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OpenStreetMap (OSM), the free and editable map of the world—whose data is consumed

by technology platforms, social media users, news media, global disaster responders, and many

more—is much more than a simple digital map. With over 1M contributors, OSM is an active

online community of hobbyists, humanitarians, professional geographers, and others who grow and

curate a massive collection of spatial information. The map itself is a constantly evolving database

of billions of points that describe our physical world, often being the most complete or even only

source of geographic information for many parts of the world.

The data that can be analyzed is abundant, and yet conducting these analyses is difficult,

especially for thorny questions about data quality. Contributor-centric analysis approaches re-

imagine OSM data analysis beginning with the bottom of the stack to prioritize the metadata about

the individual edit which preserves data provenance and allows analysts to interrogate the history

of the map’s evolution. These representations enable new scalable data processing workflows that

drive improved data visualizations, allowing for more meaningful, contextualized interpretations of

the evolution of the map.

This dissertation explores these analytical advantages by viewing OpenStreetMap not as a

map, nor simply a geospatial database, but rather as the culmination of edits to hundreds of millions

of objects that represent our physical world. I trace my development of OSM data analysis systems

across three previous iterations and discuss the subsequent empirical research that each iteration

supported. This culminates with the presentation of a fourth analytical framework and data schema

capable of capturing the complete editing history and evolution of the map at a global scale.
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Chapter 1

Introduction

1.1 OpenStreetMap & Volunteered Geographic Information

This work studies the OpenStreetMap project (OSM), the largest volunteered geographic

information (VGI) project in existence. Often called the ”Wikipedia of Maps,” OSM was created in

2004, before Google Maps was dominant, and amid the rising success of the Wikipedia project [24].

Though the term Volunteered Geographic Information (VGI) was officially coined after OSM was

created, OSM is the most successful instance of a VGI project in terms of number of contributors

and the amount of data produced [42]. OSM defined a new type of open data with the creation

of the ODbL, a specific open license for databases that declares the data may be downloaded by

anyone for any purpose, commercial included. The only requirement is that attribution be given

to the original contributors, specifically seen as “ c© OpenStreetMap Contributors” in the corner

of any derivative product involving OSM data, such as a rendered map.1 OSM is both an open

geographic database and an online community of millions of contributors. In the past five years,

the number of registered users has grown from just under 2M to over 5M and the subset of these

users who have actually edited the map has surpassed 1M [140]. These mappers are involved in the

project for a variety of motivations ranging from open data enthusiasts to professionals [18]. I use

the terms mapper, editor, and contributor interchangeably to describe a registered OSM user who

has edited the map at least once, meaning they they show up in the recorded editing history. The

term registered user may refer to any of the 5M+ users who have an account on openstreetmap.org,

1 All statistics, figures, and maps rendered within this work are produced with Data c© OpenStreetMap Contributors.
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but may not have yet actually edited the map. Having a registered account is the only requirement

to edit the map; there are no anonymous edits. A consumer is any person, service, or company that

uses OSM data. Facebook, Instagram, Craigslist, Apple Maps, Snapchat, and by association all of

the users of these platforms, are consumers to some degree.

Contributions to OSM are both difficult to quantify and highly unequal among all editors. As

an online community, OSM is not immune to the participation inequality common in these groups

[11]. The community adheres to the 90-9-1 rule where the majority of the registered users have

made few to no contributions, some of the registered users have dabbled, and a tiny percentage of

the users do the majority of the work [85]. The crux of the work presented here is to view OSM

not just as a map, but as the collaborative product of the more than 1M contributors producing

billions of edits all over the globe. Understanding the map then requires deeper understanding of

the mechanisms of the data production and the interactions between the mappers and the platform

as well as between the mappers themselves. Though this participation is greatly unequal, each of

these individual contributions needs to be accounted for in our measurements of the activity to

tell the complete story. To achieve this, I present new research approaches to prioritize a holistic

understanding of evolution of the map, both a collaborative process and a cumulative product:

Contributor-Centric Research.

1.2 Contributor-Centric Research

In the context of OSM, I define contributor-centric research approaches as data-driven analysis

methods that prioritize the metadata about the edit to the map itself, not just the resulting object

on the map. Technically speaking, the “map” is a geospatial database and an “edit” is then any

change to an object in the database. However, due to the OSM data model, the relationship between

edits to the database and the object on the map is not one-to-one. Between this, the large variation

in the types of edits one can perform, and the drastic differences in the quantity of edits between

users, measuring “edits to the map” is an overly-complicated task. For OSM, I find this is best

done with a layer of abstraction above the raw OSM data that reveals the interaction between the
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mappers and the database entries to define the change in a more measurable way. This requires

first reconstructing the raw editing record (the history of the database) into an observable and

computationally-efficient format. The work presented here documents and traces the evolution

of this thinking through multiple iterations of analysis systems that have brought me to these

conclusions.

In the context of crowd-sourcing and information quality, the term “contributor-centric” has

been used to describe validating the resulting data against new value systems. Whereas a product

is typically valued by its stakeholders (the data consumers), contributor-centric information quality

metrics embrace the data provenance, valuing the mode of production and the values held by

the data-producers [106]. Extrapolating beyond information quality metrics, contributor-centric

approaches to data-analysis is similar: not looking at the end-product (the contribution), but rather

seeking to understand the activity of the contribution itself, as performed by the contributor. As

Chapter 7 will discuss in greater depth, knowing the larger context surrounding each contribution

itself is paramount to understanding its impact to the map [5].

Furthermore, who is editing the map is becoming a more salient question as the number of

active contributors grows. OSM has been described as a ”community of communities,” a phrase

that highlights this is not simply a peer-production platform, but instead that there exist a number

of different communities with varying levels of influence, different value systems, and numerous

goals associated with contributing to and supporting OSM [127]. As a global project, OSM must

therefore cater to the needs of each of these communities, as it is no longer simply a collection

of individuals seeking to create a free and open map of the world. In this way, OSM may have

started as a crowd-sourcing project, but when examined closely, it has evolved past this label as

the term “crowd” invokes a lack of unity and familiarity with one another. Today it appears the

OSM community is much more connected than a crowd and self-identifies themselves as just that:

Community. Chapter 9 will explore this further, showing that each of these communities imposes

their own value systems, rendering any single assessment of the map, the community, and their

evolution contested or flawed from all but that single perspective.
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In relation to a data-centric architecture, the term contributor-centric is meant to more

descriptively label the technical systems as data-centric architecture that prioritizes the metadata

pertaining to the actions performed by OSM contributors. That is, this is not describing an

infrastructure that is just data-centric, but rather metadata-centric. This involves designing around

more complex questions such as “which users edited the buildings in this region, how many, and

when?” Instead of “how many buildings are in this region?” This enables data-driven content analysis

of the OSM editing record that specifically highlights the interaction between contributors and the

map, not just how the data within the map evolved. This idea is a core conceptual contribution that

drives the innovations described here. As an example, Figure 1.1 shows two dramatically different

editing histories between the map of Nepal and the US in terms of number of contributors, the edits

they made, when. These were calculated from the editing metadata that allows us to then identify

and explain the high impact editing events for each region.

Figure 1.1: Number of daily edits versus mappers actively editing the maps of United States and
Nepal. Annotations show two wholly different editing histories between the two Countries. The
United States has seen a number of data imports and a consistently growing community of mappers.
Nepal has a much smaller active community but saw over 1,200 contributors active daily following
the 2015 earthquake. These are metadata-driven analyses of maps of these two Countries.
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1.3 Motivation

As a participant observer in the OpenStreetMap community for the past five years, I have

seen the number of registered users increase by more than 3M people and the number of active

daily editors nearly double from 2,700 contributors to 4,800. As the community continues to grow,

so does the desire to understand the nature of contributions and the evolution of the map itself.

As described above, the data produced is being indirectly consumed by millions of people. Now

being used by major companies, OSM is no longer a small, UK-based project: It is part of a major

industry with its data underlying a great number of maps, digital and print. For many parts of

the world, OSM is the most accessible, accurate, and sometimes only source of digital geographic

information [125]. This makes OSM the primary base map for many humanitarian activities as well

as a decision-making tool in time- and safety-critical situations, such as disaster response [105, 125].

This latter use-case is what originally brought me into the OSM research domain, looking

to better understand the collaboration among the rapidly-converging volunteers in the wake of

a disaster [105, 125]. At the time, it quickly became clear that existing tools for working with

OSM data prioritized the spatial and physical attributes of the map, not the context and activity

surrounding how the data was produced. While all of the editing history of the map is made

available alongside a variety of low-level data-processing tools to work with the data, accurately and

meaningfully measuring the editing activity from these datasets remained an unsolved problem [4].

More specifically, there did not exist a simple interface to ask questions such as, ”how many

users edited in this area at this time?” While others had asked these questions before, everyone

had their own approaches to wrangling and processing the OSM historical editing record. While

a trivially simple interface to ask this question still does not yet exist for the whole planet, there

are now many tools and utilities that allow analysts to answer this question in a multitude of ways

for a variety of regions around the globe. More importantly, this seemingly simple question can,

and should, be broken down further: “How many users have ever edited this part of the map?”

“How many users continue to edit?” “How many users have edited which types of objects?” “How
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many of these users were really bots?” “How many of these users made more than one edit or

edited more than one time?” and so on. The minute differences in each of these questions impacts

our understanding of the creation of the map. As a constantly evolving project, these nuances are

critical to capture in our data analyses.

While the one-size-fits-all analysis dashboard for OSM that I set out to build five years ago

still has not been built in full, the infrastructure to support such an endeavour now does exist, and

furthermore, we as a research community have a better understanding of why such one-size-fits-all

approaches fail, and we know how to restructure our approaches to explore the more nuanced and

impacting questions we should have been asking in the first place.

1.3.1 Data-Centric vs. Metadata-Centric: Making Visible the “Who”

Since the distribution of work among contributors is incredibly unequal, visualizing the number

of edits across the map tells a different story than visualizing the number of editors actively editing

the map. These two attributes are certainly related in many areas, as more active mappers often

results in more edits. However, there are many parts of the map where these numbers are skewed by

a few power mappers2 performing a large number of edits or many mappers performing relatively

fewer edits, such as the case with new mappers attending a mapathon or disaster mapping. These

many mappers performing fewer edits are at risk of going unaccounted when looking at the number

of edits alone; their work is just a drop in the proverbial bucket of millions of edits. Additionally,

not all edits are equal in impact (societal or otherwise), and should not be compared as such. A

road being digitized in a rural area for the first time by a new mapper who is simultaneously being

exposed to the very concept of open-data and OSM is distinctly different in nature from an edit

performed by a long-time contributor modifying an existing road in an urban area for which high

quality geospatial data may have existed for a number of years. While an extreme example, the

notion stands that not all edits are equal and rank differently within different value systems present

2 Mappers who are responsible for the vast majority of the edits to the map. Exact quantity and percentages vary,
but there are always a relative few who outperform all other editors locally, regionally, and globally.
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in the OSM community.

Making even just one edit to the map means that a contributor has learned about OSM, taken

the initiative to make an account, and learned the basics of editing the map. This person is now

not only aware of OSM, but the larger concept of VGI. This is a core tenant behind projects like

YouthMappers with the tagline “We don’t just build maps, we build mappers” [103]. With thousands

of students engaged in over 150 chapters around the world, YouthMappers uses OpenStreetMap to

introduce students to open data and to “define their world by mapping it” [103]. This group is just

one example of the many smaller communities that make up OSM. Each of these communities has

their own motivations and intents when it comes to participating in OSM, each of which comes

with its own larger context that influences the evolution of the project [3]. While many mappers

engage little with the data itself in terms of their editing footprint if measured by number of edits

to the database, their existence alone in the database and larger impact within the community is

non-trivial and therefore data analysis systems need to account for each of these activities to tell

the complete story.

Figure 1.2: Density of objects in OSM: Objects per zoom level 12 tile. The Log10-scale highlights
the incredible unequal distribution of map objects globally. Purple and blue sections of the map
are 100 and 1,000 times less dense in terms of coverage than green and yellow regions. Data
c© OpenStreetMap Contributors 2017.
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Figure 1.2 presents a data-centric answer to the question: “Where has the world been mapped

in OSM?” While there are some obvious correlations with population density and urban/rural areas,

this rendering highlights the Euro-centric nature of OSM. While a completely equitable map does

not require the whole world be mapped as densely as Europe (there are certainly variations in urban

densities around the world), this map is nonetheless much more purple and blue (i.e. less dense) in

many areas than it should be if the entire planet were equitably mapped. This rendering is intended

to highlight where it appears the world has been mapped more completely than others.3 In terms

of completeness, the purple and blue parts of this serve to highlight areas that are incomplete. As

Pascal Neis identified in 2016, there are many identifiable ”unmapped” places in OSM.4 Areas on

this map that appear purple and blue represent regions the size of a small city with less less than 10

or 100 mapped objects. In many cases, these few objects are the names of towns or cities, perhaps

with a road leading to it. These points really act as a placeholder claiming that there is something

there, it just has not yet been mapped. This particular rendering is a double-edged sword in that

way: At least there is something mapped in these areas and the map is not simply blank, but on

further inspection, this area is still entirely incomplete on the map.

Breaking this down further, Figure 1.3 depicts the current state of the map with a more

contributor-centric approach: showing the density of editing activity separated by the number of

mappers actively doing this work. The incredible editing densities of Europe and other major cities

around the globe match Figure 1.2 in terms of where the most editing continues to happen by

the most users (at least 10 mappers active per zoom level 12 tile).5 Also highlighted in Figure

1.3a are the heavily edited areas of Southeast Asia and Sub-Saharan Africa by both corporate and

humanitarian mappers [3]. In contrast, Figure 1.3b, shows that while there have been fewer than

ten mappers actively editing across most of the world, there is truly global editing activity, albeit

in smaller quantities. It should be noted that Figures 1.3a and 1.3b are mutually exclusive in the

3 Completeness is just one measure of spatial data quality, Chapter 7 explores measuring geospatial data quality.
4 Blog post available at neis-one.org/2016/06/unmapped-places-osm/
5 Zoom level 12 tiles are a common unit of analysis in my work. Chapter 5 will present them in greater detail, but

on average they represent the area of a small city
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areas they represent in that each tile is only represented once between the two figures. The major

takeaway is then: There is mapping happening across most of the world. The rate of mapping and

the number of contributors varies drastically, but where there are not many active mappers, there

are usually at least a few. The less-mapped regions are often drowned out in volume by the heavily

mapped regions in terms of absolute activity, but so far in 2019, most of the planet has seen some

level of mapping activity, even if it is just one mapper making a single edit in a large area: It is still

progress towards completeness. Again, this is not to say the whole world has been mapped, just

that there is mapping occurring at a variety of levels across much of the world.

In this manner, contributor-centric approaches to OSM data analysis can provide a more

complete view into how, where, and when people are editing the map than other data-centric analysis

that interrogate the more spatial qualities of the map such as how much data exists and where.

These are the differences exposed between Figures 1.2 and 1.3, or more succinctly, the differences

between “data-centric” and “contributor-centric” measures. Together, both types of inquiry tell the

complete story about the development of the map. There are, however, different design choices that

need to be made early in the analysis process to ensure the data being collected, organized, and

analyzed can answer the appropriate questions in their entirety. By prioritizing the editing metadata

over the edit itself when designing and implementing data analysis systems, we can make visible the

person and the activity that goes into building and maintaining the map.

1.4 Who Is Editing the Map: OSM Contributors

Today, OSM has over 1M active contributors, each editing the map for a variety of motivations

[18, 140]. These 1M+ contributors represent a small portion of the 5M+ registered users on the

platform, with both of these numbers continuing to steadily grow [86]. In this section I present a

series of figures and interpretations that highlight the nuances of OSM contributor activity including

the growth, lifespans, and associations of the contributors.

Figure 1.4 shows the general editing activity in terms of both changes to the map and the

number of contributors active each day. Both of these values continue to increase consistently,
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(a) Edits performed in first half of 2019 where more than 10 mappers have been active

(b) Edits performed in first half of 2019 where 10 or fewer mappers were active.

Figure 1.3: Density of editing activity around the world for first half of 2019, separated by number
of active mappers in an area. Number of mappers and editing density computed for zoom level 12
tiles (about size of small city).

with the number of contributors growing faster.6 The burst-like activities likely correspond to

6 These overview statistics are calculated from the record of all changesets that counts the number of number of
OSM elements affected in each changeset. As Chapter 2 discusses, this is related, but not equivalent to the actual
number of changes happening to objects visible on the map.
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Figure 1.4: Number of active contributors and changes to the database happening daily, filtering out
bot and import accounts. Results averaged over 30-day rolling window for readability at this scale.

specific organized mapping events such as humanitarian activations and mapathons. These create

a pulse-like contribution pattern that appears to be becoming more intense in recent years with

respect to the number of contributors active each day.

Figure 1.4 gives a more truthful account of the editing activity and community size than

reporting on the database statistics alone: “5M+ registered users” is an impressive statistic in terms

of community growth, but is misleading if discussing the number of contributors to the map. To

this end, a more accurate report would be stating that less than 0.1% of the registered users edit

the map daily.7 This is not to say that the community is not active or engaged with the map, it

merely highlights the complexity of measuring engagement in an online community such as OSM.

Not accounted for here, however, are the other ways in which members participate in the

community, such as organizing mapping events, introducing new people to OSM, being active on

the wiki or mailing list, etc. Quantifying these engagements is not possible from data analysis of

7 Calculated from 2019 average of 4800 daily users and over 5M registered users
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the database alone, but instead requires more qualitative investigation and observation of all of the

community spaces. Calculating and reporting on these numbers is out-of-scope of this particular

work, but these types of engagements are extremely important to the project and community as a

whole and should be acknowledged as such. Another important nuance not represented in Figure 1.4

is the extreme level of inequality common in online platforms, in this case between power-mappers

and other contributors: While more than 1.2M users have edited the map at least once, less than

one-third of those users have made more than 100 changes. Furthermore, more than 900k previously

active editors have not returned as of 2018. Figure 9.1 presents a visualization of this in Chapter 9.

One metric that can help elucidate the inequality of engagement is the time-span or life-span

of a contributor. Bégin et al. first visualized this by plotting the date of each contributor’s first edit

to the map against their most recent edit [11]. This creates a visualization with time on both axis

where the diagonal represents 1-time contributors: Where someone’s first and last edits were on the

same day. Figure 1.5 uses the approach proposed by Bégin et al. in [11], but with the additional

visual channel of color to denote the total number of days a contributor has been active on OSM

(not necessarily continuously). The addition of color allows us to distinguish between contributors

who edit the map often and therefore have a continually growing lifespan and contributors who are

active sporadically.

The majority of purple points across the top of Figure 1.5 indicate that users who have actively

edited OSM on more than 21 days are still actively mapping regardless of when they started. This

might suggest there is a saturation number of days that gets a mapper hooked that is somewhere

around three weeks worth of mapping days.8

58% of all mappers exist along the diagonal in Figure 1.5; these users only edited the map

one day. Furthermore, 84% of mappers fall into the <5 days of mapping activity category. Also

observable in Figure 1.5 are the higher amounts of orange and red close to the diagonal. This

represents a large number of users who were active for a number of days in a row, but then did

8 This is an oversimplification that does not take into account any larger contexts around the types of mapping
one does during this time. Dittus et al. identify a number of more salient factors than number of active days when
measuring contributor engagement during humanitarian mapping events [29].
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Figure 1.5: Date of first and most recent edit for all OSM contributors (1.3M as of May 2019). Color
denotes number of days a mapper has been active between those two dates (inclusive). Created
using approach from [11].

not return to the map. These are most likely new disaster mappers participating in humanitarian

mapathons as described by [125, 105, 32].

The darker, denser triangle in the upper right-hand corner of Figure 1.5 represents a major

increase in new contributors as of April 2016. Preliminary investigation into these contributions
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shows they are likely associated with the addition of an in-map editor to the popular mobile mapping

app, maps.me9 . The addition of this in-app editor seemingly lowered the barrier to editing the map

for many of the app users. Of particular interest is that this increase is not confined to the diagonal,

but rather creates a vertical line, suggesting that many of these users continued to contribute for

days, weeks, months, or years. The engagement and attrition rates of mobile mappers is therefore

distinctly different from others. The subtle vertical and horizontal lines present in Figure 1.5

represent specific points in OSM’s history such as the license change or the first mentions of OSM

in mainstream media as identified by Begin et al. [11].

Figure 1.6 presents a slight variation on Figure 1.5 that highlights the response to the 2015

Nepal Earthquake. The larger blob of red on the lower diagonal immediately following the earthquake

represents the large number of users who, while only ever active for the week or two following

the event, contributed hundreds of changesets to the map. This slight variation of using color to

represent total changesets instead of active days exposes a different pattern in contributor behavior,

highlighting the short lived power mapping activity following a disaster event. There is a subtle, yet

more dense section of this scatter plot that follows the vertical line representing the earthquake on

April 25, 2015. These dots represent users who first mapped in response to the earthquake, and

while the majority only mapped for a few days and then never returned, many users continued to

map in the years since the event. Dittus et al. investigate this phenomena in much more detail, but

many mappers are introduced to OSM through disaster mapping and continue to stay involved with

the project in the years to come, as evidenced by this slightly denser portion of the scatter plot

representing those users who first mapped after the 2015 Nepal Earthquake [125, 105, 29].

9 Based on the version release dates available at wiki.openstreetmap.org/wiki/MAPS.ME#History
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Figure 1.6: Lifespans of OSM Contributors who first mapped in 2015. Vertical line marks April 25,
2015, the day of the Nepal Earthquake.
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1.4.1 Many Communities

Borrowing again from Solis’ presentation at the 2016 AAG annual meeting, I agree that

OSM is best described today as a “community of communities” in that the project is made up

of a number of smaller communities, each involved for their own reasons [127]. This distinction

allows the map to be assessed from the context and perspective of any of those involved. While

this may inevitably create tensions between these many active communities, it highlights that there

are multiple perspectives, depending on the modes of data production and mapper involvement, as

discussed more in Chapter 9.

An important caveat in this description, however, is that these communities are not mutually

exclusive. Furthermore, defining rigid boundaries between these sub-communities likely creates

more issues than it resolves. One distinction that has become more defined in recent years is that

between “organized” and thereby the default “non-organized” editing efforts [3]. Broadly defined,

organized editing refers to contributors engaged in a mapping effort that has a defined objective or

goal that offers organization around said effort. Paid editing, humanitarian editing, and community

import-efforts all fall into this category. As of Fall 2018, the OSM Foundation has released the

Organized Editing Guidelines to provide a list of best-practices that organized mapping efforts

should take to ensure openness, transparency, and engagement with the rest of the community [3].10

Since the boundaries of OSM communities could likely be defined ad infinitum, I will only

identify a few of the larger communities within OSM who have particular, observable editing

behaviors, while acknowledging that this is far from a comprehensive classification of all OSM

contributors and that many mappers may participate in multiple communities, even moving between

them over time. For example, a lot of mappers are introduced to OSM through humanitarian

mapping efforts, thereby beginning as part of an organized editing effort, learning how to edit the

map within a humanitarian context. If this mapper then continues to be an OSM contributor by

mapping their hometown, then they have transitioned from a humanitarian mapper to becoming

10 wiki.osmfoundation.org/wiki/Organised Editing Guidelines
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part of their local mapping community. Taking this further, perhaps it is solely a hobby, or perhaps

it is done in conjunction with some personal gain, such as publishing and selling maps of important

tourist locations? While a trivial example, the purpose of such speculations is to remind that

OSM data can be and is used by anyone for any purpose. Defining these communities is helpful to

understand the project at a whole, but imposing rigid definitions and binding individual contributors

within each is ultimately unhelpful and simply divisive as the map and the communities continue to

evolve [3].

Further, many of the top humanitarian mappers are also general power contributors to the

map. Kogan et al. found that some contributors do not change their mapping workflows and

practices when a disaster happens: simply where they choose to map, such as a German mapper who

mapped every day after work [61]. When the 2010 Haiti earthquake happened, this reserved time

for mapping became reserved humanitarian mapping time because he chose to shift his geographic

focus to Haiti during his daily mapping efforts [61]. In this way, this mapper belonged to both his

local mapping community and the humanitarian community. Any metrics that discredit this mapper

from either of these communities have failed to adequately capture the full-story and context of the

mapping activity. Next I will briefly describe a few of the major communities that can be found in

OSM.

1.4.1.1 Humanitarian Mappers

Humanitarian mapping in OSM was first popularized in the days after the 2010 Haiti

earthquake [125]. In the years since, an organization known as the Humanitarian OpenStreetMap

Team (HOT) formalized this type of disaster response and continues grow as perhaps the largest

community within OSM [105].11 As highlighted in mailing list discussions during the December

2018 OSM foundation board election, HOT is a major community player with its own formal

11 In terms of organized editing, this is the largest single community. However as a whole, local and/or craft
mappers might have more by numbers, depending on where the (arbitrary) line is drawn. This simply highlights the
pettiness of such measurements and my desire to stay away from such quantification and let the data speak for itself.
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structure and a lot of joint membership between the OSM foundation and HOT leadership.12

While being the largest active humanitarian mapping group, HOT could also be considered the

largest recruiter of contributors to OSM. Driving these efforts are other groups that associate

with HOT such as youth mappers (youthmappers.org) or missing maps (missingmaps.org). These

organizations bring new mappers into the humanitarian mapping community and primarily organize

their mapping activities in conjunction with HOT. In other words, they typically use the official

HOT tasking manager (tasks.hotosm.org) to organize their mapping efforts and associate their edits

with HOT by using the #hotosm hashtag in the changeset comments. Searching for this hashtag

is a common way to identify edits done by humanitarian mapping efforts. This is not to say that

all humanitarian mapping in OSM includes this hashtag, but certainly the majority of map edits

performed in this context do. HOT also makes significant investment in training new mappers by

sponsoring and directing users towards tools such as learnosm, a step-by-step guide to mapping in

OSM (learnosm.org).

Figure 1.7 highlights the growth of the HOT community within OSM. This figure was

calculated by identifying the changesets with “hotosm” in the comment text. Broadly, these would

be considered part of an organized-editing effort. Of most notable importance in Figure 1.7 is the

divergence in the two lines since 2014. While all editing activity continues to increase as a whole,

humanitarian related mapping appears to be responsible for the majority of the growth in total

editing activity.13 Because of the potential volatility of such statements, I am deliberately showing

“changesets” and not “mappers” here. Classifying mappers as exclusively HOT-associated or not is a

misleading calculation: Is there a minimum percentage of a user’s edits that need to be associated

with HOT tasks in order to classify this user as a HOT contributor? More than 82k mappers were

active only for one-day as a humanitarian mapper and never returned. On one hand, the work of

12 Public archives available at lists.openstreetmap.org/pipermail/osmf-talk/. This has some of the community
concerned about over-representation of HOT within the governing OSM foundation. It should also be noted that
HOT is not the only group doing humanitarian mapping. While they are certainly the largest, they do not have an
exclusive claim (nor make such a claim) on all humanitarian mapping. That said, HOT is certainly the largest active
humanitarian mapping group in the OSM ecosystem [125, 105, 3].

13 Unfortunately when it comes to measuring these activities, it turns into: “HOT” vs. “non-HOT” or “Organized”
vs. “Non-Organized” where the latter categories do not represent a unified group, but rather simply “other.” This
leads to unfortunate “subgroup X” vs. “The Community” comparisons which does not seem right.
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Figure 1.7: The rise in humanitarian mapping efforts over time: On average, the majority of the
growth in the map is related to humanitarian (organized) editing efforts.

these mappers needs to be recognized as I argued earlier that all edits need to be counted. On the

other hand, claiming this particular community has gained 82k mappers is overstated because these

mappers were never active again. Most worrisome to me as an analyst is the propensity for these

overly-simplistic measures to be easily “weaponized” on a volatile mailing list to further agendas.

While it is accurate to say that HOT-related mapping activity is a dominant force in both

the map and community today, there is always more to be uncovered. Dittus et al. explored the

engagement of HOT mappers and the retention of mappers across multiple tasks, finding among

many other things, that prior or related experience with OSM had a significant increase on retention

rates [29]. Findings like these add uncertainty to the trends in Figure 1.7. If the most prolific HOT

mappers are also active in other communities, then it is unfair and biased to make claims that

HOT-related mapping is specifically responsible for the growth of the OSM community as a whole.

I thereby include Figure 1.7 here with caution and to prompt more critical thought about such

measures. This graphic would wreak havoc on the volatile OSM mailing lists and are unfortunately
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relatively simple to generate from the OSM-changeset database.14

One of HOT’s largest contributions to OSM is the continued sponsorship of various analytical

tools. With efforts in gamification, tracking, and analysis of edits performed within HOT tasks, the

HOT developer community (anyone who contribute to projects in the hotosm ecosystem) builds

and maintains a massive number of open source utilities. These tools will be discussed in greater

detail in coming sections.

1.4.1.2 Craft / Hobby Mappers & Localized Mapping Communities

Though relatively easy to name, The community of craft and hobby mappers is exceedingly

difficult to define and identify because mappers may be associated with this group for any variety of

reasons, making identifying them in the data particularly hard. For the purposes of this classification,

this group is perhaps best defined as anyone mapping non-organized, or perhaps, self-organized.

Though, at what point does an editor or small group of self-organized editors become an organized

group, editing for a specific purpose?15

Active local mapping communities take ownership of the map in a particular region and once

the map is filled in, continue to edit and update the map as the world changes in real time. I use

the term “localized” over “local” specifically to represent a particular location, not necessarily a

mapper’s home. There are many mappers who maintain and watch over a particular location on

the map where they do not currently reside. For example, the user ‘chachafish’ is a self-described

nomad who happens to maintain the map of Denver, Colorado even though does not currently live

there. Whenever the map of Denver is edited, this user will inspect the edits and often comment on

the changeset (alerting the contributor) if anything was mapped incorrectly.16

14 December 2018 (and seemingly every election period) sees these debates. As a researcher in this space, I tread
lightly and err on the side of not producing overly-simplistic figures and measures that could be co-opted in these
debates. I find these issues further inspire the search for better analytics to uncover the inherent difficulties and better
tell the complete story.

15 Rhetorical question intended to remind reader that defining communities is helpful to better understand OSM as
a community of communities, but rigid, strict, mutually exclusive definitions are ultimately counter-productive.

16 Self-described in his OSM profile: openstreetmap.org/user/chachafish. Recently, however, this user has been
relying on external tools to cross-validate street names in the Denver area that are currently at-odds with the official
city of Denver databases. This raises questions about the authority of localized editing and who should have the final
word (osmcoloradoimport.info).
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Since the actual home location of a contributor is not publicly available, there is no method

to identify a user’s “local” mapping area from the public editing record. This has been tried,

however, many times in various studies involving OSM. Popular approaches to determining the

home location range from simply the country of a user’s first edit to more complex calculations such

as the geometric median of a user’s edits [84]. For localized mapping communities, these approaches

will likely be successful: these users tend to edit primarily in a region that is likely to be their home,

or close to. The popularity of disaster mapping, however, makes these approaches more difficult and

I have empirically observed fewer of these studies in recent years as many mappers are introduced

to OSM through mapping regions thousands of miles from their home.

Tensions over the 2018 OSM Foundation board election expressed on the OSM mailing list

suggest that some in the community see “craft mappers” as the original maintainers of the map and

therefore today’s rightful owners and stewards. With this comes a value judgment that other forms

of mapping are less important or meaningful. I mention this only to show that there is a perceived

difference between mappers in this group and other groups I will describe. Attempting to measure

or investigate these ideas further will only legitimize such divisive ideas. As a researcher in this

space, I am especially cautious about appearing to validate or support these types of arguments

through my work.

In general, these types of editors are largely difficult to quantify and summarize because the

definition of these local communities can be so broad. For example, how many edits would one

need to make in their “hometown” to be considered a local editor? I briefly explored defining this

threshold as a percentage of a mapper’s annual edits, as shown in Figure 1.8. Empirically we do

observe that many mappers have specific areas of interest (often even multiple regions) that receive

a significant portion of their total mapping activity, but calling this a mappers’ home or area of

localized knowledge is still purely speculative. Humanitarian mappers, for example, will still always

appear to be local the largest event of the year with utilities like that shown in Figure 1.8.

Instead, I have observed that the best indicators of local mapping communities are not

found in the map data itself but through other channels: A number of Facebook communities,
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Figure 1.8: Top: The mapping footprint of five mappers in the United States in 2016. Bottom:
The smaller regions where more than 2.4% of these mapper’s annual editing activity was isolated.
Screenshots from mapbox.github.io/osm-analysis-collab, a research collaboration with Mapbox to
be introduced in Chapter 6.

Telegram channels, Slack Workspaces, and Meetup groups, for example, are dedicated to specific

regional mapping groups. OSM-Colorado, for example, is a regional Meetup group dedicated to
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all things happening in Colorado related to OpenStreetMap. Many regional communities have

dedicated mailing lists, such as the “talk-us” or “talk-ph” mailing lists for OpenStreetMap US and

OpenStreetMap – Philippines, respectively. Some regional mapping groups are certainly more active,

structured, and organized than others.

1.4.1.3 Corporate Editors

Corporate data teams have been active in OSM for years with growing transparency since at

least 2014. These are teams of employees who are paid to contribute to the map. Presumably, the

goal of corporate data-teams is to improve the map for a particular business use-case. An obvious

example here is routing: many companies are using OSM Data as input to routing algorithms to

provide directions in their maps. Amazon, Apple, Mapbox, Grab, Lyft, and Uber are all using OSM

Data to improve their products or logistics in some manner. Perhaps not surprising for an open data

community, there are mixed feelings about the presence of these corporate editing teams in OSM

[3]. In the last 3 years, I have watched Facebook, Apple, and Lyft “come out” to the community

in the form of presentations at annual conferences. These presentations are more warmly received

at the US based annual conferences than the global conference, State of The Map. To this end,

the OpenStreetMap US community is known to be more corporate-friendly than the global OSM

community. Current increasing trends in the number of corporate edits on the map each month as

shown in Figure 1.9 suggest that corporate editing is not going away anytime soon.

Currently, the best practice for a corporate data-team editing OSM is for the company to

provide a list of usernames associated with the data-team on the company’s OSM wiki page. It is

then largely assumed that edits associated with these usernames are associated with the company.

The aforementioned organized editing guidelines apply to these types of editing activity. Even

before these guidelines were published, however, many companies were already maintaining active

Github repositories and OSM wiki pages describing the extent of their editing activities.

The presence of corporate editors in OSM raises new questions around geographic bias,

corporate interest, and the potential pushing-out of local mapping communities. As such, I have
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Figure 1.9: The rise of Corporate Editing in OSM

observed their presence to be a contentious topic. It is common for a presentation from a company

talking about their mapping practices to be standing-room only (especially their first talk when

they “come out” to the community). In the case of both a Facebook talk (SOTMUS 2017) and

an Apple talk (SOTM 2018), the companies requested that their presentations not be recorded,

forcing people to attend in person. Chapter 9 discusses the long-term involvement and influence

that corporations had had in the history and evolution of OSM.

While there are studies that look at specific communities within OSM such as work by Dittus

et al. that focus on contributors to HOT tasks [29, 30], it is (more) common for studies to classify

OSM contributors as a whole based on their contribution activity: often classifying users in some

level of hierarchy ranging from beginner mappers and experienced, power mappers [84, 11, 18].

While it is likely that the same distribution of edits per user exists within each of the communities

identified here (hobby/ localized mappers, humanitarian mappers, corporate editors): The difference

in editing patterns between these communities and their ultimate role in the development of the

map is not as deeply explored, prompting the research presented in Chapter 9 [3].
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1.5 Global Scale

This research addresses OSM data at a global, planet-wide scale. Because people typically

focus on a specific area of interest, this global approach differs from how most users engage with the

map. If, for example, one is only interested in simple analytics such as how many roads or buildings

are in an area, then more simple, localized analytics can be done in geographic isolation. However,

if we are to address, as this research attempts, ways in which we can derive more information about

how the map was constructed and what that tells us about the quality of the map for example, we

need to consider the map as an entire entity, because of the ways in which contributors themselves

behave.

Figure 1.3 highlights that contributions to OSM, while uneven, are worldwide. Additionally,

Figure 1.8 shows that even though many contributors are active everywhere, individual mappers

tend to have a particular area of the map that receives more of their attention. Incorporating this

background information is important for contributor-centric analysis because it reveals a mapper’s

previous mapping expertise. For example, a contributor introduced to OSM through participating

in a disaster or humanitarian mapping project will have performed a significant amount of mapping—

most likely not in their local region. If this mapper then maps a few features in their hometown, they

will look relatively inexperienced in their local editing record, but they may have deep familiarity

with the process of mapping and the norms of the community through many previous days of

disaster mapping activity. Accounting for this expertise requires looking into a mapper’s global

history beyond the bounds of a particular area of analysis.

