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ABSTRACT 

In this dissertation, we demonstrate the application of low-cost air quality 

sensors to better understanding our local environment.  Specifically, my work has 

focused on the application of arrays of low-cost sensors and methods of analysis that 

improve our ability to attribute local sources of volatile organic compounds (VOCs).   

Low-cost sensors have been widely applied to the study of air quality at smaller 

spatial and temporal scales than was previously feasible.  The research that is 

detailed in Chapter 2 built upon existing low-cost sensor research in order to develop 

an approach to both quantifying the concentrations of several compounds and also 

classifying the mixture based on the source that is likely to have emitted the detected 

gases.  This research involved a chamber study where a large sensor array was 

exposed to complex gas mixtures that simulated realistic pollution sources.  These 

data were used to validate the proposed methodology that involved a two-step process 

to accomplish the quantification and classification goals.  The results of this approach 

show the feasibility of using low-cost sensors to directly estimate the effect of local 

sources of VOCs based on their chemical fingerprints. 
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CHAPTER I 

INTRODUCTION 

1. Overview 

This chapter provides an introduction to volatile organic compounds (VOCs) 

and the importance of understanding their emissions and distribution through our 

communities.  The introduction starts by reviewing some of the most common sources 

affecting air quality across the United States in order to review the current 

understanding of differences within and between those sources in regards to the 

VOCs that they emit.  A specific eye is then turned toward the methodologies that 

are currently used for the detection and quantification of VOCs.  After understanding 

how current methods can provide information about VOC distribution and emissions, 

I will provide an overview of the next generation of air quality monitors, with a 

specific eye to the low-cost sensor technologies that are currently commercially 

available.  Finally, I will provide a summarize the knowledge gaps that the work 

presented in Chapter 2 addresses. 

2. Importance of VOCs 

More than 100 million Americans live in communities where air pollution 

standards are annually exceeded (USGCRP, 2018).  Among the compounds thought 

to affect human health, either directly and or indirectly, are a class of compounds 

referred to as VOCs.  VOCs are a class of compounds that broadly refer to any 

atmospheric organic exclusive of CO and CO2 (Seinfeld & Pandis, 2016) and are 



2 

emitted from everything from heavy industry to personal care products.  VOCs are 

often subdivided between methane and nonmethane hydrocarbons (NMHCs) because 

of difference in the typical background concentrations.  VOCs are also sometimes 

subdivided by their volatility, ranging from semi-volatile organic compounds (SVOCs) 

to very volatile compounds (VVOCs).  In this paper, references to VOCs will include 

all of the above unless otherwise noted. 

The emission and transport of VOCs is important because of the health and 

environmental effects of directly emitted VOCs and their secondary products.  Many 

of the compounds included on the US EPA list of hazardous air pollutants are VOCs 

(OAR US EPA, 2015b).  Human health is affected by both acute and chronic exposures 

to these compounds.  The US EPA maintains the Integrated Risk Information System 

(IRIS) with the goal of characterizing the toxicological risks associated with many 

compounds of interest.  For example, chronic exposure to benzene, a VOC emitted 

from sources including gasoline vapor and tobacco smoke, has been linked to 

leukemia and other adverse health effects from workplace exposures at 8-hour 

concentrations as low as 7.6 ppm (ORD US EPA, 2003).  The monitoring and emission 

of several species of VOCs are regulated by the US EPA and the EU as well as other 

regulatory agencies because of demonstrated health effects.  The European 

Parliament has also mandated that ambient VOC concentrations be monitored 

(Directive 2008/50/EC, 2008).  The emissions of VOCs from household products are 

also regulated because of the effects of high concentrations of VOCs experienced in 

indoor environments with inadequate ventilation as well as their contributions to 

atmospheric VOC concentrations. 

In addition to known and suspected direct health effects, VOCs have been 

shown to contribute to the formation of particulate matter (PM) and ozone 

(Khordakova, 2017; Ziemann & Atkinson, 2012).  Both of these are “criteria 
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pollutants” and are regulated because of known associated health effects, especially 

related to lung function (US EPA, 2006).  VOCs also react in the atmosphere to 

contribute to the production of other known air toxics like carbon monoxide, 

formaldehyde, and other reactive compounds (de Gouw et al., 2018).  

3. Origins and Fate of VOCs 

3.1. VOC Sources 

VOCs are produced and emitted from an incredible range of sources including 

evaporating solvents in personal care products (Coggon et al., 2018), oil and gas 

infrastructure (Warneke et al., 2014), wildfires (Yokelson et al., 2013), and vehicle 

emissions (Westerholm & Egebäck, 1994).  Anthropogenic sources make up only 

about 10% of total global VOC emissions (Seinfeld & Pandis, 2016), although this can 

vary significantly at smaller scales.  The contribution of sources of VOCs as estimated 

by the 2014 National Emissions Inventory (NEI) Report produced by the US EPA is 

illustrated at a national scale in Figure 1 and at smaller scales in Figure 2.  As is 

apparent when comparing these figures, the contributions of different sources vary 

when viewed at national, state, or local scales, even when considering major classes 

of sources on an annually averaged basis. 
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Figure 1. Contributions of different source types to the annual emissions of VOCs within the 
US as reported in the national emissions inventory for 2014 (OAR US EPA, 2016a).  Clockwise 
from top left: the contributions of broad categories are shown to multiple pollutants including 
VOCs, which are highlighted with a dashed red box; stationary VOC sources are subdivided 
by sectors; fire emissions are subdivided by sectors; mobile sources are subdivided by sectors. 
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Figure 2. Fraction of VOCs attributed to each class of source for each state (top) and each 
county within the state of California (right).  The contribution of source types to the total VOC 
emissions from the state or county varies at not just the national level, but also at state and 
county levels.  Data from (OAR US EPA, 2016a).  Note that some states and counties did not 
report emissions values for all source types. 

VOCs are studied in many different ways that will be discussed later because 

of their importance to human health and the environment depending on the specific 
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compounds that are emitted as well as the temporal and spatial distribution of the 

emissions.  Many different approaches to quantifying VOC emissions are compiled to 

create emissions inventories that estimate the typical contributions of sources on 

scales that typically range from global (Saunois et al., 2016) to national and state-

level (OAR US EPA, 2016a).  While these inventories are important tools for 

developing regulations and making some decisions, they often lump VOCs into a 

single category, neglecting the incredible variety of VOC species, and the different 

impacts that individual species have on atmospheric chemistry and human health 

(Ditto et al., 2018).  Although there is significant variation within the different source 

types, it is possible to make some general statements about typical chemical 

components of different sources, something that is important when attempting to 

identify source emissions based on measurements of different gas concentrations 

alone.  Understanding the variation in chemical composition within and between 

VOC sources is useful for understanding the chemical properties of those emissions 

– an important consideration when attempting to measure them and understand 

their transport and fate. 

3.1.1. Biomass Burning 

The single largest source of VOCs in the United States as identified in the NEI 

was fires.  This category includes both wildfires, prescribed burns, and field burning, 

although US emissions are dominated by the first two categories of fires, in regards 

to VOC emissions (OAR US EPA, 2016a).  Biomass burning is also one of the largest 

anthropogenic emitters of VOCs in across the planet (Akagi et al., 2011).  These VOCs 

are emitted in both gaseous form and sorbed on particulates, making their total 

quantification a challenge.  

The emissions of VOCs from fires depend heavily on the combustion state and 

fuel source for the fire (Gilman et al., 2015).  The VOC emissions from biomass 
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burning typically include highly oxygenated compounds as well as many nitrogen 

containing compounds (Yokelson et al., 2013).  These compounds include everything 

from levoglucosan, a relatively harmless product of pyrolysis that is a common tracer 

for low-temperature combustion (Lai et al., 2019) to hydrogen cyanide and 

formaldehyde, both compounds with well-established health effects (Yokelson et al., 

2013).  The 2014 NEI also found that biomass burning was the dominant source of 

formaldehyde emissions in the US (OAR US EPA, 2016a). 

Although not all of these compounds have known health effects, several studies 

have found that the emissions of CO, NOx, and VOCs from wildfires can directly 

contribute to increased ozone production in regions downwind of the fires (Baker et 

al., 2016; Pfister, Wiedinmyer, & Emmons, 2008).  Pfister et al. showed that the NOx 

produced by the fires was consumed quickly through reactions with other combustion 

products, producing peroxyacetyl nitrate (PAN) and other nitrogen containing 

compounds, indicating that the contribution to ozone production was likely due to the 

contributions of CO and VOCs (Pfister et al., 2008).   

Fires as sources of VOCs are important for areas of the US, specifically the 

west and south, where wildfires are common, and in areas of the Midwest where the 

burning of crop residues can lead to large, localized emissions (NASA, 2011). 

3.1.2. Mobile Sources 

Mobile sources, like vehicle traffic and other internal combustion engines, are 

the second largest contributor of VOCs identified by the NEI (OAR US EPA, 2016a).  

Within the “mobile sources” category identified by the NEI, VOC emissions were 

dominated by light duty vehicles and other nonroad gasoline equipment.  Mobile 

sources are also important on a global scale, although typical mobile emissions can 

vary significantly between countries (Hoesly et al., 2018).  Recently, the European 

Environmental Agency (EEA) also estimated that road transportation exhaust 
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contributes about 7% of total VOC emissions from member countries, compared to a 

roughly 12% contribution in the US as estimated in the NEI (European 

Environmental Agency, 2017; OAR US EPA, 2016a).   

The composition and amount of VOCs emitted from a given vehicle vary 

significantly depending on the vehicle design, operating conditions, fuel type, and 

emissions control technologies (Faiz, 1996).  Vehicle traffic emits VOCs directly as 

both a gas and as a major component of emitted particulate matter (Westerholm & 

Egebäck, 1994).  These VOC emissions may be especially troublesome as they are co-

emitted with NOx, which is highly reactive and, in the presence of CO and VOCs, can 

lead to significantly increased ozone production.  Traffic sources are both highly 

variable and intertwined with communities such that extremely dense networks of 

continuously measuring sensors (~40-100m grid) would be necessary to get accurate 

estimate of exposure to traffic related air quality effects (Batterman, Chambliss, & 

Isakov, 2014).  VOCs are also typically products of incomplete combustion and as such 

contain many oxygenated VOCs (OVOCs) that are partially oxidized forms of the 

original fuel mixtures (Westerholm & Egebäck, 1994).  Because the fossil fuel 

products that typically make up the bulk of the fuel contain long-chain alkanes, 

alkenes, and polycyclic aromatic hydrocarbons (PAHs), forms of those compounds 

often appear in vehicle exhaust (Westerholm & Egebäck, 1994).   

Although conclusions may be drawn about typical vehicle sources, there is 

variation between vehicles, with high emitting vehicles significantly contributing to 

the total emissions (Tan, Lipsky, Saleh, Robinson, & Presto, 2014).  This means that 

that air quality can be significantly affected by the specific vehicles operating in a 

given locale. 
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3.1.3. Fossil Fuel Infrastructure 

With the boom in tight and shale gas production in the United States, fossil 

fuel production has grown to affect areas both historically known for this production 

like Texas and Southern California, as well as new regions like Colorado, the Dakotas 

(US EIA, 2015).  It can be seen in Figure 3, that the production of fossil fuels is highly 

concentrated in some regions, while nearly absent from others. 

 
Figure 3.  The 100 largest natural gas (left) and oil (right) fields as ranked by proved reserves 
span across regions of the South, West, and parts of the Midwest (US EIA, 2015). 

Although production is limited to certain areas of the US, the natural gas 

infrastructure in some cities can be over 100 years old and prone to leakage 

contributes significantly to methane emissions on a national and local scale 

(Gallagher et al., 2015; Heath, Warner, Steinberg, & Brandt, 2015; Phillips et al., 

2013).  In fact, the US EPA estimates that natural gas systems are the second largest 

emission source of methane emissions, just behind those emissions from enteric 

fermentation (OA US EPA, 2018).  Recent field measurements of methane emissions 

from the oil and gas supply chain have produced methane estimates that are as much 

as 60% higher than the emission inventory kept by the US EPA (Alvarez et al., 2018).  

In this study, Alvarez, et al. suggest that the reason behind this discrepancy is the 

nature of most other studies that are conducted once and may not capture periodic or 
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sporadic events that produce extreme emission conditions but only for a brief period 

of time. 

The emissions of specific compounds can once again vary significantly in 

composition and magnitude depending on the region and specific activity that is 

responsible for the given emissions.  For example, one common emission path is 

through open “thief hatches” or other vents that become stuck open and continuously 

leak vaporized light hydrocarbons (Alvarez et al., 2018), whereas emissions from 

natural gas infrastructure as mentioned earlier would be dominated by methane and 

other light alkanes.  While I was working at the SwRI, my collaborators and I found 

that even processed gas available at natural gas vehicle (NGV) filling stations varied 

between regions, despite significant upstream processing (George, Poerner, Ridens, 

& Thorson, 2014). 

In general, nonmethane alkanes are often used as indicators of fossil fuel 

production emissions when studying emissions on a regional scale (Katzenstein, 

Doezema, Simpson, Blake, & Rowland, 2003).  More detailed studies of ambient 

compounds attributable to oil and gas production have found a wide mix of alkanes, 

alkenes, aromatics, and other hydrocarbons (Goldan et al., 2004; Harley, Hannigan, 

& Cass, 1992).  This qualitatively matched the findings of Ryerson et al. who found 

that vaporized compounds from spilled crude oil was dominated by straight and cyclic 

isomers of alkanes of a wide range of carbon number (Ryerson et al., 2011). 

3.1.4. Industrial and Household Solvents 

The solvents that make up major components of paints, lubricants, cleaners, 

and a variety of other chemical products are often some combination of VOCs.  They 

are estimated to be responsible for emissions comparable to those attributed to all 

light duty vehicles (OAR US EPA, 2016a).  In some areas, solvents are responsible 
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for significantly more VOC emissions thanks in part to recent regulations that were 

targeted at reducing mobile VOC emissions (McDonald et al., 2018). 

The chemical feedstocks that go on to produce many of these products are 

largely derived from fossil hydrocarbons (McDonald et al., 2018).  Solvents and the 

products that they are part of include not only those hydrocarbons but include a wide 

range of compounds depending on their application.  For example, acetone is a 

common chemical marker for coatings-related emissions (McDonald et al., 2018; 

Warneke et al., 2014).  Cyclic volatile methyl siloxanes (cVMS), on the other hand, 

are a class of organic compound that is popular in the cosmetics and personal care 

products industry due to their volatility and low odor (Wang, Moody, Koniecki, & Zhu, 

2009).  These compounds were found by Coggon et al. to have distinct diurnal patterns 

above cities that corresponded with morning applications of deodorant and other 

products around 6-7 AM (Coggon et al., 2018).   

