge height conditions. The high temporal resolution of 
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the USCRN measurements captures the variation in wind speed, temperature, and 

precipitation intensity within individual storms but more importantly, for the purposes of 

this thesis, provides measurements that follow international standards, and, therefore, 

can be used as a basis to correct the poorly-shielded long-term gauges at the Niwot Ridge 

subalpine site. 

 

 

 

 

 

 

 

 

 

 

 

     The total annual precipitation accumulation from the USCRN sDFIR gauge is 

significantly more than the LTER-Belfort gauge (one tailed t-test: p-value = E.EEEK; Fig. 

D-F_) and marginally more than the LTER-Geonor (one tailed t-test: p-value = E.FZce; Fig. 

D-F_). Over the FE-year comparison period (DEEc-DEFc), there are large differences in the 

total accumulated precipitation with both the LTER-Geonor and LTER-Belfort 

undercatching the amount recorded by the USCRN. Given that the sDFIR shield is very 

Three Aspirated and solar 
shielded temperature 
sensors adjacent to sDFIR 
at C1. Anemometer in the 
background on boom.   

Figure 2-11: USCRN sDFIR near the C1 site. Geonor gauge is in the center and immediately surrounded by the 
single Alter Shield. The two concentric and hexagonal wind fences are also shown. 
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close to the DFIR WMO standard in performance (Rasmussen et al., DEFF) and was 

selected by NOAA for their standardized CRN network, we confidently assume that the 

USCRN gauge near CF provides a quality reference precipitation. The USCRN gauge is DKE 

meters southeast of CF in an open area adjacent to the forest and experiences higher wind 

speeds due to less forest shelter (_.E_ vs D.\F m/s averages for the study period). If the 

USCRN gauge was unshielded, we would expect more under-catchment from the USCRN 

due to higher wind speeds at the gauge orifice alone. Although the USCRN is located 

within a larger clearing than the CF gauges (\E m vs [ m diameter clearing), there is 

dense forest cover immediately to the West and Northwest, primary wind directions at 

the site, extending to and past CF. With minimal blowing snow at these two locations 

(anecdotal evidence) there is not much opportunity for over-catchment of precipitation. 

With a FE-year total under-catch of F[ZD mm between the USCRN and LTER Belfort, we 

claim that the CF long-term record has systematically and substantially under-caught the 

true amount of precipitation. However, given that the unshielded Geonor at CF is not 

significantly different from the USCRN (mean FE-year under-catch of \Emm) and does 

not consistently under-catch precipitation, the errors associated with this gauge are more 

nuanced. For these Niwot Ridge subalpine gauges, it may be combination of wind 

shielding, difference in the forest clearing geometry, and the particulars of operation for 

each instrument that are driving the variation in response to wind and hydrometeor 

conditions.  

      

 



 

  26 

 

 

 

 

 

 

 

 

 

 

!.!.@  Disdrometer 

     Detailed hydrometeor parameters are observed with a laser based optical disdrometer 

that is capable of distinguishing hydrometeor sizes and fall velocities. Disdrometers have 

proved to be valuable instruments for validating radar-derived rainfall rates and 

observing microphysical conditions throughout a variety of storm types (Friedrich et al., 

DEF_). Since fall speed and size/shape determine the impact of wind on particle trajectory, 

disdrometers could also be used to model the spatial distribution of orographic 

precipitation (windward vs. leeward deposition) (Gerber et al., DEF[, DEFK; Mott et al., 

DEFc; Woods et al., DEEe) and improve mountain weather forecasting. There have 

recently been efforts to adapt the disdrometer method for ice crystal observations despite 

the greater challenges associated with the large variety of frozen hydrometeor shapes and 
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Figure 2-12: Comparison of the USCRN and LTER gauge records between 2004 and 2014. The USCRN 
record is in green, LTER-Geonor record is in purple, and the LTER-Belfort record is in orange. The 10-year 
mean precipitation for the USCRN gauge is 848 mm, LTER-Geonor is 788 mm, the LTER-Belfort is 671 mm.   
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sizes (Battaglia et al., DEFE). The wide distribution of size and density in turn creates 

variable fall velocities and if adequately measured with a disdrometer, hydrometeor 

information can be used to investigate the role hydrometeor types have on gauge errors. 

The combination of gauge accumulation, wind observations, and disdrometer based 

particle size distributions at the CF site enhance the understanding of how frozen 

hydrometeors interact with the forest clearings, gauge orifices, and gauge wind shields in 

the Niwot Ridge subalpine. 

     The gauge corrections in this study utilize an OTT Particle Size and Velocity (Parsivel) 

disdrometer operating immediately adjacent to the LTER-Geonor gauge between October 

F, DEF_ to May FD, DEFZ. The OTT Parsivel uses a \ZE-nm laser with a beam area of Zc cmD 

(F[E mm long, _E mm wide, and F mm high). As hydrometeors fall through the laser 

beam their size is estimated with maximum signal attenuation and the speed is estimated 

by how long the particle remains in the beam (Fig. D-FZ). The equivalent snowflake 

diameter and fall velocity has a larger uncertainty than raindrops since the Parsivel 

assumes the shape of the hydrometeors to be spheres (Tokay et al., DEFc). Other 

uncertainties arise due to particles falling through the edge of the beam (Battaglia et al., 

DEFE) and due to the deviation of particle trajectories during strong winds (Friedrich et 

al., DEF_).  

     The Parsivel disdrometer’s shortcomings with respect to measuring snowflakes is 

compensated for with a very high temporal resolution and recording over a thousand 

size-fall velocity combinations. The raw output of the Parsivel provides a _D X _D size 

versus fall velocity matrix. The observed size ranges between E.DZ and DZ mm and 
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observed fall speed ranges between E and DE m/s. Precision of the Parsivel decreases with 

both increasing size and fall velocity and is accounted for through increasing bin sizes; 

E.FDZ to _.EEE mm width for size and E.FEE to _.DEE m/s width for speed. As particles fall 

through the disdrometer beam they are classified as one of the FEDc size-velocity bins. 

Over a FE second interval, the particles detected are summed to provide a total number of 

particles for the period for each bin. Throughout the duration of a storm lasting 

approximately one day, the Parsivel disdrometer at Niwot Ridge CF is capable of 

measuring over F million particles, providing detailed and valuable information on the 

hydrometeor characteristics.         

 

      

 

 

 

 

 

 

 

     All of the instruments described above are relatively close in proximity and represent 

the subalpine climate zone, however, as previously stated, there are differences in forest 

cover and clearing size (Fig. D-Fc). Furthermore, forest structure at this site has changed 

considerably over the last century due to fires and logging (Burns; DEF[). Therefore, the 

Figure 2-13: Image of the Parsivel disdrometer (a) and diagram of operation (b, Fig. 2 a in Friedrich et al. 
2013). The Parsivel consists of a transmitter and a receiver with the laser beam transmitted at a constant 
voltage throughout operation. Particles falling through the laser beam induce a voltage drop at the receiver 
that is proportional to the size of the particle and the duration of the voltage drop is proportional to the fall 
velocity. 
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airflow patterns, and subsequent influence on hydrometeor trajectories, may be different 

between the exact locations of the instruments in this study and the differences are likely 

to have changed over time. We recognize that this is a source of error in our gauge 

correction efforts but at the same time we argue that our approach is the best way 

forward to understand and predict the precipitation gauge errors at the Niwot Ridge CF 

subalpine site.   
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Figure 2-14: Satellite image of the LTER C1 subalpine site showing the specific locations of the USCRN, LTER-
Geonor, disdrometer, and LTER-Belfort. 
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Chapter C  
 
 
 

The Niwot Ridge CA Subalpine Precipitation Gauge Errors 
 

@.#  The difference between gauges at Niwot Ridge C# 

 
     There were large differences between the USCRN reference precipitation gauge and 

LTER-Geonor unshielded gauge (difference = USCRN – (LTER-Geonor)) resulting in 

different accumulation totals (Fig. _.F-a) for the DEF_-DEFc water year that are variable 

between precipitation type (Fig. _.F-b). The largest positive differences occurred during 

the winter months when precipitation type is primarily snow with a mean daily difference 

of E.cK mm/day (Fig. _-D). Rain, with a mean daily difference of -E.cD mm/day, and 

mixed, with a mean daily difference of -E.D_ mm/day, differences are generally smaller 

than snow but overall are more negative and represent an overall overcatchment of these 

precipitation types (Fig. _-D). Interestingly, during the spring months of April – June, 

there are highly variable differences that are positive or negative. This suggests that the 

underlying errors are more nuanced during the dynamic spring season and do not lend 

themselves to simple hypotheses or explanations that have been previously investigated 

in tightly controlled “test bed” sites. It is for this reason that the approach in this study is 
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to leverage a machine learning framework capable of detecting unknown errors. 

However, we still assume that the underlying physical dynamics (i.e., airflow, 

hydrometeor characteristics, and wind barriers) play a large role in driving the gauge 

errors.     
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Figure 3-1: Differences in precipitation between the USCRN and the LTER gauges during the 2013-2014 
water year. The daily accumulation is shown in (a) with cumulative annual totals of 987 and 950 mm, 
USCRN and LTER gauges, respectively. Gaps in LTER dataset removed and corresponding USCRN days also 
removed for comparison accuracy. The daily difference (USCRN – LTER) is shown in (b). All days with gaps 
in precipitation are removed along with difference greater than 10 mm. The year accumulation is 
recalculated from non-gap-filled data. 
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Figure 3-2: Violin plots showing the distribution of the daily total precipitation differences for the 2013 – 
2014 water year. Lines within the violins represent the 0.25, 0.50, and 0.75 quartiles. The mean 
differences (in mm) for the year are displayed at the top of the plot. The overall mean difference across 
all precipitation types is 0.05 mm/day. Positive values represent under-catch and negative values 
represent over-catch assuming the sDFIR USCRN gauge is the reference.    
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@.!  Explanatory variables driving gauge errors 

 
    We investigate all of the available and potentially useful information relevant for 

correcting precipitation accumulation at the Niwot Ridge CF subalpine. The justification 

for including wind speed and the hydrometeor characteristics of volume equivalent 

diameter and number of particles are firmly rooted in published gauge correction 

methods and approaches previously mentioned. We also investigate precipitation 

intensity and duration of precipitation to capture systematic errors that are instrument 

related or interact with physical information. All explanatory variables are split by 

precipitation type factors following Kochendorfer et al., DEF[ by applying +D° and -D° C 

air temperature thresholds ( > +D°C = rain; <= +D°C and >= -D°C = mixed; < -D°C = snow).      

@.!.#  Wind Speed 

     The average wind speed for each day during precipitation periods is obtained from the 

USCRN _-cup anemometer located near the USCRN gauge at a height of F.Z m above the 

ground. The height of the anemometer is roughly equal to the USCRN gauge orifice and is 

representative of wind speeds outside of the wind fence at the edge of the forest clearing.  

