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Abstract

Regression Discontinuity (RD) designs are popular models in economics used by researchers to
evaluate the effects of policy interventions. In the past two decades, a great number of papers
on RD applications and methodology have been published in leading economic journals. However,
research on RD estimators, which is fundamental to RD models, has been few and far between. The
main estimation approach is to apply local linear (LL) or local polynomial estimators on both sides
of the known discontinuity point and then to estimate the jump. Most developments have focused
on amendments to and improvements of LL, but there are almost no competitive alternatives for
LL estimators. This dissertation adopts a novel approach by providing a completely new class of
RD estimators taking a generalized reflection approach by using the extension of Hestenes (1941).
My estimators have simple analytical representations, desirable asymptotic properties, and are
computationally easy to implement. Having boundary properties that are as good as LL estimators
and performing better than LL estimators in finite samples, my estimators offer a competitive
alternative for LL estimators in RD models.

In Chapter 1, I review major theoretical developments in RD design in the econometrics literature,
focusing on estimators for regression discontinuity. In Chapter 2, I introduce my Hestenes-based
RD estimators. Focusing on properties at boundary points, I provide results on the bias, variance
and asymptotic distribution of my estimators. I compare the finite sample properties of my estima-
tors with popular regression estimators — the Nadaraya-Watson and LL estimators — using Monte
Carlo studies, empirical examples, and empirically motivated simulations. Chapter 3 extends the
estimation of univariate regression with a discontinuity to multivariate regression settings. 1 con-
sider an additive model and propose four two-stage estimators: at the first stage, I use a marginal
integration, instrument variable, backfitting, or B-splines estimator for the continuous components
of the regression; at the second stage, I use the Hestenes estimator developed in Chapter 2 to
estimate the jump discontinuity. Monte Carlo studies show my estimators outperform the local
linear RD estimators in an additive linear model that are commonly used in empirical research.
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Chapter 1

A Literature Review of Regression Discontinuity Designs (RDD)

This dissertation studies regression discontinuity models, of which my main point of interest is
the estimation of a jump discontinuity in a nonparametric regression. In Chapter 2, I propose a class
of reflection estimators based on Hestenes’ (1941) extension. In chapter 3, I extend the estimation
of univariate regression with a discontinuity to multivariate regression with a discontinuity. I start

with a basic model.

Consider a nonparametric regression model where, without loss of generality, there is a known

discontinuity at = 0. For a regressor X € R,

Y = m(X;) + €,

where E(¢;|X;) = 0,V (¢]X;) = 02, and

mt(z) ifzx>0
m(x) =

m~(x) ifz<0
The jump discontinuity of the conditional expectation is given by

a= EJIB’ITL—’—({E) — l;golm_(a:)

One area where the estimation of « is of interest in economics is regression discontinuity de-
signs. Thistlethwaite and Campbell (1960) first developed RDD with an application in educational
psychology to verify if students who earn National Merit Scholarships were more likely to enroll
in graduate study. In their seminal paper, Hahn et al. (2001) establish the identification of RDD:
assuming that the regression function of the potential outcome is continuous at the threshold, the

jump discontinuity of the regression function at the threshold is the average treatment effect (ATE).



Figure 1.1: The RDD Model
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Figure 1.1 describes the basic elements of a RDD model. Let Y(D) be potential outcome
variables. The binary variable D € {0, 1} stands for some kind of treatment. Y'(1) is the potential
outcome when the individual is treated; Y (0) is the potential outcome when the individual is
untreated. The running variable X determines if an individual receives the treatment. When
X € R is above a threshold ¢ € R, the individual receives the treatment and D = 1, otherwise,
the individual does not receive the treatment and D = 0. Without loss of generality, I take ¢ = 0.

D = 1[X > 0]. The observed outcome is

Y = DY (1) + (1 — D)Y(0).

The framework is used to identify and conduct inference on ATE, J(0) = E[Y (1) — Y (0)|D = 0].
Under the assumption that regression functions of the two potential outcomes Y (0) and Y'(1) are

continuous at the threshold, J(0) = limg o E[Y|X = z] — limyo E[Y|X = z].



In general, the ATE can be denoted as

limg, o m™(z) — limgyom™ (z)

T0) = limg o E(D|X = ) — limgyo E(D|X = z)

(1.1)

Trochim (1984) divided RDD into sharp designs and fuzzy designs depending on whether or not
the treatment variable is a deterministic function of the running variable. For sharp RDD, since
limg o E(D|X = x) — limy E(D|X =) =1,

=limm*(z) —limm™ (z) = o
J(0) lim m (x) lirn m () =«

It is apparent that the jump discontinuity « in this general statistic model is the ATE J(0) in
a sharp RDD. In other words, « corresponds to the jump in the conditional expectation as the

running variable X approaches the threshold for an individual to receive the treatment.

To estimate «, I use observations to the left of the threshold to estimate regression on the left
and to use observations to the right to estimate regression on the right and then difference the
two estimates at the threshold. The challenge comes from the discontinuity. Most of the known
properties of conventional nonparametric estimators, such as the Nadaraya-Watson (NW) or local
linear estimators (LL), are derived for points at which the regression is continuous and typically
sufficiently smooth. When considering a discontinuity, traditional kernel regression estimators such
as NW estimators have undesirable boundary properties. Specifically, the bias convergence rate of
the estimator at boundary points is slower than that at interior points. The properties of these
estimators at boundary points, a vicinity of the discontinuity point defined by the bandwidth, are
affected by the discontinuity, while at interior points — which are away from the discontinuity point
and where the regression is smooth — the estimators’ properties are not affected by the discontinuity.
Since the jump is the object of interest, I am concerned with the properties of estimators at points

in the vicinity of the discontinuity point — that is, the properties of estimators at the boundary.

Since boundary problems in RDD are a special case of the model that I am considering, it is
important to first present a review of the RDD literature. In this chapter, I start by discussing the

literature that deals directly with the estimation of the ATE in RDD. I then review major theoretical



developments in RDD over the last 20 years. In Section 1.1, I discuss the estimators of the ATE
in a univariate regression setup as a prelude to the results in the second chapter. In Section 1.2, I
expand the model to include additional covariates other than the running variable, which motivates
the multivariate analysis in the third chapter. In Section 1.3, I cover other major developments in
RDD. In Section 1.4, I cover some significant RDD extensions. Section 1.5 concludes with how my

dissertation relates to this growing body of literature on RDD.

1.1 Estimators for Treatment Effects

RDD are popular models for the statistical evaluation of policy interventions because they do
not impose a specific functional form on the regression, and further allow for endogeneity between
the outcome variable and the running variable. Lee and Lemieux (2010) explain that as long
as individuals do not have exact control over the running variable, their manipulations of the
running variable (including self-sorting) do not affect the identification of the treatment effect.
The work of Hahn et al. (2001) has arguably inspired the flourishing use of RDD in economics
— thousands of empirical papers have been written employing the approach. At the same time,
theoretical developments in RDD in the econometrics literature have branched out in many different
directions. In 2008, the Journal of Econometrics dedicated a special issue to regression discontinuity,
in which Cook (2008) gives a historical introduction of RDD in the fields of psychology, statistics,
and economics and Imbens and Lemieux (2008) give practical guidance for implementing RDD in
empirical research. Other works by Lee and Lemieux (2010), van der Klaauw (2008) and Cattaneo
and Escanciano (2017) provide theoretical and empirical overviews of the existing literature. These

papers helped promote the broad adoption of RDD in economic analysis.

The main objective of RDD is the estimation of treatment effects. Since RDD does not specify
a functional form for the regression function, the estimators of the treatment effect are, in essence,
nonparametric estimators. The boundary problems that confront traditional kernel regression es-
timators, such as NW estimators, are well-known. Solutions have been proposed. In practice, it
is very common for people to use local linear or local polynomial on both sides of the point of

discontinuity and then to estimate the jump. This is because Fan (1992) shows that the local



linear estimators have desirable boundary properties. In their seminal paper, Hahn et al. (2001)
recommend the LL estimators for RDD. In an influential review paper, Lee and Lemieux (2010)

give guidance on estimating RDD using the LL estimators.

Compared to the fast growing body of literature on applications and adaptations of the LL
estimators to fit various situations in RDD, the alternative RD estimators to the LL estimators
are rare. But there are a few exceptions. Porter (2003) propose partial linear estimators from
and Imbens and Wager (2019) propose finite-sample-minimax linear estimators. In this section,
I discuss these RD estimators as well as local linear and local polynomial estimators in the basic
setup, where there is a known discontinuity point, and both the running variable and outcome

variable are continuous.

1.1.1 Local Linear and Local Polynomial Estimators

Let {X;,Y;}I*, be a sample in which observations to the left and right of the cutoff point are

IID. An estimator for the discontinuity jump size « is defined as

& =m*(0) —m(0), (1.2)

where m™(0) = lim, o™ (z) and m~(0) = limgrom ™ (), and /mTand M~ are estimators for

mTand m~, and each X; has the same marginal density function f across the cutoff point in R.

A local polynomial of order p estimator 7iv,(x) of m(x) is given by 7} (x) = @, whereas

a
by L 2
= argmin Zkh(Xi —x)DilY; —a—b1(X; —x) — ... — bp(X; — 2)P)”,
a‘7b17"'7bp7i:1
by

where D; = I(X; > 0), I(A) is the indicator function of event A, kj,(-) = +k(3), h is a bandwidth,

and k(-) is a kernel function. Similarly, I define 1, (x) by replacing D; with 1 — D;.

When p = 0, the estimators are Nadaraya-Watson estimators. They can be used to estimate



the regression to the left and right of the threshold, and then to estimate the jump. Nevertheless,
NW estimators have boundary problems. Simulations show that in finite samples, NW estimators

have larger biases at boundary points than at interior points. In practice, they are rarely used.

When p = 1, the estimators are local linear (LL) estimators. LL estimators are commonly
used to estimate regressions in domains with boundaries. This is because Fan (1992) shows that
LL estimators have desirable boundary properties, in that LL estimators have the same order of
bias and variance at boundary points as those at interior points. Hahn et al. (2001) recognize the
problem with NW estimators and thus recommend the use of LL estimators in RDD. Imbens and
Lemieux (2008) and Lee and Lemieux (2010) give guidance on their implementation in empirical

RDD research.

Porter (2003) proposes local polynomial estimators, where p > 1, that can achieve biases of
smaller order at boundary points by using a high-order polynomial. However, Gelman and Imbens
(2014) warn against the use of high-order polynomials because regressors are more likely to have
collinearity problem and they assign undue influence to outlies, more importantly, points far away
from the discontinuity point. In practice, first and second order local polynomials (where p =1 or
p = 2) are the most commonly used approaches. Methedologically, the bias reduction is achived by
the polynomial “correction.” That is, local polynomial estimation directly accounts for the shape

of the regression when estimating its level.

1.1.2 Partially Linear Estimators

In a regular regression setting where the regression is continuous, there is a simple link between
the bias order and the smoothness of the density function of the regressor and the regression, but
this link is broken at the boundary or the point of discontinuity. The following method strives
to recover this relationship so the bias reduction can be archived by higher-order bias-reducing

kernels.

Porter (2003) proposes a partial linear estimator. Consider the model

Y =m(X;)+ Dia+¢ fori=1,2,...,n,



where «, the jump at the threshold, is the parameter of interest. Then,

n n
& = argmin Z[Y’ —aD; — Z w;(Y] —aD;j)?,
* =1 J=1

i kp(Xi—X;)
Where ’LUZ = e
I Y ka(Xi—X))

Partially linear estimators can achieve biases of a smaller order at boundary points but they
require the regression functions to be identical (separated by a jump) on both sides of the threshold,
a restriction that is not required by typical nonparametric estimators when applied to data to the

left and right sides of a point of discontinuity.

1.1.3 Finite-Sample-Minimax Linear Estimator

Imbens and Wager (2019) point out that local linear regression estimators (LL) are not the
optimal linear estimators in terms of minimax mean-squared error. They propose a linear estimator
for treatment effects that is a numeric solution to a convex optimization problem, subject to bounds
on the second derivative of the regression function. Both LL estimators and finite-sample-minimax
linear estimators are linear estimators, in that the estimator is a weighted average of the observations
of the dependent variable and the weights are determined by the distance between the sample
of the regressor and the evaluation point. Unlike LL estimators, which are obtained by solving
weighted least square problems and they have closed-form solutions, finite-sample-minimax linear
estimators are obtained by using numerical convex optimization tools and they do not have analytic
representations. The advantages of their estimators are that they can be seamlessly extended to
the case of discrete running variables as well as multiple running variables, and outperform LL

estimators in terms of minimax mean-squared error.
Define the treatment effect as 7(¢) = pi(c) — po(c), where ¢ is the threshold. p,, is the
conditional expectation of potential outcomes, () = E[Y;(w)|X; = z], where w corresponds to

the treatment, w € {0,1}. Subsequently, a linear treatment estimator is defined as 7 = >_1* | 4;Y;.



The weights 4 are obtained by solving the follow minimax problem:

n
5 = argin, {3 ket + 1500

=1

The first term is the variance Y1 | y20? where o7 = Var[¥;|X;]. The second term is the worst case

bias over the class of functions with bounded second derivatives:

Is) = sup {zwmm—<m<c>—uo<c>>:|us,c<w>rSBforauw,x},
po()m1(r) Li=1

where po and p; belong to the class of functions with second derivative bounded by B. This
method does not require choosing a kernel or bandwidth. Instead, it requires choosing o and B.
The authors show that under certain conditions, 7 is asymptotically normally distributed. The

results can be used to construct confidence intervals.

1.1.4 Generalized Reflection Estimators

LL estimators have desirable adaptive boundary properties. They can automatically adjust to
the boundary, but they do not address the boundary problem head-on. One way to look at this is
that LL estimators adapt to the boundary by adjusting a regular kernel to an effective kernel that
contains partially integrated kernels, so the bias at the boundary has the same order of decay as
the bias at interior points. However, it does not solve the boundary problem: the bias expression

at boundary points is different from that at interior points.

In Chapter 2, I propose a new class of estimators for the size of a jump using Hestenes’ extension.
Hestenes (1941) shows that functions that are sufficiently smooth and are defined on a subset of
the real line can be extended to the entire real line, inheriting the smoothness of the original
function. Hestenes provides a simple method to obtain the extensions. I construct regression
estimators defined on bounded domains by reflecting the observations to the other side of the
boundary multiple times with scaling parameters obtained through Hestenes’ extension method.
The number of times reflection is performed is decided by the assumed smoothness of the regression

function of the regressand and the density function of the regressor. In contrast to LL estimators,



my estimators have the bias expression at the boundary points that are the same as that at the
interior points. Furthermore, by assuming the same order of smoothness of the regression function,
my estimators have the same bias and variance order as LL estimators. Schuster (1985) proposes
a reflection estimator for density estimation, where the reflection is made once. In this context,
my method can be thought of as a generalized reflection approach. Hence, my estimators can take
advantage of high orders of smoothness of regression and density functions and achieve better (or

faster) rates of convergence for the bias.

1.2 Including Additional Covariates

Researchers in empirical RDD often include covariates other than the running variable in the
regression to guard against the misspecification of the model and to increase the precision of the
estimates, yet theoretic works on the properties of these estimators are rare. One exception is
a paper by Calonico et al., 2018, which studies the properties of RDD estimators in an additive

separable linear model.

Calonico et al., 2018 propose an additive separable linear model that aligns with the models

typically employed in empirical RDD studies:

Y:ml(Xl)—I-ZQﬁQ-l-"'—i-ZD,BD—l-E,

where mq(z1) is discontinuous. The estimation of m; does not suffer from the problem known
as the curse of dimensionality in which the optimal convergence rate slows down geometrically as
the dimension D increases. This is achieved because it is an additive model. Besides, only the
regression component of the running variable is estimated locally while the regression components
of the other covariates are estimated globally. However, the model is not flexible enough because

covariates enter in a linear-in-parameters form.

In Chapter 3, I extend the estimation of a univariate regression with discontinuities in Chapter

2 to a multivariate regression with discontinuities. I consider a nonparametric additive model where



one of its components is discontinuous whereas all others are continuous, i.e.,

Y:ml(Xl)+m2(Z2)+-~+mD(ZD)+€. (13)

My estimation strategy is a two-step procedure in which I first estimate the components of
the regression associated with the continuous covariates, then use the Hestenes-based estimators
I have developed to estimate the jump discontinuity of the regression associated with the running
variable in the second stage. The first stage estimators are constructed using different methods
such as marginal integration, instrument variable, backfitting, and B-splines estimators. I conduct
numerical simulations to compare the finite sample performance of my two-stage multivariate RD
estimators, with univariate RD estimators that do not account for additional covariates, and with
Calonico et al., 2018’s multivariate RD estimators in which additional covariates enter in linear
forms to show that my Hestenes RD estimators are well suited for a flexible additive model that

accounts for additional covariates.

1.3 Other Theoretical Developments

Commonly used treatment effect estimators are based on kernel estimation and thus require
the selection of bandwidths and kernels. A number of researches have been conducted on selecting
optimal bandwidths and kernels as well as making correct inference. In addition, researchers
have been concerned with the discontinuity of the density function of the running variable and
heterogeneous treatment effects. Last, but not the least, the methods of optimally plotting sample

data are explored.

1.3.1 Optimal Bandwidth

A critical aspect of nonparametric estimation is bandwidth selection. Since I am only interested
in the estimation of the jump at the discontinuity point, a locally optimal bandwidth suits most
purposes better than a globally optimal bandwidth. Imbens and Kalyanaraman (2012) provides

an optimal data-adaptive bandwidth for LL estimators to minimize the mean-squared error of the

10



regression estimator. Improving on their work, Arai and Ichimura (2018) achieve smaller mean-
squared error by choosing different bandwidths for the regression estimators to the right and to the

left of the discontinuity point.

