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Khalili, Saeed (Ph.D., Mathematics Department)
Stochastic Analysis for Problems in Mathematical Finance and Economics
Thesis directed by Prof. Yu-Jui Huang

Abstract

This thesis is the study of two different problems in mathematical finance. In the first

chapter, we investigate optimal consumption in the stochastic Ramsey problem with the

Cobb-Douglas production function. Contrary to prior studies, we allow for general con-

sumption processes, without any a priori boundedness constraint. A non-standard stochas-

tic differential equation, with neither Lipschitz continuity nor linear growth, specifies the

dynamics of the controlled state process. A mixture of probabilistic arguments are used to

construct the state process, and establish its non-explosiveness and strict positivity. This

leads to the optimality of a feedback consumption process, defined in terms of the value

function and the state process. Based on additional viscosity solutions techniques, we char-

acterize the value function as the unique classical solution to a nonlinear elliptic equation,

among an appropriate class of functions. This characterization involves a condition on the

limiting behavior of the value function at the origin, which is the key to dealing with un-

bounded consumptions. Finally, relaxing the boundedness constraint is shown to increase,

strictly, the expected utility at all wealth levels.

In the second chapter, in a discrete-time financial market, a generalized duality is es-

tablished for model-free superhedging, given marginal distributions of the underlying asset.

Contrary to prior studies, we do not require contingent claims to be upper semicontinuous,

allowing for upper semi-analytic ones. The generalized duality stipulates an extended version

of risk-neutral pricing. To compute the model-free superhedging price, one needs to find the
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supremum of expected values of a contingent claim, evaluated not directly under martingale

(risk-neutral) measures, but along sequences of measures that converge, in an appropriate

sense, to martingale ones. To derive the main result, we first establish a portfolio-constrained

duality for upper semi-analytic contingent claims, relying on Choquet’s capacitability the-

orem. As we gradually fade out the portfolio constraint, the generalized duality emerges

through delicate probabilistic estimations.

iv



Dedicated to my parents.

v



Acknowledgements

First, I want to express my deep gratitude towards my advisor Prof. Yu-Jui Huang for his

support during my Ph.D research and composition. He has put in his valuable time to guide

me during the process. Without our weekly meetings of teaching me innovative methods in

finance and economics, I would not have been able to navigate the process of research. His

dedication in my research allowed me to learn valuable skills and knowledge to use in my

work. I owe him many thanks.

I would also like to thank the rest of my thesis committee: Prof. Sergei Kuznetsov,

Prof. Judith Packer, and Prof. Sean O’Rourke, Prof. Manuel Lladser for serving as my

committee members during their busy semester. I would like to specifically thank Prof.

Sergei Kuznetsov for meeting and educating me about the graduate process, and supporting

me through my research.

Finally, I am indebted to my family for supporting me spiritually throughout writing this

thesis and my life in general. I would also like to thank all of my friends and colleagues who

supported me in writing, and motivated me to reach my goals.

vi



Contents

1 Introduction 1

2 Optimal Consumption in the Stochastic Ramsey Problem without Bound-
edness Constraints 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The Capital per Capita Process . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Properties of the Value Function . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Optimal Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Comparison with [26, 27] . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Comparison with Bounded Consumption in [28] . . . . . . . . . . . . . . . . 31

3 Generalized Duality for Model-Free Superhedging given Marginals 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 The Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 The Generalized Duality . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Complete Duality under Portfolio Constraints . . . . . . . . . . . . . . . . . 52
3.3.1 Continuity of PN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Continuity of DN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.3 Complete Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Derivation of Theorem 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Conclusion 73

Bibliography 77

Appendices 78

A 79
A.1 Derivation of Proposition 2.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vii



Figures

3.1 Support of QM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



Chapter 1

Introduction

This thesis is devoted to studying two different problems in Financial Mathematics and

Economics. The first problem, which we discuss in Chapter 2, is about finding an optimal

control for the stochastic Ramsey problem. Later, we consider Generalized Duality for

Model-Free Superhedging given Marginals in Chapter 3.

Our ultimate goal in Chapter 2 is to find an optimal control in a growth model for

the Cobb-Douglas production function. In contrast to prior studies, we have no bound

on the set of consumption processes. The unboundedness assumption makes our problem

very challenging to solve. Especially, the dynamic programming equation (HJB equation)

related to this becomes a nonlinear elliptic equation. Hence, to find the optimal control, one

needs to find a unique smooth solution to the HJB equation related to this problem. The

optimal control can be found by having the value function. The main difficulty here is that

the dynamic programming equation is a nonlinear elliptic equation, and the existence and

uniqueness of a solution to this PDE is highly nontrivial. Based on our knowledge, there is

no classical results which can be applied to this PDE. Therefore, we tackle this problem from

a different angle. We define a related problem, and then study this problem. This related

problem helps us to understand the main problem, and by the help of the related problem

we can show the HJB equation has a unique smooth solution.

In chapter 3, we let S1, S2, . . . , ST represents the price of a fixed asset S, and fix an exotic

option with payoff Φ(S1, S2, . . . , ST ). Indeed, the payoff of the option depends on the asset
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price at times t = 1, 2, . . . , T . Assuming one sells this option at time zero, she then needs to

know how much she expects to pay at the maturity of the option. Therefore, she constructs

a semi-static superhedge portfolio consisting of the sum of a static vanilla portfolio and a

delta strategy. The payoff of this portfolio is Ψu,∆(x) :=
∑T

t=1 ut(xt)+(∆ ·x)T at time t = T .

The corresponding model-free superhedging price of Φ is defined by

D(Φ) := inf
{
µ(u) : u ∈ L1(µ) satisfies ∃∆ ∈ H s.t. Ψu,∆(x) ≥ Φ(x) ∀x ∈ Ω

}
.

Indeed, D(Φ) is equivalent to the smallest amount necessary for her to have at time zero to

make sure she does not default at time T , the maturity time of the option. This amountD(Φ)

lets her construct a portfolio Ψu,∆(x) at the current time such the value of this portfolio is

at least as great as the value of the option at time T . Recently, Beiglböck, Henry-Labordère,

and Penkner [3] showed that if the cost function is an upper semi-continuous function, and

is bounded by a linear function from above, then there is no duality gap, but without upper

semi-continuous assumption, there is a duality gap. To restore the duality, they introduce

a new concept called quasi-surely, and under this modification they prove Dqs(Φ) = P (Φ).

We approach the failure of D(Φ) = P (Φ) from an opposite angle. We keep the definition of

D(Φ) as it is, and modify P (Φ) in order to get a general duality for Borel measurable Φ.
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Chapter 2

Optimal Consumption in the Stochastic
Ramsey Problem without Boundedness
Constraints1

2.1 Introduction

In the economic growth theory, capital stock of a society amounts to the total value of assets

that can be used to produce goods and services, such as factories, equipment, and monetary

resources. Whereas capital can be consumed to give individuals immediate welfare, it can

also be used to generate more capital and thus sustain economic growth, which enhances

future welfare. As Ramsey [32] pointed out in a deterministic model, sensible financial

planning, regarding consumption and saving of capital, is imperative to strike a balance

between current and future welfare. In a continuous-time setting, Merton [25] enriched the

problem by considering stochastic evolution of the population in a society.

The stochastic Ramsey problem, coined by Merton [25], has been investigated in the

stochastic control literature through viscosity solution techniques, Banach’s fixed-point ar-

gument, and the combination of both; see e.g. Morimoto and Zhou [28], Morimoto [26, 27],

and Liu [24], among others. Surprisingly, many of these works require an a priori uniform

upper bound, usually the constant 1, for consumption processes {ct}t≥0. This is implicitly

suggested in the problem formulation of [25], and explicitly stated as 0 ≤ ct ≤ 1 in [28]
1[17]
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and [24]. While this uniform upper bound provides technical conveniences, it can not be

fully justified economically in continuous time. After all, for each t ≥ 0, ct represents the

consumption ratio per unit of time instantly at time t, which does not admit any natural

upper bound. This is in contrast to the discrete-time setting where the upper bound 1 can

be easily justified. Morimoto [26, 27] consider general, unbounded consumption processes,

but not without a cost. There, the production function in the Ramsey model is required to

have finite first derivatives, along a boundary of its domain. This particularly rules out the

standard Cobb-Douglas production function, commonly used in economic modeling.

In other words, a tradeoff exists between the viscosity solutions approach in [28, 24] and

Banach’s fixed-point argument in [26, 27]. The former accommodates the classical Cobb-

Douglas production function, but is limited to uniformly bounded consumption processes;

the latter allows for general consumptions, but fails to cover the Cobb-Douglas production

function. We aim to resolve this tradeoff: this paper considers both unbounded consumption

processes and the Cobb-Douglas production function, in the stochastic Ramsey problem. The

goal is to characterize the associated value function V , as well as a (possibly unbounded)

optimal consumption process ĉ.

The upfront challenge of our studies is the non-standard stochastic differential equation

(SDE) of the state process X, which represents capital per capita; see (2.2.8) below. On

the one hand, the Cobb-Douglas production function renders the drift coefficient of X non-

Lipschitz (see Section 2.5.1 for a comparison with the Lipschitz case [26, 27]). On the other

hand, the unboundedness of consumptions may induce superlinear growth in the same drift

coefficient, in contrast to [28, 24] where linear growth is guaranteed (see Remark 2.3.1).

With neither Lipschitz nor linear growth condition, standard techniques for SDEs cannot be

applied. Instead, we investigate the existence and uniqueness of X, by constructing solutions

directly. In Proposition 2.3.1 and Corollary 2.3.1, we establish the existence ofX, yet observe

that the uniqueness fails in general. Based on the construction of X, we also derive moment

estimates in Proposition 2.3.2, without resorting to linear growth condition.

4



With the state process X constructed, we proceed to relate our value function V to a

differential equation. Our strategy is to approximate V by VL, the value function when

one is restricted to consumption processes uniformly bounded by L > 0. By generalizing

arguments in [28] to infinite horizon, VL is shown to be a classical solution to a nonlinear

elliptic equation (Proposition 2.4.1). As L→∞, we prove that VL converges to V desirably,

such that V is a classical solution to the limiting nonlinear elliptic equation (Proposition 2.4.2

and Theorem 2.4.1).

There are two remaining tasks: (i) to find an optimal consumption process ĉ, and (ii) to

characterize V further as the unique classical solution among a certain class of functions.

While ĉ can be heuristically derived in feedback form (i.e. ĉt = ĉ(Xt)), it is highly

nontrivial whether the controlled state process X ĉ is well-defined. First, whether X ĉ exists

is unclear: The aforementioned existence result of X does not apply here, as the current

control process ĉ is not a priori given, but depends on the unknown X. Second, even if

X ĉ exists, it is in question whether the dire situation “X ĉ
t = 0 for some t > 0” (i.e. the

society using up all its capital at time t) can be avoided. A careful construction of X ĉ,

along with a detailed analysis on its explosion and pathwise uniqueness, is carried out in

Proposition 2.5.1. It shows that X ĉ is indeed a well-defined strictly positive process, on the

strength of Feller’s test for explosion and a mixture of probabilistic arguments in Nakao [29]

and Yamada [36]. Now, with X ĉ well-defined and V solving a nonlinear elliptic equation, a

standard verification argument establishes the optimality of ĉ.

Note that the construction of X ĉ was done with much more ease in [28], through a change

of measure. This works, however, only with bounded consumptions and finite time horizon.

That is, Proposition 2.5.1 complements [28], by providing a new, different construction that

is general enough to accommodate both unbounded consumptions and infinite horizon; see

Remark 2.5.1 for details.

In fact, the construction in Proposition 2.5.1 can be made much more general. For

any u ∈ C1((0,∞)) that is strictly increasing, concave, and whose behavior at 0+ satisfies
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(2.5.12) below, we can construct from u a candidate optimal consumption ĉu, and show that

the state process X ĉu is well-defined and strictly positive; see Corollary 2.5.1 and (2.5.15).

With the aid of a verification argument, this leads to the full characterization: V is the

unique classical solution to a nonlinear elliptic equation among the class of functions u ∈

C2((0,∞))∩C([0,∞)) that are strictly increasing, concave, satisfying (2.5.12) and the linear

growth condition; see Theorem 3.2.1.

In [28], where consumptions are uniformly bounded, the value function is only shown

to be a classical solution, with no further characterization. Theorem 3.2.1 fills this void, in

a more general setting with unbounded consumptions; see Remark 2.5.3. Specifically, the

identification of (2.5.12) in Theorem 3.2.1 is the key to dealing with unbounded consump-

tions. If one is restricted to bounded consumptions (as in [28]), there is no need to impose

(2.5.12); see Remark 2.5.2.

Finally, we compare our no-constraint optimal consumption ĉ with the optimal ĉL in [28],

bounded by L > 0. Two questions are particularly of interest. First, by switching from the

bounded strategy ĉL to the possibly unbounded ĉ, can we truly increase our expected utility?

An affirmative answer is provided in Proposition 2.6.1: expected utility rises at all levels of

wealth (capital per capita), whenever ĉ is truly unbounded. This justifies economically the

use of unbounded strategies. Second, for each L > 0, do agents following ĉL simply chop

the no-constraint optimal strategy ĉ at the bound L > 0? Corollary 2.6.1 shows that the

relation “ ĉL = ĉ ∧ L” fails in general, suggesting a more structural change from ĉL to ĉ. For

the isoelastic utility function U(x) = x1−γ

1−γ , 0 < γ < 1, we demonstrate the above two results

fairly explicitly.

The paper is organized as follows. Section 2.2 introduces the stochastic Ramsey problem

with general unbounded consumptions. Section 2.3 investigates the existence and uniqueness

of the state process X, and derives moment estimates of it. Section 2.4 shows that the value

function V is a classical solution to a nonlinear elliptic equation. Section 2.5 finds an optimal

consumption ĉ, and establishes a full characterization of V . Section 2.6 compares our results
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with previous literature with bounded consumptions. Appendix A.1 generalizes arguments

in [28] to infinite horizon.

2.2 The Model

Consider the canonical space Ω := {ω ∈ C([0,∞);R) | ω0 = 0} of continuous paths starting

with value 0. Let W be the canonical process on Ω, P be the Wiener measure, and F =

{Ft}t≥0 be the P-augmentation of the natural filtration generated by W . Given t > 0 and

ω ∈ Ω, for any ω̄ ∈ Ω, we define the concatenation of ω and ω̄ at time t as

(ω ⊗t ω̄)r := ωr1[0,t](r) + (ω̄r−t + ωt)1(t,∞)(r), r ≥ 0. (2.2.1)

Note that ω ⊗t ω̄ again belongs to Ω.

Consider a society in which the labor supply is equal to total population. The capital

stock K of the society accumulates from economic output, generated by the capital itself

and the labor force. At the same time, K may decrease due to capital depreciation and

consumption from the population. Specifically, we assume that K follows the dynamics

dKt = [F (Kt, Yt)− λKt − ctKt]dt for t > 0, K0 = k > 0.

Here, F : [0,∞) × [0,∞) → [0,∞) is a production function, Y is the labor supply process,

λ ≥ 0 is the constant rate of depreciation, and c is the consumption rate process chosen by

the population. Throughout this paper, we take F to be the Cobb-Douglas form, i.e.

F (k, y) := kαy1−α, for some α ∈ (0, 1). (2.2.2)

Also, we assume that the labor supply process Y is stochastic, modeled as a geometric
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Brownian motion:

dYt = nYtdt+ σYtdWt for t > 0, Y0 = y > 0.

where n ∈ R and σ > 0 are two given constants. In addition, we consider general consump-

tion processes c without any a priori boundedness condition, as opposed to most previous

studies in the literature. Specifically, the set C of admissible consumption processes is taken

as

C :=

{
c : Ω× [0,∞)→ R+ : c is progressively measurable,

with
∫ t

0

csds <∞ ∀t > 0 a.s.
}
. (2.2.3)

At each time t ≥ 0, every individual is allotted the capital Kt/Yt, which can be consumed

immediately or saved for future production. An individual is then faced with an optimal

consumption problem: he/she intends to choose an appropriate consumption process ĉ ∈ C,

so that the expected discounted utility from consumption can be maximized. Specifically,

the corresponding value function is given by

v(k, y) := sup
c∈C

E
[ ∫ ∞

0

e−βtU

(
ct
Kk
t

Y y
t

)
dt

]
, (2.2.4)

where β ≥ 0 is the discount rate and U : [0,∞) → R is a utility function. We will assume

that

U is strictly increasing and strictly concave, (2.2.5)

U ′(0+) = U(∞) =∞ and U ′(∞) = U(0) = 0. (2.2.6)

The dimension of the problem can be reduced, by introducing the variable x := k/y and

the process Xt := Kt/Yt, i.e. the capital per capita process. Specifically, the value function

8



in (2.2.4) can be re-written as

V (x) := sup
c∈C

E
[ ∫ ∞

0

e−βtU (ctX
x
t ) dt

]
, (2.2.7)

where the process X satisfies, thanks to Itô’s formula,

dXt = (Xα
t − µXt − ctXt)dt− σXtdWt t > 0, X0 = x ≥ 0, (2.2.8)

with µ := λ+ n− σ2. As in [28], we will assume throughout the paper that

µ > 0. (2.2.9)

The goal of this paper is to provide characterizations for the value function V in (2.2.7),

as well as the associated optimal consumption process ĉ.

2.3 The Capital per Capita Process

In this section, we analyze the capital per capita process X, formulated as the stochastic

differential equation (SDE) (2.2.8). We will investigate the existence and uniqueness of

solutions to (2.2.8), and derive several moment estimates for X, useful in Sections 2.4 and

2.5 for characterizing V in (2.2.7).

The SDE (2.2.8) is non-standard: the drift coefficient is neither Lipschitz nor of linear

growth. Indeed, Lipschitz continuity fails due to the term Xα
t , and the unboundedness of

c may lead to superlinear growth. Consequently, standard techniques to establish existence

and uniqueness of solutions (requiring both “Lipschitz” and “linear growth”) and to derive

moment estimates (requiring “linear growth”) cannot be applied here.

Remark 2.3.1. In [28], (2.2.8) is studied in a simpler setting, where c is assumed to be

uniformly bounded (in fact, ct ≤ 1 for all t ≥ 0). This ensures linear growth of the drift
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coefficient of (2.2.8), such that some standard techniques and estimates can still be used.

Without the aid of standard results, we investigate existence and uniqueness of solutions

to (2.2.8), by constructing solutions directly. As shown in Proposition 2.3.1 and Corol-

lary 2.3.1 below, existence can be established in general, yet uniqueness need not always

hold.

Proposition 2.3.1. For any c ∈ C and x > 0, there exists a unique strong solution to

(2.2.8), which is strictly positive a.s.

Proof. Fix c ∈ C and x > 0. Consider Zt := X1−α
t , with Z0 = z := x1−α > 0. Since the

function f(y) := y1−α is well-defined on [0,∞) and differentiable on (0,∞), we can apply

Itô’s formula to Z only up to the stopping time

τ := inf{t ≥ 0 : Xx
t = 0} = inf{t ≥ 0 : Zz

t = 0}.

This gives the dynamics of Z up to time τ :

dZt = (1− α)

(
1− (µ+ ct +

1

2
σ2α)Zt

)
dt− σ(1− α)ZtdWt, for 0 < t < τ. (2.3.1)

We claim that this SDE admits a unique strong solution. For simplicity, let a := 1− α and

bt := −(1− α)(µ+ ct + 1
2
σ2α), and define

Gt := exp

(∫ t

0

(−bs +
σ2a2

2
)ds+ σaWt

)
> 0, for t ≥ 0. (2.3.2)

Note that G is well-defined a.s. thanks to c ∈ C; recall (2.2.3). By definition, G satisfies the

dynamics dGt = (−bt + σ2a2)Gtdt + σaGtdWt, for all t > 0. By applying Itô’s formula to
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the product process GZ up to time τ , we get

d(GtZt) = Gt(a+ btZt)dt− σaGtZtdWt

+GtZt(−bt + σ2a2)dt+ σaGtZtdWt − σ2a2GtZtdt

= aGtdt, for 0 < t < τ.