It is often difficult to identify compounds associated with commercial and 

industrial products because they often include OVOCs that are both highly reactive 

and potentially produced by the atmospheric reactions of other emitted compounds 

(Niedojadlo, Becker, Kurtenbach, & Wiesen, 2007). 

3.1.5. Agriculture and Waste Treatment 

The last grouping of VOC sources to be discussed here are agriculture and 

waste treatment, which may be roughly considered together because a large portion 

of VOC emissions related to both of these sources involve anaerobic digestion and the 

subsequent products.  This digestion occurs in the digestive tracts of animals, in the 

soil of fields (Linquist, Groenigen, Adviento-Borbe, Pittelkow, & Kessel, 2012), and in 

the piping and processing tanks associated with wastewater treatment (Guisasola, 

Sharma, Keller, & Yuan, 2009).  Depending on the specific identity of any of these 
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sources, the quantity of emissions can vary by orders of magnitude and at timescales 

of seasons to days. 

For example, emissions from enteric digestion and soil bacteria associated with 

agriculture are typically associated with the production of methane and nitrous oxide 

(N2O), two powerful contributors to global warming (Linquist et al., 2012; Pétron et 

al., 2012).  Howard and colleagues also found that the feedstock for animals may 

directly emit reactive organic compounds (ROGs) at levels that affect ozone 

production in California’s central valley (Howard et al., 2010).  In addition to the 

variety of agricultural VOC sources, Mihelcic found that wastewater treatment 

facilities emitted significant amounts of VOCs, many of which were chlorine or sulfur-

containing compounds (Mihelcic, Baillod, Crittenden, & Rogers, 1993). 

3.2. VOC Sinks 

VOCs may be removed from the atmosphere in a variety of ways.  Some of these 

processes create secondary products that are themselves cause for concern.  For 

example, VOCs are known to participate in the HOx-NOx cycle that is a major driver 

of ozone production in the troposphere.  For example, McDuffie found that VOC 

emissions in the Front Range region of Colorado, VOCs contributed to local ozone 

production (McDuffie et al., 2016).  Wu et al. also showed that changes to meteorology 

caused by climate change will counteract some of the predicted declines in 

anthropogenic VOC emissions in terms of episodic ozone events, making their 

detection and control even more vital going forward (Wu et al., 2008).   

During daylight hours, one of the most common pathways for atmospheric 

reactions of VOCs begins when a compound is oxidized by reactions with OH radicals 

as illustrated in Figure 4, although reactions with NO2, NO3, and O3 can be 

competitive depending on local conditions.  After that initial reaction, the VOC 

participates in the HOx-NOx cycle by recycling NO to NO2 where it may photolyze, 
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contributing a free oxygen and subsequently ozone.  The product from the original 

VOC compound after this reaction is often less volatile and therefore more likely to 

partition into particle phases (Ziemann & Atkinson, 2012).  The acidic or basic 

chemical environments that develop within these particulates may then contribute 

to further reactions, either allowing the new compound to oligomerize, further 

reducing its volatility, or to further decompose, possibly allowing it to return to the 

vapor phase (Ziemann & Atkinson, 2012).  These reactions can happen on a timescale 

ranging from the near-instantaneous to days or years, depending on the specific 

chemical compound and environmental factors like temperature, solar radiation, and 

the presence of other compounds. 

 
Figure 4. A simplified chemical cycle illustrating how VOCs can participate in the daytime 
HOx-NOx cycle and contribute to the production of ozone.  Adapted from (Clemitshaw, 2004). 

4. Approaches to Understanding Our Local Environment 

In order to understand the incredible variation in VOC emissions that has only 

been superficially described above, many approaches have been developed to improve 

our understanding of VOC emissions and transport.  Leaving aside other differences, 

these monitoring techniques can generally be thought of as varying on two axes that 

represent the resolution in both space and time as illustrated in Table 1.  In the time 

domain, one can broadly say that monitoring technologies consist of either 

O3
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NONO2

CO2CO

VOCs

RORO2

O3

NO NO2



14 

continuous, ongoing measurements or of measurement campaigns spanning brief 

periods of time.  In the spatial domain, studies may capture different degrees of 

resolution that may be categorized as regional, i.e. on a scale of tens to hundreds of 

kilometers, or as local measurements that are only separated by tens to hundreds of 

meters. 

Table 1. Broad categorization of paradigms for understanding VOC sources 

 Spatial Resolution 

Low (Regional) High (Local) 

Ti
m

e 
Re

so
lu

tio
n Low (Infrequent) 

Compilation of 
Emissions 
Inventories 

Measurement 
Campaigns 

High 
(Continuous) 

Regulatory 
Monitoring 

Satellites,  
Low-Cost Sensors 

   

4.1. Regional and Infrequent  

In the top left region of Table 1 are methods for understanding VOC sources 

that produce information with both low spatial and time resolutions.  An example of 

these might be the compilation of emissions inventories, which are actually a 

synthesis of many individual information sources.  Emissions inventories attempt to 

describe the emissions from many different sources over a large region by 

synthesizing information from studies ranging from continuous monitors to brief on-

site measurements.  These data are applied to estimate the long-term averages of 

emission factors, the locations of those sources, and the activity level of each source 

(OAR US EPA, 2015a).  These are useful for understanding relative contributions of 

different sources for many different pollutants on an annually averaged basis.   

Typical uses for the data that is produced by an emissions inventory are regulatory 
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actions, where it is important to understand what types of sources most impact the 

production of a specific compound.  Another example application are scientific studies 

where it is important to understand whether current research is able to account for 

all of the compounds measured in our atmosphere.  If not, the shortfalls may inform 

the design of future research programs.  

4.2. Infrequent but Highly Spatially Resolved 

Moving to the top right quadrant of Table 1, are approaches that allow for high 

spatial resolution but are infrequent, and include methods like one-time field 

campaigns.  Detailed measurement campaigns like the DISCOVER-AQ in Colorado’s 

Front Range are a good example of this approach (Halliday et al., 2016).  In that 

study, a series of measurements were taken across the front range using a 

combination of aerial flyovers and ground measurements with the goal of 

characterizing benzene and other VOC emissions in both urban areas and rural areas 

that are in or nearby to concentrated oil and gas production.  This approach produced 

a high-resolution map of specific VOC concentrations as collected over the course of 

two months in 2014.  These types of measurement campaigns can provide high 

accuracy, high resolution snapshots in time that are useful for answering research 

questions.  In the case of DISCOVER-AQ, researchers sought to determine the impact 

that oil and gas production had on the local airshed.  At the conclusion of the study, 

they were able to determine that local oil and gas production was the primary source 

of benzene in the Denver area (Halliday et al., 2016).  However, these measurement 

campaigns are quite expensive, requiring multiple research grade instruments and 

hundreds of hours of skilled technical time.  This cost makes them infeasible to 

conduct frequently, let alone on a continuous basis, and they are therefore unable to 

capture sporadic, unpredictable events like accidental emissions that are suspected 
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to be responsible for the current underestimation of emissions of methane from oil 

and gas production (Alvarez et al., 2018). 

4.3. Regionally Spaced but Frequent 

The bottom left of Table 1 represents the opposite of the previous methodology 

– methods that provide continuous measurements at very low resolution.  A 

prominent example of this methodology are the networks operated by state and 

national regulatory agencies that monitor compounds that are important for 

regulatory decisions.  These are less common in the United States for VOCs, which 

are not themselves a criteria pollutant.  One network that does monitor VOC 

concentrations across the US is the network of Photochemical Assessment Monitoring 

Stations (PAMS) which operates approximately 145 monitors collect samples on the 

order of hours to days for specific VOCs with the primary goal of determining their 

effect on ozone production (OAR US EPA, 2016b).  State level entities also commonly 

use this approach, for example, the network of monitors operated by the California 

Air Resources Board (CARB) is illustrated in Figure 5 and reports the concentrations 

total nonmethane hydrocarbons (TNMHC) on an hourly basis.  Regulatory networks 

like those mentioned produce continuous measurements, typically reported as hourly 

averages of all VOCs, methane and NMHCs, or compounds grouped by chemical 

attributes.  These measurement stations include regulatory grade equipment that is 

expensive to purchase and operate, so they are placed with the goal of measuring 

typical concentrations affecting a given area or population.  Because the goal when 

establishing these networks is typically to quantify the air affecting the most people, 

they are placed tens to hundreds of kilometers apart.  These networks provide 

information to regulators about important pollutants to, for example, determine if a 

region is meeting air quality standards.  They are not, however, able to quantify the 

variation in effects of pollutants that themselves vary on much smaller scales.  These 
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including NOx, ozone, and VOCs (Batterman et al., 2014; Cheadle et al., 2017; Coggon 

et al., 2018). 

 
Figure 5. Approximate locations of the 19 monitors operated by CARB that are reporting 
measurements of total nonmethane hydrocarbon (TNMHC) concentrations.  Data from (CARB, 
2017) overlaid on a map from (Dedering, 2010). 

The three methodologies discussed above each have their place in answering 

scientific, research, and regulatory questions, but each also sacrifices time or spatial 

resolution to be able to produce accurate, affordable measurements in the dimension 

of interest.  Many of the products from these approaches also reduce their exploration 

to concentrations of total VOCs, which as discussed above removes the wide variation 

in the makeup of VOCs emitted by different sources.  Commonly used statistical 

analyses like principal component analysis (PCA), kriging, back-propagation, and 

others may help to address some of these gaps, but all include their own assumptions 

that reduce accuracy. 

4.4. Next Generation Technologies 

The newest generation of low-cost sensors attempts to capture continuous, 

high spatial resolution measurements with the goal of developing an approach that 
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fills the lower right quadrant.  This increased resolution is typically at the cost of 

measurement accuracy in the form of increased bias and random signal noise.  One 

approach that will not be discussed here is the newest generation of Earth-facing 

satellites.  These show the promise of sub-kilometer resolutions with re-visit times 

on the order of days to weeks (ESA, 2017).  These can be quite accurate in their 

measurements of methane concentrations, but they are limited in their ability to 

determine the vertical distribution of the measured compounds.  

In the past approximately two decades, “low-cost” environmental sensor 

technologies have matured, and the associated costs have decreased to the point that 

they are becoming a popular option for researchers and community members looking 

to understand their local environment.  The Hannigan Lab at CU Boulder developed 

several platforms to incorporate some of these low-cost sensors to study everything 

from cookstove efficiency to the distribution of methane across a community in 

downtown Los Angeles.  The platform used in this study, the Y-Pod has a unit cost 

that is approximately 1% of the cost of a research grade instrument for the same 

compound and produces continuous measurements.  The relatively low cost of these 

sensors makes it feasible to distribute them across a community of interest and 

investigate the relative effect of different VOC sources on that community (A. Collier-

Oxandale et al., 2018; Shamasunder et al., 2018).  These distributed sensors can be 

used with many of the same statistical analysis techniques applied to more expensive, 

research grade instruments, albeit with generally lower accuracies.  We discussed the 

pitfalls and general guidelines for producing and communicating data using low-cost 

sensors after meeting with industry and community leaders (Clements et al., 2017).  

In that meeting, stakeholders discussed the many questions yet to be answered about 

the appropriate ways to operate and understand low-cost sensors but also the promise 

of understanding air quality at scales smaller than was previously feasible.  Some 
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low-cost air quality sensor technologies will be briefly discussed next in order to 

illustrate the diversity of technologies being investigated in this space.  

4.4.1. Metal Oxide 

Metal oxide sensors as a technology for the measurement and quantification of 

gaseous pollutants has been a subject of study since the discovery of semiconductor’s 

sensitivity to reacting gases in the early 1950s (Brattain & Bardeen, 1953).  Metal 

oxide sensors are a popular option in the low-cost sensing community because of their 

especially low cost (~$10 USD), small size and low weight, and relative robustness 

when exposed to the environment.  The operation of these sensors involves bringing 

a metal oxide sensing media to a few hundred degrees Celsius in an oxygen containing 

atmosphere, typically using a printed platinum heater that is separated from the 

sensor material with a thin layer of alumina.  In the presence of a reducing gas, the 

concentration of surface-adsorbed oxygen species decreases as that gas reacts with 

the oxygen at the surface of the sensor.  This reaction releases electrons into the 

conductance band, affecting the measured conductance of the sensor (Windischmann 

& Mark, 1979).   

As the understanding of these sensors progressed, studies began to investigate 

the possibility of quantifying and identifying VOCs with metal oxide sensors using 

various operation and manufacturing schemes.  For example, some have looked at 

the time response of sensors to changing temperature as a way to improve sensitivity 

to VOCs and/or to allow for some level of identification of the mixture of interest 

(Bastuck, Reimringer, Conrad, & Schütze, 2016; Schultealbert, Baur, Schütze, & 

Sauerwald, 2018; Sears, Colbow, & Consadori, 1989; Vergara et al., 2005).  

Manufacturers have also developed metal oxide sensors that are designed to 

specifically react to VOCs, through a combination of intentional design of the heater 

temperature and selection of the base metal oxide and doping compounds.  
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Korotcenkov et al. discussed the most common issue affecting the operation of metal 

oxide sensors: the drift in both baseline signal and sensitivity over time (Korotcenkov 

& Cho, 2011).  The rate at which these parameters drift may vary on the order of days 

to months depending on the processes responsible for the drift.  They found that 

perceived drift may be attributed to a range of causes including physical changes at 

the atomic level, poisoning from exposure to other gases, and changes in the local 

environmental parameters including temperature, humidity, and concentrations of 

confounding species. 

4.4.2. Electrochemical 

Electrochemical sensors are another technology with an extensive history of 

use as sensors for gases and operate on much the same principle as the fuel cells that 

are used to power next generation vehicles, albeit at a much smaller scale.  In these 

sensors there are two primary electrodes, the working and counter electrodes, that 

are kept in electrical contact via an electrolyte solution.  Both of these electrodes have 

a catalytic surface that is exposed to the ambient environment.  At the working 

electrode, this surface is designed to react with a reducing gas (CO, NO, SO2, select 

VOCs, etc.) or oxidizing gas (NO2, O3, etc.).  When the reaction of the target gas occurs 

at the surface of the sensor, a small current is generated through the electrolyte 

causing the opposite reaction at the counter electrode (often the reduction of oxygen 

when sensing reducing gases).  When operated correctly this current is approximately 

proportional to the concentration of the gas of interest (Alphasense Ltd., n.d., p. 104).  

However, because the sensing surfaces are exposed to the ambient environment, they 

may be affected by other gases with similar properties and may even be “poisoned” if 

gases are present that adsorb onto the catalytic surface.  For example, Alphasense 

has reported that different compounds were responsible for poisoning the catalytic 

surfaces with different target gases (Alphasense Ltd., n.d.).  Electrochemical sensors 



21 

are also sensitive to changes in humidity because the electrolyte solution is exposed 

to the environment, and they are known to eventually dry out and lose functionality 

after some time, again depending on local conditions (Alphasense Ltd., n.d.).  