1.3.2 Optimal Kernel

The kernel can also make a difference in nonparametric estimation. Cheng et al. (1997) show
that the triangular kernel is the minimax optimal boundary kernel; over all regression functions of
the same smoothness and among all possible choices of kernels for linear estimators, the triangular
kernel minimizes the asymptotic mean-squared error. Gao (2018) characterizes the asymptotically
optimal kernel for the minimax linear RD estimators under the restriction that the first-order

derivative of the regression function is Lipschitz continuous.

1.3.3 Optimal Inference

Testing the null hypothesis that the treatment effect o = 0 is critically important. However,
the optimal bandwidth obtained by minimizing mean squared error, such as the method by Imbens
and Kalyanaraman (2012), often leads to a non-negligible bias. Namely, the optimal bandwidth

/5 For the leading terms of bias to vanish so that

converges to zero with the order hy;sg o« n™
the estimator has an asymptotically normal distribution, the condition nh® — 0 together with
nh — oo, implies Aporm o< 1% where —1 < § < —1/5. This is a well known problem with kernel
estimation. As a result, it leads to biased confidence intervals and low coverage. To correct the
problem, Calonico et al. (2014) propose bias-corrected RD estimators. Together with a standard
error estimator, they construct confidence intervals that are robust to bandwidth choice and make

correct inferences of the treatment effects in sharp RD, fuzzy RD, sharp kink RD, and fuzzy kink

RDD (more explanation about kink RD designs is provided in Section 1.4.1).

In contrast with the above bias-corrected method, Armstrong and Kolesar (2018) base their
method of obtaining optimal confidence intervals on the characteristics of the bias —i.e., the smooth-
ness of the regression function — rather than undersmoothing. Assuming the regression function

satisfies a Lipschitz condition of a certain order, they construct an optimal confidence interval for

11



LL estimators by directly solving an optimization problem that maximizes their minimum test
power under the alternative hypothesis. Moreover, Armstrong and Kolesar (2017) provide a simple
adjustment to the critical value commonly used to construct confidence intervals for local polyno-
mial estimators to achieve correct coverage for finite samples. Finally, Kolesar and Rothe (2018)
construct robust confidence intervals for LL estimators and achieve uniform asymptotic coverage

for discrete running variables.

Researchers often find that the asymptotic properties of estimators at the boundary are complex
and the results difficult to use — requiring estimation of conditional variance, covariance, and the
density of the running variable. Otsu et al. (2015) circumvent the estimation of asymptotic variances
of LL estimators by employing empirical likelihood ratios for the treatment effects estimated by
LL estimators, so they can use empirical likelihood methods to construct confidence intervals for

inference in sharp and fuzzy RDD.

Another strain of the literature on robust inference relates to randomization. One way to
understand and justify the identification of RDD is to look at the treatment assignment at the
threshold as a local randomized trial. Cattaneo et al. (2015) argue that the conventional as-
sumption of the continuity of the regression function of potential outcome variables cannot justify
randomization. They formally define the condition that justifies the randomized trial interpreta-
tion and they provide a finite-sample inference procedure. Their inference is based on the limited
number of observations around the threshold rather than the standard large-sample procedure. Li
et al. (2015) further develop the idea of local randomization by defining a hypothetical experiment
and assignment mechanism: there exists a subgroup around the threshold whose treatment status
is assigned by chance, i.e. the local overlap assumption holds. The authors develop a Bayesian

hierarchical modeling approach to select the target subgroups.

In RDD, the running variable can be seen as an instrument variable (IV) (Hahn et al. (2001)),
S0 it is not surprising that anything that can impair IV estimation or inference, such as a weak IV,
can negatively affect the estimation in RDD as well. Feir et al. (2016) propose modified t-tests for

the weak- IV robust inference in fuzzy RD designs.

As RDD are frequently used for evaluating the effects of policy interventions, testing the null

12



hypothesis that the treatment effect is zero is important. Kamat (2018) points out that under
the current regularity assumptions, the test permits a large set of possible distributions that the
distributions of the null are too close to the distributions of the alternatives to distinguish them,
which results in the power of the test is bounded by the size of the test. This implies one can’t
construct valid finite sample tests and uniformly asymptotically tests. The test is only pointwise
asymptotically valid but not uniformly asymptotically valid. Kamat (2018) reminds empirical
researchers of the need to strengthen the current regularity assumption so that the test can be

uniformly asymptotically valid.

1.3.4 Tests to Guard Against Identification Failure

Since RDD exploits the jump in the regression of the treatment on the running variable, a dis-
continuity in the density function of the running variable could cause the failure of identification.
One source from which a discontinuity might arise could be that an individual endogenously ma-
nipulates the running variable (to be complete, manipulation could also cause a kink or fluctuation,
but not necessarily a discontinuity, in the density function such as heaping in the vicinity of the
threshold). McCrary (2008) advocates testing for the discontinuity of the density function of the
running variable at the threshold. The jump density estimators are based on Cheng’s (1994) local
linear binning density estimators. Recent work from Mynbaev and Martins-Filho (2018) provides a
simple and elegant solution to estimate the density at the boundary. Using a simple mathematical
result from Hestenes (1941) to construct the density estimator, the approach generalizes Schuster’s

(1985) reflection method.

Bugni and Canay (2018) provide a test for the continuity of the density function without
imposing the smoothness requirement as most other estimators do — their approach only requires
the continuity of the density function. A feature of their paper is that rather than relying on
the asymptotic property of the estimator, they derive the properties of their estimators for a fixed
sample size. This is close to the reality in the RDD setup; the number of observations in the vicinity

of the threshold does not necessarily grow as the sample size increases.
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Otsu et al. (2013) share the same concern: the low density of the running variable around
the threshold in RDD. Their solution is to use local likelihood estimators rather than local linear
estimators. In addition, they construct empirical local likelihood tests and confidence intervals for

inference, which avoids the estimation of the asymptotic variance.

1.3.5 Treatment Effect Heterogeneity

When the assumption of a constant treatment effect is not appropriate, heterogeneous treat-
ment effects must be considered. Hahn et al. (2001) show that in fuzzy designs, the ratio J(0)
in equation (1.1) is the local average treatment effect (LATE) at the threshold of a subgroup of
individuals, namely, policy compliers (individuals that take the treatment when their treatment
assignment status D; = 1 and do not take the treatment otherwise). Critics often complain that
RDD possess a high degree of internal validity but are lacking in external validity. To convince
an audience of the external validity of findings generated by an RDD (namely, the LATE), the
LATE must be extrapolated to the points away from the threshold, and to other subgroups: the
always-takers who take the treatment regardless of treatment assignment and never-takers who

never take the treatment regardless of treatment assignment.

First, consider the extrapolation of the treatment effect to other subgroups. Taking advantage
of fuzzy design, Bertanha and Imbens (2014) argue that to assess the plausibility of generalizing
the LATE to other sub-populations, researchers should test whether the distribution of treatment
effects for the always-takers is the same as that for the treated compliers. If they are, it is plausible
to assume never-takers (who are not observed ) will have the same treatment effect, so that the

generalization of the treatment effect from the compliers to the population is plausible.

Second, consider the extrapolation of the treatment effect away from the threshold. Dong
and Lewbel (2015) ask how the treatment effect would change if the threshold changed. To verify
external validity, they suggest researchers estimate the first derivative of the regression function
with respect to the running variable. If this treatment effect derivative is small (close to zero), the
extrapolation of the treatment effect for individuals with the value of the running variable away from

the threshold is credible; otherwise, this extrapolation is questionable. In the context of a sharp
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design, taking advantage of the availability of additional covariates other than the running variable,
Angrist and Rokkanen (2015) argue that conditional on additional covariates, if the running variable
and the outcome variable are uncorrelated, then it is more plausible to extrapolate the treatment

effect to points away from the threshold.

Lastly, consider the quantile regression of the treatment effect on the outcome variables. Abadie
et al. (2002) and Chernozhukov and Hansen (2005) develop approaches to IV quantile treatment
effects by which the method of Abadie et al. (2002) can be applied to a sub-population of compliers
with binary treatment variables, while the method by Chernozhukov and Hansen (2005) can be
applied to the whole population with both discrete and continuous treatment variables. To estimate
the local quantile treatment effects, Frandsen et al. (2012) use a local linear estimator to estimate the
marginal distributions of the potential outcomes. Shen and Zhang (2016) test the treatment effect of
a policy intervention on the whole distribution of a response outcome with a Kolmogorov-Smirnov-
type test, which is free of any distributional assumptions. These examples shows that quantile
regression serves as an ideal approach for characterizing the treatment effect on the distribution of

the outcome variable.

1.3.6 Optimal RD Plots

As an important tool for exploratory data analysis, graphical representation plays a critical
role in validating the suitability of the RDD approach for a given context. Most RDD plots
are ad hoc and use an evenly spaced binning strategy to show a scatter plot representation of
the sample. Calonico et al. (2015) introduce optimal RD plots by providing several data-driven
methods to optimally choose the number of bins according to the goals of the researchers. This

helps researchers to uncover and communicate the underlying statistical properties of data.

1.4 Extensions of RDD

Beyond their original use for investigating policy intervention with cross-sectional independent
data, one running variable, and a known discontinuity point, RDD have been extended to a variety

of situations: Kink Regression Designs (KRD), unknown thresholds, multiple thresholds, categorical
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outcomes, dependent samples, and the running variable with rounding and measurement errors.

These examples show a variety of uses and adaptability of RDD in non-standard situations.

1.4.1 Kink Regression Designs

RDD identify the ATE in settings where the regression function has a known discontinuity.
Similarly, KRD exploits the opportunity to identify the ATE where the regression function is
kinked. That is the regression function is continuous but its first order derivative is discontinuous.
RDD is called upon when there exists endogeneity between the treatment variable D and the
outcome variable Y, and I cannot find a proper IV. The running variable X is not an IV in the
conventional sense — that is, a proper IV is exogenous and does not play a role in the regression of
Y. In RDD, I allow X and Y to correlate as long as the regression of Y on X is continuous. If there
is a discontinuity in the regression of D on X, I expect to see the discontinuity in the regression of
Y on X if there is a causal effect of D on Y. The same logic can be used in the kink design: if there
is a kink in the regression of D caused by X, then I should expect to see a kink in the regression

Y if there is a causal effect of D on Y.

Dong (2010) entertains the idea that even if there is no jump, a kink can be used to identify
treatment effects. Card et al. (2015) describe the conditions and identification for kink designs
and compare estimation performance by local linear and local polynomial estimators from Fan
(1992), estimators from Imbens and Kalyanaraman (2012) that select an optimal bandwidth, and
estimators from Calonico et al. (2014) that have bias correction and produce robust confidence
interval. Chiang and Sasaki (2019) extend the kink design to quantile kink design and provide the

asymptotic properties of the estimators for inference.

1.4.2 TUnknown Thresholds

RDD are primarily used in situations where the discontinuity points are known. Porter and Yu
(2015) consider unknown thresholds. First, they use a unified test to check if there are selection or
treatment effects. Once the effects are confirmed, they use a difference kernel estimator to estimate

the position of the jump, then estimate the size of the jump as if the discontinuity is known.
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Surprisingly, although the position of the jump is estimated rather than known, the efficiency of
the estimator is not affected. That is, the treatment estimator with an unknown discontinuous
point has the same limiting distribution as the treatment estimator with a known discontinuous

point.

1.4.3 Multiple Thresholds

When the running variables are associated with multiple thresholds, researchers often fold them
into one threshold and estimate one treatment effect. Cattaneco et al. (2016) study this process
of obtaining one treatment effect through pooled and normalized regression and give guidance on
the interpretation of the results. Bertanha (2017) argues the results generated by this method rely
on restrictive assumptions — either requiring the same LATE or only being valid for individuals
near the cutoff — and proposes consistent and asymptotically normal estimators. In these cases,
heterogeneity is informed by one of the following processes: a nonparametric distribution from the
data, a deterministic function from economic theory in the case of a sharp design, or a parametric

distribution in the case of a fuzzy design.

1.4.4 Multiple Running Variables

RDD also allow for the existence of multiple running variables. In manner similar to Imbens
and Kalyanaraman (2012), who study the optimal bandwidth for a single running variable, Imbens
and Zajonc (2011) study optimal bandwidth selection for multiple running variables given that the
second derivative of the regression function is bounded. Focusing on identification, Papay et al.
(2011), Wong et al. (2013), and Reardon and Robinson (2012) study optimal inference for LL

estimators with multiple running variables.

1.4.5 Categorical and Duration Outcomes

When outcome variables are categorical, LL estimators are often inappropriate. For example, in
the case of binary outcomes, the estimated probability implied by LL estimators is not guaranteed

to fall in the unit interval. Xu (2017) studies estimators for categorical outcomes in RDD settings.
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To estimate the treatment effect, the author proposes a new nonparametric estimator based on the
extension of the multinomial logit model and addresses the issues of optimal bandwidth selection

and robust interference through a local likelihood method.

A special type of categorical outcome relates to duration outcomes, such as unemployment
duration (i.e. survival analysis). Xu (2018) uses a discrete-time framework to estimate the un-
conditional duration effect and conditional hazard effect for each discrete level. In this setup, the
objects of interest are the local risk function for each discrete level and the global baseline function.
The author uses a maximum likelihood estimator for the local risk function and series approxima-
tion for the global baseline function. This work shows that although the LL estimators are often
used in a standard RDD setup, other types of estimators can be better suited for extended RDD

setups — such as this, in the situation of categorical outcomes.

1.4.6 Dependent Samples

RDD are most often applied to IID samples, but there are many situations where the as-
sumption of IID does not hold. The following papers extend RDD to dependent samples, such as
clustered samples, time series samples, or spatially correlated geographic samples. Bartalotti and
Brummet (2017) study the effects of clustering on inference and bandwidth selection in RDD. They
extend the optimal bandwidth selection by Imbens and Kalyanaraman (2012) and the optimal in-
ference by Calonico et al. (2014) for IID samples to clustered samples. Kuersteiner et al. (2018) use
an RDD to estimate the non-linear impulse response function of a time series. Keele and Titiunik
(2015) apply RDD to a geographic sample where estimation needs to account for multiple running

variables, different measures of the distance from the cutoffs, and spatial correlation.

1.4.7 Rounding and Measurement Error

In the standard setup, the running variable is continuous, but in reality, many running variables
are often measured in discrete units. Dong (2015) considers inconsistent estimates caused by
rounding errors in discrete running variables. A more general case of rounding errors is heaping.

The heaping of the running variable at a particular values can be induced by a variety of reasons,
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such as the unit of measurement used or data rounding. Barreca et al. (2016) study the heaping-
induced bias in RDD. Finally, Davezies and Le Barbanchon (2017) consider continuous errors rather
than discrete errors in the running variable — a mixture of the true running variable and a noisy

proxy — and come up with a consistent nonparametric estimator.

1.5 Conclusion

The past two decades have seen a flourishing of developments on RDD: over 2,000 empirical and
50 methodology papers have been published on RD models in leading economic journals. In this
chapter, I review the recent methodological developments on RDD in the econometrics literature
with a focus on RD estimators in both standard and extended setups. Proved by Fan (1992) for
their desirable properties at the boundary and recommended by Hahn et al. (2001) for RDD, the
local linear or local polynomial estimators are primary estimators. While some papers have made
important amendments to LL estimates and others have employed different types of estimators
for RDD used in non-traditional setups, research on alternative RD estimators has been few and
far between. There are almost no competitive alternatives for LL estimators. In this dissertation,
I propose a complete new class of RD estimators using general reflection approach. In Chapter
2, I introduce my RD estimators for univariate regression and in Chapter 3, I introduce my RD
estimators for multivariate regression. Having boundary properties as good as LL estimators and
performing better than LL estimators in finite sample estimations, my estimators offer compelling

alternatives for LL estimators in RD models.

19



Chapter 2

Estimation of a Regression Jump: a Generalized Reflection Approach

As a method for empirically evaluating the effects of policy or experimental interventions,
regression discontinuity (RD) designs have been widely used in economics, political science and
other social and behavioral sciences. See Imbens and Lemieux (2008), Lee and Lemieux (2010)
and Cattanco and Escanciano (2017) for theoretical and empirical overviews of the existing liter-
ature. RD designs are inherently nonparametric models, as identification typically relies only on
smoothness assumptions on the relevant conditional expectations at a known threshold or cut-off
point in the set where the conditioning covariate (regressor) takes values. It is well known that tra-
ditional nonparametric kernel regression estimators, such as Nadaraya-Watson (NW), suffer from
boundary problems (see, inter alia, Gasser and Miiller, 1979, Gasser and Miiller, 1984, Fan, 1992,
Hérdle and Linton, 1994). Specifically, these estimators have slower rates of convergence for bias
at boundary points than at interior points in the regression domain. Under typical assumptions on
the smoothness of the regression and regressor density, the traditional Nadaraya-Watson estimator
constructed with bandwidth h > 0 has bias of order O(h) at boundary points, compared to O(h?)
at interior points of the regression domain. This problem is particularly relevant for RD designs,

as the estimation of regression functions at boundary points is precisely the object of interest.