This implies that

Zt =
1

Gt

(
z + (1− α)

∫ t

0

Gsds

)
(2.3.3)

is the unique strong solution to (2.3.1), given that Z0 = z. Now, in view of (2.3.3) and

Gt > 0 for all t ≥ 0, we conclude that Zt > 0 for all t ≥ 0 a.s., and thus τ =∞ a.s.

With τ = ∞ a.s., the construction in the proof above implies that the process Xt =

Z
1/(1−α)
t , t ≥ 0, with Z given by (2.3.3), is the unique strong solution to (2.2.8), and it is

strictly positive a.s.

For the case x = 0 in (2.2.8), uniqueness of solutions fails.

Corollary 2.3.1. For any c ∈ C, if x = 0 in (2.2.8), then X ≡ 0 and

X̃t :=


0 if t = 0,(

1−α
Gt

∫ t
0
Gsds

) 1
1−α

> 0 if t > 0,

are two dinstinct strong solutions to (2.2.8). Here, G is defined as in (2.3.2).

Proof. Since X ≡ 0 trivially solves (2.2.8), we focus on showing that X̃ is a strong solution

to (2.2.8). First, since G0 = 1 6= 0, X̃ is continuous at t = 0, i.e. limt↓0 X̃t = 0 = X̃0. Now,

consider the SDE (2.3.1), with Z0 = 0. Due to the term (1 − α)dt, Z will immediately go

up from 0, such that τ ′ := inf{t > 0 : Z0
t = 0} > 0. We can then apply Itô’s formula to the

process GZ over the interval (0, τ ′). Similarly to the proof of Proposition 2.3.1, we find that

Zt = 1−α
Gt

∫ t
0
Gsds is the unique strong solution to (2.3.1) up to time τ ′, given that Z0 = 0.
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But the formula of Z entails Zt > 0 for all t > 0 a.s., and thus τ ′ = ∞ a.s. Observe that

X̃t = (Zt)
1/(1−α) for all t ≥ 0. With τ ′ = ∞ a.s., we can apply Itô’s formula to X̃ over

(0,∞), which shows that it is a strong solution to (2.2.8).

Remark 2.3.2. Recall V in (2.2.7). By Corollary 2.3.1, V (0) is not well-defined. Indeed,

one has V (0) = 0 with X ≡ 0 in (2.2.7), but V (0) > 0 with X = X̃ in (2.2.7).

Remark 2.3.3. According to the boundary classification in Karlin and Taylor [19, Chapter

15], x = 0 is an “entrance boundary” of the state space [0,∞) of X̃ in Corolloary 2.3.1:

beginning at the boundary x = 0, X̃ quickly moves to the interior and never returns to the

boundary.

Classical moment estimates of SDEs rely on linear growth of coefficients, along with an

application of Gronwall’s lemma; see e.g. Krylov [22, Chapter 2], especially Corollary 2.5.12.

As mentioned before, the drift coefficient of (2.2.8) does not necessarily have linear growth,

unless c is known a priori a bounded process (as in [28]). The explicit formula of X via

(2.3.3) turns out to be handy here. Detailed analysis on such a formula yields desirable

moment estimates, without requiring any linear growth condition.

Proposition 2.3.2. Let η := 1
1−α . Given c ∈ C, the unique strong solution X of (2.2.8)

satisfies

E[Xx
t ] ≤ 2η−1(x+ tη), E[(Xx

t )2] ≤ 22η−1eσ
2t

(
x2 +

t2η−1

σ2

)
, ∀x > 0, t ≥ 0. (2.3.4)

Moreover, for any ε > 0, there exists Cε > 0 such that

E[|Xx
t −X

y
t |] ≤ Cε|x− y|+ ε(x+ y + tη) ∀x, y > 0. (2.3.5)

Proof. Fix c ∈ C and x > 0. Consider Zt := (Xx
t )1−α. Then, as shown in the proof of

Proposition 2.3.1, Z satisfies (2.3.1), which can be solved to get the formula (2.3.3). It
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follows that

Xt = Zη
t = G−ηt

(
x1−α + (1−α)

∫ t

0

Gsds

)η
≤ 2η−1G−ηt

[
x+ (1−α)η

(∫ t

0

Gsds

)η ]
, (2.3.6)

where the inequality follows from (u + v)k ≤ 2k−1(uk + vk) for u, v ≥ 0 and k > 1. Observe

from (2.3.2) that

Gt = exp

(∫ t

0

(1− α)(µ+ ct +
σ2

2
)ds+ (1− α)σWt

)
> 0, t ≥ 0. (2.3.7)

This, together with ct ≥ 0, implies that

E[G−ηt ] ≤ E
[

exp

(
(−µ− σ2

2
)t− σWt

)]
= e−µt < 1. (2.3.8)

Now, for any 0 ≤ s ≤ t, we introduce

Gs,t := exp

(∫ t

s

(1− α)(µ+ cr +
σ2

2
)dr + (1− α)σ(Wt −Ws)

)
> 0. (2.3.9)

Then, observe that

E
[
G−ηt

(∫ t

0

Gsds

)η ]
= E

[(∫ t

0

G−1
s,t ds

)η ]
.

By applying Jensen’s inequality to
( ∫ t

0
G−1
s,t ds

)η, we deduce from the above equality that

E
[
G−ηt

(∫ t

0

Gsds

)η ]
≤ E

[
tη−1

∫ t

0

G−ηs,t ds

]
= tη−1

∫ t

0

E[G−ηs,t ]ds ≤ tη, (2.3.10)

where the last inequality follows from E[G−ηs,t ] ≤ 1, which can be proved as in (2.3.8). Now,

by (2.3.8) and (2.3.10), we conclude from (2.3.6) that E[Xt] ≤ 2η−1(x + tη), as desired. To

prove the second part of (2.3.4), we replace η by 2η in the above arguments. First, (2.3.8)

13



becomes

E[G−2η
t ] ≤ E

[
exp

(
(−2µ− σ2)t− 2σWt

) ]
= e−(2µ−σ2)t ≤ eσ

2t. (2.3.11)

Then, (2.3.10) becomes

E
[
G−2η
t

(∫ t

0

Gsds

)2η ]
= E

[(∫ t

0

G−1
s,t ds

)2η ]
≤ E

[
t2η−1

∫ t

0

G−2η
s,t ds

]
= t2η−1

∫ t

0

E[G−2η
s,t ]ds ≤ t2η−1

σ2
(eσ

2t − 1),

(2.3.12)

where the first inequality follows from applying Jensen’s inequality to
( ∫ t

0
G−1
s,t ds

)2η and the

second inequality is due to E[G−2η
s,t ] ≤ eσ

2(t−s), which can be proved as in (2.3.11). Finally,

using the same calculation in (2.3.6) with η replaced by 2η, along with (2.3.11) and (2.3.12),

we conclude that E[(Xx
t )2] ≤ 22η−1eσ

2t(x2 + t2η−1/σ2), as desired.

To prove (2.3.5), consider the process Z defined above, as well as Z̄t := (Xy
t )1−α. As

above, Z and Z̄ take the form (2.3.3), with initial values z = x1−α and z̄ = y1−α, respectively.

Thus, by (2.3.8),

E[|Zt − Z̄t|η] ≤ |z − z̄|η E[G−ηt ] ≤ |z − z̄|η = |x1−α − y1−α|
1

1−α ≤ |x− y|, (2.3.13)

where the last inequality follows from the observation |ur − vr| ≤ |u − v|r for any u, v ≥ 0

and 0 < r < 1. Indeed, we may assume without loss of generality that u ≥ v and define

λ := u/v ≥ 1. Thus, the observation is equivalent to λr − 1 ≤ (λ − 1)r for any λ ≥ 1 and

0 < r < 1. The latter is true because f(λ) := (λ − 1)r − λr + 1 satisfies f(1) = 0 and

f ′(λ) = r
(
( 1
λ−1

)1−r − ( 1
λ
)1−r) > 0 for all λ > 1.

14



Next, for any a, b ≥ 0 and ε > 0, observe that

|aη − bη| =
∣∣∣∣∫ b

a

ηrη−1dr

∣∣∣∣ ≤ η|a− b|(aη−1 + bη−1)

≤ 1

εη
|a− b|η + (η − 1) ε

η
η−1 (aη−1 + bη−1)

η
η−1

≤ 1

εη
|a− b|η + (η − 1) (2ε)

η
η−1 (aη + bη), (2.3.14)

where the second line follows from Young’s inequality with p = η and q = η
η−1

, and the third

line is due to (u+ v)k ≤ 2k−1(uk + vk) for u, v ≥ 0 and k > 1. Now, for any ε > 0,

E[|Xx
t −X

y
t |] = E[|Zη

t − Z̄
η
t |] ≤

1

εη
|x− y|+ (η − 1)(2ε)

η
η−1 (E[Zη

t ] + E[Z̄η
t ])

≤ 1

εη
|x− y|+ 2η(η − 1)(2ε)

η
η−1 (x+ y + tη),

where the first inequality follows from (2.3.14) and (2.3.13), and the second inequality is

due to the first part of (2.3.4). Now, in the last line of the previous inequality, by taking

ε′ := 2η(η − 1)(2ε)
η
η−1 and Cε′ := 1

εη
= 2η

2(η−1
ε′

)η−1, we see that (2.3.5) holds.

2.4 Properties of the Value Function

In this section, we introduce, for each L > 0, the auxiliary value function

VL(x) := sup
c∈CL

E
[∫ ∞

0

e−βtU(ctX
x
t )dt

]
x ≥ 0, (2.4.1)

where

CL := {c ∈ C : ct ≤ L for all t ≥ 0}. (2.4.2)

We will first derive useful properties of VL. As L → ∞, we will see that VL converges

desirably to V in (2.2.7), so that V inherits many properties of VL.

Morimoto and Zhou [28] studied a similar problem to VL: they took L = 1 and the time
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horizon to be finite in (2.4.1). Extending their arguments to infinite horizon gives properties

of VL as below.

Proposition 2.4.1. (i) There exists ϕ0 > 0 such that VL(x) ≤ x + ϕ0 for all x > 0 and

L > 0.

(ii) For any L > 0, VL ∈ C2((0,∞)) is a concave classical solution to

βv(x) =
1

2
σ2x2v′′(x) + (xα − µx)v′(x) + ŨL(x, v′(x)) for x ∈ (0,∞), (2.4.3)

where ŨL : (0,∞)2 → (0,∞) is defined by

ŨL(x, p) := sup
0≤c≤L

{U(cx)− cxp}.

The proof of Proposition 2.4.1 is relegated to Appendix A.1, where arguments in [28] are

extended to infinite horizon. While this extension can mostly be done in a straightforward

way, there are technicalities that require detailed, nontrivial analysis. This includes, partic-

ularly, the derivation of the dynamic programming principle for VL; see Lemma A.1.2 for

details.

Given that {VL}L>0 is by definition a nondecreasing sequence of functions, we define

V∞(x) := lim
L→∞

VL(x) for x > 0. (2.4.4)

Remark 2.4.1. V∞ immediately inherits many properties from VL’s.

(i) Thanks to Proposition 2.4.1, V∞ is concave, nondecreasing, and satisfies

0 ≤ V∞(x) ≤ x+ ϕ0 ∀x > 0. (2.4.5)

(ii) The concavity of V∞ implies that it is continuous on (0,∞). Hence, by Dini’s theorem,

VL converges uniformly to V∞ on any compact subset of (0,∞).
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Lemma 2.4.1. V∞ is a continuous viscosity solution to

βv(x) =
1

2
σ2x2v′′(x) + (xα − µx)v′(x) + Ũ(v′(x)) for x ∈ (0,∞), (2.4.6)

where Ũ : (0,∞)→ (0,∞) is defined by

Ũ(p) := sup
y≥0
{U(y)− yp}.

Proof. By (2.2.5) and (2.2.6), for any p > 0, there exists a unique maximizer y∗(p) > 0

such that Ũ(p) = U(y∗(p)) − y∗(p)p, and the map p 7→ y∗(p) is continuous. It follows that

ŨL(x, p) = U(c∗(x, p)x) − c∗(x, p)xp, where c∗(x, p) := min{y∗(p)/x, L}. From these forms

of Ũ and ŨL, we see that ŨL converges uniformly to Ũ on any compact subset of (0,∞)2.

This, together with Remark 2.4.1 (ii), implies that we can invoke the stability result of

viscosity solutions (see e.g. [27, Theorem 4.5.1]). We then conclude from the stability and

Proposition 2.4.1 (ii) that V∞ is a viscosity solution to (2.4.6).

In fact, the convergence of VL to V∞ is highly desirable. As the next result demonstrates,

not only VL but also V ′L and V ′′L converge uniformly. This readily implies smoothness of the

limiting function V∞.

Proposition 2.4.2. V ′L and V ′′L converge uniformly, up to a subsequence, on any com-

pact subset of (0,∞). Hence, V∞ is C2((0,∞)) with V ′∞(x) = limL→∞ V
′
L(x) and V ′′∞(x) =

limL→∞ V
′′
L (x), up to a subsequence, for each x > 0. Furthermore, V∞ is a classical solution

to (2.4.6).

Proof. Fix a compact subset E of (0,∞). Let a := inf E > 0 and b := supE. For any

L > 0, since VL is nonnegative, nondecreasing, concave, and bounded above by x + ϕ0

(Proposition 2.4.1),

0 ≤ V ′L(x) ≤ VL(x)− VL(0+)

x
≤ x+ ϕ0

x
= 1 +

ϕ0

x
≤ 1 +

ϕ0

a
, ∀x ∈ E.
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Thus, {V ′L(x)}L>0 is uniformly bounded on E.

Next, we claim that
{
ŨL(x, V ′L(x))

}
L>0

is also uniformly bounded on E. To this end,

we will show that there exists CE > 0 such that V ′L(b) ≥ CE for all L > 0. Assume to the

contrary that there exits a subsequence {Ln}n∈N such that V ′Ln(b) ↓ 0. For any x > b, by the

concavity of VLn , we have V ′Ln(u) ≤ V ′Ln(b) for u ∈ [b, x], for all n ∈ N. Taking integrals on

both sides from b to x yields

VLn(x)− VLn(b) ≤ V ′Ln(b)(x− b) ∀n ∈ N.

As n → ∞, we obtain V∞(x) ≤ V∞(b). Since V∞ is nondecreasing (Remark 2.4.1 (i)), we

conclude that V∞(x) = V∞(b) for all x > b, which in particular implies V ′∞(x) = V ′′∞(x) = 0

for all x > b. By the viscosity solution property of V∞ (Lemma 2.4.1), for any x > b we have

βV∞(x) = Ũ(0) =∞, a contradiction. Now, with V ′L(b) ≥ CE for all L > 0, we have

0 ≤ ŨL(x, V ′L(x)) ≤ ŨL(x, V ′L(b)) ≤ ŨL(x,CE) ≤ Ũ(CE) <∞, ∀x ∈ E and L > 0,

where the second and the third inequalities follow from V ′L(x) ≥ V ′L(b) ≥ CE and p 7→

ŨL(x, p) is by definition nonincreasing. This shows that
{
ŨL(x, V ′L(x))

}
L>0

is uniformly

bounded on E.

Recall from Proposition 2.4.1 that each VL satisfies

βVL(x) =
1

2
σ2x2V ′′L (x) + (xα − µx)V ′L(x) + ŨL(x, V ′L(x)), ∀x > 0. (2.4.7)

By the uniform boundedness onE of {(xα−µx)V ′L(x)}L>0, {ŨL(x, V ′L(x))}L>0, and {VL(x)}L>0

(thanks to Proposition 2.4.1), (2.4.7) entails the uniform boundedness of {V ′′L (x)}L>0 on E.

By the Arzela Ascoli Theorem, this implies V ′L converges uniformly, up to some subse-

quence, on E. With VL, V ′L, and ŨL all converging uniformly on E (recall from the proof

of Lemma 2.4.1 that ŨL converges uniformly to Ũ), (2.4.7) implies that V ′′L also converges

18



uniformly on E.

Now, with VL converging to V∞ and V ′L converging uniformly on E, V∞ must be con-

tinuously differentiable with V ′∞ = limL→∞ V
′
L (up to some subsequence) in the interior of

E. This, together with V ′′L converging uniformly on E, shows that V ′∞ is continuously dif-

ferentiable with V ′′∞ = limL→∞ V
′′
L (up to some subsequence) in the interior of E. Since E

is arbitrarily chosen, we conclude that V∞ ∈ C2((0,∞)). In view of Lemma 2.4.1, V∞ is a

classical solution to (2.4.6).

Remark 2.4.2. In deriving the uniform boundedness of {ŨL(x, V ′L(x))}L>0 in the proof

above, we particularly show that V∞ is strictly increasing on (0,∞), otherwise the viscosity

solution property of V∞ (Lemma 2.4.1) would be violated.

Now, a verification argument connects V∞ to our value function V .

Theorem 2.4.1. The value function V in (2.2.7) coincides with V∞ on (0,∞). Thus, V is

concave, strictly increasing, satisfies (2.4.5), and solves (2.4.6) in the classical sense.

Proof. Since V∞ is nonnegative, concave, and nondecreasing (Remark 2.4.1 (i)), 0 ≤ V ′∞(x) ≤

V∞(x)/x for all x > 0. Fix x > 0. Then, for any T > 0 and c ∈ C,

E
[∫ T

0

(e−βsV ′∞(Xs)Xs)
2ds

]
≤ E

[∫ T

0

(e−βsV∞(Xs))
2ds

]
≤ E

[∫ T

0

(e−βs(Xs + ϕ0))2ds

]
<∞,

where the second line follows from Remark 2.4.1 (i) and the finiteness is due to (2.3.4). It

follows that
∫ t

0
e−βsVx(Xs)XsdWs is a martingale on [0, T ], for any T > 0 and c ∈ C. Now,
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fix c ∈ C. By using Ito’s formula, for any T > 0,

E[e−βTV∞(XT )] = V∞(x) + E
[ ∫ T

0

e−βt
(
− βV∞(Xt)

+ V ′∞(Xt)(X
α
t − µXt − ctXt) +

σ2

2
X2
t V
′′
∞(Xt)

)
dt

]
≤ V∞(x)− E

[ ∫ T

0

e−βtU(ctXt)dt

]
, (2.4.8)

where the inequality follows from V∞ satisfying (2.4.6) (Proposition 2.4.2). As T → ∞, we

deduce from Remark 2.4.1 (i) and (2.3.4) that

E[e−βTV∞(XT )] ≤ E
[
e−βT (XT + ϕ0)

]
≤ e−βT (2η−1(x+ T η) + ϕ0)→ 0, as T →∞.

Thus, we conclude from (2.4.8) that V∞(x) ≥ E
[ ∫∞

0
e−βtU(ctXt)dt

]
for all c ∈ C, and thus

V∞(x) ≥ V (x). On the other hand, by definition V (x) ≥ VL(x) for all L > 0, and thus

V (x) ≥ V∞(x). We therefore conclude that V (x) = V∞(x). The remaining assertions follow

from Remark 2.4.1 (i), Remark 2.4.2, and Proposition 2.4.2.

While Theorem 2.4.1 associates V with the nonlinear elliptic equation (2.4.6), this is

not a full characterization of V , as there may be multiple solutions to (2.4.6). To further

characterize V as the unique classical solution to (2.4.6) among a certain class of functions,

the standard approach is to stipulate an optimal control of feedback form, by which one can

complete the verification argument; note that the proof of Theorem 2.4.1 amounts to the

first half of the verification argument.