To only consider the wind speed during precipitation events, precipitation periods are 

defined by consecutive Z-minute periods with a \E-minute intensity greater than E 

mm/hour. This is calculated automatically in the R programming language by invoking 

the “run length encoding” (rle) command and then averaging the wind speed during the 

defined precipitating period for a given day.  
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     There is large scatter in the mean wind speed as a function of the gauge precipitation 

difference but there is detectable variation in the trend between precipitation types (Fig. 

_-_,a). The increasing difference trend between the two gauges for snow is what we would 

expect if the poorly shielded gauge is under-catching snow and is in line with previous 

observations and modelling of lower catch efficiency at higher wind speeds for frozen 

hydrometeors (Thériault et al., DEFD). Both the mixed and rain precipitation types have a 

negative trend in gauge difference for increasing wind speeds. 

@.!.! Precipitation Intensity 

     Precipitation intensity is estimated from the Z-min USCRN precipitation totals. The FZ-

minute intensity (i.e., rate of precipitation) for a given time point (Z-minute resolution) is 

calculated by taking the slope of accumulation Z minutes before and after that point; this 

is achieved in the R programing language by calling the “rollapply” function on a “zoo” 

time object. This value is then multiplied by c to obtain the mm/hour units. We use the 

daily maximum FZ-minute precipitation intensity by taking the maximum value for each 

day.  

     Figure _-_,b shows that there is a strong positive difference in precipitation (USCRN > 

LTER) for increasing intensity with snow showing the strongest effect. The points at E 

mm/hour max intensity correspond to cases when the USCRN did not measure 

precipitation for the day but the LTER gauge did.      
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@.!.@ Precipitation Duration 

     The duration of precipitation in a given day is calculated by first defining precipitation 

events and then summing the duration of those events. Events are defined in the same 

way described for mean wind speed. This inevitably calculates durations that are longer 

than the actual time of precipitation but the method is consistent and a reasonable 

approximation. 

     The strong positive and linear increase in gauge difference for increasing duration 

suggests that there are systematic errors that accumulate linearly over the course of a 

precipitation event (Fig. _-_,d). The residuals away from the trend line, however, indicate 

that more than a simple adjustment is required to correct the LTER gauge. 

@.!.J Volume Equivalent Diameter 

     The volume equivalent diameter (VED, the diameter of a particle assumed to be a 

sphere), was derived from the CF Parsivel disdrometer. To calculate the daily average VED 

from the raw Parsivel data the following steps were taken: F.) number of particles in each 

diameter class were counted for each day, D.) counts were multiplied by their respective 

size class median value, _.) values generated in step D were summed then divided by the 

total number of particles for that day to produce an average diameter value. The 

hydrometeors were then classified by precipitation type as described above. There was no 

a relationship between VED and the USCRN – LTER difference for all precipitation types 

with a large amount of scatter for each diameter class (Fig. D-_,e). This suggests that 

knowing the average hydrometeor size alone is not sufficient in predicting gauge errors.   
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@.!.M Number of Particles 

     The total number of particles detected for each day is calculated by summing all of the 

particles in each of the _D size classes. This value in combination with the fall speed and 

VED can provide an estimate of liquid equivalent precipitation accumulation. There was a 

positive relationship between the number of hydrometeors and the USCRN – LTER 

difference when precipitation is snow but there is no relationship for rain or mixed 

precipitation (Fig. _-_,c). Furthermore, there are several days when snow particles total 

more than one million whereas there is only one mixed and no rain precipitation days 

above this amount. These patterns indicate that there are greater errors associated with 

frozen hydrometeors with a higher probability for these errors to occur, compared to rain 

or mixed events, given the larger amount of snow particles falling at the CF subalpine site. 

These observations imply that snow hydrometeors interacting with the local terrain, 

forest, and gauge configurations are partly responsible for the observed gauge errors. 

     There are clear indications that these variables can explain and help to predict gauge 

errors for the Niwot Ridge subalpine gauges. The variable response between precipitation 

types highlight the importance of investigating gauge errors for snow, mixed, and rain 

events separately. With the large scatter (i.e., residuals) around the trend lines, it is also 

evident that the best gauge correction is likely to include a combination of these 

explanatory variables in a model capable of prescribing interactions among variables. 
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Figure 3-3: Explanatory variables describing the gauge differences. These variables are used in the gauge correction 
models described in this thesis. Mean wind speed, intensity, and duration are derived from the USCRN station. 
Number of particles and volume equivalent diameter are calculated from the Parsivel raw output. Shaded regions 
represent the 95% confidence interval in the trend line.  
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Chapter D  
 
 
 

The Gauge Correction Model 
 

 

J.#   Introduction 

     To address the current uncertainties in precipitation at the Niwot Ridge LTER CF 

subalpine site, we develop a hierarchical Bayesian regression gauge correction model 

(HBayeRGC) to explain the difference in precipitation accumulation between the U.S. 

Climate Reference Network small Double Fence Intercomparison Reference gauge 

(USCRN sDFIR) and the LTER long-term Geonor gauge. We accomplish this task by first 

selecting the best linear regression model from the available explanatory variables (i.e. 

covariates). Once we have a reasonable linear regression model that considers 

interactions between all variables, we calculate the probability distribution functions 

(PDFs) for each explanatory variable and the dependent gauge difference response 

variable. These PDFs are then sampled within a Bayesian model framework as likelihood 

information to fit the same best linear regression model. Furthermore, the Bayesian 

model is formulated to incorporate prior knowledge of the linear model coefficients to 
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provide reasonable starting points for the iterative and machine learning process of 

determining the posterior distribution of each Bayesian model coefficient and the 

predicted response. This approach allows for a gauge correction model that has higher 

predictive skill and can estimate uncertainty for each set of explanatory conditions or in 

the case here, for each day in the precipitation record.  

     The correction models in this study use data from October F, DEF_ to May FD, DEFZ, 

dictated by the limited disdrometer record at CF. All gaps were removed from the datasets 

and only overlapping days from the USCRN gauge, LTER-Geonor gauge, and disdrometer 

are used. Gauge differences (USCRN minus LTER-Geonor) are predicted at the daily time 

scale due to the daily time resolution of the LTER-Geonor gauge. All data management 

and statistical programing is performed in the R computing language.  

J.!   Multiple Linear Regression Model 

     To determine the best combination of explanatory variables, and the interactions 

between them, that best explain the gauge difference and provides the Bayesian model 

with an objective linear regression framework, a multiple linear regression (MLR) model 

was fit to the data. The MLR model was developed from the standardized (mean = E, 

standard deviation = F) response and scaled (standard deviation = F) explanatory variables 

described above; wind speed, precipitation intensity and duration, number of particles, 

and volume equivalent diameter (VED). Insight on possible variable interactions are 

gleaned from Figure c-F. To pick the most parsimonious model that minimizes the 

residual sum of squares the Akaike Information Criterion (AIC) was used: 
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𝐴𝐼𝐶 = 	−2 ∗ ln(𝐿) + 2 ∗ 𝐾 

where L is the maximum value of the likelihood, and k is the number of estimated 

parameters. The maximum likelihood for AIC is the joint probability distribution of the 

random sample evaluated for the set of observations. The AIC is used in a forward and 

backward model selection that considers all combination of variables and interactions. 

The best model is then compared to the simplest model to ensure statistical significance 

and a reasonable increase in variation explained. The formulation of the best linear 

regression gauge correction model is: 

 

 

 

where * denotes an interaction and precipitation type is a regression factor. The MLR has 

an adjusted R-squared (adj RD; adjusted for number of predictors in the model; measure 

of variance explained) of E.c\F as compared to an adj RD of E.ED_ for a simple model with 

only precipitation type and wind speed. All coefficients, including interactions, are 

statistically significant (Table c-F). The predicted values are recovered by multiplying the 

standardized predicted value by _.__ (scale) and then adding E.DZ (center). 

 

 

 

 

 

Equation    1 

USCRN	-	LTER	~	Precipitation	Type	+	Total	Particles	+	Mean	15-minute	Intensity	+	
	 	 Mean	Volume	Equivalent	Diameter	+	Duration	+	Mean	Wind	Speed	+	
	 	 Precipitation	Type	*	Total	Particles	+		

Mean	Volume	Equivalent	Diameter	*	Total	Particles	+	
Mean	15-minute	Intensity	*	Total	Particles	

Equation    2 
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Table 4-1: Coefficients table for the multiple linear regression predicting the USCRN – LTER gauge difference. 
Residual standard error is 0.7342 on 388 degrees of freedom. The adjusted R-squared is 0.461 and model p-value is 
< 2.2e-16. Coefficient significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 

 

 

 

 

 

Coefficient Estimate Std. Error t-statistic P-value 

Intercept -0.59449 0.08942     -6.648 1.01e-10 *** 

Mixed 0.32046 0.10257 3.124 0.001915 ** 

Rain -0.89671 0.16166 -5.547 5.39e-08 *** 

Snow 0.57625 ---------- ---------- ---------- 

Total Particles -1.50178 0.16775 -8.953 < 2e-16 *** 

Intensity 0.77643 0.08541 9.091 < 2e-16 *** 

VED -0.33292 0.06114 -5.445 9.22e-08 *** 

Duration 0.35491 0.08253 4.300 2.16e-05 *** 

Wind Speed 0.12021 0.05125 2.346 0.019486 * 

Mixed*Particles 0.52719 0.16612 3.173 0.001626 ** 

Rain*Particles -1.59506 0.26064 -6.120 2.29e-09 *** 

Snow*Particles 1.06787 ---------- ---------- ---------- 

VED*Particles -0.46693 0.08260 -5.653 3.07e-08 *** 

Intensity*Particles -0.09140 0.02686 -3.402 0.000738 *** 
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     With a multi-dimension linear regression gauge correction model that includes three 

interaction terms, it is difficult to explain the direct effect of any one explanatory variable. 

However, we can say with confidence that all variables, including the precipitation type, 

are important in explaining the gauge differences in the presence of all other variables 

and interactions in the model. The “total particles*intensity” and “total particles*VED” 

interaction terms are climatologically relevant given the varying relationship among these 

variables by precipitation type; for example, days with more hydrometeors recorded tend 

to be snow events with higher precipitation intensity and larger particle sizes (Fig. c-

F,b,c). The relationship between duration and intensity highlights the fact that winter 

storms are longer in duration with summer convective storms being shorter in duration 

(Fig. c-F,a). There are relatively low correlations (R) between all variables (Fig. c-D) 

confirming the usefulness of including each variable. The exceptions to low correlation 

are between duration – intensity and duration – total particles, hence why the 

“duration*intensity” interaction is not used, but all of these variables are highly 

significant in the model (p-value < D.F\e-EZ). The p-values (probability there is no effect) 

offer insight on the relative importance of each coefficient (explanatory variable) in the 

model. Therefore, it is interesting to see that wind speed has the highest p-value. 