The problem can be aggravated in RD designs, see Porter (2003), as an estimator for the jump
discontinuity at the threshold may compound the poor bias behavior of nonparametric estimators
of the regression to the right and to left of the threshold. While there is a vast literature in econo-
metrics and statistics that attempts to address this issue, (see, inter alia, Fan, 1992, Hahn et al.,
2001, Porter, 2003, Imbens and Lemieux, 2008, Lee and Lemieux, 2010, Imbens and Kalyanara-
man, 2012) the main approach in RD designs is to estimate local polynomial (mostly local linear)
approximations for the regressions on both sides of the discontinuity and use these to produce an
estimate for the jump discontinuity at the threshold. This approach is justified by Fan and Gijbels

(1992), where it is shown that local linear estimators, under standard smoothness assumptions,
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have bias of order O(h?) at boundary points. Porter (2003) proposes RD estimators — partially lin-
ear local polynomial estimators — that can achieve smaller order biases at boundary points by using
high order kernels. However, these estimators require identical regression functions (separated by
a jump) on both sides of the threshold, a restriction that is not required by typical nonparametric

estimators when applied to data to the left and right sides of a point of discontinuity.

In this chapter, I adopt a novel approach to construct estimators for a regression jump. The
basic idea behind my estimation procedure is to extend regressions beyond the boundary of their
domains to the entire real line, using an extension proposed by Hestenes (1941). These extended
regressions are then estimated using a generalized reflection approach and used to estimate a jump
discontinuity. The inspiration for my method comes from Mynbaev and Martins-Filho (2018), where
a simple and elegant solution to boundary problems in density estimation is obtained using the same
extension principle. Their solution can be applied not only to densities but also to any sufficiently
smooth function, such as suitably defined regressions. 1 apply Hestenes’ extension to estimate
regressions that have a jump discontinuity and can thus be viewed as comprising two regimes with
boundaries: one to the left and one to the right of the point of discontinuity. Regression functions
on each side of the discontinuity can be different and, in particular, can have different degrees of
smoothness. In essence, instead of using higher order polynomial functions to reduce bias, I use a
generalized reflection kernels to estimate the extended the regression functions across discontinuity

points to reduce bias. I call my estimators — the HT estimators.

In fact, my estimation strategy produces a class of jump discontinuity estimators. What
distinguishes the elements in the class are the types of Hestenes’ extension used. My estimators
are constructed based on the algebraic structure of the classical NW estimator. However, contrary
to the NW estimator that suffers from the aforementioned boundary problems (slow rates of bias
decay and , in some cases, inconsistency), my estimators have boundary behavior that is completely
analogous to that at interior points of the regression domain. Thus, I restore bias behavior at
boundary points to be the same as that at interior points. The estimators I propose are easy to
construct, require no modification to commonly used kernels and allow for a common bandwidth

over the entire domain of the regressions.
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Focusing on properties at boundary points, I derive the bias, variance and asymptotic distribu-
tion of my estimators. In addition, I provide a theoretical comparison between my estimator and
the popular local linear (LL) estimator. These two types of estimators have the same unconditional
bias of order O(h?) and variance order O((nh)~!), where n is the sample size, but with different
magnitudes for both bias and variance. My estimators solve the boundary problems by completing
partial integration of kernels through reflection method: the bias at the boundary is the same as
that at the interior points. The variance at the boundary is affected by the chosen parameters of
Hestenes (1941) extension. On the other hand, the LL estimators solve the boundary problems
by adapting to the boundary with effective kernels: the bias is smaller but the variance is larger
at the boundary point than those at interior points, and the bias and variance of LL estimators
are affected by partial integration of kernels. Given typical smoothness assumptions on regression
and regressor density functions, such as they have continuous second order derivatives, my estima-
tors always have smaller variances of asymptotic distributions than LL estimators, which leads to

smaller mean squared errors (MSE) in most cases.

I have conducted extensive Monte Carlo studies to shed light on the finite sample behavior of
my estimators. I compare bias, variance, and root mean square error (RMSE) of my estimators with
those of the NW and LL estimators using different bandwidth selection methods, kernels, sample
sizes, and data generation processes. The simulation results show that my estimators perform

better than NW estimators in all cases and have smaller RMSE than LL estimators in most cases.

To illustrate the applicability of my estimators in empirical settings, I apply them to data used
in Litschig and Morrison (2013), where a RD design is used to examine how government spending
affects education and poverty by taking advantage of an intergovernmental transfers program in
Brazil. The authors use the ordinary least squares (OLS) procedure to implement a local linear
estimator to estimate jumps, which is a typical approach in empirical RD design studies. Although
this approach is straightforward and has avoided the intricacy of choosing kernels and bandwidth
for a typical nonparametric estimation, it is not flexible. First, the bandwidth is arbitrarily chosen.
When researchers choose the percentage of the sample around the vicinity of the discontinuity for

estimation, they are arbitrarily choosing the bandwidth. Second, they restrict themselves to the
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uniform kernel choice. As a result, after they have tried different bandwidths and different orders
of polynomial functions to produce several sets of estimates, they cannot tell which set of estimates
is preferred. To be clear, these are not limitations of LL estimators, but the trade-off — exchanging

flexibility for convenience — by using the OLS procedure.

I apply my estimators and the LL estimators to estimate the jump in the conditional mean
of the treatment and outcome variables, allowing for a variety of kernels and choosing an optimal
bandwidth. I compare estimates from the HT and LL estimates to their estimates. The results in
this case are qualitatively the same but quantitatively different. The subsequent data-calibrated
simulations using the same empirical example show that my estimators have reduced the RMSE
of the LL estimator by more than a half. This means that my estimators provide more precise
estimations and powerful tests. That is, there could be situations that tests based on my estimators
reject the null hypothesis that there is no treatment effect while tests based on LL estimators fail
to reject the null. In another word, my estimators could detect the treatment effect that otherwise

would be dismissed.

My estimators have simple and intuitive expressions that are easy to implement using any
statistic software. They are also computationally simpler than the LL estimators. The LL esti-
mators have a singularity problem with their matrix while my estimators don’t have a singularity
issue and always provide stable estimates. Considering the popularity of RDD in empirical studies,
I have developed a full set of nonparametric RDD estimation packages in Matlab which includes
LL and Hestenes estimators for both regression and density estimation. The empirical example
has demonstrated that my estimation procedure is straightforward and my estimation package is

readily available to use.

The rest of this chapter is organized as follows. In Section 2.1, I introduce the Hestenes-based
estimators for regressions with a domain that includes boundary points. Then I derive the bias,
variance and asymptotic distribution of my estimator for points in (and outside) a vicinity of the
boundary. I compare these properties with those of LL estimators. In Section 2.2, I connect regres-
sion estimators to estimation of a jump discontinuity within the context of the RD design literature.

I define estimators for the jump discontinuity and establish consistency and asymptotic normality
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of the estimator. In Section 2.3, I conduct Monte Carlo simulations that compare my estimators
to NW and LL estimators. In Section 2.4, I give an empirical illustration of my methodology. In
Section 2.5, I conduct empirical motivated simulations to verify the finite sample performance of my
estimators. Section 2.6 gives concluding remarks and topics for future study. Supporting lemmata
are collected in Appendix A. MATLAB codes that implement the NW, LL, and HT regression
estimators, as well as LL and HT density estimators, for the simulation and empirical application

are collected in Appendix B.

2.1 A General Reflection Approach: Hestenes-based Regression Estimator

The general reflection approach solves the boundary problem by forming a reflection kernel at
the boundary. To show how it works, I start by explicitly comparing the regular kernel functions
of the NW estimator and the reflection kernel functions of the HT estimator at the vicinity of
boundary. Suppose I have a random sample {X;, Y;} of size n from a random vector (Y, X). X has

a density f defined on [0, 00). The classical Nadaraya-Watson estimator is defined as follows:

430 Ki(2)Y
L3 Ki(x)

n
myw (z) = = win(z)Y;,
i=1
where K;(x) = K(%) h is a bandwidth, which is a function of n. w;,(z) is the weight, which
denotes the contribution of each observation to the regression estimate at x. Thus, myw(x) is a

weighted average of the observations Y7, ---,Y,.

For a fixed n, boundary points are those points in the range of X where x < h and interior
points are those where £ > h. As n — oo, h — 0. The only boundary point is x = 0. At the
boundary point, the estimator has a larger bias than those at interior points. This is the well-known
boundary problem. Figure 2.1 illustrates what causes the boundary problem in the NW estimator

and how the general reflection approach implemented by the Hestenes estimator solves the problem.

The two graphs show the same estimation with kernel functions for the NW estimator and the
HT estimator respectively. At the boundary, the estimate from the HT estimator stays close to the

true regression while the estimate from the NW estimator is away from the true regression. This
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Figure 2.1: Kernel functions in NW and Hestenes Estimators

Kernel Functions of Nadaraya-Watson Estimators B Kernel Functions of Hestenes Estimators

Estmated regression
o o
> ©

T
4

Estmated regression

o
=
T

o
N
~_
N
~
-

o

S
0
S
=

I I I I I I I I I
15 1 0.5 0 05 1 15 2 2 15 -1 05 0 05 1 15 2
Values of x Values of x

0

results from the fact that the two estimators have different kernel functions for observations near

the boundary.

The figure on the left shows the five observations (denoted by + around the regression function)
at the vicinity of zero and their corespondent kernel functions K;(z) (five solid curves underneath
the regression function) of the NW estimator . Since the observations can only occur on the positive
side of the real line, the kernel function should only be on the positive side of the real line. However,
the kernel functions cross over the point zero to the area that is not part of the domain, so the
weights given by the kernel function to observations at the vicinity of the boundary are too small,

which causes a larger bias at the boundary.

The figure on the right shows the same five observations (denoted by + around the regression
function) at the vicinity of zero and their corespondent kernel functions (five dotted curves un-
derneath the regression function) from the HT estimator. Here, the kernel functions are extended
to the negative side of the real line to estimate the regression function that is extended to the
whole real line (the negative side is not drawn). The kernel can even have negative values, which
adds flexibility. Compared to the kernel function of the NW estimator, the kernel functions (the
two curves in purple and red near the origin) of observations that are close to the boundary have
changed to reflect the increased weights for these observations, whereas the kernel functions (the
three curves in blue, orange, light blue on the right side) of observations that are away from the

origin gradually merge to be the same kernels of the NW estimator. This is the general reflection
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method at work: the observations at the vicinity of zero are reflected to the other side in order to
estimate the regression defined in the whole real line, so the lost weights for observations at the
vicinity of the boundary are added back, which reduces the bias at the boundary and solves the

boundary problem.

2.1.1 Hestenes Extensions

Now, I describe how Hestenes extensions are defined. Consider an independent and identically
distributed sequence of random vectors in R x [0, 00), denoted by {(¥i, X;)}I,, each of which is
distributed as (Y, X)), with

EY|X =2z) =m(x). (2.1)

I assume that the marginal density f of X exists and that m, f € Cj (]0,00)), where C}([0, 00))
the class of functions f : R — R whose support is [0, 00) and which is s-times differentiable with
|f®)(z)] < C for some 0 < C < 00, s € N and f(*)(x) denotes the derivative of order s € IN of f. To
overcome boundary problems when estimating m, I smoothly extend the function r(x) = m(x)f(z)
from its original domain [0, 00) to (—o00,0). Its smooth extensions to (—oo,0) will be denoted by
¢(x) for < 0 and are given as ¢(z) = Zfill kir(—w;x). In words, this expression means that I
scale r and reflect it over from the nonnegative to the negative side of the real line up to s+1 times.
The extension ¢ is a linear combination of the reflection of scaled r functions which satisfy sewing
conditions that preserve continuity and derivatives up to order s. I will then use the observations
on (Y, X), which include only nonnegative values of X to estimate p(x), which is defined on the

whole real line by piecing together r and ¢.

m(z) f(z), >0
p(x) = (2.2)
Z‘%ll kEim(—w;x) f(—w;z), x <DO0.

1=

Specifically, let w1, ..., wsy+1 be pairwise distinct positive numbers for s = 0,1,... such as,

w; = 1/i, or w; = i, for i = 1,...,s+ 1. Also, let the numbers ky,...,ks11 be defined by the
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following system of equations

Z(_wi)jki =1,5=0,...,s. (2.3)

i=1

The determinant of this system (Vandermonde) is nonsingular, i.e.,

1 1 1
_wl —w2 ... —w 1
%o,
(mw1)® (w2)® -+ (—wsy)®
and consequently ki, ..., ks+1 are uniquely defined for any choice of {wz}fill Then,it follows
immediately that sewing conditions are satisfied due to (2.3).
o) (0—) = Z(*wi)jkﬁm(oﬂ =0 (0+), j=0,---,s,
i=1

where for an arbitrary function g : R — R and ¢ > 0, g(z+) = hﬁ)lg(ﬂj‘—l—é) and g(xz—) = lig]lg(x—s).
= &

wu(x) is s-times differentiable. This follows from s-times differentiability of f and m as

m@) f@)® =3[

=0\ J

m)(2) 9 (z).

Note that in my context, differentiability of m(x) at x = 0 must be understood as differentiability
from the right, i.e., m(*)(04).! In the following subsections, I construct estimators for m(x) where

x € [0,00) and study their biases, variance and asymptotic distributions for points in a vicinity of

1 As an example, the sewing condition for s = 1 is satisfied as

2
Moy =15 Mg ) =715 D0 —
6 (0-) =limp™ (0 —e) 1312} (—w;(0—¢))
p

2

= 161?3 j [m™® (=w; (0 — €)) f(—w; (0 — €)) + m(—w; (0 — ) fV (—w; (0 - €))]

=D (=uwpk; [m™M(OF)£(0) + m(0) f(0)] =V (0+).

Jj=1
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zero, and compare them to cases where x is an interior point, i.e., outside this vicinity. It is well
known that the classical NW estimators have poor properties at boundary points than those at
interior points. I show that my estimators have the same bias expression at the boundary points

as that of interior points.

Schuster (1985) proposes a boundary folding method to reduce bias for density estimation
at the boundary, which multiplies the sample by two and flips the weights from one side of the
discontinuous point to the other side. As pointed out by Mynbaev and Martins-Filho (2018),
Schuster’s reflection estimator does not use the smoothness beyond continuity and only works well
when the first derivative of the density function at the discontinuity point f(1)(0) = 0, so Schuster’s
reflection estimator can be seen as a special case of the general reflection method that are based

on Hestenes extension.

2.1.2 Infeasible Hestenes-based Regression Estimators

I define an infeasible Hestenes-based regression estimator mg(z) for m(z) when x > 0 which

assumes that f is known. A kernel function K satisfies the following condition.

Assumption 1. K is uniformly bounded and symmetric with [p K(u)du = 1, [puK(u)du =0
and [ |u'K (u)|du < C fori=1,2,3,4 and some 0 < C < <.
If f(x) >0, I define

ARGy Xt
>+Z LK “”h Yi, (2.4)

() 1 1 2”: (
mpy(r) = ———

f ) nh =
where n is taken to be the size of a random sample of observations {(Y;, X;)}I"; and h > 0 is a

sequence of nonstochastic bandwidths that depend on n such that A — 0 as n — oc.

The algebraic structure of the estimator is motivated by Mynbaev and Martins-Filho (2018)
where density estimators are constructed based on Hestenes’ extension. Since mpy depends on s

and the sequence {w;}51], equation (2.4) defines a class of estimators whose elements are indexed

Jl’

by {w]}SJrl For instance, w; = 1/j or w; = j have been suggested in Mynbaev and Martins-Filho
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s+1

(2018) and will produce different estimators in the class. Once {w;}7Z; is chosen, the sequence

{k; jg is uniquely defined by (2.3) so every estimator in the class is uniquely indexed by {w; ji%

The following theorem gives an integral representation for the bias of mpg. Its proof gives
the mathematical motivation for the algebraic structure of the estimator. In what follows I adopt
the following notations: k; = [gu'K(u)du, iy = [ u'K(u)du, kiz = [FCu'K(u)du, \; =
Jru' K2 (w)du, iy = [* u'K?*(u)du and Nz = [°u'K?(u)du for i =0,1,2,3,4.

Theorem 1. Suppose that K satisfies Assumption 1. Then,
B (min(@)) — mla) = 5 [ K) lale — ) - ()] v, (2.
f(z) Jr

where pu(x) is as defined in equation (2.2). If, in addition, f,m € C([0,0)),

2mM (z) f M (x) EARICILIICD
f(z) f(z)

E (mp(2)) — m(z) = h252 [m@) (z) +

5 ] + O(h%). (2.6)

Proof. Since {Y;, X;}!"_; is independent and identically distributed sequence

~—

n 2 s+1 4. %—i—x
E(mH(:B)|X17...’Xn):f(1x)7;Z[K<th >+ZZK( I )]m(Xi
j=1

11 X -z 11 |y (At
B (mi(@) = o5 1 () me)| + ik L; K (h ) m(Xl)]
_ L1 (Ki-a
11 ey [uhte
+ mﬁ 0 ]zzzl UTJ m(X1) f(X1)dXq
Since K is symmetric, in the first integral let ¢ = % and in the second integral, let ¢ = w;th:v
Then,
1 [
Blmi () = 5o [ KGw)m(e — ho) (o — pus)as
oo 5+1
b [ K@ (e = hyuy) £ (e — by d
@) Jg =
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In the first integral, I have x — hi) > 0 and in the second integral, I have x — hey) < 0. Hence,

Evmﬂ@)=fé0/i;K@®Mxhwﬂw- (2.7)
Since [ K(¢)dy =1,
E (my(x)) — m(z) = f(lx) | K@) e = )~ (@) s for 2> 0. (2.8)

For the second part of the theorem, note that since f,m € C2([0,00)) for > 0, T have ™ (z) =

4 , .
?:0 m4=9)(z) fU)(z). Using differentiability of p, I have

B (mi (@)~ m(z) = o [~ K@) (@) (~ho) + 5 (@) (-1

f(@) Joo
*é““*iﬂ—h¢f+-1u“fo—th)dw
:f&yKZKW@<; J(@)(—he)® + Mu D(z)(— MM)dw

where T = ax + (1 — a)(z — hy)),a € [0,1], and K is symmetric.
Now,

[ w@wti@a] < [T @l @] < c

for some C' < oo, provided |u® (z)| < C' < 0o, and [ | K (¥)] 1ty < C. Consequently,

() — () — pA(x) 2 ) 2 4 M()(x)ﬁ 2 4
Enn(e) - ) = (%780 [ ktoyan) 12 00y = il o0

0] mO@0E) | O @m)
2[ O T i

] roh? 4+ O(hY).