4.4.3. Optical Methods 

Sensors based on nondispersive infrared (NDIR) and photoionization detection 

(PID) are two measurement technologies that can range from low-cost sensors on the 

order of tens of USD to research grade instruments that are tens or hundreds of 

thousands of dollars.  Both of these sensor types operate by interrogating a gas 

sample with infrared or high-energy, typically ultraviolet, light for NDIR and PID, 

respectively (Aleixandre & Gerboles, 2012).  For NDIR sensors, an optical detector 

opposite the gas sample from the infrared source detects the reduction in signal 

associated with the presence of the target gas.  The precise wavelength of the sensor 

can be tuned to attempt some level of specificity depending on the optical properties 

of the target gas and likely interfering gases.  PID sensors instead operate by 

detecting the flow of ions produced by the photoionization of target molecules by an 

ultraviolet light source.  This can be targeted somewhat more specifically by tuning 

the ultraviolet source to ionize VOC molecules.  By careful selection of the photon 

energy produced by the UV lamp, an approximate measurement of total hydrocarbons 

can be produced because of their relatively low ionization energy when compared to 

other major components of air.  However, the response of these sensors depend on the 

specific VOCs, and they does not allow for speciation without a coupled gas 

chromatography column or another separation method.  Both of these technologies 

have the benefit that they operate on optical principles and may therefore react on a 

nearly instantaneous basis to changes in concentration within their optical path. 
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5. Knowledge Gaps that will be Addressed 

Understanding which VOC sources are affecting air quality at a human scale 

is an important step to addressing sources that may be missed by current regulatory 

practices.  Addressing localized sources is an important step toward addressing 

disparities in air quality that drive unequal health burdens (Martenies, Milando, 

Williams, & Batterman, 2017; Shamasunder et al., 2018).  In the past, detecting 

specific sources using low-cost sensors has been accomplished in a few ways.  The 

foremost uses the advantage of a low unit cost to create dense networks that can be 

combined with wind direction information to determine the likely location from which 

a compound was emitted (Ashley Collier-Oxandale, Coffey, Thorson, Johnston, & 

Hannigan, 2018; Heimann et al., 2015; Mead et al., 2013).  A similar approach is the 

use of mobile sensors, leveraging the low-weight nature of sensors to create a map of 

concentrations (Penza, Suriano, Pfister, Prato, & Cassano, 2017).  A third, less 

targeted approach, is the removal of a baseline measurement that is either 

determined using upwind measurements or through forms of timeseries analysis with 

some assumptions about the temporal variation of far-field versus nearby sources 

(Klems, Pennington, Zordan, & Johnston, 2010; Popoola et al., 2018; Sabaliauskas, 

Jeong, Yao, & Evans, 2014). 

In most studies that attempt to identify pollutant sources using low-cost 

sensors, there is some assumption that a type of source is predominantly responsible 

for the emission of the measured compound(s), and that therefore measuring a few 

compounds can map the spatial effects of that source on the local air quality.  

Removing that assumption by improving the ability of low-cost sensor systems to 

identify the source type of pollutants would make those results more parsimonious 

and more likely to produce accurate conclusions.  In this study, we demonstrated a 

system that can provide information about gaseous concentrations and also identify 
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the likely source type at a cost point that is feasible for deployment at a sub-kilometer 

scale (roughly $1000 USD). 

One common question encountered during field deployments of low-cost 

sensors is the sensitivity of specific sensors to confounding gases and their target 

gases.  This is an important feature of the sensors to understand because of the 

diversity of compounds that are produced by different sources.  However, 

manufacturers often do not provide detailed information about the effects of 

confounding gases and also do not typically make claims about sensor response at 

concentrations low enough to be relevant for ambient air monitoring.   By placing a 

large array of low-cost sensors in a controlled environment and exposing them to 

complex, environmentally-relevant gas mixtures generated data that can answer 

questions about the sensitivity of both individual sensors as well as the full array.  

Another benefit of the study was the ability to vary gas concentrations and 

environmental conditions independently, an approach that provided information that 

is not possible to collect during a field deployment.  This information will inform the 

current understanding of which sensors are useful when attempting to study a 

specific compound in complex environments.  Finally, we will study whether an array 

of sensors can be used to algorithmically identify likely sources of VOCs. 
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CHAPTER 2 

USING A LOW-COST SENSOR ARRAY AND MACHINE LEARNING 
TECHNIQUES TO DETECT COMPLEX POLLUTANT MIXTURES AND 

IDENTIFY LIKELY SOURCES 

Abstract 

An array of low-cost sensors was assembled and tested in a chamber 

environment wherein several pollutant mixtures were generated.  The four classes of 

sources that were simulated were mobile emissions, biomass burning, natural gas 

emissions, and gasoline vapors.  A two-step regression and classification method was 

developed and applied to the sensor data from this array.  We first applied regression 

models to estimate the concentrations of several compounds and then classification 

models trained to use those estimates to identify the presence of each of those sources.  

The regression models that were used included forms of multiple linear regression, 

random forests, Gaussian process regression, and neural networks.  The classification 

models that were trained included logistic regression, random forests, support vector 

machines, and neural networks.  The best combination of models was determined by 

maximizing the F1 score on ten-fold cross validation data.  The highest F1 score as 

calculated on testing data was 0.72 and was produced by the combination of a 

multiple linear regression model utilizing the full array of sensors and a random 

forest classification model.  
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1. Introduction 

Understanding the causes of degraded air quality at a local scale is a 

challenging but important task.  Making the task especially difficult is the complexity 

of possible sources of pollutants, each of which produce a wide variety of chemical 

species.  These pollutant mixtures often include a component of volatile organic 

compounds (VOCs), which are important because of both direct toxicological health 

impacts as well as the impacts caused by secondary products like particulate matter 

(PM) and ozone.  There is also no single instrument that can fully quantify the 

complex and dynamic changes of ambient air composition needed to identify local 

sources, and communities directly affected by air quality problems often do not have 

the resources to mount an extensive measurement campaign needed to identify likely 

sources.  Quantifying the impact of and identifying these sources at a higher 

resolution than is currently possible would contribute to regulatory, scientific, and 

public health goals. 

Regulators could benefit from this type of information by both understanding 

what types of sources to target in order to address specific problems and also by 

understanding what industries are likely to be affected by regulations targeting 

specific compounds.  For example, a critical piece of legislation that governs toxic air 

pollutants is the list of Hazardous Air Pollutants (HAPs), which was produced and 

has been updated by the US EPA (US EPA, 2014).  When determining whether a 

specific HAP is likely to affect a community, it is important to understand the nature 

of sources on a broad range of scales because some compounds only affect 

communities near to their source while others can have global effects.  California’s 

recent state bill, AB 617, is an example of the regulatory application of a low-cost 

measurement approach to understanding VOC sources.  The bill is intended to 

address local air quality problems by both supporting community based monitoring 
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of air toxics and using the data gathered by those monitors to address important 

sources of hazardous compounds (Garcia, 2017). 

From a scientific perspective the location and nature of emission sources can 

provide important information for atmospheric chemistry models.  These models are 

used to understand the production of important secondary products including forms 

of particulate matter (PM), ozone, and other compounds with health and 

environmental impacts.  Currently, these models use some combination of emission 

factors, measurement campaigns, and back-propagation modeling to estimate 

emissions from important sources within urban areas.  Although continuous 

measurements that are used as inputs to these models are often spaced on the order 

of tens to hundreds of kilometers apart, it has been shown that the concentration of 

chemically important compounds vary on the scale of single to tens of meters in urban 

environments (Cheadle et al., 2017; Tan, Lipsky, Saleh, Robinson, & Presto, 2014).  

Dense, continuous measurements of air quality within cities could provide insights 

into small-scale variations on a real-time basis that are difficult to capture using 

current techniques.  For example, several studies have demonstrated the ability of 

dense networks or mobile platforms with low-cost sensors to quantify the variation of 

pollutants like NO2, CO, O3, and PM within urban locales (Mead et al., 2013; Penza, 

Suriano, Pfister, Prato, & Cassano, 2017; Popoola et al., 2018; Sadighi et al., 2018). 

From a public health perspective, networks of low-cost sensors may provide the 

ability to understand real-life exposures for individuals to categories of compounds 

with suspected health impacts.  The first of these studies using low-cost sensors have 

included some combination of small, portable measurement devices or dense 

networks and GPS locations of the individual.  Once continuous and highly specific 

exposure data becomes available, it may be possible to couple that data with health 

outcomes to better understand the relation between exposures and outcomes at 
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typical, ambient exposures (as opposed to workplace data, where exposure levels are 

typically much higher).  Developing affordable methods to study air quality at local 

scales is important as it may help identify and address environmental justice 

problems that may contribute to higher disease burden in vulnerable communities 

(Martenies, Milando, Williams, & Batterman, 2017). 

The work presented here provides a proof-of-concept for low-cost analytical 

tools to accomplish this goal on a more accessible scale.  In our proposed methodology, 

analytical methods were applied to low-cost sensors in order to estimate the 

concentrations of important compounds and to predict the “class” of source that is 

emitting those compounds.  Using this methodology, community members could have 

a “first pass” estimate of what they are being exposed to and what the likely source(s) 

of those compounds are.  With these more human-readable outputs, community 

groups would be better able to make decisions such as when and where to take air 

samples, what pollutant species to focus on, or what part of their local government to 

reach out to for a follow-up measurement campaign with possible regulatory 

implications. 

Previous studies have addressed components of the work entailed here but 

have not addressed the full scope of complex mixtures, ambient concentrations, and 

the prediction of realistic pollutant sources.  For example, De Vito et al. have used 

arrays of low-cost sensors to detect and separate tertiary mixtures of compounds 

(Saverio De Vito et al., 2007; Saverio De Vito, Piga, Martinotto, & Di Francia, 2009), 

and others have applied similar approaches to develop “e-noses” that can identify 

specific mixtures of a few compounds (Akamatsu, Tsuruta, & Shin, 2017; Aleixandre 

et al., 2004; Capone, Siciliano, Bârsan, Weimar, & Vasanelli, 2001).  The primary 

difference between these numerous studies and our own is that we have focused on 
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identifying the likely source of the pollutants rather than attempting to identify 

individual compounds. 

This study was also partially motivated by the problems understanding the 

outputs of low-cost sensors in the context of their increased noise and cross 

sensitivities relative to regulatory grade instruments (Clements et al., 2017).  Our 

own field experience and recent papers from the low-cost air quality instrument 

community have consistently found difficulties understanding and interpreting the 

outputs of low-cost sensors, especially when communicating results to individuals 

who may not have a highly technical understanding of the instruments and/or 

atmospheric chemistry (Robinson, Kocman, Horvat, & Bartonova, 2018; Woodall et 

al., 2017).  This study attempted to address some of these issues by providing an 

initial interpretation of the sensor outputs that can be produced in near real-time and 

are output in a way that a user could understand: the likelihood that a type of source 

is or is not affecting the measured air quality. 

2. Materials and Methods 

The methodology presented here was designed to accomplish two key goals.  

The first was to establish a system that is capable of detecting several compounds 

that are important air quality indicators.  The second function of the system was to 

take those estimates and use them to identify likely source(s) of those pollutants.  

Specifically, this study aimed to develop a system that could identify pollutant 

sources that are often associated with VOC emissions.  Note that the system here 

would not be more specific than a “class” of source like traffic, natural gas leaks, etc. 

This can be understood to be similar to a typical measurement campaign 

intended to identify VOC sources.  In these studies researchers would sample for 

several compounds of interest using research-grade instruments.  Using those 
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measurements, the researchers would then attempt to determine the likely sources 

based on their knowledge of typical emission factors and coemitted compounds. 

To develop a preliminary low-cost source attribution tool, we assembled an 

array of diverse, low-cost sensors.  We installed the array in an environmental test 

chamber and exposed it to simulated pollutant mixtures in a temperature- and 

humidity-controlled environment.  We then adopted a two-step data analysis 

technique that would investigate the ability of the array to detect pollution and 

improve source attribution.  The first step of this process was a regression model that 

estimated the concentration of pollutant species using the sensor array signal as 

input.  We investigated several regression models that are discussed in the next 

section.  The estimated concentrations were then used as the inputs to classification 

models that were trained to identify the source that was being simulated.  Again, we 

investigated a diverse selection of classification models and compared the accuracy of 

source identification produced by each combination of regression and classification 

model. 

2.1. Sensor Array Design 

In order to detect a variety of gaseous compounds for inferring the presence of 

a local pollution source, it was necessary to develop an array of sensing elements that 

were sensitive to an equally varied mix of pollutants at relevant concentrations.  This 

was accomplished by modifying the existing sensor platform, the Y-Pod (Ashley 

Collier-Oxandale, Coffey, Thorson, Johnston, & Hannigan, 2018; Piedrahita et al., 

2014a).  The Y-Pod is an Arduino-based open-source platform that is typically 

configured to include nondispersive infrared (NDIR), photoionization detector (PID), 

metal oxide (MOx), and electrochemical types of low-cost sensors for gaseous 

compounds (see Figure 1).  This baseline configuration was added to through the use 

of two external boards made to house additional electrochemical and metal oxide 
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sensors (see Figure 2).  Two Y-Pods with this main board configuration and two 

additional boards were tested; some of the sensors varied between the two Y-Pods.  

The sensors included on each board are listed in Appendix A, and the data streams 

from both of these pods were combined and analyzed as if they were one large array. 

 
Figure 1. Image of a typical Y-Pod with important components labeled. The connector that is 
labeled “I2C bus” was used both to communicate with ancillary sensor boards and to provide 
power to those boards.  The boards were not installed in the ventilated box shown in this photo 
but were instead placed directly into the test chamber. 

 
(a) 

 
(b) 

Figure 2. Image of the additional boards that were used for electrochemical sensors (a) and 
metal oxide (MOx) sensors (b).  The 4-wire connections labeled “I2C Bus” contained both I2C 
communications and electrical power for the boards. 