Although wind speed significantly helps to explain the gauge differences at CF and 

corroborates current understanding of wind-induced gauge errors, there is a lot more 

addition information capable of explaining the errors at the Niwot Ridge subalpine site. 
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Figure 4-1: Scatter plots of the relationship between duration and intensity (a), number of particles and intensity 
(b), and number of particles and maximum volume equivalent diameter (c) for the October 1, 2013 to May 12, 
2015 gauge comparison period. 
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Figure 4-2: Correlation between all explanatory variables of interest. The size of the circle is proportional 
to the absolute value of the correlation and the color represents either positive (blue) or negative (red) 
correlation. 
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J.@   Hierarchical Bayesian Regression Gauge Correction Model (HBayeRGC) 

     Gauge and disdrometer measurements of precipitation are error prone. This is 

especially true in complex mountain terrain where there are potentially many sources of 

errors and is the motivation in this thesis for uncertainty estimation. The probability 

distributions (PDFs) of the meteorological data are unique to each variable and can be 

generally describe as gamma distributions. Therefore, recorded precipitation values, 

along with other sources of meteorological data, should be described in terms of 

likelihood and probabilities rather than absolutes. To more accurately model gauge errors 

without violating regression modeling assumptions on PDFs, as was done with the MLR, a 

modelling framework that allows for the specification of unique PDFs is required. 

Furthermore, information contained within the structure of the data, which approximate 

the true distribution of potential observations, can be used as additional model structure 

in a machine learning approach, with demonstrated improvements in model predictive 

skill for meteorological data (Rasouli et al., DEFD). This is the inspiration and justification 

for the use of Bayesian statistics in precipitation gauge corrections. 

     Bayesian statistics allows for linear regression models to be parameterized from 

response and explanatory probability distributions. In the case of the linear regression 

gauge correction model described in the previous section, we can assign a probability of 

obtaining any given value within the range of precipitation differences and explanatory 

values used in the model. These probabilities of model variables, as determined from CF 

observational datasets, provide distribution parameters (e.g., shape, scale, and location) 

used within the Bayesian model (Fig. c-_). Given our prior knowledge of the importance 
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of precipitation type and to strive for model simplicity, the gauge correction dataset was 

split into mixed, rain, and snow to create a Bayesian correction model for each type is 

described below in section c._.D, c._._. and c._.c (equations _-Z). Additionally, the prior 

knowledge of model coefficients was used to define starting values for the Bayesian model 

selection. The Bayesian process employed here uses a random walk approach (Markov 

Chain Monte Carlo) that samples from the probability distributions shown in Figure c-_ 

(approximations of the true values) to re-allocate credibility and produce posterior 

distributions that result in the most likely model solution. All standardized explanatory 

variables (scaled to F standard deviation, no centering) are approximated with the Gamma 

distribution with shape (meanD/sdD) and scale (sdD/mean) parameters defined in Tables c-

D, c-_, and c-c. The distributions of the observed gauge differences were determined to 

approximate the Cauchy distribution with a location of E and scale of F and defined 

within the HBayeRGC as a Student’s t distribution with F degree of freedom. 

     For each of the mixed, rain, and snow HBayeRGCs we use five chains (stochastic 

sampling of PDFs with varying starting points) and FZ,EEE iterations with a burn-in of 

ZEE and thinning of ZE. The Bayesian hierarchical model samples from the PDFs 

described here with Markov Chain Monte Carlo (MCMC) simulation is performed with 

the Just Another Gibbs Sampler (JAGS) program. The complete formulation of each 

HBayeRGC with priors and likelihood information for each model variable is shown in 

Appendix A. The posterior coefficients and model diagnostics are displayed in Tables c-Z, 

c-\, and c-e with plots of posterior distributions of the coefficients in Figures c-c, c-Z, 

and c-\. For additional information on Bayesian theory, JAGS programing, and the 
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implementation of these models in R, see John K. Kruschke’s book: Doing Bayesian data 

analysis: a tutorial with R, JAGS, and Stan (Dnd edition, DEFc).    

J.@.#   Data management and analysis workflow  

     The implementation of a Bayesian gauge correction model is more than applying a 

simple correction equation or transfer function. The novelty and success of such an 

approach lies in the incorporation of prior knowledge of physical relationships, modelling 

with best estimates of probability distributions, and understanding the outcome in terms 

of likelihood information. Here are the simplified steps taken and proposed in this thesis 

to achieve a Bayesian gauge correction model (see appendix A for full Bayesian model 

formulation): 

1. Combine gauge data w/o gaps and calculate difference in daily accumulation. 

2. Merge wind speed, disdrometer, and sub-hourly precipitation statistics and scale data. 

3. Select a best linear regression model (MLR) with all potentially useful information to 

form preliminary understanding of physical drivers of the gauge errors (equation 1). 

a. Use as simple correction for new gauge data by inserting new explanatory data 

into equation 1. 

b. Add the predicted difference value to unshielded gauge daily accumulation 

c. Use HBayeRGC posterior distributions of model coefficients to apply 

uncertainty. 

4. If precipitation type a significant model factor, select additional best MLRs for rain, 

mixed, and snow precipitation type. 
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a.  Split data and re-run MLR selection. 

b. Repeat steps 3a-c as alternative to running full HBayeRGC. 

5. Determine the PDFs of scaled gauge differences and explanatory variables (Fig. 4-3 and 

tables 4-2, 4-3, and 4-4). 

6. Formulate Bayesian model with prior knowledge of regression coefficients (e.g. Table 1) 

and the model variable PDFs as likelihood information. 

7. Employ Gibbs sampling to run MCMC algorithm and generate posterior probabilities of 

the predicted gauge differences and explanatory coefficients. 

8. Correct unshielded or non-reference gauge with predicted gauge differences. 

9. Predict gauge errors for gauges without a nearby reference but with similar explanatory 

information by adding new explanatory information as inputs in the HBayeRGC and re-

running the model to obtain new estimates. 

a. Use same linear regression models (equations 3, 4, and 5) and Bayesian model 

coefficients (tables 5, 6, and 7).  

b. Assumes same gauge difference and explanatory PDFs. 

c. Or simulate new PDFs if new site characteristics dictate the use of alternative 

linear regression models. 

i. Formulate a site-specific HBayeRGC. 

10. Use posterior distributions of predicted and explanatory estimates to apply daily 

uncertainty information to gauge records.  
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Figure 4-3: Density distribution plots for each scaled correction model variable. These plots visualize the 
probability distribution functions (PDF) for which the PDF family and parameters are estimated from. All 
explanatory variables are described as gamma distributions. A Cauchy distribution is used for the difference. 
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Table 4-2: Gamma distribution parameters for the rain precipitation type HBayeRGC Model 

 

 

 

Table 4-3: Gamma distribution parameters for the mixed precipitation type HBayeRGC Model 

 

 

 

 

 

Parameter Shape Scale 

Wind speed 5.738079 0.1603397 

Intensity 0.2165204 1.947229 

Duration 0.4173668 1.298814 

Total Particles  0.1362195 2.540766 

VED 7.738119 0.121231 

Parameter Shape Scale 

Wind speed 2.580335 0.3272983 

Intensity 0.2809226 1.664394 

Duration 0.56958348 1.054849 

Total Particles  0.4767221 1.189062 

VED 10.5412 0.09006869 
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Table 4-4: Gamma distribution parameters for the snow precipitation type HBayeRGC Model 

 

 

 

J.@.!   Rain HBayeRGC: Linear Regression Component   
 
The rain HBayeRGC model’s linear regression component is structured as follows: 
 
y.hat[i] <- b0 + b1 * truexr_par[i] + b2 * truexr_int[i] + 
      b3 * truexr_dur[i] + b4 * truexr_ws[i] + 
      b24 * truexr_int[i] * truexr_ws[i]}} 

 

where, bE = intercept coefficient, bF = total particles coefficient, bD = intensity coefficient, 

b_ = duration coefficient, bc = wind speed coefficient, bDc = intensity * wind speed 

interaction coefficient, truexr _ws = sampling of wind speed from gamma distribution, 

truexr _int = sampling of intensity from gamma distribution, truexr _dur = sampling of 

duration from gamma distribution, truexr_par = sampling of total particles from gamma 

distribution, y.hat = the predicted difference (CRN-Met). 

Parameter Shape Scale 

Wind speed 1.964305 0.4136813 

Intensity 0.6330469 0.9825011 

Duration 1.456773 0.5277571 

Total Particles  0.9777428 0.7181736 

VED 17.4844 0.05548508 

Equation 3 
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J.@.@   Mixed HBayeRGC: Linear Regression Component   

The mixed HBayeRGC model’s linear regression component is structured as follows: 
 
 
y.hat[i] <- b0 + b1 * truexm_par[i] + b2 * truexm_int[i] + 
      b3 * truexm_dur[i] + b4 * truexm_ws[i]}} 

where, bE = intercept coefficient, bF = total particles coefficient, bD = intensity coefficient, 

b_ = duration coefficient, bc = wind speed coefficient, truexm _ws = sampling of wind 

speed from gamma distribution, truexm _int = sampling of intensity from gamma 

distribution, truexm _dur = sampling of duration from gamma distribution, truexm_par = 

sampling of total particles from gamma distribution, y.hat = the predicted difference 

(CRN-Met). 

J.@.J   Snow HBayeRGC: Linear Regression Component   

The snow HBayeRGC model’s linear regression component is structured as follows: 
 
 
y.hat[i] <- b0 + b1 * truexs_int[i] + b2 * truexs_par[i] + 
      b3 * truexs_dur[i] + b4 * truexs_ved[i] + 
      b24 * truexs_par[i] * truexs_ved[i] + 
      b12 * truexs_int[i] * truexs_par[i]}} 

where, bE = intercept coefficient, bF = intensity coefficient, bD = total particles coefficient, 

b_ = duration coefficient, bc = VED coefficient, bDc = total particles*VED interaction 

coefficient, bFD = intensity*total particles interaction coefficient, truexs_ved = sampling of 

VED from gamma distribution, truexs_int = sampling of intensity from gamma 

distribution, truexs_dur = sampling of duration from gamma distribution, truexs_par = 

Equation 4 

Equation 5 
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sampling of total particles from gamma distribution, y.hat = the predicted difference 

(CRN-Met). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-5: Table 5: Rain JAGS model coefficients table showing the mean, standard deviation, confidence 
intervals, and Rhat chain convergence. Coefficients are valid for the scaled dataset. 

Table 4-6: Table 6: Mixed JAGS model coefficients table showing the mean, standard deviation, 
confidence intervals, and Rhat chain convergence. Coefficients are valid for the scaled dataset. 