To this end, regardless of the actual area of interest, contributor-centric analysis needs to

account for a mapper’s previous activity. There are two ways to do this: First, a mapper’s username

can be looked up on openstreetmap.org (or through the public API) to learn when a contributor

registered their account and how many changesets they have authored since. This offers two pieces

of general information about a user, but does not yield understanding of where a mapper has been

active or what type of edits they are performing. Second, all of the edits made globally need to be
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included in any and all analyses of distinct sections of the map to account for the full context of an

contributor’s lifetime activity. The first approach is implemented in Chapter 3, while the second

approach is implemented in Chapters 6 and 7.

Additionally, if one hopes to perform analysis of a particular community of mappers within

OSM, considering the entire globe is critical because many communities are active everywhere.

Humanitarian mappers, for example, have contributed to mapping projects all over the world.

As Figure 9.3 will show, corporate editing is a global phenomenon, so any questions around this

community requires considering the entire planet to tell the full story.

1.6 Related Work

There are multiple categories of work related to what I am presenting here. Overall, Figure

1.10 shows the increase in Google Scholar results for articles with the terms OpenStreetMap Data

Analysis. The increase in articles represents the growing awareness and use of OSM data in research,

primarily as a source of spatial information, not necessarily research about OSM, but exposure

for OSM nonetheless. While this exposure better validates OSM as a worthy source of geospatial

information for research, it necessarily raises new concerns about how the data is processed and if

these are the best approaches for the types of questions people are asking.

Figure 1.10: Approximate number of articles on Google Scholar published each year with references
to OpenStreetMap Data Analysis
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Empirically, I observe that these concerns do not yet raise alarm. Reading through the titles

of the latest research confirms that the majority of this new research is either validating OSM data

against another dataset to show its viability for a particular application (routing, planning, etc.), or

using it as a primary (best, only, most accessible) source of geospatial data for a region of interest.

Most of this work does not ask questions about the growth of the data or community itself and

therefore is not losing anything by not embracing contributor-centric approaches.17

Working with OSM data requires first piecing together a data-processing pipeline that best

fits one’s analysis goals. For relatively small regions, a number of utilities exist to simply load the

spatial data into traditional GIS environments such as ESRI tools or the open source alternative,

QGIS.18 My observation is that much of the research in Figure 1.10 includes a variation on the

following phrase: We downloaded the regional extract for <region>and loaded it into QGIS/ESRI

for comparison with <dataset>. Depending on the software version and format/source of the extract,

any number of the tools and frameworks just mentioned are used in this processing pipeline.

Closer to the work discussed here are processing workflows for intrinsic quality analysis built

as toolboxes and plugins for QGIS. Such as one for analysis of road networks created by Graser

et al. or a more extensible intrinsic quality assessment plugin as built by Sehra et al. [45, 120].

Intrinsic analyses approaches often involve the metadata and data provenance and can therefore

benefit from contributor-centric approaches that prioritize this information. Chapter 7 includes a

more comprehensive review of these and points to many other intrinsic quality analysis frameworks

available for OSM.

With regards to full-stack development of OSM data analysis systems, there are a few other

research groups and projects working in this space. Most notably, these projects are still very much

in active development and are have been constantly evolving in parallel with the work conducted at

the University of Colorado over the past five years.

17 As much as I would like to advocate my approach to OSM data analysis is the best, it is not the only valid
approach to working with OSM data and is overkill for the majority of analyses that simply use the spatial attributes
of OSM data.

18 See the OSM wiki for a comprehensive list of tools and frameworks that have been implemented for these purposes:
wiki.openstreetmap.org/wiki/Category:OSM processing
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1.6.1 Heidelberg Institute for GeoInformation Technology

OSHDB, iOSMAnalyzer, and by association, many of the tools created by Pascal Neis all have

their roots in the Geography Department—and now the Heidelberg Institute for GeoInformation

Technology (HeiGIT)—at the University of Heidelberg, Germany [112, 10].19 An early intrinsic

quality analysis tool, iOSMAnalyzer used a very similar data-processing workflow to our Epic-OSM

utility presented in Chapter 3 to ingest an OSM history file and perform batch analysis on a

particular region with a set of predefined quality measures and indicators, ultimately producing a

PDF summary of the analysis [10].

OSM researcher Pascal Neis did his PhD work at the University of Heidelberg and has for

years maintained a number of community-oriented tools available on his personal website. The

most common of these tools is HDYC (“how do you contribute to OSM?”). This tool, available at

hdyc.neis-one.org shows general summary statistics for any OSM user account. It is a common

practice for a user to link to their “hdyc page” in their OSM profile to provide an overview of what

type of mapper they are. While Neis’ webtools provide many useful metrics, they are dashboards

that are not built to be customizable. The code is also predominantly closed source, so people

cannot contribute to it or build from it. To this end, they are extremely useful dashboards, validated

by their widespread use in the community, but different from an analysis infrastructure as presented

here because they do not enable users to ask arbitrary questions of the data.

The most recent work to come out of HeiGIT is the OSHDB, the final iteration and imple-

mentation of a scalable, full-history spatiotemporal query engine that is intended to support OSM

research [112]. Now with a public API in front of a global instance of OSHDB known as OHSOME,

these tools are going to lower the barrier to entry for researchers looking to explore the history

the map for any area. As Chapter 10 will discuss further, the OSHDB can function as a powerful

back-end for future contributor-centric analyses.

19 heigit.org/, resultmaps.neis-one.orsg/



30

1.6.1.1 osm-analytics.org

osm-analytics.org is an interactive dashboard for visualizing the global coverage of OSM data.

The website is built with OSM-QA-Tiles (introduced in Chapter 5) and allows the user to compare

the state of the map over time in terms of the number of buildings, roads, rivers, amenities, or

hospitals. Added recently, a new feature of the dashboard is the comparison of OSM to global

population data, identifying areas of the map that are likely incomplete. The processing workflow

that powers this dashboard inspired the data processing pipeline presented in Section 5.2. This tool

was built as part of a much larger collaboration involving HeiGIT.20

1.6.2 OSMesa

OSMesa is another scalable suite of tools built on contemporary big-data technologies such

as Apache Spark and Amazon Web Services.21 Also being actively developed in parallel to the

work presented here, OSMesa is part of the processing pipeline behind most of the figures presented

20 osm-analytics.org/about
21 github.com/azavea/osmesa

Figure 1.11: The Leaderboard available on missingmaps.org that shows the top contributors to the
project. OSMesa powers the data analysis behind the dashboard which helps gamify humanitarian
mapping to engage contributors.
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in this chapter. With powerful planet-scale editing history reconstruction abilities, OSMesa is an

optimal choice for the future back-end to contributor-centric analysis systems. This framework

can also scale to perform near real-time analysis of OSM data, making it a powerful analytical

background currently used by The Red Cross, Missing Maps, and a variety of other organizations

to power a number of leaderboards and result maps based on editing statistics, such as Figure 1.11.

1.7 Outline of the Dissertation

This dissertation is organized into Parts that contain Chapters. Each part includes a preamble

that briefly describes the chapters to come. Additionally, there is a glossary in the appendix with

short explanations of various terminology. Terms with entries in the glossary are introduced with

an asterisk (*).

Chapter 2 concludes Part I by introducing the technical and analytical challenges associated

with measuring OpenStreetMap. Part II follows, and discusses the first OSM data analysis system

built at the University of Colorado, Epic-OSM, and the multiple research projects that it supported.

Within this Part, Chapter 3 is an exact reprint of [4], as listed in Section 1.7.1. The failures of the

system to scale when implemented as a real-time analysis framework in the 2015 Nepal Earthquake

inspire the adoption, implementation, and extension of vector-tile based analysis approaches, as

introduced in Chapter 5.

Part III presents the technical contributions of this work and discusses the iterations on

and innovations to existing systems that I have performed to produce this work. Specifically, the

chapters included discuss the pros and cons of vector-tile based analysis of OSM data and how it

can support contributor-centric research.

Part IV consists of four chapters, each discussing a completed research project demonstrating

the analytical capabilities of vector-tile based analysis. Within this, Chapters 7, and 9 are exact

reprints of [5] and [3], as listed in Section 1.7.1.

Part V discusses the current state of full history vector-tile based OSM data analysis. This

includes work completed to date and lays out concrete plans for future implementations and work
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currently underway.

1.7.1 Inclusion of Published Work

Chapters 3, 7, and 9 are reprints of already published work, included here with the permission

of my coauthors:

Chapter 3: Jennings Anderson, Robert Soden, Kenneth M. Anderson, Marina Kogan, Leysia Palen

(2016). EPIC-OSM: A Software Framework for OpenStreetMap Data Analytics. In Proceedings of

the 49th Hawaii International Conference on System Sciences. 5467-5477.

Chapter 7: Jennings Anderson, Robert Soden, Brian Keegan, Leysia Palen, and Kenneth M. Ander-

son (2018). The Crowd is the Territory: Assessing Quality in Peer-Produced Spatial Data During Dis-

asters. International Journal of Human-Computer Interaction. doi:10.1080/10447318.2018.1427828

Chapter 9: Jennings Anderson, Dipto Sarkar, and Leysia Palen (2019). Corporate Editors in the

Evolving Landscape of OpenStreetMap. ISPRS Int. J. Geo-Inf. 2019, 8, 232. doi:10.3390/ijgi8050232



Chapter 2

Measuring OpenStreetMap

Differentiating itself from other geospatial data, objects in the OSM database are internally

referenced and related to one another. This means that geometries like lines and polygons do not

actually contain any geographic information themselves, but instead reference other objects that

contain the coordinates. In contrast, it is common for representations of LineString or Polygon

objects in other formats to contain a list of coordinates that define the vertices. In practice, working

with these types of objects is computationally simpler: a single entry or row in a file or database

contains all of the object’s information. In OSM, however, the coordinates need to be looked up in

a location cache to resolve the geometries.

This creates a topological structure in OSM where the node element represents the smallest

building block of objects on the map. Way and relation elements then reference these nodes. In this

manner, duplicate points on the map are minimized: One node at a particular geographic location

can be referenced by any number of objects. An intersection, for example, can be represented as

a single node that is referenced by both roads that cross to create the intersection. This node

can then have additional attributes such as the identification of a stoplight (traffic signal) at the

particular intersection. In this case, the topological structure of the OSM data model is convenient

and efficiently represents all of the necessary information. Furthermore, this design is particularly

well-suited to construct a routable road network. A standalone building, however, likely does not

share any corners with another object. Because of this, way elements created to represent buildings

often reference multiple nodes in which most or all of them have no other attributes than their
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geographic location. It is unnecessary for these nodes to exist independent of the building object.

Similarly, the vertices of a winding road, coastline, or border are typically only referenced by one

parent object. These represent the vast majority of nodes in the OSM database and their existence

as standalone objects, independent of their parent element is unnecessary. Today, however, this is

simply an artifact of the initial data model and is unlikely to change.

Figure 2.1: Top: A square building in OSM is represented by five elements, four nodes (Points) that
mark the corners and a way element tagged as “building” that references the nodes. Bottom: An
intersection with a traffic signal in OSM references the same node element multiple times: The
traffic signal itself as the point and then both roads joining at that point. Screenshot from iD editor
on openstreetmap.org; Data c© OpenStreetMap Contributors.

While there are storage, computational efficiency, and cross-compatibility arguments to be—

and have been—made [133] against the topological data model, I am most concerned with the
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analytical challenges that it inadvertently introduces. Since map objects may reference one or more

other elements, the number of edits to objects in the database does not equate to the number of

edits made to the map in a logical sense. For example, there are over 5B elements in the OSM

database across the nodes, ways, and relation tables. However, when the map is rendered, there are

fewer than 1B objects on the map. An edit to any one of these objects may then have cascading

effects within the topology. This combined with the sheer volume and global scale of OSM data

makes measuring the contributions to OSM a difficult, multi-faceted problem.

2.1 Defining “edits” to the Map

A contributor-centric approach means first abstracting this topological relationship between

OSM elements away, leaving just OSM objects and the edits that affect them. This change produces

output more similar to standard geospatial data structures where each object has its own geometry

and set of descriptive attributes. With this abstraction, the OSM database transforms from a

collection of billions of nodes, hundreds of millions of ways, and millions of relations to a single

collection of hundreds of millions of geographic objects representing the physical reality of our world.

Though still a massive and messy dataset, it is now easier to quantify what an edit to one of these

objects might look like. For consistency, I use the term “element” when referring to a node, way,

or relation in the OSM sense and the term “object” when referring to the abstraction of an entire

object (as it might be rendered on the map).

For example, consider the common rectangular building in OSM—of which there are hundreds

of millions in the database [87]. Creating this building involves a minimum of five edits to the

database: the creation of four node elements to define the building’s corners and a single way

element that references these node elements. Any subsequent edit to this building object could

change any or all of these elements in the database. Editing the building’s name, for example, would

be an edit to only the way element. Moving one of the building corners would be an edit to only a

single node element. In the database record, these two edits are unaware of each other, even though

they are really both edits to the same OSM object. For this work, I define the following five distinct
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types of edits in OpenStreetMap that can occur to an OSM object:

Change

Type of change at the object
level (and the OSM elements
changed)

Primary El-
ement Edits

Ref. Ele-
ment Edits

Version

1 Creating a new object 1 0 or more Major version = 1

2

Slightly modifying an existing
object’s geometry (moving ex-
isting node elements)

0 1 or more Minor version += 1

3

Deleting or adding references
to other elements (major ge-
ometry change)

1 1 or more Major version += 1

4
Editing an existing object’s at-
tributes (tag changes)

1 or more 0 Major version +=1

5 Deleting an existing object 1 1 or more Major version += 1

Table 2.1: Classification of types of edits in OSM

Referenced objects in Table 1.1 refer primarily to nodes referenced by ways, but this classifica-

tion of editing extends to OSM relation elements as well. With this abstraction of OSM element(s)

to a single OSM object, we can then identify, classify, and assign all of the edits to the many OSM

elements that may be involved instead as edits to OSM objects. We can then record the username,

timestamp, and specific type of edit. Only then can we reconstruct the complete history of an

object: Crediting and accounting for each editor that has contributed to the current state of the

object as it exists on the map.

This taxonomy of edit types may at first seem excessive, but it is complete in terms of the

types of edits that need to be accounted for when examining the potential history of an OSM

object. Of particular importance is the notion of a “minor version” introduced here and further

described next. For reference, and as a major sign of progress in the realm of OSM data science, the

concept and terminology of a minor version is becoming more familiar today and is being actively

implemented and used by other OSM researchers.
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Chapter 4 explains the nuances of this particular abstraction to the “OSM object” in more

detail, but in general, the flattening of the OSM data model to single geometric objects is a fairly

common data conversion required for working with OSM data in more traditional GIS environments

(such as converting OSM data to the more common ESRI shapefile). This lossy conversion (Chapter

4) often discards various attributes of the editing information. The metadata or less-common tags,

are then lost, and/or the topological relationship is lost entirely. For most data-use purposes (like

rendering a map), these are completely acceptable losses. For analysis, however, these types of lossy

conversions discard valuable information, particularly metadata.

2.2 Minor Versioning of OSM Objects

The minor version of an object increments when the child elements of an OSM element are

updated independently from the object itself. The most common example of a minor version occurs

when a mapper moves existing nodes (edit type 2 in Table 2.1). In practice, this edit could be

to better align the object to newer, more clear imagery, or to straighten the corner angles of a

structure. If the mapper only adjusts existing nodes and does not change any other attributes of

the OSM element, then the parent element is not aware that anything has changed.

Figure 2.2: Progressive changes in the geometry of a building in OSM over multiple years. The
four nodes that make up the building have been moved five times, creating five distinct historical
geometries that are independent from the the versioning history of the way element.

In practice, this only creates a problem for data analysis. Though there are multiple versions

of the nodes, only the most recent version should be used to define the geometry of an object.

The current planet file, a downloadable database dump of the current map, then only includes one

version of any OSM element: The most recent. Further, it is relatively easy (time-intensive, but not
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complex) to view the map at any point in time by creating a historical “snapshot” of OSM. To do

this, one only has to truncate the database to exclude any edits after a specific point in time, and

then keep only the latest version of an object. When referenced, only the geometry at that point in

time exists to be returned. This creates a replica of the planet file as it existed at that point in

time. Chapter 6 further describes how these can be employed as a tool for historical analysis.

Most OSM data-processing utilities are equipped to handle OSM data where only one version

of an element exists, such as the planet file or other data extracts. OSM extracts that contain more

than one version of any OSM element (the ID is not unique) are referred to as history files. A

history file of all of the OSM database is made available to download weekly. It is known as the

planet-history file and contains over 9B OSM elements (including deleted objects).

While all of the information required to recreate an object’s history exists in the history file,

most software cannot handle the nuances. For example, there might only be one version (version=1)

of a way representing a building in the history file, but multiple versions of the nodes that it

references (thereby creating minor versions). This is a common situation in which the first edit

created the building and a secondary edit (not always a different user), moved these nodes, typically

to square-up the corners of the building. From an edits-to-the-map perspective, there are 2 distinct

edits: the creation of the building and then changing its shape to match the community norm of

having square building objects on the map. Looking only at the history of the way element, however,

only shows the first edit. Worse, counting the edits to node objects could show up to eight edits:

The creation of four nodes to represent the building’s corners and then the subsequent edit to any

of these four nodes as they were moved to create version 2.

For accurate data analysis, we need a representation of this object that reflects two versions

and shows the proper metadata for both versions. For example, the second version of the building

with the updated shape needs to include the metadata from the edits to the referenced node elements,

because even though this change was only to the nodes, the relevant change is not to the node

objects, it was to the shape of the building.

To accurately reflect this editing history, then, we introduce the minor version. This building
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would currently exist as version 1, minor version 1. Its history includes version 1, minor version 0,

representing the object as initially created. The minor version allows us to maintain the primary

version attribute so that it matches the OSM database, while adding the granularity of a minor

version. Over 120M objects have minor versions, which is about 20% of all of the map objects on

the planet. Here is an example schema of how this fictional object and its history can be represented

to accurately count the users involved in the evolution of this building on the map:

{
id : <ID o f way element >,
h i s t o r y : [
{ v e r s i on : 1 ,

minorVersion : 0 ,
user : <The mapper who created the bu i l d i ng on the map>
timestamp : <When the mapper c rea ted the bu i l d i n g on the map>
geometry : <Locat ion o f v e r s i o n 1 o f the nodes , as they were created>
changeset : <ID o f changeset in which the b u i l d i ng was created>

} ,
{ v e r s i on : 1 ,

minorVersion : 1 ,
user : <Mapper who moved the nodes>
timestamp : <When the user moved the nodes>
changeset : <ID o f changeset in which the nodes were moved>

}
]

}

Here, the version attribute remains unchanged and therefore still matches the version number

of the way element as it exists in the main OSM database. Furthermore, there can be any number

of minor versions associated with each version. Minor versions can be reconstructed from the

planet-history file, but they are far more complex and computationally challenging to produce than

historical snapshots. Section 5.6 goes into further detail about how to represent these changes

in a new data schema and the tools that currently exist to create it, while Chapter 10 presents

my current implementation of said schema and further discusses my development of a utility to

reconstruct these OSM objects with full-histories from the planet-history files.
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2.2.1 Limitations and Pitfalls of Minor Versioning

For reasons of practicality, minor versions should be limited to geometry changes only. They

can be thought of as geometry versions, but will retain the name “minor version” for consistency with

current implementations. Consider, again, the case of two intersecting roads and the later addition

of the traffic signal to the node that represents the intersection (edit type 4 from Table 2.1). By the

definition described above, two minor versions would be created: One for each of the intersecting

roads because a node element referenced by both ways was changed. This change, however, really

does not affect the way elements and furthermore, inflates the number of edits, propagating this

single change to the parent way elements as minor versions. This can be safe-guarded against by

filtering for a location change, discussed in Chapter 10.

Computing minor versions can be extraordinarily resource intensive because in the worst-case

scenario, the creation of accurate minor versions requires comparing a massive cross-product: The

sequences of all referenced nodes, including previously referenced nodes that have since been removed,

with each version of each of these nodes. In practice, this is rarely the case because it would be

an odd editing pattern, but some objects that are heavily edited will require thousands or even

millions of node location sequences to be checked. Chapter 10 shows techniques to avoid these when

calculating minor versions.

2.3 Spatiotemporal Scaling: Volume and Velocity

As a spatial database containing over 800 million distinct objects and more than one-billion

previous iterations of these objects, OSM data analysis becomes a big data problem.1 As such,

I borrow the terms volume and velocity from big data discussions to further describe issues of

scalability associated with OSM data processing. As Section 1.5 discussed, to capture the full

context of editing activity, analysis systems need to be capable of global-scale data processing. This

significantly increases the volume of data that needs to be considered beyond just the map data

present in a particular area of interest.

1 Computed with Amazon Athena from OSM Full history objects as built by OSMesa (github.com/azavea/osmesa)
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Additionally, the time range of the data being analyzed introduces two complications, first at

the data level with regards to volume, and second at the application level when it comes to the

implementation and use of OSM analysis systems. With previous versions of OSM objects, analysis

of larger time-ranges significantly increases the volume of data to be processed (more than two-fold

if doing the full history). An increase in volume causes an increase in the processing time required

(impacting velocity). For analysis of mapping that has already happened, concerns of processing

time are primarily about convenience for the researcher, but do not affect the usefulness of the

results. However, if attempting to produce real-time analytics that capture the editing activity as it

is happening, an increase in volume and velocity will negatively impact the usefulness of the system.

Consider analysis of a disaster mapping event: If exploring a previous mapping activation, whether

it takes one or two hours for the analysis process to run has little consequence for the results. For

real-time analysis of a disaster mapping activation, however, the time it takes to consume, parse,

and process the data creates the delay between the activity itself and producing the analysis. Being

one hour or two hours behind is a much more significant difference in the temporal accuracy of

the results. Section 3.5.1 will present a specific example of this real-time scenario and a patched

solution.

The work presented here ultimately chooses to scale spatiotemporally in terms of full-global

and historically-complete data to tell the story of the evolution of the map, but leaves real-time

analysis to other platforms, such as OSMesa which is capable of continually ingesting the latest

changes to OSM and producing a number of summary statistics that can power analytics like the

mapper leaderboard shown in Figure 1.11. Making this distinction between historical and real-time

analysis clarifies the goals of the systems presented here, which aim to tackle the full history of the

planet, addressing the spatial and historical scaling complications, while acknowledging the added

complexity of real-time systems that will remain beyond the scope for the time being.
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Now that I have introduced the difficulties in measuring OSM and the importance of new

analytical systems that can help us understand the evolution of the map and the data, the rest of

this document will look at the iterative development and evolution of OSM data analysis systems

through a series of projects and publications. While the design requirements of each system have

remained similar, the approaches have differed greatly, optimizing first for smaller-scale analysis

of particular regions, and then for global scalability. Throughout this process, there have been

consistent requirements with regards to rapid-iteration and consistent output formats so as not to

lock data analysts into single visualization and analysis environments.

It often appears that the number of tools and techniques in Data Science are growing and

evolving faster than the systems they are built to research. While the approaches to OSM data

analysis presented here differ in how they handle and process the historical editing record of OSM,

consistent output formats and schemas allow for the least amount of change in down-stream analysis

work as the input changes. For example, interactive maps built to visualize the output from

data-processing steps can be initially developed around a specific data-schema and future output

should require the smallest amount of modifications to be compatible. The compatibility extends

to analysis environments such as Jupyter or Zeppelin Notebooks. Section 10.2.1 describes the

advantages of this further.

JSON (and GeoJSON) is a standard data schema, specifically for web-based tools. The

human-readability of JSON allows analysts to manually investigate the output without the need for

additional translation and identify errors quickly, which supports rapid iteration. For these reasons,

all of my workflows work almost exclusively in this format.
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Chapter 3

Epic-OSM: A Software Framework for OpenStreetMap Data Analytics

This chapter is comprised of an article published in the proceedings of the Hawaii International

Conference on System Sciences, reprinted here with permission from my coauthors.1 This paper

presents the first infrastructure we developed at the University of Colorado Boulder to ingest and

analyze historical OSM data, specifically to support crisis informatics research. It should be noted

that this work predated and ultimately lead to the identification of the challenges just articulated in

Chapter 2. Those challenges are therefore not yet addressed in this chapter. Following this article,

the Chapter 3 Epilogue reviews how the infrastructure was implemented, other work it supported, and

discusses its ultimate shortcomings to scale, which prompted the switch to vector tile based analysis,

as introduced in Chapter 5.

3.1 Introduction

We live at a time when organizations of all kinds increasingly have the means to generate,

collect, and analyze large volumes of data via software systems. These systems—collectively known

as data-intensive software systems or “big data” systems—are challenging to design, develop, and

deploy [6]. One application area that requires the development of these systems is crisis informatics

[104], which investigates how social computing can impact the practice of emergency management.

Of particular interest is the use of digital maps to support disaster response, an activity known as

1 Jennings Anderson, Robert Soden, Kenneth M. Anderson, Marina Kogan, Leysia Palen (2016). EPIC-OSM: A
Software Framework for OpenStreetMap Data Analytics. In Proceedings of the 49th Hawaii International Conference
on System Sciences. 5467-5477.
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crisis mapping.

However, the analytics of geospatial data are especially challenging to resolve. This is

because a) map datasets tend to be extremely large—often consuming terabytes or petabytes of

information—and b) map datasets are not good at conveying how they were created. That is, for

any given version of a map, all one sees is the final aggregate map, not the individual edits that

were performed to create it. This is what separates collaboratively-edited geospatial data from

collaboratively-edited text documents—such as articles on Wikipedia—which can much more easily

display editing history across users.

In the new world of crowd-sourced data generation where information can be produced quickly

for open use, understanding the collaboration that went into the construction of the map can be as

important as the map itself. This is especially true for action-oriented communities, like the crisis

mapping community, that are trying to understand their evolving work practices while they work to

produce maps that can be used to aid crisis response. These communities seek to understand their

work in situ to improve upon it. Social computing researchers desire the same understanding to

both document what digital crowds can achieve and with an eye towards designing better tools to

support that work in the future. For the big data community, this type of research is important, as

it requires the novel use of data analysis techniques both for the batch processing of existing data

sets as well as the real-time analysis of edits that stream in during a crisis event.

In this paper, we report on the design and development of a big data software framework

that can be used to analyze the edit history of OpenStreetMap (OSM), making it possible to study

the cooperative work that occurs there, including but not limited to the intensely collaborative

periods of crisis mapping where much is at stake for humanitarian groups using these maps on

the ground. At the time of this writing, there are no other frameworks that perform this type of

analysis for OSM data; indeed, use of our software framework has been steadily increasing since its

initial deployment for studying and monitoring the mapping activity surrounding the 2015 Nepal

Earthquake event. This increased use is the direct result of the unique analysis capabilities our

framework provides on top of OSM data.
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Figure 3.1: Port-Au-Prince, Haiti in OSM, before the 2010 earthquake (left) and 4 days after (right).
Remotely-located volunteer mappers added all features by tracing aerial imagery [70].

OpenStreetMap is an open geographic data initiative that provides a map, and its associated

geospatial data, that anyone can contribute to and access. Our software framework, known as

epic-osm, can scale to process gigabytes of OSM data by employing a variety of techniques to both

analyze data for desired metrics and visualize the results in ways that are meaningful to mappers

themselves and the larger OSM organization and community. It also makes details of this enormous

data-producing organization [105] available to researchers in the way that Wikipedia has been

studied extensively for years as a notable site of collaborative data production. Our framework is

more than just a design; our code is available on GitHub and the software tools that have been

built on top of this framework are in active use. Our experiences designing and implementing

this framework can be of use to others. We demonstrate how to address the challenging data

modeling issues that arise in the design of data-intensive software systems [118], as well as issues of

extensibility, scalability, and interoperability.

3.1.1 Studying the OSM Community

With some notable exceptions [74], the majority of research on the social organization of the

OSM community has been based upon qualitative research methods such as participant observation,
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interviews, and surveys. These studies have provided insights into participant motivation [18] and

demographics [117]. Our team saw that examination of the OSM database itself—which contains a

complete record of every edit ever made—is critical to the advancement of the 2.1M OSM member

organization, which needs to better understand its production functions to manage its growth [105],

as well as for social computing researchers to characterize the nature of cooperative crisis mapping.

Understanding the social processes governing the creation of OSM data is especially important

for crisis informatics, since these behavioral phenomena can affect the quality of the geographic

data produced. This can have real human consequences as OSM is frequently used as the primary

base map in humanitarian response [125]. One likely reason that so little analytical research of

socio-behavioral phenomena in OSM has been conducted (in comparison to the vastly-studied

Wikipedia organization) is the challenges of manipulating OSM data. A complete download of the

OSM history database is over a terabyte in size and is continuously growing as new edits are made.

This difficulty affects not only scholars, but also the OSM community itself, which struggles to track

its own activity, and hence its growth and impact [105]. To address this knowledge gap, we have

identified a number of OSM members who have been willing to contribute to the development of

the epic-osm framework as well as deploy and test it for a range of purposes. As will be discussed,

this engagement has helped push the development of our framework and its surrounding toolset in

new directions. Furthermore, this has catalyzed discussion within the OSM community about the

need for new tools, as the existing community toolset, prior to the creation of our framework, is

sparse and does not provide in-depth analytical capabilities.

3.1.2 Crisis Informatics and OpenStreetMap

When a major disaster occurs, a subset of the OSM community rapidly converges on the

map around the impacted geographical area. The first well-documented case of this was after the

2010 Haiti Earthquake, where what few mapping products did exist were lost to the destruction of

the office buildings of the national mapping agency. The international humanitarian responders

converging onto the scene needed accurate maps to perform their work [125]. As depicted in Figure
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3.1, hundreds of remote mappers from all over the world dramatically improved the digital map

coverage of the affected areas in a matter of days by digitally tracing aerial imagery to build the map.

This map then became the primary resource used in relief efforts [125]. Known as high-tempo events,

these activations are of interest to the OSM community as a way to understand and communicate

its impact. It is also of specific interest to crisis informatics researchers because of the rapid,

large-scale convergence of “digital volunteers” from around the world, which demonstrates new forms

of collective behavior [58, 105]. However, to begin asking questions of how this collaboration occurs,

we must first create new tools to access and explore the “site of work”—the database supporting

the map itself. This is the motivation behind the development of epic-osm—to create the first

open framework for easily analyzing the large OSM dataset. Initially developed to support crisis

informatics research, the use cases we will discuss are abundant and the framework provides great

flexibility for all types of OSM research.

3.2 OpenStreetMap

Created in 2004 by students in the UK in response to restrictive licensing on geographic data

[21], OSM has become the most widely used platform for “volunteered geographic information” [35,

42]. OSM is supported by a worldwide network of developers and volunteers committed to the open

data values of the platform. Today, OSM has over 2.1M registered users, a small subset of whom

are active editors [84], and 2.9B individual geographic points [88]. The website itself is a Ruby on

Rails application on top of a PostgreSQL database. OSM incorporates an in-browser map editor

and provides an API to interface with external tools.

3.2.1 OSM Data Structure

Six domain-level data types are found in the OSM database. Three of these primary objects

construct the map itself: nodes, ways, and relations. Nodes are the most basic building blocks of

the database and represent single geographic points. A way is composed of an ordered series of

nodes, representing a line or polygon. A relation is a collection of nodes and/or ways, such as a
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country border or a noncontiguous set of polygons. When an object is first created, its version is

set to “1.” Any subsequent edit to that object will increment the version number; such edits also

track the user who performed them and the changeset (discussed below) to which this edit belongs.

Representations of nodes, ways, and relations are shown in Figure 3.2.

Beyond the primary map objects, the OSM database contains changesets, users, and notes. A

changeset is the digital receipt associated with every edit to the map. Each time a user commits

their edits to the database, a changeset is generated with information about the editing session.

The changeset id is recorded with every map object it contains, allowing a user to view a complete

grouping of all the objects edited within a single changeset.

A note object is a geographically-located comment that a user adds to the map. These notes

are marked as either open or resolved and may contain a comment thread as users discuss the note.

Notes document a discussion between users on how to represent a feature on the map, which can be

another important element for understanding map creation.

The OSM user database contains the user display name, a unique user id, and the date on

which the user created an account on openstreetmap.org. epic-osm makes use of the date when a

user creates an account to determine their experience level with OSM. This facilitates comparison

of behavioral differences between novice and experienced editors.

3.2.2 Tags

The descriptive, non-spatial characteristic of each map object within OSM is a set of tags.

These are unrestricted key-value pairs that can be added to any map object. An active wiki supports

discussion about best tagging practices for consistency within the map, and editing tools offer

default tag suggestions, but there are no database rules to enforce tagging schema or structure.

For instance, Table 3.1 shows some of the top keys and common values for OSM objects in the

map for New York City at the time of writing. From this table we can observe that information

regarding the building footprints and heights for NYC is of major interest to the subset of the OSM

community mapping in NYC, and is therefore not representative of all cities within OSM. This
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highlights the non-uniform characteristics of OSM contributions, calling for analysis tools that are

capable of handling this dynamic nature.

Table 3.1: Top Tags for OSM objects in New York City.

Objects with tag Key Most-common values

66% building garage, house, school
64% height 8.2, 8.0
13% highway residential
11% name (various)
2% amenity parking, bicycle parking

Figure 3.2: OSM Elements as Rendered on openstreetmap.org. Each element shows various aspects of
possible metadata (truncated) associated with OSM elements. Data c© OpenStreetMap contributors.

Map rendering software then uses these tags to properly display an object. For example, a

way tagged with “highway”:“pedestrian” represents a path, while a way tagged as “building”:”yes”

represents a building. Examples can be seen in 3.2
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The importance of tags in OSM analysis cannot be overstated. However, given the open and

dynamic nature of tags and tagging practices as the map evolves, an analysis tool must be robust

to handle filtering by tags. For example, it is common for current OSM analyses to report summary

statistics of OSM data by reporting on the number of new nodes added to the database. However,

reporting that 956,725 nodes were added to the map in the month after the 2010 Haiti earthquake

reveals very little about the manner in which the collaborative mapping was achieved. Filtering and

sorting intelligently with tags instead can achieve results like this: “308 users added 40,067 roads to

the map and 162 users added 20,696 buildings to the map. 148 of these users were the same, adding

buildings and roads.”

Even this first-step expansion is a much richer summary of user contributions. The requirement,

therefore, to develop a framework that is tag-aware is critical in understanding the creation of the

map. As a result, epic-osm has advanced support for tags, and a mechanism for incorporating

knowledge about the types of tags that the OSM community uses to create its maps (see Section

3.5). It can use this mechanism to find “all buildings” in a region even though different users tag

buildings in different ways.

3.2.3 Planet Files

OSM provides its data in a common XML format via a RESTful API. Unfortunately for our

analysis, this data represents the current state of the map, or the most recent version of the map

objects, which, as we discussed above, is not of primary interest to those who study crisis mapping

and the creation of the map itself. More useful are the “full-history planet files” that OSM strives

to make available for download on a weekly basis. These files are bulk exports of the complete

OSM database containing every edit to every object. Available in the Google protocol buffer format

(PBF), these files are about 60gb in size, whereas the uncompressed history database in the OSM

XML format is over a terabyte in size. While the PBF exports make obtaining the full history

easier, working with the files requires specific knowledge of the file format and structure, and is

computationally intensive to manipulate. This creates a requirement for an analysis framework: any
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OSM analytical framework must be able to handle the processing of full-history PBF files, which

will continually grow in size as the OSM community continues to work.

3.3 epic-osm Framework

This section describes the current implementation of the framework and its features. epic-osm

has supported crisis informatics research throughout its development. This iterative, domain-driven

approach to development has been shown to be useful when creating data-intensive systems [9].

As we refined our OSM research questions, the framework was adapted and refactored to support

the processing of those questions. This agile development process has enhanced the usability and

capabilities of the framework, thus supporting a main design goal which was to encourage the

adoption and use of the framework among the many different communities interested in better

understanding OSM data and mapping practices.

3.3.1 Features

The central object in our software framework is called an analysis window (aw). This is a

spatio-temporal bounding box for a researcher’s given geographic area and time frame of interest.

All data analyses operate within the scope of an analysis window. An analysis window is thus defined

by specific start and end times and a set of polygonal geographic bounding boxes; in addition, an

analysis window includes the queries to be performed on that subset of the database and other

metadata such as the the contact person and associated data directories. The framework does not

limit the size or timeframe of an analysis window. However, we recommend working with a bounded

analysis, especially during initial research. Since OSM is home to many different types of mappers

with a great deal of variance around mapping practices, careful boundedness in space and time

will yield results that are easier to interpret; one can then build on those results with progressively

larger bounds, if desired.
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3.3.2 Queries

Queries are associated with a specific analysis window and a specific temporal unit of analysis.

Since every OSM object has a date and time associated with its creation, all queries return data

sorted by these common features. A specific time unit for analysis can currently be set to hour,

day, month, and year. These increments are then used to create time buckets for sorting the data

returned. All queries return arrays of the form:

{start of aw, bucket end, results},

{bucket start, bucket end, results},

...