It has been shown that changes in how sensors are operated and manufactured 

influence how those same sensors react to changes in gas concentrations and other 
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environmental factors (G. Korotcenkov & Cho, 2011; Ghenadii Korotcenkov, 2013; 

Lee & Reedy, 1999; Schultealbert, Baur, Schütze, & Sauerwald, 2018; Tangirala, 

Gómez-Pozos, Rodríguez-Lugo, & Olvera, 2017; Yoo, 2011).  With this in mind, 

sensors were selected from multiple manufacturers and with different target gases to 

maximize the variance of sensor signal dependence to different gases between 

individual sensors.  One important aspect underlying the differences between sensors 

is the presence of non-specific cross-sensitivities that affect sensor signals when 

exposed to non-target gases (Alphasense Ltd., 2013, p. 109; Cross et al., 2017; Kim, 

Shusterman, Lieschke, Newman, & Cohen, 2017; Lewis et al., 2016a; Mead et al., 

2013; Molino et al., 2012; Popoola et al., 2018; Spinelle, Gerboles, Kok, Persijn, & 

Sauerwald, 2017).  When attempting to quantify a single compound, these 

interferences are treated as an issue that must be corrected for, but it is proposed 

here that a high dimensionality array of sensors could produce estimates of gases 

that are not the intended target of any single sensor.  Some authors have investigated 

these cross-sensitivities and their usefulness when used in combination, but this field 

is relatively poorly understood (Hagler, Williams, Papapostolou, & Polidori, 2018). 

Specific sensor models selected for use in this study (see Table 1) were 

determined after reviewing the literature to determine the sensitivity and usefulness 

of different models, as manufacturers rarely supply data from their sensors at 

concentrations that are relevant for ambient air monitoring.  The variable name(s) 

associated with each of the selected sensors are listed in the table included in 

Appendix A. 

Table 1. Details of the sensors that were selected for inclusion in the array. 

Manufacturer Model Target Gas Technology 

Baseline 
Mocon 

piD-TECH 
0-20ppm VOCs Photoionization 

(PID) 

ELT S300 Carbon Dioxide (CO2) NDIR 
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Alphasense 

H2S-BH Hydrogen Sulfide (H2S) Electrochemical 

O3-B4 Ozone (O3) Electrochemical 

NO2-B1 Nitrogen Dioxide (NO2) Electrochemical 

CO-B4 Carbon Monoxide (CO) Electrochemical 

NO-B4 Nitric Oxide (NO) Electrochemical 

Figaro 

TGS 2602 “VOCs and odorous gases” Metal Oxide 

TGS 2600 “Air Contaminants” Metal Oxide 

TGS 2611 Methane (CH4) Metal Oxide 

TGS 4161 Carbon Dioxide (CO2) Metal Oxide 

e2v 

MiCS-
5121WP CO/VOC Metal Oxide 

MiCS-2611 Ozone (O3) Metal Oxide 

MiCS-2710 Nitrogen Dioxide (NO2) Metal Oxide 

MiCS-5525 Carbon Monoxide (CO) Metal Oxide 

2.1.1. Metal Oxide (MOx) Sensors 

Metal oxide-based low-cost sensors are extremely common in the literature due 

to their small size and especially low cost (on the order of $10 USD/ea.).  They have 

been used to measure a range of species that are important for air quality 

measurement and include NO2, O3, CO, VOCs, and CH4 (Ashley Collier-Oxandale et 

al., 2018; Fonollosa, Sheik, Huerta, & Marco, 2015; Molino et al., 2012; Schüler, 

Sauerwald, & Schütze, 2014; Spinelle, Gerboles, Villani, Aleixandre, & Bonavitacola, 

2017; Vergara et al., 2005; Yoo, 2011).  In the default configuration of the Y-Pod there 

are three “onboard” MOx sensors.  Of these onboard sensors, two are designed for 

Figaro MOx sensors, and the heaters are connected to an op-amp circuit designed to 

keep the heater element at a constant resistance (i.e. temperature) by providing a 

varied electrical current.  The third MOx pad is designed for an e2v sensor and drives 

the heater with a constant voltage.  All three onboard MOx sensors’ sensing elements 

are measured using a voltage divider and analog to digital converter (ADC) chips.  

Additional MOx sensors were added to each Y-Pod board by installing them in voltage 
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dividers with additional ADCs that communicated with the main board via the I2C 

protocol (see Figure 2). 

2.1.2. Electrochemical Sensors 

Electrochemical sensors are another popular low-cost sensor technology and 

have been used widely for the study of pollutants at ambient concentrations (Borrego 

et al., 2018; Heimann et al., 2015; Kim et al., 2017; Lewis et al., 2016b; Mead et al., 

2013; Molino et al., 2012; Popoola et al., 2018; Spinelle, Gerboles, Kok, et al., 2017; 

N. Zimmerman et al., 2017).  For the purposes of this study, all electrochemical 

sensors were those manufactured by Alphasense and consisted of models designed to 

target NO, NO2, CO, O3, and H2S with some sensor models duplicated.  Alphasense 

electrochemical sensors were selected because of both the broad base of study that 

has been conducted with them in similar studies (Heimann et al., 2015; Kim et al., 

2017; Mead et al., 2013; Molino et al., 2012; N. Zimmerman et al., 2017) and also 

because of the significant (claimed) variability in cross-sensitivities between the 

models selected for study here (Alphasense Ltd., 2013).  As shown in Figure 2, the 

electrochemical sensors are all installed on boards containing a total of four sensors, 

each of which is in a potentiostatic circuit as recommended by their manufacturer 

(Alphasense Ltd., 2009) and the induced current is measured using an op amp circuit 

and ADC as also recommended by the manufacturer (Alphasense Ltd., 2009, p. 10). 

2.1.3. Other Sensor Types 

Nondispersive infrared (NDIR) and photoionization detection (PID) are two 

technologies that have been used in the literature for the detection of CO2 and total 

VOCs (Lewis et al., 2016b; Popoola et al., 2018; Spinelle, Gerboles, Villani, et al., 

2017).  An NDIR sensor manufactured by ELT Sensor was included and was designed 

to be sensitive to CO2.  This sensor communicates estimated CO2 concentration 
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directly to the main Arduino board using the I2C protocol.  The included PID was 

manufactured by Baseline Mocon and is sensitive to total VOCs and outputs a 

proportional analog signal that varies from 0-2.5 volts as the concentration ranges 

from 0-20 ppm, respectively.  The Y-Pod also includes commercial sensors for the 

measurement of ambient temperature, relative humidity, and barometric pressure. 

2.2. Environmental Chamber Testing 

For this study, it was determined that testing in a controlled environmental 

chamber would allow us to best characterize the array and to determine the feasibility 

of its usefulness when exposed to complex gaseous mixtures in the field.  The test 

chamber used for this study was Teflon-coated aluminum with a glass lid with a total 

volume of approximately 1500 in3.  In order to reduce the total volume, two glass 

blocks were added to the chamber, reducing the unoccupied volume to 1320 in3.  A 

40 mm, 6.24 CFM fan was also installed inside the chamber in order to promote 

mixing throughout.   

Gas mixtures were varied in both total concentration and composition to 

attempt to capture the variation in emissions within different classes of pollution 

sources.  Both temperature and humidity were adjusted independently to capture 

variability in sensor responses to both environmental parameters.  The test plan was 

conducted intermittently over three months to attempt to capture temporal drift, a 

factor known to affect many types of low-cost sensors (Miskell et al., 2017; Romain & 

Nicolas, 2010).  The full summary of concentration and other environmental 

parameter values produced during testing is available in Appendix B. 

2.2.1. Simulating Pollutant Sources 

We selected classes of sources to be simulated that are relevant to the 

communities in which these sensors could be deployed.  The example community 
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selected was one with which the Hannigan Group has performed other air quality 

research project and is located near downtown Los Angeles, California (Shamasunder 

et al., 2018).  This community was selected because of its proximity to a variety of 

sources that may contribute to local air quality issues.  These sources include oil and 

gas products and heavy traffic on major interstate highways, both of which can 

contribute to local elevations in concentrations of BTEX and other VOCs.  Produced 

liquids from oil and gas extraction were simulated using gasoline headspace, which 

contains hydrocarbons could vaporize from produced oil and condensates.  

Additionally, natural gas leakage and low-NOx combustion events (like biomass 

burning in wildfires) were selected as other sources relevant to the community. 

Sources were simulated by injecting up to three component gases along with 

dilution air into the environmental chamber in a flow-through configuration.  The 

dilution air for all testing was bottled “Ultra Zero” air, which is a synthetic blend of 

oxygen and nitrogen and contains less than 0.1 ppm of total hydrocarbons (Airgas, 

2018).  Flow control was accomplished using mass flow controllers (MFCs) that 

ranged from 0-20,000 SCCM for the dilution air and 0-20 SCCM for the component 

gases.  Each MFC was calibrated in situ using bubble flow meters as reference flow 

measurements, and a linear calibration was applied to each MFC prior to calculating 

in-chamber concentrations.  Reference gas concentrations were calculated as a flow-

weighted average as shown in Equation 1 where Fi,t is the concentration of the 

compound at the inlet of the chamber, Fi,b is the concentration of the pollutant in the 

supply bottle, Qi,b is the flow rate of the gas from that bottle, and Qm is the flow rate 

as reported by each MFC, including the dilution air. 
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Our test chamber did not include instrumentation to measure concentrations 

within the test chamber, so we assumed that the concentration of gas flowing into the 

chamber was equal to the concentration within the chamber.  In order to make this a 

reasonable assumption, we determined the time the chamber needed until the 

concentrations had stabilized within the chamber after any inlet changes.  This 

stabilization time period was calculated as four times the time constant for the 

chamber, a value that was determined to be roughly 600 seconds at 8.5 L/min, the 

nominal flow rate used for testing.   

Table 2. Simulated source classes and the species used to simulate them for the purpose of 
this chamber testing.  Note that limited dilution ratios did not allow for the inclusion of VOCs 
in the combustion sources. 

Source Component 
Gases 

Biomass Burning CO, CO2 
Mobile Sources CO, CO2, NO2 
Gasoline/Oil and Gas 
Condensates Gasoline Vapor 
Natural Gas Leaks CH4, C2H6, C3H8 

 

The component gases are listed in Table 2 for each simulated source and 

timeseries of their concentrations are illustrated in Figure 3.  For the testing of each 

source, the total concentration of the mixture and the relative concentrations of each 

component gas were varied to attempt to better simulate variation within source 

classes while still remaining representative of the source.  For example, the level of 

nonmethane hydrocarbons (NMHCs) within the simulated natural gas was varied 

from 0%, representing an extremely dry gas to just over 20%, representing a rich gas 

that would be more representative of midstream or associated natural gas.  This 

variation was also intended to try to remove some of the correlations between 

component gases to allow better understanding of what sensors were specific to which 

gas.  The dilution ratio and ratios of component gases were limited by the flow ranges 

of the MFCs and the concentrations of the gas standards used to supply the 
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component gases.  For a full matrix of conditions for each test point, please refer to 

Appendix B. 

The two simulated combustion sources did not include VOC species despite the 

associated VOC production motivating their inclusion in this testing.  This decision 

was made for two reasons.  First, the typical emission rates of primary compounds 

like CO, CO2, and NO2 from highway traffic are an order of magnitude higher than 

the emission rates for total gaseous VOCs on a mass basis, and even higher on a 

molar basis (Westerholm & Egebäck, 1994).  Secondarily, the NMHC emissions from 

combustion are dominated by highly reactive oxygenated volatile organic compounds 

(OVOCs) as well as semi-volatile organic compounds (SVOCs) (Akagi et al., 2011), 

both of which are impractical to obtain as reference gas cylinders because of their 

propensity to react and/or condense.  Because of these factors, it was decided to 

attempt to detect the primary pollutants (CO, CO2, and NO2) as indicators for the two 

types of combustion sources.  NOx was not included with “low temperature 

combustion” both because NOx emissions are dominated by diesel combustion (US 

EPA, 2016) and because it has been shown to quickly react with other emitted species 

into PAN and particulates (Yokelson et al., 2013).  If a significant influence of mobile 

sources or biomass burning was detected, one could use typical emission rates to 

estimate VOC exposures and/or could bring a more precise and targeted instrument 

into the community to make regulatory or other important decisions. 
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Figure 3.  Timeseries of reference concentrations for each component gas, colored by the 
simulated pollutant source.  X-axis indicates elapsed time in days that the sensor arrays were 
powered.  Gaps in the plots indicate times that they were powered but no test was being 
performed.  During these times, the arrays were left in the chamber at room temperature and 
exposed to ambient indoor air. 

2.2.2. Simulating Other Environmental Parameters 

In addition to simulating different mixtures of gases, temperature and 

humidity were also varied to attempt to capture environmental effects that are known 

to affect low-cost sensing devices (Cheadle et al., 2017; Suárez, Arroyo, Lozano, 

Herrero, & Padilla, 2018; Tsujita, Yoshino, Ishida, & Moriizumi, 2005).  Temperature 
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control was accomplished using an AC resistive heater, and humidity control was 

accomplished by bubbling the dry dilution air through a water bath.  Typical values 

ranged from 25-45°C and 40-80%, respectively.  Both temperature and humidity were 

recorded inside the chamber throughout testing, and a 12 VDC fan was installed 

inside the chamber to promote mixing. 

2.3. Computational Methods 

After subjecting the sensor arrays to a range of mixtures and environmental 

conditions, it was possible to develop training algorithms to quantify the component 

gases and predict the presence of each simulated source.  To begin this process, the 

data from both the sensor arrays and the chamber controls were collated and 

prepared for analysis.  Because of the high dimensionality and nonlinearity of the 

sensor dataset, a two-step approach was adopted and is illustrated in Figure 4.  In 

this approach, a regression model is first fitted to predict the concentration data for 

each gaseous compound or class of compounds, e.g. carbon monoxide or NMHC.  The 

application of this regression model created a pre-processing step that reduced the 

dimensionality of the dataset in a way that created new features that were useful on 

their own.  The estimated concentrations of each compound were then used as 

features for a classification model that attempted to predict the class of source that 

was being simulated, e.g. “Natural Gas” or “Mobile Sources”.  The classification 

models for each source were trained to allow for the prediction of multiple 

simultaneous sources, although multiple source simulations were not tested in this 

capacity due to limitations on the number of MFCs in our test chamber. 

 
Figure 4. Information flow diagram illustrating how predictions of the sources of detected 
pollutants (in this case, natural gas) are generated indirectly from raw sensor data. 

Sensor 
Signals Regression Species 

Concentrations Classification Source 
Identification
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2.3.1. Initial Data Preprocessing 

Both datasets were down-sampled to their 1-minute median values to remove 

noise and transient changes in conditions that could not be assumed to be uniform 

throughout the chamber.  During preprocessing, other data cleaning steps included 

the removal of 60 minutes after the pods were turned on (warm up times).  The 

temperature and relatively humidity values were also converted to Kelvin and 

absolute humidity, respectively., the data from the stabilization period described 

earlier were removed.  This ensured that enough time was allowed for the chamber 

to reach its steady state such that it was appropriate to assume that the inlet mixing 

ratio was representative of the actual mixing ratio within the chamber.   