Table 4-7: Snow JAGS model coefficients table showing the mean, standard deviation, confidence 
intervals, and Rhat chain convergence. Coefficients are valid for the scaled dataset. 
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Figure 4-4: Plots of the posterior distributions for the rain HBayeRGC coefficients. b1 = total particles coefficient, b2 
= intensity coefficient, b3 = duration coefficient, b4 = wind speed coefficient, b24 = intensity * wind speed 
interaction coefficient. 
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Figure 4-5: Plots of the posterior distributions for the mixed HBayeRGC coefficients. b1 = total particles 
coefficient, b2 = intensity coefficient, b3 = duration coefficient, b4 = wind speed coefficient 
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Figure 4-6: Plots of the posterior distributions for the snow HBayeRGC coefficients. b1 = intensity coefficient, b2 = 
total particles coefficient, b3 = duration coefficient, b4 = VED coefficient, b24 = total particles*VED interaction 
coefficient, b12 = intensity*total particles interaction coefficient 
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Chapter E  
 
 
 

Gauge Correction Results 
 

M.#   Overview of results 

 
     The HBayeRGC gauge correction model is capable of modeling the accumulation 

differences between the USCRN reference and the LTER-Geonor unshielded gauge. 

Furthermore, the HBayeRGC estimates daily uncertainties and identifies periods in the 

precipitation record with large unknown errors. Although the coefficient posterior 

distributions are relatively dispersed, the predicted posterior distributions are generally 

precise (i.e., the estimates are well predicted) and provide reasonable uncertainty 

information for each daily prediction. The HBayeRGC outperforms recently published 

gauge correction methods and the multiple linear regression approach. There is similar 

model performance for rain, mixed, and snow events with the particular combination of 

environmental conditions likely driving the variation in predictive skill. Including 

hydrometeor size and count information only slightly improves the HBayeRGC 

performance but is a significantly better gauge difference predictor than wind speed. The 
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uncertainty in precipitation accumulation for the LTER-Geonor during the DEF_-DEFc 

water year is defined from the HBayeRGC and is among the USCRN total accumulation. 

 

M.!   Coefficient posterior distributions 

 
     The coefficient posterior distributions provide a level of confidence in the mean 

coefficient value selected by the HBayeRGC. All coefficient posteriors are relatively wide 

with variable PDFs observed (Figs. c.c, c.Z, c.\). Bimodal distributions are evident, 

especially for wind speed in the rain HBayeRGC and duration in the mixed precipitation 

HBayeRGC, indicating alternative coefficient values are possible. Each explanatory 

variable has a different effect on predicting the gauge difference between the rain, mixed, 

and snow models; this is readily seen by comparing the PDF shape of a given variable 

across the different precipitation type models. In the rain model, the duration coefficient 

and the total particles coefficient PDF are the closest to a normal distribution; whereas in 

the mixed-precipitation model, the wind speed is closest to normally distributed with the 

total particles largely right-skewed. In the snow model, the duration coefficient is also 

approximately normal and the intensity*total particles interaction coefficient is close to 

normal but with a large negative left-skewed tail. These PDF shapes, standard deviations 

of estimated coefficients, and Bayesian MCMC trace convergence criteria, are indications 

of the strength and direction of, and confidence in the effect each explanatory variable 

has on the LTER-Geonor errors.   
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M.@   Response posterior distributions 

 
     The HBayeRGC provides uncertainty information for each daily prediction of the gauge 

differences. Confidence is high in a predicted gauge difference when the MCMC traces 

have good convergence and the PDF of the parameter estimate is narrow (low standard 

deviation). Conversely, confidence is low in a predicted gauge difference when the MCMC 

traces have poor convergence and the PDF of the parameter estimate is wide (high 

standard deviation). Figure Z.F shows an example MCMC trace and density plot for low, 

intermediate, and high standard deviations of the parameter (i.e., predicted gauge 

difference) estimate. Along with the standard deviation of the parameter estimate 

providing an uncertainty estimate for the daily predicted gauge difference, the shapes of 

the PDFs indicate the likelihood of alternative estimates. This information can be used to 

determine when there are sources of error not included in the HBayeRGC model that 

have a strong influence on producing an observed gauge difference.  

     The highly bimodal PDF for the high standard deviation case (Fig. Z.Fc) suggests that 

there are alternative gauge difference predictions; one based on the environmental 

predictors included in the model and another due to unknown errors. Subsequent 

investigation into the high standard deviation event reveals that the LTER-Geonor gauge 

had a one-day lag in recording the large amount of precipitation falling on that particular 

day (April _, DEFZ: USCRN recorded FZ.[ mm and LTER recorded Z.c mm; April c, DEFZ: 

USCRN recorded c.[ mm and LTER recorded F\.F mm). Thus, the HBayeRGC predicted a 

difference near E mm given the physical conditions on that day but also predicted the 
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large observed negative difference (LTER > USCRN) due to capturing underlying but 

unprescribed errors. 

     The intermediate standard deviation case (Fig. Z.Fb) also identifies a source of gauge 

differences not specified in the HBayeRGC. In this case, the USCRN did not measure any 

precipitation whereas the LTER measured _.c mm (January DD, DEFZ). However, the 

disdrometer indicated that FZc,_F_ hydrometeors fell to the ground on that day. The 

physically based predicted gauge difference, if the USCRN would have measured the 

hydrometeors detected by the disdrometer, is likely close to or below E mm. Instead the 

HBayeRGC produced a mean predicted difference of +D.DF mm. This dynamic was 

detected by the peak near E mm but much larger peak near F mm (scaled difference) in 

Figure Z.F-b. Again, the HBayeRGC is capturing unexpected errors not prescribed in the 

model, but in this case, the error, although small, was associated with the USCRN 

reference gauge. 

     An expected undercatchment of precipitation during a moderate snowfall event with 

strong winds was captured in the low standard deviation case (Fig. Z.Fa). On this day, 

November FE, DEFc, the USCRN recorded e.K mm of precipitation whereas the LTER-

Geonor recorded only \.e mm. The mean wind speed for the day was D.e m/s (maximum 

= [.e m/s) with \EE minutes of precipitation and a moderate maximum FZ-minute 

precipitation intensity of E.D mm/hour. The narrow distribution of the posterior estimate 

suggests that this type of event was well predicted by the HBayeRGC along with high level 

of confidence that the environmental conditions responsible for driving the gauge 

difference was described well in the HBayeRGC model structure. 



 

  61 

     Large undercatchements of snow during intense snowstorms with high winds were 

correctly modeled with the HBayeRGC. This is most evident for the November DZ, DEFc 

case when the USCRN measured F[ mm of precipitation and the LTER-Geonor only 

measured Z mm of precipitation. The mean windspeed on this day was K m/s (maximum 

wind speed of FF.[ m/s) with FDFZ minutes of precipitation, a high maximum FZ-minute 

precipitation intensity of E.Dc mm/hour, and ~ D million hydrometeors recorded. The 

posterior distribution of the predicted difference estimate (Fig. Z.D) demonstrates that the 

HBayeRGC predicts, with high confidence, a large undercatchment of FD.Z mm of 

precipitation (actual difference of F_ mm) by the LTER-Geonor during this strong 

snowstorm.  
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Low standard deviation (original scaled difference = +0.337 mm): 
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Intermediate standard deviation (original scaled difference = -0.095 mm): 
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High standard deviation (original scaled difference = -3.174 mm): 
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Figure 5-1: Plots of MCMC traces and posterior distributions of low, intermediate, and high dispersion (standard 
deviation) for 3 snow HBayeRGC predicted differences. Parameter estimates are scaled values. 
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M.J   Model diagnostics 

 
     The HBayeRGC is a significantly better model than published gauge correction 

methods (Fig. Z._). To assess the accuracy of the HBayeRGC, we applied a recently 

developed transfer function derived from the World Meteorological Organization Solid 

Precipitation InterComparison Experiment (WMO-SPICE; Kochendorfer et al., DEF[). We 

used equation F in Kochendorfer et al., DEF[ (hereafter: KDEF[CE): 

𝐶𝐸 = 𝑒TU(V)WXTYUZ[\W](^_`a)bcdb, 

where CE is the catch efficiency (USCRN/LTER-Geonor), U is mean wind speed (m/s; 

developed on _E-minute periods), Tair is mean air temperature (°C), and a, b, and c are 

coefficients fit with non-linear-least squares model fitting. The CE was then converted to 

gauge difference for comparison with the multiple linear regression and hierarchical 

Bayesian models of the gauge difference. Figure Z._ demonstrates that KDEF[CE was 

thoroughly inadequate at explaining the errors between the USCRN reference and the 

Equation 6 
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Intense and long duration snowfall with high winds and 13 mm undercatchment:  
 

Figure 5-2: Plot of MCMC traces and posterior distributions for a high intensity and long duration snowfall with 
high winds. The LTER-Geonor recorded 13 mm less precipitation than the USCRN. The HBayeRGC model predicted 
12.5 mm undercatchment. Parameter estimates are scaled values. 
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unshielded Geonor gauge at the Niwot Ridge CF subalpine site over the October F, DEF_ to 

May FD, DEFZ comparison period. Applying the KDEF[CE method resulted in: i) minimal 

reduction in the root mean square error (RMSE); ii) only a slight increase in the 

correlation between USCRN and LTER-Geonor corrected with KDEF[CE; iii) a high mean 

bias approaching E.Z mm/day and; iv) an undetectable difference in improving the 

percentage of errors between -F and +F mm/day. This was in stark contrast to the 

performance of the HBayeRGC (Fig. Z._). 

     The HBayeRGC was also a significant improvement over the multiple linear regression 

(MLR) correction. The MLR model described above and used to develop the HBayeRGC 

performs better than the KDEF[CE, except in improving the percentage of errors between 

-F and +F mm/day (Fig. Z._). The MLR was the best correction model for reducing the 

overall record mean error and gauge undercatchment (mean bias of -F.FKe-FZ) but had less 

ability than the HBayeRGC to explain and predict daily precipitation errors (Fig. Z._). 

With the MLR explaining c[% of the variation in gauge differences (Adj. RD for full MLR 

model of E.c[), it is a reasonable correction method but this is far below the 

HBayeRGC’s ability to explain RF% of the variation in gauge differences (Adj. RD for 

the combined rain, mixed, and snow HBayRGCs is E.[\; Fig. Z.c). Furthermore, the MLR’s 

reduction in RMSE is roughly half that of the HBayeRGC’s reduction (MLR reduction: 

E.KD; HBayeRGC reduction: F.K[) and has cZ% fewer daily errors between -F and +F 

mm/day (as compared to the HBayeRGC; Fig. Z._). 

     Hydrometeor size and count information improved the HBayeRGC and MLR gauge 

prediction performance and modifies the structure of the gauge correction models. The 
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relative importance of hydrometeor information in gauge correction models was assessed 

by comparing models with and without disdrometer data. Model statistics show that 

there is a slight reduction in model errors when hydrometeor size and count information 

is included in the model (Fig. Z._). Furthermore, when selecting the best linear model for 

snow, windspeed was not a significant model coefficient whereas volume equivalent 

diameter and total number of particles are highly significant (Particles Total*VED 

interaction p-value: [.KFe-[). Additionally, wind speed as a single predictor for snow gauge 

difference was only marginally significant (p-value E.EZZ). Thus, hydrometeor 

characteristics explain more of the variation in the unshielded LTER-Geonor gauge error 

than wind speed when the precipitation type is snow. 