{bucket start, end of aw, results}

The first bucket will always start at the beginning of the analysis window and will end on

the first unit of analysis after that. For example, if the unit were specified as “month” and the

analysis window started at 2014/06/15, then the first bucket would include results from this date up

to 2014/07/01. The second bucket would include all data for the range 2014/07/01 to 2014/08/01.

This design decision ensures that the colloquial units of analysis make sense. If a user is looking

to perform an analysis on months, then their results are returned in time buckets of the common

month, not a grouping of 28 days starting from the beginning of the analysis window. In the event

no unit of analysis is specified, then a query will return an array with one item:

{bucket start, end of aw, results}

The framework is therefore designed to treat time as the default structure for analysis. This design

decision supports the current practices in crisis informatics research and other observers of time-

and safety-critical events. This makes our framework unique in comparison to other OSM data

services that return the map data as it exists in real-time such as the official OSM API. These

services are designed to deliver up-to-date geospatial data and map rendering, while epic-osm is

designed for analysis of user contributions within a given period of time. Furthermore, this ensures
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the results that are returned by queries represent individual edits, not necessarily distinct map

objects. In other words, the same map objects with different versions may appear across multiple

buckets of returned results. This allows users to explore the creation of the map by tracking changes

to individual objects through time.

3.3.3 Conceptual Framework

OSMObject

Node Way ChangesetRelation

UserNote

+ *
*

+

Figure 3.3: The Domain Objects of Epic-OSM

In Figure 3.3, we show the semantic relationships between the various data objects in our

framework. The root class is OSMObject; it has attributes such as geometry, date created, user id,

object id, and version number. Each OSMObject has an associated user who edited that particular

version of that particular object. Nodes, ways, relations, and changesets are all subclasses of

OSMObject.

The UML diagram shows that ways consist of one or more nodes and relations consist of some

number of nodes and ways. While in practice this is true, our analysis framework performs extra

work during import to ensure that each of these objects stands on its own. In particular, when

importing a way, we traverse all of its associated nodes and embed the geographic information of

those nodes in the way itself. We do the same thing for a relation, accessing all of its associated

nodes and/or ways and embedding these objects into the relation itself. Therefore, when epic-osm

performs a query on ways or relations, the query only has to access way or relation objects in

epic-osm’s persistence layer.

The decision to perform this extra work during import was twofold: a) improving run-time
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performance and b) reducing complexity during analysis. With respect to the former, we did not

want to incur a run-time penalty during an analysis workflow spending time accessing a way or

relation’s constituent parts. With respect to the latter, users may edit attributes of either the

way or relation itself, or the nodes and/or ways associated with it. In such cases, the associated

objects may not be aware of these changes. To properly reconstruct the object requires resolving

the geometries based on dates and changeset ids and “burning-in” the geometry as it existed in

that specific version of a way or relation. We determined it was best to absorb this computational

cost just once during import. This type of tradeoff is common in the design of big data software

frameworks.

Changesets contain information about the editing session such as a geographical bounding

box of the extents of the user’s edits and the length of the editing session. Changesets themselves

are unaware of the objects contained within the editing session, but the edited objects contain

the changeset id of the changeset in which they were edited, allowing these relationships to be

established after the fact. Note: although the semantics of our UML diagram allow changesets to

include other changesets, this does not happen in practice: each changeset stands on its own and

does not reference other changesets. Finally, our notes class contains attributes that allow OSM

notes to be retrieved from the database and analyzed.

EpicOSMQuestionAsker

AnalysisWindowDatabaseConnection

Query

NodeQuery WayQuery ChangesetQueryRelationQuery

+

UserQueryNoteQuery

Figure 3.4: The run-time objects of epic-osm.

Figure 3.4 presents the framework classes that are used to perform an analysis at run-time.
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An instance of EpicOSM acts as a controller for the analysis session, creating the requested analysis

window, asking it to connect to the database, and invoking its associated queries. The QuestionAsker

acts as a proxy for the user who invoked epic-osm, and can influence where the results of the analysis

are stored, provide other metadata about the invoking user, or further process the results of the

invoked queries. The classes in Figures 3.3 and 3.4 are connected because query objects return

instances of the domain objects. Thus, node queries will return instances of nodes that can then be

further analyzed.

3.3.4 Current Technology Stack

In keeping with OSM’s mission of open geospatial data, our framework is built on open

source technologies. The logic of the framework is currently written in Ruby and is supported

by a variety of open source libraries, developed by the greater OSM community and available on

GitHub, for processing and importing OSM planet files. Given the importance of OSM object

tags and their key-value structure, we chose to use a NoSQL document database, MongoDB, with

inherent key-value support for persistence. Mongo stores each domain-level OSM object in namesake

collections (i.e., nodes, ways, relations, etc.). Common fields such as date created, user id, changeset

id, and geometry are indexed by MongoDB to speed up most queries; specific tags such as “highway”

or “building” are indexed as well to support queries against these objects of interest.

3.3.5 Flexible Query Language

To support the goal of extensibility, our framework makes use of metaprogramming techniques

[107] to avoid binding clients of the framework to a particular set of metrics and query methods.

Metaprogramming facilities have been a part of programming languages for many years and include

techniques such as “monkey patching” in Ruby, Python, and Javascript and key-value observing

in Objective C. In epic-osm, we make use of a feature provided by the Ruby run-time system

known as “method missing.” This feature is invoked whenever a client calls a method on an object

that does not have an implementation of that method either within itself, its included modules,
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or its superclasses. Though normally this situation would generate an exception that can crash

a running program, Ruby’s runtime instead calls the object again this time on a method called

method missing. It passes to this method a description of the method the client was trying to

invoke. If that object has an implementation of method missing and it can handle the processing

of the failed call, the call will instead succeed. If it cannot handle the invocation, then, finally,

an exception will be raised. In epic-osm, almost all querying-related methods are handled by

method missing. This convention allows us to handle a wide range of possible queries that can be

expressed using a domain-specific language that our method parses at run-time and allows for new

queries to be added in an incremental fashion. For instance, a call to the method nodes x year will

be interpreted by an analysis window as a request to return all edited nodes that fall within its

constraints, grouped by year. That same functionality (retrieving all nodes) can be invoked but have

the data grouped in a different way by simply calling the method with a different argument after

the ‘x’, i.e. nodes x month or nodes x day. Since the desired structure of the results is defined by

the name of the function, arguments passed to the queries are for further filtering of the results

and are passed through epic-osm to MongoDB unaltered. This allows users to take advantage of

MongoDB query capabilities in their own epic-osm queries. For instance, the query: ways x month(

constraints: {"tags.highway" => "pedestrian" }) will return every version of a way which

represents a pedestrian footpath which was edited or created within the analysis window, grouped

into months. In this example, epic-osm handles grouping the results of the query into months while

MongoDB finds all of the relevant ways while ensuring that all returned ways have a tag called

“highway” with the value “pedestrian.” For improved performance, users can externally index the

underlying MongoDB collections to support common queries.

3.3.6 Question Modules

As shown in Figure 3.4, query objects target a specific type of domain object: Node queries

return nodes while note queries return notes. This modular design allows analysts to focus their

queries on just the domain objects they need. However, many questions require querying multiple
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types of objects. epic-osm provides this type of query via the use of Ruby’s support for modules. A

specific module is created that contains all of the code that is needed to query across multiple types

of domain objects; this module exports a single method that can then be invoked on an analysis

window to execute the query at run-time. As an example, consider the need to ask an analysis

window about the number of schools that were edited within its geo-temporal bounding box. For

this particular query, it is important to check both nodes and ways to find all possible schools

“hiding” in the map. According to OSM’s community guidelines, the best practice for marking a

school on the map is with the tag: {\amenity": \school"}. However, the actual OSM object

that should contain this tag is not strictly defined. Mappers are encouraged to use an area (a

polygon comprised of a closed way) that outlines the school’s geographic footprint; however, the

Wiki also states that mappers can “place a node in the middle of the site if [he or she is] in a

hurry” (wiki.openstreetmap.org/wiki/Tag:amenity=school). As a result, the question of “how many

schools were mapped during the analysis window” becomes far more complicated than a simple

query for objects with the school amenity tag. Instead, one must query both the ways and the

nodes collection, identify distinct versions of interest and then resolve any geographic overlap in

which both a node and a way mark the same school. To illustrate this, Table 3.2 shows the results

of this query for the 2010 Haiti Earthquake across different types of OSMObjects and shows how

the numbers change when accounting for geographic overlaps:

Table 3.2: Differences in use of “school” tag

Query: “amenity”: “school” Nodes Ways Geo-Unique

Added 145 41 166
Edited 32 27 57
Unique Sum 146 52 173

Ultimately, one may conclude that 173 schools were edited in Haiti within OSM in the month

following the 2010 Haiti Earthquake. As mentioned, these more complex queries are isolated into

Ruby modules—that epic-osm calls question modules since they contain all the code needed to ask
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a particular, complex question—that are then accessed via a single method with all support code

cleanly hidden away from the main classes of the framework. If OSM community guidelines change

for a particular tag, just the code in the relevant module has to change in response. If one analyst

has a broader (or more narrow) definition of what constitutes a particular entity, they can create

their own module for finding instances of that entity. These modules can then be easily shared and

plugged into any instance of the framework. This is important because defining questions such as

“how many schools were edited” as shown above are not immediately straightforward, so turning

that question into a single method within a reusable module ensures that all users abide by the

same rules when querying the data. This modular design has also affected the development process

by encouraging developers to write many questions in separate modules and then refactor common

helper functions into the analysis window to make them available to all other question modules,

thereby making the functionality provided by the core objects more powerful over time.

3.4 Implementation

Above, we presented the concepts and capabilities contained in the epic-osm framework.

Here, we discuss how we have created a set of tools that use the framework and some of their

implementation-related concerns. The advantage of creating a framework that can be incorporated

into a wide range of tools is the large number of analysis use cases that can then be supported.

Our initial set of tools handles the processing of a large amount of OSM data via the use of batch

processing. First, command line tools are used to download and import OSM history data into

MongoDB. Second, an input file is used to specify the parameters of a desired analysis window

along with the desired queries. Third, a command line tool was created to read the input file,

create instances of the objects shown in Figure 4, and kick off the processing of the specified queries.

The output of that process is a directory of easily read JSON files. This straightforward set of

tools and components can be used to process gigabytes of map data, ensuring scalability. It is

important to note that this same framework can be incorporated into a web application and be

used to dynamically query MongoDB in response to user commands; indeed, we plan to develop
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such tools and, as we discuss later, we have already made changes to the framework to allow for

more real-time processing of OSM data by analysis windows. Next, we discuss a few additional

implementation-related concerns in more detail.

3.4.1 Persistence Layer

As mentioned above, MongoDB is used to store OSM history data and to perform the bulk of

the work with respect to the queries that users specify. Storing the history data in this way allows

users to have the flexibility to easily track changes to their queries over time. For example, a user

may define an analysis window for their hometown over the past month. With each new month,

they can create a new analysis window with the same geographical bounds, but with new start and

end dates. As the user learns more about their data through defining new questions, persistence

of previous analysis windows allows them to rerun those questions without having to re-import

the underlying data. Furthermore, using a database ensures that the size of objects referenced by

an analysis window can scale beyond the physical memory constraints of a user’s machine. While

MongoDB was selected for its ease of use and deployment, any key-value store or document store

could be used as the persistence layer for epic-osm.

3.4.2 Output

In an effort to support interoperability via many types of analysis and by not forcing OSM

researchers to use a single tool, epic-osm writes output to a pre-defined file structure: a series of

JSON files. These files can then be easily parsed and visualized by a variety of libraries and analysis

tools, leaving the visual inspection and analysis environment open to a user’s preference. Currently,

we build a static website from these JSON files that can be used to view and easily share the results

of the analysis but many other options for how to make use of these files from more interactive

web-based dashboards to network analysis toolsets are being pursued, both by our group and the

OSM community. These multiple pursuits validate our design decision to create a common output

directory of single JSON files.
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3.5 Use of the Framework

At the time of this writing, our framework has supported academic research by our group as

well as OSM community members. The initial release was in support of our post hoc research on the

growth of the OSM organization between 2010 and 2014 in response to two distinct humanitarian

events [105]. This required the processing of a month’s worth of historical OSM data for each event,

consisting of edits by nearly 500 users and 1500 users, respectively. Since then, the framework has

been available on GitHub and has been forked, contributed to, and adapted to support real time

analysis and statistics of specific OSM mapping events.

Figure 3.5: Count of OSM Changesets and Users. Graph shows the by-hour contributions to the
map of Nepal after the April 25, 2015 earthquake.

For example, MapGive, a mapping initiative sponsored by the U.S. State Department, used

epic-osm to visualize results of a competition between two universities to see which could create more

data (mapgive.state.gov/events/mapoff). Additionally, it was deployed to monitor the first-ever

mapping event at the White House (mapgive.state.gov/whmapathon). Another project, moabi.org,

is also running an instance of the framework to monitor the mapping of logging roads in the

Congo (loggingroads.org). The statistics are used to populate a “leaderboard” showing the highest-

contributing users.
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3.5.1 Nepal Earthquake Deployment & Improvements for Real Time Analysis

On April 25, 2015 a 7.8 magnitude earthquake struck central Nepal, killing over 8,500 people

and destroying over 500,000 homes. Due to previous OSM work in the country [123], the city

of Kathmandu was already mapped in detail. Yet many of the affected rural areas outside of

Kathmandu were not well covered on the map. In what is believed to be the largest convergence

of OSM mapping activity to date, over 7,000 contributors from all over the world mapped roads,

buildings, and other features.

Our team deployed an instance of epic-osm immediately following the earthquake, which

proved to be a valuable test case. A real-time import module developed by an epic-osm contributor

that interfaces with a newly available OSM changeset streaming service (github.com/osmlab/osm-

meta-util) supported this instance. Figure 5 illustrates this impressive convergence as tracked by

epic-osm, showing the number of users editing and the number of changesets created per hour for

the weeks following.

However, tracking this huge mapping activity in real-time exposed a problem. Designed to be

a static snapshot in time that reads historical edits from a database, the analysis window could

mimic near-real time results by running new queries every 10 minutes with bounds that spanned the

time from the event to the current time. This solution worked well until the second day when the

database had grown so large that the time it took to run the queries was longer than 10 minutes,

creating a backlog.

To resolve this problem, we added a new feature: a rolling analysis window that would update

the analysis window’s constraints at each run to start at the top of the hour and end at the current

time, thus never querying more than an hour’s worth of data. These results were then output to

separate directories, which could be iterated over to create the new totals. As a result, the framework

was able to support a website providing visualizations of edits over the past hour. This site received

over 1,700 unique visitors from 79 countries in the first week and was the OSM community’s primary

tool during the response for tracking its activity. This ad hoc solution worked in this particular
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use-case, but more importantly, exposed the weaknesses in the framework for similar use cases,

which have since generated great interest in the OSM community.

3.6 Extensibility and Future Development

The desire to support both historical and real-time analysis of user contributions to OSM is

strong across both industry and academia. At a June 2015 OSM conference (The State of the Map

US) held in New York City, OSM users from the Red Cross, the US State Department, and three

digital cartography-oriented start-up companies held a Birds-of-a-Feather discussion on the need for

developing and supporting analysis tools such as epic-osm.

3.6.1 Stream Processing

The real time tracking of mapping activity in response to the Nepal earthquake identified a

very powerful use-case for epic-osm that will significantly influence the next development iteration,

specifically the ability to process the edits to the map as an incoming stream directly, instead of

first importing to a database and extracting distinct time chunks. We will use contemporary big

data solutions such as Apache Spark and its streaming capabilities to achieve better real time

performance.

3.6.2 Database Improvements

With an emphasis on stream processing, the role of the persistence layer will also change in

the next iteration. New user-level models will need to be developed to track mapping behavior,

while the persistence of the individual object edits should also be preserved for later analysis, should

users desire to perform new queries post-event. Alternative geo-spatial database technologies will

be explored as well, which may improve query performance for geographic oriented analysis, such as

“how many kilometers of a road did a particular user map?”
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3.7 Conclusions

We have presented and discussed the design of epic-osm, the first full software framework to

support the analysis of volunteered geographic information contributed to OSM. The framework

was initially developed to support crisis informatics research surrounding the production of map

data in two major crisis events, and has continued to grow and gain exposure to a larger community

of developers and mappers alike, with hopes of allowing the entire OSM community to better

reflect on its production of open geographical data. Our framework makes use of a number of

techniques to efficiently handle large volumes of OSM data and serves as an example of how to

design frameworks for data-intensive software systems. We believe that our framework, our lessons

learned from initial deployments, and our iterative development approach, which is deeply grounded

in empirical knowledge of a target domain—in this case, crisis mapping—will be of use to other

designers and researchers of data-intensive software systems.
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Chapter 3 Epilogue: Epic-OSM Implemented

As mentioned in Section 3.5, Epic-OSM was used for the data analysis that visualized the

improved coordination among humanitarian mappers in OSM through the implementation of the

Tasking Manager from the Humanitarian OpenStreetMap Team [105]. This is shown in Figure 3.6

below:

Figure 3.6: Differentiating individual user contributions to OSM by color shows where each mapper
was active. This graphic shows that during the mapping response to the 2010 Haiti Earthquake
(left), contributors were all mapping in the same region, often right on top of each other. Three years
later, with the introduction of the Tasking Manager, the mapping in the Philippines in response to
Typhoon Yolanda (right) has more separation between mappers, as noted by the more ”chunky”
blobs of color. This is especially notable because there were about three times as many mappers
active in this event. Each image represents 116k nodes for consistency. Creating this visualization
was part of my contribution to [105], Data c©OpenStreetMap Contributors.

3.8 Time Series Analysis

The spatiotemporal bounding and binning capabilities of epic-osm described in Section 3.3.2

allow for Time-Series analysis of OSM contributions. This feature was used by Kogan et al. to

construct snapshots of contributor-interaction networks for 8-hour bins of activity in the mapping

response to the 2010 Haiti Earthquake [61]. Analyzing the structures of these networks further

uncovered inter-mapper interactions that were qualitatively investigated. In this way, epic-osm
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supported a mixed-methods study of coordination and collaboration during disaster mapping

activities. The new OSHDB and OHSOME API built on top of it now offer similar capabilities for

spatiotemporal queries that can work with larger regions [112].

3.9 Sharable Data Visualizations with osmdown

As described in Section 3.4.2, Epic-OSM produces JSON files with a specific schema based on

the duration of the timebins as defined in the analysis window. A visualization tool called osmdown

was developed to ingest a custom form of markdown, denoted with the suffix .osmdown.2 An

osmdown file has three primary attributes: First, YAML front-matter may define global variables

such as the location of the JSON files that were produced by Epic-OSM. Second, the main body

consists of markdown formatted text. This allows analysts to easily insert their interpretations of

the data in plain text. Third, any code in between the standard markdown denotation for code

(```), is evaluated at compile time and the results are added to the output file. This yields a static

HTML document that references the JSON output from Epic-OSM.

Since the output is a single HTML file, it can be easily shared on the web with any static-

website host. The page can be rendered once to share results from historical analysis, or can be

continually rendered as needed to support more real-time tracking. Additionally, the JSON output

from Epic-OSM can be read in two ways. First, the files can be loaded and parsed at compile

time to inject the values directly into the body of the web page. Alternatively, interactive graphics

driven by d3.js can load the JSON output from any accessible directory. If Epic-OSM is continually

running and producing output to a publicly accessible directory, then the statistics page is able

to reference these continually updating files directly and users will see the latest data reflected in

the interactive charts embedded in the osmdown output. Figure 3.7 presents a screenshot of the

osmdown page we built to track the mapping response to the 2015 Nepal Earthquake.

2 osmdown (github.com/project-epic/osmdown) is a portmanteau of ”OSM” and ”Markdown” and built on top of
Tom Yeh’s VizDown (github.com/doubleshow/visdown) engine.
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Figure 3.7: Screenshot of the osmdown webpage for the 2015 Nepal Earthquake

At the upper-right corner of Figure 3.7 is a button labeled Show Code. This button will

toggle the code blocks that are embedded in the output. This helps increase transparency and

reproducibility, allowing viewers to see how the figures are generated. This particular page includes

an embedded graph of contributors and changesets that is populated by referencing the JSON

output from epic-osm and built by d3.js. As Epic-OSM continues to run in the background, this

graph will load the newest data when the page is refreshed. Additionally, the summary statistics

embedded in the text and the tables showing road and building counts by HOT hashtags are static

HTML tables that are generated from the JSON output when osmdown runs. Therefore, to update

these tables, both Epic-OSM and osmdown need to continually run.

3.10 2015 Nepal Earthquake

As reported in Section 3.5.1, Epic-OSM ultimately failed to keep up with the number of

contributors active during the Nepal Earthquake when implemented as a real-time analysis tool.

As Figure 3.8 shows, the webpage was viewed by thousands of people following the earthquake,
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especially during the mapping response.3 In order to keep the data fresh, Epic-OSM and osmdown

were set via a cronjob to run periodically. At first, these tasks were running every five minutes.

By the end of the first 72 hours, however, there was too much data to complete the analysis tasks

in that time window. Keeping the tracking page running became an arduous task as I continually

patched the infrastructure to keep it running. This involved creating a rolling analysis window as

introduced in section 3.5.1. At first, this solved the problem by not recalculating the statistics for

the initial high volume days, but it also failed to scale as we were left with a massive number of

output files to be read into osmdown for the stats page regeneration. The webpage continued to

update hourly until June 2, 2015 when the majority of the editing activity slowed and we turned off

the Epic-OSM server. I then moved the page to a static host where it could continue to be viewed,

but no longer actively update. As Figure 3.8 shows, the page continued to get a handful of visitors

in the months and years to follow.

Figure 3.8: Public engagement with our Nepal Earthquake Stats page

Ultimately, Epic-OSM proved useful for spatiotemporal analysis of discrete events, specifically

for Time-Series investigation of past-editing activity. The failures and complications to scale during

the 2015 Nepal Earthquake response taught me two things: First, Epic-OSM cannot gracefully

handle real-time analysis (not an initial requirement in the first place, but a desire nonetheless).

3 At one point a WIRED article reported the same number of buildings to date that our page showed (presumably
using our page as their source).
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Second, the nearly 16x increase in number of mappers from the 2010 Haiti Earthquake response

showed that these analysis systems need to be designed with scalability in mind from the beginning

because the next major disaster-mapping activity will likely have even more contributors.

While this event showed the desire for real-time analysis, I limited future scalability concerns

to the volume of OSM data, both in spatial volume (the entire planet) and in temporal volume (the

full history of the map), not about the speed in which we can consume, parse, and process the data.

Providing real-time analysis of OSM editing activity is clearly important, but out-of-scope of the

particular systems presented here which were built in support of historical OSM data analysis. In

implementation, a continually evolving analysis system with no guarantees of uptime is unsuitable

for the global disaster response community to rely on for disaster mapping analytics. A system

to support this community needs to be stable, always available, and maintained throughout its

deployment. This added complexities and dependencies beyond what I could support while designing

a system for historical, planet-scale research. This is not, however, out of scope for future work,

especially in collaboration with the development of other systems like OSMesa that are far more

optimized for real-time analysis.

Furthermore, Epic-OSM did not address many of the smaller concerns put forth in Chapter

2. This was not a deliberate oversight at the time, but rather a complete lack of enlightenment to

the true complications of measuring OSM contributions that I was slowly discovering. With these

developments, I went back to the drawing board on how to approach OSM data analysis. This

started with re-imagining how OSM data is represented in the first place by embracing new analysis

technology that Mapbox had just released: Vector-tile based OSM data analysis.



Part III

Transition to Vector Tiles



Chapter 4

Representations of OSM Data

Most users interact with OSM data only as a map. A map, however, is just one way to

(visually) represent the OSM database; it is a data visualization of OSM objects rendered with

respect to cartographic rules. While this representation of OSM data is the most seen, used, and

important, there are other ways to represent the objects contained in the OSM database that are

more optimized for contributor-centric data analysis. This chapter discusses these different formats

and the benefits that certain formats can provide for data analysis, addressing the complications

introduced in Chapter 2. Of most value to contributor-centric analysis is the ability to accurately

account for the change and evolution of the map at the individual object level. This enables us to

identify and classify the individual edits according to Table 2.1 presented in Chapter 2.

In its most raw form, OSM is a relational database of nodes, ways, and relation elements. The

OSM XML format represents the data exactly as it exists in the database. Figure 4.1a shows OSM

XML for the node with id of 1. This iconic, very first node to exist in OSM, has been modified 20

times and is currently located in the UK in Greenwich Park as part of a larger way that represents

the Prime Meridian of the World, depicted in Figure 4.1b.1

Next, I will describe at a high level the trade-offs of converting OSM data into other formats

and the types of common conversions. I borrow the lossy and lossless terminology from data

compression to describe the these conversions.

1 People have tried to move this iconic first node to position [0,0] on the map to represent a weather Buoy that
exists at this location. At one point the node was moved to represent a restaurant. It has been deleted and restored
seven times.
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<node id = ‘ ‘1 ’ ’
v i s i b l e = ‘ ‘ true ’ ’
v e r s i on = ‘ ‘20 ’ ’
changeset = ‘ ‘64040630 ’ ’
timestamp=‘‘2018−10−31T10 : 2 0 : 1 9 Z ’ ’
user = ‘ ‘ SomeoneElse\ Revert ’ ’
uid = ‘ ‘1778799 ’ ’

lat=“51.4779481”

lon=“-0.0014863”
/>

(a) OSM XML of Node #1. Only node elements
contain geographic information (highlighted)

<way id = ‘ ‘268533450 ’ ’
v e r s i on = ‘ ‘18 ’ ’
timestamp=‘‘2019−06−06T01 : 5 2 : 3 3 Z ’ ’
user = ‘ ‘ b j anku lo sk i ’ ’ >

<nd ref=“1”/>

. . .
<tag k= ‘ ‘ loc name ’ ’

v= ‘ ‘ Prime Meridian o f
the World ’ ’/>

</way>

(b) OSM XML of Prime Meridian (Way) refer-
encing Node #1 (highlighted). Full attributes
truncated for space.

Figure 4.1: OSM XML representation of the Node element 1 and the Way element that references
it. Each of these objects has its own metadata and editing history.

4.1 Topologically Lossless OSM Data Formats

A lossless schema is one in which every attribute of the initial database is maintained, along

with the topology. This requires maintaining the identity of every element (node, way, relation) as

well as the topological relations between them. The OSM XML format just shown in Figure 4.1,

typically denoted by the .osm suffix does this. The protocol buffer format (PBF), often denoted as

.osm.pbf is a binary version of this format. Much more compact than the XML, the PBF format is

optimized for downloading or transferring OSM data. Multiple versions of OSM elements (historical

versions) are valid in these formats, but there is no concept of a minor version (Section 2.2); these

still need to be computed form the raw data present in the file. Objects in these files are unique

based on type, id, and version number.

Because these formats preserve the topological relationships between OSM elements, there

are multiple steps required to reconstruct the OSM objects themselves, preventing them from being

read line-by-line. This is something that all OSM data-processing tools are equipped to do, but

can be resource intensive. To handle the geometries associated with ways and relations, OSM data

parsing utilities need to first construct a node location cache (typically in memory) that can be



73

subsequently referenced for point locations when the ways and relations are read. For city-sized

and small-country extracts of OSM data, this can be done with modest personal computers, but

for larger amounts of OSM data, this requires non-trivial computing infrastructure. The osmium*

library and command-line tool is a robust utility maintained by the OSM developer community to

perform these tasks. Written in C++ with bindings for Python, Node, and Java, this open-source

library is found in many OSM data processing tool chains.

Lossless database exports are made available at regular intervals and include access to the

full history of the every object on (or deleted from) the map. These exports of OSM data are often

the primary data sources for OSM data analysis. Therefore, ingesting these files is the first step in

an analysis workflow, especially if one needs any editing metadata or historical information. The

next step is likely to convert the OSM data into something more workable and familiar, typically a

more common spatial data format. I consider these to be topologically lossy with respect to the

OSM node, way, and element data model.

4.2 Topologically Lossy OSM Data Formats

Converting OSM data into another more traditional geospatial format comes with some level

of loss, especially with respect to the OSM topology. The largest change that happens is removing

billions of stand-alone nodes from the database that exist only to mark the vertices other elements.

This is done by embedding the locations of these nodes as vertices in the geometry of the parent

objects. Then, if converted back to a node/way/relation topology, these points would become

nodes, but not have the same attribute information such as the ID and last edit metadata (version,

changeset, user, etc). While this information could be maintained in the metadata of the way,

this would bloat the object—neutralizing many of the advantages of the more compact, efficient

representation.

Consider, for example, the intersection example from Chapter 2 again. This node representing

the traffic signal was a part of at least 2 ways that intersect. When this intersection is converted to a

more standard format such as GeoJSON, three objects will be made: 2 LineStrings, each of which
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will contain the coordinates of this intersecting point, and a single Point that marks the traffic

signal. While no map-level data has been lost (all of the data required to render this intersection

remains), reconstructing the exact OSM topology would require tracking node references and/or

more expensive geographic calculations to rebuild a topological relationship. While these are both

technically possible, they are unnecessary because converting OSM data into a more common format

for analysis is typically a one-way conversion with a specific purpose. In practice, I have found

tracking just OSM way IDs in order to reference the original element if needed is enough. To this

end, this conversion is lossy in that all of the original information is not always maintained, but the

new object is still a complete, accurate representation of the original with editing metadata left

intact.2

If, however, the OSM data schema were to ever evolve—a topic that is brought up now

and again, such as a recent conference talk [133]—a likely change would be including geographic

coordinates in certain types of ways, effectively performing the same topological flattening described

here to conform to the more common geographic objects: Points, LineStrings, Polygons. In terms

of OSM data analysis, this change would allow for more accurate versioning and solve the issues

of tracking minor versions introduced in section 2.2. I bring up the concept of topological lossy

conversions here only to highlight the caveats, not to argue for a change in the OSM data model.

Today a variety of tools exists to accurately and efficiently perform these conversions, tools that

did not exist five years ago when I started investigating these problems. For now, these tools

(osmium, OSMesa, osm-wayback, ohsome)* are critical first steps in data analysis that alleviate the

need to perform these conversions upstream. A main feature of these tools is their ability to keep

all attributes of an OSM object intact. Object attributes are critical to analysis and can be affected

by many types of conversions between geospatial data formats.

2 In the same way that a JPEG image is a lossy conversion from a RAW image. For the purpose of the digital
image, the JPEG is complete and not compromised. It does not, however, contain all of the information from the
camera’s sensor like the RAW file.
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4.2.1 Attribute Lossy Conversions

The limitations of some traditional file formats (such as Shapefiles) may result in the loss of

attribute information when converted. First, there may be character limits on the length of column

names that will truncate a number of OSM keys. Second, the open key-value tagging schema cannot

be converted to a table format with a finite number of columns and capture all-possible key-value

attribute pairs.3 In application, the namespace of commonly used tags is relatively small, making

this a minor concern for the majority of use cases. For example, if someone wanted to calculate road

coverage, they would need only the highway attribute from the OSM way. Likewise for analysis

of buildings, knowing if the building tag exists is enough. Assumptions like these, however, will

likely introduce problems in downstream analysis if all attribute information is not maintained.

Editing metadata is also often discarded in lossy data in the name of efficiency. Similar to

the loss of topology, this is typically not a problem for the majority of analysis, especially extrinsic

data analysis as discussed in Chapter 7. The loss of these metadata in contributor-centric data

analysis, however, is crippling. Fortunately, there are formats that alleviate these concerns. To

safely avoid truncating the attribute space, it is best to use a format without a predefined schema.

As discussed in the Epic-OSM framework (Chapter 3), JSON is a powerful, flexible data format

choice. More specifically, GeoJSON, the standard for representing geospatial data in JSON is the

ideal, commonly understood spatial format for representing OSM data.

4.3 GeoJSON + OSM

The GeoJSON format allows for human-readable, attribute-complete representation of OSM

objects that can be easily parsed and understood by a variety of data processing and analysis systems.

Not topological and internally referencing like the OSM data model, the file can be read line-by-line

without the additional overhead of a node location cache because geometries are embedded into the

objects themselves. These files can then be processed in smaller sections at a time, requiring less

3 This was a primary reason for choosing MongoDB when developing EpicOSM (Chapter 3). Today, however,
PostGIS has support for key-value stores.
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{ ” type” : ”Feature ” ,
” p r op e r t i e s ” : {

”@id” : ”way/375257537” ,
”addr : c i t y ” : ”Agra” ,
”addr : country ” : ”IN” ,
”addr : s t a t e ” : ”Uttar Pradesh” ,
” bu i l d ing ” : ” yes ” ,
” he ight ” : ”73” ,
” h i s t o r i c ” : ”monument” ,
”name” : ”Taj Mahal” ,
” s t a r t d a t e ” : ”1632” ,
”webs i te ” : ” https ://www. tajmahal . gov . in /” ,
”@timestamp” : ”2019−03−27T02 : 1 0 : 3 4Z” ,
”@version ” : 23 ,
”@user” : ” p i z z a i o l o ” ,
”@uid” : 1772368

} ,

”geometry” : \{” type” : ”Polygon” , ” coo rd ina t e s ” : [ [

[ 78 . 042627 , 27 .1753829 ] , [ 78 . 0426626 , 27 .1754064 ] ,
. . . (21 more po int s ) . . .
[ 78 . 0426359 , 27 . 1746263 ] , [ 78 . 0426270 , 2 7 . 1 7 5 3829 ] ] ]} }

(a) The Taj Mahal in GeoJSON. Retrieved from Overpass Turbo,
all properties truncated for space (overpass-turbo.eu).

(b) The rendered GeoJSON representation
of the Taj Mahal.

Figure 4.2: As GeoJSON, The OSM object that represents the Taj Mahal is a Polygon with
24 distinct points held in the coordinates array within the highlighted geometry attribute. In
the standard OSM schema, these 24 points would be individual nodes. Data c©OpenStreetMap
Contributors

computational resources, or broken into smaller chunks for more efficient, distributed processing.

Today, GeoJSON is a common, standard geospatial format, especially on the web. The majority

of geospatial data processing and visualization tools support it. While it might not be the most

space-efficient representation, it can be easily encoded into more compact formats. Ultimately, the

open-tagging schema makes GeoJSON an obvious choice to represent attribute-complete OSM data.

Figure 4.2a shows a GeoJSON Polygon Feature object representation of the OSM way element

that represents the Taj Mahal in Agra, India (rendered in Figure 4.2b). The metadata for this

version includes the details about the most recent edit to the object on March 27, 2019.

4.3.1 Support for Object Histories

As a data format, GeoJSON does not offer any more support for object histories than the

standard OSM data model. It is possible to have more than one version of an object, but these

versions remain unaware of each other. GeoJSON does, however, greatly simplify tracking versions

by removing inter-element references and can easily support the concept of a minor version with
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the addition of an attribute to a standalone object. As Figure 4.2 shows, in the OSM data model,

the way element references 24 distinct nodes. Each of these nodes then has its own editing history.

Understanding how these histories relate to the history of the way element creates the minor

versioning problem of Section 2.2. Embedding the temporally appropriate coordinates of these node

elements into GeoJSON representations of the object produces 25 distinct versions of the Taj Mahal:

Each with a distinct version and minor version property. These 25 distinct versions are comprised

of the 23 versions of the way element along with two minor versions resulting from node changes.

In contrast, the complete history of the Taj Mahal in OSM consists of 23 way elements and

29 node elements. Three of the 24 nodes have previous versions, making for 29 node elements in

total. Furthermore, the metadata (or at least timestamp) for each of these 29 node objects must be

maintained in order to know how (when) they relate to which of the 23 versions of the way element.

Important to contributor-centric analysis: These minor versions were created by two mappers that

do not show up in the other 23 versions of the way element. Those 23 versions were created by a

different group of 15 mappers (some edited more than once and other edits were from bots). If we

do not count minor versions, these additional two editors are discredited from participating in the

mapping of this iconic object.

In sum, the the complete history of the Taj Mahal can be represented either as 25 GeoJSON

features or 52 OSM elements that internally reference each other, requiring additional processing

to reconstruct. One criticism of representing each version as a distinct GeoJSON feature is that

there are really only three unique geometries associated with the Taj Mahal. 25 distinct GeoJSON

features then creates a lot of repetition. To this end, I encode the geometric history as TopoJSON*

to create a different type of topology from nodes/ways, but to shared arcs between objects. Section

5.6.1.1.4 discusses this further.

4 Successfully implementing this encoding was a pivotal moment in the successes of my analytical approaches that
was informed by conversations with University of Colorado Boulder Geography Professor Carson Farmer.
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4.3.2 Creating GeoJSON from OSM

Conversion to GeoJSON requires a significant number of rules to best determine how an

object should be converted. Node elements that have none of their own attributes, for example,

should be excluded from the output. A node without any of its own attributes exists solely to define

a vertex of another element. Its coordinates will be embedded into the parent element’s geometry.