2.3.2. Validating Models 

Because environmental data is highly autocorrelated, it was important to 

select holdout data for validation that would better represent unseen data than 

simple random sampling.  For this study, holdout data was selected using k-fold 

validation with 10 folds as illustrated in Figure 5.  Using this method, the full dataset 

was sorted by date and time and then divided into ten sequential blocks, or folds, of 

data.  For all folds, each model was trained on the nine other folds of data and tested 

on the fold of interest.  If model parameters were optimized for a given model, a subset 

of the training data was used for validation during that optimization process.  The k-

fold validation process produced ten estimates for each concentration and source at 

each timestep – one produced by each model trained on a subset of the data.  This 

provided some indication of the sensitivity of the models to the set of data on which 

it was trained and therefore provides an indication of how well the model could 

generalize to new data relative to the other models. 
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Figure 5.  Graphic illustration of the 10-fold cross-validation method used here illustrating 
the use of the first fold for testing.  Each fold contained 10% of the data, selected as consecutive 
blocks of time from start to end.  Data used for validation when tuning hyperparameters were 
a subset of the training data (models were never exposed to the test data during training).  For 
each cross-validation fold, classification models were tested on data that was also in the “test 
data” set during regression model training. 

2.3.3. Estimating Concentrations with Regression Models 

The first step in the analysis process involved regressing several “key” 

compounds that were selected as especially important for both detecting and 

differentiating the emissions from different classes of sources.  Several regression 

techniques that have been applied in the literature were explored here and assessed 

first on their ability to accurately model the concentrations of several different gases.  

These regression techniques included multiple linear regression (MLR), ridge 

regression (RR), random forests (RF), gaussian process regression (GPR), and neural 

networks (NN).  Separate models were trained for each compound to avoid “learning” 

the artificial correlations that were present in this study but would not fully represent 

the diversity of mixtures that could be expected in a field deployment. 

Some models include terms referred to here as “hyperparameters”.  

Hyperparameters govern how the model operates or is trained and are set before 

beginning to train the model.  For example, the number of layers and nodes in a 

1 2 3 4 5 6 7 8 9 10

Full Data Set

Test 
Data Training DataData Used for 

Tuning Models

Subdivided into 10 
Cross-Validation Folds

Fold Held Out For Training 
and Testing Models
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neural network would be considered a hyperparameter.  Another example is the 

regularization strength (k) in ridge regression, which modifies the loss function used 

while training the model.  Tuning hyperparameters is one way to improve the 

performance of models and can be used to determine appropriate values for model 

parameters that might normally be selected arbitrarily or based on previous 

experience.  Wherever possible, these hyperparameters were optimized to maximize 

the estimated model performance on future data.  This was done by holding out a 

subset of the training data and optimizing the hyperparameters based on the model 

performance when validated on that subset of the training data.  This data selection 

is illustrated in Figure 5.  Once the hyperparameters were set, the regression models 

were also assessed based on how well the classification models in the next step were 

able to use the estimated concentrations to make a prediction of the “source” that was 

being simulated. 

Multiple linear regression is one of the most popular forms of regression used 

to convert sensor signal values into calibrated concentration estimates and have been 

used in a range of applications with many low-cost sensor technologies (Bigi, Mueller, 

Grange, Ghermandi, & Hueglin, 2018; Casey, Collier-Oxandale, & Hannigan, 2019; 

Cheadle et al., 2017; S. De Vito et al., 2018; Kim et al., 2017; Spinelle, Gerboles, 

Villani, et al., 2017).  Because of popularity and the relatively low computational 

costs, several forms of multiple linear regression were investigated.  The first form, 

referred to here as “FullLM” was a multiple linear regression model that simply used 

every sensor input from the array.  This was considered as a baseline model as it 

included almost no previous knowledge except for the design of the array itself.  Next 

was a model referred to from now on as “SelectLM”.  These models only included only 

data from sensors that were known to react to the current target gas, as determined 

by a combination of field experience and manufacturer recommendations.  For each 
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sensor included in a model, an interaction term between the sensor response and the 

measured temperature was included.  Humidity was also included in each model, but 

no interaction term was added.   

Stepwise linear regression (“StepLM”) is an interesting but slow to train 

method of determining important predictors for use in a linear regression model.  In 

this methodology, a base model (typically a simple intercept term or a full interaction 

model) is fit to the data.  In the case of this study, the initial model was a simple 

intercept because a full interaction model was prohibitively large and slow.  After 

fitting the original model, new models are trained with the addition or removal of one 

of each possible term.  If the addition of a new term improves upon the previous model 

above some threshold, or if the removal does not reduce performance by a similar 

threshold, the term is added or removed.  This new model is used as the new “base” 

model and the process is iterated until no terms can be added to or removed from the 

model within those constraints.  In this study, the metric for improvement was the 

R2 value, and the threshold was a value of 0.075, which was chosen by experimenting 

with different performance metrics and exploring the performance of the generated 

models. 

Ridge regression (“RidgeLM”) is a form of multiple linear regression, but in 

this study the two are differentiated by how the terms of the multiple linear 

regression were determined.    During the generation of ridge regression models, all 

sensor values were included, and additionally, the interaction between each sensor 

and both temperature and humidity were included.  This created a high 

dimensionality dataset, on which ridge regression was applied; a method that 

includes a term to penalize overfitting.  Increasing this term affects the loss function, 

so that the final model assigns low weights to sensor signals that are not generally 
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useful.  This value of k was determined during initial investigations and then was 

kept constant across different compounds and cross-validation sets. 

Outside of these linear regression models, several nonlinear models were 

trained.  These were random forest regression (“RandFor”), gaussian process 

regression (“GuassProc”), and neural networks (“NeurNet”).  For random forest 

regression, a large ensemble of decision trees is trained to output discrete values.  

These trees are each trained on different bootstrap aggregated (“bagged”) subsets of 

the original data that are selected randomly with replacement.  When making 

predictions, the outputs of each of these trees are averaged in order to produce an 

output that can approximate a smooth function.  Because the individual trees only 

learn to produce values that they have seen before, the extension of random forests 

outside of their training space may be limited, although Zimmerman and colleagues 

showed that they were able to produce reasonable results within some parameter 

space (Naomi Zimmerman et al., 2018).  The hyperparameters that were optimized 

for random forests were the minimum number of points at each leaf node, the 

maximum number of splits for each tree, and the number of variables to select from 

at each edge.  These were optimized using the loss function out-of-bag error, which is 

the error on data that were not selected during the “bagging” of data during initial 

training. 

Gaussian process regression, which is sometimes referred to as kriging, is a 

probabilistic method that uses training data and some assumptions about the 

distribution of the variable to make predictions on new data.  Because this method is 

nonparametric, the ability to extrapolate to new data is somewhat limited, however, 

it is popular in the environmental modeling community and De Vito recently showed 

good success applying them to real atmospheric data (S. De Vito et al., 2018).  A 

squared exponential kernel was used after some initial investigation showed little 
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dependence of the results on this selection.  The hyperparameters that were 

programmatically optimized for this model were the kernel parameters and were 

optimized by minimizing the objective function: log(1 + cross-validation loss). 

Finally, the last regression model explored here was a neural network, a 

technique that has been used with low cost sensor for some time but is seeing a 

resurgence as improved training methods and computational power have improved 

their applicability (Casey et al., 2019; S. De Vito et al., 2018; Szczurek, Szecówka, & 

Licznerski, 1999).  These models produce results by combining a set of “neurons” into 

a larger network.  Each neuron applies a set of weights to each input and use a 

transfer function to translate the sum of those inputs into an output for the neuron.  

The first layer of neurons uses the raw sensor values as inputs, and subsequent layers 

use the outputs of the first layer as inputs.  These two layers are often referred to as 

hidden layers, the last of which provides the input to the output layer that translates 

these outputs into a single predicted value.  The hidden layers and number of nodes 

in each hidden layer of a neural network model are tunable hyperparameters and 

were optimized for the best mean squared error (MSE) on a subset of the training 

data that was held out for testing.  The number of nodes in each hidden layer was 

varied between 1-40 for the first layer and from 0-40 for the second layer.  When the 

number of nodes in the second layer was specified as “0”, the second hidden layer was 

simply omitted. 

2.3.4. Predicting Source Classes with Classification Models 

After generating estimates of “key” compounds using each of the above 

regression approaches, classification algorithms were trained to identify the class of 

“source” that was being simulated, using the estimated concentrations at each 

timestep as features.  The data was divided into the same sets of calibration and 

validation sets to ensure that the final validation results were left out of model 
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training for both regression and classification.  The classification techniques applied 

here have been seen in the literature, although typically with the goal of identifying 

individual compounds within simple mixtures (Saverio De Vito et al., 2007; Marco & 

Gutierrez-Galvez, 2012; Tomchenko, Harmer, Marquis, & Allen, 2003; Vembu, 

Vergara, Muezzinoglu, & Huerta, 2012).  Those algorithms selected here are logistic 

regression, support vector machines (SVM) with both a linear and Gaussian kernel, 

random forest classifiers, and neural networks.  The models vary significantly in their 

ability to separate different classes and were selected because of that diversity.  For 

all of the methods presented here, the classification model outputs were values 

ranging from 0 to 1, where 0 indicates high confidence in the absence of a source, and 

1 indicates high confidence in the presence of a source.  When comparing the results 

to the actual simulated source, a value greater than or equal to 0.5 indicated a 

prediction that the source was present and a value less than 0.5 that it was absent. 

The first type of classifier, the logistic regression is the simplest and most 

linear of the classifiers.  In the results below, this model was referred to as 

“Logistic_class” and is a generalized linear model with binomial distribution.  An 

independent classifier was created for each of the simulated sources, and each model 

was trained to indicate the presence or absence of that source.  Much like the StepLM 

function described earlier, the terms for this model were selected by stepwise 

regression, with the difference being that the terms here were gas concentrations 

rather than sensor signal values.  Because the logit link function is used to map the 

output of a linear function to a value from 0 to 1, the output of a logistic regression is 

often interpreted as the probability or confidence that the value is in the positive or 

negative class.  In this case, that would be the likelihood that a certain source is or is 

not affecting the measured air quality.  One benefit of logistic regression is that it is 
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interpretable and computationally inexpensive relative to other, more complex and 

nonlinear methods. 

The second classification model investigated was support vector machines 

(SVMs), which were trained to indicate the presence of a source.  The general goal of 

SVMs is to create a line or plane that has the largest margin between separated 

classes, with some allowance for outliers and noise.  In two-dimensional space, this 

can be visualized as creating a line that separates two classes and has the widest 

empty space on either side.  The points closest to the line are referred to as support 

vectors and give the classifier its name.  Because the goal of an SVM is to create a 

line that separates two classes, it may be considered as a linear classifier, although 

kernel functions are often used to map this linear function to a nonlinear space.  The 

new features created by kernel methods are generally understood as measures of 

similarity between each instance.  Two kernels were studied here, the first being a 

linear kernel that does not transform the input variables, and the second being the 

gaussian kernel.  These are referred to in the results as “SVMlin_class” and 

“SVMgaus_class” respectively, simply because of the name of the functions written to 

implement them.  Both kernels were implemented to predict the presence or absence 

of each source independently, just as described for logistic regression above.  For the 

SVM with a gaussian kernel, the hyperparameters controlling the kernel scale and 

box constraint were optimized automatically to reduce cross-validated 

misclassification errors.  These two factors affect how “smoothed” the kernel is and 

how heavily the loss function is penalized for errors, respectively. 

Next, a random forest classification model was trained to identify the presence 

of each source, referred to in the results as “RandFor_class”.  Although random forests 

can quite easily be applied to multiclass regression problems, models were trained to 

predict the binary presence of each source separately, so that in sum the models could 
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predict the presence of multiple sources at the same time without creating many 

classes representing all possible combinations of sources.  The hyperparameters that 

were optimized for this model were the same as for the random forest regression 

models: minimum leaf size and maximum number of splits.  These random forests 

represent a collection of 500 decision trees that are each trained on different subsets 

of the training data.  In this case, those subsets were selected via bootstrap 

aggregation (bagging), wherein data is randomly sampled with replacement from the 

original training dataset.  Each of these trees produce a prediction of the presence or 

lack thereof for the source that they were trained on.  The “score” that was output to 

indicate the confidence that a source was present represents the fraction of trees 

within each forest that predicted that a source was present. 

The last classification approach that was explored was a pattern recognition 

neural network, referred to in the results as “NeurNet_class”.  This neural network 

had one output node for each source and was therefore able to predict the presence of 

multiple sources independently and simultaneously.  The hyperparameters that were 

optimized for this model were the number of layers (1 or 2), the number of nodes in 

each layer, and the transfer function that translates the input to outputs.  In this 

case a neural net with 2 layers of 5 nodes using the “softmax” transfer function was 

selected. 

Other classification methods that were not included here but are present in 

the literature include k-nearest neighbor classifiers (Schüler, Fricke, Sauerwald, & 

Schütze, 2015; Suárez et al., 2018), linear discriminant analysis (Bastuck, Bur, Lloyd 

Spetz, Andersson, & Schütze, 2014; Romain & Nicolas, 2010; Schüler et al., 2014), 

and other, more specialized techniques targeted at specific sensor technologies (Lee 

& Reedy, 1999; Schüler et al., 2015).  These were not included due largely to their 

similarities to other techniques applied here. 
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3. Results 

3.1. Regression Results 

After training each model, the accuracy was measured as the root mean 

squared error (RMSE).  Other analysis metrics like, R2, that use the variance of the 

reference values were difficult to interpret because some folds of validation data 

consisted entirely of concentration values that were exactly zero.  In other words, 

some validation folds consisted of time periods when a compound was not being added 

to the chamber.  The RMSE values plotted in Figure 6 illustrate that the models 

perform acceptably but are generally not as accurate as has been achieved in the 

literature (Borrego et al., 2018; Casey et al., 2019; Mead et al., 2013; Spinelle, 

Gerboles, Kok, et al., 2017).  They also show that they are susceptible to overfitting 

to various degrees as shown by the differences between the results on training data 

(dark colored boxes) and testing data (light boxes).  The relatively poor performance 

that is reflected in the RMSE values is also reflected when plotting the estimated 

concentrations versus reference values.  This is shown in in Appendix C. 
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Figure 6.  Boxplots of RMSE values (ppm) from each fold using each model and species.  Bars 
indicate the 25th and 75th percentile values, whiskers extend to values within 1.5 times that 
range from the median, and dots represent points outside of that range as calculated using the 
GRAMM package for MATLAB (Morel, 2018). 
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Interestingly, the variation between models when compared by their RMSE is 

not as great as one might expect.  It also appears that the regularization as applied 

to the ridge regression did not totally address the problem of overtraining, as 

evidenced by the training RMSE values consistently underestimating the testing 

errors.  This indication of overtraining could indicate that the regularization didn’t 

balance out the increased variance caused by the addition of temperature and 

humidity interaction features introduced only for ridge regression.  Neural nets and 

random forest regression typically performed best in our study, possibly explained by 

their ability to encode complexities like interactions, changes in sensitivity over time, 

and nonlinearities in signal response. 