O]

The integral representation for the bias of my(x) given in equation (2.5) is the key insight in
constructing the estimator. It shows that the representation obtained for traditional estimators,

such as NW, can be obtained with the function p in place of the regressor density. The alge-
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braic structure of mpy permits the unification of the bias representations for z in and outside a

neighborhood of zero.

As pointed out Mynbaev and Martins-Filho, 2018, there is a simlpe link between the degree
of smoothness of the density and the order of estimator’s bias. This link also exists for regression
estimators, such as NW estimators, in a regular setting where the regression is continuous, but this
link is broken for the NW estimator at the boundary. As a direct consequence of the method of
the proof of Theorem 1, if, as usually done in the nonparametric kernel literature, the kernel K is
of order s and m, f € C7([0,00)) then the bias of my is O(h®). It is in this sense I claim that the
HT estimator has recovered the missing link and restored the bias at the boundary points to be

the same as that of interior points. At the boundary point = 0, I have

E (m#(0)) — m(0) = i m®(0) + 2mM(0)f1(0)  F@(0)m(0)

2 710) o) |t om:

It is instructive to compare this expression to that of the bias for an infeasible NW estimator given

by

mwle) = Z (=)w

=1

The following corollary follows directly from Theorem 1.

Corollary 1. Under the assumptions of Theorem 1, for x > 0, the bias of myw (x) is given by

Elmw(#) — m(e) = ~m(z)so z — h (W + m<1><x>> g

m(z)f®(x m® (z) fO(z m® (z
+h2< @0 , )0 | m )>u2,§+0(h3)-

The slower order of the remainder term results from the fact that the symmetry of K can no

longer be used to eliminate the term of order h. Hence, at x = 0,

m(0)£0
Emyw(©) - m(0) = ~Lm()~h (%)“ Fml ><o>> o
p2 2mD(O)FV(0) | FO0)m
+5 <m(2) (0) + 0) + 0 ) p2,0 + O(h?)
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This expression suggests that myw is inconsistent at the boundary. Compared to the bias of myy,

it has two extra terms that are of larger order, O(1) and O(h). This results in a large bias for the

NW estimator.

The following theorem provides approximations for the variance of mpy;.

Theorem 2. Suppose E((Y —m(X))?|X =) =02, m, f € C2([0,00) and K satisfies Assumption

1. Then, if nh — oo and x > 0, the variance of myg(x) is given by

V(mp(z)) =

’ITLQCL‘
e 3o+ o((nh) V),

Proof. Write my(z) = % where f(x) # 0 and

X;
1 - s+1 k - +x
§(x) = — K —K |- Y;.
g< Zl ) S (57)
and write
1 s+1 wl +x
i=— | K K ’ Y;.
Then let wyg = —1, and kg = —1, and write
X.
1 s+l kj wr
T = 7 —K . Y;
Y= X_: ; h
7=0
Then, §(z) = %Zle u;. Consequently,
V J— 1 E 2 E 2
(ma (@) = s (B = Bn)?)
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Now,

X
==Y 2hp|K i
h?2 Z_: w; wj
2,7=0 L
- M
1 ki kg ol w T
= — —2EIK([& K z X
= Z: o ; 7 | (m(X1) + )
where €1 = Y] — m(X;).
X1
ol X4y Xt
K| K& 2(x
h2”z:0wle{ ( ) ( h )m( 1)]

h
o | (W) e [T
+o 3 5
12 ki ky (> (et
K| K
hQZwle/o h

2 s+1 L+x
w; K
hQszwj/o ( h )

4,5=0

=T+ Ts.

I first study 77 and consider two cases x > 0 and x =0

Case (z > 0): Let
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Note that hT = Iyg + ijrrjl>0 %%Iz] Now,

Ioo —m*(z) f () ]RKQ(U)du

= | E K2(w)ym?(x — hu) f(x — hu)du — m?(x) f(z) /]RK2(u)du

/ K?(u) {mQ(m — hu) f(x — hu) — mQ(x)f(a:)} du

o

- K2(w)m?(z — hu) f(x — hu)du

/ K?(u) {m2(ac — hu) f(z — hu) — mQ(x)f(x)} du

+

ﬁoo K2(wym?(z — hu) f(z — hu)du

h

<

2 K0 [ b e — ) = ()£ )]

-FADCK%MPﬁ@—hwﬂx—MO—m%@ﬂ@Pw

+

/;o K2(uw)m?(z — hu) f(z — hu)du

Let p(d,z) = sup|f(x —y) — f(z)|, and since f € C}([0,00)) I have f(z — hu) — f(z) < p(Ch, z).
ly|<d
Thus,

/IUISC KQ(U) [mQ(x — hu) f(z — hu) — mQ(J:)f(:c)} du

< Cp(Ch, z) / K2(uw)du.

Jul<C

Consequently, since m € C([0, ),

hrm%mwéwwm

< Cp(Ch, ) / Kwdu+C [ KXwdu+C / K(u)du.
jul<C jul>C :

For C be sufficiently large and h,e sufficiently small, by continuity of f, p(Ch,x) < e. Since
Jr K (w)|*du < C, Su>c K?(u)du < € and f%oo K?2(u)du < €. Therefore, for all € > 0,

Too — m2(x) f(2) /R K2(u)du

<e. (2.9)

Having bounded Ipp,now I turn attention to I;; where i + j > 0, and, without loss of generality,
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take w; > 0. Change variables by setting u = %(t + zw;).

L = flLﬁwz K (Z:) K (Z(l - Z)};) + 1:) m?(hu — zw;) f (hu — zw;)du.
o (2

Given the uniform boundedness of K (z), f(z) and m?(x),

Iij S sz/ K (u) du, (2.10)

"

where [ %oo K (u) du < e for sufficiently small h. Consequently, inequalities (2.9) and (2.10) give

‘th—mQ(x) () /R K2(u)dul <

t

et w;t &
Inow turn to 7. Let J;; = %fooo K <“’ih z) K ( o ’ f(t)dt, then hTH = o (J00+Zfi]1>o s :Z Jij)-

Using arguments similar to those for oo, I have |Joo — f(z) [g K*(u)du| < €. Again, similar to the

case of I;;, I have J;; < Cw; f%OO K (u) du < € for sufficiently small h. Thus,

<e (2.11)

‘th—UQf(a:)/RK2(u)du <e

Since Eu% =T, + T3, I have

‘hEu% - (mz(x) + 02) f(x)/RKQ(u)du <e (2.12)

From Theorem 1, hE(u1)? = o(1), consequently

V(mp () = nih {(f()g /RK2(u)du+ 0(1)}.

Case (z = 0): First, I consider T7.

Ioo_h/ K h) £)dt — / K2 (w)ym?(—hu) f (—hu)du,
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and

Too — m2(0) £(0) [ OOO K2 (u)du| = ‘ [ OOO 12 (1) [m? (—hu) f (~hu)du — m?(0)£(0)] du

-C
- ‘/_m K2 () [m?(—hu) f (~hu) —m*(0) £(0) ] du

—i—/_oc KQ(U) {mz(—hu)f(—hu) _ m2(0)f(0)] du

—C C
<cC / K2(u)du + p(Ch, 0) / K2(u)du.
—00 0
For C sufficiently large and ¢, h sufficiently small I have

oo = m(0)0) [ K*(u)du

<e (2.13)
Now I consider the case where ¢ + j > 0. Note that [;; = [;° K (w%) K (wl]) m?2(hu) f (hu)du.

I; — m*(0)£(0) /OOO K (;‘) K (ZJ) du

where for sufficiently large C, and for all € > 0, ‘ &K (wl) K ( ) du’ < € and for sufficient small

u
wj

h, p(hC,0) < €. Thus,

<e (2.14)
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Consequently, (2.13) and (2.14) give

KTy — m2(0)£(0) f ki ky /OOOK (“) K (“) du

ij=0 W; 'LUj W; wj

< €.

Turning to the term 75.

o2 [® L[t o ki ky t t
hTQ_W/O K <h>f(t)dt+h Z wz‘wj/ooK<wz‘h>K m f(t)dt'

i+,5>0

From the first term,

f/ooo K> (Z) F(t)dt = o° /OOO K2 (u) f(h)du = 0> (0) /OOO K2(u)du + o(1).

From the second term,

ih %

) K <wjh> F(b)dt = /OOO K CU‘) K <Z]> F(hu)du,

t
’wih

Now,

| Tr(E)x (;‘J) fydu - 5(0) [“x (2) K (:;) "
o) (5) 7 0) — F0)) du

by the continuity of f and the dominated convergence theorem. Thus,

Wy — o f(0) f kkJ/OOOK(S)K (;‘j) du

ij=0 Wi Wi

<

<€

<e. (2.15)

Since Eu% =T + 15, I have

<e. (2.16)

hEW? — (m2(0) + 02) £(0) f ki kg /OOOK (“) K (“) du

ij=0 ws wj W; wj
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Thus,

V(mu(0) = — f12 O (hEuf - hE2u1)
1 ) m2(0) + o2 ki ko u u
_nh{ 0 i;[)wiwj/o K<w>K<wy> du+0(1)}'

Combining the two cases, I have

V(mm(x)) =

R {ngf%ﬁ 5 |2k bk (u%)r du + 0(1)} . 2=0
e g +o(1)} x> 0.
O

The expressions for the variance of mg(x) given in Theorem 2 are analogous to those obtained
in Mynbaev and Martins-Filho (2018) (see their equations (10) and (11)). The following corollary

to Theorem 2 gives an expression for the variance of the infeasible NW estimator.

Corollary 2. Suppose E((Y —m(X))}|X =z) = 02, m, f € C}([0,00) and K satisfies Assumption

1. Then, if nh — oo and x > 0, the variance of myw (x) is given by
V(mnw(r)) = Ty Moa/n T o((nh)~1).

Note that mg and myw have the same variance at interior points, but different variances at the
boundary point (x = 0). With suitable choice of w; it may be possible to have the leading term of

the expression in V(mg(0)) < V(myw(0)).

Remark 1. An optimal plug-in bandwidth hy; for my(0) can be obtained by minimizing asymptotic
mean squared error (AMSE) at the boundary = = 0. As such, consider the asymptotic mean squared

error (AMSE) given by

AV {h2 [m@) )+ 2V f(2)(0)m(0)] 52}2 L {mZ(0>+02 7} e

2
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2
where v =[5 [ f% ffz K ( )} du and and s.o. denotes terms of smaller order. Routine opti-

mization of the leading terms with respect to h gives

. { m?<o>+a2,y}é lm@)(o) L 200 | fPOm) " g,

2.1.3 Feasible Hestenes Regression Estimators

The regression model that motivated the infeasible m g had regressors taking values in [0, 00).
It is apparent that a similar estimator can be defined for the case where regressors take values in,
and the support of m is, (—oo,0]. When the regressor takes values in R and there are potentially
two regressions, one to the right and one to the left of a discontinuity at x = 0, two infeasible

Hestenes estimators can be constructed. The first, for the regression to the right of the point of

S-‘r]. k; €T
) + Z ] K
where d; = Ix,>0, and the second for the regression to the left of the point of discontinuity

_ . 1 1 n Xi—l' 8+1]€j %_'_x
mH(w):f(l‘)nh;{K< N )—FZK( " )

In a RD model where the point of discontinuity is = 0, an estimator for the jump at 0, denoted

discontinuity,

m (z) = flnlh 3 { ( Yid; for x>0,  (2.18)

=1

Yi(1—d;) for x < 0. (2.19)

by J(0), is naturally given by
Ju(0) = mf(0) — my(0). (2.20)

Since f is unknown, these are infeasible estimators. I define the feasible estimators by replacing f

with the estimated f. The feasible estimators are denoted by mi(z), my(z) and J(0).

RDD assume that the density f of the running variable is continuous at the point of discontinu-

ity, so it is quite natural to use the whole sample to estimate f by the Rosenblatt-Parzen estimator
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fr(@) = 3 Yy K (X47) . 1 define

Xi .

n lK (%) +Zj+% f;JK (wjh )] Yid;
forx >0

K (M)

iy (z)

Similarly, I define 7 (z) for < 0 by changing d; to 1 — d;. Theorem 3 and 4 provide bias and

variance of the estimators.

Another option to obtain f is to use the Hestenes density estimator developed by Mynbaev and
X.
A P’
Martins-Filho (2018) fu(z) = 2= S0, [K (%) + Zjﬂ Z’ K < - )], where the observations

to the right of the discontinuous point are used to estimate f; for x > 0 and the observations to

the left to estimate f;; for x < 0. Consequently, I define

n i—T s k;
=1 [K (Xh ) + ZJ+% wj K ( ]
for z > 0. (2.21)

h
() = Xy
n i—Z S k tz
ooy ()

While fR(x) is consistent only at interior points z > 0, f(x) is consistent at both interior and

boundary points > 0 as shown in Remark 3 of Mynbaev and Martins-Filho (2018). To obtain
the asymptotic properties of the mj{ or mET , I need fR RS for fAE 2 f. Since I do not have
consistency of fR at the boundary, I provide the asymptotic properties of mET at the boundary
and interior points in Theorem 5. This property is useful in guiding the simulations described in
the next section, where I construct the Hestenes estimator mj{T rather than m; because m;T has

better finite sample performance m; Similarly, I define m ;.(x) for x < 0 by changing d; to 1 —d;.
Theorem 3. Suppose that K satisfies assumption 1, f € C}HR) and m*™ € C;([0,00)). Then, for

x > 0, the bias of mj;(z) is given by

E(mj(z)) —m*(x) = | sm™® () + rkoh? + O(h* + (nh) ™). (2.22)

Proof. Given that K satisfies assumption 1 and f(x) > 0, for n sufficiently large f () > 0 and
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E(f(X)) > 0. Thus, using Taylor’s Theorem, I expand mi(z) = q(g(x), f(x) = % at the point

(E(§(x)), E(f(x))) and obtain,

m"'x:E(g(x)) } g(z) — E(g(z —E(‘?(x)) fz) — BE(f(x
50 = o+ ey @~ @) - S (@ - B @)

B
B(f(x))?

_ Zita
where j(z) = L ¥, [K (L) + ot ok (“’ﬂh )] Y;d; and

Zn(@) = 3(3(x) = Eg(x))(f(z) — Ef(x))? /01(1 —1)° ; 7 dt

)
~8(f ()~ Bf@)? [ (1 gy PO U0 = Fot)
0 |Bf(2) +t(f(z) — Ef(@))]

Ldt.

Taking the expectations on both sides of the expression for 7 };(x) gives,

BOw) 1 cou(3(a), fla)) +

R _ E(g
B0 ) = 5wy~ BU@)

Now, from Theorem 1, I have

= [ (@) + oy [F@)m O (@) + 2mD (@) 7O (@) + 7O @ (@)] + O,
From standard results for kernel density estimators (see Li and Racine, 2007)
; h? 2 4
E(f(x)) = f(x) + 5 w2 f P (x) + O(R?).

Thus,
E(q(m)) =m*(z)+ hjliz mT® (z) + 2m+(1)(m)f(1)(93)

4
B(f()) 2 fw | TOm)

N

Now, from Lemma 1, Cov(f(z), §(z)) = O(-}), and from standard results for kernel density estima-
1

A

tors Li and Racine (2007), Var(f(x)) = O(;;). Lastly, from Lemma 2, E(Z,(z)) = O ((nh)_3/2>.
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Thus,

roh® 4+ O(h* + (nh)™h).

O]

Theorem 4. Suppose that K satisfies Assumption 1, f € Cgl(R) and m™ :[0,00) — R is such that

m* € C}([0,00)). Then, for x > 0, the variance of mj;(x) is given by

0 {’"“ S e S5 () K (5 ) du
V(g (x)) = K2 (u)du + 20 5754 SR E (L) duto)}, if x=0-
%{MIRKQ Jdu+o(1)}, if >0

Proof. Write a = E (§(z)) and b=FE ( A(x)) Then, mj;(z) = % =2+ 1(9(x) —a) - b%(f

b)) + Su(z) where Sy(x) = 2(a(x) — a)(f(x) — b) [ (L~ )(~1) Lt + (f(x) ~ D) ]

) FIE gt Then, E (i (x)) = § + E(S,) and V(i (2)) = V(i) + 52V (/(x)) -
)

o+t (@)—b)]
24 Cov(§(x), f(x)) + Wa(z) where Wy (z) = V(S,) + 2Cov(§(z), Sn

1 T Bt K () K (%) dut o}, @0

mt2(z)+o02
i L o o)) v=0

From the properties of the Rosenblatt-Parzen estimator f, I have % =3 V(f) =L {M)\O +0o(1) }

From Lemma 1,

R L Im*(0)£(0) 5+1ZJ “)du+o(l)y, =0
Conto o). f(0)) — 5 A (O)F(0) 558 5 J5T K () K (5) du+o(1)} |
L AmT(z)f(z) [g K*(uw)du+ o(1)}, x>0
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and consequently,

8 ’ .
b #{mx)fRKQ d’LL+O( )} 2> 0.

Finally, using Lemma 2 I obtain W,,(z) = O ((ﬁ)% Thus,

mT2( 0 +02 1 ki kj roo u u m*2(0)
ﬁ ( ) ES:]F 0 w; wJJ fO K (HTZ) K (ﬂTJ) du + £(0) )\0
~+ — m2 S k; u
O B b R (e a). o @2
m2(z)+o
1 (%AO + 0(1)) : x>0
]

As in the case of bias, a similar expression for the variance of M (x) can be obtained with the

only change being that < 0.