     Overall, the model statistics and diagnostics presented here demonstrate that the 

HBayeRGC is capable of predicting the difference between the USCRN and the LTER-

Geonor gauge at the Niwot Ridge CF site and does far better at doing so than the other 

methods examined here. The HBayeRGC explained [\% of the variation in the USCRN – 

LTER-Geonor gauge difference and suggests that more information beyond air 

temperature/precipitation type and wind speed is required for a skillful gauge correction. 

In addition to high model performance, the posterior distributions of the model 

coefficients and daily predicted difference provide valuable uncertainty information that 

extends the usefulness of the HBayeRGC to unknown error detection and time-dependent 

uncertainty estimation for a variety of environmental conditions.       
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Figure 5-3: Gauge correction model statistics. The difference between the USCRN and LTER-Geonor daily 
precipitation accumulations are considered the “truth” observation errors/differences. The uncorrected LTER-
Geonor is included in purple as a reference value for all modelled values. The non-linear-least-square fitting of the 
Kochendofer 2018 equation (1) catch efficiency transfer function is in yellow. The multiple linear regression 
without disdrometer (w/o dis) information is in red. The multiple linear regression with disdrometer (w/ dis) 
information is in orange. The HBayeRGC model without disdrometer information is in turquois. The HBayeRGC 
model with disdrometer information is in green. The order of each model in each plot is the same as listed here. 
Root-mean square error (RMSE) of the observed – predicted differences are shown in (a.). Correlation between 
observed – predicted differences are shown in (b.). Mean bias (-1*mean) of daily difference between original and 
predicted accumulation are shown in (c.). The percent of the predicted differences within -1 and +1 of the 
observed gauge difference are shown in (d.).      
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M.M   Daily HBayeRGC performance 

 
     The HBayeRGC captures the variability in daily gauge differences throughout the 

comparison period (Fig. Z.\). Daily original gauge differences demonstrate that there is a 

systematic LTER-Geonor undercatchment of snow during the winter months, variable but 

relatively low magnitude over- and undercatchment of rain during the summer/fall 

months, and highly variable and large over- and undercatchment during the spring 

“mixed” precipitation period (Fig. Z.\a and Fig. _-D). The temporal variation in the LTER-

Geonor gauge errors are well predicted by the HBayeRGC; predicting both the under- and 

overcatchment of precipitation (Fig. Z.\b). The largest errors in the LTER-Geonor 

corrected with HBayeRGC (USCRN – LTER-Geonor-HbayerGC) occur during the spring 
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Figure 5-4: Scatter plots of the observed difference (USCRN - LTER-Geonor) and predicted gauge 
difference for the multiple linear regression (MLR) (a.) and the hierarchical Bayesian regression gauge 
correction (HBayeRGC) models (b.). 
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when precipitation type is highly variable and allude to this period containing sources of 

errors not prescribed in the HBayeRGC (Fig. Z.Zc). 
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Figure 5-5: The original (a) and HBayeRGC daily difference (USCRN – LTER) (b) in precipitation. The 
difference between the LTER-Geonor precipitation corrected with the HBayeRGC and the USCRN 
precipitation (HBayeRGC error) is shown in panel (c.). Excludes differences greater than +10 and less 
than -10 mm. No data excluded in (c.). Based on 24-hour precipitation totals.  
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M.W   Daily Uncertainty Estimation 

 
     The standard deviation (sd) of the HBayeRGC posterior predicted gauge difference 

estimates provide a daily estimate of uncertainty in the corrected precipitation record 

(Fig. Z.\). There is lower confidence (sd > D mm) in predicting the larger gauge 

differences (error > |F| mm) given variation in the magnitude of the standard deviation 

closely resembling the magnitude variation of the predicted difference. Furthermore, the 

pattern of daily standard deviation is similar to the pattern of model errors throughout 

the comparison period and suggests that greater uncertainty in model estimates leads to 

lower predictability of the HBayeRGC. The daily variation in uncertainty shows that the 

performance of the HBayeRGC varies at the daily scale and provides an opportunity to 

investigate the particular set of conditions leading to the likelihood of each predicted 

gauge difference representing the true difference.   
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Figure 5-6: Standard deviations of the posterior daily estimate in precipitation error between the USCRN and 
LTER-Belfort gauge. Based on 24-hour totals. 
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M.W   Gauge correction 

 
     The HBayeRGC corrects the LTER-Geonor precipitation accumulation over the DEF_-Fc 

water year, and provides a level of confidence in the corrected record (Fig. Z.e). The range 

of total precipitation is calculated by accumulating + and – F standard deviation of the 

daily accumulation (derived from HBayeRGC posterior distributions). This results in a 

total year accumulation for the LTER-Geonor corrected DEF_-DEFc water year record (gaps 

removed) between [eZ and FE\e mm. The USCRN total precipitation for the same period 

(identical day gaps removed) was K[_ mm; close to half-way between the LTER-Geonor 

HBayeRGC corrected uncertainty range of +/- K\ mm of precipitation. The variation in 

accumulation rates between the uncorrected, HBayeRGC corrected, and the USCRN 

provide insight into the performance of the HBayeRGC throughout the water year. For 

this particular DEF_-DEFc water year comparison, the USCRN reference accumulation is 

within the LTER-Geonor HBayeRGC corrected accumulation; however, there are periods 

when the USCRN accumulation is near the maximum of the corrected accumulated 

range. This variation in daily difference between the USCRN and LTER-Geonor 

HBayeRGC corrected record allows the HBayeRGC model to be assessed for under- or 

overcatchement performance on a daily and seasonal basis. Overall, the results here 

demonstrate that the HBayeRGC method is a capable of producing a physically based and 

defensible, due to uncertainty estimation, correction of the unshielded Geonor gauge 

located at the Niwot Ridge LTER CF subalpine site.   
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Figure 5-7: The 2013-2014 water year precipitation accumulation (mm) for the USCRN (green) and the 
HBayeRGC corrected LTER-Geonor with +/- standard deviation (purple). Standard deviations are generated 
from the Bayesian posterior distributions for each predicted daily gauge difference (USCRN minus LTER-
Geonor). Accumulations are not adjusted for gaps. 
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Chapter F  
 
 
 

Discussion 
 

     In this thesis, we have shown that the Hierarchical Bayesian Regression Gauge 

Correction (HBayeRGC) model is an improved and valuable approach to correcting an 

unshielded and error-prone gauge in a windy mountain environment. Assessing the 

predictive ability of the HBayeRGC revealed that gauge differences between the U.S. 

Climate Reference Network’s (small) double fence intercomparison reference (USCRN 

sDFIR) gauge and the Niwot Ridge LTER’s unshielded, but same brand and model, gauge 

(LTER-Geonor) can be reasonably predicted despite both under- and overcatchment 

accumulation errors. The linear regression model selection process exposed the 

combination of explanatory variables, including interactions between them, that best 

describes the differences between the USCRN and LTER-Geonor gauge (USCRN minus 

LTER-Geonor) during rain, mixed-phase, and snow events. Bayesian posterior 

distributions of the model coefficients (Figs. c-c, c-Z, and c-\) provide a range and 

confidence interval of the explanatory estimate values that contribute to understanding 

the relative importance and effect of each component of the gauge correction model. The 
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predicted gauge difference posterior distributions (examples in Figs. Z-F and Z-D) expose 

the uncertainty in predicted differences for a given set of physical conditions (wind speed, 

precipitation intensity, hydrometeor size, counts, and type, and duration of precipitation) 

and uncover large errors (> +/- F mm/day) not prescribed in the HBayeRGC. Detection of 

unknown errors, that could be due instrument malfunctions or related to the difference 

in forest canopy structure between gauge locations, suggests that the HBayeRGC can be 

used as an iterative data filtering and model reformulation method that minimizes 

predicted gauge difference uncertainty. The fact that the HBayeRGC explains [\% of the 

variation of the observed gauge difference and explains _[% more than the MLR is a good 

indication of the high predictability of gauge errors using this approach. A range of 

probable gauge errors are produced by modelling gauge errors with Bayesian likelihoods 

formulated from estimations of site-specific probability distributions of the explanatory 

estimates. Predicting gauge errors in this way is significantly better than other approaches 

that developed catch efficiency (reference/unshielded) functions at highly controlled 

comparison sites for the purpose of applying the corrections at many sites. The reality is, 

especially for mountainous sites, that the terrain complexity and remoteness produce 

more errors with greater magnitude that are specific to each site. A successful gauge 

correction in complex terrain, therefore, requires that all the available and potentially 

useful information, including probability distributions of that information, at the site of 

interest are used. The HBayeRGC developed and describe here in this thesis 

demonstrates, through significant reduction in the root mean square error (RMSE) of the 
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observed to predicted gauge differences, that this is reasonable way forward for gauge 

corrections in windy mountainous locations. 

     Hydrometeor characteristics play a significant role in predicting the difference in 

accumulated precipitation between the USCRN and LTER-Geonor. This was readily 

apparent in the highly significant p-values for number of particles and volume equivalent 

diameter coefficients in the multiple linear regression (MLR) model (Table. F). When the 

MLR was split up between times with rain, mixed-phase precipitation, and snow, wind 

speed was not a significant predictor in the snow events but hydrometeor volume 

equivalent diameter (VED) and the number of hydrometeors (including interactions with 

VED and intensity) were significant predictors. This suggests that the information 

contained within the VED and number of particles explains more of the variation in 

gauge differences than wind speed during snowfall events. In other words, measuring 

hydrometeor characteristics is more important than measuring wind speed when 

attempting to discern gauge errors. This could be due to a large range of influences at low 

wind speeds from the wide variation in frozen hydrometeor shapes and sizes; a possible 

future analysis with the data sets described here. The importance of hydrometeor 

information is confirmed by the reduction in RMSE and the increase in correlation 

between observed and corrected daily accumulations when disdrometer data (i.e., 

hydrometeor information) are included in both the MLR and HBayeRGC models (Fig. Z-

_a,b). Interestingly, the MLR has an increase in errors less than -F and + F mm/day 

whereas the HBayeRGC has a decrease in errors less than -F and +F mm/day with 

hydrometeor information suggesting that the HBayeRGC is better equipped to use 
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hydrometeor information for a better gauge difference prediction (Fig. Z._d). However, 

the only slight relative improvement in model performance indicates that reasonable 

correction models could be developed without disdrometer data. Overall, these results 

confirm the importance of hydrometeor characteristics in driving gauge errors and 

advocate for including them in gauge correction models during snowfall events. 

     The seasonal dynamics of the LTER-Geonor errors are captured with the daily 

performance of the HBayeRGC. The ability of the HBayeRGC to predict both under- and 

overcatchment of precipitation is easily seen in DEF_-DEFc water year daily precipitation 

plot of the original and predicted differences (Fig. Z.Za,b) and is a critical quality of the 

method given most precipitation gauge corrections assume an undercatchment of the 

DFIR reference gauge. The errors in prediction shown in Fig. Z.Zc show that HBayeRGC 

picks up on and adequately predicts the gauge differences during all major and minor 

snowstorms during the October DEF_ through mid-March DEFc period and does a 

similarly good job at predicting rainfall errors between June DEFc and October DEFc. 