As detailed in Section 2.5 below, although the form of a candidate optimal consumption

process ĉ can be readily read out from the equation (2.4.6), it is highly nontrivial whether ĉ

is a well-defined stochastic process, due to the unboundedness of ĉ. This entails additional

analysis of the value function V and the capital per capita process X, as we will now

introduce.
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2.5 Optimal Consumption

In view of (2.4.6), one can heuristically stipulate the form of an optimal consumption process

as

ĉt := ĉ(Xt) for t ≥ 0, with ĉ(x) :=
(U ′)−1(V ′(x))

x
for x > 0, (2.5.1)

where X is the solution to the SDE (2.2.8) with ct replaced by ĉt, i.e. the solution to

dXt =
(
Xα
t − µXt − (U ′)−1 (V ′(Xt))

)
dt− σXtdWt, X0 = x > 0. (2.5.2)

For ĉ in (2.5.1) to be well-defined, two questions naturally arise. First, it is unclear whether

(2.5.2) admits a solution: Proposition 2.3.1 is an existence result for (2.2.8), specifically when

c is an a priori given process, without Xt involved. Second, even if a solution X to (2.5.2)

exists, it is in question whether X is strictly positive, so that one does not need to worry

about the problematic case “Xt = 0” in (2.5.1).

For (2.5.2) to admit a solution, we first observe that it is necessary to have V ′(0+) =∞.

Indeed, if c := V ′(0+) < ∞, when X is close enough to zero, the drift coefficient of (2.5.2)

will approach the constant −(U ′)−1 (c) < 0, while the diffusion coefficient will tend to zero.

This will eventually bring X down to zero. When this happens, the drift and the diffusion

coefficients will be precisely −(U ′)−1 (c) < 0 and 0 respectively, which will move X further to

take negative values. The drift coefficient of (2.5.2), however, is not well-defined for negative

values of Xt. A solution to (2.5.2), as a result, cannot exist if V ′(0+) <∞.

The next result analyzes the behavior of V as x ↓ 0, and particularly establishes V ′(0+) =

∞.

Lemma 2.5.1. The function V defined in (2.2.7) satisfies the following:

(i) V (0+) > 0.
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(ii) Assume U ∈ C2((0,∞)). As x ↓ 0, V ′ explodes and is of the order of x−α. Specifically,

V ′(0+) =∞ and lim
x→0+

xαV ′(x) = βV (0+) > 0.

Furthermore,

lim
x↓0

(U ′)−1(V ′(x))

xα
= 0. (2.5.3)

Proof. (i) Consider c̄ ∈ C with c̄ ≡ 1. For any x > 0, in view of (2.3.3), the corresponding

capital per capita process Xx
t is given by

Xx
t = G

− 1
1−α

t

(
x1−α + (1− α)

∫ t

0

Gsds

) 1
1−α

,

where Gt is given as in (2.3.7) with ct replaced by the constant 1. Then, by the definition of

V ,

V (x) ≥ E
[∫ ∞

0

e−βtU(Xx
t )dt

]
= E

[∫ ∞
0

e−βtU

(
G
− 1

1−α
t

(
x1−α + (1− α)

∫ t

0

Gsds

) 1
1−α
)
dt

]
.

As x ↓ 0, Fatou’s lemma gives V (0+) ≥ E
[ ∫∞

0
e−βtU(((1 − α)

∫ t
0
G−1
s,t ds)

1
1−αdt

]
> 0, where

Gs,t is given as in (2.3.9) with ct replaced by the constant 1.

(ii) By contradiction, assume that c := V ′(0+) < ∞. Note that c > 0 must hold,

as V is concave and strictly increasing (Theorem 2.4.1). Consider I(y) := (U ′)−1(y) for

y ∈ (0,∞). With U ∈ C2((0,∞)), the inverse function theorem implies that I ∈ C1((0,∞))

with I ′(y) = 1/U ′′(y). Thanks again to Theorem 2.4.1, we have

βV (x) =
1

2
σ2x2V ′′(x) + (xα − µx)V ′(x) + U(I(V ′(x)))− I(V ′(x))V ′(x), ∀x > 0. (2.5.4)

We can then express V ′′(x) in terms of the functions x, V (x), V ′(x), I(V ′(x)), and U(I(V ′(x))).
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Since each of these functions is continuously differentiable, we have V ∈ C3((0,∞)). By using

L’Hospital’s rule,

c = lim
x↓0

V ′(x) = lim
x↓0

xV ′(x)

x
= lim

x↓0
(V ′(x) + xV ′′(x)) , (2.5.5)

which implies limx↓0 xV
′′(x) = 0. The same argument in turn gives

0 = lim
x↓0

xV ′′(x) = lim
x↓0

x2V ′′(x)

x
= lim

x↓0

(
2xV ′′(x) + x2V ′′′(x)

)
,

leading to limx↓0 x
2V ′′′(x) = 0. Now, by differentiating both sides of (2.5.4) and multiplying

them by x1−α, we get

βx1−αV ′(x) = σ2x2−αV ′′(x) +
1

2
σ2x3−αV ′′′(x) + xV ′′(x) + αV ′(x)

− µx1−αV ′(x)− µx2−αV ′′(x)− x1−αI(V ′(x))V ′′(x), (2.5.6)

where the last term is obtained by noting that U ′ ◦ I is the identity map. As x ↓ 0 in (2.5.6),

we get

0 = αc+ lim
x↓0

x1−αI(V ′(x))(−V ′′(x)).

This is a contradiction by noting that αc > 0 and the limit above is nonnegative (as I is a

positive function and V is concave). We therefore conclude that V ′(0+) =∞.

Now, since V satisfies (2.4.5) (Theorem 2.4.1), we have lim supx↓0 xV
′(x) < ∞. Take

an arbitrary sequence {xn}n∈N such that xn ↓ 0 and xnV
′(xn) converges as n → ∞. Let

` := limn→∞ xnV
′(xn) <∞. Similarly to (2.5.5),

` = lim
n→∞

xnV
′(xn) = lim

n→∞

x2
nV
′(xn)

xn
= lim

n→∞

(
2xnV

′(xn) + x2
nV
′′(xn)

)
= 2`+ lim

n→∞
x2
nV
′′(xn),
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which yields limn→∞ x
2
nV
′′(xn) = −`. Recalling that V is a classical solution to (2.4.6), we

have

βV (xn) =
1

2
σ2x2

nV
′′(xn) + (xαn − µxn)V ′(xn) + Ũ(V ′(xn)) for all n ∈ N.

As n→∞, since V ′(0+) =∞ implies Ũ(V ′(xn))→ 0, we obtain

βV (0+) = −
(

1

2
σ2 + µ

)
`+ lim

n→∞
xαnV

′(xn).

If ` > 0, then limn→∞ x
α
nV
′(xn) = ` limn→∞ x

α−1
n = ∞, which would violate the above

equality. Thus, ` = 0 must hold. Since {xn}n∈N above is arbitrarily chosen, we conclude

that limx↓0 x
αV ′(x) = βV (0+) > 0, where the inequality follows from (i).

Finally, observe that 0 ≤ Ũ(V ′(x)) = U((U ′)−1(V ′(x))) − V ′(x)(U ′)−1(V ′(x)) for all

x > 0, leading to

0 ≤ V ′(x)(U ′)−1(V ′(x)) ≤ U((U ′)−1(V ′(x))) ∀x > 0.

As x ↓ 0, since V ′(0+) =∞ and U(0) = 0, the right hand side above approaches zero, which

implies

lim
x↓0

V ′(x)(U ′)−1(V ′(x)) = 0.

This, together with limx↓0 x
αV ′(x) = βV (0+) > 0, gives (2.5.3).

On the strength of Lemma 2.5.1, we are ready to present the existence result for (2.5.2).

Proposition 2.5.1. Suppose U ∈ C2((0,∞)). For any x > 0, there exists a unique strong

solution to (2.5.2), which is strictly positive a.s.

Proof. We will first establish the existence of a weak solution to (2.5.2), which is strictly

positive a.s. Then, we will prove that pathwise uniqueness holds for (2.5.2). By [18, Section

5.3.D], this gives the desired result that a unique strong solution exists and it is strictly

positive a.s.
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Step 1: Construct a weak solution to (2.5.2) that is strictly positive a.s. Thanks

to the argument in [18, Theorem 5.5.15], with R replaced by (0,∞), there exists a weak

solution X to (2.5.2) up to the explosion time

S := lim
n→∞

Sn, where Sn := inf{t ≥ 0 : Xt /∈ (1/n, n)}.

We will show that P(S =∞) = 1. In view of Feller’s test for explosion (see e.g. [18, Theorem

5.5.29]), as well as [18, Theorem 5.5.27], it suffices to prove that for any ` ∈ (0,∞),

A1 :=

∫ ∞
`

exp

(
−2

∫ `

r

yα − µy − (U ′)−1(V ′(y))

σ2y2
dy

)
dr =∞, (2.5.7)

and

A2 :=

∫ `

0+

exp

(
2

∫ `

r

yα − µy − (U ′)−1(V ′(y))

σ2y2
dy

)
dr =∞. (2.5.8)

Let C1 := exp
(
− 2
σ2

(
`α−1

1−α + µ log(`)
))

> 0. Observe that

A1 ≥
∫ ∞
`

exp

(
−2

∫ `

r

yα − µy
σ2y2

dy

)
dr = C1

∫ ∞
`

exp

(
2

σ2(1− α)

(
1

r

)1−α
)
r

2µ

σ2 dr

≥ C1

∫ ∞
`

r
2µ

σ2 dr =∞,

which gives (2.5.7). On the other hand, by (2.5.3), there exists 0 < δ < ` such that
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(U ′)−1(V ′(y)) < 1
2
yα for 0 < y < δ. It follows that

A2 ≥
∫ δ

0+

exp

(
2

∫ `

r

yα − µy − (U ′)−1(V ′(y))

σ2y2
dy

)
dr

=

∫ δ

0+

exp

(
2

∫ δ

r

yα − µy − (U ′)−1(V ′(y))

σ2y2
dy + 2

∫ `

δ

yα − µy − (U ′)−1(V ′(y))

σ2y2
dy

)
dr

= C2

∫ δ

0+

exp

(
2

∫ δ

r

yα − µy − (U ′)−1(V ′(y))

σ2y2
dy

)
dr

≥ C2

∫ δ

0+

exp

(
2

σ2

∫ δ

r

1

2
yα−2 − µy−1dy

)
dr

≥ C2C3

∫ δ

0+

exp

(
1

σ2(1− α)

(
1

r

)1−α
)
r

2µ

σ2 dr =∞,

where C2 := exp
(

2
∫ `
δ
yα−µy−(U ′)−1(V ′(y))

σ2y2
dy
)
, C3 := exp

(
−δα−1

σ2(1−α)

)
δ−

2µ

σ2 , and the fourth line

above follows from (U ′)−1(V ′(y)) < 1
2
yα for 0 < y < δ. This readily shows (2.5.8). We

therefore conclude that the weak solution X takes values in (0,∞) a.s.

Step 2: Show that pathwise uniqueness holds for (2.5.2). Let x∗ > 0 be the unique

maximizer of supx≥0{xα − µx}. Observe that x 7→ xα − µx is strictly increasing on (0, x∗)

and strictly decreasing on (x∗,∞). Also, the concavity of V (Theorem 2.4.1) implies that V ′

is nonincreasing. Since U is strictly concave, U ′ is strictly decreasing, and so is (U ′)−1. It

follows that x 7→ (U ′)−1(V ′(x)) is nondecreasing. We then conclude that the drift coefficient

b(x) := xα − µx− (U ′)−1(V ′(x)) of (2.5.2) is strictly decreasing on (x∗,∞).

Besides the weak solution X in Step 1, let X be another weak solution to (2.5.2), with

(Ω,F ,P), W , and the initial value x > 0 all the same as those of X. By the same argument

in Step 1, X takes values in (0,∞) a.s. For each N ∈ N, consider

τN := inf{t ≥ 0 : Xt ≤ 1/N}.

We claim that for any x > 0,

P
(
Xx
t∧τN = X

x

t∧τN , ∀t ≥ 0
)

= 1, ∀N ∈ N. (2.5.9)

26



Pick an arbitrary ε > 0, and let x0 := x∗ + ε. Fix N ∈ N. If the initial value x < x0,

since the diffusion coefficient a(u) := σu of (2.5.2) is bounded away from zero on [1/N, x0],

the argument in [29, Theorem] (with c and M therein replaced by σ/N and σx0 in our case)

implies

P
(
Xx
t∧τN∧τx0

= X
x

t∧τN∧τx0
, ∀t ≥ 0

)
= 1, (2.5.10)

where τ0 := inf{t ≥ 0 : Xx
t ≥ x0}. On the other hand, if the initial value x ≥ x0, since

the drift coefficient b(u) of (2.5.2) is strictly decreasing on (x∗,∞), [36, Example 1.1] asserts

that

P
(
Xx
t∧τx∗ = X

x

t∧τx∗ , ∀t ≥ 0
)

= 1, (2.5.11)

where τx∗ := inf{t ≥ 0 : Xx
t ≤ x∗}. Note that (2.5.10) and (2.5.11) already imply the desired

result (2.5.9). Indeed, if the initial value x < x0, we can define a sequence of stopping times

recursively as follows: τ0 := 0,

τ2n−1 := inf{t ≥ τ2n−2 : Xx
t ≥ x0}, τ2n := inf{t ≥ τ2n−1 : Xx

t ≤ x∗}, ∀n ∈ N.

Then, by using (2.5.10) and (2.5.11) alternately on the time intervals [τn−1, τn], n = 1, 2, ...,

we obtain (2.5.9). If the initial value x ≥ x0, we can similarly define a sequence of stopping

times recursively as follows: τ0 := 0,

τ2n−1 := inf{t ≥ τ2n−2 : Xx
t ≤ x∗}, τ2n := inf{t ≥ τ2n−1 : Xx

t ≥ x0}, ∀n ∈ N.

By applying (2.5.11) and (2.5.10) alternately on the time intervals [τn−1, τn], n = 1, 2, ..., we

again obtain (2.5.9).

Finally, since X is strictly positive a.s., τN →∞ a.s. as N →∞. We then conclude from

(2.5.9) that P
(
Xx
t = X

x

t , ∀t ≥ 0
)

= 1, for all x > 0. That is, pathwise uniqueness holds for

(2.5.2), as desired.

Remark 2.5.1. With bounded consumptions and finite horizon T > 0, [28, Lemma 6.1]
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constructs a strictly positive solution to (2.5.2) easily, through a change of measure and

using Girsanov’s theorem. This does not work in our case. With unbounded consumptions,

the same change of measure is not well-defined. Also, applying Girsanov’s theorem requires

some finite horizon. In view of this, Proposition 2.5.1 complements [28, Lemma 6.1], by

providing a new, different construction that accommodates both unbounded consumptions

and infinite horizon.

Proposition 2.5.1 deals with the SDE (2.5.2), induced by the value function V . In fact,

the same arguments can be applied to SDEs induced by a much larger class of functions.

Corollary 2.5.1. Suppose U ∈ C2((0,∞)). Let u ∈ C1((0,∞)) be strictly increasing,

concave, and satisfy

lim
x↓0

(U ′)−1(u′(x))

xα
= 0. (2.5.12)

Then, for any x > 0, the SDE

dXt =
(
Xα
t − µXt − (U ′)−1 (u′(Xt))

)
dt− σXtdWt, X0 = x (2.5.13)

admits a unique strong solution, which is strictly positive a.s.

Proof. The result can be established by following the proof of Proposition 2.5.2, with V

replaced by u. Specifically, Step 1 in the proof can be carried out thanks to u′(x) > 0 and

(2.5.12), while Step 2 relies on the concavity of u.

Let U denote the class of functions u ∈ C2((0,∞)) ∩ C([0,∞)) that are nonnegative,

strictly increasing, concave, satisfying (2.5.12) and the following linear growth condition:

there exists C > 0 such that

u(x) ≤ C(1 + x) for all x ≥ 0. (2.5.14)

Now, we are ready to present the main result of this paper.
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Theorem 2.5.1. Suppose U ∈ C2((0,∞)). The function V defined in (2.2.7) is the unique

classical solution to (2.4.6) among functions in U . Moreover, ĉ ∈ C defined by (2.5.1), with

X being the unique strong solution to (2.5.2), is an optimal consumption process for (2.2.7).

Proof. We know from Theorem 2.4.1 and Lemma 2.5.1 that V ∈ U and it solves (2.4.6) in

the classical sense. By following the arguments in Theorem 2.4.1, with V∞ and c therein

replaced by V and ĉ, we note that the inequality in (2.4.8) now becomes equality, leading

to V (x) = E
[ ∫∞

0
e−βtU(ĉtX

x
t )dt

]
for all x > 0. This readily shows that ĉ ∈ C is an optimal

consumption process for (2.2.7).

For any u ∈ U that solves (2.4.6) in the classical sense, we can again follow the arguments

in Theorem 2.4.1 to show that u ≥ V . On the other hand, consider the consumption process

ĉut := ĉu(Xt) for t ≥ 0, with ĉu(x) :=
(U ′)−1(u′(x))

x
for x > 0, (2.5.15)

where X is the unique strong solution to (2.5.13), whose existence is guaranteed by Corol-

lary 2.5.1. Now, in (2.4.8), if we replace V∞ and c therein by u and ĉu, the inequality becomes

equality, leading to u(x) = E
[ ∫∞

0
e−βtU(ĉutX

x
t )dt

]
≤ V (x) for all x > 0. Thus, we conclude

that u = V .

Remark 2.5.2. In the characterization of V in Theorem 3.2.1, condition (2.5.12) is the key

to dealing with unbounded consumptions (recall that (2.5.12) is part of the definition of U).

If we restrict ourselves to CL in (2.4.2) for some L > 0 (as in [28]), there is no need to

impose (2.5.12).

To see this, note that (2.5.12) can be re-written as

lim
x↓0

ĉu(x)x1−α = 0, with ĉu as in (2.5.15).

That is, we require the optimal consumption to be dominated by x1−α as x ↓ 0. When we are

restricted to CL, this requirement holds trivially, thanks to the bound L > 0 for each c ∈ CL.
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Thus, for VL defined in (2.4.1), the same arguments in Proposition 2.5.1, Corollary 2.5.1,

and Theorem 3.2.1 can be carried out, without the need to impose (2.5.12). This leads to the

characterization: VL is the unique classical solution to (2.4.3) among the class of functions

u ∈ C2((0,∞))∩C([0,∞)) that are nonnegative, strictly increasing, concave, and satisfying

(2.5.14).

Remark 2.5.3. In [28], one is restricted to CL in (2.4.2). The main results, [28, Theorems

4.2 and 6.2], only show that the value function VL is a classical solution and that a feedback

optimal consumption exists; there is no further characterization of VL. At the end of [28], the

authors very briefly mention, without a proof, that VL is the unique solution. However, the

class of functions among which VL is unique, the key ingredient of any PDE characterization,

is missing. Theorem 3.2.1, along with the resulting characterization of VL in Remark 2.5.2,

fills this void.

We will demonstrate the use of Theorem 3.2.1 explicitly in Proposition 2.6.3 below.

2.5.1 Comparison with [26, 27]

To the best of our knowledge, Morimoto [26, 27] are the only prior works that consider

unbounded consumptions in the stochastic Ramsey problem. Our studies complement [26,

27] in two ways.

First, [26, 27] require the production function F (k, y) to satisfy Fk(0+, y) < ∞ for all

y > 0. This provides technical conveniences: (i) The drift coefficient of the capital per capita

process is Lipschitz (see e.g. (11) and (12) in [26]), such that the SDE has uniqueness of

solutions even when the initial condition is 0. The value function V is thus well-defined at

x = 0, with V (0) = 0. (ii) The continuity of V at x = 0 is ensured, with V (0+) = V (0) = 0,

which leads to a short simple proof for V ′(0+) = ∞ (see the last two lines in the proof of

[26, Theorem 4.1]).