The next theorem gives asymptotic normality of 1 },,(z) for = > 0.

Theorem 5. Suppose that K satisfies Assumption 1, f € Ci(R) and m™ : [0,00) — R is such that

mt e Cp([0,00)). If E (](YZ — er(Xi))ali‘zﬂs |X> < o0. Then, for x >0,

(nh)z {rinfip(x) = B(ifyr (@) X1, Xn) | 5 N(0,¢/ () (2.24)

sz(())f(?o{ f%f}z (wlﬂzdu, ifr=0

o2 f ()Mo, if x> 0.

where ¢ =

X.
KA +l‘
Proof. Let wg = —1, kg = —1, ri(z) = 3511 Lil ¢ (h) It is intuitive to think r; as a reflection

7=0 w;
kernel — a kernel for reflection estimators. Then, M} (z) = fi(fx)) = Zlizl(ﬁij@dz fax) S fla),

thus I am concerned with the convergence in distribution of g(x). Note that

E(g(x)| X1, Xn) = (nh) ' Y ri(z)m* (Xi)d;
1=1
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and

9(z) = E@(@)[ X1, . Xn) = (nh) ™1 Y ri(2)(Yi — m™*(X0))di.
i=1

Let Zi, = T’i(x)m—n’zﬁ(xi))di and note that F(Z;,) =0 and

V(Zin) = E(Z3,) =

Now, let
52 — Zn:E(ZZ )= 14 /OO r2(z) f(X1)dXy
" = m nh 0
and
Zin ri(x)(Y; = m* (X;))d;
Xin = Sf =

(nh)? (‘22 . T%(ﬂﬁ)f(Xl)Xm)% |

Consequently, > i X;, = 1 and by Liapounov’s Central Limit Theorem > i ; X, 4 N (0,1)

provided that lim,_eo Y iy E(|Xm]2+5) = 0 for some d > 0. Note that

ri(x) (Y} —lm+(Xj))dz'\

|Xln| = T 1
(nh)e(n)’

with

on) = 5 [ i@ radx,

and
0
s (¥ — m* (X)))dif "

249 249

’Xm|2+6 —
(nh)™2 ¢(n) 2

¢(n) is non-stochastic. Therefore,

B(Xin ) = (mhe(n)) 3 B(rae) 7 [[Yi - m* ()] )
and
> B(1Xin*) = (nhe(n) 3 S B(lra(a) 2 |[v; —m* (x0)] a7
=1 =1
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Now, if

then

E(jri|*° ’ Vi = m*(X))] di

Consequently,
s 1 fo°
> E(Xin[*?) < (nh)"2(c(n) "' 7205 ; 1 ()0 F(X1)d X

Note that ¢(n) = hTs in Theorem 2, thus I have for z > 0, ¢(n) — 02 f(z) [ K*(u)du from (2.11).
2
For z = 0, ¢(n) — o2 £(0) [5° {ZSH ki (u%)] du from (2.15). By the ¢,-Inequality

i=0 w;

240 246
s+1 o s+1 o
k. wi +x k. w. +x
E ZU{( : ) <(s+2'"Y E JK(J)
=0 wj h =0 wj h
s+1 o 2+
1|k St
=(s+2)"ny B LK (Y —
o jz;)h wj ( h )
s+1 Q. 2+4
1 roo| k. o +x
= (s+2)'*h f/ My g a)da.
( ) jz;)h o |w; . f(a)
ot
J

Changing variable by setting u = —4—,

wj h

For x > 0, since f is bounded, K satisfies assumption 1.

246 oo
= 1y 0 [ (@) g (s = )

h

1
—F
h

[ @ g = )du < € [T K@ du < e

h

for sufficiently small h. For x =0, and C > 0
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[T @ st - 10 / TR )
0

C|K(u)\2+5 [f (wjhu) — £(0)] du + / )2 [ (wjhu) — £(0)] du
0

< pushC,0) [ 1 ()P du+ 2sup( ) /C K (P du

<e

f— Y

for sufficiently small h. Now, given that

|71 @ pwiha)du - 0) [ 71K )] du,
0 0

since nhy, — oo I have that lim, oo > 1y E(\Xm|2+5) = (. Hence,

which implies that

where
0) [ [zfig kg (wi)}2 du, ifx=0

o2 f () Ao, ifx>0.

e= i eln) =

Thus,

(nh)2 {mfip(@) = B (@) X1, Xn) } % N(0,¢/ ().

Next theorem gives the order of the conditional mean of anT.

Theorem 6. Suppose that K satisfies Assumption 1, f € C([0,00)) and m € Ci([0,00)). Then,
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1 m () £ O (z )
St (m@) () + W) ralt® + 0, (h*) + Oy ((nh)”2 * h4>

Proof. First, note that

fx) F(2)
where f(z) = % S, ri(z)d;. Since m(z) = i ?:lfz;()x)m(x)di’
Bl ()1 X)) = 7SS ra) (m(X) i)

E(Jn(x)) = E [r1(2) (m(X1) —m(x)) di]

h
= /_O:O K()u(z — hp)dyp — m(z) /_O:O K(¥)d(z — hap)d,

f(z), x>0
where 6(x) = . The first term comes equation (2.7), which is the integral
‘;ﬂ kijf(—wjz), =<0

representation of the bias of mj, from Theorem 1. The second term comes from Equation (2.6) in
Mynbaev and Martins-Filho (2018), which is the integral representation of the bias of fh from their

theorem 2.1. Using Taylor expansion.
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D= [ K@) (o) + @) R + 5 n @) ()t ) o

~ma / K(v ( @) (—h)? + 56 @)(—W) av
= p(x) + z)koh? + —/ K@)t
— () (5( )+ 50 et + o [ K@)t >dw) .

For x > 0, pu(z) = f(z)m(x) and 6(z) = f(x). Then,

E((a)) = J@)m(@) + 3 [F@ym® (@) + 20 @)/ O@) + £ @)m()] rah?
tor [ K@@
~m(a) (£(a) + Dot + o [~ K)o (@)as)

[F(@)m® (@) + 2mD (@) f D (2)] K2h? + O(RY).

N

Let B(z) = & [f(w)m@) (x) + 2m(1)(x)f(1)(37)] k2. Then E(J,(x)) = B(z)h? + O(h*). B(z) is the
coefficient of the leading term of J,, of the order O(h?). I next obtain the order of the remainder
term of J,, .

Jn = 250 ri(z) (m(X;) — m(x)) di. Letv; = $ri(2) (m(X;) — m(x)) d;. Then J,, = 237 v,
and V (Jn) = £V (v1) = 2(E(v}) — E%(v1)).
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B =E [;n
1 1y )
= 5B [rf (m(X1) = m(2))* di]
1 s+l k‘l k‘j )u()1+ %—Fﬂj‘ 9
h2 ”Z_:Owiij K( | (m(X1) —m(z))” dy
1B bk o (W or ,
i 2wy w (% p | (n(X0) = m(e) F(X)dXa
1 s+l . . e’} 1 1
=2 BE (s Deva) K (004 Dt a)
h —o Wi Wy _% w; wW;

1,7=0
(m(z + hu) — m(x))? f(z + hu)du.

By the Mean Value Theorem, for A € (0,1),m(z + hu) — m(z) = m™") (2 + Ahu)hu. Hence,

s+l 4 1 roo
EWw}) =h klk]/ u?K ((1 + i)a: + u)
i7=0 w; W Wy
2
Jx + u) (m(l)(x + )\hu)) f(z + hu)du

K<(1+1
wj

_z
h

Given that m, f € Cgl, by Lebesgue’s Dominated Convergence Theorem, as h — 0,
2 2
)z + u> (m(l) (x + Ahu)) f(z+ hu)du — (m(l)(az)) f(zx) /u2K2(u)du

/Oou2K((1+ul)i
3k

= O(1). Since E(vy) = E(J,)) = B(z)h? + O(h*) = O(h?), V(Jy(z)) = O (

d E(U%) —

h
Let Z,, = J, — h®?B(x). Then

72 = (Jn —E(J)) +E(Jy) — h?B(x)) ,
and
E (22
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Thus, by Markov’s Inequality,

E (mgr(x)| X1, -, X,) = m(z) + f(lz)‘]” =m(x) + fiﬁ) - f‘g) + f‘g)
s (f(lm i f<1>> 5
= m(z) + o5 (14 0(1) s
— m(z) + f(lx) (1+ 0,(1) (K2B(2) + T,)
= m(x) + h;?g) +0p (h?) + (1 + 0p(1)) f@)
0+ 505 1) 0 (e o)

Remark 2. Note that

Vi [infyp(2) — B(infyp(@) Xa, -+ . X,)]

VB2
= Vnh [m}}T(a:) — (m(m) - BJE(;;L + op (h2)>

+Op (h+Vnh?)

If Vnh? — 0, then O, (h + \/nhg) = 0p(1). Thus,

T 2
Vnh lmET(w) - (m(x) + BJE (i;l + o, (h2)>] & N0, ¢/ f2(2)).

An optimal bandwidth can be obtained by minimizing asymptotic weighted mean integrated

squared error (AWMISE). I will define an optimal h,,; for 772};(0) which is obtained by minimizing

Y 512 1 0%
AWMISE_/O {[B(O)h] +nhf(0)}da:+s.0,
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where 6 = [5° [ St ki g (w%)} du and s.o. denotes terms of smaller orders. Then, routine opti-

i=0 w;
0o g2§ 5
o= (3) {ji 0w } =G

J, o?6da }

where C = {4f [ F@ymt @ (@) +2mt O (@) fO) (2) ] da

mization gives

utl=

Ctl=

2.1.4 A Comparison with Local Linear Estimators

Local linear (LL) estimators are the most commonly used estimators for nonparametric re-
gression in RD models. Estimation is normally conducted by selecting a uniform kernel K and a
bandwidth that in effect constrains the estimation to subsamples of {Y;, X;}7 ; to the right (X; > 0)
and to the left (X; < 0) of the point of discontinuity = 0. Hence, two local linear estimators are

obtained i, (z) and 1, (z).

Letting Z;(x) = ( 1 X;—x >7 Z(x) = < Zi(x) ... Zn(x) )’ Kiz = K(Xli:

diag{ Kz} 1, and Y’ = ( Y, - Y, ), only the observations {(X;,Y;) : X; > 0}, are used to

“), K(x) =

estimate m™ (z) for z > 0.

/

k() = ( 1o ) (2() K@)2(@)) " 2(a) K ()Y (2.25)

where X; takes values in [0, +00). Similarly, observations {(X;,Y;) : X; < 0}, are used to estimate

m™ (z) where x < 0.

!

W () = ( o ) (22) K@) 2(2)) " Z(2) K (@)Y, (2.26)

where X; takes values in (—oc,0]. Expressions for the conditional bias and variance of M, (z) at

boundary points were obtained by Fan and Gijbels (1992) and are given by

A~ + + h o “37%_“17%“3,% 2
E (1}, (@) - m* (@)| X1, , Xp) = TmP(@) | =R o, () (2.27)
Mo,z flg 2 — Nl,%
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and

2 2
| HpeTog — 22/ g Mg g o2

h o,((nh)™h). )
o™, @2s)

V (i, @) X1, Xn) 2
(10,2 12,2 —-ui%)
Compared to the bias of LL estimators at interior points, given by E(mf, (z)| Xy, -, Xy,) —
mt(z) = %2m+(2) (z)k2 + op(h?), the leading terms of the LL estimators at the boundary and
interior points have the same order h? but different magnitude.? One way to interpret this is
that LL estimators adapt to the boundary by adjusting a regular kernel to an effective kernel,

substituting xe with

Compared to the variance of LL estimator at the boundary, the variance of the Hestenes estimators
at the boundary in equation (2.24) has leading terms of the same order 1/nh but different magni-
tudes. The coefficients of the variance of the LL estimator are impacted by the partial kernels at
the boundary point whereas those of Hestenes-based estimators depend on the chosen coefficients

of Hestenes’ extensions.

An asymptotic approximation for the conditional MSE of m;L (x) can easily be obtained as is

given by
ht Wee — s
2 9.z — M1,z 3 L
MSE(miL(x)]Xl, e Xp) = — <m+(2)(x)) R h 2 R
4 Mo,z Moz — [] =
'R
2 2
Hhamg —2agmpme Y iemy o (n+2)
nhf(x) b nh)’

5 \2
(Mo,%ﬂz,% - Ml,%)

and an optimal bandwidth h,; for mgL can be obtained by minimizing the leading terms in this

expression,
1 2

o = b, (2.20)

?Expressions for the unconditional bias and variance of the LL estimator when the regressors take values in R were
given by Fan (1993). In particular, he finds that E(rthrr(z)) — m(z) = h;m@)(a:)ng +o(h?) and V(ihrr(z)) =
2 —
M@)o + o((nh) 7).
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ny

2 2 2 2
2 [y @ —Hy 232 Wy 2 Mo,z —2fg @y o1y 2 +U] oM 2,
where t1, = (m(z)) —h h R and te, = — h h h Th —h R o Although
Mo, Z o £ =[] x 2 f(x)
h™ ™ h "h Ho, £ M2, & —H] o

a direct comparison the bias and variance expression for the Hestenes-based and LL estimators

is made difficult by the complexity of these expressions, my simulations will provide additional

evidence on their relative magnitudes.

2.2 Estimators for a Jump Discontinuity

The Hestenes-based estimators 1 j;-(0) and 71 ,-(0) can be used to estimate the jump at z = 0,
denote by J(0) by Jur(0) = 1 7-(0) — fig(0). Hahn et al. (2001) establishes the identification of
the RD model and uses the jump discontinuity of the expected outcome at that point to measure
an average treatment effect. Let Y be the outcome variable and X be the running variable. When
X € R is above a threshold = = 0, the individual gets the treatment and D = 1, otherwise the

individual does not get the treatment and D = 0. The regression jump is

limg o m™ (z) — limgpo m ™ (2)

= 2.
IO = G0 BDIX = 2) — limaro B(DIX = 2)° (2.30)
and, in particular, for a sharp RD design
— 1. J’_ _ 1. —
J(0) =limm™(2) —limm™(2),
because lim, . E(D|X = x) — limg. E(D|X = z) = 1. An estimator for J(0)
jHT(O) = 1;?3 () = 1;% gr(2) = mfrp(0) — g7 (0), (2.31)

where 17;(0) = limg o 77, (z) and M7 (0) = limgyo 1h 7 (z).

Theorem 7. Suppose that K satisfies Assumption 1, f € CHR), m* : [0,00) — R is such that

m* € CH([0,00)), and m™ : (—00,0] = R is such that m~ € C}((—o0,0]). Then,

Vb [ Jur(0) = (J(0) + U(0) + 0, (h?) )] 5 N (0,2¢£72(0)) , (2.32)
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where J(0) = m*(z) = m™ (2), U(0) = BH0) — B-(0). BH(0) = ym*@(0) + (w000

and B~(0) = Lm~®(0) + (%) Ko and

o 0) J5° [Sitg bk ()] du. a0

o f(x) Mo, if x > 0.

Proof. From the definition Jgp(0) = m7(0) — Mg (0),

E(Jur(0)|X) = E (mf;(0)) = E (15,(0))
=m™'(z)+ B*(0 )52h2 + op (hz) + 0, (( )1/2 h4>
— lm_(az) + B7(0)kah? + op h2 < 1/2 )]
+

= J(0) + U(0) + 0, (1?) + O, (( E h)

If vnh? — 0, then O, (h + \/nhg) = op(1).

>

vnh (Jur(0) = E(Jur(0)|X))

_ ik {jHT(o) - [J(O) +U(0) + 0, (h?) + 0, ((fSW + h4>] }
= Vil (i (0) = [ (0) + B0} + o, (12)]}
4V {7 (0) = [ (0) + B (01 + 0, (1))}

Because the regression estimators to the right 77,,(0) and to the left i ;;5(0) of the threshold are
constructed using random samples from each side of the threshold separately, the two regression
estimators are independent and the covariances between them vanish. By Theorem 5, I obtain the

asymptotic distribution of Jg7(0) as

Vah [Jur(0) = (J0) + U (0) + 0, (h2))] % N (0,2¢£72(0)) .
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2.2.1 A Comparison with Local Linear Jump Estimators

It is instructive to compare the asymptotic properties of my jump estimator Jur with those
of the local linear jump estimator from Porter (2003). Theorem 3(a) in his paper provides the
asymptotic distribution of the local polynomial estimator under the similar assumptions as my
setup, in which the derivatives of regressions on both sides are not required to be the same. When
the order of the polynomial p = 1, the estimator is local linear jump estimator. His LL jump

estimator @, for the true jump « has the following asymptotic distribution:

0¥+ (T) + 02~ (7)

Vnh (@, —a) - N <Ba, e’lr—lAr—lel> ,

fo(T)
where h2vnh — C, < 00,
B, = % (@ (@) —m®~ (@) 0! b (2.33)
73
Yo M1 (5() 51 , 00 . 00 7.9 .
= VA = se1 = (1,0, = J;~ k(u)u!du, and 6; = [ k*(u)u’ du, for
o2 01 02

j=0,1,2.
Some simple algebra manipulations show that the bias of the LL jump estimator is the difference
of the biases of the LL regression estimators from both sides. The coefficients only involve with

kernels and are equivalent to the coefficient of the leading term h? in equation (2.27).