However, there were large and highly variable observed gauge differences during the mid-

April DEFc through mid-June DEFc period that produce the largest errors in the 

HBayeRGC. This period of large model errors corresponds to predicted estimates with 

wide posterior probability distributions (see Fig. Z.Fc for example) suggesting that the 

sources of the observed gauge differences are not well described in model. The bimodality 

of the posterior distribution in Fig. Z.Fc illustrates the skill HBayeRGC has in detecting 

alternative predictions; in this case, the HBayerGC’s explanatory variables generate a 

density peak near E mm but also are able to capture a large overcatchement of snow with 
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the density peak near -_ mm (scaled value). This ability of the HBayeRGC to capture 

alternative predictions explains how the HBayeRGC is able to describe seasonal pattern of 

these unexpected gauge differences and in doing so, endows the HBayeRGC method with 

the capability to find and filter gauge errors that are beyond what is described in the 

model.    

     The HBayeRGC demonstrates the value in producing likelihood estimates generated 

from estimated probability distributions, given available observations, of the true 

explanatory conditions and prior information, in this case the MLR, that forms our gauge 

error hypotheses. By casting the precipitation gauge errors in terms of likelihood, the 

HBayeRGC is able to generate uncertainty estimation at the daily scale that is dependent 

on the set of explanatory conditions described in the model. The standard deviation 

values in Fig. Z.\ represent the relative likelihood of a given predicted gauge difference 

(hypothesis) of being true. From these standard deviations of the posterior estimates, we 

see that the least likely predicted gauge differences correspond to the largest HBayeRGC 

model errors and lowest gauge difference predictability. Therefore, we can reasonably 

assign uncertainty estimates to each daily predicted gauge estimate and have confidence 

that the uncertainty is a reflection of the unique combination of explanatory conditions 

and unknown sources of errors. For example, with a RD of E.[\ for the modelled October 

F, DEF_ to May FD, DEFZ gauge comparison period for which the HBayeRGC was developed 

on, the remaining Fc% of the variation can be assigned as a frequentist (vs Bayesian) 

random error term across the entire period. The correctly modelled [\% of the variation, 

however, is assigned a daily uncertainty estimation that can be viewed as the probability 



 

  78 

of the of corrected gauge value representing the true gauge value as determined by the 

USCRN DFIR gauge. In the context of the accumulated precipitation, the magnitude of 

the total precipitation for that day in combination with HBayeRGC explanatory posterior 

distributions can be used to determine the likelihood of obtaining a correction close to 

the “truth” and can be used in conjunction with a gauge correction to estimate 

uncertainty on the entire CF precipitation record.  

     The motivating goal of this work was to produce a precipitation gauge correction that 

outperforms currently published corrections in a less than ideal gauge comparison 

environment. With the highly predictive HBayeRGC outperforming, on all model 

diagnostics (Fig. Z-_), the best available correction function developed from WMO-SPICE 

gauge comparisons (KDEF[CE) and a reasonable correction of the unshielded LTER-

Geonor gauge during the comparison period (Fig. Z-e) despite variable over- and 

undercatchment errors, variable forest canopy structure between gauge locations 

influencing interception of snow, and potentially unforeseen data quality issues, we have 

achieved our goal. Perhaps more importantly, this thesis has developed an approach to 

precipitation gauge corrections that can be adapted to the suite of available data sets and 

instrumentation at specific sites. For instance, the HBayeRGC can be used as is with new 

USCRN and disdrometer data and the predictive skill can be assessed. However, the best 

gauge correction for a new site or extending the correction for the Niwot Ridge CF record 

back to FKZD, will require assimilating a new set of available meteorological information 

for that period, formulating the best possible MLR model, and determining probability 

distributions of the best available explanatory information before running a period or site 
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specific HBayeRGC (see Chapter c._.F and Appendix A for detailed steps on how to 

implement the HBayeRGC for a variety of situations). The latter, once reasonable gap-

filling methods have been applied, is the logical next application of the HBayeRGC model 

for the Niwot Ridge subalpine precipitation record. The HBayeRGC is therefore a flexible 

method, not a site-specific transfer function, that can be applied at any site, so that the 

best possible gauge corrections and uncertainty estimation in complex mountain terrain 

can be achieved. 

     The comparison of MLR and HBayeRGC models with and without hydrometeor size 

and count information demonstrates that the best possible correction is achieved by 

including disdrometer information. Although snow MLR model explains e% more of the 

variation in gauge differences and the HBayeRGC performs slightly better on all model 

diagnostics (Fig. Z-_) with disdrometer information, the relatively small improvement in 

model improvement suggests that a reasonable gauge correction can be achieved without 

a disdrometer. However, since the MLR model selection process for the snow 

precipitation type determined that wind speed is not a significant predictor (p-value = 

E._) of gauge differences when hydrometeor information is included, we infer that 

hydrometeor information is more important than wind speed information in explaining 

the difference in snow accumulation between the USCRN reference and the LTER-Geonor 

unshielded gauge. These results make sense in light of the disdrometer providing a 

greater degree of information than the anemometer but based on gauge airflow 

modelling, prior gauge corrections, and the MLR and HBayeRGC without disdrometer 

information, wind speed is a proven predictor of gauge errors.           
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Chapter G  
 
 
 

Conclusion 
 

     Sub-daily wind speed, precipitation intensity and duration, hydrometeor diameter and 

count information are incorporated into a hierarchical Bayesian regression model 

(HBayeRGC) to develop a gauge correction model that is capable of explaining [\% of the 

variation in gauge differences between the USCRN DFIR and an unshielded Geonor gauge 

at the Niwot Ridge CF subalpine site. The HBayeRGC is based on data from the October F, 

DEF_ to May FD, DEFZ period that had minimal gaps in the unshielded gauge record and 

overlapped with an OTT Parsivel disdrometer operating at the site. This is the first study 

we are aware of to incorporate continuously recorded hydrometeor information into a 

precipitation gauge correction. Including hydrometeor information slightly improved 

gauge difference predictions but is not enough of an improvement to warrant a strong 

recommendation to include disdrometer data in future site-specific precipitation gauge 

corrections. However, hydrometeor volume equivalent diameter and count model 

variables explain significantly more of the gauge difference variation than wind speed 

when precipitation type is snow and confirms that the physical aspects of frozen 
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hydrometeors are relevant for understanding the sources of gauge errors and may 

contribute valuable gauge correction uncertainty information. Bayesian inference was 

used to model unique probability distributions of the explanatory meteorological data 

and in turn produced daily precipitation gauge uncertainty estimates that can be used to 

detect gauge errors not prescribed in the correction model. Despite the low correlations 

between single explanatory variables and gauge differences, the HBayeRGC is a highly 

predictive gauge correction model for the comparison period that provides insights into 

the explanatory power of a combination of meteorological information. The HBayeRGC 

provides a method to extend the correction and uncertainty estimates to the entire Niwot 

Ridge CF subalpine precipitation record and can be applied to other gauge comparison 

sites to understand and correct precipitation gauge errors in a variety of environments. 

     Achieving more accurate precipitation accumulation records in mountain 

environments will lead to better predictions of mountain water resources in a changing 

and highly variable climate. Currently many predicted orographic processes, such as the 

seeder-feeder orographic enhancement of snowfall (Mott et al., DEFc) and the preferential 

deposition of snowfall on windward vs leeward slopes as a function wind-induced 

hydrometeor trajectories (Lehning et al., DEE[) cannot be quantified due to lack of 

quality precipitation observations in mountainous terrain. Beyond the large spatial gaps 

in mountain meteorological stations, especially in the alpine zones which may require a 

rethinking of measurement techniques, the lack of quality precipitation measurements is 

partly due to the uncertainty of currently operating gauges (Serreze et al., FKKK). The 

uncertainties in precipitation accumulation in mountainous terrain need to be known, 
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estimated, and corrected for at high temporal resolution in order to link synoptic scale 

atmospheric conditions and storm dynamics with the filling of our mountain water 

towers.    

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

  83 

 
 
 
 
 
 

 
 
 

References 
 

 
Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R. and Dozier, J.: 
Mountain hydrology of the western United States, Water Resour. Res., 42(8), 
doi:10.1029/2005WR004387, 2006. 

Battaglia, A., Rustemeier, E., Tokay, A., Blahak, U. and Simmer, C.: PARSIVEL Snow 
Observations: A Critical Assessment, J. Atmos. Oceanic Technol., 27(2), 333–344, 
doi:10.1175/2009JTECHA1332.1, 2010. 

Blanken, P. D., Williams, M. W., Burns, S. P., Monson, R. K., Knowles, J., Chowanski, K. 
and Ackerman, T.: A comparison of water and carbon dioxide exchange at a windy alpine 
tundra and subalpine forest site near Niwot Ridge, Colorado, Biogeochemistry, 95(1), 61–
76, doi:10.1007/s10533-009-9325-9, 2009. 

Cane, D., Barbarino, S., Renier, L. A. and Ronchi, C.: Regional climate models 
downscaling in the Alpine area with multimodel superensemble, Hydrol. Earth Syst. Sci., 
17(5), 2017–2028, doi:10.5194/hess-17-2017-2013, 2013. 

Chen, R., Liu, J., Kang, E., Yang, Y., Han, C., Liu, Z., Song, Y., Qing, W. and Zhu, P.: 
Precipitation measurement intercomparison in the Qilian Mountains, north-eastern 
Tibetan Plateau, The Cryosphere, 9(5), 1995–2008, doi:10.5194/tc-9-1995-2015, 2015. 

Colli, M., Lanza, L. G., Rasmussen, R. and Thériault, J. M.: The Collection Efficiency of 
Shielded and Unshielded Precipitation Gauges. Part I: CFD Airflow Modeling, J. 
Hydrometeor., 17(1), 231–243, doi:10.1175/JHM-D-15-0010.1, 2016a. 

Colli, M., Lanza, L. G., Rasmussen, R. and Thériault, J. M.: The Collection Efficiency of 
Shielded and Unshielded Precipitation Gauges. Part II: Modeling Particle Trajectories, J. 
Hydrometeor., 17(1), 245–255, doi:10.1175/JHM-D-15-0011.1, 2016b. 

Dai, A.: Precipitation Characteristics in Eighteen Coupled Climate Models, J. Climate, 
19(18), 4605–4630, doi:10.1175/JCLI3884.1, 2006. 



 

  84 

Daly, C., Slater, M. E., Roberti, J. A., Laseter, S. H. and Swift, L. W.: High-resolution 
precipitation mapping in a mountainous watershed: ground truth for evaluating 
uncertainty in a national precipitation dataset, International Journal of Climatology, 37, 
124–137, doi:10.1002/joc.4986, 2017. 

Dettinger, M.: Impacts in the third dimension, Nature Geosci, 7(3), 166–167, 
doi:10.1038/ngeo2096, 2014. 