However, many nodes have relatively meaningless tags, such as a source tag that declares where the

data originally came from or various import related artifacts that have yet to be deleted.5 Likewise,

these elements exist only to define vertices within other elements and should not be converted into

their own Point features. Handling this nuance is not computationally difficult, but it require a

well-curated and comprehensive list of exempt-tags to be compared against.6 Well-curated means

that this list must continually grow and adapt as more of these types of nodes are added to the

map. Similarly, other well-curated lists must exist to define the target geometry types for specific

OSM elements.

While common map objects like highways and rectangular-shaped buildings may convert

directly to LineStrings and Polygons, these must be defined by a set of rules. Utilities that handle

these conversions like osmium-tool and OSMesa have large lists of presets to define these conversions.7

These get more complicated with relation elements like administrative boundaries, coastlines, and

intricate buildings which get converted into MultiPolygon features. Though these conversions can

be difficult and computationally demanding, utilities like ohsome, OSMesa, and osmium-tool are

capable of performing them at the full-planet scale when provided with enough resources. The

ability to handle historical versions, however, only came about within the last two years and is

unique to ohsome, OSMesa, and osm-wayback. Ultimately, converting OSM data to GeoJSON is

made possible today by a number of tools and while it can be resource-intensive, bulky, and depends

on the community to maintain a set of evolving tag-based rules, there are analytical advantages in

5 Not that attribution is not important, it can be just as effectively declared once on the main object. It does not
need to exist on every vertex.

6 One such list includes over 50 keys (github.com/geotrellis/vectorpipe) that catches nearly 300M points.
7 A list of way tags that should be represented as areas (Polygons) used by the iD editor is here:

github.com/osmlab/id-area-keys. OSMesa uses this list as well.
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the ability to accurately represent any version of an OSM object as a standalone GeoJSON feature.

The largest disadvantage of GeoJSON is a current inability to represent some OSM elements that

describe abstract relations between other OSM elements.

4.3.2.1 Abstract Representations

A primary feature of the OSM data model is the ability to represent abstract relationships

between two elements, such as a turn restriction. There are over 1M of these relations in the OSM

database.8 Turn restrictions reference multiple geometries and describe a relationship between them,

such as there are no right turns from this road onto that road. When these roads are turned into

GeoJSON, however, there is no obvious way to represent this turn restriction: which road does it go

on? How does routing software need to relate these objects? These remain open questions in terms

of implementation, so default behavior is currently to ignore these types of relations. GeoJSON

conversions are then always incomplete because these abstract objects are not retained on account of

not having a representable geometry. Section 5.3.2, however, discusses an implementable workaround

for contributor-centric analysis.

The rest of the work presented here relies on first converting OSM data to GeoJSON. I

primarily use the osmium-tool for this because it is a robust command line utility that can be

easily invoked as a processing step in any workflow.

4.4 GeoJSON + Vector Tiles

Vector tiles are stores of geospatial data that are typically used for delivering data across

the web, and therefore optimized as such. In contrast to raster-tile servers which will return a

pre-rendered images that the browser will tile together to make a webmap (known as a slippy map),

vector tile servers return vector data, tiled in the same manner. Rendering the vector data into a

map is then done by the client browser. The primary advantages of vector tiles include smaller tile

sizes (vector tiles are often lighter than rendered images of a region) and flexibility in how the vector

8 taginfo.openstreetmap.org/relations reports 1.1M relations with a restriction key on 2019-7-3
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data is rendered. The browser has control of how the map object gets displayed and can therefore

be instructed to render a map of any cartographic style. While vector tiles are primarily used as

the back-end for interactive maps, they can be extended to hold an arbitrary amount of geospatial

information in a spatially-aware manner. The analysis techniques described here exploit this ability.

All of the work discussed here uses vector tiles of the Mapbox vector-tile-spec format.9 Based

on the Google Protocol Buffer format, Mapbox vector tiles (typically denoted with the suffix .mvt)

are supported by Esri software, QGIS, and the majority of open source mapping software frameworks.

Further use of the term vector tile refers to geospatial data encoded in the Mapbox vector tile

format. These vector tiles are capable of representing global quantities of GeoJSON data efficiently

and there is a well-supported and documented open source command-line-utility: tippecanoe* that

can convert massive quantities of GeoJSON into vector tiles, specifically SQLite files containing

vector tiles known as .mbtiles files. This work heavily relies on this utility.

The primary purpose of encoding GeoJSON into vector tiles for the work presented here is to

create a persistent, spatially indexed data store of geographic features with arbitrary amounts of

metadata. As single files on disk, these tilesets do not require any major infrastructure to persist

(no running database) and are easy to share. The next chapter will explain these benefits of these

files in a data analysis workflow in terms of reproducibility, rapid iteration, and data sharing.

9 docs.mapbox.com/vector-tiles/specification/



Chapter 5

OpenStreetMap Analysis Vector Tiles

While not the only possible pipeline to produce vector tiles from OSM data, the pipeline

consisting of the open-source utilities just introduced in Chapter 4 allows for a planet’s worth of

geographic features to be converted into vector tiles. Converting the full planet file from the OSM

data model into vector tiles creates a spatially-indexed collection of OSM objects that can be easily

decoded into GeoJSON. This opens new possibilities for data analysis that were first realized and

implemented through the creation and subsequent analysis of the OSM Quality Assurance Tiles

produced by Mapbox.

5.1 OSM-QA-Tiles

Initially designed for efficient, parallelized data analysis of OSM data, OSM-QA-Tiles are

vector tiles containing all of the OSM data that can be effectively represented as GeoJSON. These

tiles are not optimized for serving over the web as they contain all of the OSM attributes for an

object as well as the metadata for the most recent edit. Since they are not built for rendering

on a slippy map, they are only rendered at one zoom-level, currently 12. These tiles can then be

processed in parallel with the open source tile-reduce* framework, discussed next.

OSM Data
.osm.pbf

osmium

export
tippecanoe

.mbtiles

file

Figure 5.1: Creating OSM-QA-Tiles
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Figure 5.1 shows the process of creating OSM-QA-Tiles using the open-source tools discussed

in the previous chapter. The osmium export command converts OSM data into GeoJSON, so

only features which can be accurately represented as GeoJSON exist in the resulting tileset. The

tippecanoe utility then encodes the GeoJSON into vector tiles to create a single mbtiles tileset.1

Section 5.3 will discuss how this workflow can—and has been—improved to handle the consistently

growing map. In an OSM-QA-Tile, all metadata attributes are prefixed with the @ symbol, such

as @id, @user, @timestamp, @changeset. This is useful in separating these values from the rest

of the object attributes and analysts can depend on these attributes to always exist. As of 2019,

OSM-QA-Tiles have always been and continue to be maintained by Mapbox and are released for

public use at osmlab.github.io/osm-qa-tiles.

Figure 5.2: OSM-QA-Tile showing all of the map data around Boulder, CO. Pop-up shows example
metadata and attributes that are associated with an object.

1 For specific configuration options, see github.com/osmlab/osm-qa-tiles
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5.2 Vector Tile Based OpenStreetMap Data Analysis

Tile-based analysis allows for parallel processing of data as each tile can be passed to a

different thread. In this manner, the map-reduce big-data processing techniques can be used [28].

The tile-reduce Javascript library was created to allow analysts to write map-reduce jobs against

vector tiles in the .mbtiles format. This library reads the database and passes each tile (optionally

limited by a geographic area) to a worker thread which returns a single result to the reduce job.

This allows for spatially-aware, parallel processing of OSM data in a vector tile. This analysis

workflow was created by Mapbox for efficient planet-scale quality assessment of OSM data. For my

analysis purposes, it is important that worker threads can be used for more than just passing data

back to the reduce job. This enables us to perform analysis at both the global and tile level and

provide the most flexibility for downstream analysis.

OSM Data
planet.mbtiles

tile-reduce

map

reduce

GeoJSON files

tippecanoe

(Interactive map

based analysis with

mapbox-gl)

TSV, TXT files

PostgreSQL

(SQL-query based

analysis)

CSV,JSON files

Python / R

(Data-Science in-

teractive notebook

analysis)

Figure 5.3: Tile-Reduce Spatial Data Analysis Workflow. While still benefiting from the computa-
tional efficiency of parallel processing with tile-reduce, I configure the process to produce multiple
pieces of output that will each be used in a different data analysis environment. This is where my
approaches push the boundary of what this workflow was designed to do.
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5.2.1 Implementation Example

Next, I will walk through a recent implementation of the tile-based analysis workflow as an

example. This particular analysis was extended to perform the historical analysis for Chapter 9 [3].

The question is: Where are corporate data-teams mapping, how much work are they doing, and how

much has this increased in recent years? As depicted in Figure 5.3, we first choose the appropriate

inputs and then define the two functions of the tile-reduce script: map and reduce.

input: OSM-QA-Tiles for the planet. Specifically, I will use a custom extension that includes

turn-restrictions to be described in Section 5.3.2. Since OSM-QA-Tiles are made available daily, this

entire workflow could be run daily or weekly to be kept up to date. The second piece of information

we need to include is the list of usernames associated with each data-team [3].

map: This function will run on every tile. Since the primary question involves knowing who

the editors are, the first thing we do is group all of the features present on this tile by username.

Next, we compare this list of usernames to the list of known corporate editors. If there is overlap,

then we build lists of features edited by each user within each corporation. Next, we want to better

understand how the editing volume has changed (grown) over time. For this, we further segment

these lists of edits by day. Ultimately, we create a contributor-centric breakdown of the features on

the tile that consists of the following hierarchy:

corporation → date → [list of features edited by data team members]

This is a contributor-centric breakdown of features because it prioritizes the editing metadata

of who and when. Then, we calculate the total kilometers of road, number of buildings, number of

points-of-interest, and the total number of edits (catch-all) for each list of features. This creates

per-corporation, per-day, per-tile statistics. These daily editing summaries are then written to

disk as single GeoJSON point objects representing the centroid of any corporation’s daily editing

activity with these statistics as properties. These points will answer the “where” question when

later rendered on a map. Finally, these per-day, per-corporation summaries are returned to the

reduce script.
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reduce: As the per-day, per-corporate summaries of editing activity are returned from each

tile, they are aggregated into per-corporate editing summaries. When all of the tiles have been

processed, this global summary of daily activity by corporation is written to disk.

This tile-reduce job will yield two results. The first is a file of line-delimited GeoJSON point

objects with per-day, per-tile, per-company statistics. Currently, this file is less than 1M lines,

but this workflow could scale to produce a file of any number of points. As depicted in Figure

5.3, this GeoJSON file can then be ingested by tippecanoe to produce the vector tileset that

drives the interactive map seen in Figure 5.4. The second output is a CSV file with the following

per-corpration, per-day attributes: date, corporation, km of roads, number of buildings,

number of POIs, total number of edits.2 As depicted in the Figure 5.3, this CSV file is read

into a Jupyter Notebook environment, aggregated by company and date, and produces the graphic

seen in Figure 1.9 in Section 1.4.1.3 about corporate editing. This answers the growth over time

question.

Figure 5.4 shows the screenshot of an interactive map built to answer the where and how much

portion of the initial question about corporate editing. The map itself is built with Mapbox-GL* and

the timeline is powered by the D3.js visualization library [16]. This particular visualization was

built from a boiler-plate interactive map framework I created in mid 2018 for faster iterations of

interactive maps as data-analysis tools.3 The dropdown menu in the top-left lets an analyst choose

to visualize the editing activity of one of 10 corporations. The brushable timeline at the top allows

the analyst to filter editing activity to a specific time-window. Animation controls allow the viewer

to step through time automatically to see how the editing focus changes overtime.

The map is powered by the individual editing summary points produced by the map script

and converted to vector-tiles for efficiency and performance. Each point is rendered on the map and

the various calculated properties allows styling of the map appropriately. First, as individual points,

2 In the case of more in-depth investigations such as Chapter 9, these are broken down further into the creation of
new objects and the editing of existing features.

3 This example analysis was first conducted in September 2018 after a conversation with Mikel Maron about the
feasibility of measuring corporate data-team editing. To speak to the power and efficiency of tile-based analysis: It
took about 4 hours to conceive, iterate, and ultimately produce and run the analysis scripts and the first interactive
map. In 2015 this would have taken weeks.
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Figure 5.4: Screenshot of an interactive heatmap built from the output of a tile-reduce analysis
workflow. Showing relative volume of edits from Mapbox data-team between 2016-2018

the heatmap style creates the aggregated visualization to show the relative volumes of editing:

Where there are more points, the map appears to glow red-hot. Second, the time-slider at the

top of the screen filters against the date for each point, representing the total edits performed

by a corporation on a given day. As points are filtered on or off by date, the map will re-render

appropriately to reflect the presence of the edits. Third, the number of edits associated with each

point influences the weight for the heatmap, meaning that the visualization accurately reflects the

volume, location, and date of edits performed by each team.

Not described in this example is the second type of output shown in Figure 5.3: TSV/TXT for

ingesting into PostgreSQL. This particular analysis does not benefit from this from step, however,

Chapter 6 will describe how this tile-based analysis workflow can act as an effective conversion

between the OSM editing history and a relational database. This provides a powerful interface for
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writing SQL queries against the entire editing record without having to recreate a replica of the

entire OSM database.

5.3 Improving OSM-QA-Tiles

Though it is unknown how many people are actively use OSM-QA-Tiles, we do know that

these tilesets are an important data source in a number of projects, such as osm-analytics.org. So

far, I have shown just one example of a complex question that can efficiently be answered with

OSM-QA-Tiles. Part IV will present more of my explorations of OSM data with this tile-based

analysis approach. However, OSM-QA-Tiles are not always the most efficient or accurate dataset

for every type of question about OSM. Slicing and distributing analytical processing along the

boundaries of a tile can lead to complications and misleading results. Furthermore, as the amount

of data in OSM continues to grow alongside improved GeoJSON representation of objects, efficiently

generating useful tilesets for analysis will grow more difficult (it has already). If a tileset of every

object in the world grows too burdensome for simple analyses, then we will need to rethink our

approaches to tile-based analysis. Here I will discuss some of these challenges along with solutions,

both implemented and proposed, for continued success with tile-based analysis.

5.3.1 Simplifying OSM-QA-Tiles by Object

When an OSM object extends past the bounds of a single tile, the object may be represented

in one of two ways: By default, the geometry is clipped at the tile-boundary (or a buffer thereof), and

the feature is effectively duplicated across multiple tiles, each tile containing the relevant geometry

for that section. This creates the most efficient individual tiles as they only contain information

about objects that exist on that tile when rendered. At the tile boundaries, these objects are

seamlessly stitched back together, making them appear as one object (such as a coastline or Country

border) when viewed across multiple tiles.

However, this can yield misleading metadata when the attributes of the object are copied to

all of the sections as it is split across tile boundaries. Figure 5.5 exhibits this issue. Though the
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Figure 5.5: A map highlighting tiles where a single mapper was active in 2011. The mapper edited
the OSM object which represents the administrative boundary of the State of Indiana. The metadata
of this object is propagated to every tile that includes part of this geometry. This mapper’s edit
count therefore includes every tile in Indiana, though the original edit was only to one object.

mapper made an edit to a single object, that object is split across all of the tiles within the state of

Indiana because each of these tiles contains part of this geometry. This mapper’s username then

appears in the metadata for every part of the object, distributed over the entire State. If we count

this mapper’s total number of edits across all tiles, it will be greatly exaggerated by these objects

on all of these tiles.

The second method is to avoid the duplication of features and instead only write an object

to a single tile. While this creates a more accurate representation of editing activity (one edit

per distinct object), it might bloat the single tile that contains the object since that tile contains

geometry information beyond its own geographic extent. Also, tiles which should contain parts of

this geometry are unaware that it exists. This creates the potential for imbalanced tile-reduce jobs

as these larger objects are not distributed across multiple workers. While there are pros and cons of

both approaches, they depend entirely on the question being asked. This highlights the complexities
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and trade-offs of an all-purpose analysis vector tileset, currently an open discussion within the OSM

data community.

A new complication in the generation of OSM-QA-Tiles comes with technical improvements to

GeoJSON conversions of OSM elements in the past year: Country Boundaries and Coastline objects.

At Zoom level 12, the majority of the objects on the map is under 2.5M tiles. This creates a tileset

of about 39GB. Including administrative boundaries, however, creates large Polygons representing

Territory and Maritime border objects all over the world. As a result, the full tileset now contains

nearly 9M tiles, most of which are in the ocean, representing the coverage of a political boundary.

These tilesets are now closer to 90GB and take much longer to process with the addition of these

6M tiles.

The immediate solution was to produce filtered tilesets: One with administrative boundaries

and one without. Today, these two distinct OSM-QA-Tiles files are generated daily: One that

includes all available OSM data and another that excludes coastlines and administrative boundaries.

This additional “compact” tileset has been generated since early 2019 after a major update to the

processing workflow, resulting from many discussions between Mapbox engineers and myself.

This solution, however, is a first step in producing more streamlined tilesets. Object-specific

tilesets could dramatically improve efficiency as the total number of map objects continues to grow.

Generating building or road-only OSM-QA-Tiles will allow more targeted, efficient analysis for those

interested in analyzing a specific type of object on the map. In terms of efficiency, it would likely

be the difference between downloading a 9 or 90GB tileset for analysis, a non-trivial advantage if

automatically processing these tilesets daily or weekly. However, the daily generation of multiple

tilesets increases overhead for whomever is producing and hosting the tilesets. This remains an open

issue in the OSM data community. Section 10.1.2.2 presents current work addressing this issue.

5.3.2 QA-Tiles-Plus: Turn-Restrictions

As previously mentioned, abstract relations in OSM such as turn-restrictions cannot be

represented in GeoJSON, and therefore are left out of OSM-QA-Tiles that are built from GeoJSON
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representations of OSM data. For contributor-centric analysis, the lack of turn-restrictions in these

tilesets means the exclusion of over 1M edits. Further, turn-restrictions are relatively complex

features that are assumed to be edited by a mapper informed with “ground-truthed” information.

Accounting for these edits then has major implications for intrinsic data quality analysis as discussed

in Chapter 7. Therefore, a geometric representation of the turn-restriction is not as important as

simply knowing that a turn-restriction exists on or near an object. To account for turn-restrictions,

I created an extension of OSM-QA-Tiles called OSM-QA-Tiles-Plus that includes the metadata

of a turn-restriction object with basic geographic information about its relative location. This

name comes from the term contextual-stream-plus as introduced by Bica et al to describe a more

contextually complete Twitter dataset [13].

OSM-QA-Tiles-Plus are created by first extracting all of the turn-restrictions in the current

OSM planet file with the osmium tags-filter utility to identify all relations with the type =

restriction attribute. Next, I extract any geographic information associated with that restriction.

Typically, turn restrictions have three attributes: to, from, and via. In many cases, via is the

node representing the intersection of the two other elements. The coordinates of this node then

become the geometry of the new object. We now know there is a turn-restriction edited by a specific

mapper at a specific time at a specific location. An example of all the turn-restrictions in Panama

City represented as points is shown in Figure 5.6.

In cases where the via attribute does not exist or is not a single node, the script continues

looking for any geographic information on the to or from elements. These restrictions are then

encoded as single points and merged into the current OSM-QA-Tiles, creating the new OSM-QA-

Tiles-Plus tileset. When these new tiles are analyzed, these points will show up as single features on

a tile and be counted as an edit associated with a time and a location. For extra accuracy, I add

a boolean attribute @tr so that analysts can filter for these turn-restrictions if desired, as seen in

Figure 5.6.

For the majority of contributor-centric questions that I seek to answer, this is a passable

solution to representing the abstract relation of a turn-restriction on the map: It simply acknowledges
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Figure 5.6: Turn-Restrictions as Points in Panama City, Panama. The popup shows the metadata
associated with one of the points representing a restriction on a u-turn

the relative location of a turn-restriction. For any routing or applied purpose, this is not a viable

solution because it preserves none of the actual actionable information and will therefore likely

never be implemented in any general tileset.4 Additionally, this approach could be extended as a

fall-through processing method for GeoJSON representations of OSM elements. That is, any object

in OSM that cannot be converted into valid GeoJSON could still be created as an object with the

appropriate attributes and metadata, but the geometry would be a placeholding Point feature. This

would recognize the existence of the feature, and the mapper who last edited the object is given

credit for their contribution.

5.3.3 OSM-QA-Tiles: Summary

Tile-based analysis workflows utilizing the tile-reduce framework and OSM-QA-Tiles allows

for fast, robust, and scalable analysis of OSM data. Vector tiles allow us to maintain all of the

4 When I shared this code with a maintainer of the osmium utility, he helped identify a performance improvement
but did not respond to my proposing this approach as a potential solution to the representation of turn-restrictions in
GeoJSON.
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OSM metadata, enabling contributor-centric analysis of the map. Another major benefit of this

analysis workflow is that it relies only on a single file for input. It is not dependent on the OSM

or Overpass* API, nor requires configuring and running a database. My hope is that this will

continue to lower the barrier to entry for other analysts to do global-scale OSM data analysis and

promote reproducibility. Additionally, with the only computational dependency being Node.js, entire

analyses can be packaged and distributed. For example, the corporate editing analysis shown here

is packaged and hosted on GitHub. It can be cloned and then run against the latest OSM-QA-Tiles

at any point to identify the current geographic footprint and volume of corporate editing in OSM.5

The largest drawback of the current OSM-QA-Tiles is that they only represent the most

recent version of the map. This means they do not include the editing history of an object, a

critical component of contributor-centric analysis. For example, the corporate editing example

analysis of Section 5.2.1 certainly captures the majority of edits and the growing trends, but it

likely undercounts the number of edits. If a corporate editor created a road or building in the last

five years that was subsequently edited by another user at any point, then that initial edit is not

counted because the OSM object in the OSM-QA-Tile only reflects metadata of the most recent edit.

In contrast, the similar analysis in Chapter 9 uses an improved approach to historical tile-based

analysis, presented next.

Since the tile-reduce framework can be run with any tileset with the OSM-QA-Tiles schema,

it is possible to run the same analysis against multiple OSM-QA-Tiles produced at different times,

allowing us to compare the data at two different points in time. This is a different approach to

Time Series Analysis than that of Chapter 3, but it is more scalable. Until now, this was the only

way to do tile-based historical analysis. This is the foundation of two of the three approaches to

tile-based historical analysis that I will discuss next.

5 I invited a number of corporate data-team managers to this repository and it is my assumption that they have
cloned this repository and continue to run this analysis against the latest OSM-QA-Tiles.
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5.4 Historical Tile-Based Analysis 1: Annual Snapshots

Historical snapshots allow analysts to see the map as it existed at a certain point in time.

When OSM-QA-Tiles were first introduced, so were additional “annual snapshots that contain OSM

objects as they existed on January 1 from 2005 to 2016.

Because of the complexities of measuring changes over time in OSM as discussed in section 2,

historical snapshots represent efficient collections of OSM data at specific points in time to allow for

something closer to time series analysis. Tile-based analysis of annual snapshots involves running

the same tile-reduce job over multiple snapshot files, obtaining results for the map data as it

existed at any point in a year. If the analysis involves counting edits over time, annual snapshots

provide the guarantee of at least annual resolution of editing activity. This means an object created

in 2014 and edited by other users in 2015 and 2016 will be first counted as an edit that occurred

in 2014 when the script is run against that year, and also count the edits in 2015 and 2016 when

those years are processed. In contrast, only the 2016 edit will appear in the current OSM-QA-Tiles.

While this increases the processing time about 10-fold to run the job over and over for each year,

there is no added complexity because the data schema is consistent between each year. Analysis of

pre-2009 tilesets is much faster because as Figure 5.7 shows, there was much less data on the map.

Figure 5.7: OSM-QA-Tiles for London in 2007 (left) and Today (right).
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5.5 Historical Tile-Based Analysis 2: Quarterly Snapshots

Annual snapshot osm-qa-tiles allow us to ask detailed questions of the map data as it existed

at the beginning of each year, but as the rate of editing continues to increase, we are blind to a

significant number of edits that happen each year to existing objects. I call these “shadowed edits”

because they are effectively hidden by the next edit to the object, or in the case of annual snapshots,

they are masked by the edit that happened closest to midnight on December 31. Figure 5.8 shows

the number of shadowed edits by location in for 2012. Section 8.1.1 will further explain how I

identify and quantify these shadowed edits.

The large number of shadowed edits, however, should not entirely discount the power, abilities,

Figure 5.8: Global footprint of invisible edits from annual snapshots. With annual resolution, these
“shadowed” edits go discounted between each year. This map represents edits that were essentially
hidden in 2012.
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and conveniences of using historical snapshots of the map for historical analysis. Data analysts just

need to be honest about the limitations of the dataset: these are not complete records of the editing

history, but they are still accurate to a specific resolution. Furthermore, if the goal is to compare the

map between two points in time from a completeness or density perspective that does not require

knowing the individual object histories, and snapshots are the ideal datasets for comparison.

To continue using snapshots for tile-based historical analysis, I increased the resolution to

every three months, or quarters to reduce the number of shadowed edits. This “annual quarters” unit

seemed appropriate because an analysis goal at the time was to show improvements in terms of data

density. Likening these to the more traditional “quarterly report” of the business world to measure

growth, I worked with Mapbox to create quarterly snapshots of OSM data in the OSM-QA-Tile

format. Generating these at any higher resolution becomes burdensome as the collection of quarterly

snapshot tilesets from 2006 thru 2019 is already 759 GB. For processing, these tilesets need to all be

accessible on a single, large machine: Remaining under 1TB seemed like a reasonable compromise.

Quarterly snapshots offer four-times the resolution of annual snapshots and therefore take four-times

as long to process. However, the processing complexity is not increased as the same tile-reduce

job is run across each of the quarters. Chapters 8 and 9 present analyses using quarterly-historical

2007 Q1 2007 Q2 2007 Q3

Figure 5.9: The evolution of the map of Boulder, CO at quarterly-snapshot resolution, capturing
the bulk import in the 2nd quarter of 2007.
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snapshots.

5.6 Tile-Based Analysis Approach 3: Full Historical Vector Tiles

Ultimately, the complete history of all objects on the map cannot be represented by snapshots

of any resolution, especially with tile-based analysis. Since processing is distributed among individual

tiles, different versions of the same object between snapshots are unaware of one another. This

makes it impossible to observe interaction between users such as validation, vandalism, or tagging

disputes. If, however, all of the versions of a single object were on one tile, then historical tile-based

analysis of the evolution of the map at the object level is not only feasible, but can also embrace the

processing efficiencies of tile-based analyses. All of the previous work leads to this single objective:

Full-history vector tiles.

5.6.1 Historical OSM Data Schema(s)

In this section I identify two data schemas that are extensions of the GeoJSON representation

of OSM objects in the OSM-QA-Tile format. These schemas allow us to represent the full history

of an object in two forms: First, a historically accurate, complete account of every edit; second, a

format optimized for rendering so that analysts can easily interact with the data on a map to observe

the changes over time. These two schemas are Embedded Object Histories and Individual Historical

Versions. The first step to converting OSM historical data into these schemas is to compute the full

history of an object over time, including minor versions, from the full planet history. Currently, the

only tools capable of doing this include osm-wayback, ohsome, and OSMesa. osm-wayback is a tool

initially developed between Mapbox and me, and is currently maintained by me. I used and further

developed this utility to develop these schemas. Section 10.1.1 will explore this particular tool in

further detail.

As discussed in Chapter 2, an object’s complete history involves any number of five different

types of edits. Changes can occur to either the geometry of an object or its attributes. Geometry

changes can either produce a new version of the object or a minor version. Changes to attributes
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can be one of three forms: addition of a new tag, modification of an existing tag, or the deletion

of an existing tag. Utilities that reconstruct an object’s complete history should identify these

attribute changes and categorize them accordingly.

Figure 5.10 introduces the extension, showing how the addition of a @history attribute to

an OSM object’s GeoJSON representation can capture an object’s entire history while accounting

for all contributors, including minor versions, thereby addressing all of the challenges put forth in

Chapter 2. These history objects look very similar to an OSM object in an OSM-QA-Tile with a

few exceptions. First, there are now two timestamps for an object: @validSince and @validUntil.

@validSince represents when this version (or minor version) was created while @validUntil is

added to an object when a newer version (or minor version) is created. For the current version of

an object, this value is null. The difference between these two timestamps defines the lifespan of

this historical object. Instead of storing the complete attributes for every version of the object,

@history : [
{ @version : <number>,

@minorVersion : <number>,
@user : <s t r i ng >,
@uid : <number>,
@changeset : <number>,
@geometry : <GeoJSON geometry>,
@val idS ince : <timestamp>,
@va l idUnt i l : <timestamp>,
@tags added : {

‘ new key ’ : ‘ new value ‘
} ,
@tags modfied : {

‘ e x i s t i n g k e y ’ : [ ‘ o l d v a l u e ’ , ‘ new value ‘ ]
} ,
@tags de l e ted : {

‘ o ld key ’ : ‘ o ld va lue ‘
} ,

} ,
<a l l p rev ious ve r s i ons>

]

Figure 5.10: The addition of the @history attribute to OSM objects will capture an object’s entire
evolution and allow analysts to quickly see what changed.
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historical objects can track which attributes were changed (Edit type 4 in Table 2.1). This allows an

analyst to look through an object’s history and quickly identify a specific edit type. The addition of

a ‘name’ attribute, for example, is an interesting edit to track as it likely implies the addition of

local or ground-truthed knowledge to the map. When the history object is a minor version, the

editing metadata is copied from the changeset that produced the minor version so that the mapper

responsible for the minor-version appears in the editing record of this object. In minor versions,

there will be no changes to attributes, but the rest of the metadata will be updated. This @history

object can be integrated into current OSM-QA-Tiles in the following two ways: Embedding the

history into each object as an attribute, or creating distinct map objects for each version.

5.6.1.1 Embedded Object Histories

As an additional top level attribute, the @history object can exist among the current

properties of an OSM object in a current OSM-QA-Tile. This approach is optimized for tile-based

per-object history analysis. When the object is decoded into GeoJSON, the @history object can

be easily parsed by the tile-reduce framework’s map function to give analysts access to the complete

history of the object. Iterating over the object’s history let’s analysts see which mappers have made

which changes. Since the distinct geometries of each version are embedded, geospatial processing

can be employed to compare geometry changes between versions as well.

Storing individual geometries for every version, however, is not space-efficient. Especially

because these geometries are likely to be similar between versions. The TopoJSON* format is a

topologically organized extension of GeoJSON that minimizes duplication by storing line segments

as arcs and then defines geometries by referencing these arcs. Performing this conversion adds slight

overhead to the production of the tiles, but it greatly reduces the size of the @history object. To

compare the geometries between any two versions, the TopoJSON can be decoded for each version to

return two distinct GeoJSON geometries. This can be helpful if an analyst wants to find buildings

that were modified to have square corners, a popular minor version.

The only drawback of this representation is that it requires parsing the entire object’s history
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to know what the map looked like at a certain time. To solve this, objects may be encoded as

individual historical versions.

5.6.1.2 Individual Historical Versions

Another approach which is optimized for rendering is to represent each version of an OSM

element as its own object, as described in the Taj Mahal example earlier in Section 4.3.1. This

will inevitably be less space-efficient because every version has its own geometry, but they are

historically accurate. Therefore, in this schema, the most important attributes are the @validSince

and @validUntil timestamps. This allows an interactive map framework like mapbox-gl to filter

by time to render the map exactly as it existed at any point in time, down to the second. This

allows us to build an exploratory map that can show the exact changes over time.

I have implemented and iterated on these three tile-based historical analysis approaches across

multiple research projects which I will now share in Parts IV (snapshot) and V (full-history).



Part IV

OSM Historical Snapshot Analyses
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This part contains four chapters, each of which correspond to a specific project, presentation,

or publication that utilized and advanced tile-based analysis of historical snapshots of OSM data.

Chapter 6 reviews and discusses work I completed as a Mapbox Research Fellow in 2016.6

This was my first exposure to the annual-snapshot historical OSM-QA-Tiles. I will review the

data-processing pipeline I developed, present the visualization utilities I created, and summarize

some of our findings as they were co-presented with Mikel Maron at the State of the Map US 2016

conference in Seattle, Washington.

Chapter 7 is an exact reprint of a paper that used the annual-snapshot historical OSM-QA-

Tiles for analysis. The paper is reprinted here with the permission of my coauthors, for which the

full reference is:

Jennings Anderson, Robert Soden, Brian Keegan, Leysia Palen, and Kenneth M. Anderson

(2018). The Crowd is the Territory: Assessing Quality in Peer-Produced Spatial Data During Disas-

ters. International Journal of Human-Computer Interaction. doi:10.1080/10447318.2018.1427828

Chapter 8 reviews and discusses my innovation of moving from annual historical snapshots

to quarterly historical snapshots. Much of this work was completed in partnership with Mapbox

as a Research Fellow in 2017. I will review the need for and creation of these quarterly historical

snapshots as well as an interactive analysis dashboard collaboratively developed with Mapbox to

visualize the growth of the map over time. This analysis dashboard was presented at State of the

Map US 2017 in Boulder, CO.

Chapter 9 is an exact reprint of a paper that used the quarterly-snapshot historical OSM-

QA-Tiles for quantitative analysis. The paper is reprinted here with the permission of my coauthors,

for which the full reference is:

Jennings Anderson, Dipto Sarkar, and Leysia Palen (2019). Corporate Editors in the Evolving

Landscape of OpenStreetMap ISPRS Int. J. Geo-Inf. 2019, 8, 232. doi:10.3390/ijgi8050232

6 Chapters 6 and 8 include work done in collaboration with Mapbox as a Research Fellow during the summers
of 2016 and 2017, respectively. These chapters include summaries of research projects and conference presentations.
They are included here with the permission of my collaborators.



Chapter 6

Annual Historical Snapshots

This chapter describes the implementation of a data-processing pipeline developed to better

understand the growth of the map on an annual basis, using the annual-resolution historical-snapshot

OSM-QA-Tiles that were originally developed and released publicly by Mapbox. As part of a 2016

Research Fellowship with Mapbox, I extended the analytical workflow to create a suite of interactive

visualizations that can better explore the editing history of OSM. First, I will describe this data

processing pipeline.

6.1 Data Processing with Annual Snapshots

As originally presented in Section 5.4, annual historical snapshots promise at least annual

resolution of the OSM editing history. These analyses are achieved by running the same tile-reduce

2012.mbtiles

2013.mbtiles

2014.mbtiles

tile-reduce

(Only 2012 edits)

tile-reduce

(Only 2013 edits)

tile-reduce

(Only 2014 edits)

geojson

tsv per-tile-day

geojson

tsv per-tile-day

geojson

tsv per-tile-day

Create mbtiles

with tippecanoe

PostgreSQL

Figure 6.1: Tile-Reduce workflow for annual analysis (example for 2012, 2013, and 2014). This
approach ensures at least annual accuracy of historical OSM data analysis.
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job over consecutive years with annual time-filtering to capture editing activity within a given year.

Figure 6.1 shows this workflow for just three years. Annual OSM-QA-Tiles are used as input to

the tile-reduce script which then filters for just the edits that happened during that year, grouping

them by day, and then computing summary statistics: per-tile, per-day, per-year. These summaries

are then aggregated per year as GeoJSON which can be turned into vector tiles to power interactive

visualizations.

To recombine the annual editing activity per tile into a queryable format, a TSV file is produced

as output from the map function. Each line of this file contains per-day, per-tile editing statistics such

as the total kilometers of roads or buildings edited. As a TSV, this file can be efficiently transformed

into a PostgreSQL database with the \copy command. This results in a database containing tables

of annual editing statistics per day for each tile. Additionally, tiles can be indexed by quadkey

to allow for spatially bounded queries without the need for any geospatial extensions or indexes.1

Figure 6.2 shows an example query to get the total number of buildings created on January 13, 2010

(the day after the 2010 Earthquake) around Port Au Prince, Haiti.

In 2016, running this analysis for the entire planet over the previous 11 years of annual

OSM-QA-Tiles, and then creating the annual databases required about a day of processing time

on a single (modestly large) machine.2 Creating per-day tile summaries meant that the same tile

might exist in 365 different rows. These were found to be rare however, and the total number

of tiles could be adequately managed by a PostgreSQL database. Because this workflow and the

resulting databases were a successful step towards allowing us to recreate the evolution of the map, I

next turned to the editing metadata to make these databases more contributor-centric. This meant

separating per tile-statistics not by day, but by contributor. In this way, per-tile, per-editor, per-year

editing statistics were generated. These databases were larger, with up to 15M rows in 2014 and

2015, though still manageable by PostgreSQL. This meant it was now possible to ask questions such

1 Quadkeys are numerical ids of map tiles in base-4. They are the basis of the Bing Maps Tile system.
docs.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system. A key feature of a quadkey is prefix matching:
All higher zoom tiles that fall within tile 0123 start with the quadkey 0123.