Our contribution here is taking into account the classical, widely-used Cobb-Douglas

production function (2.2.2), which violates Fk(0+, y) < ∞. In contrast to [26, 27], the
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drift coefficient of (2.2.8) is non-Lipschitz, such that (2.2.8) admits multiple solutions when

the initial condition is 0 (see Corollary 2.3.1), leaving the value function V undefined at

x = 0 (see Remark 2.3.2). Moreover, proving V ′(0+) =∞ now requires much more involved

analysis, as shown in Lemma 2.5.1.

Second, with unbounded consumptions considered, the framework in [26, 27], like ours,

suffers the potential issue that the solution X to (2.5.2) may reach 0 in finite time. The

author of [26, 27] does not analyze whether or not, or how likely, X will reach 0 in finite

time, but simply restricts the Ramsey problem to the random horizon [0, τX ], where τX is

the first time X reaches 0. However, it is hard to imagine that in practice individuals would

allow X, the capital per capita, to reach 0, and enjoy no consumption at all afterwards (This

is, nonetheless, what [26, (36)] prescribes).

In a reasonable economic model, an optimal consumption process should by itself prevents

X from reaching 0, so that there is no need to artificially introduce τX . In this aspect, our

paper complements [26, 27], by providing a framework in which τX = ∞ is ensured under

optimal consumption behavior.

2.6 Comparison with Bounded Consumption in [28]

For each L > 0, one can solve the problem (2.4.1) by modifying the arguments in [28], with

an optimal consumption process given by

ĉLt := ĉL(Xt) for t ≥ 0, with ĉL(x) := min

{
(U ′)−1(V ′L(x))

x
, L

}
for x > 0, (2.6.1)

where X is the unique strong solution to (2.2.8) with ct replaced by ĉLt .

Two questions are particularly of interest here. First, by switching from the bounded

strategy ĉL, however large L > 0 may be, to the possibly unbounded ĉ in (2.5.1), can we

truly raise our expected utility? An affirmative answer will be provided below, which justifies

economically the use of unbounded strategies. Second, for each L > 0, do agents following
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ĉL simply chop the no-constraint optimal strategy ĉ at the bound L > 0? In other words,

does “ ĉL = ĉ ∧ L” hold? As we will see, this fails in general, suggesting a more structural

change from ĉL to ĉ.

Our first result shows that switching from ĉL to ĉ strictly increases expected utility at all

levels of wealth (capital per capita) x > 0, whenever ĉ is truly unbounded.

Proposition 2.6.1. Suppose U ∈ C2((0,∞)). Let M := supx>0 ĉ(x).

(i) If M <∞, then for any L ≥M , VL(x) = V (x) for all x > 0.

(ii) If M =∞, then for any L > 0, VL(x) < V (x) for all x > 0.

Proof. (i) Since ĉ in (2.5.1) is optimal for V (Theorem 3.2.1) and bounded by M <∞, the

definitions of V and VL in (2.2.7) and (2.4.1) directly imply VL = V for L ≥M .

(ii) Fix L > 0. First, we claim that there exists x∗ ∈ (0,∞) with V (x∗) > VL(x∗).

Suppoe V = VL on (0,∞). With M = ∞, we can take x > 0 with ĉ(x) > L. This

implies Ũ(V ′(x)) = U(ĉ(x)x)− ĉ(x)xV ′(x) > U(Lx)−LxV ′(x) = ŨL(x, V ′(x)). By this and

Theorem 2.4.1,

0 = −βV (x) +
1

2
σ2x2V ′′(x) + (xα − µx)V ′(x) + Ũ(V ′(x))

> −βV (x) +
1

2
σ2x2V ′′(x) + (xα − µx)V ′(x) + ŨL(x, V ′(x))

= −βVL(x) +
1

2
σ2x2V ′′L (x) + (xα − µx)V ′L(x) + ŨL(x, V ′L(x)),

where the last line follows from V = VL on (0,∞). This, however, contradicts Proposi-

tion 2.4.1 (ii).

With V (x∗) > VL(x∗) for some x∗ > 0, we will show that V (x) > VL(x) for all x > 0.

Recall the dynamic programming principle of VL in (A.1.4). By using the same arguments

in Lemma A.1.2, one can derive the corresponding principle for V , i.e. for any x > 0,

V (x) ≥ sup
c∈C

E
[∫ τ

0

e−βtU(ctX
x
t )dt+ e−βτV (Xx

τ )

]
, ∀τ ∈ T . (2.6.2)

32



Now, for any x > 0 with x 6= x∗, let X denote the unique strong solution to (2.2.8), with ct

replaced by ĉLt . Consider τ ∗ := inf{t ≥ 0 : Xx
t = x∗} ∈ T . Thanks to (2.6.2),

V (x) ≥ E
[ ∫ τ∗

0

e−βtU(ĉLt X
x
t )dt+ e−βτ

∗
V (Xx

τ∗)

]
> E

[ ∫ τ∗

0

e−βtU(ĉLt X
x
t )dt+ e−βτ

∗
VL(Xx

τ∗)

]
≥ E

[ ∫ τ∗

0

e−βtU(ĉLt X
x
t )dt+ e−βτ

∗E
[ ∫ ∞

τ∗
e−β(t−τ∗)U(ĉLt X

x
t )dt

∣∣∣∣ Fτ∗]]
= E

[ ∫ ∞
0

e−βtU(ĉLt X
x
t )dt

]
= VL(x),

where the second inequality is due to V (Xx
τ∗) = V (x∗) > VL(x∗) = VL(Xx

τ∗), the third

inequality follows from the same calculation as in (A.1.3), and the last equality holds as ĉL

is optimal for VL. Hence, we conclude that V (x) > VL(x) for all x > 0.

Proposition 2.6.1 provides an answer to whether “ ĉL = ĉ ∧ L” holds.

Corollary 2.6.1. Suppose supx>0 ĉ(x) = ∞. Given L > 0, for any x > 0 with ĉ(x) < L,

and any δ > 0, there exists x∗ > 0 such that |x∗− x| < δ and ĉL(x∗) 6= ĉ(x∗)∧L. Hence, for

any L > infx>0 ĉ(x), there exists x∗ > 0 such that ĉL(x∗) 6= ĉ(x∗) ∧ L.

Proof. Take L > 0 such that there exists x > 0 with ĉ(x) < L. For any δ > 0, by the

continuity of ĉ, there exists 0 < δ′ ≤ δ such that ĉ(y) < L for all y ∈ (x − δ′, x + δ′). We

claim that there exists y∗ ∈ (x− δ′, x + δ′) such that ĉL(y∗) 6= ĉ(y∗) ∧ L. By contradiction,

suppose ĉL = ĉ ∧ L on (x − δ′, x + δ′). It follows that ĉL = ĉ on (x − δ′, x + δ′). By (2.5.1)

and (2.6.1), this implies V ′L = V ′ on (x − δ′, x + δ′), which in turn entails V ′′L = V ′′ on

(x− δ′, x+ δ′). Hence, for any y ∈ (x− δ′, x+ δ′),

βV (y) =
1

2
σ2y2V ′′(y) + (yα − µy)V ′(y) + U(ĉ(y)y)− ĉ(y)yV ′(y)

=
1

2
σ2y2V ′′L (y) + (yα − µy)V ′L(y) + U(ĉL(y)y)− ĉL(y)yV ′L(y) = βVL(y),
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where the first and the last equalities follows from Theorem 2.4.1 and Proposition 2.4.1. This

implies V = VL on (x− δ′, x+ δ′), a contradiction to Proposition 2.6.1 (ii).

To concretely illustrate the above results, in the following we focus on the utility function

U(x) :=
x1−γ

1− γ
for x > 0, with 0 < γ < 1. (2.6.3)

Lemma 2.6.1. Assume (2.6.3). Then, there exist C1, C2 > 0 such that

C1x
1−γ ≤ V (x) ∀x > 0 and V (x) ≤ C2(1 + x1−γ) as x→∞. (2.6.4)

In particular, we have

lim
x→∞

xγV ′(x) =

(
γ

β + µ(1− γ) + 1
2
σ2γ(1− γ)

)γ
> 0. (2.6.5)

Proof. Consider the constant consumption process c̄t ≡ 1. For any x > 0, let X denote the

unique strong solution to (2.2.8) with c = c̄. By the definition of V and (2.6.3),

V (x) ≥ 1

1− γ
E
[ ∫ ∞

0

e−βt(Xx
t )1−γdt

]
.

Recall from Section 2.3 that Xt = (Zt)
1/(1−α), with Z explicitly given in (2.3.3). It follows

that

V (x) ≥ 1

1− γ
E
[ ∫ ∞

0

e−βt
(
G−1
t

(
x1−α + (1− α)

∫ t

0

Gsds

)) 1−γ
1−α

dt

]
≥ 1

1− γ
E
[ ∫ ∞

0

e−βt
(
G−1
t x1−α) 1−γ

1−α dt

]
=

x1−γ

1− γ
E
[ ∫ ∞

0

e−βtG
γ−1
1−α
t dt

]
,

where G is defined as in (2.3.2), with ct = c̄t ≡ 1, and the second inequality follows from

Gt > 0 for all t ≥ 0, 1 − α > 0, and 1−γ
1−α > 0. Noting that the process G is independent of

x, we conclude from the above inequality that the first part of (2.6.4) holds.
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By Theorem 2.4.1 and (2.6.3), V satisfies

βV (x) =
1

2
σ2x2V ′′(x) + (xα − µx)V ′(x) +

γ

1− γ
(V ′(x))

γ−1
γ , ∀x > 0. (2.6.6)

Recall from Theorem 2.4.1 that V ′(x) > 0 and V ′′(x) ≤ 0 for all x > 0. Also, by the standing

assumption µ > 0 in (2.2.9), xα − µx < 0 for x > 0 large enough. Hence, (2.6.6) implies the

existence of x0 > 0 such that

βV (x) ≤ γ

1− γ
(V ′(x))

γ−1
γ , for x ≥ x0.

Note that V being nonnegative, concave, and nondecreasing entails V ′(x) ≤ V (x)
x

for all

x > 0. The above inequality then yields βxV ′(x) ≤ γ
1−γ (V ′(x))

γ−1
γ for x ≥ x0, which is

equivalent to

V ′(x) ≤
(

γ

β(1− γ)

)γ
x−γ, for x ≥ x0.

Integrating both sides from x0 to x ≥ x0 gives

V (x) ≤ V (x0) +

(
γ

β

)γ (
1

1− γ

)γ+1

(x1−γ − x1−γ
0 ), for x ≥ x0.

This shows that the second part of (2.6.4) is true.

By (2.6.4), 0 < lim infx→∞
V (x)
x1−γ

≤ lim supx→∞
V (x)
x1−γ

< ∞. Hence, for any {xn}n∈N in

(0,∞) such that xn → ∞ and V (xn)

x1−γn
converges, we must have limn→∞

V (xn)

x1−γn
= c for some

0 < c <∞. Taking x = xn in (2.6.6) and dividing the equation by x1−γ
n , we get

β
V (xn)

x1−γ
n

=
1

2
σ2x1+γ

n V ′′(xn) + (xα−1
n − µ)xγnV

′(xn) +
γ

1− γ
(xγnV

′(xn))
γ−1
γ , ∀n ∈ N.

With c = limn→∞
V (xn)

x1−γn
, L’Hospital’s rule implies c(1 − γ) = limn→∞ x

γ
nV
′(xn). Using

L’Hospital’s rule again yields −cγ(1 − γ) = limn→∞ x
γ+1
n V ′′(xn). Thus, as n → ∞, the
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above equation gives

βc = −1

2
σ2cγ(1− γ)− µc(1− γ) +

γ

1− γ
(c(1− γ))

γ−1
γ ,

which has a unique solution c = 1
1−γ

(
γ

β+µ(1−γ)+ 1
2
σ2γ(1−γ)

)γ
> 0. With {xn}n∈N arbitrarily

chosen, limx→∞
V (x)
x1−γ

exists and must equal c as above. L’Hospital’s rule then gives the result

(2.6.5).

Proposition 2.6.2. Assume (2.6.3). Then,

lim
x→∞

ĉ(x) =
β

γ
+ (1− γ)

(
µ

γ
+
σ2

2

)
.

Moreover,

lim
x↓0

ĉ(x) =


0, if γ < α;

(βV (0+))−1/γ > 0, if γ = α;

∞, if γ > α.

(2.6.7)

Proof. Under (2.6.3), ĉ(x) = (V ′(x))−1/γ

x
. It follows that

lim
x→∞

ĉ(x) = lim
x→∞

(xγV ′(x))
− 1
γ =

β

γ
+ (1− γ)

(
µ

γ
+
σ2

2

)
,

where the second equality follows from (2.6.5). On the other hand, by Lemma 2.5.1 (ii),

lim
x↓0

ĉ(x) = lim
x↓0

(V ′(x))−1/γ

x
= lim

x↓0

(βV (0+)x−α)−1/γ

x
= (βV (0+))−1/γ lim

x↓0
x
α
γ
−1,

which directly implies (2.6.7).

Proposition 2.6.2 admits interesting economic interpretation. An agent’s consumption

behavior is determined by two competing effects, captured by the parameters γ and α re-

spectively. First, as in the literature of mathematical finance, γ in (2.6.3) measures the
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agent’s relative risk aversion: the larger γ, the stronger the agent’s intention to consume

capital right away (to get immediate, riskless utility), as opposed to saving capital in the

form of X, subject to risky, stochastic evolution. On the other hand, α in (2.2.8) measures

how efficient capital is used in an economy to produce new capital: the larger α, the stronger

the upward potential of X, and thus the more willing the agent to save capital (i.e. consume

less). Now, as in (2.6.7), when capital per capita X dwindles near 0, (i) if risk aversion of the

agent is not so strong relative to the efficiency of capital production (i.e. γ < α), the effect

of α prevails, so that the agent (in the limit) saves all capital to fully exploit the upward

potential of X; (ii) if risk aversion of the agent is very strong relative to the efficiency of

capital production (i.e. γ > α), the effect of γ prevails, so that the agent consumes capital as

fast as possible, to reduce risky position in X; (iii) if risk aversion of the agent is comparable

to the efficiency of capital production (i.e. γ = α), the effects of α and γ are balanced,

leading to bounded, positive consumption of the agent.

Note that while γ measures relative risk aversion, 1/γ characterizes the elasticity of

intertemporal substitution (EIS) of the agent. Using the concept of the EIS, one can possibly

derive a related economic interpretation for Proposition 2.6.2.

Corollary 2.6.2. Assume (2.6.3). If γ ≤ α, as long as L > 0 is large enough, VL(x) = V (x)

for all x > 0. If γ > α, then for any L > 0, VL(x) < V (x) for all x > 0; moreover, for

L > β
γ

+ (1− γ)
(
µ
γ

+ σ2

2

)
, there exists x∗ > 0 such that ĉL(x∗) 6= ĉ(x∗) ∧ L.

Proof. Since ĉ(x) is by definition continuous on (0,∞), whether it is bounded on (0,∞)

depends on its limiting behavior as x ↓ 0 and x → ∞. Thus, Proposition 2.6.2 implies (i)

ĉ(x) is bounded on (0,∞) if and only if γ ≤ α, and (ii) infx>0 ĉ(x) ≤ β
γ

+ (1 − γ)
(
µ
γ

+ σ2

2

)
.

The result then follows from Proposition 2.6.1 and Corollary 2.6.1.

The next two results focus on the specific case γ = α. The purpose is twofold. First, we

demonstrate that the value function V and optimal consumption ĉ can be solved explicitly.

Second, as we will see, ĉ is constant (and thus bounded), so that Corollary 2.6.1 is inconclusive
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on the failure of “ ĉL = ĉ ∧ L”. Explicit calculation shows that “ ĉL = ĉ ∧ L” holds for some,

but not all, L > 0.

Proposition 2.6.3. Assume (2.6.3) with γ = α. Then, V (x) = ζ ·
(
x1−α

1−α + 1
β

)
, with

ζ :=

(
α

β + µ(1− α) + 1
2
σ2α(1− α)

)α
> 0. (2.6.8)

Moreover, the optimal consumption (2.5.1) is a constant process given by

ĉt ≡
β

α
+ (1− α)

(
µ

α
+
σ2

2

)
> 0. (2.6.9)

Proof. By Theorem 2.4.1, (2.6.3), and γ = α, V is a classical solution to

βv(x) =
1

2
σ2x2v′′(x) + (xα − µx)v′(x) +

α

1− α
(v′(x))

α−1
α , ∀x > 0.

We plug the ansatz v(x) = ax1−α + b, for some a, b ∈ R, in the above equation. Equating

the x1−α terms on both sides leads to

βa =
1

2
σ2a(1− α)(−α)− µa(1− α) +

α

(1− α)
1
α

a
α−1
α ,

which implies a = ζ
1−α , with ζ as in (2.6.8). Similarly, equating the constant terms on both

sides yields βb = a(1 − α), which implies b = ζ
β
, with ζ as in (2.6.8). By construction,

v(x) = ζ ·
(
x1−α

1−α + 1
β

)
is nonnegative, concave, strictly increasing, and satisfies the linear

growth condition (2.5.14). Moreover,

lim
x↓0

(U ′)−1(v′(x))

xα
= lim

x↓0

(ζx−α)−1/α

xα
= lim

x↓0
ζ−1/αx1−α = 0,

i.e. (2.5.12) is satisfied. Hence, we conclude from Theorem 3.2.1 that V (x) = v(x) for all
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x > 0, and the optimal consumption process ĉ is given by

ĉt =
(U ′)−1(v′(Xt))

Xt

=
(ζX−αt )−1/α

Xt

= ζ−1/α =
β

α
+ (1− α)

(
µ

α
+
σ2

2

)
, ∀t ≥ 0.

The constant consumption (2.6.9) turns out to be the threshold, uniform in x > 0, for

“ ĉL = ĉ ∧ L” to hold.

Proposition 2.6.4. Assume (2.6.3) with γ = α. Then, ĉL(x) = ĉ(x) ∧ L for all x > 0 if

and only if L ≥ β
α

+ (1− α)
(
µ
α

+ σ2

2

)
.

Proof. By Proposition 2.6.3, ĉ(x) ≡ β
α

+ (1 − α)
(
µ
α

+ σ2

2

)
. If L ≥ β

α
+ (1 − α)

(
µ
α

+ σ2

2

)
,

by Proposition 2.6.1 we have VL = V on (0,∞), which in turn implies ĉL = ĉ = ĉ ∧ L on

(0,∞). On the other hand, if ĉL(x) = ĉ(x) ∧ L for all x > 0, assume to the contrary that

L < β
α

+ (1 − α)
(
µ
α

+ σ2

2

)
. Then, ĉL(x) = L for all x > 0. By Proposition 2.4.1, VL is a

classical solution to

βv(x) =
1

2
σ2x2v′′(x) + (xα − µx)v′(x) +

(Lx)1−α

1− α
− Lxv′(x) ∀x > 0.