Y2 1 Y2 M Y2
¢\r! —(10)—
73 I R 3
_ B s
roro — T‘%

The variance of the LL jump estimators is the sum of the variances of the LL regression

estimators from both sides. The coefficients only involve with kernels and are equivalent to the
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coefficient of the leading term -1 in equation (2.28)

e T7IAT Ly

1 Y2 M do 01 Y2 M 1

=00 e

-7 01 02 -7 Y 0

Y380 — 2717201 + 7302
(rora — r})?

Figure 2.2 shows the comparison on coefficients of the leading terms of asymptotic distribution
of the Hestenes regression estimator from theorem 5 with those of the LL regression estimator from
equation (2.27) and (2.28). The figure on the left shows the coefficients of the leading terms of bias
of the asymptotic distribution for the HT estimator and the LL estimator with four different kernels:
Gaussian, Epanechnikov, triangular, and rectangular. The adaptive feature of the LL estimators
determines that at the boundary, the LL estimator has a smaller bias than that at interior points
and gradually merges to be the same as the interior points. In contrast, at the boundary, the HT
estimator has the same bias as the interior point. Although the LL jump estimator has smaller
coefficients, its bias is not necessarily smaller than the HT jump estimator. The bias of HT jump
estimator, shown in equation (2.32), is the sum of two differences between the leading terms from
the regression estimators on both sides: one pair involves m(? and the other pair involves M

The bias of the LL jump estimator, shown in equation (2.33), is the difference between the leading

terms that only involve m(2).

The figure on the right shows the coefficients of the leading terms of variance of the asymptotic
distribution for the HT and LL estimators for the four different kernels. The adaptive feature of the
LL estimators determines that at the boundary, the LL estimator has a larger variance than interior
points because of less observations and gradually merges to be the same as the interior points. At
the boundary, the HT estimator has larger variances than the interior points but smaller variances
than the LL estimator for all kernels. The table below the graph provides the coefficients at the

boundary for the HT and LL estimators. It shows that the HT estimator have smaller variances
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Figure 2.2: Coefficients of Leading Terms of Asymptotic Distribution
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Coefficients of Variance at the Boundary
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HT 1.11 2.55 2.67 2.50
LL 1.79 4.50 4.80 4.00

than the LL estimators at the boundary for all four kernels. This implies that, more often than

not, the HT jump estimators have smaller mean squared error than the LL jump estimators.

2.2.2 A Discussion about Bandwidth Selection

One critical aspect of bandwidth selection is that in RDD, the bandwidth should be locally
rather than globally optimal in terms of some kind of criteria, such as MSE. This is different
from traditional literature where the bandwidth minimizes some kind of integrated versions of
MSE because I am less concerned about the performance of this estimator outside the point of
discontinuity. I want to pick up an optimal h that leads the optimal estimator for the jump at the
point where the function jumps. That is to say, I want to minimize some sort of local loss function
rather than an integrated MSE. The locality here is for = be exactly at the point of discontinuity.
That is why this bandwidth selection problem is different from the bandwidth selection problem

we normally encounter in nonparametric regression.

This problem is recognized when LL estimators are used in RDD. Imbens and Kalyanaraman
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(2012) provide an optimal data-adaptive bandwidth for LL estimators to minimize the mean-
squared error. In the same vein, it is desireable to develop the optimal bandwidth for the Hestenes
estimators. Since in RDD, I am only interested in the precise estimation of the jump at the
discontinuity point, a locally optimal bandwidth suits my purpose better than a globally optimal
bandwidth.

The choice of other parameters s, w;,and the kernel K might be intricately related to the
bandwidth h. Because I want to choose s and w; optimally, but the i I choose may be related
to the choice of s and w;. The optimal h for one element in the class might not be optimal for
another. The kernel K is also determining some results, specifically, the structure of the variance.
It is quite possible to have an optimal K for LL estimators that is different from the optimal K for

my estimators.

In a regular nonparametric regression estimation, we often obtain optimal rates for A by mini-
mizing the asymptotic mean integrated squared error (AMISE). Given that I have the asymptotic
theorem, if I come up with some criterion to pick up h, that criterion should not be AMISE as in
typical regression settings because I do not want to select bandwidth that minimizes global criterion
and I do not care about estimates away from the point of discontinuity. If I am going to develop a
theory about a bandwidth selection for fixed s and w;, I should choose some loss function at the

point of discontinuity that will lead to the optimal h.

This issue of the optimal rate of h is much more involved than just picking up a h that gives
the asymptotic result. The choice of h in terms of asymptotic result is straightforward, because
there is a great number of h that I can choose to give asymptotic results, namely h — 0 and
nh — oo. Choice of h is more complicated for finite sample estimation. Furthermore, Choosing
h by the conditional bias and variance could be different from choosing A by the unconditional
bias and variance. It depends on the structure of both distributions and the expansion of the bias
and variance. They may or may not give a different order of h. Once I derive the expressions
for unconditional bias and variance of my estimator at the boundary, I can choose the optimal
bandwidth for my estimators by minimizing the loss function associated with the unconditional

bias and variance such as the mean squared error.
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A related issue is optimal inference. In regular regression settings, suppose the regression has
a continuous second order derivatives. When we calculate the optimal bandwidth for an estimation
based on the minimization of AMISE, we get an bandwidth of the order of (1/n)Yc. If we use
that for inference, the bias does not vanish. It is commonly said that the optimal bandwidth is
not suitable for inference. This happens with LL estimators in RDD setting. Calonico et al., 2014
try to solve the problem with the bias estimator to correct inference. This is because people who
are dealing with estimating regression discontinuity are just using unmodified LL estimators, so
the problem that occurs in normal settings reappears in RDD settings. Will my estimators have
the same problem? if there is a loss function for optimal h, and if the optimal A based on this
loss function indeed leads to an asymptotic distribution that has a bias and that bias does not go
away when I use the optimal A, then I will have the same problem. But for now I cannot reach the
conclusion. I will only know what is happening once a loss function is defined and an optimal h is

chosen.

2.3 Monte Carlo Studies

I conduct simulations to compare the finite performance of the Hestenes (HT) estimators with
the classical and popular regression estimators — Nadaraya-Watson (NW) and local linear (LL)
estimators. I design eight groups of Monte Carlo experiments. Each group consists of four experi-
ments that generate random samples according to the four regression functions that show different
types of jumps. I examine the performance of these estimators under the following scenarios: 1)
different bandwidth selections: the plug-in, cross-validation, and Jackknife cross-validation method;
2) choice of kernel functions: the Gaussian, Epanechnikov, Triangular, and Rectangular kernels;
3) different sample sizes: n = 500 and n = 1000; and 4) density of the regressor X: a standard
Gaussian and a normal distribution with 4 = 0.5 and ¢? = 1. I run each Monte Carlo experiment

with 2,000 repetitions.

The primary focus of my comparisons is the estimates at the point of discontinuity, so I measure
performances by bias, sample variance (VAR), and root mean squared error (RMSE) of estimators at

the discontinuity point. Although estimates at interior points are not the main focus, I check overall
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estimation performance. I measure root average squared error (RASE) for all points including the

boundary point and interior points.

Let x = 0 be the discontinuity point, /(x) be an estimate for the regression function m(z) at
z, and J(0) be an estimate for the jump J(0). I generate M samples and calculate the following

statistics for /m(z) and J(0):

2 A =~ 2 R 5
Bias(0) = e J<\jm - - VAR(D) = 2%34(9_”11_ ) , RMSE(0) = J e <]\04m ~!) ,

where 0 = s Opm, 0 denotes J(0), m*(0), or m~(0), and § denotes J(0), 7+ (0) or i~ (0). I

also calculate

A

RMSE(6)

minRMSE(6)
0

I calculate these statistics for 7i(z) at all points of evaluation. For each sample and estimator, I

calculate a root average squared error (RASE) over K evaluation points,

for the sample m.

R On(ag) — m(x))?
RASEm_\/ k=1 I

Then I calculate an average of RASE across all generated samples,

M RASE,,
AMSE = ==
I also calculate
Rel A(f) = _AMSE()
minAMSE(6)
0

2.3.1 Estimators Under the Study

I compare three types of estimators: NW estimators, LL estimators, and Hestenes estimators.
For all three estimators, I split samples using X; > 0 and X; < 0. I use observations to the right

of the discontinuity point to estimate the regression function on the right and use observations to
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the left of the discontinuity point to estimate the regression function on the left, and then calculate

the jump at the discontinuity point.

I construct NW estimators as

(nh)~t S K(2-5)Yd;
(nh)~1 S0 K(%2)d,

mﬁw(fﬂ) =

for x > 0.

Similarly, I define 77y, (x) for x < 0 by changing d; to 1 — d;.

For LL estimators, I use the modified version of the LL estimator by Fan (1992) to avoid

singularities:

-2
d; )

n n
ifp () =Y wiYidi/ | > wid; +
=1 =1 =1

n
| — Jj=

where w; = K(z_hXj)[sn,g — (= Xj)sn1] and s, =377 K(z_hXj)(x — X;)L 1 = 1,2. Similarly, I
define 7 ; (x) for x < 0 by changing d; to 1 — d;.

I construct HT estimators mpgr as in equation (2.21). Hestenes estimators are denoted as Hsb,
such as HOO, H10, H11, or H21, where the first digit stands for the degree of smoothness of the
composite function u(x), s = 0,1,2, and the second digit denotes which sequence of w; is used:

= 0 means the sequence w; = 1/i is used while b = 1 means the sequence w; = i is used, with

1=1,2,...,n.

Subsequently, I obtain the jump estimator Jy(0) = m (z) — 1y (z), where d could be the NW,
LL, or HT estimator. i (x) is the regression estimator on the left and m  (x) is the regression

estimator on the right of the discontinuity point.

2.3.2 The Data Generating Process (DGP)

For each experiment, I generate data using the following model:

Y=m(X)+e where € ~ N(0,1).

3As proved by Fan, 1992, this estimators has the same asymptotic properties as the regular LL estimator described
in equations (2.25) and (2.26), so I can use properties derived from the latter estimators for comparison.
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The regressor X is generated with a standard normal or a normal with x = 0.5 and 02 = 1. I

design the four regression functions m(X) that have different types of jumps. Table 2.1 shows

these regression models, the changes in m, and the sign changes in the first derivative m(*) and

second derivatives m(?) at the point of discontinuity.

Table 2.1: Regression Models
Am: Changes in m(x) at z =0, .

m~ W mtD ;=@ and m+@: the signs of the first and second order derivatives of m(x) to the

left and right of z = 0.

m_(Q) m+(2)

Regression Am  m—1D  pmtd)
1), <0
Reg1 m(x) = (x +1) v drop + +
sin(2rz +0.17), x>0
sin(2rz +0.17), 2 <0 _
Reg 2 m(x) = um + +
g2 mi) {—(w—1)2+2, z>0 P
—1)?, <0
Reg3 m(x) = {(xi )ow drop - -
+1 1, X Z 0
— sin(2 0.1m), <0
Reg 4 m(z) = 1sm( mx +0.17), =« fump ) i
=1 1, xT Z 0

_|_ -
+ +
- +

Figure 2.3 shows the true regression function and the estimates from the NW, LL, and HT

estimators. As expected, the estimators differ in their behavior the most in the vicinity of the

discontinuity point. NW estimators have a significant bias while the LL and HT estimators stay

close to each other and are close to the true regression functions at the boundary.
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Figure 2.3: Regression Functions Estimated by Three Estimators
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Graphics can give us an intuitive impression of each estimator’s behavior, but to evaluate
performance across estimators, we rely on large sample simulations to show the distribution of the

estimators.

2.3.3 Simulation Results

The simulation results of the eight group experiments are shown on the eight tables 2.2 to 2.9.

For each table, Panel A shows the results of the jump estimator and Panel B shows the results of the
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regression estimators to the left and right of the discontinuity point. The bias of the jump estimator
is the difference of the biases of the regression estimators from both sides while the variance of the
jump estimator is the sum of the variances of the regression estimators from both sides. AMSE
measures the error over the whole domain, which is not my main concern since I am interested in
the estimates of the jump. As expected, all three types of estimators have similar values for their
AMSE. Across the tables, I observe that the NW estimator has the largest bias at the discontinuity

point in all cases.

The first group of experiments has the default setup: the bandwidths are chosen through the
cross-validation method; the kernel is the Gaussian kernel; and the sample size is 500; The regressor
X is generated with a standard normal. Table 2.2 shows the results of the jump and regression
estimation. The HT estimators have smaller (3 out of the 4 jumps and 7 out of the 8 regressions)
or similar biases as the LL estimators. The HT estimators have the smallest RMSE in 3 out of the

4 jumps and 5 out of the 8 regressions.

Table 2.3 shows the results of the jump and regression estimation as the sample size increases to
1,000. Again, the HT estimators have smaller (3 out of the 4 jumps and 7 out of the 8 regressions)
or similar biases as the LL estimators. The HT estimators have the smallest RMSE in 4 out of
the 4 jumps and 6 out of the 8 regressions. Compared to Table 2.2, as the sample size increases,
the bias and variance of the LL and HT estimators become smaller while the variances of the NW
estimator become smaller but their biases have almost no change. This accords with the theoretical
result that the biases of LL and HT estimators decrease in the order of h? while the biases of NW

estimators decrease in the order of h.

The simulations conducted above use a standard normal distribution to generate X with the
peak of the density occurring at the discontinuity point. This splits observations almost evenly
between the two sides of the discontinuity point, which in reality is not always the case. For
example, in the case of using students’ grade as the running variable to decide whether a third-year
student can be promoted to the next grade or will be held back for one more year, the cutoff grade
(let us say 60 out of 100) is often located away from the peak of the grade distribution (say 80

out 100). Therefore, it is useful to check how estimators detect the jump when the cutoff point is
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away from the peak of the distribution of the running variable. Table 2.4 shows the performance
of these estimators when the peak of the density function f is shifted away from the discontinuity
point. The regressor X is generated with a normal distribution with © = 0.5 and 02 = 1. The HT
estimators have smaller (2 out of the 4 jumps and 5 out of the 8 regressions) or similar biases as the
LL estimators. The HT estimators have the smallest RMSE in 4 out of the 4 jumps and 4 out of
the 8 regressions. Comparing to table 2.2, the default setting, there are no fundamental changes in
performance of estimators when the peak of the density function f is shifted away from the cutoff
point.

Bandwidth selection is critical in nonparametric estimation. When I compare performance
of different estimators, I want to use a method that is impartial to all estimators when choosing
bandwidth. In the default setting, I choose bandwidth by the cross-validation method. That is,
I choose a globally optimal bandwidth by minimizing the sum of the squared deviations between
the observed outcomes and the true regression function. The calculation depends solely on the

construction of the estimators and the true regression functions.

I add another two methods, the plug-in and jackknife cross-validation method. For the plug-
in method, I choose a locally optimal bandwidth by optimizing the leading terms of the mean
squared error of the regression estimator at the boundary point. This method uses the asymptotic
properties of the estimators at the boundary. Again, I take advantage of the fact that I know the

true density and regression function. For the NW estimator, I use results from Corollary 1 and 2

to get
m(0) V(0
AMSE(h) = {—;m(O) s < (0}{0) ) 1o
0 D) , 7D (O)m(0 i
T2 (m@)(o) IO 7(0) ) “}
1 [m?(0)+o?
+ oh WU0,0 + s.0.

and then obtain the optimal bandwidth by numerically solve the problem of minimizing AMSFE. For
the LL estimator, I obtain the optimal bandwidth using equation (2.29) that minimizes conditional

mean squared error. Lastly, for the HT estimator, I calculate the optimal bandwidth using equation
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(2.17).

For the jackknife cross-validation method, I choose a globally optimal bandwidth by minimizing
the sum of squared deviations between the observed outcomes and the regression estimates, which
is obtained by applying respective kernel estimators, the LL, NW, or HT estimators, to leave-one-
out samples. As described in equation 2.23 of Li and Racine, 2007, the h is chosen by minimizing

the objective function,

n X —X.;
K (22,
where MW (z) = L K

—3 E;;vK(Xl;Xi)
get the leave-one-out LL and HT estimators by replacing the NW estimator with the LL and HT

is the leave-one-out NW estimator of m(X;). Similarly, I can

estimators. This is a fully data-driven method that can be easily applied in empirical research.
Among all three method, the jackknife cross-validation method is the most time-consuming, which
requires n? estimations, followed by the cross-validation method using the true regression, which
requires n estimations. The plug-in method uses the least computational time because it does not

involve any estimation.

Table 2.5 shows the simulation estimation results of using the plug-in method. The HT esti-
mators have smaller (2 out of the 4 jumps and 5 out of the 8 regressions) or similar biases to the
LL estimators. The HT estimators have the smallest RMSE in 4 out of 4 jumps and 6 out of 8
regressions. Table 2.6 shows the simulation results of the jackknife cross-validation method. The
HT estimators have smaller (3 out of the 4 jumps and 7 out of the 8 regressions) or similar biases
to the LL estimators. The HT estimators have the smallest RMSE in 4 out of the 4 jumps and 6

out of the 8 regressions. Across the three tables, 2.2,2.5,2.6, the results are qualitatively similar.

Kernel plays an important role in nonparametric estimation. In the default setting, I use the
Gaussian kernel, which has support on the whole real line. I add another three kernels with compact
support: the Epanechnikov kernel, the triangular Kernel, and the rectangular Kernel. The Gaus-
sian kernel assigns weights to all observations and has convenient mathematical properties. The
Epanechnikov kernel is optimal in a mean squared error sense for continuous regressions (Epanech-

nikov, 1969). Cheng et al. (1997) show that the triangular kernel is the minimax optimal boundary
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kernel. That is, over all regression functions of the same smoothness and among all possible choices
of kernels for linear estimators, the triangular kernel minimizes the asymptotic mean-squared error.
A typical approach to implement RDD in empirical research is to conduct a local linear or local

polynomial estimation through the OLS procedure, which, in essence, uses the rectangular kernel.