2 These were created on a single Amazon EC2 c4.8xlarge instance. This is a one-time job of about $30 to generate
the output needed to populate the databases.
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SELECT

sum(new_buildings)

FROM

per_tile_day_2010

WHERE

day = 13 AND

quadkey LIKE ‘03221120%’;

(a) SQL query to count the number of build-
ings edited on the 13th day of 2010 on any
tile with a quadkey starting with 03221120.

(b) The bounds of the zoom level 8 tile (quadkey 03221120)

Figure 6.2: Tables containing daily editing summaries indexed by quadkey allow us to perform
queries based on quadkey prefixes. Figure 6.2b represents a zoom level 8 tile that covers the region
of interest. There 256 zoom level 12 tiles that fall within its bounds. The quadkey for each one of
these tiles starts with 03221120. This query is then restricted to these 256 tiles via quadkey prefix
matching. The day constraint only returns the rows representing the subset of these tiles that were
edited on January 13: The 13th day of the year 2010.

as, “how many kilometers of road did a particular user edit in 2015, and where?” Previous methods

of enabling such questions required establishing significant infrastructure involving a mirror of the

full OSM database and additional logic to reconstruct the state of an element at a specific time. By

leveraging OSM-QA-Tiles, tile-reduce, and PostgreSQL, I was able to establish a much simpler

infrastructure that could answer a multitude of questions about contributor activity in OSM in

a more straightforward manner, relying on specific precomputed metrics such as the number of

buildings or roads added or edited.
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6.2 State of the Map US 2016 Presentation

The daily-editing global summary databases just introduced allow for daily-resolution editing

statistics by quadkey. I used these databases to generate statistics for a presentation at the 2016

State of the Map US conference in Seattle, Washington.3 This section will share some of the

main takeaways of that presentation: Stories of the US map’s evolution as reconstructed from

annual-historical snapshots. First, Figure 6.3 gives an overview of the number of mappers editing

the map of the US per week. These values were computed by the workflow presented in Section 6.1

which allowed me to count these users at the individual map-object level, per tile, per year. As this

was my first iteration in scalability from Epic-OSM (Chapter 3), these object level, Nation-scale

results validated tile-based OSM data analysis approaches for me.

Figure 6.3: Active Editors in the US per week, calculated from annual historical snapshots. There
is an observable linear rate of growth in the number of active US editors.

Filtering by quadkey allows us to group results by specific location, as shown in Figure 6.2.

Here, I used quadkeys with bounds that cover various cities in the US with relatively active OSM

communities to compare the evolution of these communities between the cities. Figure 6.4 shows

3 Mikel Maron and Jennings Anderson (2016). OpenStreetMap US by the Numbers, for the Community. Seattle,
WA. July 23, 2016. Recording of the original talk available at 2016.stateofthemap.us/osm-us-by-the-numbers-for-the-
community/
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Figure 6.4: Cumulative count of editors in major US cities.

the cumulative growth in the number of mappers who have contributed to the map of the top 10

US edited cities in OSM. This figure shows relatively consistent growth in the editing communities

across all of these cities at slightly different rates. There is a significant bump in contributors active

in most of cities at the end of 2012. Investigating this finds a massive number of edits to the road

network in the US, likely an organized data-cleaning effort that affected all of these cities. This is

corroborated by a sustained spike in weekly activity shown in Figure 6.3. Of more interest, however,

is that this event appears to be an inflection point to an increasing rate of local community growth

in most of these cities.4

Similarly, we can compare the number of buildings edited over time across these cities, as

shown in Figure 6.5. For these cities, the majority of the buildings have been added to OSM through

community-led data imports that can be seen here as large steps in the graph. A building import

involves acquiring building geometry data (footprints/roofprints) that have been made public (or at

4 “If you built it/fix it, they will come maintain/grow it?” - This is something I plan to investigate in the future.
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Figure 6.5: Cumulative count of buildings edited per major US city.

least released with an OSM-compatible license), and then systematically adding them to the map.

It is best practice for mappers to create a different import-specific user account to separate the

activity.5 Some imports have been done in multiple steps, such as Chicago which was paused due

to licensing issues and then resumed.6 Other notable patterns in Figure 6.5 include the slow but

sustained growth of building edits in Los Angeles before the import in mid-2016, and the three year

head-start that Boston has on all of the other cities from the MassGIS import: An early addition

of Massachusetts public data to the map in the US.

Taking a contributor-centric approach, I began querying the per-editor, per-tile, per-year

database created via the workflow shown in Figure 6.1 to identify mappers who were active on the

5 It is common for users to simply add imports to the end of their account to maintain an association, such as my
import account name: jenningsanderson imports.

6 Part of best practice for a building import is documenting the process and giving
space for community feedback through the wiki. See the wiki for Chicago’s import here:
wiki.openstreetmap.org/wiki/Chicago, Illinois/Buildings Import
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same tile in a given year. Earlier work of ours explored co-editing patterns where mappers were

actively editing near each other [61]. Extending this idea with zoom level 12 tile-boundaries as the

unit of analysis, I constructed co-editing networks based on the quantity of edits to specific object

types. In these networks, nodes represent mappers and there exists a link between two nodes if

both mappers edited a given quantity of the same object type (building or roads) on at least one

tile together in a given year. For example, two mappers who edited at least 30 buildings and 50km

of road on the same map tile would be connected in the 30-building/50km network. Using steps

of 10 as quantity limits, I generated all of the possible co-editing networks for mappers editing in

North America.

Figure 6.6 shows the co-editing network for mappers who edited at least 100km of roads in

2008. The various connected components on the right represent the clusters of mappers in 2008

Figure 6.6: Screenshot of a visualization showing tiles where mappers edited at least 300 objects,
affecting at least 100km of roads. The highlighted component in the top-right (with red edges
between the nodes) represents all of the tiles that are shared between the users in this component.
These tiles (in San Francisco) are shown on the left with per-editor statistics highlighted. Adjusting
the link thresholds on the far left will further subset the network in the right-hand panel to match
the constraints.
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that satisfy these conditions. The large hub-and-spoke component in the center of the network is

the TIGER road import in the US that year. The large node in the center represents the import

account and the smaller nodes connected to it represent those editors who have edited over 100km

of roads on tiles where there were imported data, likely integrating the imported data.

Created in the same way, Figure 6.7 shows the co-editing network for mappers with over

40 edits to buildings on the same tile in 2010. This Screenshot tells part of the story of the 2010

mapping response to the Haiti Earthquake [105, 125]. The highlighted cluster of nodes represents

mappers who edited at least 40 buildings on the same tile in 2010. The map on the left shows

that these tiles were all in Haiti. Put another way, most of the mappers who edited more than 40

buildings on a single tile in all of North or Central America in 2010, did so in Haiti: Presumably in

response to the earthquake.7

Next, I used this same database of per-tile, per-editor, per-year editing summaries to calculate

every mapper’s global editing footprint: What they edited on which tiles over the entire world. Once

these annual editing summaries for a mapper are computed, they are saved as single GeoJSON

files and stored in an Amazon S3 bucket so they can be easily retrieved over HTTP. In sum, this

is a few million GeoJSON files, each of which are under 1MB. Figure 6.8 shows a screenshot of

the visualization tool I built to further explore these global editing footprints. The viewer first

selects a year and then enters an OSM username. The tool will then request the mapper’s editing

summary from Amazon and render it on the map, showing how many edits happened on each tile,

and moreover, what percentage of their total annual editing activity each tile comprises. Filters can

be set to show only those tiles with with at least a specified number of edits or percentage of annual

activity. Editing footprints for additional mappers can be added and will show up on the map in a

different color so that multiple editors can be compared.

Figure 6.8 shows some of the same users from the 2010 building-editing network shown

in Figure 6.7. Here we see that some of these mappers were also active all over the globe in

7 Comparing to Figure 6.3, the total number of active mappers in Haiti the week after the earthquake (about 500)
is nearly twice the average number of weekly mappers in the US at that time.
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2010. However, the selected user, dbusse, was most active in Haiti with 14% of their total 2010

editing activity on the selected tile, and over 50% of their 2010 editing activity when including the

surrounding tiles. This implies more than half of this mapper’s 2010 editing activity was as part of

the disaster mapping response to the 2010 Haiti Earthquake.8

This presentation of historical tile-based analysis of the map using annual-snapshots demon-

strated to me the ability to effectively analyze the growth of the map at scale using zoom level 12

tile-boundaries as units of analysis. The ability to process years of planet-scale data was a major

step in scaling from the previous Epic-OSM infrastructure.9

8 Also visible in Figure 6.8 are the artifacts of splitting up large Polygon geometries as explained by Figure 5.5.
9 Additionally, both the talk and the interactive visualizations were well received by the audience, which further

validated this analysis approach, for me anyway.

Figure 6.7: Screenshot of an interactive visualization showing North-American co-editing networks
for users who edited over 40 buildings on the same tile. The selected cluster shows those who
mapped more than 40 buildings in 2010 on the same tile in North America. The map on the left
shows that this cluster represents mappers responding to the 2010 Earthquake [125].
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6.3 Interactive Contributor-Centric Visualizations: First Generation

I published all of the visualization tools just presented along with some other more basic

interactive maps: editing density, recency of edits, and types of objects at mapbox.github.io/osm-

analysis-collab: A summary of my 2016 Mapbox Research Fellowship.10 I now refer to these as the

first generation of contributor-centric visualizations because they are powered by datasets produced

through my first iteration of contributor-centric approaches to OSM data analysis—reconstructing

the evolution of the map through annual-snapshot OSM-QA-Tiles. These particular tools are

contributor-centric because they rely on the metadata about the edit to the object more than the

object itself. The final visualization tool I built this way does per-country aggregation of roads,

buildings, and contributors, calculated annually.

10 These tools are still available at this address for the years 2005 through 2016.

Figure 6.8: per-editor editing summaries show all of the tiles where a user was active in a given
year. This screenshot shows all of the tiles that the users who co-edited on the tile selected tile in
Figure 6.7 were also active on, individually. For the selected user, 14% of all of their edits in 2010
were on one tile in Haiti.
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Figure 6.9: Screenshot of the editors per country interface. The user can set thresholds on the left
to show only areas where editors were active for a specific range of days.

Figure 6.9 shows this visualization tool where an analyst has first selected 2015 (top) and

the map is highlighting regions where editors were active for more than 10 days (non-consecutive)

in 2015. The user has selected France by hovering their mouse over the geographic bounds of the

country, which highlights it in yellow. When they click, A window with multiple graphs of editing

activity over time pop up, as shown in Figure 6.10. These graphs compare the total editing activity

over time to the number of editors active each day. For European Countries, Figure 6.10 is a fairly

representative example: The number of daily editors grows steadily in the early years and then

reaches some level of mapper saturation. In France’s case, 200 people edited the map of France

each day between 2012 and 2016, on average. Since the number of daily editors (red) does not

spike at the same time as the prominent spikes in daily editing activity (blue), these spikes are

likely the result of automated edits. Using this utility, I found that the self-proclaimed bot-account,

PierenBot, did 9.1M edits in France in 2011, which was likely responsible for the larest spike in

daily editing in late 2011.11

11 If I were to recreate this analysis, I would attempt to identify automated edits and remove them. Unfortunately
there is no foolproof method of doing this. I currently search for ‘bot’ in the user name, such as ‘xybot’ or ‘PierenBot’.
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Figure 6.10: When a country is selected, the editing history is shown in a graph where the number
of users active each year is depicted by a red dot (corresponding to the right-hand y-axis) and the
total number of edits per object per year are represented by solid lines.

By clicking on a tile, the user can see general annual statistics about the roads and buildings

as well as a list of users who edited on that tile that year as shown in Figure 6.11. Clicking See all

edits will open this mapper’s annual editing footprint, the visualization in Figure 6.8.

At the time, the primary motivation behind these analysis was a focus on intrinsic quality

analysis of OSM data, driven by the contributor. These are meant to dive deeper into the quality

metrics put forth in Haklay’s early OSM data quality article [48]: Identifying areas with more recent

or more contributors in general has major quality implications.12 Building from this, I next used

the data-processing workflow presented here for the data analysis supporting the research in the

next chapter.

12 See mapbox.github.io/osm-analysis-collab/osm-quality.html for a casual discussion of OSM data quality that I
wrote on this topic regarding these visualizations.
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Figure 6.11: Clicking on a tile will show the list of users active that year and a quick overview
of created/edited roads and buildings. Clicking on See all edits will open that mapper’s Global
Footprint for that year (Figure 6.8)



Chapter 7

The Crowd is the Territory: Assessing Quality in Peer-Produced Spatial Data

During Disasters

The following section is an exact reprint with the permission of my coauthors of an article

published in the International Journal of Human Computer Interaction: Special Issue on Social

Media in Crisis in Early 2018.1 This work explores quality assessment of Volunteered Geographic

Information, specifically assessment of OSM data produced in response to disasters and humanitarian

mapping efforts. The data analysis here uses annual snapshot historical OSM-QA-Tiles processed

via the workflow presented in Figure 6.1.

7.1 Introduction

Here we examine methods for assessing the quality of peer-produced spatial data, or Volun-

teered Geographic Information (VGI), for use in crisis response. For many parts of the world, VGI is

the primary geospatial data source because it is the most accessible and complete source of data for

the area [105, 134]. As such, crisis responders often use these datasets during disasters. For example,

the 2010 Haiti Earthquake destroyed much of the country’s government buildings, and with them,

access to official mapping resources [125, 105]. In just a few days, organizing online, hundreds of

contributors to OpenStreetMap (OSM) created the most complete map of Haiti in existence. This

map became the de-facto basemap for subsequent rescue and relief operations [125]. This early

1 Jennings Anderson, Robert Soden, Brian Keegan, Leysia Palen, and Kenneth M. Anderson (2018). The Crowd
is the Territory: Assessing Quality in Peer-Produced Spatial Data During Disasters. International Journal of
Human-Computer Interaction. doi:10.1080/10447318.2018.1427828
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instance of “disaster mapping” was a catalyst in creating a new form of volunteer disaster response

work [105]. Today, thousands of online volunteers mobilize before, during, and through the recovery

phase of a disaster to answer the data needs of the community and responding organizations.

Crisis informatics research seeks to understand how new technologies enable volunteers to

mobilize, create, and process information about a disaster event. Therefore, of specific importance

to both the OpenStreetMap and the crisis response communities is disaster mapping (or crisis

mapping). Disaster mapping is the practice of volunteer contributors converging online to improve

the map for a region experiencing a disaster or crisis ([32, 108]. In the case of OpenStreetMap,

the Humanitarian OpenStreetMap Team (HOT) is an active community organizer in coordinating

these tasks all over the world [105, 108]. These activities leave a very distinct contribution pattern

on the map: specific regions with considerably more coverage of certain objects (typically roads

and buildings) than the surrounding area. These improved maps are used for emergency response,

planning, routing, and more [125, 126]. With the widespread use of OSM data in disaster response,

developing and validating measures of information quality for it is essential.

Studies of online peer production systems like Wikipedia have demonstrated that high-quality,

open source content can be generated by integrating contributions from non-experts [12]. VGI

systems like OpenStreetMap emulate many of the features of these peer production systems, but the

spatial—rather than textual—knowledge they encode requires alternative methods for measuring

and validating the quality of their user-generated content. Developing methods for assessing the

quality of spatial information is a fundamental issue within the study of geographic information

science (GIScience). Any representation of spatial information necessarily involves some loss of

detail and thus quality. The challenge that this presents is illustrated by Borges’ famous parable

that imagines a civilization so obsessed with precision that they constructed a 1:1 scale map of their

territory. The result of their labor was perfectly accurate but totally unusable (Borges, as quoted in

[33]). This problem is faced not just by the designers of maps, but of all information systems: maps

are abstract, incomplete, and imperfect portrayals of the phenomena they are created to represent.

This condition, illustrated by Korzybski’s famous maxim that “the map is not the territory,” renders
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questions of information quality more complex than they might initially appear [62].

A central motivation for this work is the lack of authoritative reference geographic data in

many parts of the world, making more traditional quality analysis by comparing to reference data

sources—referred to here as extrinsic methods—impossible. Our research expands upon existing

methods within GIScience for assessing map quality, which rely on attributes such as completeness,

consistency, and accuracy, to take advantage of the behavioral meta-data of VGI contributors’

activities that are unavailable to traditional data sources. We draw on previous research measuring

the information quality of Wikipedia articles based on the intrinsic processes generating them,

such as the number of editors or how recently the data has been updated. We identify analogous

generative features in OSM data and evaluate three metrics drawing on contributors’ histories and

temporal contexts to examine their relationship with alternative intrinsic information quality metrics.

Both intrinsic and extrinsic quality assessments of VGI have been explored in GIScience. Our

metrics are distinct in that they rely primarily on the metadata of the individual contributions and

contributors: the details and context of how the digital volunteers converged, not just the geographic

features that were contributed. This distinction connects this work from the more traditional

approaches of GIScience to the fields of social computing and human computer interaction.

Using a quantitative case study method, we identify four different areas of the global map

that have been the geographic focus of disaster mapping activities in the past. For each of these

areas, we apply our three proposed intrinsic quality metrics, which expose varying histories of

contributions, each telling a different story, consistent with its associated crisis event. We then apply

these metrics to areas of the map known and agreed to be of very high-quality for comparison. The

differences—exposed by these metrics—suggest we are capturing substantively different mechanisms

by which VGI information is contributed, which, in turn, has implications for quality assessment. The

following sections will, first, discuss the background of information quality and quality assessment

in peer production; second, discuss the OSM project and describe our dataset; then next introduce

three approaches to intrinsic quality analysis based on contribution metadata; and then, finally,

evaluate our methods applied to various parts of the map that have been the sites of disaster
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mapping in the past. We conclude with a discussion of how these metrics fit within the larger

domain of geospatial data quality assessment and offer suggestions for future work.

7.2 Background

How to measure information quality has been the subject of a substantial body of research

across information science, management-related fields, and geography. We begin by reviewing

work on measuring information quality using extrinsic and intrinsic data sources in the context of

peer production and spatial information. The majority of prior literature assessing the quality of

OpenStreetMap—with a few notable exceptions (Barron et al. [10, 82])—has typically focused on

assessing quality relative to authoritative data sources; it, therefore, overlooked the potential offered

by specific intrinsic features unique to VGI to measure the quality of peer-produced data. This gap

between the value of intrinsic features for measuring information quality and the underutilization of

these features unique to VGI for assessing quality in OSM motivates our subsequent analysis to

employ contributors’ histories and temporal contexts as intrinsic sources of VGI quality.

7.2.1 Data and information quality

In this section, we (1) identify commonly-used dimensions for measuring information quality

through extrinsic and intrinsic dimensions; (2) examine how the quality of spatial information is

traditionally assessed; and (3) discuss the importance of spatial information quality for safety-critical

operations such as disaster response.

7.2.1.1 Information quality frameworks

There are many sources of variance in information quality. Information quality problems

arise because of incomplete, ambiguous, inaccurate, inconsistent, or redundant mappings between

real world properties and their representation in an information system [137, 65]. We employ a

taxonomy that differentiates information quality based on their use of extrinsic or intrinsic metrics.

Extrinsic information quality metrics focus on the accuracy, completeness, or consistency of
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the object-based measures by referencing external data sources. Questions about the syntactics

(conformity to other collected data; e.g., consistency) or semantics (correspondence to external or

authoritative phenomena; e.g., accuracy) are paramount. In contrast, intrinsic information quality

metrics use features of the target dataset itself to assess quality by examining contexts, reputations,

and processes for generating information. Questions about pragmatics (use and interpretation

of information; e.g., timeliness or authority) are paramount. This dichotomy, while simplistic, is

useful for identifying gaps in existing approaches for measuring information quality, especially in

the context of online peer production communities like Wikipedia and OSM.

7.2.1.2 Quality assessment of spatial information

Though there are many approaches for assessing map quality, those offered by the International
Standards Organization (ISO), codified as ISO Standard 19113, are widely accepted. The standard
has five primary approaches to assessing quality [10], summarized here:

(1) Completeness - Is the dataset complete?

(2) Consistency - Are the spatial and thematic attributes of the data in a uniform fashion?

(3) Positional Accuracy - How accurate are the coordinates of the map objects?

(4) Temporal Accuracy - If the data has a temporal element, is it accurate?

(5) Thematic Accuracy - Are the quantitative/qualitative attributes of the data accurate?

As we discuss below, each of these dimensions, apart from consistency, implements quality

assessment as an extrinsic information quality metric by referencing similarity to an authoritative

dataset. In some cases, extrinsic measures have used proxy datasets, such as kilometers of road in

relation to population density [31], in an attempt to assess completeness when a suitable source

of reference data is not available. Consistency, on the other hand, is the sole example of a quality

metric in this ISO Standard that uses features intrinsic to the target dataset to assess quality.

7.2.2 Information quality metrics for peer production

Wikipedia’s radical “anyone can edit” model integrating user-generated contributions into an

authoritative encyclopedia justifiably raised concerns about the quality of the resulting information.
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Evaluations of Wikipedia quality emphasize that features such as the quantity of information or the

number of links in an article are the most important determinants of end users’ trust in Wikipedia

content [60, 134, 141]. Despite the major differences in the substantive content of contributors’

edits, the technical designs of both the Wikipedia and OSM systems implement analogous methods

for merging user contributions into a single canonical version as well as capturing similar kinds of

meta-data in revision event logs about user IDs, timestamps, and content versions. This opens the

possibility for translating information quality metrics from a well-validated domain like Wikipedia

to a less studied domain like OSM. We compare the extrinsic and intrinsic information quality

metrics used in prior research on both Wikipedia and OSM below.

7.2.2.1 Extrinsic information quality metrics

We define extrinsic information quality metrics as object-based measures focusing on syntactic

or semantic “correctness” that reference external authoritative data sources. Online peer production

systems like Wikipedia and OSM were created to replace authoritative incumbent products like

Encyclopedia Britannica and government land surveys (respectively) created by expert organizations.

Thus, assessing the quality of user-generated information by comparing it to expert-generated

counterparts is a natural validation step. Extrinsic metrics for assessing the accuracy of Wikipedia

articles have used experts to compare the number of errors in Wikipedia against other works of

reference, finding that error rates were similar to or lower than authoritative sources [40, 113]. Other

studies have explored the completeness of Wikipedia’s coverage by measuring the representation or

overlaps in topical coverage across sources [17, 50, 115, 116].

The first scholarly investigation of OSM’s extrinsic information quality assessed the complete-

ness and positional accuracy of the OSM road network for the United Kingdom as compared to

the authoritative Ordnance Survey [46]. Although it was inconsistent, the OSM data compared

favorably to the government’s dataset and judged to be of good quality. Such findings are consistent

with work that examined other geographic locations and employed a wider range of quality measures

[144].
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7.2.2.2 Intrinsic information quality metrics

We define intrinsic information quality metrics as process-based measures focusing on pragmatic

or contextual “authority” by examining the processes generating information. Most Wikipedia

studies employ intrinsic measures to assess information quality and validate against community-

generated labels of article quality [56, 130, 139]. Behavioral features like the number of revisions,

the number of revisions from administrative, registered, or anonymous editors, the number of unique

editors, number of reverts, and time since last revision are intrinsic characteristics that are easily

computed from revision event logs [129]. Content features such as word count [15]), number of

references [69], images, and tables [1] also provide popular metrics.

Intrinsic measures of data quality are growing increasingly important to assess the quality

of OSM data due to the lack of authoritative reference datasets. For many parts of the world,

OSM is the most complete geographic dataset. This situation can arise because of a lack of good,

official data—as is the case in some developing countries—or simply because contributions from

an active local mapping community outpace official survey work. Whatever the reason, the lack

of high-quality reference data limits the utility of extrinsic measures of quality in these situations.

Barron, et al. acknowledge that “the quality of OSM data also depends on the project’s contributors”

[10]. Preliminary frameworks exist for evaluating intrinsic quality [10], evaluating the consistency

of tagging schemes [4, 135], and investigating “user-centric” quality metrics based on contribution

meta-data [46, 75, 61]. GIScience has recently seen many new intrinsic quality metrics introduced

with respect to OSM. Barron et al. introduce a framework discussing 25 measures requiring no

external reference sets [10] with a comprehensive review of current approaches and explanations of

intrinsic quality metrics as applied to VGI. More recently, Sehra et al. created an extension for the

QGIS open-source software project to allow for easier OSM data analysis, analogous to tools in

commercial GIS software [120].

Barron et al.’s intrinsic quality assessment framework highlights the importance of “fitness

for purpose” in quality analysis, and separates the 25 metrics into six distinct categories to connect
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metrics and indicators (assessments) to specific purposes. For example, road network completeness

is an assessment relevant to the use case of routing and navigation [10]. One of the areas Barron et

al. consider is “user and information behavior” to include contributor activity as an indicator for

quality assessment. They find that the distributions of edits per user are heavily skewed—with a few

contributors doing most of the work—a finding that is common among all peer production systems.

Importantly, they note while it may be expected that contributors with high edit counts create

higher quality data, this thesis remains untested [10]. Their call motivates the work presented here;

we further explore user-based metrics with respect to the number of contributors and their respective

expertise. Furthermore, as Eckle and Albuquerque point out, OSM data contributed during disaster

mapping events often contains just the raw geometry (that is, an outline of a building or the path

of a road) without the contextual information of attributes describing it, making existing intrinsic

quality assessment techniques which rely on the object’s attributes alone (such as name or type)

difficult or impossible [32].

Given this, intrinsic quality assessment based on contributor metadata becomes the most

feasible type of quality assessment available for many areas of the map and this observation motivated

our work in developing the metrics presented below; our metrics can be applied to any part of the

map, independent of reference datasets or detailed object attributes.

At a high-level, our three metrics are straightforward to understand. Our first metric is a

variation on a simple contributor-based metric: the absolute number of contributors that have

been active in a region of the map. Our second metric looks at the types of objects that different

contributors prefer to edit and the amount of that object type they have edited before. Our third

metric looks at the overall editing evolution of a region in terms of what objects are being collectively

edited by the contributors. Each of these metrics relies solely on the basic object type and the

contribution metadata. This provides the who, what, when, and where attributes of each edit,

and enables investigation of how the map developed in any given region. Our metrics are not

replacements for other quality metrics, but rather provide richer context from which to understand

the resulting OSM data.
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7.3 Dataset and Methods

7.3.1 OpenStreetMap

Started in 2004, OpenStreetMap is an open geospatial database released under the Open

Database License. The main rendering of the database can be viewed as an interactive map on

www.openstreetmap.org. The map is also available as a set of tiles through a web service. As a

result, OSM is used as a basemap for many interactive web-based maps. The OSM website currently

has over 4 million registered users; though less than 1 million users have ever edited the map data.

The database has over 4 billion unique geographic points that make up the objects on the map. To

illustrate the degree of completeness of the global map, Figure 1 shows just the road network in

OSM.

Objects in OSM are defined by a set of tags : key-value pairs that identify a country boundary

from a park or a bike path from a major street. The objects we focus on are roads and buildings.

These are the most common objects in OSM as well as the most edited objects during disaster

mapping. They are tagged as highways and buildings.

7.3.1.1 Roads (Highways)

In OSM, a road is a geometry known internally as a ‘way’ which is semantically tagged

with the key ‘highway’ and an associated value describing its relative prominence such as primary,

tertiary, walkway, etc. When roads are traced from remote imagery—as is common in disaster

mapping—they are rarely tagged with a ‘name’ attribute. Indeed, a road with a ‘name’ attribute

can be considered to contain some level of local, ground-truth knowledge, likely implying higher

quality.

7.3.1.2 Buildings

A building is denoted by a tag describing its purpose, such as {‘building’: ‘residential’}

or, in many cases, simply {‘building’: ‘yes’}. In OSM, buildings are typically represented by



124

Figure 7.1: The Road network in OpenStreetMap, showing global coverage and colorized by existence
of the name attribute. Cyan roads include a name; magenta or orange roads and paths do not. Map
Data c©OpenStreetMap Contributors.

closed ways, i.e., line geometries that have the same start and end points. As of October 2017,

building is the most common tag in OSM, with over 5.5% of all objects having this tag.2

Contributors can edit OSM through an in-browser editor on openstreetmap.org or through

stand-alone map-editing tools that communicate directly with the database through the API. Editing

OSM is depicted in Figure 7.2.

7.3.2 Obtaining OSM Data

Obtaining and manipulating OSM editing data is possible through a set of public APIs and

downloadable database files. A number of open source tools are available for converting the data

between popular geospatial data formats. A format made popular by the web for efficient storage

and serving of map data is the vector tile. A vector tile stores the geometry, attributes, and metadata

for every map feature organized by geographic location. Tiles can be created at various zoom levels,

2 taginfo.openstreetmap.org
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(a) The edit button on openstreetmap.org above the
map

(b) Editing a road object with the in-browser editing
interface, the iD editor.

(c) Editing a building feature with iD. Suggestions
of attributes to add such as number of levels or the
specific address are presented on the left.

(d) The Tasking Manager from Humanitarian Open-
StreetMap Team (HOT) gives instructions on what
to map for a specific disaster event and helps map-
pers coordinate their efforts. (tasks.hotosm.org)

Figure 7.2: Editing OSM on openstreetmap.org

each with a different resolution of data. The tiles used for our analysis are generated at zoom level

12. At this level, the inhabited part of the earth is comprised of about 2.5 million tiles, and these

tiles have an area of roughly 100 square-kilometers at the equator.

For each of our analyses below, snapshots of the map at annual intervals from January 1, 2006

to January 1, 2017 are used to achieve annual granularity of the history of the database. We also

note that in some cases where the same object was edited multiple times in one year, only the last



126

edit of that year is counted. Some of our reported numbers are therefore an under-representation of

the total editing activity in OSM. We use an open-source Javascript framework called tile-reduce to

process these vector tiles in parallel.3 We perform all spatial analysis with open-source GIS tools,

and our full data processing pipeline includes a combination of javascript, postgresql, and python.

7.3.3 Our Dataset

To evaluate our three intrinsic quality metrics with respect to the insight they can provide

into the practice of disaster mapping, we selected four distinct tiles on the map that have been the

geographic focus of disaster mapping events following different kinds of events (see Figure 7.3). These

areas are: (1) Port Au Prince, Haiti, the scene of one of the first instances of major coordinated

disaster mapping following the 2010 Earthquake; (2) Tacloban, Philippines, where disaster mappers

digitally converged before, during, and after Typhoon Yolanda in 2013; (3) Monrovia, Liberia,

a region that was part of a year-long humanitarian-focused mapping project to help relief and

prevention efforts during the 2014 Ebola outbreak; and (4) Trisuli Bazar, Nepal, a region heavily

impacted by the 2015 Earthquake.

At the time of these events, each of the associated disaster-mapping activations was the largest

to date in terms of number of contributors. Study Tile 3 (Monrovia, Liberia) is different from the

rest because the activation in response to the ebola outbreak was not a single, rapid convergence

of contributors, but rather a long-term project that saw thousands of volunteers over a period of

months. In comparison, the other events saw a period of rapid mobilization as contributors converged

on OSM in immediate response to the natural hazard. We expect to see distinct differences then in

our results between these regions. The mapping tasks are similar across all the events: for disaster

mapping, tasks focus on performing detailed mapping of buildings and roads in specific regions.

For quality comparison, we have chosen two well-validated areas of the map: London, UK

and Heidelberg, Germany. Previous extrinsic quality research found that these tiles are of high

quality when compared to external reference datasets [7, 48]. We compare the study tiles with

3 github.com/mapbox/tile-reduce
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(a) Study Tile 1: Port Au Prince, Haiti
km of road 1,006 km (54% with names)
# of buildings 12,141 (7% labeled)
Contributors 494

In response to the January 2010 Earthquake, hun-
dreds of users contributed tens of thousands of fea-
tures to the map to aid disaster relief, creating the
most comprehensive map of Haiti to date [125, 145]

(b) Study Tile 2: Tacloban, Philippines
km of road 257 km (35% with names)
# of buildings 29,573 (71% labeled)
Contributors 371

Striking the Phillipines in 2013, Typhoon Haiyan
(Yolanda) prompted contributors to improve the map
in the Tacloban region, specifically updating buildings
on the map for damage assessment [105]

(c) Study Tile 3: Monrovia, Liberia
km of road 174 km (32% with names)
# of buildings 19,193 (6% labeled)
Contributors 202

In 2014, HOT coordinated disaster mapping efforts
in West Africa in response to the Ebola Outbreak.
Lasting many months, this was distinctly different
from the rapid convergence of contributors on the
other three tiles.

(d) Study Tile 4: Trisuli Bazar, Nepal
km of road 324 km (3% with names)
# of buildings 7,596 (16% labeled)
Contributors 257

The largest disaster mapping event to its time, thou-
sands of contributors were mapped Nepal in response
to the April 2015 Nepal Earthquake. Though contrib-
utors mapped all over the country, this tile represents
one area with a lot of activity. [108]

Figure 7.3: Details of the four study tiles selected for contribution-based intrinsic quality analysis.
Data retrieved at the beginning of 2017. See the OpenStreetMap wiki for more information on these
activations:
wiki.openstreetmap.org/wiki/Typhoon Haiyan, 2014 West Africa Ebola Response
wiki.openstreetmap.org/wiki/2015 Nepal earthquake

these high-quality tiles for each metric. The differences suggest that our metrics are capturing

contribution patterns unique to disaster mapping.
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Though today these tiles may appear complete, our metrics aim to expose the differences in

the histories of how the data were contributed. For each metric, we discuss the specific implications

the findings may have for measuring intrinsic information quality in VGI.

7.4 Contributor-based Intrinsic Quality Metrics

We extend one existing intrinsic quality metric and propose two new intrinsic information

quality metrics for VGI. These metrics apply to vector tiles of OSM data. Our metrics explore

attributes of the data beyond geometries and visible properties; instead, they examine features

specific to peer-produced spatial data. This includes information about a contributor’s previous

experience with the platform for each individual contributor and the time when an object was last

edited. Specifically, our metrics are:

(1) Contributor Density Over Time
How many users have been active on a given part of the map? Denser maps should have
higher quality as more people have been active in the area. This is a straightforward measure
that was first explored by Haklay et al. [48]. Our extension to this measure focuses on
temporality, looking at the cumulative density over time and marking when the bulk of
contributors were active.

(2) Contributor Experience
How long has a contributor been active in the OSM community? What types of objects have
they mapped before? We expect that areas with experienced contributors should have higher
quality. This metric works to supplement the straightforward measure of contributor density
by further inspecting who the contributors are. The need for such a metric becomes especially
important when considering mapping events that attract newcomers. This measure asks:
“Who does a majority of the work: many new contributors, or fewer experienced power
users?” Depending on this distribution, the cumulative number of contributors per square
kilometer may not be as important.

(3) Tile Maturity
How is the composition of objects changing over time? Areas where contributions are focused
on maintaining existing features instead of adding new features may have achieved some
level of completeness, itself a quality measure. Instead of examining qualities of individual
contributors, this measure instead considers collective editing activity by looking at the
bulk of types of edits in a region over time.
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7.4.1 Metric 1: Contributor Density

In one of the first intrinsic quality studies of data quality in OSM, Haklay et al. found that

after 15 mappers have been active in a given square-kilometer, the positional accuracy below 6-meter

resolution is “very good” in comparison to government data [46]. This study also revealed that the

first five mappers to an area make the greatest impact to the positional accuracy of the data. This

contributor-density method draws inspiration from Linus’s Law of open source software development:

“given enough eyeballs, all bugs (in software), are shallow.” For OSM, the contributor-density method

assumes that more mappers contributing to an area provides a greater chance that some level of

data validation and quality assurance has been achieved [48].

Globally, less than 1% of zoom-12 tiles reach Haklay’s threshold of 15 contributors per square

kilometer. When we examined our tiles, we found that both Port Au Prince and Trisuli Bazar

reached this threshold during their respective disaster mapping events (see Figure 7.4). This initially

suggests that the quality of these tiles became “very good” as contributors mobilized in response to

the event. The spikes in contributor activity at the time of the event for Tacloban and Monrovia are

significant and represent the most activity ever to occur on these tiles, but still do not reach this

particular threshold of 15 contributors per square kilometer. Figure 7.4 also shows the density of

contributors in London and Heidelberg, which surpassed 15 users/km2 in 2008 with steady growth

of an active OSM community since.

Figure 7.5 looks beyond cumulative density to contributor count over time to reveal the rate of

growth for the number of distinct contributors. As expected, the time of the disaster-mapping event

creates the most significant spike in contributors for each tile. This spike shows many contributors

active during a relatively short amount of time and then never returning to edit in this area. This

may lead to the staleness of the map data (discussed next).

In contrast, London and Heidelberg show the sustained growth of a contributor community.

These communities grow steadily from the beginning and seem to level off in recent years, perhaps

suggesting a level of saturation of contributors in the region. Knowing these tiles are of high-quality
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Figure 7.4: Density of unique contributors by tile over time (cumulative - in users/km2). Event
year is highlighted in yellow.

suggests that a sustained, growing community of contributors is a positive quality indicator for the

map overall.