Take the ansatz v(x) = ax1−α + b for some a, b ∈ R. By the same argument in Proposi-

tion 2.6.3, we obtain v(x) = ζL ·
(
x1−α

1−α + 1
β

)
, where

ζL :=
L1−α

β + (1− α)
(
µ+ L+ ασ2

2

)
By construction, v(x) = ζL ·

(
x1−α

1−α + 1
β

)
is nonnegative, concave, strictly increasing, and

satisfies the linear growth condition (2.5.14). In view of the characterization of VL in Remark

2.5.2, we have VL(x) = v(x) for all x > 0. Now, for any x > 0,

(U ′)−1(V ′L(x))

x
=

(ζLx
−α)

−1
α

x
= ζ

−1
α
L ≤

(
L1−α

L(1− α)

)−1
α

= L(1− α)
1
α < L,
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which implies ĉL(x) = min
{ (U ′)−1(V ′L(x))

x
, L
}

=
(U ′)−1(V ′L(x))

x
< L, a contradiction to ĉL(x) =

L.
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Chapter 3

Generalized Duality for Model-Free
Superhedging given Marginals1

3.1 Introduction

Given a finite time horizon T ∈ N with T ≥ 2, let Ω := RT
+ = [0,∞)T be the path space and

S be the canonical process, i.e. St(x1, x2, ..., xT ) = xt for all (x1, x2, ..., xT ) ∈ Ω. We denote

by P(Ω) the set of all probability measures on Ω. For all t = 1, ..., T , let µt be a probability

measure on R+ that has finite first moment; namely,

m(µt) :=

∫
R+

ydµt(y) <∞. (3.1.1)

The set of admissible probability measures on Ω is given by

Π :=
{
Q ∈ P(Ω) : Q ◦ (St)

−1 = µt, ∀t = 1, ..., T
}
, (3.1.2)

which is known to be nonempty, convex, and compact under the topology of weak conver-

gence, thanks to [20, Proposition 1.2]. We further consider

M := {Q ∈ Π : S is a Q-martingale} . (3.1.3)
1Available @ arXiv:1909.06036.
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Note thatM 6= ∅ if and only if µ1, ..., µT possess the same finite first moment and increase

in the convex order (i.e.
∫
R+
fdµ1 ≤

∫
R+
fdµ2 ≤ ... ≤

∫
R+
fdµT , for convex f : R+ → R);

see [34]. We will assumeM 6= ∅ throughout this paper.

The current setup is motivated by a financial market that involves a risky asset, rep-

resented by S, and abundant tradable options written on it. For instance, if the tradable

options at time 0 include vanilla call options, with payoff (St−K)+, for all t = 1, · · · , T and

K ≥ 0, then the current market prices C(t,K) of these call options already prescribe the

distribution of St, for each t = 1, ..., T , under any pricing (martingale) measure.2

A path-dependent contingent claim Φ : Ω → R can be superhedged by trading the

underlying S and holding options available at time 0. Specifically, let H be the set of

∆ = {∆t}T−1
t=1 with ∆t : Rt

+ → R Borel measurable for all t = 1, ..., T − 1. Each ∆ ∈ H

represents a self-financing (dynamic) trading strategy. The resulting change of wealth over

time along a path x = (x1, ..., xT ) ∈ Ω is given by

(∆ · x)t :=
t−1∑
i=1

∆i(x1, ..., xi) · (xi+1 − xi), for t = 2, ..., T.

In addition, by writing µ = (µ1, ..., µT ), we denote by L1(µ) the set of u = (u1, ..., uT ) where

ut : R+ → R is µt-integrable for all t = 1, ..., T . Each u ∈ L1(µ) represents a collection of

options with different maturities. A semi-static superhedge of Φ consists of some ∆ ∈ H and

u ∈ L1(µ) such that

Ψu,∆(x) :=
T∑
t=1

ut(xt) + (∆ · x)T ≥ Φ(x), for all x = (x1, ..., xT ) ∈ Ω. (3.1.4)

Such superhedging is model-free: the terminal wealth Ψu,∆ is required to dominate Φ on

every path x ∈ Ω, instead of P-a.e. x ∈ Ω for some probability P. This is distinct from the
2By [14, Proposition 2.1], for each fixed t, as long as K 7→ C(t,K) is convex and nonnega-

tive, limK↓0+ ∂KC(t,K) ≥ −1, and limK→∞ C(t,K) = 0, the relation “EQ[(St − K)+] = C(t,K)
for all K ≥ 0” determines the distribution of St. That is, Π in (3.1.2) can be expressed as
{Q ∈ P(Ω) : EQ[(St −K)+] = C(t,K), ∀t = 1, · · · , T and K ≥ 0}.
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standard model-based approach: classically, one first specifies a model, or physical measure,

P for the financial market, and then superhedges a contingent claim P-a.s. With the pointwise

relation (3.1.4), no matter which P materializes, Ψu,∆ ≥ Φ must hold P-a.s. There is then

no need to specify a physical measure P a priori, which prevents any model misspecification.

The corresponding model-free superhedging price of Φ is defined by

D(Φ) := inf
{
µ(u) : u ∈ L1(µ) satisfies ∃∆ ∈ H s.t. Ψu,∆(x) ≥ Φ(x) ∀x ∈ Ω

}
, (3.1.5)

where µ(u) :=
∑T

t=1

∫
R+
utdµt. To characterize D(Φ), the minimal cost to achieve (3.1.4),

Beiglböck, Henry-Labordére, and Penkner [3] introduce the martingale optimal transport

problem

P (Φ) := sup
Q∈M

EQ[Φ]. (3.1.6)

When Φ is upper semicontinuous, denoted by Φ ∈ USC(Ω), and grows linearly, D(Φ) coin-

cides with P (Φ).

Proposition 3.1.1 (Corollary 1.1, [3]). Given Φ ∈ USC(Ω) for which there exists K > 0

such that

Φ(x) ≤ K(1 + x1 + · · ·+ xT ), ∀x = (x1, · · · , xT ) ∈ Ω, (3.1.7)

we have D(Φ) = P (Φ).

Model-free superhedging given marginals, pioneered by Hobson [15], has traditionally

focused on several specific forms of contingent claims; see e.g. [6], [16], [23], [7], and [10].

The main contribution of [3] is to allow for general, albeit upper semicoutinuous, contingent

claims, via the superhedging duality stated in Proposition 3.1.1. In deriving this duality, [3]

uses upper semicontinuity only once for a minimax argument. It is tempting to believe that

upper semicontinuity is only a technical condition that can eventually be relaxed.

This is, however, not the case. While the model-free duality given marginals in [3]

has been widely studied and enriched by now (see [11], [1], [12], and [9], among others), the
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requirement of upper semicontinuity stands still. Recently, Beiglböck, Nutz, and Touzi [4] has

shown that, in fact, upper semicontinuity cannot be relaxed. They provide a counterexample

where Φ is lower, but not upper, semicontinuous and the duality D(Φ) = P (Φ) fails. To

restore the duality, [4] modifies the definition of D(Φ) in (3.1.5) in a quasi-sure way: the

inequality Ψu,∆ ≥ Φ is required to hold not pointwise, butM-quasi surely; that is, Ψu,∆ ≥ Φ

holds outside of a set that is P-null for all P ∈M. This quasi-sure modification successfully

yields the dualityDqs(Φ) = P (Φ) for Borel measurable Φ, whereDqs(Φ) denotes the modified

D(Φ) as described above. This is done in [4] for the two-period model (i.e. T = 2), and in

Nutz, Stebegg, and Tan [30] for the multi-period case (i.e. T ∈ N).

In this paper, we approach the failure of D(Φ) = P (Φ) from an opposite angle. We keep

the definition of D(Φ) as in (3.1.5), and investigate how P (Φ) should be modified to get a

general duality for Borel measurable Φ. This has two motivations in terms of both theory

and applications.

From the theoretical point of view, the pointwise relation (3.1.4) is inherited from the

optimal transport theory: the dual problem in the Monge-Kantorovich duality is almost

identical to D(Φ), except that it involves the simpler pointwise relation
∑T

t=1 ut(xt) ≥ Φ(x)

(i.e. without the term (∆ ·x)T in (3.1.4)); see [20]. That is, D(Φ) naturally extends the clas-

sical dual problem from optimal transport to the more general setting we focus on. Finding

the primal problem corresponding to this extended dual is of great theoretical interest in

itself.

More crucially, asD(Φ) represents precisely the minimal cost for model-free superhedging,

if we modify its definition, although a duality can be obtained (as in [4] and [30]), it will no

longer adhere to the model-free superhedging context, thereby losing its financial relevance.

In fact, there are two different applications here. In the context of optimal transport, Φ is

a payoff function that assigns a reward to each transportation path x = (x1, ..., xT ) ∈ Ω,

and every Q ∈ M is an admissible transportation plan. The goal is to maximize reward

from transportation, i.e. to attain P (Φ) in (3.1.6)—the perspective taken by [4] and [30].
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Our goal, by contrast, is to minimize the cost of model-free superhedging; all developments

should then be centered around D(Φ) in (3.1.5).

Instead of dealing with D(Φ) directly, we impose, somewhat artificially, portfolio con-

straints. For any N ∈ N, we consider

HN := {∆ ∈ H : |∆t| ≤ N, ∀ t = 1, · · · , T − 1}, (3.1.8)

and define DN(Φ) as in (3.1.5), with ∆ ∈ H replaced by ∆ ∈ HN . That is, DN(Φ) is

a portfolio-constrained model-free superhedging price. Thanks to the general duality in

Fahim and Huang [12], the corresponding primal problem PN(Φ) can be identified, and

there is no duality gap (i.e. DN(Φ) = PN(Φ)) when Φ is upper semicontinuous. The

first major contribution of this paper, Theorem 3.3.1, shows that this portfolio-constrained

duality actually holds generally for upper semi-analytic Φ. Specifically, by treating DN and

PN as functionals, we derive appropriate upward and downarrow continuity (Sections 3.3.1

and 3.3.2). Choquet’s capacitability theorem can then be invoked to extendDN(Φ) = PN(Φ)

from upper semicontinuous Φ to upper semi-analytic ones.

Note that the portfolio bound N ∈ N is indispensable here. In the technical result

Lemma 3.3.2, the compactness of the space of semi-static strategies (u,∆) ∈ L1(µ)×HN is

extracted from the bound N ∈ N, under an appropriate weak topology. Such compactness

then gives rise to the upward continuity of DN ; see Proposition 3.3.4. As opposed to this,

D in (3.1.5), when viewed as a functional, does not possess the desired upward continuity.

This prevents a direct application of Choquet’s capacitability theorem to the unconstrained

duality D(Φ) = P (Φ) in Proposition 3.1.1; see Remark 3.3.3 for details.

By taking N → ∞ in the constrained duality DN(Φ) = PN(Φ), we obtain a new char-

acterization of D(Φ), for upper semi-analytic Φ; see Theorem 3.2.1, the main result of this

paper. This new characterization asserts a generalized version of risk-neutral pricing. To find

the model-free superhedging price D(Φ), we need to compute expected values of Φ, but not
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merely under risk-neutral (martingale) measures Q ∈ M. As prescribed by Theorem 3.2.1,

we should consider sequences of measures {Qn}n∈N that converge toM appropriately, and

compute the limiting expected values of Φ, i.e. lim supn→∞ EQn [Φ]. The supremum of these

limiting expected values then characterizes D(Φ). For the special case where Φ is upper

semicontinuous, these limiting expected values can be attained by measures Q ∈ M, as

shown in Proposition 3.2.1. The generalized duality in Theorem 3.2.1 thus reduces to one

that involves solely measures inM, recovering the classical duality in Proposition 3.1.1.

In deriving the generalized duality in Theorem 3.2.1 from the constrained one DN(Φ) =

PN(Φ), one needs the relation limN→∞D
N(Φ) = D(Φ). This turns out to be highly non-

trivial, and is established through delicate probabilistic estimations; see Proposition 3.4.2

for details. Such a relation is economically intriguing in itself, as it states that restricting to

bounded trading strategies does not increase the cost of model-free superhedging.

The rest of the paper is organized as follows. Section 3.2 introduces the main result

of this paper, a generalized duality that characterizes D(Φ), for upper semi-analytic Φ.

Section 3.3 establishes a portfolio-constrained duality for upper semi-analytic contingent

claims, by using Choquet’s capacity theory. Section 3.4 derives an unconstrained duality

for upper semi-analytic contingent claims, as the limiting case of the constrained one in

Section 3.3; this completes the proof of the main result.

3.1.1 Notation

Let Y = Rt
+ for some t = 1, 2, ..., T . We denote by G(Y ) the set of all functions from Ω to R.

Moreover, let USA(Y ), B(Y ), and USC(Y ) be the sets of functions in G(Y ) that are upper

semi-analytic, Borel measurable, and upper semicontinuous, respectively. Throughout this

paper, for any Φ ∈ G(Ω) and Q ∈ Π, we will interpret EQ[Φ] as the outer expectation of Φ.

When Φ is actually Borel measurable, it reduces to the standard expectation of Φ.

For any u ∈ L1(µ), we will write ⊕u(x) :=
∑T

t=1 ut(xt) for x = (x1, ..., xT ) ∈ Ω and

µ(u) :=
∑T

t=1

∫
R+
utdµt, as specified below (3.1.5).
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3.2 The Main Result

3.2.1 Preliminaries

Given N ∈ N, recall HN defined in (3.1.8). For each Q ∈ Π, we introduce

AN
T (Q) := sup

∆∈HN
EQ[(∆ · S)T ] = sup

∆∈HNc
EQ[(∆ · S)T ], (3.2.1)

where

HN
c := {∆ ∈ HN : ∆t is continuous, ∀t = 1, · · · , T − 1}.

Note that the reduction to continuous trading strategies in (3.2.1) is justified by Fahim and

Huang [12, Lemma 3.3]. The setM in (3.1.3) can be fully characterized byAN
T (Q) as follows.

Lemma 3.2.1. Q ∈M ⇐⇒ A1
T (Q) = 0 ⇐⇒ AN

T (Q) = 0 for all N ∈ N.

Proof. By definition, AN
T (Q) = NA1

T (Q). Thus, A1
T (Q) = 0 if and only if AN

T (Q) = 0 for

all N ∈ N. Now, by (3.2.1), “AN
T (Q) = 0 for all N ∈ N” is equivalent to “EQ[(∆ · S)T ] = 0

for all ∆ ∈ HN
c , for any N ∈ N”. The latter condition holds if and only if Q ∈ M, by [3,

Lemma 2.3].

Lemma 3.2.1 indicates that a pseudometric on Π can be defined by

d(Q1,Q2) :=
∣∣A1

T (Q1)−A1
T (Q2)

∣∣ , ∀Q1,Q2 ∈ Π. (3.2.2)

It is only a pseudometric, but not a metric, because d(Q1,Q2) = 0 does not necessarily

imply Q1 = Q2. We can turn it into a metric by considering equivalent classes induced by

d. Specifically, we say Q1,Q2 ∈ Π are equivalent (denoted by Q1 ∼ Q2) if d(Q1,Q2) = 0, or

A1
T (Q1) = A1

T (Q2). Equivalent classes are then defined by [Q] := {Q′ ∈ Π : d(Q′,Q) = 0}

for all Q ∈ Π. On the quotient space Π∗ := Π/ ∼ = {[Q] : Q ∈ Π},

ρ([Q1], [Q2]) := d(Q1,Q2) (3.2.3)
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defines a metric.

Remark 3.2.1. In view of Lemma 3.2.1,M = [Q] for any Q ∈M.

Remark 3.2.2. Instead of the pseudometric on Π in (3.2.2), one can consider the semi-norm

‖Q‖ := sup
∆∈H1

∫
Ω

(∆ · S)T dQ

defined on the vector space K := {Q : Q is a signed measure on Ω}. When we restrict the

semi-norm to Π ⊂ K, we have ‖Q‖ = 0 if and only Q ∈ M (thanks to Lemma 3.2.1). This

can be used to define a metric equivalent to (3.2.3).

To state the main result of this paper, Theorem 3.2.1 below, we need to consider a

sequence {QN}N∈N in Π that converge toM under the metric ρ; that is, by Remark 3.2.1,

ρ([QN ],M) = ρ([QN ], [Q])→ 0 as N →∞, ∀Q ∈M.

For simplicity, this will be denoted by QN
ρ→M. As QN

ρ→M is equivalent toA1
T (QN)→ 0,

by (3.2.3) and (3.2.2), they will be used interchangeably throughout the paper.

Crucially, QN
ρ→M entails weak convergence toM (up to a subsequence).

Lemma 3.2.2. Consider {QN}N∈N in Π such that QN
ρ→M. For any subsequence {QNk}k∈N

that converges weakly, it must converge weakly to some Q∗ ∈M.

Proof. Let Q∗ ∈ Π denote the probability measure to which QNk converges weakly. First,

recall that QN
ρ→ M is equivalent to A1

T (QN) → 0, which in turn implies A1
T (QNk) → 0.

Next, for any ∆ ∈ H1
c , since |(∆ · x)T | ≤ h(x) := x1 + 2(x2 + ... + xT−1) + xT , we deduce

from [35, Lemma 4.3] that Q 7→ EQ[(∆ · S)T ] is continuous under the topology of weak

convergence. It follows that

Q 7→ A1
T (Q) = sup

∆∈H1
c

EQ[(∆ · S)T ]
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is lower semicontinuous under the topology of weak convergence. Hence,

A1
T (Q∗) ≤ lim inf

k→∞
A1
T (QNk) = 0.

We then conclude A1
T (Q∗) = 0, which implies Q∗ ∈M thanks to Lemma 3.2.1.

3.2.2 The Generalized Duality

Now, we are ready to present the main result of this paper.

Theorem 3.2.1. For any Φ ∈ USA(Ω) for which there exists K > 0 such that

|Φ(x)| ≤ K(1 + x1 + · · ·+ xT ) ∀x = (x1, · · · , xT ) ∈ Ω, (3.2.4)

we have

D(Φ) = P̃ (Φ) := sup

{
lim sup
N→∞

EQN [Φ] : QN
ρ→M

}
. (3.2.5)

When Φ is additionally upper semicontinuous, Theorem 3.2.1 recovers the classical duality

in Proposition 3.1.1, as the next result demonstrates.

Proposition 3.2.1. For any Φ ∈ USC(Ω) that satisfies (3.2.4), P̃ (Φ) reduces to P (Φ) in

(3.1.6).

Proof. For any Q ∈ M, by taking QN := Q for all N ∈ N, the definition of P̃ (Φ) in (3.2.5)

directly implies P̃ (Φ) ≥ EQ[Φ]. Taking supremum over Q ∈M yields P̃ (Φ) ≥ P (Φ).

On the other hand, take an arbitrary {QN}N∈N in Π such that QN
ρ→M. For any ε > 0,

there exists a subsequence {QNk}k∈N such that

lim
k→∞

EQNk [Φ] ≥ lim sup
N→∞

EQN [Φ]− ε. (3.2.6)

As Π is compact (recall the explanation below (3.1.2)), there is a further subsequence, which

will still be denoted by {QNk}k∈N, that converges weakly to some Q∗ ∈ Π. By Lemma 3.2.2,
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Q∗ must belong toM. Now, as Φ is upper semicontinuous and satisfies (3.2.4), we deduce

from [35, Lemma 4.3] and {QNk} converging weakly to Q∗ ∈M that

lim
k→∞

EQNk [Φ] ≤ EQ∗ [Φ] ≤ P (Φ).

This, together with (3.4.10) and the arbitrariness of ε > 0, shows that lim supN→∞ EQN [Φ] ≤

P (Φ). As {QN}N∈N such that QN
ρ→ M is arbitrarily chosen, we conclude that P̃ (Φ) ≤

P (Φ).

Theorem 3.2.1 extends the standard wisdom for risk-neutral pricing. To find the model-

free superhedging price D(Φ), one needs to compute expected values of Φ, but not merely

under risk-neutral (martingale) measures Q ∈M. Instead, one should consider, more gener-

ally, sequences of measures {QN}N∈N in Π that converge appropriately toM, and compute

the limiting expected values of Φ. Only when Φ is continuous enough (i.e. upper semicontin-

uous) can we restrict our attention to solely martingale measures inM, as Proposition 3.2.1

indicates.

The next example demonstrates explicitly that despite D(Φ) > P (Φ), the generalized

duality D(Φ) = P̃ (Φ) holds.