The relatively poor performance of the models, as compared to the literature, 

may be partially explained by design of the experiment.  That is, this chamber study 

was designed to intentionally introduce a wide range of conditions containing known 

or suspected confounding gases at significantly elevated levels.  This wide range of 

sources and concentrations would be unlikely to occur in a single location and it was 

therefore more challenging to accurately predict concentrations than in a typical 

environment.  Reference values are also calculated based on MFC flow rates, which 

introduces the assumption that the chamber is fully mixed and has reached steady 

state concentrations equal to that at the inlet.  Both of these assumptions necessarily 

introduce additional uncertainties.  Finally, the nature of chamber studies produces 

relatively discrete values for each reference instead of the continuous values that 

would be experienced in an ambient environment.  This forces models to interpolate 

across a relatively wide range of conditions that are not seen in the training data; 

likely an important factor that may reduce the accuracy of the models.  
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3.2. Classification Results 

At the end of the classification step, a set of values from 0 to 1 was output by 

each of the classification models for each simulated source.  These values indicated 

the model’s prediction that a source was or was not present at each time step.  In a 

field application, these values would be the indication of the likelihood that a source 

was affecting the measured air quality. 

The results of each combination of classification and regression model were 

evaluated using empirical cumulative probability functions (CDFs) of the model 

outputs when a source was and was not present.  An example of one of those plots is 

shown in Figure 7 for the best performing set of models (“FullLM” and 

“RandFor_class”).  By plotting a CDF of the output of the model, it was possible to see 

how often a model correctly predicted the presence of a source (score ³ 0.5) or absence 

of a source (score < 0.5) when the source was present (blue line) and was not present 

(red line).  The magnitude of the score also indicated how confident the model was in 

its prediction, so values closer to 0 or 1 would be more useful to an end user because 

it would give a stronger indication that the source was actually absent or present.  

For example, if the classifier output a value close to 1 for traffic emissions, the user 

could be more confident that elevated concentrations were due to an influence of 

traffic pollution.  In these plots, an ideal and omniscient model would roughly trace 

a box in the plots below, where it output a score close to 0 for all points where a source 

was not being simulated (red), and close to 1 for all points when a source was being 

simulated (blue).  The CDF was plotted for classification models trained on both the 

reference values and the estimated values output by regression models.  This allowed 

us to determine whether a model would or would not be able to separate the sources 

when given “perfect” concentration values.  If not, then the model was unlikely to be 

useful when trained on less accurate estimates produced by regression models.  If the 
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model performance was adequate when trained and validated on reference data, then 

it was trained using the outputs of each regression model to see which it was most 

compatible with.
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(a) 

 
(b) 

Figure 7.  Example set of CDFs showing classification model performance on both calibration (train) and validation (test) data.  The 
red lines trace the CDF for test cases where the source was not present (-), and blue lines illustrate the results when the source was 
present (+).  (a) shows performance using the reference gas concentrations as features, and (b) shows performance for a combination 
of regression and classification models (in this case, FullLM and RandFor_class).
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Another analysis tool that was used to select models were the confusion 

matrices that are shown in Figure 8 for each combination of regression and 

classification models.  The confusion matrices plotted here illustrate the fraction of 

times each source was identified as present when each of the sources was being 

simulated.  Confusion matrices are useful because they help us to understand what 

types of mistakes the model is making.  For example, the top row of each confusion 

matrix shows the fraction of times that a model predicted that a source was present 

when no source was being actively simulated.  A confusion matrix for an ideal model 

would be a matrix with the value of 1 along the diagonal and 0 elsewhere, indicating 

that it predicted the correct source every time.  As mentioned before, the threshold 

was set as 0.5 for each model output, and each model was trained independently, so 

it was possible that multiple sources were predicted for a single timestep.  This 

functionality was intentional because it would allow for the identification of multiple 

simultaneous sources, a situation that is likely to occur in reality.  

Several of the models had problems with confusion between low and high 

temperature combustion that should have been easily differentiated by the presence 

of NOx.  After reviewing the data, it appears that the NO2 electrochemical sensor 

failed approximately 2/3 of the way through the test matrix, likely hampering the 

ability of regression models to learn its importance in predicting NO2 concentrations.  

Interestingly, the regression model that used all of the sensors was the one that 

produced the best inputs to the classifier models.  This may be because it did not 

discard other sensors that would have been possibly less useful for the regression of 

NO2 but that also did not fail near the end of the test. 
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Figure 8.  Confusion matrices showing the classification success on validation data with the F1 score noted for each (see equations 1-
4).  Each chart shows the results of a combination of classification (columns) and regression (rows) models.  Within each confusion 
matrix, the reference class is shown on the “y” axis and predicted class is indicated on the “x” axis.  Lighter colors indicate higher 
values, ranging from 0 to 1, which correspond to the fraction of times that a source was predicted when a source was being simulated. 
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4. Discussion 

4.1. Best Combination of Models 

The best combination of classification and regression model was determined by 

comparing F1 score as calculated using equations (1-4).  The F1 score is a popular 

analysis tool when understanding the performance of pattern recognition algorithms 

because it provides a balanced indication of both the precision and recall (Shai 

Shalev-Shwartz & Shai Ben-David, 2014).  Precision can be understood as the 

fraction of times that a model is correct when it predicts that a source is present, and 

recall is the fraction of times that a source is present and the model “catches it”.  The 

F1 measure uses the harmonic mean of the two values, which more heavily penalizes 

poor performance in either metric, a consideration that becomes important when the 

prevalence of classes are not balanced, e.g. a class is not present much more often 

than it is present.  The F1 measures that were used for model evaluation were those 

calculated on data that was left out of the training data for both regression and 

classification and are shown in Table 3 for each combination of models.   
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1 n indicates the number of classes (sources). 
 
 

Table 3.  F1 Scores calculated for different combinations of regression and classification 
models.  Calculated using equations (1-4) on data that was held out for validation during model 
training.  Cells are colored by the indicated score. 

  Classification Model 
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    Logistic_class NeurNet_class RandFor_class SVMgaus_class SVMlin_class 
Re

gr
es

si
on

 M
od

el
 FullLM 0.677 0.417 0.718 0.610 0.711 

GaussProc 0.416 0.401 0.394 0.288 0.535 
NeurNet 0.596 0.496 0.690 0.569 0.596 

RandFor 0.332 0.442 0.479 0.578 0.556 

RidgeLM 0.521 0.376 0.570 0.493 0.596 

SelectLM 0.600 0.531 0.545 0.493 0.596 
StepLM 0.695 0.502 0.619 0.614 0.616 

 

Using the criterion of maximum F1 score, the best performance was 

accomplished by using the full multiple linear model (FullLM) to produce 

concentration estimates for a set of random forest models (RandFor_class) that 

estimated the sources.  The performance of this pair is highlighted in Figure 9, which 

shows that the models were most effective at identifying gasoline vapors, and the 

second most successful classification was for natural gas emissions.  The most 

common mistakes made by the model were confusion between low temperature 

combustion and heavy exhaust.  This makes intuitive sense because the only 

differentiating factor in this study was the presence of NO2 during heavy exhaust 

emissions, a compound that the regression models struggled to accurately predict.   

 
Figure 9.  Confusion matrix for the “best” combination of models as judged by the F1 score as 
calculated using validation data.  This combination involved regression using all linear models 
and then random forest classification trees. 
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4.2. Sensor Importance for Different Compounds 

The sensors that were most influential when estimating the concentration of 

different gases was investigated by probing parameters from a few different 

regression models.  Specifically, we explored the sensor signals that were selected by 

stepwise regression, the unbiased importance measures for sensors from the random 

forest regression models, and the standardized ridge trace generated when fitting 

ridge regression models.  By looking at what sensors were especially important to 

different models, it was possible to see which sensors were likely to be truly important 

to estimating the concentration of a gas. 

4.2.1. Terms Selected by Stepwise Regression 

Figure 10 shows the sensors selected by stepwise linear regression for each 

compound of interest where the boxplots indicate the statistical importance of those 

sensors when they were selected.  Many of the terms selected algorithmically match 

the sensors that we have used based on previous experience (Casey et al., 2019; A. 

Collier-Oxandale et al., 2018), although there were a few surprises that would suggest 

further investigation.  For example, terms that were expected were the inclusion of 

the Figaro 2600 and 2602 for the detection of methane and nonmethane hydrocarbons 

(NMHC).  The importance of the Baseline Mocon sensor for gasoline was also 

expected, as it is one of the few sensors that our research group has used to detect 

heavy hydrocarbons at sub ppm levels.  Finally, the sole selection of the NDIR sensor 

for CO2 from NLT was expected as this technology is generally quite robust to cross-

interferences and has been used successfully before in other studies.  Some of the 

unexpected terms were the inclusion of the CO2 sensor for indication of CO and NO2, 

although this is likely because NO2 was only ever present when CO2 was also present, 

although not always at the same ratios, and the reverse was not true.  CO is 
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interesting in that there were some test points where only CO was present, although 

it is possible that there were not enough to counteract the more common correlation 

between the two compounds.  It’s also interesting that the gasoline models 

consistently selected the Figaro 4161, which is an older metal oxide sensor that was 

marketed for the detection of CO2.  Other sensors were selected for inclusion in only 

one or two of the cross-validation folds for NO2, CO, and NMHC, which indicates that 

their inclusion is not reliable and may be caused by a correlation unrelated to 

sensitivities. 

 
Figure 10. Frequency that each term was selected by stepwise regression for each pollutant 
from all cross validation folds.  When an interaction term was selected, it was named with 
“Sensor1:Sensor2” where “Sensor1” and Sensor2” are replaced with the sensor names.  

4.2.2. Random Forest Unbiased Importance Estimates 

The random forests were trained such that they determined the variable to 

split at each node by using the interaction-curvature test as implemented by the 

MATLAB function “fitrtree”.  This method allows the model to account for 

interactions between variables and produces unbiased estimates of the change in 
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mean squared error (MSE) associated with the variable selected to split at each node.  

Because the decision of which variable to split on is evaluated for each tree at each 

node using different subsets of the full set of variables, importance estimates are 

generated for every variable and is determined on a wide range of subsets of the data.  

The ten most important variables, in this case sensor signals, for each compound are 

shown in Figure 11. 

For NO2, we once again see that none of the sensors were selected to have a 

strong importance.  This again is likely at least partly due to the failure of the NO2 

sensor part way through testing.  This is reflected in the high ranking of the elapsed 

time (“telapsed”) variable, as it would help separate the point of failure for that 

sensor.  The H2S electrochemical sensor is again among the more important inputs, 

reinforcing the hypothesis that it is at least partially sensitive to NO2.  Interestingly, 

the NO2 sensor does feature prominently in the CO importance plot.  It is possible 

that the individual trees making up the random forest learned to screen the NO2 

sensor when it had failed so as to be able to still use its common association with NO2, 

although it is not clear why that would be true when estimating CO and not NO2. 

Both the methane and nonmethane hydrocarbon (NMHC) models are 

dominated by the Figaro 2600, which is the sensor that we have shown to be effective 

for similar applications (Casey et al., 2019; A. Collier-Oxandale et al., 2018).  It is 

possible that the NMHC are simply taking advantage of the partial correlation of 

NMHC with methane and not actually recording a sensitivity of the Figaro 2600 to 

other NMHC.  This is reinforced by the lower ranking of the 2600 when regressing 

gasoline concentrations.  In this model, the Baseline Mocon PID sensor and Figaro 

2602 are selected, and their selection matches our experience with detecting heavier 

hydrocarbons.  The elapsed time variable is relatively important here, which matches 
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a drift in the Figaro 2602 that was noticed when reviewing the sensor values over the 

full test period. 

The CO2 model is also dominated by the NDIR CO2 sensor from ELT, another 

instance where the models match expectations (Casey et al., 2019; Ashley Collier-

Oxandale et al., 2018).  The gasoline model is also again dominated by the Baseline 

Mocon PID sensor and the Figaro 2602, which are two sensors that we have used to 

study those compounds in the past.  The MICS-5121wp sensor by e2v is also relatively 

important, and it, too, is a sensor targeted at the detection of VOCs.  



72 

  

  

  
Figure 11. Box plot of the top 10 predictors sorted by out of bag importance estimates for each 
regressed compound.  Boxes indicate the variation between cross-validation folds. 
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4.2.3. Standardized Ridge Regression Coefficients 

The use of ridge regression offered an opportunity to review which sensors 

contributed to models when using regularization to avoid overfitting.  Because of this 

regularization, more initial terms could be included; in this case interactions between 

each sensor and temperature, humidity, and both temperature and humidity were 

included in the input dataset.  These are denoted by appending “:T”, “:H”, or “:T:H” 

respectively to the end of the sensor name.  The methodology here initially used a 

range of regularization coefficients to produce a “ridge trace” plot that showed the 

standardized weight assigned to each variable as a function of that regularization 

coefficient (see Figure 12).  By reviewing the ridge trace produced for each pollutant, 

it was possible to select a regularization coefficient that seemed to be an appropriate 

combination of reducing variance while avoiding underfitting.  For this study, that 

value seemed to typically range between 1 and 10 for all pollutants, so a value of 5 

was applied to all models for consistency and to avoid over-learning that 

hyperparameter.  The ridge trace plots for each compound provide another insight 

into which sensors were important enough to the model that its importance to the 

model outweighed all but extreme values of regularization.  This is indicated by 

weight values that are relatively high and stable, even at high levels of regularization 

(the right side of the plot). 

In the NO2 ridge trace, most of the weights collapsed toward zero as 

regularization was increased, indicating that none were especially strongly correlated 

with NO2.  That said, the H2S sensor was relatively resistant to regularization, 

indicating that it may have some sensitivity to NO2.  The CO2 NDIR sensor term with 

temperature interaction term is also quite stable, although this may simply indicate 

that NO2 was sometimes co-emitted with CO2.  It is important to again note that the 
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NO2 sensor included in the study appears to have failed during the second half of 

testing, likely explaining its absence from this plot. 

For CO, a strong dependence was seen with the NO2 sensor, although this may 

again be caused by the fact that NO2 was sometimes released at the same time as 

CO.  The CO2 NDIR sensor is also relatively resistant to regularization, but this may 

be caused by the same phenomena.  Interestingly, the electrochemical ozone sensor 

(with temperature interaction) was relatively strongly and negatively represented in 

the ridge traces.  This may indicate that the catalytic surface on the ozone sensor is 

somewhat sensitive to carbon monoxide, although the electrochemical cell would be 

operating in “reverse” as ozone is an oxidizing agent and CO is reducing. 