Table 2.7 shows the simulation results of using the Epanechnikov kernel. The HT estimators
have smaller (1 out of the 4 jumps and 4 out of the 8 regressions) or similar biases to the LL
estimators. The HT estimators have the smallest RMSE in 3 out of the 4 jumps and 7 out of
the 8 regressions. Table 2.8 shows the simulation results of using the triangular kernel. The HT
estimators have smaller (3 out of the 4 jumps and 7 out of the 8 regressions) or similar biases to the
LL estimators. The HT estimators have the smallest RMSE in 4 out of the 4 jumps and 8 out of
the 8 regressions. Table 2.9 shows the simulation results of using the rectangular kernel. The HT
estimators have similar biases as the LL estimators. The HT estimators have the smallest RMSE

in 4 out of the 4 jumps and 8 out of the 8 regressions.
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Over all eight groups of experiments, the HT jump estimators have the smallest RMSE in 29
out of the 32 jump estimation experiments and the HT jump estimators have the smallest RMSE
in 50 out of the 64 regression estimation experiments. In summary, the HT estimators perform
better than the NW estimators in all cases. Compared to the LL estimators, the HT estimators
have similar or, in some cases, smaller bias size. In most cases, the HT estimators have smaller
variance and smaller mean squared error. These findings about the finite samples distributions of
these estimators — bias, variance and RMSE — agree with my theoretical predictions. In addition,
they are not affected by types of regression functions, density functions of regressors, methods of

obtaining optimal bandwidth, or choice of kernel functions.

2.4 Empirical Illustration

To illustrate the applicability of my estimators in empirical settings, I use data collected by
Litschig and Morrison (2013) who use a regression discontinuity model to examine the impact of
intergovernmental transfer programs on education and poverty reduction outcomes. I begin with a
discussion of the assumptions underlying RD designs and their implications for empirical modeling.
I then describe how a typical empirical RD model is estimated to verify these assumptions and

address some implementation issues.

2.4.1 Assumptions on RDD and Their Implications for Empirical Studies

Identification of RDD depends on several assumptions, which have important implications in
empirical studies. The most important assumption is on the regression function associated with
the outcome variable. Instead of assuming a specific functional form for the regression function,
identification of RD models assumes the existence of a smooth regression at the vicinity of the
discontinuity point. This is in contrast with the difference-in-difference (DID) method, where
a more stringent condition “equal trend” is required: regression functions before and after an
intervention must be the same. The reason for this difference is that RD designs assess a local

average treatment effect (LATE).

The second assumption relates to how a treatment is assigned in association with a running
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variable. Around the discontinuity point, individuals are similar but receive different treatments
based on whether their associated running variable values are above or below the threshold, which
determines the treatment group and control group. I assume that the jump in the regression of
outcomes is actually caused by a treatment variable rather than other covariates and the running
variable has a continuous density. To verify the empirical validity of these assumptions, researchers
check that all other covariates across the discontinuity point are continuous to ensure that the run-
ning variable, rather than other covariates, is the true impetus for the treatment effect. Researchers
normally follow the recommendation from McCrary (2008) to check that the density of the running
variable around the discontinuity point is continuous to ensure that no individual endogenously
manipulates the running variable. This also trivially satisfies an assumption that sample data exist
on both sides of the discontinuity point. This is an important theoretical assumption for regression
estimators that use one-sided data (NW or LL) to ensure that the denominator, which consists of

a kernel density estimator, is not equal to zero.

Lastly, an important assumption for identification is knowledge of the point of discontinuity —
that is, the discontinuity of treatment status when the running variable crosses the discontinuity
point is known to the econometrician: in sharp RDD, the jump in the probability of receiving
the treatment is equal to one while in fuzzy RDD this jump in probality is between 0 and 1.
Without this underlying assumption, the jump in the expected outcome will not be assigned to any
treatment. Moreover, as shown in equation (2.30), the assumption ensures the denominator of the

estimator is not zero.

One common practice of implementing empirical RDD is that, instead of using all data to per-
form a nonparametric estimation, researchers often use a compactly supported kernel by arbitrarily
restricting a running variable to a small range of values around the threshold. They also obtain
estimation with different bandwidths to ensure the estimation of the parameter of interest is not
sensitive to different bandwidths. However, this procedure has several drawbacks. First, they do
not know which bandwidth is optimal, and therefore, which estimate is the best. Second, when
there is a high volume of data in a small range of discrete running variable values (running variables

are often discrete, such as age, test scores, or the number of employees of firms), and the variance
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of the estimate is large. Third, data away from the threshold have information that can influence
the estimated regression and, therefore, affect the jump size estimate. By contrast, my estimation
procedure allows the bandwidth to be chosen optimally and any kernel function including kernel

without a compact support such as Gaussian kernel to be used.

2.4.2 A Typical Empirical RD Model Estimation Procedure

The running variable X is not an object of direct interest, but it is of interest insofar as
the expected value of the outcome variable Y has a jump at a particular value of X. Normally,
economists are interested in regression slopes, but not in this case, where the primary focus is on
the regression jump. At the discontinuity point, another variable D — the treatment variable —
experiences a jump, and the jump in the expectation of Y is thought of as the average treatment
effect (ATE) of the treatment D on the outcome Y under the assumptions discussed in the previous

subsection. Empirical work using RDD often involve the following procedures:

1. Use a scatter plot to visually check if there is a jump in the regression function of the outcome

variable and treatment variable with respect to the running variable at the discontinuity point.
2. Perform regression estimation on the outcome and treatment variable.

3. Conduct a robustness test to ensure that no other covariates have a jump at the discontinuity

point.

4. Conduct a test suggested by McCrary (2008) for checking that the density of the running

variable is continuous at the discontinuity point.

5. Repeat estimation with a truncated sample to ensure that points far away from the disconti-

nuity point do not exert undue influence.

Abstracting from specific empirical context or designs — sharp or fuzzy — estimations in RD models
can be simply categorized into regression and density discontinuity estimation at the discontinuity
point. The regression discontinuity estimation includes estimation of the regression discontinuity

of the outcome variables, the treatment variable, and, sometimes the pre-treatment variables, with
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respect to the running variable, while the density estimation includes the discontinuity in the density
of the running variable. In many studies (for example, Litschig and Morrison, 2013, Matsudaira,
2008), a local least squares method is used for regression estimation and a histogram or McCrary’s

procedure is used to check for a discontinuity in the density.

2.4.3 An Empirical Example

Litschig and Morrison (2013) exploit an opportunity provided by the passing of Decree 188181,
a federal funds transfer plan in Brazil, which stipulates that federal funds — FPM (the federal
Fundo de Participa¢io dos Municipios) — must be distributed to local communities according to
municipal population. Per capita spending on intergovernmental transfers thus undergo a jump
at several population thresholds, which constitutes a sharp RD design with multiple thresholds.
The treatment variable is per capita spending and the running variable is the population of the
municipality. The impacts of the treatment are measured by outcome variables such as years of
schooling, literacy rate, poverty rate and political party reelection rate. The study estimates the
jump in the conditional means of the outcome variables using least squares procedure and the jump
in the density of the running variable using the method recommended by McCrary (2008). To show
the robustness of their results, Litschig and Morrison vary the choice of bandwidth, use various
truncation of their sample with respect to the percentage of population away from the discontinuity
point, and try different functional forms, including linear, quadratic, cubic and quartic. Compared
to their approach, my approach is more flexible. Instead of arbitrarily choosing the bandwidth, I
choose an optimal bandwidth based on the sample; instead of trying different functional forms, 1

do not specify any functional form.

A direct comparison between my estimation results with Litschig and Morrison’s is not possible
because I choose different parameters, such as bandwidth. Nevertheless, I try to produce compara-
ble results using my estimators. Since they have estimates with and without additional covariates,

I estimate the jump in the regression of the running variable with and without extra covariates.
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For estimation without extra covariates, I consider

mt(X)+e X>0
Y = : (2.34)

m-(X)+e X <0

where X is the running variable: the population of a municipality and Y represents either a treat-

A

ment or the outcome variable. The jump size is estimated by J(0) = lim, o ™" (2) — limgpo 770~ (2).
For estimation that includes additional continuous covariates, I propose the following additive

model,
Y =mi(Xq) + ma(Xa) + -+ mp(Xp) +e,, (2.35)

mi(z) if x>0
where my(x) = and ma, ..., m, are sufficiently smooth. To estimate the jump,

my (z) if £ <0

I compare the results from the local linear estimators by Calonico et al., 2018 with the two-stage
estimators I proposed — that uses the marginal integration estimator as the first-stage estimator
and the Hestenes estimator as the second-stage estimator. The details of these two estimators are

in Chapter 3.

I use two methods to obtain an optimal bandwidth A: a plug-in rule of thumb and a jackknife
cross-validation method. For the rule-of-thumb method, h = n~'/std(X). For the jackknife
cross-validation method, I choose h to minimize the sum of squared leave-one-out residuals using

observations to the right and to the left of the threshold respectively.

The estimation procedure is straightforward. I use Hestenes estimators to estimate the jump
in the regressions of the treatment variables and outcome variables, and I use Hestenes density
estimators proposed by Mynbaev and Martins-Filho (2018) to estimate the jump in the density of

the running variable.

Figure 2.4 shows the estimates of the treatment variable from the model 2.34. It depicts four
scenarios: RT-LL, the local linear estimator with the bandwidth obtained by the rule of thumb
method; RT-HT, the Hestenes estimator with the bandwidth obtained by the rule of thumb method;

CV-LL, the local linear estimator with the bandwidth obtained by the jackknife cross-validation
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Figure 2.4: Impacts on Total Spending, Other Revenue, and Own Revenue
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RT-LL: the local linear estimator with the bandwidth obtained by the Rule of Thumb method; RT-
HT: the Hestenes estimator with the bandwidth obtained by the Rule of Thumb method; CV-LL:
the local linear estimator with the bandwidth obtained by the cross-validation method. CV-HT:
the Hestenes estimator with the bandwidth obtained by the cross-validation method.

method. CV-HT, the Hestenes estimator with the bandwidth obtained by the cross-validation
method. The results shows the treatment is assigned: there is a jump in total spending per capita.
This agrees with the authors’ explanation that the federal transfer caused an increase in per capita

public spending without crowding out other types of spending.

Figure 2.5 shows the estimates of the outcome variables from the model 2.34. It depicts the
same four scenarios as Figure 2.4. The results show that there is an increase in years of schooling
for the 19-28 age group, a decrease in the illiteracy rate and poverty rates, and an increase in the

reelection rate of the incumbent party. These agree with the authors’ findings.

Table 2.10 displays the jump estimates of the treatment and outcome variables from the uni-

variate regression model 2.34. To compare with their results, I show their corresponding estimates.
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Figure 2.5: Impacts on Schooling, Literacy, Poverty, and Party Reelection
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RT-LL: local linear estimators with the bandwidth obtained by the Rule of Thumb method; RT-
HT: Hestenes estimators with the bandwidth obtained by the Rule of Thumb method; CV-LL: local
linear estimators with the bandwidth obtained by the cross-validation method. CV-HT: Hestenes
estimators with the bandwidth obtained by the cross-validation method.
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The obvious difference is that I choose the bandwidth optimally by the rule-of-thumb or jackknife
cross-validation method while they choose bandwidth arbitrarily. Given the estimator and the
bandwidth selection method, I know optimal estimates while they do not know which estimates
are optimal. The estimates are qualitatively similar but quantitatively different. The estimates
from LL and HT differ less than the estimates from different bandwidth selection methods. Since
the rule-of-thumb method only uses the sample data of the running variable to determine the
bandwidth whereas the cross-validation method uses the sample data and estimation methods to
determine the bandwidth, the latter, in general, provides better bandwidth selection. As demon-
strated from the Monte Carlo studies in last section, HT estimators have smaller MSE than LL
estimators, which means that HT estimators can provide more precise estimates and powerful tests
than LL estimators. In this specific example, the estimates provided by the HT estimators using
the cross-validation seem to have smaller effects compared to the estimates provided by Litschig

and Morrison.

Table 2.11 displays the jump estimates of the treatment and outcome variables from the mul-
tivariate regression model 2.35. Compared the estimates from the univariate regression model, the
effects become smaller. However, the HT estimates from the multivariate regression model (column
2 in Table 2.11) are close to the estimates of HT estimators from the univariate regression model

(column 4 in Table 2.10) than the LL estimates.

Finally, I check the continuity of the density of the population running variable. Figure 2.6,
which corresponds to their online appendix Figure 1, graphically presents estimates from the LL
density estimators by Cheng (1994) and the Hestenes density estimators by Mynbaev and Martins-
Filho (2018). The two estimates almost completely overlap. Since the jump density estimators by
McCrary (2008) are based on the LL density estimators by Cheng (1994), it is not surprising that
Figure 2.6 looks very similar to Litschig and Morrison’s analogous Figure (online appendix Figure
1). Table 2.12 compares my density estimates with theirs. The estimates on the jump from the
three estimators are slightly different, but they all lead to the failing to reject the null hypothesis
that there are no discontinuities at any of the six cutoff points. The discrepancy between the

estimates from the LL and McCrary estimators could be explained by differences in the bin size
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Table 2.10: Univariate Regression Without Additional Covariates

Estimates on Treatment and Outcome Variables

Estimators LL HT LL HT Litschig & Morrison
Bandwidth Rule-of-thumb Cross-validation Arbitrary
h L R L R L R L R
Treatment
h 0.195 0.214 0.195 0.214 oo 0.077 00 0.074 2 3 4
Spending 0.196 0.211 0.165 0.168 0.158 0.161 0.197
Outcomes
h 0.195 0.214 0.195 0.214 00 00 5.461 2.794 2 3 4
Schooling 0.572 0.564 0.443 0.332 0.322 0.516 0.528
h 0.195 0.214 0.195 0.214 00 00 3.230 2418 2 3 4
Literacy 0.058 0.058 0.048 0.036 0.0567 0.063 0.059
h 0.195 0.214 0.195 0.214 00 00 1.201 4.196 2 3 4
Poverty -0.058 -0.062 -0.068 -0.049 -0.037 -0.06 -0.054
h 0.195 0.214 0.195 0.214 oo 029 3.124 0.253 2 4 10
Reelection 0.062 0.047 0.018 0.021 0.119 0.086 0.106

Note:Estimates of Litschig & Morrison are from Litschig and Morrison (2013): Spending from Table
4 row 1, Schooling from Table 5 row 1, Literacy from Table 7 row 1, Poverty from Table 8 row
1, Reelection from Table 9 row 1. The running variable, pscore, is the population of municipality
at the neighborhood of the threshold measured in percentage. The rows indicated by h are the
bandwidth values. The value oo is resulted from the Cross-validation method, which chooses a
large values beyond the range of the running valuable. L indicates the bandwidth obtained for the
regression to the left of the threshold and R indicates the bandwidth obtained for the regression to
the right of the threshold.
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Table 2.11: Multivariate Regression With Additional Covariates

Estimates on Treatment and Outcome Variables

Estimators LL HT Litschig & Morrison
Bandwidth  Rule-of-thumb Arbitrary
Treatment
h 3.257  3.257 2 3 4
Spending 0.124  0.197 0.191 0.145 0.167
Outcomes
h 3.257  3.257 2 3 4
Schooling ~ 0.200 0.314 0.225 0.301 0.275
h 3.257  3.257 2 3 4
Literacy 0.024 0.039 0.047 0.049 0.041
h 3.257  3.257 2 3 4
Poverty -0.017 -0.048 -0.064 -0.051 -0.037
h 3.257  3.257 2 4 10

Reelection  0.026  0.063 0.186 0.106 0.103

Note: Estimates of Litschig & Morrison are from Litschig and Morrison (2013): Spending from
Table 4 row 1, Schooling from Table 5 row 1, Literacy from Table 7 row 1, Poverty from Table 8
row 1, Reelection from Table 9 row 1. The running variable, pscore, is the population of municipality
at the neighborhood of the threshold measured in percentage. The rows indicated by h are the
bandwidth values.
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Figure 2.6: Population Density Estimated by LL Estimator and Hestenes Estimator
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The population is centered at the thresholds.

and choices of bandwidth.

In summary, the empirical example shows that the common practice of using OLS procedures
with arbitrarily bandwidth selection to implement RDD provides good preliminary results that are
similar to the estimates from the LL and HT estimators. However, researchers need to be aware
the limitations of this method: the rectangular kernels and arbitrary bandwidth selection. To avoid
this shortcomings and obtain more precise estimates, researchers should consider to use the HT
estimators since they have smaller MSE than the LL estimators in most of cases. Including addi-
tional covariates, estimates from the HT estimators are similar to its univariate counterparts while
the LL estimators give quite different estimates. This prescient finding will be further confirmed in
Chapter 3 that the HT estimators with additional covariates provides the smallest MSE, followed
by the univariate HT estimators, the LL estimators with additional covariates, and the univariate

LL estimators. This gives another reason to use the HT estimators especially when covariates (or
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Table 2.12: Density Estimates on Population

The Cutoffs Local Linear Hestenes McCrary (SE of McCrary)

10188 -0.0288 0.0456 -0.0720 0.095
13584 0.0331 0.0291 0.0110 0.111
16980 -0.4656 -0.3222 0.1800 0.136
23772 0.1955 0.0393 0.0540 0.174
30564 0.1336 -0.1626 -0.0110 0.269
37356 -0.6823 -0.5325 0.3500 0.357

pre-treatment variables) are not available.