Example 3.2.1. Let T = 2 and µ1 = µ2 be the Lebesgue measure on [0, 1]. ThenM contains

one single measure P0, under which (S1, S2) is uniformly distributed on {(x, y) ∈ [0, 1]2 : x =

y}. For the lower semicontinuous Φ(x1, x2) := 1{x1 6=x2}, it is shown in [4, Example 8.1] that

0 = P (Φ) < D(Φ) = 1; in addition, (u∗1, u
∗
2,∆

∗
1) ≡ (1, 0, 0) is an optimizer of D(Φ).

We will show that P̃ (Φ) = 1. Consider a collection of probability measures {QM}M∈N on

[0, 1]2, with the density function of each QM given by

g(x1, x2) = M

M−1∑
i=0

1[ i
M
, i+1
M

)2(x1, x2); (3.2.7)

see Figure 3.1. It can be checked by definition that QM ∈ Π. Observe that
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1
M

Figure 3.1: Support of QM .

A1
2(QM) = sup

∆1∈H1

EQM [∆1 · (S2 − S1)] = sup
∆1∈H1

EQM [∆1 · (EQM [S2 | F1]− S1)]

= EQM [|EQM [S2 | F1]− S1|],

where F1 denotes the σ-algebra generated by S1, and the second line holds as the supremum

is attained by taking ∆1 = sgn(EQM [S2 | F1]− S1). As

EQM [S2 | S1 = x] =
M−1∑
i=0

2i+ 1

2M
1{[ i

M
, i+1
M

)}(x).

we obtain

A1
2(QM) = EQM [|EQM [S2 | S1]− S1|] =

M−1∑
i=0

1

4M2
=

1

4M
→ 0, as M →∞. (3.2.8)

That is, QM
ρ→ M. It follows that P̃ (Φ) ≥ lim supM→∞ EQM [Φ] = 1, where the equality

stems from EQM [Φ] = 1 for all M ∈ N, by the definition of Φ and (3.2.7). As Φ ≤ 1 readily

implies P̃ (Φ) ≤ 1, we conclude P̃ (Φ) = 1 = D(Φ).

This paper is devoted to the derivation of Theorem 3.2.1. It will be done through a

delicate two-step plan, to be carried out in detail in Sections 3.3 and 3.4. We give a brief

outline as follows.

For any N ∈ N, recall DN(Φ), the portfolio-constrained model-free superhedging price
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defined below (3.1.8). Also, consider

PN(Φ) := sup
Q∈Π
{EQ[Φ]−AN

T (Q)}. (3.2.9)

As a direct consequence of Fahim and Huang [12, Theorem 3.14], DN(Φ) can be character-

ized, in the same spirit of Proposition 3.1.1, as follows.

Proposition 3.2.2. Given Φ ∈ USC(Ω) that satisfies (3.1.7), DN(Φ) = PN(Φ) for all

N ∈ N.

Section 3.3 focuses on extending this portfolio-constrained duality to one that allows for

upper semi-analytic Φ. Intriguingly, by using Choquet’s capacity theory, we will show that

the same duality DN(Φ) = PN(Φ) simply holds for upper semi-analytic Φ; there is no need

to adjust PN(Φ). By taking N → ∞, Section 3.4 elaborates how DN(Φ) = PN(Φ) turns

into the desired duality (3.2.5).

3.3 Complete Duality under Portfolio Constraints

Given N ∈ N, the goal of this section is to establish the complete duality DN(Φ) = PN(Φ)

for upper semi-analytic Φ. As such a duality is known to hold for upper semicontinuous Φ

(Proposition 3.2.2), our strategy is to treat PN and DN as functionals, and exploit their

continuity properties.

Let us first recall the notion of a Choquet capacity. Recall also the notation in Sec-

tion 3.1.1.

Definition 3.3.1. A functional C : G(Ω)→ R∗ is called a Choquet capacity associated with

USC(Ω) (or simply capacity) if it satisfies

(i) C(φ) ≤ C(ψ) if φ ≤ ψ;

(ii) if φi ↑ φ, then supi∈NC(Φi) = C(Φ);
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(iii) for any sequence {φi} in USC(Ω) such that φi ↓ φ, infi∈NC(Φi) = C(Φ).

Choquet’s capacitability theorem (see [20, Proposition 2.11] or [8, Section 3]) asserts a

desirable continuity property of a capacity.

Lemma 3.3.1. Let C : G(Ω) → R be a Choquet capacity associated with USC(Ω). Then,

for any Φ ∈ USA(Ω),

C(Φ) = sup{C(φ) : φ ≤ Φ with φ ∈ USC(Ω)}.

Hence, if two capacities C1 and C2 coincide on USC(Ω), they coincide on USA(Ω).

Remark 3.3.1. The original Choquet’s capacitability theorem gives a more general result: if

C1 and C2 are two Choquet capacities associated with a set of functions A and they coincide

on functions in A, then they coincide on A-Suslin functions. Here, we take A = USC(Ω)

in Definition 3.3.1 and Lemma 3.3.1, and note that “USC(Ω)-Suslin functions” are simply

“upper semi-analytic functions (USA(Ω))”; see [20, Proposition 2.13] and [5, Definition 7.21].

3.3.1 Continuity of PN

Proposition 3.3.1. Consider {Φi}i∈N in G(Ω) for which there exists K > 0 such that for

each i ∈ N,

Φi(x) ≥ −K(1 + x1 + · · ·+ xT ), ∀x = (x1, · · · , xT ) ∈ Ω. (3.3.1)

If Φi ↑ Φ, then

sup
i∈N

PN(Φi) = PN(Φ), ∀N ∈ N.

Proof. Since Φ1 satisfies (3.3.1), the monotone convergence theorem for outer expectation

gives EQ[Φi] ↑ EQ[Φ], for all Q ∈ Π. By changing the order of two supremums, we get

sup
i∈N

PN(Φi) = sup
Q∈Π

sup
i∈N

(
EQ[Φi]−AN

T (Q)
)

= sup
Q∈Π

(
EQ[Φ]−AN

T (Q)
)

= PN(Φ),
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for each N ∈ N.

Proposition 3.3.2. Consider {Φi}i∈N in USC(Ω) for which there exists K > 0 such that

(3.1.7) is satisfied for each Φi. If Φi ↓ Φ, then

inf
i∈N

PN(Φi) = PN(Φ), ∀N ∈ N.

Proof. Fix N ∈ N. As Φi ↓ Φ clearly implies infi∈N P
N(Φi) ≥ PN(Φ), we focus on proving

the “≤” relation. Assume infi∈N P
N(Φi) > −∞, otherwise the proof would be trivial. For

any δ < infi∈N P
N(Φi), define

MN(Φi, δ) := {Q ∈ Π : EQ[Φi]−AN
T (Q) ≥ δ} for all N ∈ N.

We intend to show thatMN(Φi, δ) is compact under the topology of weak convergence. As

Π is compact (recall the explanation below (3.1.2)), it suffices to prove that MN(Φi, δ) is

closed. Since Φi is upper semicontinuous and satisfies (3.1.7), we deduce from [35, Lemma

4.3] that Q 7→ EQ[Φi] is upper semicontinuous under the topology of weak convergence. On

the other hand, by the same argument in the proof of Lemma 3.2.2, Q 7→ AN
T (Q) is lower

semicontinuous under the topology of weak convergence. As a result, Q 7→ EQ[Φi]−AN
T (Q)

is upper semicontinuous, which gives the desired closedness ofMN(Φi, δ).

Now, since {MN(Φi, δ)}i∈N is a nonincreasing sequence of compact sets,
⋂∞
i=1MN(Φi, δ) 6=

∅. Take Q̃ ∈
⋂∞
i=1MN(Φi, δ), and observe that

PN(Φ) ≥ EQ̃[Φ]−AN
T (Q̃) = lim

i→∞
EQ̃[Φi]−AN

T (Q̃) ≥ δ,

where the equality follows from the reverse monotone convergence theorem, applicable here as

(3.1.7) is satisfied for each Φi, and the last inequality results from the definition ofMN(Φi, δ).

With δ < infi∈N P
N(Φi) arbitrarily chosen, we conclude infi∈N P

N(Φi) ≤ PN(Φ).
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3.3.2 Continuity of DN

The downward continuity of DN is a consequence of Propositions 3.2.2 and 3.3.2.

Proposition 3.3.3. Consider {Φi}i∈N in USC(Ω) for which there exists K > 0 such that

(3.1.7) is satisfied for each Φi. If Φi ↓ Φ, then

inf
i∈N

DN(Φi) = DN(Φ), ∀N ∈ N.

Proof. As the infimum of a sequence of upper semicontinuous functions satisfying (3.1.7), Φ

is again upper semicontinuous and satisfies (3.1.7). It then follows from Proposition 3.2.2

that

inf
i∈N

DN(Φi) = inf
i∈N

PN(Φi) = PN(Φ) = DN(Φ),

where the second equality is due to Proposition 3.3.2.

The upward continuity of DN , by contrast, is much more obscure. We need the following

technical result, Lemma 3.3.2, to construct certain compactness for the space of semi-static

strategies (u,∆), which will facilitate the derivation of the upward continuity of DN in

Proposition 3.3.4 below. This lemma can be viewed as a generalization of [20, Lemma 1.27]

to the case of martingale optimal transport. The main idea involved is to extract additional

compactness from the portfolio bound N > 0 through Tychonoff’s theorem.

In Lemma 3.3.2 below, let B(Rt
+) be equipped with the topology of pointwise convergence.

In addition, consider the product measure ν := µ1 ⊗ · · · ⊗ µT on Ω, and denote by L1(µt)

(resp. L1(ν)) the set of µt-integrable (resp. ν-integrable) functions. Also recall m(µt),

t = 1, ..., T , from (3.1.1).

Lemma 3.3.2. Fix N ∈ N and Φ ∈ G(Ω) that satisfies (3.3.1) and DN(Φ) < ∞. For any

δ > DN(Φ), define L(Φ, δ, N) as the collection of all pairs (Θ,∆), with

Θ :=
{

(uk1, ..., u
k
T ,W

k)
}
k∈N ∈

(
ΠT
t=1L

1(µt)× L1(ν)
)N and ∆ ∈ HN , (3.3.2)
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satisfying

(i) For each k ∈ N, 0 ≤ ukt ≤ 2k, ∀t = 1, · · · , T ;

(ii) u1
t ≤ u2

t ≤ · · · , ∀t = 1, · · · , T ;

(iii) For each k ∈ N, µ(uk) ≤ δ + (K + 2N)(1 +m(µ1) + · · ·+m(µT ));

(iv) For each k ∈ N, W k ∈ L1(ν) with 0 ≤ W k ≤ Λ, where Λ ∈ L1(ν) is defined by

Λ(x) := 2N(x1 + · · ·+ xT );

moreover, W k = 0 on the set {x : Λ(x) < k};

(v) For each k ∈ N, ⊕uk ≥ (Φ + Γ) ∧ k + (∆ · x)T −W k, where Γ ∈ L1(ν) is defined by

Γ(x) := (K + 2N)(1 + x1 + · · ·+ xT ).

Here, the constant K > 0 in (iii) and (v) comes from (3.3.1).

The set L(Φ, δ, N) is a nonempty compact subset of
(
ΠT
t=1L

1(µt)× L1(ν)
)N × ΠT−1

t=1 B(Rt
+),

under the product of the weak topologies of the spaces L1(µt), L1(ν), and B(Rt
+).

Proof. Step 1: We show that L(Φ, δ, N) is nonempty. As δ > DN(Φ), there exist u =

(u1, ..., uT ) ∈ L1(µ) and ∆ ∈ HN such that

µ(u) ≤ δ and ⊕ u+ (∆ · x)T ≥ Φ.

As Φ satisfies (3.3.1) and |(∆ · x)T | ≤ Λ(x), we have ⊕u(x) ≥ Φ(x) − (∆ · x)T ≥ −Γ(x).

This implies that we can find constants a1, a2, ..., aT such that
∑T

t=1 at = 0 and at + ut ≥

−(K+2N)(1/T +xt) for all t = 1, ..., T . Now, define ūt := at+ut+(K+2N)(1/T +xt) ≥ 0
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for all t = 1, ..., T . Then, one can write

⊕ū ≥ Φ + Γ + (∆̄ · x)T , with ∆̄ := −∆ ∈ HN .

On the other hand, by the concavity of x 7→ x ∧ (2k),

(⊕ū) ∧ (2k) ≥
(
(Φ + Γ) + (∆̄ · x)T

)
∧ (2k) ≥ (Φ + Γ) ∧ k + (∆̄ · x)T ∧ k.

Since ūt ≥ 0 for all t = 1, ..., T , it can be checked that ⊕(ū ∧ (2k)) ≥ (⊕ū) ∧ (2k). This,

together with the previous inequality, gives

⊕ (ū ∧ (2k)) ≥ (Φ + Γ) ∧ k + (∆̄ · x)T ∧ k. (3.3.3)

We claim that ukt := ūt ∧ (2k), W k := (∆̄ · x)T − (∆̄ · x)T ∧ k, and ∆̄ form an element

of L(Φ, δ, N). By construction, it is straightforward to verify conditions (i), (ii), and (v).

Since ⊕ūk ≤ ⊕ū = ⊕u + Γ, we have µ(ūk) ≤ δ + (K + 2N) (1 +m(µ1) + · · ·+m(µT )), i.e.

condition (iii) is satisfied. For each k ∈ N, observe that 0 ≤ W k ≤ |(∆̄ · x)T | ≤ Λ(x). In

particular, if Λ(x) ≤ k, then |(∆̄ · x)T | ≤ k and thus W k = 0 by definition. This shows that

condition (iv) is satisfied.

Step 2: We prove that L(Φ, δ, N) is contained in a weakly compact space of functions.

Observe that the following collections of functions

U(t, k) := {u ∈ L1(µt) : 0 ≤ u ≤ 2k} t = 1, ..., T and k ∈ N,

V := {W ∈ L1(ν) : 0 ≤ W ≤ Λ}

are all uniformly integrable, and thus relatively weakly compact thanks to the Dunford-Pettis

theorem. It follows that the countable product (Πt,kU(t, k)) × V N is also relatively weakly
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compact. On the other hand, for each t = 1, · · · , T − 1,

Ft := {f : Rt
+ → R : |f | ≤ N} = Πx∈Rt+ [−N,N ]x

is compact under the topology of pointwise convergence, as a consequence of Tychonoff’s

theorem. The space Ft is therefore weakly compact, and this carries over to the product

space HN = ΠtFt. We then conclude that Πt,kU(t, k) × V N × HN is a weakly compact set

containing L(Φ, δ, N).

Step 3: We prove that L(Φ, δ, N) is strongly closed. Take a sequence

{
{(uk,m1 , · · · , uk,mT ,W k,m)}k∈N,∆m

}
m∈N

in L(Φ, δ, N) such that it converges to ({(uk1, · · · , ukT ,W k)}k∈N,∆) in the strong sense. That

is, uk,mt → ukt in L1(µt), W k,m → W k in L1(ν), and ∆m → ∆ pointwise in HN . We intend

to show that ({(uk1, · · · , ukT ,W k)}k∈N,∆) also lies in L(Φ, δ, N).

The convergence in L1(µt) (resp. L1(ν)) implies the existence of a subsequence that

converges µt-a.e (resp. ν-a.e.). Then, as m→∞, we conclude from ⊕uk,m ≥ (Φ + Γ) ∧ k +

(∆m · x)T −W k,m that

⊕ uk ≥ (Φ + Γ) ∧ k + (∆ · x)T −W k (3.3.4)

holds outside a ν-null set N . We can then modify (ukt )
T
t=1 and W k on N such that (3.3.4)

holds everywhere, i.e. condition (vi) is satisfied. Also, we see from the convergence uk,mt → ukt

and ∆m → ∆ that conditions (i), (ii), and (v) are satisfied, and Fatou’s lemma implies the

validity of (iii). From the convergence W k,m → W k, we have 0 ≤ W k ≤ Λ. Moreover,

W k = 0 on {x : Λ(x) < k} because W k,m = 0 on {x : Λ(x) < k} for all m ∈ N. This shows

that condition (iv) is satisfied. We therefore conclude that ({(uk1, · · · , ukT ,W k)}k∈N,∆) ∈

L(Φ, δ, N), and thus L(Φ, δ, N) is closed under the strong topology.
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Step 4: We prove the desired compactness of L(Φ, δ, N). Observe that L(Φ, δ, N) is

convex. Since a strongly closed convex set is also weakly closed, and the weak topology of a

product space coincides with the product of the weak topologies, we conclude that L(Φ, δ, N)

is closed under the product of the weak topologies in the spaces L1(µt), L1(ν), and B(Rt
+).

It is therefore weakly compact in view of Step 2.

Remark 3.3.2. While the motivation of Lemma 3.3.2 is to construct some compactness for

the space of semi-static strategies (u,∆), we have to introduce the auxiliary random variable

W k in (3.3.2) to ensure the convexity of L(Φ, δ, N), needed in the last step of the proof.

Proposition 3.3.4. Consider {Φi}i∈N in G(Ω) for which there exists K > 0 such that (3.3.1)

is satisfied for all i ∈ N. If Φi ↑ Φ, then

sup
i∈N

DN(Φi) = DN(Φ), ∀N ∈ N.

Proof. Fix N ∈ N. As Φi ↑ Φ clearly implies supi∈ND
N(Φi) ≤ DN(Φ), we focus on proving

the “≥” relation. Assume supi∈ND
N(Φ) <∞, otherwise the proof would be trivial. Pick an

arbitrary δ > supi∈ND
N(Φi). By Lemma 3.3.2, {L(Φi, δ, N)}i∈N is a nonincreasing sequence

of nonempty compact sets. We can therefore choose some
(
{(uk1, ..., ukT ,W k)}k∈N,∆

)
∈⋂

i∈N L(Φi, δ, Ni). In view of conditions (i), (ii), and (iii) in Lemma 3.3.2, ut := limk→∞ ↑

ukt ∈ L1(µt) is well-defined, and u = (u1, ..., uT ) satisfies

µ(u) ≤ δ + (K + 2N)(1 +m(µ1) + · · ·+m(µT )). (3.3.5)

Moreover, condition (v) in Lemma 3.3.2 implies that for each k and i,

⊕uk ≥ (Φi + Γ) ∧ k + (∆ · x)T −W k.

Recall from condition (iv) in Lemma 3.3.2 thatW k = 0 on {x : Λ(x) < k}. This in particular

implies W k(x) → 0 for all x ∈ Ω as k → ∞. Therefore, by taking k → ∞ in the previous
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inequality, we get ⊕u ≥ Φi + Γ + (∆ · x)T . As i→∞, this yields

⊕ u ≥ Φ + Γ + (∆ · x)T . (3.3.6)

Now, define ūt := ut − (K + 2N)(1/T + xt) for all t = 1, · · · , T . By (3.3.5) and (3.3.6),

µ(ū) = µ(u)− (K + 2N)(1 +m(µ1) + · · ·+m(µT )) ≤ δ,

⊕ū = ⊕u− Γ ≥ Φ + (∆ · x)T .

This readily implies DN(Φ) ≤ δ. With δ > supi∈ND
N(Φi) arbitrarily chosen, we conclude

supi∈ND
N(Φi) ≥ DN(Φ).

3.3.3 Complete Duality

Theorem 3.3.1. For any Φ ∈ USA(Ω) that satisfies (3.2.4),

DN(Φ) = PN(Φ), ∀N ∈ N. (3.3.7)

Moreover, there exists an optimizer (u,∆) ∈ L1(µ)×HN for DN(Φ) whenever DN(Φ) <∞.

Proof. Fix N ∈ N. Define ζK(x) := K(1 + x1 + ... + xT ), with K > 0 specified in (3.2.4).