Port Au Prince continues to maintain an active community in the years following the earth-

quake, significantly larger than the contributor activities of the other tiles; this is likely the result of

the work of a local mapping community group, COSMHA (Comunite OpenStreetMap de Haiti),

which formalized and incorporated as part of the response to the earthquake [125]. This sustained

community of contributors has positive quality implications for the resulting map.

In contrast, an indicator of potential lower quality as a long-term result of these rapid, single

mobilizations of contributors is staleness of the data. Figure 7.6 shows that six years after the



131

Figure 7.5: Users active each year on the study tiles and two known high-quality tiles for comparison.
The years of disaster events for our four study tiles are labeled in red. Inexperienced and Experienced
users are denoted by color. Metric 2 explores these differences.

event, the Port Au Prince tile has many features still tagged as building=collapsed which have not

been edited since the earthquake. While these buildings may have not been rebuilt and are indeed

represented accurately in the database, we cannot know for sure without more recent timestamps in

these edits.

7.4.1.1 Implications for assessing information quality

This metric shows that areas that have experienced the rapid mobilization of contributors

during disaster mapping events may superficially satisfy quality measures based on density of

contributors with one-time contribution activity. Quality evaluations need to take into account

the previous editing context and consider the amount of sustained editing activity, which requires

new contributor-density measurements over time. In this vein, [48, 10] warn that OSM quality

evaluations should be localized and performed with “fitness for purpose.” In the cases under study
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Figure 7.6: Features tagged as building=collapsed in Port Au Prince.

here, the purpose was to create roads and buildings data where there previously was none, and for

immediate use. This is a different type of mapping activity than a local community performing

sustained, detail-oriented mapping. Quality evaluations of these data need to then be aware of these

generative differences in the map so as to evaluate the data within context.

Furthermore, the timing of these contributions raises the question of staleness as well. Our

first metric expands on previous work by considering the age of the contribution [10]. Overall, this

metric is simple, yet powerful, because the results seem intuitive and can locate areas of the map

where high numbers of contributors (relative to others) have been active, and moreover, how long

they were active.

7.4.2 Metric 2: Contributor Experience

Our second metric expands quality investigation to the amount of editing experience a

contributor has with the objects they are editing. Note: our use of the term “experience” refers to a

user’s familiarity and expertise with the OSM platform. The relationship of contribution experience

to map quality has been explored by a variety of methods, but most commonly it is defined by

the number of edits that a mapper has made [84]. We explore a new notion of experience in terms
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of days active on the platform. Barron et al. remind us that while it seems plausible that editors

with more contributions create higher quality data, this has not been formally evaluated [10]. For

the purposes of this metric, we take a slightly modified approach to the notion of experience by

classifying users with seven or more days of activity as “experienced,” and users with less than

seven days as “inexperienced.” Because over half of all contributors have only made one edit while

other contributors have made millions, the distribution of editing days per user is highly unequal

and non-uniform. We empirically selected seven days because it retains an approximate log-normal

distribution of edits per user, consistent with other online communities. This threshold retains

97.7% of the total edits but only 13% of the users for global OSM editing. We find this definition

of experience more illuminating than previous definitions because it takes into account sustained

interest and activity in OSM. A contributor active for only a weekend mapping event may create

a lot of data, but has less overall experience with the platform and community norms than a

contributor who has been active for more days. For this research, then, we take the equivalent of a

week-long experience with the platform to be a useful minimum for understanding a range of basics

about the platform and the OSM community, based on our experience with training others on OSM.

However, this is a flexible variable that can be chosen at different thresholds for other purposes; we

chose seven days for the models here. How definitive a line between new and experienced is drawn

at this threshold is an area of active research.

Referring back to Figure 7.5, we see a difference between experienced and inexperienced

contributors per year. For each study tile, activity spikes consistently have more experienced

contributors than inexperienced. This suggests that more experienced contributors participate

in disaster mapping activations than inexperienced. This has important quality implications for

the data contributed during these events: specifically that these data are likely of good quality

because the contributors have previous editing experience. However, the ratio of inexperienced

contributors increases with each event from nearly 10 experienced users for every inexperienced user

active in 2010 in Port Au Prince, to 1.6 experienced users for every inexperienced user active in

Nepal in 2015. This suggests that more new mappers are becoming involved in the disaster mapping
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community. While this is encouraging for the overall growth of the larger OSM community [29],

it comes with the potential that recent and future events may include more and more data from

first time contributors not yet aware of specific editing or community norms. Observations of the

OSM mailing list during the Nepal earthquake confirm that experienced mappers were frustrated

that new mappers were not following community norms and creating square buildings.4 To combat

this, OSM editing tutorials are constantly being developed, updated, and customized for different

disaster events, such as learnosm.org.5

We next look at what types of objects contributors have edited to explore a richer notion of

experience with the OSM project. This measure assumes that, with time, a contributor’s proficiency

in editing specific object types improves. We look specifically at contributor preferences for mapping

buildings and roads. Figure 7.7 shows editing habits of all OSM editors by object type. The number

of buildings and road kilometers edited is calculated for all contributors and then plotted against

one another. The color represents the number of contributors having edited <x>kilometers of road

and <y>number of buildings. The legend on the right matches color to number of users.

The majority of the activity lies along the x- and y-axes near the origin, indicating that

most users edit 1) very little, and 2) only one type of object or the other, not both. The lighter

trend down the diagonal indicates that, as contributors edit more (and therefore become more

experienced), their preferences for one object over the other may fade and they map both types

of objects, though the majority of contributors do not exhibit this behavior. This distribution is

consistent with power contributors in peer production systems like Wikipedia [64]. This prompts

the question for the quality of our study tiles: are the ratios of buildings and roads edited by power

contributors versus others higher or lower than other regions of known high-quality?

Figure 7.8 shows the differences in object editing experience among contributors and their

respective number of edits, an indicator of their experience with this object type. For each study

tile, we also show the distribution for London and Heidelberg for comparison (the faint red and

4 May 2015 HOT mailing list archive lists.openstreetmap.org/pipermail/hot/2015-May.txt.gz
5 learnosm.org is an open source project maintained by the HOT and OpenStreetMap Communities.
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Figure 7.7: Editing Preferences among OSM contributors

green dotted lines). The similarities between the distributions for London and Heidelberg suggest

that this shape of distribution may yield good quality. On both tiles, we see that contributors with

experience editing over 1,000 buildings map over half of all the buildings for each region. There are

both positive and negative quality implications here. Fewer more-experienced users doing the bulk

of the editing suggests specific expertise, but limits the amount of crowd validation that may occur

(referring back to our first metric).

In both Port Au Prince and Trisuli Bazar (Tiles 1 and 4), the distribution for buildings differs

significantly from the known high-quality tiles. In these cases, less-experienced contributors edit

a higher percentage of the total buildings. In Tacloban, however, this trend is the opposite, with

more-experienced building mappers performing the bulk of the building edits.

Study tile 3, Monrovia, has the most similar distributions to the known high-quality tiles. This

is fitting because the particular disaster mapping event consisted of a sustained mapping activity by
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an engaged mapping community over a longer period of time. This mirrors the engagement of an

active local mapping community, as seen in Heidelberg and London. Across all of the study tiles,

there is no notable difference in the distribution of road mapping experience and the amount of

roads mapped. Further analysis is required to identify the differences here.

7.4.2.1 Implications for assessing information quality

If most of the buildings or roads in an area were created by contributors without any prior

experience creating those kinds of objects, then one may be suspicious of the quality of that section

of the map compared to other areas where the majority of an object type is edited by contributors

with prior experience working with that object type. On the other hand, if just a few power

contributors have edited most of the objects, fewer eyes have seen this part of the map, lowering

the potential for more validation opportunities.

Figure 7.8: Percent of buildings and roads edited on each tile versus the number of buildings
or kilometers of roads a user has mapped (experience). Thick blue lines represent object-level
experience (X-axis) per cumulative amount of total edits to that object on the study tiles (Y-axis).
The faint lines represent the same values for our High quality comparison tiles. Differences between
these distributions highlight the differences in the amount of editing experience among contributors
and their contributions.
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Ultimately, the differences in these distributions cannot definitively say that one tile is of

higher quality than another. However, the similarities in the distributions for our two high-quality

tiles may suggest a target distribution of experience versus amount of objects mapped that yields a

good quality map. Departure from this distribution would then have implications for the quality of

the final map, though comparing to only two high-quality tiles is not sufficiently representative to

make this claim definitively. Future research should expand this study of high-quality regions to

achieve a statistically significant target distribution from a larger sample of known high-quality tiles.

For now, however, there is no denying that the distributions of experience with mapping buildings

to the amount of buildings mapped during a disaster is distinctly different in regions that have been

the subject of disaster mapping activities with a rapid convergence of contributors, for better or

worse.

7.4.3 Metric 3: Tile Maturity (Stages of Growth)

The current version of the OSM database is the aggregate product of hundreds of millions

edits from hundreds of thousands of users. Our third metric, what we call a tile maturity measure,

breaks down the types of edits that occur in an area over time to identify distinct stages of growth.

By looking at both the object type and the timestamp, we can identify several distinct stages of

editing behavior that the map progresses through. These stages include the creation of new roads,

the addition of new buildings, and, finally, a maintenance phase, where less new data is added and

the bulk of contributions are edits to existing objects. In general, we know that the map grows

from the road network outward [22]. The maintenance period has been called “map gardening” [72],

in which continued editing of existing map objects, versus the creation of new ones, becomes the

characteristic pattern of editing.

For comparison at a macro scale, we computed these stages of growth for the United States in

OSM: While the number of edits continues to grow, the map does not fill in proportionally by object.

In the US, 40% of the total road editing activity done to date was completed by 2009 (largely the

product of a massive import of road data conducted in 2007/2008). However, it was not until five
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years later that buildings caught up and 40% of the total building editing activity was complete. In

the last two years, only 10% of the total road editing activity has occurred, but more than 50% of

the edits to buildings have taken place. There is a clear trend of roads being added first, and while

these roads continue to be maintained, contributors in the US are currently in a building phase.

We, among others, find this pattern to hold in general for OSM globally [22].

Figure 7.9 shows the breakdown of new roads and buildings in comparison to editing of

existing objects for each of our study tiles through the years. Across every tile, we see agreement

that the first stage is the creation of roads. As new road activity subsides, there is a rise in the

amount of new buildings. Port Au Prince (study tile 1) appears to currently be in a building

phase, where the majority of edits in the past couple years have been the creation of new buildings.

However, the years after the earthquake show a majority of maintenance activity, likely editing and

maintaining data produced during the event. This creates a false sense of completeness where one

may expect the building phase to be over. As evidenced by the new building activity occurring in

the last two years, however, the region is not actually in a maintenance phase, but instead back in a

building phase.

Similarly, Study Tiles 3 and 4 (Monrovia and Trisuli Bazar) both appear to be in a maintenance

phase. With their respective disaster mapping activities occurring more recently, it is unknown

whether this current maintenance phase is the product of editing the features created during the event

(similar to Port Au Prince), or if the region indeed has reached some level of building completeness

and has naturally entered a maintenance phase. In both cases, the types of edits occurring during

the event nicely match the type of tasks outlined by HOT, which was to add buildings to the map.

And in the case of Trisuli Bazar, also perform “detailed mapping” of the area. These maintenance

phases likely represent the annotation of descriptive tags to features created by remote mappers

during the event. It is still unclear, however, whether the tiles will enter another building phase in

the future, as we have seen with Port Au Prince.

Study Tile 2, Tacloban, on the other hand, saw many new buildings, but mostly editing

of existing features during the year of the event, prompting further questions about the exact



139

Figure 7.9: Stages of Growth as shown by edits of each type each year. The Y-Axis representing
edit-counts are log-scaled to allow non-disaster event years to show. The percentages are shown on
the right to better express the relative amount of activity. For study tiles, event year is denoted
with red, italic label
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disaster-mapping activity. Furthermore, the tile parallels Study Tile 1 by appearing to enter a

maintenance phase after the event (though with a surprising number of new roads), and is currently

going through another building phase.

This potentially premature maintenance phase is common across all these regions, making the

tiles appear more complete than they are, relative to other parts of the map that appear to progress

through the phases of growth in an orderly fashion. However, these regions are still significantly

better mapped now than they were, having been the target of disaster mapping. For comparison,

the stages of growth are shown for Heidelberg and London. Heidelberg clearly follows the standard

trend with maintenance behavior increasing in recent years as both building and road creation slows

down. London has seen increased building activity in recent years, but still follows the general trend

of maintenance behavior being more common in recent years than new roads.

7.4.3.1 Implications for assessing information quality

Given the specific order in which the map grows and matures, knowing which phase of growth

a given part of the map is in gives an indication of its level of completeness (a standard quality

measure). Determining these phases strictly on percentages of edit types requires neither external

reference data nor specific object attributes, merely the geometry type and version number. This

makes analysis of any region possible since these are basic attributes present in every map object.

Disaster mapping activity, however, interrupts this natural sequence, making the map appear

to be in a different stage than it likely is. Our metric is good for showing relative tile maturity

between different regions, but the context of a region is important to consider. Comparing the

apparent stage of growth with the specific tasks outlined for a disaster mapping activity can provide

this context. Ultimately, these stages of tile maturity are relatively easy to compute for any region

of the map and offer a measure of object-level completeness, a metric that is typically only possible

with extrinsic quality analysis relying on an external reference dataset.
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7.5 Discussion

Information quality is an important concern for online peer production systems like Wikipedia

and OpenStreetMap, especially in safety-critical situations. Despite the similarities in the systems’

affordances, the well-validated contributor-based intrinsic metrics for assessing information quality

in Wikipedia have not been translated into OSM. While other intrinsic quality assessment techniques

relying mainly on the spatial attributes of the target dataset have been explored for OSM within

the field of GIScience, we presented three metrics using VGI meta-data about who made spatial

contributions and when to develop alternative perspectives for intrinsic information quality than

what is found in related work [10]. We find this shift in emphasis from the spatial attributes of VGI

data to contributor information in turn establishes a bridge from the GISciences into the fields of

social computing and human computer interaction.

These new metrics are especially important in understanding the quality of map data produced

from a large mobilization of contributors during disaster mapping. Because these data are created

for use for disaster preparedness, response and recovery, having ways to assess map quality becomes

a safety-critical task. The intrinsic quality metrics offered here rely on metadata about contributor

activity that, as opposed to other approaches, are likely to be available in disaster mapping scenarios.

They have been tested against four distinct areas of the map that were the sites of large mobilizations

of volunteer mappers. These metrics exposed differences in the contributor activity between each of

these areas and areas of the map known to be of very high-quality and not impacted by disaster

events. The variation in the results suggests these metrics capture distinct generative processes that

have implications for assessing the quality of the final product.

Metric 1 showed that while the number of contributors active in a region may indicate the

size of the OSM community with direct correlation to the quality, events that draw many remote

contributors to the area artificially inflate this density with one-time activity. While contributor

density has been shown to be a useful intrinsic measure of quality [48], we show that it is important

to also include the temporalities of these contributions in quality assessment. Metric 2 reveals
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that mapping done by power contributors looks different in areas with sustained and active OSM

communities than in areas experiencing the rapid convergence of digital volunteers. In terms of

buildings, power contributors had less influence over the total edits in Port Au Prince and Trisuli

Bazar than they have in regions with more continually active contributors. It should be noted that

both these events were earthquakes—that is, sudden onset events—prompting a rapid convergence

of contributors. Metric 3 reveals that disaster mapping activity may disrupt the natural evolution

of the map away from the distinct phases of editing, creation, and maintenance.

Given the fundamental difficulty of extrinsic quality assessments of spatial information,

intrinsic quality metrics used with other features help identify nuances in the different processes

for generating peer-produced spatial information. Ultimately, each of the regions we investigated

become better mapped than they were before as a result of the volunteer contributions, but as

discussed above, this process played out in unique ways across each site. By combining these metrics,

users of the map data can develop a richer understanding of exactly how the map came to be,

such as understanding how stale the data may be due to a one-time very active community or

learning about the specific expertise breakdown of the contributors. As we have shown, and as

with traditional metrics of data quality, none of these metrics convey uncontestable assessments of

data quality. Rather, they are intended to be used in combination with other measures to provide

historical context of the editing in the region to help better understand the evolution of the map.

Additionally, these analyses must be performed with a consideration of how the data will be used

[10]. This is further complicated when considering time- and safety-critical applications of the data

such as emergency response. Ludwig et al. suggest that in emergency situations, notions of general

information quality assessment are less important than the specific fit and purpose (emergency use)

of the information itself [68]. Referring back to Figure 7.6, the “staleness” of the data today and

therefore its potential to lower overall information quality for the area seems a worthy tradeoff for

the value that data held during the specific emergency task for which it was contributed in 2010.
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7.5.1 Implications for practice and design in disaster response and beyond

Authoritative data sources that can support extrinsic approaches to assessing VGI quality are

often difficult to obtain outside of advanced industrialized countries. In the absence of objective

ground truth, examining how user behavior and temporal context interact to generate data can

identify gaps. Because these metrics only rely on the OSM database and not external sources,

they can be used immediately to help disaster mapping efforts better understand the contribution

patterns. Who is editing the buildings? How much experience do they have? These represent real

concerns; discussion occurring on the Humanitarian OpenStreetMap Team’s mailing list during the

Nepal earthquake response highlighted frustrations of experienced mappers over the non-square

buildings being mapped by new users that cost valuable volunteer time. Our metrics could help

organizers of disaster mapping activities more quickly inform their volunteers as to what is happening

and/or prompt intervention where it may be most helpful.

Intrinsic methods also allow for identification of stale data in the map, requiring only the date

of the most recent edit. This type of analysis could inform contributors where they should focus

validation efforts. As we have shown, even in places where the map appears relatively complete,

there may be stale artifacts that degrade map quality. The scale and complexity of these data

coupled with the fundamental difficulty of establishing extrinsic quality for spatial information

also suggests that developing and validating intrinsic quality metrics will also be essential for

filtering out vandalism and attacks. Consider a map tile rapidly accumulating edits from novice or

non-local contributors: Is this an instance of coordinated vandalism or disaster response? Automatic,

algorithmic approaches to vandalism detection have yet to be perfected and similar approaches on

Wikipedia have distorted behavior in the community and discouraged new contributors [38, 51].

7.5.2 Limitations and Future Work

Our methods are currently limited to the resolution of the specific OSM vector tiles as they

are generated, both in temporality (annual snapshots only count the latest edit to an object per
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year) and in size (zoom level 12 may be too big to identify more spatially nuanced editing activities).

Computationally, however, this approach utilizes advanced methods for parallel processing of the

massive OpenStreetMap database, making analysis faster and more scalable than previous methods.

Because these techniques use a contributor’s editing history, having entire histories instead of annual

snapshots will be more accurate in the future, though this is currently an unsolved problem at scale

for this domain. Furthermore, there are currently no scalable methods of tracking over-written

geometry changes. For example, if an editor squares up all the buildings in a region or slightly moves

the path of a road to better match updated satellite imagery without changing other attributes of

the building or road—a common type of edit—the database remains unaware of the change at the

object level. That is, if only the spatial geometry of a complex feature like a road or building are

changed, the change does not propagate to the object itself. Due to the data structure, identifying

and tracking these activities is non-trivial and no solution exists yet for performing this at scale.

These types of edits represent validation and correction and their existence has major implications

for the quality of the map in that region. Incorporating such features in future research is paramount

to better intrinsic quality assessments.

As indicated by a growing number of contributors with each subsequent event, data contributed

to OSM in disaster mapping situations will become more prevalent. In general, this will improve the

overall completeness of the map. These mapping activities help attract new members to the OSM

community, create large amounts of open geographic data, and most importantly, help to satisfy

the informational needs of emergency responders. As data contributed in these events become more

common in the OSM database, future work could explore more longitudinal questions of community

engagement and maintenance of the affected regions. For example, Dittus et al. present a study of

26 disaster mapping campaigns that sheds light on contributor engagement (and retention) across

different types of disaster mapping events; of specific relevance to this work, they propose quality

metrics based on data persistence and quantify user expertise and engagement using methods

proposed in [38] around the concept of an editing session, not simply number of edits or editing days

[30]. Knowing that the percentage of newcomers is increasing with each disaster mapping event,
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more and more of the map will be the product of novice editing. Future map data quality research

could further examine the correlation between new mappers and data quality across more events.

Dittus et al. find that the success of these events is not dependent on the large number of novice

mappers because novice mappers work slower and produce less data on average [30]. At the same

time, a novice mapper that joins for a disaster event and remains part of the community inevitably

becomes a more experienced contributor. While the actual amount of data contributed per mapper

will vary, future work could investigate if the level of experience (and volume of contributions) per

returning contributor is increasing at a rate greater than novice contributors are producing data.

This would lead to a population of disaster mappers with community mapping characteristics of a

non-disaster contexts like those of London or Heidelberg discussed here.

Thus far, this work is rooted in exploring metadata of VGI contributions to expand more

traditional VGI quality assessment methods. Another direction is to build from quality assessment

techniques in other forms of user-generated content independent of geospatial data such as social

media posts. Reuter et al. discuss the implementation and usefulness of a social media API that

incorporates post-specific metadata to perform quality-assessment of the data based on a variety

of data use-cases [114]. Future work along this vein could incorporate more social media research

techniques: network analysis, content analysis, sentiment analysis, etc. that are independent of

the geospatial information. Moreover, new technological solutions to improve coordination of these

disaster-related crowd-sourced and peer-production activities were not discussed in depth here,

current work in this domain such as Ludwig et al. present novel methods to ensure coordination

among volunteer responders to disaster events, even in the presence of network outages [67]. Such

systems are invaluable to communities of disaster volunteers with many quality implications for the

data produced.

Future work may also provide valuable insight to the fields of Crisis Informatics and VGI by

exploring potential theoretical and methodological consequences of these types of comparisons to

community behaviors (and the metrics) to peer-production in non-disaster contexts.
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7.6 Conclusion

The openness and availability of VGI presents new opportunities to use spatial data for

applications including in essential humanitarian and safety-critical situations where rapid availability

of high-quality data is paramount. We draw from the peer-produced OpenStreetMap database to

propose and evaluate three intrinsic quality metrics for spatial data based on the provenance of

these data that build upon user behavior and temporal context. These metrics are not introduced

in opposition to or replacement of existing quality assessment methods that respond to traditional

concepts of quality such as positional accuracy, map completeness, or the other ISO 19113 standards.

The intrinsic measures presented here can instead expose specific aspects of the map’s history that

can provide context—especially useful when assessment by comparison is not possible. Moreover,

these metrics are especially suited for identifying small and sometimes hard-to-detect changes to the

map in regions that are affected by rapid disaster mapping. For safety-critical situations of disaster,

where humanitarian decisions are based on maps being read by outsiders converging on an area to

help, a suite of intrinsic measures that strive to communicate peer-produced map quality from the

inside out, perhaps in real-time, is essential. If we anticipate that peer production platforms will

continue to populate our future information environments, and certainly in times and places like

disaster when convergence of information is a natural and age-old socio-behavioral phenomenon,

then attention to developing rapid metrics of quality for digital data generated under socially

distributed conditions will ascertain how much risk is assumed when life-and-limb decisions must be

made upon them.
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Chapter 8

Quarterly Historical Snapshots

This chapter reviews and discusses innovations completed during my second Research Fel-

lowship with Mapbox (2017). This involved first identifying shortcomings of the annual-resolution

historic snapshots and then creating quarterly resolution historic snapshot OSM-QA-Tiles. These

new tiles became the analytical backbone of an improved visualization tool to compare the state of

the map between two quarters. I presented this tool at State of the Map US 2017 in Boulder, CO.

8.1 Improved Resolution with Annual Snapshots

Historical tile-based analysis with annual snapshots proved to be a powerful, scalable approach

to global analysis of the evolution of the map using tile-boundaries as the units of analysis. However,

with the growing number of contributors, I developed an increasing concern over the amount of

editing activity that we were missing in recent years by using annual snapshots. The term “missing”

here refers to the literal loss of editing metadata in an annual-snapshot when quantifying edits at

the contributor level. I call these shadowed edits, as first presented in Section 5.4 and Figure 5.8.

Additionally, the map is evolving so quickly that annual time-steps between snapshot comparisons

cannot adequately capture the full story behind the map. To address this, we look into quarterly

resolution for three month time-steps instead of annual.

Figure 8.1 shows the discrepancy between annual and quarterly snapshots when using them

to count the number of edits per day. Higher edit counts in the earlier days of a year identified by

quarterly snapshots indicate edits that get masked at the annual resolution.
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(a) Daily edit count differences: 2007 - 2012 (∼12M missing in total, ∼2.5M / year on average)

(b) Daily edit count differences: 2015 - 2019 (∼34M missing in total, ∼8M / year on average)

Figure 8.1: Discrepancies between the number of daily edits as counted with annual snapshots and
quarterly snapshots.
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While obtaining the guaranteed true count of daily edits to the map with OSM-QA-Tiles like

this would technically require daily snapshots, Figure 8.1 shows that the quarterly snapshots were

able to identify an average of 8M edits more per year in recent years. In earlier years, with less

editing activity, the difference between using annual or quarterly snapshots is about 2.5M edits per

year. To get a better idea of where these shadowed edits are occurring, I developed the following

formula to compare the difference between each tile over the years.

8.1.1 Identifying Shadowed Edits Per Tile

Since historical snapshots only contain one version of an object, it is impossible to know who

has edited that object before. The version number of an object, however, can at least alert us to

the presence of previous edits.1 Learning more about these edits requires comparing versions of the

object across snapshots. However, performing this comparison at the individual object level can

really only tell us how many edits are missing, there will not be any metadata for the missing edits.

Additionally, it would be computationally expensive. Instead, I developed the following formula to

count the number of edits per tile that were shadowed between two consecutive years:

SUM OF ALL VERSIONS OF OBJECTS ON TILE

- TILE VERSION SUM FROM YEAR PREVIOUS Year

- TOTAL NUMBER OF EDITS THIS YEAR

--------------------------------------

SHADOWED EDITS

The sum of the version number for every visible object in OSM is equal to the total number of

edits to the map.2 At the tile level, then, the sum of the version numbers of all the objects on a tile

at any given time represents the total number of edits ever performed on that tile, up to that point

in time. While we still do not know who is responsible for the previous edits or when they occurred,

those objects with a version number >1 can tell us how many times they have been edited.

The only situation in which no edits get shadowed would be for objects to only be edited once

1 The version number of a converted way-element in an OSM-QA-Tile does not account for minor versions, so the
total number of shadowed edits is likely higher.

2 This is also going to be lower than the true number of edits because there are no representations of deleted
objects in OSM-QA-Tiles
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during the year, this could either be an edit to an existing object or the creation of a new object.

In this case, the difference in the sums of all of the versions between two consecutive years would be

equal to the number of edits that happened that year, and most importantly, the metadata for each

of these objects would then reflect the (only) edit that happened to that object during that year.

This is the logic behind this formula: Identifying the difference in these sums after accounting for

the edits that we know happened in a given year. We can learn more by then separating these edits

by object type, tracking the object-specific version sums per tile each year. Figure 8.2 shows how

the number of shadowed edits has increased globally over the years. Figure 8.3 shows an example of

calculating the total number of shadowed edits in 2015. The popup represents a tile in Kathmandu,

Nepal, where by tracking the object type, we can identify that 804 of unaccounted edits were to

roads and 1116 were to segments of roads.

Figure 8.2: Screenshots of the interactive shadowed-edit map for years 2007 (top left) - 2015 (bottom
right). Zooming in will show tile-level shadowed edit counts.
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Figure 8.3: Closeup of the interactive tool-tip that shows the breakdown of what types of edits
are being shadowed. The region selected here represents the city of Kathmandu, which had many
shadowed edits in 2015 as mappers continued to clean up and edit the map after the earthquake in
April.

8.1.2 Building Quarterly Historical Snapshots

As Section 5.5 described, to improve the tile-based analysis of historical data, I transitioned

the tile-based historical analysis workflow to rely on quarterly snapshots. Quarterly-snapshots

can be processed with the same workflow as Figure 6.1, just with four-times as many input files.

Collaborating with Mapbox, I created the quarterly-snapshots in a consistent manner with the

existing OSM-QA-Tiles so that existing processing tools could be simply pointed to these new files.3

Today, any OSM data analyst can download the historical quarterly-snapshots from 2005 through

3 An added bonus of re-generating historic OSM-QA-Tiles datasets included a new version of the GeoJSON
conversion utility which cleaned up many complications such as duplicated multi-polygons. For exact configuration
details, see: osmlab.github.io/osm-qa-tiles/historic.
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the end of 2018 at the OSM-QA-Tile website, osmlab.github.io/historic.html. This page also

includes detailed information on the limitations of these files and how they were created in an effort

to better educate other analysts about the pros and cons of doing snapshot-based historical analysis

of OSM data. I continued to maintain this page and produce these tilesets through the last quarter

of 2018, but have since shifted my focus and preference to the full-history schemas as proposed in

Section 5.6. The quarterly-snapshot tilesets, however, are still powerful analytical datasets if looking

to quantify changes to the map between two points in time, and give an adequately representative

account of editing activity over time, at least to 3-month resolution. The first project to implement

the quarterly snapshots for analysis was the OSM-Analysis-Dashboard.

8.2 State of the Map US 2017: OSM Analysis Dashboard

During my 2017 Research Fellowship with Mapbox, we used the quarterly-snapshot historical

OSM-QA-Tiles to create the OSM Analysis Dashboard. This interactive map and analysis dashboard

contains snapshot statistics for North America from 2005 through 2017 along any of the dimensions

shown in Figure 8.4. I presented the dashboard and the innovative analysis approach behind it

at the 2017 State of the Map US conference in Boulder, CO. This section will summarize the

innovations to the previous tile-based analysis workflows and share some of the key takewaways

from the presentation.4

Distinguishing this particular analysis workflow from that shown in Figure 6.1 is additional

resolution of analysis, both temporally and spatially. Though OSM-QA-Tiles are generated only

at zoom level 12, they still contain all of the OSM data for that tile—as opposed to a vector tile

optimized for rendering a map would only contain features visible at that zoom level, like major

roads and city names. Instead of using the zoom level 12 (z12) tile-boundaries for analysis, we

cut the tiles up further, into the 64 zoom level 15 tiles (z15) that fit within a single zoom level 12

tile. Whereas z12 tiles represent the area similar to a small city, z15 tiles cover an area closer to 1

4 Jennings Anderson and Ramya Ragupathy (2017). Watching The Map Grow. State of the Map US. Boulder, CO.
October 21, 2017. Findings summarized here with permission from my collaborators. Video of original presentation
available at 2017.stateofthemap.us/program/how-we-know-the-map-is-ready.
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Figure 8.4: Screenshot of the OSM-Analysis-Dashboard visualization tool showing the available
properties that have been precomputed and can therefore be rendered. Currently displaying the
total number of users ever active in an area at the end of 2008 (left) and the middle of 2017 (right).
The user can move the slider between the two for comparison.

square-kilometer. Furthermore, though more complex, this tile-reduce workflow does not depend on

any post-processing of tile-summaries for aggregation or visualization as the previous workflows did.

Instead, Figure 8.5 shows how the map and reduce functions can be leveraged to perform all of the

analysis at once, aggregating as it goes and saving the results.

To achieve this, I modified the order in which individual tiles are processed by the tile-reduce

job. By default, tiles are processed by column (longitudinally). Since the planet is represented as

a grid of tiles, each tile has an x,y address (at zoom level 12, this grid is 4096x4096). Tiles are

typically distributed to worker threads in the following order: (0,1),(0,2),(0,3).... Instead,

I segment tiles into larger blocks so that the grid is not read by column, but by larger blocks of

varying size, such as 4x4, which in z12 tiles, represents the area covered by a single zoom-level 10

tile: These 16 tiles are then all passed out to workers in parallel and the reduce job continues to

check if all 16 of these tiles have been processed. Once all 16 tile summaries returned, these results
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Figure 8.5: Tile-reduce workflow used to generate the datasets behind the OSM-Analysis-Dashboard
visualization (mapbox.github.io/osm-analysis-dashboard). This workflow performs analysis at
square-kilometer resolution and produces results aggregated at lower resolutions to be fed into
interactive tools.

are again aggregated into a zoom-level 10 summary and a geographic representation of the z10

statistics are saved. In implementation, z12 tiles can be processed in any block size, allowing for

arbitrary levels of aggregation, including multiple levels of aggregation as Figure 8.6 will show.

Figure 8.5 shows this workflow in which I label it reduce-ish because the information

returned from the each tile as processed by the map function is not immediately reduce-able, but

requires additional aggregation. This workflow is optimized, however, to hold these results in

memory for the shortest amount of time because of the order in which the tiles are distributed.

Once these aggregated statics are computed and saved to disk, memory is freed for the next block to

be processed. In this way we can efficiently process the entire planet in parallel while continuously

aggregating the results.5

Ultimately, this tile-based workflow ingests every quarterly-snapshot OSM-QA-Tile and

computes all of the statistics seen in the dropdown in Figure 8.4, aggregating these statistics

at larger and larger geographic areas. These statistics are then exported as GeoJSON Polygon

5 Hierarchical organization of spatial data by tile for efficient processing and serving is an active area of development:
medium.com/@mojodna/tapalcatl-cloud-optimized-tile-archives-1db8d4577d92.
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(a) Zoom 8 level aggregation (b) Zoom 10 level aggregation

(c) Zoom 12 level aggregation (d) Zoom 15 level resolution

Figure 8.6: As the user zooms in and out, the OSM-Analysis-Dashboard will automatically load a
different layer with statistics computed at a higher or lower resolution.

features and turned into vector tiles that power an interactive map that accurately displays these

quarterly statistics at various zoom levels: The browser loads the appropriate aggregation based

on which zoom-level an analyst is currently viewing. Figure 8.6 shows the four levels at which the

editing statistics are aggregated. Statistics like new buildings as shown here are simply summations,

however statistics like density of roads or buildings requires more careful calculation to not under-

or over-weight at lower zoom levels (avoiding taking the average of averages). This adds complexity

to the reduce job, but ensures higher accuracy in results.

The OSM-Analysis Dashboard lets analysts compare the map between any two quarters. This

allows us to visualize growth over time (or at least at quarterly resolution). It also innovated (my)
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Figure 8.7: The OSM Analysis Dashboard is capable of querying all of the quarters to generate a
graph (right) of how the given attribute—Number of edited objects per quarter in this case—has
changed in the region over time.

tile-based analysis workflow by introducing aggregation on-the-fly as the tiles were processed.6

Additionally, since all of the editing statistics for each quarter have been precomputed, it is possible

for the tool to query every quarter and generate a graph for any area the analyst is currently viewing

to see how the given attribute has changed over time, as shown in Figure 8.7. In this case, we see

the first significant acitivity in San Franciso in 2008. This corresponds to the TIGER import. Then

2014 sees a spike in the first two quarters. This is corroborated by an increase in the number of

buildings edited per day seen during the same time period in Figure 6.5.

Ultimately, creating the quarterly-snapshots improved the resolution of analysis from the

annual snapshots and improved the accuracy of contributor-centric measures by decreasing the

number of shadowed edits in a given year. An enhanced analysis workflow was able to leverage

6 It also simply looks much better than the previous suite of analysis tools because professional UI and UX designers
helped with the front-end interface.
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this increased resolution to build datasets that can drive more advanced and accurate interactive

visualizations to explore and compare the map between previous quarters. Used in this way, these

tilesets are valuable in providing planet-scale information about the evolution of the map, at least

3-month resolution. These tilesets and the workflow presented here supported the data analysis in

the next Chapter.

However, truly contributor-centric, individual-edit information is still not available for these

tile-based analysis work-flows. Having observed the scalability and extensibility of a tile-reduce

workflow, I became determined to produce a different form of OSM-QA-Tiles that can support the

most contributor-centric analysis: Showing exactly who changed which objects, how, where, and

when across the entire globe, at any time. To achieve this, I directed all further development to

creating the Full-history OSM-QA-Tile schema, presented in Part V.



Chapter 9

Corporate Editors in the Evolving Landscape of OpenStreetMap

With the permission of my coauthors, the following chapter is an exact reprint of an article

published in the International Journal of Geo-Information in May 2019.1

9.1 Introduction

OpenStreetMap (OSM) is a freely available and openly editable map of the world founded

in 2004 by Steve Coast in response to the prohibitively expensive geographic data owned by

the Ordnance Survey [24]. Since this time, OSM has grown into the world’s largest Volunteered

Geographic Information (VGI) platform. OSM is comprised of the consumable product—the mapped,

geographic data produced by millions of people around the world—and the massive community that

maintains it. At its technical core, OSM is a geospatial database with billions of entries that denote

hundreds of millions of physical objects in the real world. Several researchers have commented

on the growth in the volume and the evolution of this geographic content in terms of accuracy

and completeness [41, 10, 46, 109, 76]. The constantly-evolving map is supported by a growing

community of mappers with a variety of motivations [18] . In addition to individual mappers,

various groups formed around OSM also provide clues about the diversity of interests in the OSM

community. These include for-profit organizations that use the map-data, organizations such as

the Humanitarian OpenStreetMap Team (HOT), which creates geospatial data both in preparation

of and response to humanitarian crises around the world, or the many formal and informal local

1 Jennings Anderson, Dipto Sarkar, and Leysia Palen (2019). Corporate Editors in the Evolving Landscape of
OpenStreetMap ISPRS Int. J. Geo-Inf. 2019, 8, 232. doi:10.3390/ijgi8050232



159

OSM communities that organize mapping parties and other events to encourage participation and

data contribution. As such, OSM can be described as a “community of communities” that curate

and edit map data on a single platform, compelled by a range of individual and shared motivations,

but with the over-arching objective of creating a freely accessible, open, and editable map of the

world [127]. The continued growth of OSM is a testament to the idea that maps are never fully

formed, and are thus an ever-evolving product of embodied, social, and technical processes [59].