Dettinger, M., Redmond, K. and Cayan, D.: Winter Orographic Precipitation Ratios in the 
Sierra Nevada—Large-Scale Atmospheric Circulations and Hydrologic Consequences, J. 
Hydrometeor, 5(6), 1102–1116, doi:10.1175/JHM-390.1, 2004. 

Diodato, N.: The influence of topographic co-variables on the spatial variability of 
precipitation over small regions of complex terrain, Int. J. Climatol., 25(3), 351–363, 
doi:10.1002/joc.1131, 2005. 

Frei, C. and Scha, C.: A precipitation climatology of the Alps from high-resolution rain-
gauge observations, Int. J. Climatol., 28, 1998. 

Friedrich, K., Higgins, S., Masters, F. J. and Lopez, C. R.: Articulating and Stationary 
PARSIVEL Disdrometer Measurements in Conditions with Strong Winds and Heavy 
Rainfall, Journal of Atmospheric and Oceanic Technology, 30(9), 2063–2080, 
doi:10.1175/JTECH-D-12-00254.1, 2013. 

Gerber, F., Besic, N., Sharma, V., Mott, R., Daniels, M., Gabella, M., Berne, A., Germann, 
U. and Lehning, M.: Spatial variability in snow precipitation and accumulation in 
COSMO–WRF simulations and radar estimations over complex terrain, The Cryosphere, 
12(10), 3137–3160, doi:10.5194/tc-12-3137-2018, 2018. 

Gerber, F., Mott, R. and Lehning, M.: The Importance of Near-Surface Winter 
Precipitation Processes in Complex Alpine Terrain, J. Hydrometeor., 20(2), 177–196, 
doi:10.1175/JHM-D-18-0055.1, 2019. 

Goodison, B. E., Louie, P. Y. T. and Yang, D.: WMO Solid Precipitation Measurement 
Intercomparison--Final Report, World Meteorological Organization - Instruments and 
Observing Methods, 67, 318, 1998. 

Greenland, D.: The Climate of Niwot Ridge, Front Range, Colorado, U.S.A., Arctic and 
Alpine Research, 21(4), 380, doi:10.2307/1551647, 1989. 

Herrnegger, M., Senoner, T. and Nachtnebel, H.-P.: Adjustment of spatio-temporal 
precipitation patterns in a high Alpine environment, Journal of Hydrology, 556, 913–921, 
doi:10.1016/j.jhydrol.2016.04.068, 2018. 

Kittel, T. G. F., Williams, M. W., Chowanski, K., Hartman, M., Ackerman, T., Losleben, M. 
and Blanken, P. D.: Contrasting long-term alpine and subalpine precipitation trends in a 



 

  85 

mid-latitude North American mountain system, Colorado Front Range, USA, Plant 
Ecology & Diversity, 8(5–6), 607–624, doi:10.1080/17550874.2016.1143536, 2015. 

Knowles, J. F., Burns, S. P., Blanken, P. D. and Monson, R. K.: Fluxes of energy, water, and 
carbon dioxide from mountain ecosystems at Niwot Ridge, Colorado, Plant Ecology & 
Diversity, 8(5–6), 663–676, doi:10.1080/17550874.2014.904950, 2015. 

Kochendorfer, J., Nitu, R., Wolff, M., Mekis, E., Rasmussen, R., Baker, B., Earle, M. E., 
Reverdin, A., Wong, K., Smith, C. D., Yang, D., Roulet, Y.-A., Buisan, S., Laine, T., Lee, G., 
Aceituno, J. L. C., Alastrué, J., Isaksen, K., Meyers, T., Brækkan, R., Landolt, S., Jachcik, A. 
and Poikonen, A.: Analysis of single-Alter-shielded and unshielded measurements of 
mixed and solid precipitation from WMO-SPICE, Hydrol. Earth Syst. Sci., 21(7), 3525–
3542, doi:10.5194/hess-21-3525-2017, 2017a. 

Kochendorfer, J., Rasmussen, R., Wolff, M., Baker, B., Hall, M. E., Meyers, T., Landolt, S., 
Jachcik, A., Isaksen, K., Brækkan, R. and Leeper, R.: The quantification and correction of 
wind-induced precipitation measurement errors, Hydrol. Earth Syst. Sci., 21(4), 1973–1989, 
doi:10.5194/hess-21-1973-2017, 2017b. 

Kochendorfer, J., Nitu, R., Wolff, M., Mekis, E., Rasmussen, R., Baker, B., Earle, M. E., 
Reverdin, A., Wong, K., Smith, C. D., Yang, D., Roulet, Y.-A., Meyers, T., Buisan, S., 
Isaksen, K., Brækkan, R., Landolt, S. and Jachcik, A.: Testing and development of transfer 
functions for weighing precipitation gauges in WMO-SPICE, Hydrol. Earth Syst. Sci., 
22(2), 1437–1452, doi:10.5194/hess-22-1437-2018, 2018. 

Langousis, A., Deidda, R., Carsteanu, A. A., Onof, C., Burlando, P., Uijlenhoet, R. and 
Bárdossy, A.: Precipitation measurement and modelling: Uncertainty, variability, 
observations, ensemble simulation and downscaling, Journal of Hydrology, 556, 824–826, 
doi:10.1016/j.jhydrol.2017.09.016, 2018. 

Lehning, M., Löwe, H., Ryser, M. and Raderschall, N.: Inhomogeneous precipitation 
distribution and snow transport in steep terrain, Water Resour. Res., 44(7), 
doi:10.1029/2007WR006545, 2008. 

Lundquist, J. D., Hughes, M., Henn, B., Gutmann, E. D., Livneh, B., Dozier, J. and Neiman, 
P.: High-Elevation Precipitation Patterns: Using Snow Measurements to Assess Daily 
Gridded Datasets across the Sierra Nevada, California*, Journal of Hydrometeorology, 
16(4), 1773–1792, doi:10.1175/JHM-D-15-0019.1, 2015. 

Michaelides, S., Levizzani, V., Anagnostou, E., Bauer, P., Kasparis, T. and Lane, J. E.: 
Precipitation: Measurement, remote sensing, climatology and modeling, Atmospheric 
Research, 94(4), 512–533, doi:10.1016/j.atmosres.2009.08.017, 2009. 



 

  86 

Mott, R., Scipión, D., Schneebeli, M., Dawes, N., Berne, A. and Lehning, M.: Orographic 
effects on snow deposition patterns in mountainous terrain, J. Geophys. Res. Atmos., 
119(3), 1419–1439, doi:10.1002/2013JD019880, 2014. 

Napoli, A., Crespi, A., Ragone, F., Maugeri, M. and Pasquero, C.: Variability of orographic 
enhancement of precipitation in the Alpine region, Sci Rep, 9(1), 13352, doi:10.1038/s41598-
019-49974-5, 2019. 

Peleg, N., Ben-Asher, M. and Morin, E.: Radar subpixel-scale rainfall variability and 
uncertainty: lessons learned from observations of a dense rain-gauge network, Hydrol. 
Earth Syst. Sci., 17(6), 2195–2208, doi:10.5194/hess-17-2195-2013, 2013. 

Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., Black, J., 
Thériault, J. M., Kucera, P., Gochis, D., Smith, C., Nitu, R., Hall, M., Ikeda, K. and 
Gutmann, E.: How Well Are We Measuring Snow: The NOAA/FAA/NCAR Winter 
Precipitation Test Bed, Bull. Amer. Meteor. Soc., 93(6), 811–829, doi:10.1175/BAMS-D-11-
00052.1, 2011. 

Rasouli, K., Hsieh, W. W. and Cannon, A. J.: Daily streamflow forecasting by machine 
learning methods with weather and climate inputs, Journal of Hydrology, 414–415, 284–
293, doi:10.1016/j.jhydrol.2011.10.039, 2012. 

Serreze, M. C., Clark, M. P., Armstrong, R. L., McGinnis, D. A. and Pulwarty, R. S.: 
Characteristics of the western United States snowpack from snowpack telemetry 
(SNOTEL) data, Water Resour. Res., 35(7), 2145–2160, doi:10.1029/1999WR900090, 1999. 

Sevruk, B., Ondrás, M. and Chvíla, B.: The WMO precipitation measurement 
intercomparisons, Atmospheric Research, 92(3), 376–380, 
doi:10.1016/j.atmosres.2009.01.016, 2009. 

Strachan, S., Kelsey, E. P., Brown, R. F., Dascalu, S., Harris, F., Kent, G., Lyles, B., 
McCurdy, G., Slater, D. and Smith, K.: Filling the Data Gaps in Mountain Climate 
Observatories Through Advanced Technology, Refined Instrument Siting, and a Focus on 
Gradients, Mountain Research and Development, 36(4), 518–527, doi:10.1659/MRD-
JOURNAL-D-16-00028.1, 2016. 

Suding, K. N., Farrer, E. C., King, A. J., Kueppers, L. and Spasojevic, M. J.: Vegetation 
change at high elevation: scale dependence and interactive effects on Niwot Ridge, Plant 
Ecology & Diversity, 8(5–6), 713–725, doi:10.1080/17550874.2015.1010189, 2015. 

Sugiura, K., Ohata, T. and Yang, D.: Catch characteristics of precipitation gauges in high-
latitude regions with high winds, Journal of Hydrometeorology, 7(5), 984–994, 2006. 

Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S. and Hsu, K.: A Review of Global 
Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons, Rev. Geophys., 
56(1), 79–107, doi:10.1002/2017RG000574, 2018. 



 

  87 

Thériault, J. M., Rasmussen, R., Ikeda, K. and Landolt, S.: Dependence of Snow Gauge 
Collection Efficiency on Snowflake Characteristics, J. Appl. Meteor. Climatol., 51(4), 745–
762, doi:10.1175/JAMC-D-11-0116.1, 2012. 

Thériault, J. M., Rasmussen, R., Petro, E., Trépanier, J.-Y., Colli, M. and Lanza, L. G.: 
Impact of Wind Direction, Wind Speed, and Particle Characteristics on the Collection 
Efficiency of the Double Fence Intercomparison Reference, J. Appl. Meteor. Climatol., 
54(9), 1918–1930, doi:10.1175/JAMC-D-15-0034.1, 2015. 

Tokay, A., Wolff, D. B. and Petersen, W. A.: Evaluation of the New Version of the Laser-
Optical Disdrometer, OTT Parsivel 2, J. Atmos. Oceanic Technol., 31(6), 1276–1288, 
doi:10.1175/JTECH-D-13-00174.1, 2014. 

Westrick, K. J., Storck, P. and Mass, C. F.: Description and Evaluation of a 
Hydrometeorological Forecast System for Mountainous Watersheds, WEATHER AND 
FORECASTING, 17, 13, 2002. 

Winstral, A., Marks, D. and Gurney, R.: Simulating wind-affected snow accumulations at 
catchment to basin scales, Advances in Water Resources, 55, 64–79, 
doi:10.1016/j.advwatres.2012.08.011, 2013. 