Nonmethane hydrocarbons (NMHC) seem to have been dominated by their 

inclusion as a component of some of the simulated natural gas emissions, as both 

Figaro 2600s were strongly weighted even with high regularization.  Temperature 

itself was also selected, although it is not clear why this was selected rather than the 

terms that included temperature interactions. 

Gasoline vapors produced a significantly different plot from NMHC, likely 

because they were not co-emitted with methane and were not dominated by the 

ethane and propane signals from the simulated natural gas emissions.  These vapors 

were well captured by the Baseline Mocon PID sensor that is designed to quantify 

gaseous hydrocarbons.  Interestingly, the parameter of just this sensor and the 

parameter with the interaction of this sensor with temperature and humidity were 

both selected strongly.  This may indicate that the sensor has some sensitivity to 

environmental parameters as well as the mixture itself.  The Figaro 2602 with 

humidity interaction was also selected strongly, which is an expected result as these 

vapors are the target of the 2602 and humidity is known to affect metal oxide sensors.  

One of the pressure sensors (BME) was also selected with almost as much weight as 
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the Figaro 2600 sensor.  After reviewing the data, we determined that this was due 

to a spurious correlation with pressure in the chamber, which was not controlled. 

For CO2, several of the Figaro 2600 sensors were selected, although it is not 

clear whether that is representative of a true cross-sensitivity to CO2.  It is, for 

example, possible that these are actually cross sensitive to CO, which was co-emitted 

with CO2 in some of the testing.  The CO2 NDIR sensor on one of the pods was 

selected, although not as distinctly as one might have predicted, based on the typical 

sensitivity of these sensors. 

Finally, for methane, the Figaro 2600 sensor term was selected most strongly 

at higher levels of regularization.  The Figaro 2600 sensor that was installed on the 

ancillary board and which operated at a slightly different operating temperature was 

also selected somewhat at a similar level to the Baseline Mocon PID sensor.  Both 

BME pressure sensors were again selected, representing an incidental correlation 

with pressure. 
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Figure 12.  Summary of ridge traces of the top 10 most important parameters from the 
regression of each pollutant.  Weight magnitude should not be compared between compounds 
because they scale with the concentration values.  Interactions with temperature and/or 
humidity are indicated by “:T”, “:H”, or “:T:H, respectively.  Colors indicate the sensor and are 
sorted from largest to smallest importance at high regularization.  Dashed lines illustrate the 
ridge trace for each cross-validation fold, and the solid lines illustrate the median value for all 
folds.  The x-axis of each plot indicates the ridge parameter (regularization strength), and the 
y-axis indicates the unbiased parameter weight.  Larger absolute values indicate a stronger 
importance of that sensor, especially at larger values of the ridge parameter. 
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5. Conclusions 

In this study, we have shown the ability of current modeling and machine 

learning techniques to quantify several trace gases and identify likely sources for 

those trace gases using an array of low-cost sensors.  The best combination of 

regression and classification methods for source identification was a linear regression 

using every sensor in the array followed by a random forest of classification trees.  

The F1 score as calculated on data that was held out during optimization and model 

fitting was 0.718, indicating a relatively strong combination of accuracy and 

precision.  The selection of these models was a somewhat unexpected result as it was 

expected that the baseline linear regression model with every sensor was likely to 

overfit while also being unlikely to capture interactions caused by gas interferences 

and environmental parameters.  Indeed, as far as regression accuracy, many of the 

other regression models outperformed this model when predicting on validation data.  

That said, it is possible that the random forest classifier model was able to encode the 

interferences that would have been normally captured by the regression model while 

also taking advantage of signals that would have been removed or reduced by other 

regression models. 

In this study, we also reviewed the variable importance from three different 

regression models to investigate the value of sensors when quantifying different 

pollutants of interest.  Although there were some issues caused by sensor failure, 

these may provide valuable insight to researchers designing the next generation of 

sensor platforms. 

Going forward, it will be important to validate these methods in more realistic 

environments as chamber calibrations are not ideal representations of field 

performance (Masson, Piedrahita, & Hannigan, 2015; Piedrahita et al., 2014b).  One 

example of a study that could provide valuable insights would be the placement of 
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this sensor array in regions where different sources are likely to dominate, e.g. 

immediately next to a highway onramp and then next to a well during completion.  

By collecting data in these locations as well as e.g. rural sites, it would be possible to 

determine how well the identification of sources might function in situations where 

the qualitative levels are known.  This has been demonstrated by Molino and others 

for the detection of single sources (Molino et al., 2012). 

There are also other analysis techniques that could be used to possibly improve 

the results here.  Specifically, combining the models into ensembles for both 

classification and regression, the ensembles could improve overall results by 

combining models that make “decisions” in different ways and are therefore less 

likely to make the same types of mistakes.  The use of generative classification models 

could also improve the identification of sources.  These models learn the 

characteristics of different classes instead of learning to separate one class from 

another.  This type of classifier generally performs better on smaller training data 

sets, and relative to the possible conditions that sensors could be exposed to in field 

campaigns, any calibration will always represent a small training set. 

Finally, many sensors were not available for inclusion in this array due to 

limited availability and schedule conflicts.  Including new sensors in the array could 

fill in gaps that were not covered by the relatively limited variety of sensors here.  

These new inputs could involve similar sensors operated in new ways, e.g. 

temperature cycled MOx sensors that have been shown to improve sensitivity to 

VOCs and other gases (Lee & Reedy, 1999; Schüler et al., 2014; Schütze et al., 2017).  

It could also include sensors with wildly different operating principles like micro-GCs 

(Spinelle, Gerboles, Kok, et al., 2017) or with new targets like the low-cost PM sensors 

that could also be useful in the differentiation of sources. 
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CHAPTER 3 

CONCLUSIONS 

This thesis has focused on the many sources of VOCs and the development of 

a tool to identify those sources at a more localized scale than is currently feasible.  

The first chapter presented an overview of some of the major sources of VOCs that 

affect air quality across the United States.  That chapter provided a relatively brief 

overview of those sources, including some of the compounds that are currently 

understood to be commonly associated with them.  The variation of chemical 

composition both within and between VOC sources quickly becomes apparent, 

motivating the studies that have been undertaken to better understand their 

contribution to ambient air quality.  I then reviewed some of the methodologies 

underlying those studies in order to understand their effectiveness.  Using this 

background, I identified the gaps that the need to be addressed in order to understand 

the sources responsible for VOC exposures at a community scale.  The development 

of a low-cost sensor array that is able to fill some of these gaps was the focus of the 

research presented in Chapter two.  Before discussing their application in Chapter 2, 

the underlying sensor technologies were briefly reviewed in order to give the reader 

a better understanding of the diversity of technologies that were applied in my 

research. 
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One benefit of the use of low-cost sensor tools is making air quality information 

more accessible to a broad range of users.  By reducing the costs of sensors by orders 

of magnitude, developers have helped to reduce the financial barriers to the adoption 

of these research tools for individuals and communities that do not have the financial 

resources to support a study using traditional research tools.  However, collecting 

data is only the first step in these studies.  Typically, users deploy low-cost sensors 

with a specific goal in mind, and that goal requires an understanding of the outputs 

of those sensors.  In conversations with low-cost sensor users, they have described 

many of their own goals.  Those goals included, for example, deciding when to collect 

limited grab samples, collecting data that may persuade local government to take an 

action, or understanding whether a specific oil and gas development is affecting their 

air quality.   

Identifying the sources of measured compounds is one of the more challenging 

tasks when studying air quality, whether it be with research grade instruments or 

low-cost sensors.  It becomes even more difficult when that research is conducted with 

low-cost sensors because of poorly understood cross-sensitivities to other gases, 

temperature and humidity effects, temporal drift, and high noise.  In the course of 

the research presented in Chapter 2, I was able to use several tools to better 

understand some of these effects and advance the state of knowledge.  As we 

discussed in Chapter 1, there are a variety of processes that can produce VOCs, so 

measurements of the concentration of one or two compounds is rarely enough to 

answer those questions.  However, measurement campaigns that only capture a few 

compounds and attempt to determine sources from those measurements represent 

the bulk of the current literature for low-cost sensors.  In Chapter 2, I developed an 

array of low-cost sensors and complementary analysis tools to address the task of 
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both quantifying the concentration of gaseous pollutants and algorithmically 

estimating the presence of sources that could have emitted the detected gases.   

The research presented in the second chapter was intended as an initial 

investigation of the feasibility of algorithmically identifying multiple sources, 

something that has not been attempted in the literature, as far as I am aware.  In 

impact the entire United States as well as the communities that I have worked with 

in Southern California.  Understanding the major components of those sources 

allowed me to identify what sensors and regression methods had been successfully 

applied in the literature to detecting those compounds. 

After this preliminary review, I developed a test matrix that included the 

simulation of four sources: biomass burning, mobile sources, unburned liquid fossil 

fuel emissions, and unburned natural gas emissions.  These sources were selected 

based on their presence in the literature and their applicability to community groups 

that we have worked with in Southern California.  By choosing to conduct this first 

study in our test chamber, I was able to reduce correlations between different 

compounds, environmental parameters, and time.  I accomplished this by varying the 

exact mixtures that made up each simulated source and the temperature and 

humidity conditions for each of those mixtures.  This design presented a dataset 

designed to make it less likely for models to learn, for example, that carbon monoxide 

was always emitted with NO2, or that concentrations were correlated with diurnal 

temperature changes.  This contributed to the state of knowledge by creating a 

dataset with which it was easier to understand how each sensor in the array reacts 

to variation in individual parameters like concentration or temperature.  Test points 

were also repeated to allow for some understanding of which sensors were sensitive 

to a temporal drift. 
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While conducting the chamber experiments, I was also creating a MATLAB 

script that can repeatably import and filter the sensor data, apply regression models, 

and then apply classification models to use those regressed concentration estimates 

to identify sources.  This two-step methodology that I used to directly estimate the 

likely sources of measured pollutants is novel, as far as I am aware.  Because of the 

novelty of this approach, I applied multiple classification techniques that were 

selected because they operate in significantly different ways.  By publishing the 

performance of several classification models this research will inform future studies 

with similar goals or that use classification to understand other aspects of air quality. 

The accuracies that we achieved while regressing specific compounds were 

acceptable, although researchers including those in the Hannigan Lab have achieved 

accuracies higher than were achieved here during campaigns targeted at quantifying 

individual compounds.  The significant result here was that the classification models 

were still able to use those estimates to consistently identify the source that was being 

simulated.   

Although this success is encouraging, the scope of the chamber study was 

intentionally limited and was conducted entirely in a laboratory setting.  For a 

researcher looking to further this work, I present here a few suggestions of 

improvements that seem appropriate with the benefit of the knowledge gathered 

here.  Primarily, I would suggest collaborating with sensor manufacturers if at all 

possible.  Greater involvement of sensor manufacturers would be beneficial to this 

study because a more fundamental understanding of the differences and similarities 

of sensors would inform the selection of which sensors to include in the array.  Any 

agreement would, need to protect the intellectual property of sensor manufacturers, 

but I believe that it would be possible to incorporate this knowledge without revealing 

their intellectual property.  Greater communication of the analytical models and 



90 

methods used by researchers in the low-cost sensor space would be greatly beneficial 

to the state of knowledge.  Although most researchers in this space are not computer 

science or machine learning experts, the communication of the specific parameters 

that were used in models would greatly improve reproducibility and would contribute 

to our understanding of the efficacy of different modeling techniques as applied to 

low-cost sensors – a topic that is still highly debated and not well understood. 

In addition to those more general improvements, the concrete next step in this 

research will be to expose the sensor array to more realistic deployments.  That may 

include additional chamber studies that simulate multiple pollutants simultaneously 

or field deployments in areas that have a single dominant source.  It will also be 

important to study the use of a system like this in a realistic interaction with potential 

users.  Measurements of pollutant concentrations from low-cost sensors are of little 

use unless they are understood by the users, and the usefulness of an automated 

source identification be limited if it is not presented in a way that is clearly 

understood by the end users. 
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APPENDIX A: SENSORS AND THEIR ASSOCIATED VARIABLE NAMES 

Sensor values were named as indicated below in Table 5.  Table of sensors that were used for testing and the 

corresponding variable name(s) associated with those sensors.  Two sensor “pods” were joined together, so the name 

of the pod was appended to the end of the parameter name that is listed below.  For example, the primary temperature 

sensor on pod E2 was named “temperatureYPODE2”.  The BME 180, SHT25, and ELT CO2 sensors all communicated 

their output values to the control board via I2C protocol.  All other sensors were recorded as analog values using ADCs 

to record the induced voltage.  An additional variable was also added (“telapsed”) that indicates the time that the pod 

was turned on and is in the units of days.  This variable is important as it indicates time that the sensors were at their 

operating conditions and would allow models to account for sensor drift caused by operating for an extended period of 

time. 

Table 4. Table of sensors that were used for testing and the corresponding variable name(s) associated with those sensors. 

Sensor Details Variable Name(s) 
Bosch BME 180 Barometric Pressure Sensor bme_P 
Sensirion Temperature and Humidity Sensor temperature, humidity 
ELT S300 NDIR CO2 Sensor co2_NDIR 
Alphasense NO-B4 Sensor, Working and Auxiliary 
Electrode 

NO_B4_aux, NO_B4_main 

Alphasense NO2-B1 Sensor, Working and Auxiliary 
Electrode 

NO2_B1_aux, NO2_B1_main 

Alphasense CO-B4 Sensor, Working and Auxiliary 
Electrode 

CO_B4_aux, CO_B4_main 

Alphasense H2S-BH Sensor, Working and Auxiliary 
Electrode 

H2S_BH_aux, H2S_BH_main 
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Sensor Details Variable Name(s) 
Alphasense O3-B4 Sensor, Working and Auxiliary 
Electrode 

O3_B4_aux, O3_B4_main 

Figaro 2600 Installed on the Pod Board in the 210 and 280 
mW Heater Circuits, Sensing Voltage 

fig2600_210ob_s, fig2600_280ob_s 

Figaro 2602 Installed on the Pod Board in the 280 mW 
Heater Circuit, Sensing Voltage 

fig2602_280ob_s 

Baseline Mocon PID Sensor bl_mocon 
MICS-5121wp Installed on the Pod Board, Sensing Voltage MICS5121wp_ob_s 
MICS-2611 Installed on the Pod Board, Sensing Voltage e2v2611_ob_s 
MICS-2611 Installed on the External Board, Sensing 
Voltage 

mics2611_s 

MICS-2710 Installed on the External Board, Sensing 
Voltage 

mics2710_s 

MICS-5525 Installed on the External Board, Sensing 
Voltage 

mics5525_s 

MICS-5121wp Installed on the External Board, Sensing 
Voltage 

mics5121wp_s 

Figaro 4161 Installed on the External Board, Sensing 
Voltage 

fig4161_sens 

Figaro 2600 Installed on the External Board, Sensing 
Voltage 

fig2600_sens 

Figaro 2611 Installed on the External Board, Sensing 
Voltage 

fig2611_sens 

Figaro 2602 Installed on the External Board, Sensing 
Voltage 

fig2602_sens 
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APPENDIX B: FULL LIST OF TEST POINTS 

Table 5. Full list of test points with the mean values of temperature, humidity, and concentration that were recorded during that 
test point.  The “Total” column indicates the total concentration of gases in the chamber, not including dilution gas.  Some testing was 
limited by gas availability, which is why the quantity of test points for each source and concentration are not consistent. 