Maps represent snapshots of the moment, reflecting the values and priorities of their creators. The

various communities within OSM edit the map with different goals and motivations with the hope

that the common platform results in a uniform product useful for all. The ongoing efforts of this

“community of communities” make OSM a constantly evolving map-of-the-moment adapted to the

requirements of the day.

The last two years have seen major growth of a particular type of community: corporate

editors. These are paid editors that curate the map professionally. While numerous for-profit

corporations have always been involved in OSM—typically through using OSM data in their services

and products—the rapidly increasing number of paid-editors on the platform is new and has become

a contentious issue for some in the community. Presumably, the corporations employing these

editors are investing in OSM in relation to their product. For example, some core Mapbox products

rely on maps built on OSM data. As such they were one of the first companies to engage in this

activity, beginning as early as 2014. Other companies, such as Amazon Logistics, claim to use some

OSM data in their internal routing algorithms. In turn, they contribute back information from

their drivers to improve the vehicle routing abilities of OSM data [89]. In this article, we identify

ten corporations that transparently employ teams of professional editors. We explore the editing

activity of each team to better understand the impact on the map and community. Though some

editing mishaps have made the OSM community suspicious of corporate editing, guidelines around

transparency and community engagement are now in place that these corporations attend to—and

in so doing, make the usernames of their editors available. To the best of our knowledge, this is

the first article exploring the role and contributions of corporate entities editing OSM at scale. We
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consider the discourse about corporate involvement in OSM to inform and contextualize quantitative

analyses of the OSM database to measure the global footprint of the ten companies.

9.1.1 OSM Contributors

OSM relies on volunteer contributions to build and curate the map: specifically, this means

that OSM does not offer financial incentives to mappers. Currently, there are more than 5 million

registered users, over 1 million of whom have edited the map. The growth of the entire OSM

community is shown in Figure 9.1. Researchers have noted the motivations for contribution to

OSM as ranging from altruistic to vandalistic as a result of intrinsic self-motivations and external

societal, economic, or political drivers [89, 25, 81, 8]. The legal entity behind the OpenStreetMap

project is the OSM Foundation (OSMF). OSMF is a U.K.-registered non-profit that supports OSM

by fund-raising, managing servers, organizing and sponsoring conferences, and supporting working

Figure 9.1: OpenStreetMap Contributors: Over 1 million users have made at least 1 change to the
map. Far fewer contributors have contributed more than 10, 100, or 1000 times. Results calculated
from an OSM changeset database, created from the OSM changeset files by the open source tool:
github.com/toebee/changesetmd.
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groups that attend to various business functions such as licensing, operations, or communications.

OSMF is run by a board which is elected by due-paying members [102]. Membership with the

OSMF is separate from having a user account on openstreetmap.org, which is required for mapping.

There is no requirement to join the OSMF to be part of the OSM community (that is, as a mapper,

data consumer, etc.). Though there may be overlap in personnel, projects, and donors, but there

are no formal governing links between OSM subcommunities—such as HOT, local OSM groups, or

companies—and the OSMF.

The response of the OSM community has been notable in the wake humanitarian crises [125,

5]. In particular, HOT mobilizes and coordinates global mapping events in response to disasters,

including Typhoon Yolanda (2013), The Ebola Crisis (2014), and the Nepal Earthquake (2015), to

name just a few. Additionally, local OSM communities organize mapping parties to recruit and

support new participants as well as to map previously unmapped areas [36, 53] . Regional and

global State of the Map conferences are also organized by active OSM groups, typically with support

from the OSMF and regional OSM organizations. In addition to the map itself, there are active

mailing lists and a wiki which also serve as venues for user contributions and discussion.

Not all users contribute equally to the map. OSM is no exception to the 90-9-1 rule found

in online communities where only a small number of active contributors account for most of the

contributions [85]. By our calculations for OSM, the top 1.4% of editors are responsible for 90%

of all the map changes (Figure 9.2). On a monthly basis, approximately 1 to 13 percent of users

actively contribute data [86]. Figure 9.1 shows that though over 1 million contributors have edited

the map, less than 700,000 have made more than ten changes to the map.

Like other online platforms, OSM also reproduces offline inequalities. Several groups of

people are underrepresented, including women, people in the Global South, people of color, and

non-urbanites [128, 43, 27, 84, 39, 110]. The skewed participation in OSM produces several artifacts

in the data [138, 131, 19]. For example, the predominance of male participation in OSM has created

an apparent over-representation of features that are correlated to male interests [128]. Availability

and access to the internet, technical knowledge, barriers created by the gatekeepers of the platforms,
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Figure 9.2: Left (a): The top 1% of users are responsible for 87% of all the changes to the map; Right
(b): OSM adheres to the 1% rule: a very small percentage of the editing community contributes the
majority of the data. Results calculated from the OSM changeset database described in Figure 9.1

and lack of free time and opportunity to contribute have been recognized as some of the hindrances

to equal participation [128, 39, 19, 49, 117]. In addition to systemic barriers, researchers have

also highlighted that the global political landscape has significant impact on contributors and

consequently, on the data produced [117, 111, 44, 14, 20, 66].

9.1.2 Landmark Corporate and Government Contributions to OSM

While the rise of corporate editing teams is a new phenomenon in OSM, corporate presence is

not new to OSM. For over a decade, corporations, governments, and other organizations have been

heavily involved in shaping OSM as it exists today. These involvements are documented through

the OSM wiki, mailing lists, and blogs, and cannot be traced through the scientific literature alone.

As one example of this, the OSM founder, Steve Coast, also founded Cloudmade, a company that

provided geo-services based on OSM data [90]. In this we see that special-interest groups are not

new to the OSM community; corporate editorship is not simply a case of capitalist appropriation of

an open data project, but rather the latest stage in an evolving project comprised of a wide-array of
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stakeholders, each coming from a different value system.

Next, we highlight a few key involvements of external groups that have had significant impact

on shaping the community and the map since its inception. First, the ability to trace features

from Yahoo! aerial images as of December 2006 removed the barrier of requiring GPS devices for

contributing to OSM [91]. This enabled “armchair mappers” to create and edit data for remote

locations. However, armchair mapping comes with its own set of challenges caused by georeferencing

errors and temporality issues. These issues prompted OSM to come up with guidelines for tracing

features [92]. Over the years, various custodians of aerial and satellite imagery—including Bing, Esri,

Digital Globe, and Mapbox—have made their data available for tracing in OSM. A comprehensive

list of imagery providers is maintained on the OSM Wiki [93]. Making satellite images available post-

disaster has been critical in the usability of OSM for disaster response [124]. This has particularly

aided the OSM community in quickly creating data for areas that lack good geospatial data during

times of need [125]. Projects such as HOT and Missing Maps leverage the image tracing function to

mobilize armchair mappers to contribute data for vulnerable places that lack geospatial data.

Second, large data contributions have significantly increased the map data available and

overall map usability. A landmark contribution of government data to OSM was the uploading of

the Topologically Integrated Geographic Encoding and Referencing (TIGER) dataset produced by

the U.S. Census Bureau starting in September 2007. The Automotive Navigation Data (AND) was

also uploaded at a similar time, adding the road network for the Netherlands along with parts of

India and China [91]. Several organizations, groups, and individuals have since contributed to OSM

through large data imports. Such imports of bulk data are valuable for increasing the data volume,

though integrating them with existing OSM data is challenging. For example, after the TIGER

import, several compatibility errors were noted because the TIGER dataset and OSM do not follow

the same road classification [143]. For managing the challenges of data integration, the community

has come up with guidelines for importing government data [94]. The OSM wiki maintains a list of

‘large-scale’ data imports and potential data sources for import and use [95, 96].

Several governments are both using and contributing to OSM. The World Bank has supported
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development of OSM data for both humanitarian crisis purposes and also as an ongoing effort for

places that lack capabilities to develop geospatial data [47]. Government entities including the

City of New York and Portland’s Traffic Authority have dedicated teams responsible for improving

OSM data in their jurisdictions [77]. Previous research has described government contributions and

usage of OSM data in greater detail [47, 77, 55]. Corporate entities such as Mapbox, Stamen, and

Geofabrik also use OSM data and make active contribution to the database and community through

various services they provide [77]. Corporate contributions to OSM data in small cities that lack

good geospatial data has also been noted [110]. Even though focused attention on corporate editing

by the OSM community is reaching new, visible heights, the OSM contributor network has been

historically comprised of public and private entities that have participated for various reasons in a

shared vision of an open map of the world. This report therefore focuses on the apparent growth

of corporate involvement in the past few years, and why their growing participation through map

editing may be fraught, and what this might mean for the future of OSM.

9.2 Materials and Methods

The companies examined in this report were identified through either their longtime involve-

ment in the OSM community, noted by their continued sponsorship of the Foundation and/or

conferences, or their current transparency in publicly revealing their involvement in editing the map.

This comprehensive sample was made by those with the most editing activity (Apple, Mapbox,

and Kaart) along with seven other corporations that the authors were able to identify through

their conference participation and their publicly visible list of paid editors. In total, we identified

954 usernames associated with corporate editing. At the time of writing, we are unaware of other

corporations with as much editing activity as those identified here. It is possible that there are

other companies employing teams of editors, but have yet to disclose this information.

We used two types of data sources to then further examine the role of corporate editorship:

public articles and data about corporate involvement in OSM, and the geospatial data created by

corporate editors.
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For the first source, we identify information across websites and media outlets to help trace

the interest expressed by corporate editors for using and editing OSM. This information links also

to publicly-available data that lists usernames of editors associated with each corporate team. It

also lends insight into the motivations, the nature of edits, and the mode of edits because these

companies both list and discuss specific mapping projects and their progress. The OSM sponsors list

was used as the starting point for assembling a list of companies interested in OSM. Media articles

were obtained when developments regarding this new phenomenon of corporate editing occurred.

The authors’ long-time experience in the OSM community, including personal observations at State

of the Map conferences, informed the formation of the questions and interpretations.

For the second source, we use historical quarterly-snapshot OSM-QA-Tiles for quantifying

where and what the corporate editors are editing on the map. OSM-QA-Tiles are vector tiles

containing object level editing behavior for the vast majority of OSM data: roads, buildings,

points-of-interest, etc. in an efficient, accessible form. For example, a recently modified building will

exist in an OSM-QA-Tile as a polygon object with metadata including the name of the mapper that

most recently edited it, the timestamp of this edit, and the current version number of the building:

denoting whether this user created the building (version = 1) or edited an existing object (version

> 1). We find this to be more accessible than the standard OSM data-model which requires first

reconstructing the building by identifying the individual nodes associated with the object. However,

an analytical weakness of the standard OSM-QA-Tiles is that map objects are unique (one version

of each object), so other than knowing their current version number, objects are unaware of their

own editing histories. Thus, these tilesets can only represent a snapshot in time: the most recent

version of the map data. For this historical analysis, we used the historical quarterly-snapshot

OSM-QA-Tiles. These tiles represent the map at the end of every quarter since 2005. Historical

OSM data analysis is possible by iterating through these tiles to get quarterly development of the

map. For example, if a road was created in January, and then subsequently edited three more times

in April, August, and December of that year, then each of the quarterly snapshots will include this

road along with the metadata corresponding to each of these edits (e.g. usernames and date of each
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of these four changes). An annual snapshot, in contrast, would only include metadata for the latest

edit occurring in December. Objects are edited at all frequencies, but quarterly snapshots give a

finer resolution of the evolution of the map while still making global-scale analysis computationally

efficient. We use the open-source Javascript framework tile-reduce (github.com/Mapbox/tile-reduce)

to efficiently process these historical vector tilesets, following the same methodology as previous

work by Anderson et al. [5].

Thus, the initial analysis of media articles, blog posts, and wiki pages enables us to position

corporate editors in the context of the larger OSM community, while the evaluation using OSM-

QA-Tiles quantifies the impacts to the map. To label edits as corporate, we match the usernames

associated with edits with the publicly disclosed lists of usernames associated with each company.

In the event a mapper edited before and/or after being employed by a company, we filter by time to

count only the edits that occurred during the mapper’s employment on a corporate data team.

9.3 Results

9.3.1 Observational Analysis of Corporate Involvement

We focused on the ten corporate entities that have shown significant interest in editing OSM.

We highlight the announcements and coverage of this phenomenon in different news media in the

past two years, then we discuss the visibility and contributions of these companies in the OSM

community. We then examine the traces of these companies in the OSM data itself. Table 1

highlights how the quantity and variety of contributions from each varies dramatically.

9.3.1.1 Tracing Corporate Interest Through Media

Bing, a subsidiary of Microsoft, has contributed 125 million building footprints in the U.S. to

OSM, which they extracted from aerial imagery through deep learning algorithms [132]. In addition

to contributing automatically extracted and generated data, Microsoft has also assembled a team

of editors to contribute to OSM. The aim of their Open Maps Team is to work closely with the
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Corporation
OSM Foundation
Engagement

Team URL
Team
Size

Number
of Ed-
its

KM of
Roads
Edited

Bldgs
Edited

Amazon
Gold Corporate Sponsor
(Amazon Web Services)
SOTM 2013

wiki.openstreetmap.org/
wiki/Amazon Logistics

110 388,000 120,000 1000

Apple
github.com/osmlab/
appledata/
wiki/Data-Team

342 3,944,000 1,643,000 1,156,000

Development
Seed

wiki.openstreetmap.org/
wiki/DevSeed-Data

8 488,000 62,000 269,000

Facebook

Gold Corporate Member
Gold Sponsor-SOTM
2018
Silver Sponsor-SOTM
2017
Bronze Sponsor-SOTM
2016

wiki.openstreetmap.org/
wiki/AI-Assisted
Road Tracing

87 1,106,000 821,000 1000

Grab Gold Corporate Member
github.com/
GRABOSM/Grab-Data

124 1,593,000 300,000 63,000

Kaart
Bronze Corporate
Member Bronze
Sponsor-SOTM 2018

wiki.openstreetmap.org/
wiki/Kaart
#Kaart Data Team

93 2,887,000 484,000 702,000

Mapbox

Gold Corporate Member
Gold Sponsor- SOTM
2018, 2017, 2016, 2014,
2013
Silver Sponsor- State of
the Map 2012

wiki.openstreetmap.org/
wiki/Mapbox
#Mapbox Data Team

40 4,483,000 1,694,000 1,088,000

Microsoft
(Bing)

Gold Corporate Member
Gold Sponsor-SOTM
2018, 2017
Platinum Sponsor-
SOTM 2011, 2010

github.com/Microsoft/
Open-Maps/wiki/
Open-Maps-Team-at-
Microsoft

29 643,000 458,000 52,000

Telenav

Silver Sponsor-SOTM
2017, 2016
Platinum Sponsor- State
of the Map 2012

wiki.openstreetmap.org/
wiki/Telenav
#Telenav folks
on OSM

30 963,000 336,000 5000

Uber github.com/
Uber-OSM/DataTeam

91 464,000 32,000 349,000

Table 9.1: Known Corporate editing teams active in OSM. The column OSM Foundation Engage-
ments shows the current affiliation with OSM Foundation and their sponsorship of State of the Map
conferences. Data for edits as of January 2019 (since 2014), rounded to the nearest thousand.

OSM community to improve data quality in places of strategic importance to Microsoft [52]. The

team coordinates their activities through GitHub where their team members and projects are listed.

Each project is thoroughly described there. In addition, GitHub issues-tracker offers a place for

community feedback and questions, which supports transparent, documented issue resolution for

each mapping project (github.com/Microsoft/Open-Maps/issues). Mapbox/DevSeed, Apple, Kaart,

Telenav, & Grab also use GitHub in the same way to track their projects and answer community

questions. Microsoft’s commitment to OSM is an extension of their support of open source projects
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[2, 71].

Facebook’s OSM contributions to date have mostly been through supervised automated

contributions. They use machine learning to detect road networks from satellite imagery which are

then validated and reviewed by their OSM editors who work closely with the local OSM communities.

All machine-identified roads are reviewed by a human editor before being imported into OSM.

Their efforts were initially focused on mapping Thailand; they have completed editing road data

for all 79 provinces, adding a total of 515,306 km of road to the map [97]. They have used similar

infrastructure in collaboration with HOT to contribute in the aftermath of the 2018 floods in Kerala,

India [98].

One of the most valuable aspects of digital maps are navigation capabilities. However,

ensuring topological and semantic rules is tedious [41, 23, 142, 83]. Government and corporate

data contributions, coupled with the efforts of the community to clean and integrate these data

into OSM, have ensured that road network data in many places in Europe and North America

are suitable for navigation. However, this is not the case for OSM data in Asia. Many Asian

countries have emerged as big markets for ride sharing services such as Uber and Grab [63]. Uber

has announced that it wants to migrate its mapping service to OSM; New Delhi, India will be

the first city where this OSM-based service will be rolled out [54]. Uber also announced through

a community posting in an OSM forum that they will involve a team of editors to improve map

data specifically for navigation by modifying and adding turn restrictions, directionality, and road

geometry [57]. Grab has dedicated considerable amount of effort into improving OSM data for

Southeast Asia. In addition to having a team of editors, Grab has organized several mapathons in

many countries for wider community engagement [136]. They have also partnered with HOT for the

mapathons to ensure their edits are relevant in crisis situations [122].

Until 2018, the Mapbox data team was the most active team of corporate editors in the OSM

community. Mapbox was one of the first companies to employ a team of OSM-specific editors,

starting as early as 2014. In late 2017, a large part of the Mapbox data-team merged with the

Development Seed data team, creating DevSeed Data [119]. Like Facebook, this team is also heavily
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invested in machine-assisted mapping: using machine learning to help their data team identify

features to map. Kaart drives vehicles all over the world to capture road networks and ground-level

imagery to improve OSM [99].

The OSM community has been divided about its policies to enforce transparency and ac-

countability for what they refer to as “organized editing,” which captures mapping activities by

both nonprofit (e.g., HOT humanitarian mapping) and for-profit groups (i.e., the groups described

here). In a 2017 survey by the OSM Foundation, 43% of paid editors—compared to 17% of all

respondents—opposed having policies that guide editing activities [101]. Ultimately the OSM

Foundation produced the Organized Editing Guidelines in November 2018, the goal of which is to

ensure meaningful, transparent participation from large editing teams [37].

Though these ten corporations have been transparent about their editing activities of OSM,

there have been mishaps regarding editing conflicts with the community. For example, Grab was

in the spotlight in late 2018 for the oversight by their outsourced editors for overriding volunteer

contributions with incorrect edits in Thailand . This incident brought unresolved attention about

why companies (like Grab) which do not seem to be using OSM in their product are interested in

contributing and improving OSM. One Bangkok-based OSM enthusiast speculated that Grab (and

Uber) were using OSM data for improved routing in their applications without attribution [80, 79].

9.3.1.2 Contributions to the Larger Ecosystem and Community Participation

The involvement of these corporations in OSM extends beyond editing the map. Many of the

open source software tools in the OSM ecosystem are developed and maintained by their employees.

For example, iD—the user-friendly, in-browser editor incorporated into openstreetmap.org—was

initially developed by Mapbox and DevelopmentSeed with funds from the Knight Foundation

with the explicit purpose of improving core OSM infrastructure. Today, iD is a successful open-

source software project, with more than 10,000 code commits on GitHub—whose core “maintainer”

(that is, the lead developer) is a Mapbox employee. Other Mapbox-maintained tools include the

OSM validation utility, OSMcha, and a number of OSM data-processing tools available for anyone
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working with OSM data. Bing is the primary imagery provider for OSM. Telenav maintains

the website improveosm.org, which boasts the tagline: “Tools and Data from Telenav, built for

the OpenStreetMap Community.” Some of these data are pre-processed datasets of potentially

missing features identified by machine learning on telemetry data. These are just a few examples

of corporations participating in OSM in addition to their paid editing-teams. This is far from a

comprehensive listing of which companies have contributed useful utilities to the project. Tracing

the decade-long involvement of developers, their employers, and the variety of funding sources

(corporate, donation, NGOs) is beyond the scope of this article, but it is safe to say that corporate

involvement in OSM has shaped and maintained the project as it exists today.

Corporations also have access to rich geographic data from their customers and operations.

For example, telemetry data (typically location data from mobile devices) can be used to identify

missing roads, turn-restrictions, one-ways, and more. Mapbox compiles these data internally to assist

their data-teams (mapbox.org/Telemetry). Amazon Logistics reports that they use their delivery

driver’s GPS traces in conjunction with driver feedback to help improve OSM [89]. Grab also states

on their wiki page that their data-team process begins by downloading their internal GPS traces

[100]. In terms of improving the OSM road network, there are few substitutes to such telemetry

data. These datasets leverage a massive number of sensors, obtaining more ground-reference GPS

traces than any number of individual OSM contributors could possibly acquire as hobbyists.

Some members of corporate editing teams are not new to OSM. At least 14 members of the

corporate editing teams were actively editing before 2014 as individual contributors. Collectively,

they represent 1% of all corporate editors, but their total edits to the map are equal to about

4% of all corporate edits since 2014, suggesting they are heavy corporate editors. In a 2017 OSM

Foundation survey, 55% of respondents that were associated with an organization engaged in paid

editing were with OSM for 3 years or more before joining said organization [101].

Corporations often sponsor and participate in OSM conferences. From our observations, their

presentations are some of the best attended talks at State of the Map conferences, especially if it is

the corporation’s first talk to the OSM community. They can also be some of the most contentious,
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prompting aggressive remarks and questions from the community.

9.3.2 Quantitative Evaluation Using Historical Quarterly-Snapshot OSM-QA-Tiles

Next, we use historical quarterly-snapshot OSM-QA-Tiles to visualize and understand the

global footprint of the 10 corporate editing teams and the features they are editing. Since mappers

may have been active before being employed by a data team, knowing the date when a mapper

becomes a corporate editor is an important detail. The resolution of this detail is limited to the

responsiveness of the company itself to update their publicly-facing list of data-team employees. For

example, if a mapper stops mapping as an employee in January, but the editor list is not updated

on the wiki until February, there is no publicly observable method to know that any edits between

these times were not corporate edits. At the moment, manually tracking and updating these lists

for this type of research is possible, but as these teams continue to grow, this task will become too

burdensome for individuals to do manually. Beyond measuring where corporate editors are active

and what they are mapping, we show distinct temporal editing patterns that characterize these

teams. Specifically, corporate editing teams appear to follow a Western five-day work week, where

the activity of these teams is punctuated starkly with periods of little to no editing every five days

by apparent weekends as days off. Later we discuss how corporate editing may be identified in the

future expressly from these distinct temporal patterns.

9.3.2.1 Global Footprint

Figure 9.3 shows the global footprint of the 10 corporate editing teams. This map is produced

by plotting the location of every edit by a member of a corporate team (denoted by color). High

concentrations of edits appear to glow white. Together, the power of corporate editing is globally

reaching. Mapbox and Apple have the largest footprints with edits on all six populated continents.

Telenav and Amazon mostly edit in North America and parts of Europe whereas the Microsoft team

is focused mostly on North America and Australia. Grab predictably focuses only on Southeast Asia.

While Uber does have some edits all over the globe, they are primarily active in New Zealand. As
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Figure 9.3: Where corporate editors are editing. The main map shows an aggregated view for all 10
companies. The sub figures show where each company is editing. In this map, we have combined
the Mapbox and Development Seed teams because they merged in late 2017.
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mentioned earlier, Facebook’s work is heavily focused in Thailand. Overall, Figure 9.3 shows that

corporate editing is a global phenomenon with specific regions of more interest to some companies

than others.

9.3.2.2 What Are Corporate Editors Mapping?

Table 2 highlights the increasing activity of corporate editors over the last 4 years. 2018 stands

out as a remarkable year as it seems to indicate a change in collective focus towards editing road

networks and building data. Figure 9.4 shows the relative quantity of edits to buildings, kilometers

of road, points of interest, and amenities per team per year, compared to the total number of edits

in the area. Thus, the radar charts highlight the main features of focus for the teams in the areas

they are editing. For example, in 2018, Apple editors, on average, were responsible for nearly 80%

of all the edits to existing roads and 70% of all the new roads created in the areas where they were

active, defined by zoom level 12 map tiles (about 95 km2 at the equator, the size of a small city).

Generally, companies have a preference for a particular edit type. Telenav and Grab, which focus

on navigation, are primarily editing roadways. In the case of both corporations, they are editing

existing roads more often than they are creating them.

Apple, Microsoft, and Facebook also have a massive imprint on the road networks in the areas

their data teams are active. In 2017 and 2018, these teams were responsible for creating more than

half of the new roads and editing more than half of the existing roads. Compared to all editors, Uber

Year Features
New KMs
of Road

Edited KM of
Existing Road

New
Buildings

Edits to
Existing
Buildings

Amenities POIs

2015 1,703,107 96,604 660,591 321,535 47,730 13,892 40,096
2016 2,251,615 87,321 677,795 308,785 198,366 69,949 214,087
2017 3,121,727 179,256 591,627 632,859 305,665 58,616 178,887
2018 9,925,463 682,938 2,982,248 1,709,935 176,113 33,845 61,238

Table 9.2: Total number of features, kilometers of roads, number of buildings, amenities, and points
of interest edited per year by all corporate editors. The increase in number of features edited since
2015 shows the overall rise in corporate editing.
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Figure 9.4: Each figure shows the types of edit these companies performing, relative to the total
editing activity where they are active. These are annual averages over all of the zoom level 12 map
tiles where a company is active. “Features” refers to editing any feature (all types of edits). The
final figure (j) represents the activity of non-corporate editors in areas where (any) corporate-editors
are active.
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never dominates editing in regions where they have been active in the two years they have been

involved in corporate editing. We see that in 2017, they were more focused on editing buildings,

amenities, and points-of-interest; they did not focus on road editing until 2018. In recent years,

Kaart continues to be responsible for over half of the total road edits in regions where they are

active, but the percentage of buildings, amenities, and points-of-interest they are mapping has been

decreasing, on average. Grab, which has only been active in the last year, has been predominantly

mapping the roads in the areas in which they operate, making them responsible for nearly 75% of

both new roads and edited roads in the map.

9.3.2.3 Characterizing Corporate Editing Patterns

Corporate editors also leave a distinct Monday through Friday time-signature in the database.

In addition, Figure 9.5a shows the difference between corporate and non-corporate editors in terms

of their lifespans of active editing. The solid line represents the number of editors starting from their

first edit, while the dotted line represents the number of editors on the day for which they made

their last edit. Depicted this way, the area between the two lines represents the size of the active

community at any given time as people join and leave. This figure shows that even though there are

less than 1000 corporate editors, the relative size of the active community is larger than the number

of total mappers when OSM first began, and generally more stable in terms of ongoing contribution.

The primary difference is that there are very few “one-time contributors” on corporate data teams;

this one-time contribution behavior, which is more common in the general OSM community, drives

the two lines closer together as the first edit and last edit of a mapper are on the same day. Instead,

the slope of the dotted line is steep at the end of 2018, showing that many editors are still active

right up to when we pulled the data.

A signal of possible corporate editing is the apparent weekly pattern of editing activity

expressed in Figure 9.5b. Each of the data-teams explored here maintain this same pattern: editing

consistently during the week throughout the year with few-to-no edits on weekends. This also

suggests that these unique temporal signatures could be used to identify corporate editing activity by
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(a) The rate of growth of all OSM editors compared to corporate editors. The solid lines represent number of
contributors denoted by the day of their first edit. The dotted lines represent the number of users denoted by
the day of their last edit. The shaded area between the solid lines and the dotted lines could be thought of as
the relative size of the “active” community. These two lines converge at the end because those are the most
recent edits in our data. The steep slope in the corporate-editors dotted line shows that these editors have
been active recently (not one-time contributors)

(b) Edits per day by the Facebook team in 2018. Consistent activity throughout the year showing 52 weeks
of relatively consistent work five days of the week, with no editing on weekends. This pattern of consistent
weekday editing is present across all of the data teams we have examined.

Figure 9.5: Characteristics of Corporate editors

teams that have not yet disclosed a list of users or come forward publicly as using and contributing to

OSM. This could be quite volatile if these editors are found to be in violation of the organized editing

guidelines. Preliminary analysis identifies another 3000 active mappers that exhibit similar editing

patterns in temporality and volume: many of whom are involved in import efforts and humanitarian

mapping tasks. However, there is currently no evidence suggesting these are undisclosed corporate

editors and, moreover, it is difficult to validate such accusations unless the mapper self-reports an

employer in their user profile—as is common for currently known corporate editors.
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9.4 Discussion

The growing phenomenon of corporate editing is the latest evolution of corporate involvement

in OSM. Of specific interest is the massive growth in the number of corporate editors and the

apparent investment that corporations are making in OSM. Though prolific, corporate editing varies

in geographic reach, objects edited, and volume across corporations.

While Figure 9.3 may initially appear to present corporate editing as dominating the map,

Table 2 and Figure 9.4 explores the impact of these edits. Though there is disproportionate impact

across the globe, it appears that corporate editors have the largest impact on the road networks in

areas where they are active (compared to buildings, amenities, points-of-interest). This is not a

surprise given the value of a routable road network, but also not out of character for the evolution

of the map without these editors: the map often evolves first from the road network [23]. This does

raise further questions about longevity of corporate interest once the road networks are complete in

these areas: will there be motivation for these corporations to map buildings or points-of-interest?

Figure 9.4j shows while there has been a consistent rise in corporate editing as a percentage

of the total edits, non-corporate editors are still the dominant force who are responsible for nearly

70% of all features edited in 2018 (averaged globally in areas where corporate editors were active).

Meanwhile, the percentage of the road network edited by non-corporate-editors is under 30% for

these areas, on average. This means that corporate editing is having a significant impact in the

regions where it is happening, but it is not currently dominating the global map. However, the

motivations of corporate involvement and their long-term impact on the OSM data and community

require further research.

In terms of motivations for mappers, Budhathoki and Haythornthwaite found that, among

other factors, learning OSM to demonstrate proficiency to future employers was a potential financial

benefit of contributing to OSM [18]. Published in 2013, this study predates the rise in corporate

editing and found that while these financial benefits and career outcome were relatively low motivators

for contributors, the notion of such financially motivated mapping was present. The increasing
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interest of various corporations (Table 1) and the growth of the number of corporate editors (Figure

9.5a) highlights the evolution of OSM and may change the motivations for contributors. With

regards to OSM as a VGI platform, these corporate editors exacerbate the double-edged sword

conundrum highlighted by Seiber and Haklay [121]. On one hand, compensation typically means

some level of expert or professional involvement, indicating high quality data and validation. On

the other, if contributions are paid for, the data can be seen as coerced, and perhaps even disqualify

as VGI, taking away the benefits of crowd-wisdom and local knowledge for which VGI is recognized.

While OSM contributions are still majorly volunteered (Figure 9.5a), the prolific activity of corporate

editors pushes the threshold of OSM’s status as a VGI project. Regardless of who contributes data,

as long as the quantity and quality of the data improves, OSM will continue to be a valuable open

data platform.

9.5 Conclusions and Future Research

In what we believe to be a first report of the phenomenon of corporate editors in OSM, we

have highlighted corporate editors’ place in the community and their visible footprint on the map.

Our analysis addresses some of the current tension in the OSM community regarding this new

phenomenon. The historical context and observational analysis also highlight the multi-faceted

involvement of the companies in OSM which go beyond just editing the map. Corporations appear

to have their own map editing agendas that are probably aligned with corporate interests. We

also note that other organized groups as well as individuals have been cited as having particular

interests that drive their contributions to the map. The contributions are further shaped by the

values embedded in the technology which drive who can participate and how [78, 34]. Thus, the

combined effort of all groups driven by their own set of values, motivations, and goals, mediated by

the OSM platform produce what is perceived as the unified map of the world. With the ongoing

growth and map spread of corporate editing in OSM, it is too early to draw conclusions about the

lasting impact of this new iteration of corporate involvement through paid mappers. Instead, we

raise questions for consideration about how OSM might evolve.
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First, how does corporate editing activity affect the map data? We might wonder if we can

separate ideologies of the sources of the data from its presence. One might argue that the uneven

coverage of data in OSM and the large-scale edits that corporations are capable of making can close

this gap in the database. Additionally, the data added by corporate editors will probably be of

good quality because these editors are trained, have economic incentive and managerial oversight,

and because editing in these areas will bring attention to the map via a variety of edit-monitoring

services. Data are more likely to improve in areas where some data already exists [22, 26]. Thus,

these activities, especially in developing nations, may be looked on as map seeding which prompts

growth of the OSM community and densification of the data. In developed nations, the editing

activities are probably going towards progressive data updates and quality improvements, and thus

are more in line with map gardening [73]. However, another important argument comes from the

point of view of bias toward self-serving interests: are corporations introducing geographic bias into

the map? As the map continues to be filled in, will corporate interests have too much voice in what

and where gets mapped?

Second, how does corporate editing affect local communities? Historically, the attitude towards

large corporations have been contentious with avid mappers being more congenial [18]. One concern

is that corporate editing is squeezing out existing “local” mappers. The organized editing guidelines

advocate strongly for working with local communities to avoid this. While the data shows that

corporate editing is certainly prolific and is found to be the largest editing force in many places, it

is unclear what the relationship is or may become with local mapping communities. Empirically,

we observed through the wiki and Github repositories that the reported corporations are currently

cooperating with the organized editing guidelines and reaching out to local mapping communities.

The community has also arranged itself in such a way as to monitor if corporations overstep in ways

that the community can currently foresee, but as the OSM landscape evolves, additional mechanisms

might need to be put in place.

Third, are corporations acting reciprocally with the OSM community, and offering as much

or more as they are getting from their OSM involvement? Some corporations have access to large,
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rich datasets (telemetry) that no one else has, which could in turn improve the map if shared—but

how much do corporations share? It says something about the value of geospatial data when we

observe that achieving a more complete map is driving corporations to collaborate. Furthermore,

global-scale validation and monitoring is difficult for individuals because of the sheer volume of

edits. We know from conference presentations and the production of tools that corporate editors

actively monitor map changes for vandalism and accuracy at scales beyond the abilities of individual

contributors.

Fourth, what is the best way for the community to monitor and support corporate editing,

assuming that it does have collective value? Mechanisms put in place such as the organized editing

guidelines are primarily based on self-reporting, which is what assessment is then based. However, as

the number of corporate entities continues to grow, maintaining lists of usernames and corresponding

edits could become onerous. Further mechanisms may be needed so that the community can hold

corporate editors accountable, ensuring that (1) their community engagement is proportional to

their impact and subsequent benefits from the data, and (2) that their impact is constructive, and

in keeping with shared goals of the OSM community.

Ultimately, consequences that stem from the publicized activity of corporations’ data pro-

duction might have yet different effects on market and corporate behavior. Having quantified and

contextualized the current footprint and involvement of corporate editing, our hope is that new

research about OSM can arise as this vibrant community continues to evolve.
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Chapter 10

Full-History Tile-based OSM Data Analysis

10.1 Moving to Full-Historical OSM-QA-Tiles

To fully understand how the map evolves, we need to capture the full editing history of each

map object. While Part IV demonstrated that annual and quarterly snapshots allow us to ask

questions about how the map has changed over time, these snapshots lack the true resolution to

answer the question: “Who changed what?” Exposing these exact edit-level behaviors requires

transitioning away from snapshots of the data to create new representations of the entire history of

an object in a form that allows for effective data analysis. Section 5.6 introduced two data schemas

for historical OSM data that allow us to encode an object’s complete history into a vector tile:

(1) Embedded Object History Distinct objects, with historical versions embedded in their

own @history object.

(2) Individual Versions Distinct object versions, each version with a @validSince and

@validUntilattribute to distinguish when each version was current on the map.

This chapter discusses the current state of full-historical tile-based OSM analysis, the tools

myself and others have developed to enable this type of work, and the projects, workshops, and

presentations that have utilized these. First, I introduce the osm-wayback utility, the tool I have

been developing for the past 2 years to create full-historical OSM-QA-Tiles.
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10.1.1 Recreating Histories with OSM-Wayback

The osm-wayback utility is a program written in C++ and node.js that uses libosmium1 and

RocksDB2 to transform an OSM history file into a stream of history-enriched GeoJSON objects.