Consider the functionals P̄N and D̄N defined by

P̄N(ϕ) := PN(−ζK ∨ (ϕ ∧ ζK)) and D̄N(ϕ) := DN(−ζK ∨ (ϕ ∧ ζK)), for ϕ ∈ G(Ω).

In view of Propositions 3.3.1 and 3.3.2 (resp. Propositions 3.3.3 and 3.3.4), P̄N (resp. D̄N)

is a Choquet capacity associated with USC(Ω); recall Definition 3.3.1. Moreover, thanks to

Proposition 3.2.2, D̄N(ϕ) = P̄N(ϕ) for all ϕ ∈ USC(Ω). We then conclude from Lemma 3.3.1

that D̄N(ϕ) = P̄N(ϕ) for all ϕ ∈ USA(Ω). That is to say, DN(ϕ) = PN(ϕ) for all ϕ ∈

USA(Ω) satisfying |ϕ| ≤ ζK , or (3.2.4).
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It remains to prove the existence of an optimizer for DN(Φ). If DN(Φ) <∞, take a real

sequence {δi} such that δi ↓ DN(Φ). By Lemma 3.3.2, {L(Φ, δi, N)}i∈N is a nonincreasing se-

quence of nonempty compact sets. We can therefore choose some
(
{(uk1, ..., ukT ,W k)}k∈N,∆

)
∈⋂

i∈N L(Φ, δi, N). In view of conditions (i), (ii), and (iii) in Lemma 3.3.2, ut := limk→∞ ↑

ukt ∈ L1(µt) is well-defined, and u = (u1, ..., uT ) satisfies

µ(u) ≤ DN(Φ) + (K + 2N)(1 +m(µ1) + · · ·+m(µT )). (3.3.8)

Moreover, condition (v) in Lemma 3.3.2 implies that for each k and i,

⊕uk ≥ (Φ + Γ) ∧ k + (∆ · x)T −W k.

As shown in the proof of Proposition 3.3.4, W k(x) → 0 for all x ∈ Ω as k → ∞. Thus,

by taking k → ∞ in the previous inequality, we get ⊕u ≥ Φ + Γ + (∆ · x)T . Now, define

ūt := ut − (K + 2N)(1/T + xt) for all t = 1, · · · , T . Then, ⊕ū = ⊕u − Γ ≥ Φ + (∆ · x)T .

Moreover, by (3.3.8),

µ(ū) = µ(u)− (K + 2N)(1 +m(µ1) + · · ·+m(µT )) ≤ DN(Φ).

This implies that, (ū,−∆) ∈ L1(µ)×HN is an optimizer of DN(Φ).

Remark 3.3.3. When we view D and P , defined in (3.1.5) and (3.1.6), as functionals,

arguments similar to (and simpler than) those in Sections 3.3.1 and 3.3.2 yield the upward

and downward continuity of P , as well as the downward continuity of D. However, the

upward continuity of D is obscure. Without the portfolio bound N > 0, it is unclear how the

space of semi-static strategies (u,∆) ∈ L1(µ)×H can be made compact under any topology,

so that the upward continuity does not follow from the arguments in Proposition 3.3.4.

In fact, since D(Φ) 6= P (Φ) for some Borel measurable Φ (as shown in [4, Example 3.1]),

the upward continuity of D must not hold. Otherwise, we could apply Choquet’s capacitability
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theorem directly to the classical duality D(Φ) = P (Φ) in Proposition 3.1.1, extending it from

upper semicontinuous Φ to upper semi-analytic ones (which include Borel measurable ones).

Remark 3.3.4. Recall Example 3.2.1, where 0 = P (Φ) < D(Φ) = 1. We will show that

PN(Φ) = DN(Φ) for all N ∈ N. Fix N ∈ N. Recall that (u∗1, u
∗
2,∆

∗
1) ≡ (1, 0, 0) is an

optimizer of D(Φ). As ∆∗1 ∈ HN , (u∗1, u
∗
2,∆

∗
1) is also an optimizer of DN(Φ), and thus

DN(Φ) = D(Φ) = 1. On the other hand, consider {QM}M∈N in Π constructed in (3.2.7).

By (3.2.8), AN
2 (QM) = NA1

2(QM) = N
4M

. It follows that

PN(Φ) = sup
Q∈Π

{
EQ[Φ]−AN

2 (Q)
}
≥ lim

M→∞

{
EQM [Φ]−AN

2 (QM)
}

= 1.

As Φ ≤ 1 already implies PN(Φ) ≤ 1, we conclude PN(Φ) = 1 = DN(Φ).

Remark 3.3.5. PN(Φ) in general does not admit an optimizer, unless Φ is upper semi-

continuous. To illustrate, in Example 3.2.1, suppose that there exists Q∗ ∈ Π such that

EQ∗ [Φ] − AN
2 (Q∗) = PN(Φ) = 1 for some N ∈ N. Then, 0 ≤ AN

2 (Q∗) = EQ∗ [Φ] − 1 ≤ 0,

which yields AN
2 (Q∗) = 0. By Proposition 3.2.1, Q∗ must belong to M and thus coincide

with P0. This, however, entails EQ∗ [Φ]−AN
2 (Q∗) = 0, a contradiction.

3.4 Derivation of Theorem 3.2.1

This section is devoted to proving Theorem 3.2.1. First, we define D∞(Φ) as in (3.1.5), with

∆ ∈ H replaced by ∆ ∈ H∞, where

H∞ := {∆ ∈ H : ∆t is bound, ∀ t = 1, · · · , T − 1}.

To connect the portfolio-constrained duality (3.3.7) to the desired (unconstrained) duality

(3.2.5), it is natural to relax the constraint N > 0 by taking N →∞, leading to the following

result. Recall P̃ (Φ) defined in (3.2.5).
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Proposition 3.4.1. For any Φ ∈ USA(Ω) that satisfies (3.2.4), D∞(Φ) = P̃ (Φ).

Proof. First, we show that D∞(Φ) ≥ P̃ (Φ). Fix {QN}N∈N in Π such that QN
ρ→ M (or

equivalently, A1
T (QN)→ 0). We can choose some nonnegative function h such that h(N)→

∞ and h(N)A1
T (QN)→ 0 (for instance, take h(N) := 1/

√
A1
T (QN)). For each N ∈ N, there

exist (u,∆) ∈ L1(µ)×Hh(N) with µ(u) < Dh(N)(Φ) + 1/N such that ⊕u+ (∆ · S)T ≥ Φ. If

follows that

Dh(N)(Φ) + 1/N + Ah(N)
T (QN) ≥ µ(u) + EQN [(∆ · S)T ] ≥ EQN [Φ],

where the first inequality follows from the definition of Ah(N)
T (QN) in (3.2.1). As N → ∞

in the above inequality, since Ah(N)
T (QN) = h(N)A1

T (QN) → 0 and Dh(N)(Φ) → D∞(Φ)

by definition, we get D∞(Φ) ≥ lim supN→∞ EQN [Φ]. With {QN}N∈N arbitrarily chosen, we

obtain D∞(Φ) ≥ P̃ (Φ).

On the other hand, for any N ∈ N, by the definition of PN(Φ), we can take QN ∈ Π such

that

PN(Φ) ≥ EQN [Φ]−AN
T (QN) > PN(Φ)− 1/N. (3.4.1)

This, together with AN
T (QN) = NA1

T (QN), shows that

A1
T (QN) <

EQN [Φ]− PN(Φ) + 1/N

N
≤ C

N
, ∀N ∈ N. (3.4.2)

Here, the constant C > 0 can be chosen to be independent of N , thanks to (3.2.4) and

(3.1.1). This in particular implies A1
T (QN)→ 0. In view of (3.4.1), this yields

lim
N→∞

PN(Φ) = lim
N→∞

{EQN [Φ]−AN
T (QN)} ≤ lim sup

N→∞
EQN [Φ] ≤ P̃ (Φ). (3.4.3)

Finally, by taking N →∞ in the constrained duality (3.3.7) and using the above inequality,

we obtain D∞(Φ) = limN→∞ P
N(Φ) ≤ P̃ (Φ).
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In view of Proposition 3.4.1, to obtain the desired duality (3.2.5), it remains to show

D∞(Φ) = D(Φ) for all Φ ∈ B(Ω) satisfying (3.2.4). That is, restricting to bounded trading

strategies does not increase the cost of model-free superhedging. To this end, we need the

following technical result.

Lemma 3.4.1. Given Φ ∈ G(Ω) that satisfies (3.2.4), we define Φn ∈ G(Ω), for each n ∈ N,

by

Φn(x1, ..., xT ) := Φ(x1, ..., xT )1{x1≤n,...,xT≤n}(x1, ..., xT ), ∀x = (x1, ..., xT ) ∈ Ω. (3.4.4)

For any ε > 0, there exists n ∈ N large enough such that

|EQ[Φ]− EQ[Φn]| < ε, ∀Q ∈ Π. (3.4.5)

Proof. Fix ε > 0. Let δ := ε
K(T+T 2)

. Thanks to (3.1.1), we can take n ∈ N large enough such

that

µt((n,∞)) < δ and
∫
{y>n}

ydµt(y) < δ, ∀t = 1, ..., T. (3.4.6)

For simplicity, we will write A = {x ∈ Ω : x1 ≤ n, ..., xT ≤ n}. Observe that

Ac ⊆
⋃

t∈{1,...,T}

{x ∈ Ω : xt > n}. (3.4.7)

Moreover, for each fixed t = 1, ..., T ,

Ac = {x ∈ Ω : xt > n} ∪
⋃

i∈{1,...,T}\{t}

{x ∈ Ω : xt ≤ n and xi > n}. (3.4.8)

Now, for any Q ∈ Π, by (3.2.4),

|EQ [Φ]− EQ [Φn] | ≤ EQ [|Φ|1Ac ] ≤ K

(
EQ[1Ac ] +

∑
t=1,...,T

EQ[xt1Ac(x)]

)
. (3.4.9)
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The first inequality above requires the linearity of outer expectations; recall from Sec-

tion 3.1.1 that EQ[·] denotes an outer expectation if the integrad need not be Borel measur-

able. While the linearity of outer expectations does not hold in general, it holds specifically

here thanks to the definition of Φn. Indeed, by [21, Lemma 6.3], there exists Φ∗ ∈ B(Ω), a

minimal Borel measurable majorant of Φ, such that EQ[Φ∗] = E[Φ] and EQ[Φ∗1B] = EQ[Φ1B]

for any Borel subset B of Ω. It follows that

EQ [Φ]− EQ [Φn] = EQ [Φ∗]− EQ [Φ∗1A] = EQ [Φ∗1Ac ] = EQ [Φ1Ac ] ,

where the second equality follows from the linearity of standard expectations, as Φ∗ and

Φ∗1A are both Borel measurable.

Thanks to (3.4.7),

EQ[1Ac(x)] ≤
∑

t=1,...,T

EQ[1{xt>n}(x)] =
∑

t=1,...,T

µt((n,∞)) < Tδ,

where the last inequality follows from (3.4.6). On the other hand, for any t = 1, ..., T , (3.4.8)

implies

EQ[xt1Ac(x)] = EQ[xt1{xt>n}(x)] +
∑

i∈{1,...,T}\{t}

EQ[xt1{xt≤n, xi>n}(x)]

≤ EQ[xt1{xt>n}(x)] +
∑

i∈{1,...,T}\{t}

EQ[xi1{xi>n}(x)]

=
∑

i=1,...,T

EQ[xi1{xi>n}(x)] =
∑

i=1,...,T

∫
{y>n}

ydµi(y) < Tδ,

where the last inequality follows from (3.4.6). Hence, we conclude from (3.4.9) that |EQ [Φ(x)]−

EQ [Φn(x)] | ≤ K(T + T 2)δ = ε, as desired.

Corollary 3.4.1. If D∞(Φ) = D(Φ) for all bounded Φ ∈ USA(Ω), then the same equality

holds for all Φ ∈ USA(Ω) satisfying (3.2.4).
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Proof. First, we show thatD∞(Φ) = D(Φ) for all nonnegative Φ ∈ USA(Ω) satisfying (3.2.4).

Given Φ ∈ USA(Ω) that is nonnegative and satisfies (3.2.4), consider Φn, n ∈ N, defined

in (3.4.4). As a product of Φ ∈ USA(Ω) and a nonnegative Borel measurable function, Φn

also belongs to USA(Ω), thanks to [5, Lemma 7.30]. In view of the estimate (3.4.5) and

the definition of P̃ in (3.2.5), we deduce from Proposition 3.4.1 that D∞(Φn) = P̃ (Φn) →

P̃ (Φ) = D∞(Φ). Now, note that every Φn is bounded, thanks to the fact that Φ satisfies

(3.2.4). As the boundness of Φn ∈ USA(Ω) implies D∞(Φn) = D(Φn) for all n ∈ N, we have

D∞(Φ) = lim
n→∞

D∞(Φn) = lim
n→∞

D(Φn) ≤ D(Φ),

where the inequality stems from Φn ↑ Φ, thanks to the fact that Φ is nonnegative. Since

D∞(Φ) ≥ D(Φ) by definition, we conclude that D∞(Φ) = D(Φ).

Now, take an arbitrary Φ ∈ USA(Ω) that satisfies (3.2.4) (which need not be nonneg-

ative). Consider v = (v1, ..., vT ) ∈ L1(µ) defined by vt(y) := K( 1
T

+ y) for t = 1, ..., T ,

where K > 0 is taken from (3.2.4). As Φ satisfies (3.2.4), Φ + ⊕v is nonnegative. Indeed,

(Φ +⊕v)(x) ≥ −K(1 +x1 + ...+xT ) +
∑T

t=1K( 1
T

+xt) = 0, for all x ∈ Ω. Moreover, Φ +⊕v

again satisfies (3.2.4), with a possibly larger K > 0. Hence, we have

D∞(Φ +⊕v) = D(Φ +⊕v). (3.4.10)

Note that EQ[Φ +⊕v] = EQ[Φ] + µ(v) for all Q ∈ Π. This, together with Proposition 3.4.1,

implies

D∞(Φ +⊕v) = P̃ (Φ +⊕v) = P̃ (Φ) + µ(v) = D∞(Φ) + µ(v). (3.4.11)
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On the other hand, by definition

D(Φ +⊕v) = inf{µ(u) : u ∈ L1(µ) satisfying ∃∆ ∈ H s.t. ⊕ u+ (∆ · S)T ≥ Φ +⊕v on Ω}

= inf{µ(u) : u ∈ L1(µ) satisfying ∃∆ ∈ H s.t. ⊕ (u− v) + (∆ · S)T ≥ Φ on Ω}

= inf{µ(ũ) + µ(v) : ũ ∈ L1(µ) satisfying ∃∆ ∈ H s.t. ⊕ ũ+ (∆ · S)T ≥ Φ on Ω}

= D(Φ) + µ(v). (3.4.12)

On the strength of (3.4.11) and (3.4.12), (3.4.10) yields D∞(Φ) = D(Φ).

Now, we are ready to establish D∞(Φ) = D(Φ) for all upper semi-analytic Φ satisfying

(3.2.4).

Proposition 3.4.2. For any Φ ∈ USA(Ω) that satisfies (3.2.4), D∞(Φ) = D(Φ).

Proof. First, by Corollary 3.4.1, we can assume without loss of generality that Φ ∈ USA(Ω)

is bounded. We take C > 0 such that |Φ| ≤ C on Ω.

As D∞(Φ) ≥ D(Φ) by definition, we focus on proving the opposite inequality. Fix δ > 0.

There exist u = (u1, ..., uT ) ∈ L1(µ) and ∆ ∈ H such that

µ(u) < D(Φ) + δ/2 and ⊕ u(x) + (∆ · x)T ≥ Φ(x) ∀x ∈ Ω. (3.4.13)

Step 1: We replace u ∈ L1(µ) by nonnegative functions. By the Vitali-Carathéodory

theorem, there exists v = (v1, ..., vT ) ∈ L1(µ), with ut ≤ vt and vt bounded from below for

all t = 1, ..., T , such that µ(u) ≤ µ(v) ≤ µ(u) + δ/2. Take ` > 0 large enough such that

vt ≥ −` for all t = 1, ..., T . By setting v̄t := vt + ` ≥ 0, we deduce from (3.4.13) that

µ(v) < D(Φ) + δ and ⊕ v̄(x) + (∆ · x)T ≥ Φ(x) + T` ∀x ∈ Ω. (3.4.14)

Step 2: We construct a bounded trading strategy ∆̄ ∈ H∞ and replace (3.4.14) by

a superhedging relation involving ∆̄. Fix arbitrary ε1, ε2, ..., εT−1 > 0 that are sufficiently
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small. As v̄1 is µ1-integrable, by [33, Problem 14, p.63], there exists M1 ∈ B(R+) such that

µ1(R+ \ M1) < ε1 and v̄1 is bounded on M1. We can assume without loss of generality

that M1 contains {0}. Indeed, if µ1({0}) = 0, adding {0} to M1 does not change the above

statement; if µ1({0}) > 0, then M1 has to contain {0} as long as ε1 < µ1({0}). For any

m1 > 1, define

M̃1 := M1 ∩ ({0} ∪ (1/m1,m1)).

Note that µ1(M̃1) ↑ µ1(M1) as m1 →∞. Now, we claim that

∆1 is bounded on M̃1, ∀m1 > 1.

By contradiction, suppose that there exist {xn1}n∈N in M̃1 such that ∆1(xn1 ) → ∞ or −∞.

By taking x1 = xn1 and x2 = x3 = ... = xT ∈ R+ in the second part of (3.4.14) and using the

fact |Φ| ≤ C, we get

v̄1(xn1 ) + v̄2(x2) + . . .+ v̄T (x2) + ∆1(xn1 )(x2 − xn1 ) ≥ −C + T`. (3.4.15)

For the case ∆1(xn1 ) → ∞ (resp. ∆1(xn1 ) → −∞), we take x2 = 1
2m1

(resp. x2 = m1 + 1)

in (3.4.15). As n → ∞, by the boundedness of v̄1 on M̃1, the left hand side of (3.4.15)

tends to −∞, a contradiction. Similarly to the above, by [33, Problem 14, p.63], there exists

M2 ∈ B(R+), containing {0}, such that µ2(R+ \M2) < ε2 and v̄2 is bounded on M2. For any

m2 > 1, define

M̃2 := M2 ∩ ({0} ∪ (1/m2,m2)),

and note that µ2(M̃2) ↑ µ2(M2) as m2 →∞. We claim that

∆2 is bounded on M̃1 × M̃2, ∀m1,m2 > 1.

By contradiction, suppose that there exist {(xn1 , xn2 )}n∈N in M̃1×M̃2 such that ∆2(xn1 , x
n
2 )→
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∞ or −∞. By taking (x1, x2) = (xn1 , x
n
2 ) and x3 = x4 = ... = xT ∈ R+ in the second part of

(3.4.14) and using the fact |Φ| ≤ C, we get

v̄1(xn1 ) + v̄2(xn2 ) + v̄3(x3) + ...+ v̄T (x3) + ∆1(xn1 )(xn2 − xn1 ) + ∆2(xn1 , x
n
2 )(x3 − xn2 )

≥ −C + T`.

(3.4.16)

For the case ∆2(xn1 , x
n
2 ) → ∞ (resp. ∆2(xn1 , x

n
2 ) → −∞), we take x3 = 1

2m2
(resp. x3 =

m2 + 1) in (3.4.16). As n → ∞, by the boundedness of v̄1 (on M̃1), v̄2 (on M̃2), and ∆1

(on M̃1), the left hand side of (3.4.16) tends to −∞, a contradiction. By repeating the

same argument for all t = 3, 4, ..., T − 1, we obtain {Mt}T−1
t=1 in B(R+) such that for each

t = 1, ..., T − 1,

(i) µt(M c
t ) = µt(R+ \Mt) < εt;

(ii) µt(M̃t) ↑ µt(Mt) as mt →∞, where M̃t := Mt ∩ ({0} ∪ (1/mt,mt)) for mt > 1;

(iii) ∆t(x1, x2, . . . , xt) is bounded on M̃1 × M̃2 × ...× M̃t.