Source T 
(C) 

RH 
(%) 

Total 
(ppm) 

NO2 
(ppm) 

CO 
(ppm) 

CO2 
(ppm) 

CH4 
(ppm) 

Ethane 
(ppm) 

Propane 
(ppm) 

Gasoline 
(ppm) 

No Source 23 47 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 26 48 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 27 40 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 27 38 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 28 49 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 29 47 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 29 46 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 30 49 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 30 39 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 30 49 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 30 54 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 30 14 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 31 49 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 31 40 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 31 40 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 31 39 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 31 52 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 31 68 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 32 57 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 33 40 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
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Source T 
(C) 

RH 
(%) 

Total 
(ppm) 

NO2 
(ppm) 

CO 
(ppm) 

CO2 
(ppm) 

CH4 
(ppm) 

Ethane 
(ppm) 

Propane 
(ppm) 

Gasoline 
(ppm) 

No Source 33 40 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 33 40 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 33 72 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 34 45 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 35 58 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 35 55 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 38 40 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 40 41 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 42 51 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 43 53 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 43 62 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
Gasoline Vapor 31 40 0.04 0.00 0.00 0 0.0 0.00 0.00 0.04 
Gasoline Vapor 31 40 0.04 0.00 0.00 0 0.0 0.00 0.00 0.04 
Gasoline Vapor 36 40 0.04 0.00 0.00 0 0.0 0.00 0.00 0.04 
Gasoline Vapor 39 41 0.04 0.00 0.00 0 0.0 0.00 0.00 0.04 
Gasoline Vapor 40 40 0.04 0.00 0.00 0 0.0 0.00 0.00 0.04 
Gasoline Vapor 40 42 0.04 0.00 0.00 0 0.0 0.00 0.00 0.04 
Gasoline Vapor 31 40 0.11 0.00 0.00 0 0.0 0.00 0.00 0.11 
Gasoline Vapor 32 40 0.11 0.00 0.00 0 0.0 0.00 0.00 0.11 
Gasoline Vapor 38 40 0.11 0.00 0.00 0 0.0 0.00 0.00 0.11 
Gasoline Vapor 39 41 0.11 0.00 0.00 0 0.0 0.00 0.00 0.11 
Gasoline Vapor 40 41 0.11 0.00 0.00 0 0.0 0.00 0.00 0.11 
Gasoline Vapor 40 40 0.11 0.00 0.00 0 0.0 0.00 0.00 0.11 
Gasoline Vapor 31 40 0.24 0.00 0.00 0 0.0 0.00 0.00 0.24 
Gasoline Vapor 32 40 0.24 0.00 0.00 0 0.0 0.00 0.00 0.23 
Gasoline Vapor 40 40 0.23 0.00 0.00 0 0.0 0.00 0.00 0.23 
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Source T 
(C) 

RH 
(%) 

Total 
(ppm) 

NO2 
(ppm) 

CO 
(ppm) 

CO2 
(ppm) 

CH4 
(ppm) 

Ethane 
(ppm) 

Propane 
(ppm) 

Gasoline 
(ppm) 

Gasoline Vapor 40 41 0.24 0.00 0.00 0 0.0 0.00 0.00 0.24 
Gasoline Vapor 40 40 0.24 0.00 0.00 0 0.0 0.00 0.00 0.24 
Gasoline Vapor 40 41 0.24 0.00 0.00 0 0.0 0.00 0.00 0.23 
Gasoline Vapor 26 49 0.35 0.00 0.00 0 0.0 0.00 0.00 0.35 
Gasoline Vapor 27 50 0.30 0.00 0.00 0 0.0 0.00 0.00 0.30 
Gasoline Vapor 29 46 0.31 0.00 0.01 0 0.0 0.00 0.00 0.30 
Gasoline Vapor 29 49 0.35 0.00 0.00 0 0.0 0.00 0.00 0.35 
Gasoline Vapor 31 50 0.30 0.00 0.00 0 0.0 0.00 0.00 0.29 
Gasoline Vapor 31 40 0.31 0.00 0.00 0 0.0 0.00 0.00 0.10 
Gasoline Vapor 29 47 0.35 0.00 0.01 0 0.0 0.00 0.00 0.35 
Gasoline Vapor 31 40 0.44 0.00 0.00 0 0.0 0.00 0.00 0.44 
Gasoline Vapor 38 65 0.44 0.00 0.00 0 0.0 0.00 0.00 0.44 
Gasoline Vapor 32 40 0.48 0.00 0.00 0 0.0 0.00 0.00 0.48 
Gasoline Vapor 40 41 0.48 0.00 0.00 0 0.0 0.00 0.00 0.48 
Gasoline Vapor 40 40 0.48 0.00 0.00 0 0.0 0.00 0.00 0.48 
Gasoline Vapor 42 53 0.79 0.00 0.00 1 0.0 0.00 0.00 0.10 
Heavy Exhaust 37 73 57.87 0.69 0.56 57 0.0 0.00 0.00 0.00 
Heavy Exhaust 31 40 60.07 0.69 0.57 59 0.0 0.00 0.00 0.00 
Heavy Exhaust 41 67 145.92 1.40 0.27 144 0.0 0.00 0.00 0.00 
Heavy Exhaust 43 62 145.94 0.33 1.14 144 0.0 0.00 0.00 0.00 
Heavy Exhaust 32 40 145.99 0.33 1.15 145 0.0 0.00 0.00 0.00 
Heavy Exhaust 42 61 146.08 1.40 0.56 144 0.0 0.00 0.00 0.00 
Heavy Exhaust 43 62 146.19 0.69 1.14 144 0.0 0.00 0.00 0.00 
Heavy Exhaust 32 40 146.37 0.69 1.15 145 0.0 0.00 0.00 0.00 
Heavy Exhaust 31 40 146.87 1.40 0.57 145 0.0 0.00 0.00 0.00 
Heavy Exhaust 40 69 146.91 1.40 1.14 144 0.0 0.00 0.00 0.00 
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Source T 
(C) 

RH 
(%) 

Total 
(ppm) 

NO2 
(ppm) 

CO 
(ppm) 

CO2 
(ppm) 

CH4 
(ppm) 

Ethane 
(ppm) 

Propane 
(ppm) 

Gasoline 
(ppm) 

Heavy Exhaust 31 40 147.18 1.40 0.28 146 0.0 0.00 0.00 0.00 
Heavy Exhaust 31 40 148.38 1.40 1.15 146 0.0 0.00 0.00 0.00 
Heavy Exhaust 38 55 195.05 0.69 0.57 194 0.0 0.00 0.00 0.00 
Heavy Exhaust 31 40 195.53 0.69 0.57 194 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 40 195.51 0.69 0.57 194 0.0 0.00 0.00 0.00 
Heavy Exhaust 33 61 281.17 0.33 1.15 280 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 48 282.55 1.40 0.28 281 0.0 0.00 0.00 0.00 
Heavy Exhaust 31 40 282.86 1.40 0.28 281 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 46 282.91 1.40 0.57 281 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 44 282.90 0.33 1.15 281 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 45 283.02 0.69 1.15 281 0.0 0.00 0.00 0.00 
Heavy Exhaust 31 40 283.13 0.69 1.15 281 0.0 0.00 0.00 0.00 
Heavy Exhaust 31 40 283.17 1.40 0.57 281 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 51 283.28 1.40 1.15 281 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 40 283.46 1.40 0.28 282 0.0 0.00 0.00 0.00 
Heavy Exhaust 38 40 283.56 0.33 1.15 282 0.0 0.00 0.00 0.00 
Heavy Exhaust 31 40 283.86 1.40 1.15 281 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 40 283.92 0.69 1.15 282 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 40 283.94 1.40 0.57 282 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 40 284.37 1.40 1.15 282 0.0 0.00 0.00 0.00 
Low T Combustion 29 49 0.44 0.00 0.44 0 0.0 0.00 0.00 0.00 
Low T Combustion 30 49 0.45 0.00 0.45 0 0.0 0.00 0.00 0.00 
Low T Combustion 30 50 0.36 0.00 0.36 0 0.0 0.00 0.00 0.00 
Low T Combustion 31 40 0.45 0.00 0.45 0 0.0 0.00 0.00 0.00 
Low T Combustion 40 60 0.45 0.00 0.45 0 0.0 0.00 0.00 0.00 
Low T Combustion 31 40 103.54 0.00 0.00 104 0.0 0.00 0.00 0.00 
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Source T 
(C) 

RH 
(%) 

Total 
(ppm) 

NO2 
(ppm) 

CO 
(ppm) 

CO2 
(ppm) 

CH4 
(ppm) 

Ethane 
(ppm) 

Propane 
(ppm) 

Gasoline 
(ppm) 

Low T Combustion 36 60 103.78 0.00 0.00 104 0.0 0.00 0.00 0.00 
Low T Combustion 38 40 103.93 0.00 0.00 104 0.0 0.00 0.00 0.00 
Low T Combustion 39 40 104.02 0.00 0.00 104 0.0 0.00 0.00 0.00 
Low T Combustion 30 49 564.64 0.00 0.00 565 0.0 0.00 0.00 0.00 
Low T Combustion 41 56 567.67 0.00 0.01 568 0.0 0.00 0.00 0.00 
Low T Combustion 31 40 570.85 0.00 0.01 571 0.0 0.00 0.00 0.00 
Natural Gas 30 40 1.49 0.00 0.00 0 1.5 0.00 0.00 0.00 
Natural Gas 30 39 1.49 0.00 0.00 0 1.5 0.00 0.00 0.00 
Natural Gas 31 40 1.50 0.00 0.00 0 1.5 0.00 0.00 0.00 
Natural Gas 34 40 1.49 0.00 0.00 0 1.5 0.00 0.00 0.00 
Natural Gas 34 45 1.49 0.00 0.00 0 1.5 0.00 0.00 0.00 
Natural Gas 40 58 1.51 0.00 0.00 0 1.5 0.00 0.00 0.00 
Natural Gas 30 39 1.92 0.00 0.00 0 1.5 0.43 0.00 0.00 
Natural Gas 30 40 1.92 0.00 0.00 0 1.5 0.43 0.00 0.00 
Natural Gas 31 40 1.92 0.00 0.00 0 1.5 0.43 0.00 0.00 
Natural Gas 32 56 1.92 0.00 0.00 0 1.5 0.43 0.00 0.00 
Natural Gas 32 52 1.92 0.00 0.00 0 1.5 0.43 0.00 0.00 
Natural Gas 34 40 1.93 0.00 0.00 0 1.5 0.43 0.00 0.00 
Natural Gas 42 55 1.92 0.00 0.00 0 1.5 0.42 0.00 0.00 
Natural Gas 30 40 3.29 0.00 0.00 0 3.3 0.00 0.00 0.00 
Natural Gas 30 39 3.28 0.00 0.00 0 3.3 0.00 0.00 0.00 
Natural Gas 34 40 3.28 0.00 0.00 0 3.3 0.00 0.00 0.00 
Natural Gas 34 46 3.27 0.00 0.00 0 3.3 0.00 0.00 0.00 
Natural Gas 35 47 3.28 0.00 0.00 0 3.3 0.00 0.00 0.00 
Natural Gas 30 40 4.18 0.00 0.00 0 3.3 0.90 0.01 0.00 
Natural Gas 31 39 4.18 0.00 0.00 0 3.3 0.90 0.01 0.00 
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Source T 
(C) 

RH 
(%) 

Total 
(ppm) 

NO2 
(ppm) 

CO 
(ppm) 

CO2 
(ppm) 

CH4 
(ppm) 

Ethane 
(ppm) 

Propane 
(ppm) 

Gasoline 
(ppm) 

Natural Gas 33 52 4.18 0.00 0.00 0 3.3 0.90 0.01 0.00 
Natural Gas 33 50 4.18 0.00 0.00 0 3.3 0.90 0.01 0.00 
Natural Gas 34 40 4.19 0.00 0.00 0 3.3 0.90 0.01 0.00 
Natural Gas 30 40 13.93 0.00 0.00 0 13.9 0.01 0.00 0.00 
Natural Gas 30 39 13.92 0.00 0.00 0 13.9 0.00 0.00 0.00 
Natural Gas 31 40 13.92 0.00 0.00 0 13.9 0.01 0.00 0.00 
Natural Gas 34 40 13.94 0.00 0.00 0 13.9 0.01 0.00 0.00 
Natural Gas 34 47 13.93 0.00 0.00 0 13.9 0.01 0.00 0.00 
Natural Gas 35 48 13.94 0.00 0.00 0 13.9 0.00 0.00 0.00 
Natural Gas 38 62 13.91 0.00 0.00 0 13.9 0.00 0.00 0.00 
Natural Gas 31 40 17.65 0.00 0.00 0 13.9 3.74 0.05 0.00 
Natural Gas 43 52 17.64 0.00 0.00 0 13.9 3.72 0.05 0.00 
Natural Gas 30 40 17.68 0.00 0.00 0 13.9 3.74 0.07 0.00 
Natural Gas 30 39 17.71 0.00 0.00 0 13.9 3.75 0.07 0.00 
Natural Gas 34 48 17.68 0.00 0.00 0 13.9 3.74 0.07 0.00 
Natural Gas 34 40 17.69 0.00 0.00 0 13.9 3.74 0.07 0.00 
Natural Gas 34 49 17.69 0.00 0.00 0 13.9 3.74 0.07 0.00 
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APPENDIX C: REFERENCE VS ESTIMATED CONCENTRATION PLOTS 

 

Figure 14. Estimated versus reference concentrations are plotted on the next page for each 
combination of gas and regression technique.  Each column of plots contains estimates for a 
given gas, and each row contains estimates for a given regression technique.  The color of each 
point indicates the cross validation fold that was used for training and testing the model, and 
the shade (light versus dark) indicate whether the values were estimated on training data or 
testing (validation) data. 

 