In the context of this chapter, history-enriched refers to a representation of an OSM object that

has been enriched with the full metadata associated with each of the previous versions, telling the

analyst who edited the object when, and what was changed. Where applicable, minor versions and

the metadata associated with these geometry changes should also be included in history-enriched

objects. osm-wayback can be configured to either ignore geometries and handle only the versions

known to OSM (the version attribute), or save all node locations and perform an additional step to

compute the minor versions and historic geometries for all previous versions of an object.

The program runs in three parts, as shown in Figures 10.1 and 10.2. First, it converts an OSM

history file into a RocksDB index (with an optional node-location index to reconstruct historical

1 osmcode.org/libosmium: C++ library for working with OSM data at any scale
2 github.com/facebook/rocksdb: Persistent, on-disk key-value storage optimized for very fast lookups. Based on

LevelDB

OSM history

file.osh.pbf

osm-wayback (1):

build lookup index

RocksDB (index

on disk)

RocksDB (node

location index)

Current OSM

features

(.geojson)

osm-wayback (2):

add history

Current OSM

features with

embedded his-

tory.geojson

Figure 10.1: osm-wayback first ingests an OSM history file and converts it into a rocksDB index
on disk with its build lookup index function. Second, a stream of current OSM objects (from
osmium-export) is fed into the osm-wayback add history function which reads each object and
looks up all possible historical versions in RocksDB. After computing the differences, it adds the
@history attribute to the OSM object, producing a stream of history enriched GeoJSON objects.
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geometries in an additional step). This step essentially transforms a compact and complex-to-parse

history file into a larger, on-disk persistent key-value store where keys reference OSM object IDs

and the values are OSM elements (re-encoded as PBFs to be compact). This enables the utility to

quickly look up all previous versions of an OSM element by its ID.

Second, a GeoJSON stream of the current version of OSM objects is ingested by the add

history function. These streams of OSM objects as GeoJSON are easiest to produce using the

osmium export command of the osmium-tool, as first discussed in Section 4.3.2. As osm-wayback

reads each OSM object, it checks the current (latest) version number. If @version> 1, then there

should be a previous version of this object saved to RocksDB in the previous step because it

existed in the history file. The utility then sequentially queries RocksDB for all entries with keys:

<@id>!<possible previous versions>. For example, if the current version of the Way element

with ID=123 is version 3, then osm-wayback queries the way column family for the keys: 123!2 and

123!1. If these versions are present, osm-wayback computes the differences between them, storing

the diffs as shown in Section 5.6: new tags, deleted tags, and modified tags. The metadata and diffs

for each of these versions are then added to the @history attribute, which is embedded into the

original GeoJSON object. The final result is an output stream of history enriched GeoJSON objects,

though these do not have historical geometries yet.

Figure 10.2 shows how osm-wayback reconstructs historical geometries for each previous

version and any minor versions. First, this requires that all of the node locations were written

to a separate RocksDB column family during the first step (a configurable option). If this index

exists, the add geometry function builds a list of every node that has ever been associated with any

version of the object by looking through the @history attribute added in the previous step. Then,

it looks up all of these nodes in the RocksDB node location index, adding them to the GeoJSON

object as a separate attribute called nodeLocations.

Finally, this history enriched with nodeLocations collection of GeoJSON OSM objects is

processed by the geometry-reconstruction node script. This script utilizes the same architecture

as tile-reduce by invoking another program I created from the tile-reduce code-base called
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Figure 10.2: Adding historical geometries requires passing the history enriched stream of GeoJOSN
objects produced in the previous step through the add geometry function which identifies every
node present across all versions of an object. It looks up all of the possible versions for each of
these nodes in the node location index and then embeds them into a nodeLocation attribute. The
geometry-reconstruction.js node script then uses another utility I developed by forking the
tile-reduce utility called stream-reduce which ingests lines of GeoJSON and distributes them
to worker functions so that historical geometries can be computed in parallel.

stream-reduce.3 This Javascript program reads lines of JSON and distributes them to parallel

worker threads. Each worker ingests an OSM object, its history, and the list of all previous node

locations, and then computes all of the possible historic geometries for all versions and minor

versions of the object. Once an object’s historical geometries are calculated, the GeoJSON is written

back out to the stream in one of the two formats: (1) embedded object history, or (2) individual

historical versions.

3 github.com/jenningsanderson/stream-reduce is a simplified map-reduce Javascript utility for large files of line-
delimited JSON, capable of performing operations on each line of JSON in parallel and returning the results to the
main thread. I created this utility for these geometry reconstruction tasks, but designed it to function with any
arbitrary line-delimited JSON file, such as extracting and processing geolocated tweets from a massive collection of
tweets, for example.
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Calculating historical geometries is computationally expensive for objects with many nodes.

There are a few tricks to help restrict the total number of possibilities, but ultimately parallelizing

the computation with stream-reduce was the largest performance improvement I achieved. One

trick is to first group nodes by their changeset ID, assuming that any objects modified in the same

changeset should belong to the same version or minor-version.4 Following this, the total number of

possible minor versions should be equal to the number of distinct changeset IDs across the history

of all of the referenced nodes. Knowing this helps bound the space of possible historic geometries to

compute, but these computations remain a complex task due to the many different editing practices

present in the data.

10.1.1.1 Advantages of osm-wayback

The osm-wayback utility was designed with a number of self-imposed constraints to integrate

the system easily with other OSM data analysis tools, specifically into OSM-QA-tile-based analysis

workflows. First, the utility has relatively low memory requirements and scales vertically as

processing power is added. Since everything (including the node locations) is stored in RocksDB,

nothing is kept in memory for very long. The entire planet can be processed on a modest machine

as long as there is enough disk space available for the RocksDB index.5 The process runs in multiple

steps, each producing valid, human-readable GeoJSON representations of OSM data. Not only does

this make debugging and iteration easier, but these files can be shared or used in different types

of analysis. This record of historical versions could be read into Python or R, if, for example, an

analyst was more familiar with questioning the data with these analysis tools. Additionally, since

the input is any OSM history file, osm-wayback can be run at any scale an analyst chooses, defined

by the geographic extent of the history file. This allows the workflow to scale horizontally by first

segmenting a history file into smaller chunks and distributing each piece to a different machine (or

4 Since changesets can be open for hours it is possible that minutes or hours pass between the timestamps in
adjacent nodes; this is entirely dependent on how the mapper works. This can be simplified by assuming that when
the mapper pressed “save” is the true time of “a version” (or minor version), denoting what the mapper intended
during this editing session.

5 An index of the entire planet history is about 1TB. The main problem with large indexes is raising the Operating
System’s limits on open files because rocksdb keeps all of the SST files open when connected.
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running these in batch if resources are limited).

Evaluating performance is difficult because it heavily depends on the amount of computational

resources one throws at this process.6 Additionally, other utilities do not match this process

end-to-end (computing differences, TopoJSON encoding, etc., so it is difficult to compare with other

approaches). For an idea of performance: In Fall 2018, I geographically segmented the planet into

64 chunks along Zoom level 3 tile boundaries, and then ran OSM-wayback on each segment. In

this way, I was able to keep the size of each index and resulting files relatively small, satisfying the

limitation of a 250GB SSD on the machine I was using.7 Running these jobs in batch and uploading

each section to Amazon S3 buckets took about two days. Considering that creating the latest

snapshot OSM-QA-Tile on the same machine takes about 16 hours, 2-days to generate full-history

tiles for the entire planet are acceptable. Since these are for historical analysis, they really only

need to be generated once.

As a more practical example, running this workflow locally8 with the entire history of Nepal

(350MB history PBF file) runs in about 30 minutes, broken down as follows: The history file has

52M node elements, 6.7M way elements, and 42K relation elements. osm-wayback then processes all

of these elements, creating indexes from these 59.3M objects. Locally, this took 10M, processing

an average of 100k nodes/second. Converting the most recent version of each of these objects to

GeoJSON with osmium export yields 5.3M OSM objects. Reading from RocksDB to compute the

attribute changes for all of these 5.3M objects took 3 minutes and enriched these 5.3M objects

with an additional 6.2M historical versions. Performing the geometry look up and computing the

historical versions took another 17 minutes.

10.1.1.2 Limitations of osm-wayback

osm-wayback works by enriching a stream of GeoJSON objects, therefore, only those OSM

objects that can be converted into GeoJSON may be turned into a stream of history enriched objects

6 Running primarily on leased machines through ChameleonCloud, there is no guarantee that the same resources
are available twice, so these are always changing.

7 64G ram, 48 vcpus, provided by Chameleon Cloud.
8 2018 Macbook Pro i9
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with this utility. Additionally, historical geometry processing is only available for way elements, so

though the osmium-tool is now9 capable of processing many relation elements into MultiPolygons,

such as complex buildings or administrative boundaries, osm-wayback cannot compute the historic

geometries for these more geometrically complex objects.

Additionally, osm-wayback is designed to run within a larger processing pipeline specifically

to create full-history OSM-QA-Tiles. Accessing the full history of individual objects is then only

possible through processing the entire history enriched GeoJSON output, easiest done through a tile-

reduce job against the final tileset, or visualizing the tileset with a utility like the wayback-viewer:

A visualizaiton utility to easily render the contents of full-history OSM-QA-tiles for easy debugging

and exploration of a particular dataset.10 This makes the osm-wayback processing pipeline most

useful to those looking to work with a medium to large amount of OSM history data, not specific

objects.

Regarding size, however, another limitation is the complexity of handling a large tileset. Since

the size of each feature increases when history is added, the byte-size of the tiles can be reduced by

increasing the zoom from the standard OSM-QA-Tile zoom level 12 to 15 to cover a smaller area per

tile, thereby decreasing the total number of objects. This also improves the resolution of analysis,

as done in Section 8.2. Generating zoom level 15 tiles for full-history enables close to 1 sq. km

areas of analysis, but produces 64 times as many tiles. In implementation, this has caused failures

at the planet-scale, but works well for Country-sized tilesets. The continental US, for example, is

6M tiles and the full-history can be processed in can be processed 10-20 minutes, depending on the

complexity of the analysis.

10.1.2 Other Concurrent Development

osm-wayback was developed to implement and test full-history OSM schemas for tile-based

analysis, and has been successful in this implementation. It cannot, however, compute geometries

9 The support for MultiPolygons in the osmium export (previously a stand-alone tool called minjur) has dramatically
improved since development of osm-wayback began.

10 Available at github.com/jenningsanderson/wayback-viewer; currently only used internally, hope to release to
broader community in Fall 2019.
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for relations, and therefore can only handle geometries for a subset of what the osmium-export

utility can. While I will continue to use this tool in this particular data processing pipeline, I do

not plan to develop it any further. Today, there are two other utilities: OSMesa and OHSOME that

have been implemented at larger scales and support creating similar history-enriched OSM objects

that can be adapted to fit into my pipeline.

A primary reason to move away from this batch-processing model is that these other tools

can offer more on-demand processing. The osm-wayback pipeline presented here was built to turn a

given history file into a full-historical tileset. To update the tileset then requires re-processing the

entire dataset to compute all of the differences. A different database backend that could be kept up

to date more efficiently and offer on-demand object histories for a given region would significantly

reduce the processing overhead of the current pipeline.

10.1.2.1 OSHDB + OHSOME

OHSOME, the new Java-based OSM historical data analysis system built atop the OSHDB

database is capable of performing many of the same tasks as osm-wayback. OSH takes a different

approach from osm-wayback by delta encoding all versions of an OSM object into new objects called

OSM Entities, this decreases the total amount of data stored [112]. OSHDB also handles the concept

of a minor version. Supported by an active developer team of OSM researchers, the OSHDB offers

a more robust and complete approach from the osm-wayback utility and can be integrated into a

processing pipeline that will match my full-history schemas for tile-based analysis.11 Future work

includes collaborating directly with the team at HeiGIT to investigate such an integration.

10.1.2.2 OSMesa + Auroria

OSMesa offers a powerful cloud-optimized approach to recreating the full-editing history of

OSM. Already in production, this infrastructure is robust and built to scale to any quantity of OSM

data (especially the full planet history). OSMesa can therefore act as the full-history processing

11 The OSHDB + OHSOME were developed in parallel with osm-wayback, which is why I did not build my pipeline
on top of this project in the first place. Additionally, they are an active team of developers, I am one person.
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engine: computing the version diffs and and then exporting the results as GeoJSON to cloud storage

that can be retrieved on demand. Currently these results are stored on S3 and can be indexed

and queried with Amazon Athena. This allows the arbitrary lookup of the geometry-complete

history of any OSM object through familiar SQL queries.12 At the moment, this only lacks spatial

indexing, but it offers a powerful, cloud-based environment for exploring historical OSM data.

Initial prototyping shows that Amazon Aurora may be able to provide a spatially-indexed scalable

relational database to store the entire editing history, accessible on-demand.13 Such a solution could

turn the generation of analysis tilesets (such as OSM-QA-Tiles) into on-demand, object-specific

tilesets. A tile-server on top of this database could be configured to return vector tiles with all editing

metadata and complete editing histories for any region, any time period, for either all data, or only

specific edit types. This would solve the concerns about one-size-fits-all OSM-QA-Tiles put forth

in Section 5.3. Moving forward, I personally see this Amazon Web Services based workflow as the

most feasible option forward for development of all OSM-QA-Tile derivatives, from object-specific

(roads or buildings only) to full-history tilesets.

12 aws.amazon.com/athena: This was used to reconstruct the history of the Taj Mahal in Section 4.3.1.
13 aws.amazon.com/rds/aurora: This prototype was a recent collaborative effort led by Seth Fitzsimmons.

Figure 10.3: Roads edited in Pokhara, Nepal in the first half of 2015. These data represent the
successful extraction of OSM data from of a spatially-indexed OSM history-enriched database with
historical geometries running on Amazon Aurora. Visualized here with kepler.gl
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10.2 Full Historical Analysis To Date

To date, I have implemented full-history OSM-QA-Tiles in an OSM data analysis workshop,

ongoing research about the development of the map in the US, as well as various examples and

presentations. This section will share some of the results of these implementations of full-history

OSM-QA-Tiles.

10.2.1 State of the Map US 2018: OpenStreetMap Data Analysis Workshop

To show the analytical abilities of full-history data analysis, I collaborated with OSM data

expert Seth Fitzsimmons to organize an OSM data analysis workshop at the State of the Map US

conference in Detroit, Michigan in October, 2018. The workshop attracted about 20 attendees. This

next section contains both excerpts from our OSM diary post14 about the workshop and additional

commentary to describe the main takeaways from the workshop. The workshop was advertised in

the conference program with the following description:

With an overflowing Birds-of-a-Feather session on “OSM Data Analysis” the past few years

at State of the Map US, we’d like to leave the nest as a flock. Many SotM-US attendees build

and maintain various OSM data analysis systems, many of which have been and will be presented

in independent sessions. Further, better analysis systems have yet to be built, and OSM analysis

discussions often end with what is left to be built and how it can be done collaboratively. Our goal

is to bring the data-analysis back into the discussion through an interactive workshop. Utilizing

web-based interactive computation notebooks such as Zeppelin and Jupyter, we will step through the

computation and visualization of various OpenStreetMap metrics.

The purpose of this workshop was two-fold: first, we wanted to take the OSM data analysis

discussion past the “how do we best handle the data?” to actual data analysis. We had previously

observed that the OSM data analysis conversations often get stuck at the data-handling and

data-wrangling step when working with historical data. Rather than go through this again, we

implemented our full-history analysis workflows to overcome this obstacle and provided participants

14 Jennings Anderson and Seth Fitzsimmons. OSM Data Analysis Workshop. State of the Map US 2018.
Detroit, Michigan. October 5, 2018. https://www.openstreetmap.org/user/Jennings Anderson/diary/47133. Excerpts
republished here with permission from my coauthor.
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with pre-processed results so they could move right into the visualization and interpretation steps

of analysis. Second, we hoped that providing such an environment to explore the data would in

turn generate more questions around the data: What is it that people want to measure? What are

the insightful analytics?

A third, internal goal of the workshop, was to compare OSM histories as computed by

OSMesa, maintained by Seth and my utility: osm-wayback. Since these two infrastructures approach

reconstructing the OSM history completely differently, comparing the results across the two offered

the first form of external validation. As expected, there were differences in the edit counts between

the two approaches that were explained mostly by the tracking of deleted objects (OSMesa does,

osm-wayback cannot). However, it was validating to see that many of the other numbers, including

minor versioning were similar. This was particularly inspiring because we had been talking about

this problem and the complexities for the past few years and each set about implementing it within

our own infrastructures.

10.2.1.1 Preparing for the Workshop

Intentionally, we concealed the entire data-preparation part of the workshop to achieve the

goal of actually getting to the analysis. To do this, we precomputed the editing histories for 40

different major North American cities and produced files for data analysis at three granularities:

(1) Per Edit: TSV file with individual edits per line describing the change that occurred, by

who, when, and where, and to what object. These files were generated with osm-wayback

and a tile-reduce analysis workflow. First, I extracted the OSM history for a city and

then ran it through OSM-Wayback to generate full-history OSM-QA-Tiles. Then, using

tile-reduce, I calculated and extracted per-edit statistics, such as the length of road edited

or which tags were added, modified or deleted: exporting these edits as individual rows to a

TSV file. For a large city, these files were a few hundred MB.

(2) Per Changeset: CSV file with a set of 70 descriptive statistics calculated per distinct
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changeset for a region. These include quantities of roads, points of interest, buildings,

addresses, sidewalks, parking lots, and more. Computed by OSMesa

(3) Per User: CSV file with the same 70 descriptive statistics above, but aggregated per

contributor to easily compare activity between mappers.

After computing these editing summaries, I created sample Jupyter Notebooks* to act

as OSM data analysis tutorials. These notebooks included all of the Python code necessary to

read in the editing history for any of the cities and compute and generate a series of graphs, such

as identifying the top 15 editors by editing volume or visualize the number of buildings added

over time. Workshop participants could then open these notebooks and only need to change a few

variables to load data for another city or alter the attributes being visualized to generate new figures.

Additionally, participants could export a subset of the editing history to visualize on an interactive

map, filterable by time (such as creating an interactive map of when and where the name attribute

was added to map objects).

10.2.1.2 Running the Workshop

Using Jupyter notebooks running in the cloud allowed us to host a single analysis environment

for the workshop such that each participant did not have to install or run any analysis software on

their own machines: This was critical because the workshop was only 90 minutes. The notebooks

ran on a single cloud machine that was provided by ChameleonCloud.org, an NSF funded cloud-

computing infrastructure for computer science research.

One anecdotal analysis enabled by the workshop included a mapper quantifying and visualizing

the evolution of parking lots in Chicago. He had been mapping parking lots in Chicago for years

and using the per-edit dataset, was able to identify all of the parking lot edits to both visualize

his edits, and see all of the other parking lot editors, only some of which he was previously aware.

The workshop content, example analysis notebooks, city-level data, and instructions to get up and

running locally are all available on Github: github.com/jenningsanderson/sotmus-analysis



195

10.2.2 Analysis of the US

Using the full-history of editing in the Continental US, I have been exploring the mapping

patterns of the US community, specifically investigating the concept of “local knowledge” in the map.

In collaboration with OSMUS, we15 are using demographic information from the 2016 OSMUS

Community Census. This was an online survey distributed through social media, mailing lists, and

advertised at conferences. One of the questions asked respondents to identify their “local tile” on

the map. With this information collected at zoom-level 12, we can connect the 250 respondents

with edits that occurred in their local section of the map; as well as categorize their non-local edits.

One hypothesis upon starting this analysis was that local editing—edits one makes on the tile

they marked as their local tile—will be distinguishably different from non-local edits: Even possibly

allowing us to build machine learning models to classify edits as local or not. One question we

looked at it was, “are local users more likely to improve attribute information, such as changing an

existing building object from building=yes to building=school. Initial analysis, however, does

not find significant differences; so far there does not appear to be major differences in how many

mappers edit on local or non-local tiles in terms of attribute-changes. Instead, this initial analysis

in the US appears to highlight general mapping experience as the most salient difference: Mappers

with more experience do more detailed work, regardless of locality. While more analysis is needed

here to find significant differences, such a finding has the potential to redefine the concept of “local

knowledge” in the map.

With new support from the executive team, OpenStreetMap US is hoping to conduct another

survey in Fall 2019 to identify new needs of the growing community. This survey will include more

questions about the community’s editing activities. I plan to advise the design of the survey and

then collaborate in the data analysis process, using the information to further this particular analysis

of editing patterns in the US.

15 Current, ongoing work with Robert Soden and OpenStreetMap US



196

10.3 Full Historical Analysis: Future Work

10.3.1 Paid Editing Interactions and Map Seeding

The root question here is: What is the interaction between paid and non-paid editors?

Answering this requires that we use the complete editing history of the map, especially the computed

differences versions of an object. While the quarterly historic snapshots allowed us to quantify the

activity of the paid mappers in Chapter 9, the interaction between these editors was not explored

because the quarterly snapshots did not include the version diffs. As put forth in the discussion,

understanding these interactions is the next step in that research.

However, this potentially incendiary question needs to be approached with care. As noted

in Chapter 9, tensions on the mailing lists and at conferences lead me to suspect that there are

some that hope this research will find instances of paid editors deleting and overwriting the work

of local mappers. These results could then be used as an argument for banning or reverting paid

edits. However, we know these editing patternshave already occurred, such as with Grab [79], or

even a local case in Denver.16 My suspicion is that where this has happened, the community has

already spoken out and reached resolution. The next question is then, what is the interaction like

when paid editors perform data validation or vandalism detection? Now that Chapter 9 quantified

when and where paid editing is happening, we can investigate the complete editing histories of these

places to look into these patterns.

Additionally, of particular interest to me is checking if map seeding exists? Introduced in

Chapter 9, map seeding could occur once an area is mapped for the first time by one group of

mappers and then another group forms to maintain and grow the data. One hypothesis is that the

maintenance—or map gardening [72]—and extension of existing data may have a lower barrier to

entry than adding new data to a “blank” map. This may even has the potential to change how

people perceive paid editing: If a corporate editing team is the first to map an area, does this

16 A paid editor was splitting existing roads into smaller segments to add turn restrictions; instead of making a new
version, the editing software deleted the original road and created two new objects in its place. This made it look like
a paid editor was coming in and intentionally deleting, then replacing existing work.
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activity inhibit a localized community of mappers from developing? Or does the addition of such

data make the map more valuable and therefore cared for and maintained in that region?

10.3.2 Validation Behaviors

When a geometry change that results in a new minor version occurs, what precisely gets

changed? Empirical observations suggest that many minor versions of buildings involve squaring

the corners. This is most typically done by a more experienced mapper adjusting the corners of a

building originally created by a less experienced mapper. This is most common in response to a

humanitarian mapping task where an abundance of new mappers add many buildings to the map

in accordance with the task’s objective, yet are unfamiliar with the community norms of square

corners on buildings.

These activities, however, have yet to be fully quantified. The frustrations often expressed

on the mailing list make it sound like these non-square buildings are an epidemic across the

map. Therefore, actually quantifying these validation/corrective edits will lend some clarity to the

discussion.

Furthermore, these types of validation/corrective edits indicate work being done by experienced

mappers that is likely going hidden in the minor-version of the object (and therefore not present on

the way element itself). The presence of experienced mappers in these areas has intrinsic quality

implications. For example, if there are five buildings and a mapper modifies the geometry of only

two of these buildings to “square them up,” then we may surmise two things: First, this mapper is

likely a more experienced mapper than the previous, because they have additional knowledge of

community norms regarding buildings, and they know how to create square corners on buildings

with the map editor (knowledge of the specific menu option or keyboard-shortcut). And Second,

data validation has now occurred for all five of these buildings. Because this mapper only corrected

two of them, they are likely implying that the other three buildings are correct; otherwise, this

mapper would have adjusted their geometries as well. While the metadata of these other buildings

will not reflect this validation because nothing was changed, the nearby (corrective) edit implies
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this validation has occurred.

This extends especially to professional editing. As Chapter 9 mentions briefly, corporate

editing teams often have more regimented, supervised editing practices with specific data validation

steps. If the metadata shows that a corporate editing team was active in a given area, can a general

level of data validation be assumed to have occurred? While these editors may not have touched

every object, does their editing presence in the area offer some level of quality guarantee? Broadly I

consider all of these editing patterns to fall into the category of validation behaviors, and am curious

if these can be generalized to create new intrinsic quality indexes for the map.

10.3.3 Scaling to Real-Time

The ability to provide closer to real-time analysis of mapping activity is another goal for

future work to better provide the community with the most relevant and actionable analysis. As

Section 3.10 discussed, there is a real need and community desire for real-time analysis, especially

in disaster-mapping activations. This work, however, focused on scaling in the opposite direction,

by first incorporating the complete history of the map at the global scale. Instead, the currently

implemented real-time systems such as the missing maps leaderboard supported by OSMesa or

osm-analytics.org (updated daily, tile based analysis) were developed by the larger OSM community

and represent two different approaches to real-time analysis. With the successful implementation

of full-historical tile-based analysis, there is now opportunity to revisit the implications of these

approaches on real-time analysis, allowing easier quantification of what is changing on the map

at any given moment with the additional context of the contributor-centric history of the region.

For example, knowing not only if an editor is active in a region, but knowing who was active

before them, their expertise, and the types of editing they were doing. This has major implications

for better contributor-feedback, validation, and vandalism detection. A number of validation and

vandalism-detection bots currently offer some of this as automated services within a day of the

activity, but they are still very rudimentary, and do not embrace the context of the contributions or

history.
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10.4 Conclusion

This dissertation has traced the development and implementation of contributor-centric

analysis approaches across four iterations of OSM data analysis systems. This began with an

infrastructure to perform historical analysis of specific disaster mapping events in support of crisis

informatics research, and culminates in parallelized planet-scale analysis of the complete evolution

of the map.

The first system, EpicOSM, was built to answer questions of user collaboration in OSM,

requiring us to design new infrastructure that prioritized the metadata about the changes to the

map over the map data itself. This includes not just looking at the current state of the data, but

also including the complete editing history of the map up to that point. The development of new

data processing systems also prompted the development of a new visualization and presentation

tool known as osmdown. This tool created easy-to-share results in the form of interactive maps

and graphs. This system was successfully implemented in support of two research papers and the

tracking of one real-time disaster mapping event.

It quickly became evident, however, that with the rapid growth of the OSM community, the

sheer quantity of data produced in disaster mapping activations required new systems that could

scale to handle future events with more mappers producing significantly more data. Moreover,

there are no geographic bounds on where contributors edit: An individual’s contributions can be

worldwide. Systems that analyze only the current state of the map can look at specific regions in

isolation, but when asking questions about editing patterns and interactions among contributors,

analysis systems need to account for an individual’s edits across the entire globe to capture the full

context. The implementation of EpicOSM as a real-time analysis system was useful in tracking the

mapping response, but added new constraints and responsibilities to the system that were ultimately

deemed out-of-scope as the types of questions we hoped to answer look at the evolution of the map

over time.

The transition to vector tile based analysis embraced the latest in planet-scale OSM data
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processing systems. This also involved transitioning away from the standard OSM data model to the

simpler GeoJSON object representation, a more effective and communicable unit of analysis when

classifying and measuring edits to individual objects. By extending an existing parallel-processing

analysis workflow to better incorporate the editing metadata, I was able to perform planet-scale

analysis of the evolution of the map at an annual resolution. Computing individual contributor

histories in this way provided the full editing-history context of each contributor, allowing for more

informed approaches to intrinsic quality analysis.

With sustained increase in the amount of editing to the map, annual resolution was deemed

insufficient to adequately represent the editing history as too many edits that occurred between

the years were not being counted. This lead to the third iteration, vector tile based analysis based

on quarterly snapshots of the map. This optimized an increase in resolution with the increase in

processing time by a factor of four, and identified another 8M annual contributions. These datasets

supported global analysis of the impact that corporate editors are having on the map, identifying the

location and type of over 17M edits made by paid editors. To investigate the localized impact that

these types of edits have on the map, however, requires more than quarterly resolution, prompting

the final iteration: full-history tile based analysis.

The development of full-history vector tiles of OSM data for large-scale analysis of the evolution

of the map at the edit-level interaction between contributors marks the fourth and final iteration of

this work. This required the creation and implementation of new data processing tools to capture

the complete editing history as well as new data schemas that can efficiently and accurately capture

the evolution of the map at the individual object level, allowing analysts to break down and classify

the specific change to each object, when, where, and by whom.

10.4.1 Contributions

Contributor-centric approaches to OSM data analysis are the result of researching disaster

mapping in OSM from a background in HCI rather than Geography or GIS. This involved first

considering OSM as a site of online collaboration and second as a map. These HCI sensibilities
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prioritize the people responsible for the data before the data itself, yet never one without the other.

This involves a re-orientation of previous analysis methods to first consider the metadata that

reveals who made what changes, when, and where. From there, we can extend existing intrinsic data

analysis methods such as those presented in Chapter 7 to better incorporate the data provenance to

enrich these methods with more context. For example, learning not only how many contributors

were active in an area or how recent the data is, but instead who those contributors are (professional

or hobbyists), their mapping expertise, and what the actual change to the map was. From this, we

can learn if the edit was the creation of new data, the addition of localized knowledge, a correction

or validation, or even all of these. I consider this ability to extend and improve existing data analysis

methods as the methodological contribution of this work.

To implement these methodologies, however, I first had to develop new and extend existing

analysis infrastructure, beginning at the bottom of the stack with the data representation to embrace

the data provenance. Additionally, the creation of OSM-QA-Tiles-Plus allows edits to abstract or

invisible objects to be accounted for. These tilesets are a path forward to enabling researchers to

perform more types of intrinsic quality analysis at the planet-scale by making visible the hidden and

more complex editing activity. The development of EpicOSM, osmdown, quarterly-osm-qa-tiles,

osm-qa-tiles-plus, osm-wayback, and stream-reduce represent open-source technical contribu-

tions of this work, as does the the implementation of two new historical data schemas and innovations

to the existing tile-reduce processing workflows.

10.4.2 Final Remarks

OSM data analysis will always be a moving target. Unraveling the history of the map and

extracting meaningful insights will become more complex as both the communities within OSM

and the way they edit the map continue to evolve. As this happens, our approaches and analysis

infrastructures must also evolve. The next major phase of OSM editing, machine-assisted mapping,

is about to be upon us. Machine-assisted mapping will use use machine learning to aid mappers in

object identification. This will create yet another distinct signature in the data that future systems
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will need to learn to interpret to better contextualize the editing activity, as Chapter 7 identified

such a need for in disaster mapping. Additionally, paid editing as shown in Chapter 9 will continue

to be a dominant force in both mapping and data validation. Each of these editing behaviors has or

will have a profound impact on the data that that future analysis systems need to learn to interpret.

Contributor-centric approaches can help with this contextualization by enabling data analysts to

see the activity at the individual edit level and reveal interactions between mappers.

Chapter 9, and then reiterated in the Section 10.3, outline a research agenda moving forward

for contributor-centric OSM data analysis. Only through this work has the importance of extracting

the who from the contributions become so obvious to me as it enables us to distinguish between the

many OSM communities at the level of the individual edit. Only once we see this distinction in

the editing history can we know what types of editing behaviors we can identify and then learn

what the pertinent questions are. Digging deeper into the interactions between paid and volunteer

editors and investigating these interaction patterns as forms of data validation or map seeding will

shed some of the first light onto the impact that paid editing is really having on the map and the

community. Additionally, I will continue to develop front-end data science environments powered

by these rich editing histories to lower the barrier to entry for all OSM researchers, so that the first

step of OSM data analysis no longer needs to be about convoluted data-wrangling.

Continuing to make the activity underneath the map visible should be a priority for all OSM

researchers, as this historical record of the project traces not only the map, but the community as

well. Building systems that elucidate who is changing the map and how ensures that analysts can

continue to ask any range of questions about the evolution of both the map and the community.

Contributor-centric approaches to OSM data analysis help grow the intersection between the

questions that we want to ask of the data behind the map and the questions that we actually can.
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[11] Daniel Bégin, Rodolphe Devillers, and Stéphane Roche. “The life cycle of contributors in

collaborative online communities -the case of OpenStreetMap”. In: International Jour-

nal of Geographical Information Science 32.8 (2018), pp. 1611–1630. doi: 10.1080/

13658816.2018.1458312.

[12] Yochai. Benkler. The wealth of networks: How social production transforms mar-

kets and freedom. Yale University Press, 2006.

[13] Melissa Bica, Julie L. Demuth, James E. Dykes, and Leysia Palen. “Communicating Hur-

ricane Risks”. In: Proceedings of the 2019 CHI Conference on Human Factors in



205

Computing Systems - CHI ’19. New York, New York, USA: ACM Press, 2019, pp. 1–13.

doi: 10.1145/3290605.3300545.

[14] Christian Bittner. “OpenStreetMap in Israel and Palestine – ‘Game changer’ or reproducer

of contested cartographies?” In: Political Geography (2017). doi: 10.1016/j.polgeo.

2016.11.010.

[15] Joshua E Blumenstock. “Size matters: Word count as a measure of quality on Wikipedia”.

In: WWW. 2008.

[16] M. Bostock, V. Ogievetsky, and J. Heer. “D3 Data-Driven Documents”. In: IEEE Trans-

actions on Visualization and Computer Graphics 17.12 (2011), pp. 2301–2309. doi:

10.1109/TVCG.2011.185.

[17] Adam R. Brown. “Wikipedia as a Data Source for Political Scientists: Accuracy and Com-

pleteness of Coverage”. In: PS - Political Science and Politics (2011). doi: 10.1017/

S1049096511000199.

[18] Nama R. Budhathoki and Caroline Haythornthwaite. “Motivation for Open Collaboration:

Crowd and Community Models and the Case of OpenStreetMap”. In: American Behavioral

Scientist 57.5 (Dec. 2013), pp. 548–575. doi: 10.1177/0002764212469364.

[19] Sébastien Caquard. “Cartography II: Collective cartographies in the social media era”.

In: Progress in Human Geography 38.1 (2014), pp. 141–150. doi: 10 . 1177 /

0309132513514005.

[20] Valentina Carraro and Bart Wissink. “Participation and marginality on the geoweb: The

politics of non-mapping on OpenStreetMap Jerusalem”. In: Geoforum (2018). doi: 10.

1016/j.geoforum.2018.02.001.

[21] Steve Chilton. “Crowdsourcing Is Radically Changing the Geodata Landscape : Case Study

of Openstreetmap”. In: 24th International Cartographic Conference, Chile. 2009.



206
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Appendix A

Glossary

The following is a brief description of a number of terms used throughout the document.

Terms introduced with an asterisk in the main document can be found defined here.

GeoJSON: The standard specification for representing Geo-Spatial data in JSON form.

Objects are represented as individual features. Here is an example of a point at coordinates

0,0 with two attributes:

{"type":"Feature",

"geometry":{ "type":"Point", "coordinates":[0,0]},

"properties":{"hello":"world", "value":100}}

Jupyer Notebook: Browser-based Interactive Computational Notebook. juptyer.org

mapbox-gl: Javascript library built on WebGL that can efficiently render vector tiles

according to a specific, user-defined style, which can include data-driven styling and filtering.

mbtiles: SQLITE database of vector tiles in the mapbox vector tile format.

minor version: An intermediate version of a way or relation that is not recorded on the

object itself. It is the product of a change to a child object (typically a node) that inherently

changes the parent object but the change is only recorded on the child object. Minor

versions are identified through calculating the position of all child elements of an object

throughout the history of the object. See Section 2.2
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OHSOME / OSHDB: OpenStreetMap History Data Analytics Platform / OpenStreetMap

History Database. An OSM full-history database with analytics platform and API built

and maintained by Heidelberg Institute for GeoInformation Technology [112]. heigit.org

OSMesa: Large-Scale OSM data processing optimized for cloud-distribution. Capable of

ingesting OSM-history files and computing full object histories. github.com/azavea/osmesa

osmium: Developer tools for working with OSM data. The osmium-tool offers osmium

export and osmium tags-filter, while libosmium is a C++ library for efficient OSM data

processing. osmcode.org/

Overpass API: Publicly available at overpass-turbo.eu, the Overpass API offers a fully

featured query language for extracting data from OSM. It is a primary data source for many

analysts pulling specific data types from OSM.

tile-reduce: An open-source javascript library owned by Mapbox that reads a mbtiles

file and performs a map-reduce job by distributing individual tiles to worker threads that

execute specific user-defined javascript code against the objects in each vector tile.

tippecanoe: A command-line utility to turn GeoJSON into vector-tiles. Written in C++,

this open-source utility is owned by Mapbox and maintained by employee Eric Fischer. It

is capable of handling millions of GeoJSON objects and writing very large .mbtiles files. It

is used by people all around the world and is consistently being updated.

TopoJSON: Topologically encoded geometries in JSON format. Stores points and ‘arcs’ and

references to them instead of encoding complete geometries. github.com/topojson/topojson.

vector tile: A collection of map objects that exist within a specific bounding box at a

specified zoom level. The size and location of a tile is defined by a specific grid location and

zoom level.