We also consider

at := sup
M̃1×M̃2×...×M̃t

|∆t(x1, x2, . . . , xt)| <∞, (3.4.17)

for all t = 1, ..., T − 1, which will be used in Step 3 of the proof.

Now, let us define the bounded strategy ∆̄ = {∆̄t}T−1
t=1 ∈ H∞ by

∆̄t(x1, x2, . . . , xt) := ∆t(x1, x2, . . . , xt)1M̃1×...×M̃t
(x1, x2, ..., xt), ∀t = 1, ..., T − 1.

Also, for any x = (x1, ..., xT ) ∈ Ω, we introduce

Φ̄(x) := (Φ(x) + T`)1M̃1×...×M̃T−1
(x) +

T−1∑
t=2

(∆ · S)t1M̃1×...×M̃t−1×M̃c
t
(x1, x2, ..., xt). (3.4.18)
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We claim that

⊕v̄(x) + (∆̄ · x)T ≥ Φ̄(x), ∀x ∈ Ω. (3.4.19)

Indeed, for any x ∈ Ω such that xt ∈ M̃t for all t = 1, ..., T − 1, the above inequality

simply reduces to the second part of (3.4.14). For any x ∈ Ω such that xt /∈ M̃t for some

t = 1, ..., T − 1, consider t∗ := inf{t ∈ {1, 2, ..., T − 1} : xt /∈ M̃t}. Observe that

⊕v̄(x) + (∆̄ · x)T = ⊕v̄(x) + ∆1(x1)(x2 − x1) + · · ·+ ∆t∗−1(x1, x2, . . . , xt∗−1)(xt∗ − xt∗−1)

= ⊕v̄(x) + (∆ · x)t∗ ≥ (∆ · x)t∗ = Φ̄(x),

where the inequality follows from v̄t ≥ 0, and the last equality is deduced from the definitions

of Φ̄ and t∗. We therefore conclude that (3.4.19) holds.

Step 3: We show that for any ε > 0, {M̃t}T−1
t=1 can be constructed appropriately so that

EQ[Φ̄] ≥ EQ[Φ + T`]− ε for all Q ∈ Π. For any Q ∈ Π, by (3.4.18),

EQ[Φ̄] = EQ

[
(Φ + T`)1M̃1×...×M̃T−1

]
+

T−1∑
t=2

EQ

[
(∆ · S)t1M̃1×...×M̃t−1×M̃c

t

]
. (3.4.20)

Note that

EQ

[
(Φ + T`)

(
1− 1M̃1×...×M̃T−1

)]
≤ (C + T`)EQ

[
1M̃c

1
(x1) + 1M̃c

2
(x2) + ...+ 1M̃c

T−1
(xT−1)

]
= (C + T`)

(
µ1(M̃ c

1) + µ2(M̃ c
2) + · · ·+ µT−1(M̃ c

T−1)
)
.

(3.4.21)
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On the other hand, for any t = 2, ..., T − 1,

EQ[(∆ · S)t1M̃1×...×M̃t−1×M̃c
t
(x1, x2, ..., xt)]

= EQ

[
{∆1(x2 − x1) + ...+ ∆t−1(xt − xt−1)} 1M̃1

(x1)...1M̃t−1
(xt−1)1M̃c

i
(xt)

]
≥ −EQ

[
{|∆1|(x2 + x1) + · · ·+ |∆t−1|(xt + xt−1)} 1M̃1

(x1)...1M̃t−1
(xt−1)1M̃c

i
(xt)

]
≥ −EQ

[
{a1(m2 +m1) + ...+ at−1(xt +mt−1)} 1M̃1

(x1)...1M̃t−1
(xt−1)1M̃c

t
(xt)

]
≥ −EQ

[
{a1(m2 +m1) + ...+ at−1(xt +mt−1)} 1M̃c

t
(xt)

]
= − [a1(m2 +m1) + ...+ at−2(mt−1 +mt−2) + at−1mt−1]µi(M̃

c
t )− at−1

∫
M̃c
t

ydµt(y),

where the first inequality follows from xi ≥ 0 and the second inequality is due to y < mi

for all y ∈ M̃i and |∆i| ≤ ai on M̃i, for all i = 1, ..., T − 1. We then deduce from (3.4.20),

(3.4.21), and the previous inequality that

EQ[Φ̄] ≥ EQ[Φ + T`]− (C + T`)
(
µ1(M̃ c

1) + µ2(M̃ c
2) + µT−1(M̃ c

T−1)
)

−
T−1∑
t=2

(
[a1(m2 +m1) + ...+ at−2(mt−1 +mt−2) + at−1mt−1]µt(M̃

c
t )

+ at−1

∫
M̃c
t

ydµt(y)

)
. (3.4.22)

The above inequality particularly requires the linearity of outer expectations, which holds

here for Φ + T` and (Φ + T`)1M̃1×...×M̃T−1
. This can be proved as in the discussion below

(3.4.9). We will show that every term on the right hand side of (3.4.22), except EQ[Φ + T`],

can be made arbitrarily small, by choosing mt and at appropriately for all t = 1, ..., T − 1.

Fix ε > 0, and define η := ε
(C+T`)(T−1)+(T−2)

> 0. Taking ε1 = η in Step 2 gives

µ1(M c
1) < η. Since µ1(M̃1) ↑ µ1(M1) as m1 → ∞, we can pick m1 > 1 large enough such

that µ1(M̃ c
1) < η. With m1 chosen, a1 ≥ 0 in (3.4.17) is then determined. Given the fixed

m1 and a1, we can take ε2 ∈ (0, ε1) small enough such that a1m1ε2 + a1

∫
A
ydµ2(y) < η for

all A ∈ B(R+) with µ2(A) < ε2. Using this ε2 > 0 in Step 2 gives µ2(M c
2) < ε2. Since
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µ2(M̃2) ↑ µ2(M2) as m2 → ∞, we can pick m2 > 1 large enough such that the first term in

the summation of (3.4.22) is less than η, i.e.

a1m1µ2(M̃ c
2) + a1

∫
M̃c

2

ydµ2(y) < η.

With m1,m2 chosen, a2 ≥ 0 in (3.4.17) is then determined. Given the fixed mt and at

for t = 1, 2, we can take ε3 ∈ (0, ε2) small enough such that [a1(m2 +m1) + a2m2] ε3 +

a2

∫
A
ydµ3(y) < η for all A ∈ B(R+) with µ3(A) < ε3. Using this ε3 > 0 in Step 2 gives

µ3(M c
3) < ε3. Since µ3(M̃3) ↑ µ3(M3) as m3 → ∞, we can pick m3 > 1 large enough such

that the second term in the summation of (3.4.22) is less than η, i.e.

[a1(m2 +m1) + a2m2]µ3(M̃ c
3) + a2

∫
M̃c

3

ydµ3(y) < η.

By repeating the same argument for all t = 4, ..., T −1, we have µt(M̃ c
t ), t = 1, ..., T −1, and

every term in summation of (3.4.22) less than η. We then conclude from (3.4.22) that

EQ[Φ̄] ≥ EQ[Φ + T`]− ((C + T`)(T − 1) + (T − 2))η = EQ[Φ + T`]− ε. (3.4.23)

Step 4: We establish D(Φ) ≥ D∞(Φ). For any ε > 0, as (3.4.23) holds for all Q ∈ Π,

the definition of P̃ (Φ) in (3.2.5) implies P̃ (Φ̄) ≥ P̃ (Φ + T`) − ε. By Proposition 3.4.1, this

in turn implies D∞(Φ̄) ≥ D∞(Φ + T`)− ε. Now, observe that

D(Φ) + δ + T` ≥ µ(v) + T` = µ(v̄) ≥ D∞(Φ̄) ≥ D∞(Φ + T`)− ε = D∞(Φ) + T`− ε,

where the first inequality follows from the first part of (3.4.14), the second inequality is due

to (3.4.19), and the last equality is a direct consequence of Proposition 3.4.1. As δ, ε > 0 are

arbitrarily chosen, we conclude D(Φ) ≥ D∞(Φ).

Thanks to Propositions 3.4.1 and 3.4.2, the proof of Theorem 3.2.1 is complete.
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Chapter 4

Conclusion

In this thesis, we considered two problems in Financial Mathematics and Economics. In our

first problem, we studied the stochastic Ramsey problem with the Cobb-Douglass produc-

tion function. We first reduce the dimension of the problem, then our problem turns into

the stochastic Ramsey problem. In contrast to prior studies, we have no boundedness as-

sumptions on consumption processes. This assumption make our problem very challenging.

In particular, no classical result could apply to the HJB equation. To resolve this issue, we

define a related problem and then by the help of the related problem, we were able to show

there exists a unique smooth solution to the HJB equation. Then, we could find a candidate

for an optimal consumption ĉ. For this optimal candidate, we showed there exists a unique

positive strong solution to the nonstandard stochastic differential equation, which no clas-

sical techniques could apply to. Hence, by using the optimal stochastic control method, we

proved the candidate is indeed an optimal control.

In the second problem, we studied Generalized Duality for Model-Free Superhedging given

Marginals. It is known for some upper semi-analytic cost functions Φ, the duality D(Φ) =

P (Φ) fails. We note D(Φ) is the minimum cost for model-free superhedging. Therefore,

in contrast to prior studies that they modify the definition of D(Φ) to restore the duality

which will no longer comply with the superhedging context, we revise the definition of P (Φ),
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and keep the definition of D(Φ) as it is to get the duality. Indeed, we consider sequences

of measures {Qn}n∈N that approachesM, and take the limiting expected values of Φ under

these measures i.e. lim supn→∞ EQn [Φ] to characterize D(Φ) i.e.

D(Φ) = P̃ (Φ) := sup

{
lim sup
N→∞

EQN [Φ] : QN
ρ→M

}
.
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Appendix A

A.1 Derivation of Proposition 2.4.1

In this appendix, we will establish Proposition 2.4.1 by generalizing arguments in [28] to

infinite horizon. As mentioned in Section 2.4, [28] studies a similar problem to VL in (2.4.1),

yet under finite horizon and with the specific bound L = 1. As we will see, many arguments

in [28] can be modified without much difficulty to infinite horizon. A distinctive exception

is the derivation of the dynamic programming principle for VL; see Lemma A.1.2 below for

details.

Lemma A.1.1. (i) For any L > 0, VL is concave on (0,∞).

(ii) There exists ϕ0 > 0 such that VL(x) ≤ x+ ϕ0 for all x > 0 and L > 0.

Proof. (i) This follows from the same argument in [28, Theorem 5.1].

(ii) We will prove this result by modifying the argument in the first part of [28, Lemma

3.2]. Define ϕ(x) := x+ ϕ0 with ϕ0 > 0 to be determined later. Fix L > 0. For any c ∈ CL,

x > 0, and T > 0, Itô’s formula implies

0 ≤ E[e−βTϕ(Xx
T )] = ϕ(x) + E

[ ∫ T

0

e−βs(−βϕ(Xx
s ) + (Xx

s )α − µXx
s − csXx

s )ds

]
. (A.1.1)

The term −E[
∫ T

0
e−βsσXs dWs] vanishes in the above inequality as

∫ ·
0
e−βsσXsdWs is a

martingale, thanks to the second part of (2.3.4). By (2.2.6) and µ > 0, we have supy≥0{U(y)−
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y} < ∞ and A := supx≥0{xα − µx} < ∞. We can therefore take ϕ0 > 0 large enough such

that

− βϕ(x) + (xα−µx) + sup
y≥0
{U(y)− y} ≤ −βϕ0 +A + sup

y≥0
{U(y)− y} < 0, x ≥ 0. (A.1.2)

This, together with (A.1.1), yields

0 ≤ E[e−βTϕ(Xx
T )] ≤ ϕ(x)− E

[ ∫ T

0

e−βsU(csX
x
s )ds

]
,

Hence, by using Fatou’s lemma as T → ∞ and then taking supremum over c ∈ CL, we

get the desired result VL(x) ≤ ϕ(x). Finally, note that our choice of ϕ0 > 0 can be made

independent of both L > 0 and x > 0. Indeed, the right hand side of (A.1.2), which involves

ϕ0, does not depend on either L or x.

Next, we derive the dynamic programming principle for VL, to show that it is a viscosity

solution. As explained in detail under (A.1.5), arguments in [28] only lead us to a weak

dynamic programming principle. Additional probabilistic arguments are invoked to upgrade

this weak principle.

Lemma A.1.2. For any L > 0, VL is a continuous viscosity solution to (2.4.3).

Proof. Fix L > 0. The continuity of VL on (0,∞) is a direct consequence of Lemma A.1.1

(i). In view of [13, Chapter V] and [31, Chapter 4], to prove the viscosity solution property,

it suffices to show the following dynamic programming principle: for any x > 0,

VL(x) = sup
c∈CL

E
[∫ τ

0

e−βtU(ctX
x
t )dt+ e−βτVL(Xx

τ )

]
, ∀τ ∈ T ,

where T denotes the set of all stopping times. The “≤” relation is straightforward to derive.
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Indeed, given c ∈ CL, we have, for any τ ∈ T , that

E
[ ∫ ∞

0

e−βtU(ctX
x
t )dt

]
= E

[∫ τ

0

e−βtU(ctX
x
t )dt+ e−βτE

[∫ ∞
τ

e−β(t−τ)U(ctX
x
t )dt

∣∣∣∣ Fτ]]
= E

[∫ τ

0

e−βtU(ctX
x
t )dt+ e−βτE

[∫ ∞
τ(ω)

e−β(t−τ(ω))U(cτ,ωt−τ(ω)X
Xx
τ (ω)

t−τ(ω))dt

]]
= E

[∫ τ

0

e−βtU(ctX
x
t )dt+ e−βτE

[∫ ∞
0

e−βtU(cτ,ωt X
Xx
τ (ω)

t )dt

]]
≤ E

[∫ τ

0

e−βtU(ctX
x
t )dt+ e−βτVL(Xx

τ )

]
. (A.1.3)

Here, the third line follows from [2, Proposition A.1], with cτ,ω ∈ CL defined by cτ,ωs (ω̄) :=

cτ(ω)+s(ω ⊗τ(ω) ω̄), s ≥ 0, for each fixed ω ∈ Ω; recall (2.2.1). The last line, on the other

hand, follows from the definition of VL. Now, taking supremum over c ∈ CL gives the desired

“≤” relation.

The rest of the proof focuses on deriving the converse inequality

VL(x) ≥ sup
c∈CL

E
[∫ τ

0

e−βtU(ctX
x
t )dt+ e−βτVL(Xx

τ )

]
, ∀τ ∈ T . (A.1.4)

Following the arguments in [28, Theorem 3.3] and using the estimates in (2.3.4) and (2.3.5),

we can derive a weaker version of (A.1.4):

VL(x) ≥ sup
c∈CL

E
[∫ r

0

e−βtU(ctX
x
t )dt+ e−βrVL(Xx

r )

]
, ∀r ≥ 0. (A.1.5)

Note that the arguments in [28, Theorem 3.3] directly give the stronger statement (A.1.4)

under finite horizon T > 0, with T replaced by TT , the set of stopping times taking values

in [0, T ] a.s. The same arguments, however, only render the weaker statement (A.1.5) under

infinite horizon. This is because with finite horizon T > 0, one can derive an estimate for

E[sup0≤t≤T X
2
t ], i.e. (2.7) in [28], which ensures that (3.14) in [28] holds simultaneously for

all τ ∈ TT . When the time horizon is infinite, one would need a corresponding estimate for
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E[sup0≤t<∞X
2
t ], which is often unavailable. In our case, we only have the estimates (2.3.4)

and (2.3.5), which ensure that (3.14) in [28] holds only for each deterministic time r ≥ 0.

In the following, we will show that the weaker statement (A.1.5) in fact implies (A.1.4).

First, we claim that for any c ∈ CL and x > 0, the process
∫ t

0
e−βsU(csX

x
s )ds+ e−βtVL(Xx

t ),

t ≥ 0, is a supermartingale. Given 0 ≤ r ≤ t, it holds for a.e. ω ∈ Ω that

E
[∫ t

0

e−βsU(csX
x
s )ds+ e−βtVL(Xx

t )

∣∣∣∣ Fr] (ω)

=

∫ r

0

e−βsU(csX
x
s )ds(ω)

+ e−βrE
[∫ t

r

e−β(s−r)U(csX
x
s )ds+ e−β(t−r)VL(Xx

t )

∣∣∣∣ Fr] (ω)

=

∫ r

0

e−βsU(csX
x
s )ds(ω)

+ e−βrE
[∫ t

r

e−β(s−r)U(cr,ωs−rX
Xx
r (ω)

s−r )ds+ e−β(t−r)VL

(
X
Xx
r (ω)

t−r

)]
=

∫ r

0

e−βsU(csX
x
s )ds(ω)

+ e−βrE
[∫ t−r

0

e−βsU
(
cr,ωs XXx

r (ω)
s

)
ds+ e−β(t−r)VL

(
X
Xx
r (ω)

t−r

)]
,

where the third line follows from [2, Proposition A.1], with cr,ω ∈ CL defined by cr,ωs (ω̄) :=

cr+s(ω ⊗r ω̄), s ≥ 0, for each fixed ω ∈ Ω; recall (2.2.1). This, together with (A.1.5), yields

E
[∫ t

0

e−βsU(csX
x
s )ds+ e−βtVL(Xx

t )

∣∣∣∣ Fr] ≤ ∫ r

0

e−βsU(csX
x
s )ds+ e−βrVL(Xx

r ) a.s.

This shows the desired supermartingale property. Now, for any x > 0 and τ ∈ T , by the

optional sampling theorem,

VL(x) ≥ E
[∫ τ∧T

0

e−βsU(csX
x
s )ds+ e−β(τ∧T )VL(Xx

τ∧T )

]
, ∀ T > 0.

As T →∞, thanks to Fatou’s lemma and the continuity of VL, we obtain (A.1.4).

The next comparison result follows directly from the argument in [28, Theorem 4.1].
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The argument is in fact slightly simpler here, as the time variable is not involved in our

infinite-horizon setup; see also a very similar proof in [24, Proposition 4.1] for a related

infinite-horizon problem.

Lemma A.1.3. Fix L > 0. For any 0 < a < b, if u1, u2 ∈ C([a, b]) are two viscosity

solutions to

βv(x) =
1

2
σ2x2v′′(x) + (xα − µx)v′(x) + ŨL(x, v′(x)) for x ∈ (a, b), (A.1.6)

with u1(a) = u2(a) and u1(b) = u2(b), then u1 ≡ u2.

Now, we are ready to prove Proposition 2.4.1.

Proof of Proposition 2.4.1. In view of Lemma A.1.1, it remains to show that VL belongs to

C2((0,∞)) and solves (2.4.3). For any 0 < a < b, consider the boundary value problem

(A.1.6) with v(a) = VL(a) and v(b) = VL(b). Thanks to the boundedness of c ∈ CL, the same

estimate for |ŨL(x1, p1)− ŨL(x2, p2)| in [28, Theorem 4.2] still holds, which means that the

condition (5.18) in [27] is true under current setting. We then conclude from [27, Theorem

5.3.7] that there exists a classical solution v ∈ C2((a, b)) ∩ C([a, b]) to (A.1.6). Since v is

also a viscosity solution, Lemmas A.1.2 and A.1.3 imply that VL = v on [a, b], and thus

VL ∈ C2((a, b)). With 0 < a < b arbitrarily chosen, we have VL ∈ C2((0,∞)) and solves

(2.4.3) in the classical sense.
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