Wolff, M. A., Isaksen, K., Petersen-Øverleir, A., Ødemark, K., Reitan, T. and Brækkan, R.: 
Derivation of a new continuous adjustment function for correcting wind-induced loss of 
solid precipitation: results of a Norwegian field study, Hydrol. Earth Syst. Sci., 19(2), 951–
967, doi:10.5194/hess-19-951-2015, 2015. 

Woods, C. P., Stoelinga, M. T. and Locatelli, J. D.: The IMPROVE-1 Storm of 1–2 February 
2001. Part III: Sensitivity of a Mesoscale Model Simulation to the Representation of Snow 
Particle Types and Testing of a Bulk Microphysical Scheme with Snow Habit Prediction, J. 
Atmos. Sci., 64(11), 3927–3948, doi:10.1175/2007JAS2239.1, 2007. 

Wu, C., Liu, X., Lin, Z., Rhoades, A. M., Ullrich, P. A., Zarzycki, C. M., Lu, Z. and Rahimi-
Esfarjani, S. R.: Exploring a Variable-Resolution Approach for Simulating Regional 
Climate in the Rocky Mountain Region Using the VR-CESM: VR-CESM Simulation in the 
Rocky Mountains, J. Geophys. Res. Atmos., 122(20), 10,939-10,965, 
doi:10.1002/2017JD027008, 2017. 

Yang, D., Goodison, B. E., Metcalfe, J. R., Golubev, V. S., Bates, R., Pangburn, T. and 
Hanson, C. L.: Accuracy of NWS 8؆ Standard Nonrecording Precipitation Gauge: Results 
and Application of WMO Intercomparison, JOURNAL OF ATMOSPHERIC AND 
OCEANIC TECHNOLOGY, 15, 15, 1998a. 

Yang, D., Goodison, B. E., Ishida, S. and Benson, C. S.: Adjustment of daily precipitation 
data at 10 climate stations in Alaska: Application of World Meteorological Organization 



 

  88 

intercomparison results, Water Resour. Res., 34(2), 241–256, doi:10.1029/97WR02681, 
1998b. 

Yang, D., Goodison, B. E., Metcalfe, J. R., Louie, P., Leavesley, G., Emerson, D., Hanson, C. 
L., Golubev, V. S., Elomaa, E., Gunther, T., Pangburn, T., Kang, E. and Milkovic, J.: 
Quantification of precipitation measurement discontinuity induced by wind shields on 
national gauges, Water Resour. Res., 35(2), 491–508, doi:10.1029/1998WR900042, 1999. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  89 

 

 

 

Appendix A 

 

A.#   JAGS model: rain    

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

model{ 
  ## PRIORS 
  b0 ~ dnorm(0, 0.01) 
  b1 ~ dnorm(0, 0.01) 
  b2 ~ dnorm(0, 0.01) 
  b3 ~ dnorm(0, 0.01) 
  b4 ~ dnorm(0, 0.01) 
  b24 ~ dnorm(0, 0.1) 
  tauy ~ dgamma(0.001,0.001) 
  tauxr_ws ~ dunif(0.3,0.4) 
  tauxr_int ~ dunif(0.85,0.95) 
  tauxr_dur ~ dunif(0.8,0.9) 
  tauxr_par ~ dunif(0.8,0.9) 
   

  ## LIKELIHOOD 
  for(i in 1 : nData ) { 
    truexr_ws[i] ~ dgamma(5.738079,0.1603397) 
    xr_ws[i] ~ dnorm(truexr_ws[i], tauxr_ws) 
    truexr_int[i] ~ dgamma(0.2165204,1.947229) 
    xr_int[i] ~ dnorm(truexr_int[i], tauxr_int) 
    truexr_dur[i] ~ dgamma(0.4173668,1.298814) 
    xr_dur[i] ~ dnorm(truexr_dur[i], tauxr_dur) 
    truexr_par[i] ~ dgamma(0.1362195, 2.540766) 
    xr_par[i] ~ dnorm(truexr_par[i], tauxr_par) 
    yr[i] ~ dt(y.hat[i], tauy, 1) 
    y.hat[i] <- b0 + b1 * truexr_par[i] + b2 * truexr_int[i] + 
      b3 * truexr_dur[i] + b4 * truexr_ws[i] + 
      b24 * truexr_int[i] * truexr_ws[i]}} 
 

Figure A.1. JAGS model formulation for rain precipitation type. b0 = intercept coefficient, 
b1 = total particles coefficient, b2 = intensity coefficient, b3 = duration coefficient, b4 = 
wind speed coefficient, b24 = intensity * wind speed interaction coefficient, tauy = vauge 
precision parameter for T distribution, tauxr _ws = uniform standard deviation hyperprior 
for wind speed, tauxr _int = uniform standard deviation hyperprior for intensity, tauxr _dur 
= uniform standard deviation hyperprior for duration, tauxr _par = uniform standard 
deviation hyperprior for total particles ,nData = length of predictions, truexr _ws = 
sampling of wind speed from gamma distribution, xr_ws = wind speed model variable, 
truexr _int = sampling of intensity from gamma distribution, xr _int = intensity model 
variable, truexr _dur = sampling of duration from gamma distribution, xr_dur = duration 
model variable, truexr_par = sampling of total particles from gamma distribution, xr_par = 
total particles model variable, yr = sampling of CRN-Met from Cauchy distribution,  
y.hat = the predicted difference (CRN-Met). 
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A.!   JAGS model: mixed 

 

 

 

 

 

 

 

 

 

 

 

7   Results 

 

 

 

 

 

 

 

 

 

model{ 
  ## PRIORS 
  b0 ~ dnorm(0, 0.01) 
  b1 ~ dnorm(0, 0.01) 
  b2 ~ dnorm(0, 0.01) 
  b3 ~ dnorm(0, 0.01) 
  b4 ~ dnorm(0, 0.01) 
  tauy ~ dgamma(0.001,0.001) 
  tauxm_ws ~ dunif(0.4,0.5) 
  tauxm_int ~ dunif(0.85,0.95) 
  tauxm_dur ~ dunif(0.8,0.9) 
  tauxm_par ~ dunif(0.8,0.9) 
   

  ## LIKELIHOOD 
  for(i in 1 : nData ) { 
    truexm_ws[i] ~ dgamma(2.580335,0.3272983) 
    xm_ws[i] ~ dnorm(truexm_ws[i], tauxm_ws) 
    truexm_int[i] ~ dgamma(0.2809226,1.664394) 
    xm_int[i] ~ dnorm(truexm_int[i], tauxm_int) 
    truexm_dur[i] ~ dgamma(0.56958348,1.054849) 
    xm_dur[i] ~ dnorm(truexm_dur[i], tauxm_dur) 
    truexm_par[i] ~ dgamma(0.4767221, 1.189062) 
    xm_par[i] ~ dnorm(truexm_par[i], tauxm_par) 
    ym[i] ~ dt(y.hat[i], tauy, 1) 
    y.hat[i] <- b0 + b1 * truexm_par[i] + b2 * truexm_int[i] + 
      b3 * truexm_dur[i] + b4 * truexm_ws[i]}} 
 

Figure A.2. JAGS model formulation for mixed precipitation type. b0 = intercept coefficient, 
b1 = total particles coefficient, b2 = intensity coefficient, b3 = duration coefficient, b4 = 
wind speed coefficient, tauy = vauge precision parameter for T distribution, tauxm _ws = 
uniform standard deviation hyperprior for wind speed, tauxm _int = uniform standard 
deviation hyperprior for intensity, tauxm _dur = uniform standard deviation hyperprior for 
duration, tauxm _par = uniform standard deviation hyperprior for total particles ,nData = 
length of predictions, truexm _ws = sampling of wind speed from gamma distribution, 
xm_ws = wind speed model variable, truexm _int = sampling of intensity from gamma 
distribution, xm _int = intensity model variable, truexm _dur = sampling of duration from 
gamma distribution, xm_dur = duration model variable, truexm_par = sampling of total 
particles from gamma distribution, xm_par = total particles model variable, yr = sampling of 
CRN-Met from Cauchy distribution, y.hat = the predicted difference (CRN-Met). 
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A.@   JAGS model: snow 

 

   
 

 

 

 

 

 

 

 

 

 

model{ 
  ## PRIORS 
  b0 ~ dnorm(0, 3) 
  b1 ~ dnorm(1.5, 3) 
  b2 ~ dnorm(2, 5) 
  b3 ~ dnorm(0, 2) 
  b4 ~ dnorm(0, 3) 
  b24 ~ dnorm(-2.5, 6) 
  b12 ~ dnorm(0, 1) 
  tauy ~ dgamma(0.001,0.001) 
  tauxs_ved ~ dunif(0.2,0.3) 
  tauxs_int ~ dunif(0.73,1.3) 
  tauxs_dur ~ dunif(0.6,0.7) 
  tauxs_par ~ dunif(0.65,0.75) 
   

  ## LIKELIHOOD 
  for(i in 1 : nData ) { 
    truexs_ved[i] ~ dgamma(17.4844,0.05548508) 
    xs_ved[i] ~ dnorm(truexs_ved[i], tauxs_ved) 
    truexs_int[i] ~ dgamma(0.6330469,0.9825011) 
    xs_int[i] ~ dnorm(truexs_int[i], tauxs_int) 
    truexs_dur[i] ~ dgamma(1.456773,0.5277571) 
    xs_dur[i] ~ dnorm(truexs_dur[i], tauxs_dur) 
    truexs_par[i] ~ dgamma(0.9777428, 0.7181736) 
    xs_par[i] ~ dnorm(truexs_par[i], tauxs_par) 
    ys[i] ~ dt(y.hat[i], tauy, 1) 
    y.hat[i] <- b0 + b1 * truexs_int[i] + b2 * truexs_par[i] + 
      b3 * truexs_dur[i] + b4 * truexs_ved[i] + 
      b24 * truexs_par[i] * truexs_ved[i] + 
      b12 * truexs_int[i] * truexs_par[i]}} 

Figure A.3. JAGS model formulation for snow precipitation type. b0 = intercept coefficient, 
b1 = intensity coefficient, b2 = total particles coefficient, b3 = duration coefficient, b4 = VED 
coefficient, b24 = total particles*VED interaction coefficient, b12 = intensity*total particles 
interaction coefficient,  tauy = vague precision parameter for T distribution, tauxs_ved = 
uniform standard deviation hyperprior for VED, tauxs_int = uniform standard deviation 
hyperprior for intensity, tauxs _dur = uniform standard deviation hyperprior for duration, 
tauxs _par = uniform standard deviation hyperprior for total particles ,nData = length of 
predictions, truexs_ved = sampling of VED from gamma distribution, xs_ved = VED model 
variable, truexs_int = sampling of intensity from gamma distribution, xs_int = intensity 
model variable, truexs_dur = sampling of duration from gamma distribution, xs_dur = 
duration model variable, truexs_par = sampling of total particles from gamma distribution, 
xs_par = total particles model variable, ys = sampling of CRN-Met from Cauchy distribution, 
y.hat = the predicted difference (CRN-Met). 