2.5 Empirically Motivated Simulations

Empirical exercises are useful as indicators to show the applicability of an estimator and to
compare qualitative/quantitative results between estimators, but they are not useful as indicators
to compare relative estimation performance. We can not verify whether one estimator performs
better than the other empirically except we know something about truth. RMSE in Monte Carlo
simulations is better metric and comparing asymptotic biases and distributions is also desirable.
Here, to relieve the concern that regression functions are arbitrarily chosen in Monte Carlo studies,

I conduct empirically motivated simulations to verify the findings.

I use the estimated regression from the empirical example of Litschig and Morrison (2013) as
the true regression to generate samples. At the same time, since the running variable and the
outcome variables have different marginal distribution on the different intervals of the real line, 1
make sure the generated sample have the similar marginal distributions as their counterparts from
the empirical sample. Using the generated samples, I compare the finite sample performance of

NW, LL and the Hestenes Estimators.

First, I generate samples of the running variable. The running variable, pscore, is the population
of a county or municipality, which measures in percentage how far away a county’s population is
over/under the cutoff and folds multiple population cut-offs into one. cut-off. The distribution
of pscore looks more like a truncated normal, so I use a truncated normal to fit the marginal

distribution of the running variable.
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Figure 2.7: The Histogram of Original Samples and the Generated Samples
The running variable The Outcome Variables
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Second, I generate samples of the outcome variables that use the estimated regression as true

20(

o

15

o
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o

33
o

regression. Years of schooling are rational numbers between 0 and 9, so I use truncated normal to
generate a sample of years of schooling. The literacy rate is between 0 and 1 and the poverty rate is
between 0 and 1. Following the paper by Ferrari and Cribari-Neto (2004), I take parameters from
the distribution of the literacy rate and the poverty rate, and use Beta distribution to generate
samples of these two outcome variables respectively. Finally, the party reelected rate is either 0 or
1. T use binomial distribution to fit the party reelected rate. Figure 2.7 shows that the generated
running variable has almost the same marginal distribution as the real running variable, and the

generated outcome variables have similar marginal distributions as the real outcome variables.
Figure 2.8 shows the estimated jump in the regression of outcome variables using NW, LL and
the Hestenes estimators.

Table 2.13 displays the simulation results. In all cases, NW estimators have the largest biases.
While the Hestenes estimators have smaller or similar biases to the LL estimators, their RMSE is
only half of that of LL estimators. These results agree with the theoretic prediction and are in
line with the results of Monte Carlo studies from section 2.3. Thus, in this empirical motivated

simulation, my Hestenes estimators outperform the LL estimators in terms of mean squared error.

Through Monte Carlo simulations, both theoretically and empirically motivated, I have verified
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Figure 2.8: The Estimated Jump in the Empirically Motivated Simulation
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that in a number of setting, the MSE of my estimators is smaller than that of commonly used LL
estimators. Consequently, there are DGP out there that my estimators outperform the commonly
used LL estimators. In such situations, I certainly recommend people to use my estimators because
smaller MSE is desirable. Reply on asymptotic results, I have compared my estimators to the
properties of LL estimators provided by Porter, 2003. My estimators have theoretically small
variance than the LL estimators, so it is possible in many settings my estimators will be preferable
to the LL estimators. Methodologically, LL and polynomial estimators reduce bias by taking into
account of the shape (derivatives) of the regression when estimating its level, my estimators reduce
bias by taking into account of the shape (smoothness) of the regression and completing the partial
integrated kernels, so researchers have more control over the tools such as choose higher order

smoothness through s, a suitable sequence of w;, or the higher-order bias-reducing kernels.

2.6 Conclusions and Future Studies

In this Chapter, I provided a new class of nonparametric estimators for regression disconti-
nuity based on the extension proposed by Hestenes (1941). Compared to the NW estimators, my
estimators restore the bias at the boundary points to be the same as that of the interior points.
A theoretical comparison between my estimators and the popular local linear approach shows that
these two types of estimators have the same unconditional bias order of O(h?) and variance order
O(n—lh), but my estimators have smaller variances of the asymptotic distribution at the boundary,
which in many cases leads to a smaller MSE. Through Monte Carlo studies, I verify that my es-
timators perform better than NW estimators in all cases and outperform the LL estimators in
terms of smaller MSE in most cases. By applying my estimators to an empirical study by Litschig
and Morrison (2013), I show my estimators are easy to use and provide more flexibility than their
OLS estimation approach. Empirically motivated simulations reinforce my findings about the finite

sample performance of my estimators.

Since the general reflection method I propose in this chapter to construct the jump estimator is
new and fundamental to RD research, many topics are left unexplored. One area I have not given

a thorough discussion is the bandwidth selection. Not only this relates to an issue that in RDD
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I am only interested in the estimation of the jump at the discontinuity point, a locally optimal
bandwidth suits my purpose better than a globally optimal bandwidth, but also the choice of A

relates to the choice of other parameters, s, w;and K.

What I have defined is a class of estimators. That is, every time, I change the sequence of w; and
degree of smoothness s, I change the way I extend the regression and construct the estimator. I have
explored two sequences of w; in this chapter and found they have a smaller variance of asymptotic
distribution than LL. I may find other sequences of w; that provide better bias and trade-offs with
different DGP and outperform LL estimators or some other currently used estimators. In fact,
there are a number of ways to extend smooth functions and the theory I provide here are still
valid for all sequences of w;. On another notion, when s gets larger, the trade-off between bias and
variance can become disadvantageous for some estimators in the class. From simulation, I can give
some practical guidance on how to choose them. For example, s cannot be too large and w =i is
often better than w = 1/i, but it is unsatisfying that I do not have a framework to guide me to
choose these parameters. It would be helpful to work out a theoretical framework to choose s and

w; optimally based on some criteria.

For the foreseeable future, I want to investigate the optimal bandwidth and inference and
discuss the choice of s, w;and K so I can give a complete road map for how to do estimation of re-
gression discontinuity with my estimators. Other extensions for my estimators include applications
in fuzzy RDD, with discreet running variables, or categorical outcome variables. It will be valuable

to explore if my estimators perform better than currently used estimators in these settings.
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Chapter 3

Estimation of a Regression Jump with Additional Covariates in a Nonparametric

Additive Model

I consider an additive multivariate regression where one of the component functions is discon-
tinuous, whereas all others are continuous. My goal is to estimate the jump discontinuity of this
component function. I assume additivity to overcome the “curse of dimensionality,” which exists
in multivariate nonparametric estimation, where the convergence rates are inversely related to the
number of regressors D. Stone (1985) proves that there exist estimators for the component func-
tions of this model that converge at the univariate nonparametric rate, i.e., vnh (n is the sample
size and h is the bandwidth) which is not dependent on D. An important application of this model
is to regression discontinuity designs with additional covariates. The reasons for including addi-
tional covariates are two-fold: 1) to guard against misspecification and 2) to reduce the variance
of the estimators so that the precision of estimation increases. Calonico et al., 2018 propose an

additive separable linear model to match the common practice of empirical RDD studies:

Y:ml(X1)+ZQ’yQ+---+ZD’7D+€, (3.1)

where E(e|X, Z) = 0. Without loss of generality, mi(x1) is discontinuous at 1 = 0 and z; € R.

Their method does not suffer from the “curse of dimensionality” because only the function of
running variable is estimated locally while other parameters are estimated globally. However, this
model may be misspecified because covariates come in a linear-in-parameters form. To expand
upon their model, I allow for more flexibility by not specifying a functional form of any regression

component, either continuous or discontinuous. Thus, I consider

Y:ml(Xl)+m2(Z2)+-~+mD(ZD)+6. (3.2)

If ma(Zs),--- ,mp(Zp) were known, I could write (3.2) as
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Y*EY—TTLQ(ZQ)—---—WLD(ZD) :ml(X1)+6, (3.3)

and consider the estimation of mq, using Y* as the dependent variable and X; as the running
variable. This brings us to a jump discontinuity problem of a univariate regression. I can then use

my Hestenes-based method developed in Chapter 2 to estimate the jump of m;j.

Unfortunately, I do not know ms,--- ,mp, which need to be estimated. A collection of es-
timators have been proposed for continuous additive models: marginal integration (MI), instru-
ment variable (IV), backfitting (BF), and B-splines (SP) (see Li and Racine, 2007,Martins-Filho
and Yang, 2007). My strategy is to use one of these methods to estimate the additive functions
ma, - ,mp at the first stage; then, I use my Hestenes-based method to estimate the jump discon-
tinuity of mq(z1) at the second stage. The challenge is to account for discontinuity at both stages.
Furthermore, it is difficult to get asymptotic properties for my Hestenes-based estimators when the
regressand is generated: the properties of (1) at the second stage depend on the estimates from

the first stage, mo, -+ ,Mp.

In this chapter, I use several estimators for m(x1), and then I conduct a Monte Carlo study
to compare and contrast the finite sample performance of these estimators. I set out to answer
these questions: 1) For a data generation process that has additive components as part of the
regression discontinuity design, does taking into account these extra variables help in estimating
the jump? 2) Among available nonparametric estimation alternatives — MI, IV, BF, SP — will there
some estimators that outperform the others in finite samples? 3) Suppose I have a data generation
process where the additional components of the regression function are nonlinear. Does ignoring
the nonlinearity have consequence in the estimation of the jump? That is, will there be differences
in estimates between Calonico et al., 2018’s method using linear additional components and my

method using flexible additional components?
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3.1 Additional covariates in RDD

I am primarily concerned with a regression model that has multiple regressors, in which the
regressors X has a discontinuous regression components and the other regressors Z = (Zs,--- , Zp)
have continuous regression components, as described in 3.2. It does not need any justification to
include continuous component functions of Z when estimating the jump discontinuity in mj(X;) if
the additional variables in Z are in the specification of the conditional mean of the regressand Y.

Their omission leads to a misspecified model.

As a special case, when I cast the problem in a RDD setting, I find that it is very common
for researchers to include additional covariates besides the running variable. In fact, there is an
on-going debate on what roles additional covariates play in estimating the treatment effects — the
jump discontinuity. The question is explored from two perspectives: identification and estimation
of the treatment effect. That is, 1) if assumptions of RDD are not met and the treatment effect
is not identified, will including additional covariates in regression help the identification of the

treatment effect? 2) Will including additional covariates improve the precision of estimation?

Consider the model (3.2). Let Y be an outcome variable, X be the running variable that
determines if an individual receives the treatment, and Z be a vector of additional covariates.
When X € R is above a threshold ¢ € R and without loss of generality, ¢ = 0, the individual
receives the treatment and T = 1; otherwise, the individual does not receive the treatment and
T = 0. That is, T' = I(X > 0), where I(A) is the indicator function of event A. Thus, Y (T') are

potential outcomes.

First, I consider identification. In the potential outcome framework, the identification of the
treatment effect depends on the conditional independence assumption (CIA) — conditional on X, Y
is independent from 7', Y L T|X. In RDD, I assume that the conditional expectation of potential
outcomes E(Y (T)|X) is continuous at the vicinity of ¢ =0, i.e., E(Y/(T)|X = —¢) = E(Y(T)|X =
€). Then E(Y(T)|T =0) = E(Y(T)|T = 1), which means E(Y(T')) does not depend on 7" Thus,
the continuity of E(Y (T)|X) implies conditional independence at the vicinity of the threshold. CIA

is ensured by the continuity of E(Y (T")|X).
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Frolich (2007) argues that the model should include additional covariates Z when the exogeneity
of X is not so credible in some situations unless it is conditional on Z. However, this argument
is debatable. As long as individuals can not completely manipulate the running variable, the
conditions for identification— the continuity of the regression functions of the potential outcomes —
are still met (Lee and Lemieux (2010)). Furthermore, Calonico et al., 2018 argue that it is unlikely
that additional covariates improve the credibility of the identification of the treatment effect. If
E(Y(T)|X) is discontinuous, then E(Y (T)| X, Z) will not make E(Y (7")|X) continuous. By the law
of iterated expectation, if E(Y (T)|X, Z) is continuous, E(Y (T)|X) = E(E(Y(T)|X, Z)|X) is also
continuous. Thus, if the regression function of potential outcomes is discontinuous to begin with,

additional covariates will not improve identification.

On a side note, Imbens and Lemicux (2008) recommend checking the continuity of conditional
expectation E(Z|X). Although verifying the continuity of E(Z|X) says nothing about the conti-
nuity of E(Y (T)|X), it relieves our concern that we might erroneously attribute the jump of the
regression with respect to the running variable, a = lim.,o E(Y|X = ¢) — E(Y|X = —e¢), to the
average treatment effect while other covariates have discontinuities at the threshold; therefore, they

could also contribute to the discontinuity of E(Y|X).

Second, I turn to estimation. In what way do additional covariates affect estimation? Using the
separable, additive and linear-in-parameter specification, Calonico et al., 2018 show that additional
covariates improve precision by reducing the variance of the estimator for the regression discon-
tinuity. In addition, they explore from which channels covariates affect efficiency most and find
that additional covariates improve precision the most when the additional covariates Z correlates
with the potential outcome Y (7T"). This is analogous to the notion in OLS that adding a control
variable that is uncorrelated with the regressor of interest (here the running variable) but that
explains part of the variation in Y can actually reduce the standard errors by making the residuals
smaller. Imbens and Lemieux (2008) argue that including additional covariates can reduce bias
when observations away from the threshold are used. It is easy to see that if Z correlates with X
and Y, and we do not include Z in regression, the estimates of the regression on X are biased. This

is similar to the omit variable bias in OLS.
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In a word, the literature of RDD, in general, agrees that additional covariates in RDD may not
lead to identification of the treatment effect, but they reduce the variance of the jump estimator

and, therefore, improve the precision of the estimation.

3.2 Condition for Identification of the Model

Consider a D-dimensional nonparametric additive model:

E(Y|X1,...,Xp) =mi(X1) + ma(Xa) + - + mp(Xp), (3.4)

mi(z) if x>0
where mq(z) = and meo,...,mp are sufficiently smooth. In contrast with

my(x) if x<0

typical additive models, one of regression component, m1, is discontinuous. Therefore, unlike the
additive model with all continuous components, the model does not have an intercept term. If I do

not impose any condition, the jump is not identified. The model admits infinite representations.

E(Y|X1,...,Xp) = m(X1) + pa2(Xa) + - + pup(Xp),

where p1(X1) = mi1(X1) + ¢, po(X2) = mao(Xe) — ¢, and pug = my for d = 3,..., D. To make the
jump identifiable, it is necessary to anchor all continuous components of the regression by assuming
each of them has a fixed mean. Without lost generality, I assume the simplest form: they all have
zero means, i.e., F(m;(X;)) =0, for i = 2,..., D. This model is identified because it is not possible
to find another set of functions of {1 (X1), po(X1),...,up(Xp) : E(ua(Xq)) =0, ford=2,...,D}
that generates the same E(Y|X; = x1,...,Xp = xp). Thus, the jump discontinuity at x; = 0 is

identified, o = m (0) — my (0).

3.3 Estimators Under the Study

I define four different two-stage estimators: in the first stage, I use MI, IV, BF, and SP
estimators for component functions of additional covariates; then, in the second stage, I use my

Hestenes-based estimators for the regression discontinuity of the running variable. Although the
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four first-stage estimators are readily available for continuous regression estimation, the novelty here

is to use each in combination with the Hestenes-based estimators to estimate the jump discontinuity.

Martins-Filho and Yang (2007) evaluate the finite sample performance of different estimation
methods for additive regression models with continuous components. They examine two types
of backfitting estimators, the marginal integration estimator, and two versions of instrumental
variable estimators under a common bandwidth selection procedure and conclude that the classic
backfitting estimator has the best finite sample performance based on estimators’ average squared
error. My focus is the estimation of the discontinuous component of the regression rather than the
additive model and the first-stage estimators, both of which provide a necessary structure for me to
estimate the jump. In terms of choice of estimators for the additive mode, I add spline estimators
in the list because of its computational efficiency.

I consider the model: .

Y =my(X1)+ > ma(Zg) + ¢
d=2
D
EY|Xy=x1,Z9=22...,Zp =zp) =my(x1) + Z mq(zq), (3.5)
d=2
where m; is discontinuous and the rest of the components are continuous. E(mg(Z)) = 0 for
d=2,---,D.

Let {Y;, Xi1, Zia, ..., Ziqg}i, be a random sample. At the first stage, I estimate mgy(Z;q) for
d = 2,...,D at n evaluation points, so I do not lose observations for the second stage. Write
Y=Y, —ma(Zia) —--- — mp(Zip). At the second stage, I regress Y;*on Xj;; using my Hestenes-

based estimators to estimate the jump of discontinuity at mq(0).

3.3.1 Marginal Integration Estimation

Marginal integration estimators are proposed by Tjostheim and Auestad (1994), Newey (1994),
and Linton and Nielsen (1995). The idea of Marginal Integration estimation comes from the simple
notion that taking conditional expectation with respect to regressor Z; on both sides of the model
(3.5) does not give the regression function my(Z;), because the regressors (X1, Z2,---,Zp) could

be correlated. Instead, let f_4(z_4) = [ fx(x1,...,2p)dzy and note [ f_g(x_gq)dz_q = 1. For
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/E(Y|X1, Do )X, Zg)dX1dZ g
D
Zmd(Zd)+/m1(X1)f1(X1)dX1 + > /mi(Zi)fi(Zi)de'
i=2,i#d

=mq(Z4) + E(m1(X1)) by assumption E(my4(Z)) = 0.
Thus, m¢(Za) = ag(Za) — E(ma(21)), where
ad(Zd) = /E(Y’Xl, ZQ ey ZD)ffd(Xla Z,d)XmdZ,d.

Since E(m1(X1)) = E(Y), I estimate E(m(X;)) by ¥ = LS Y, To estimate ag(Zy), 1 split
the sample by X7 > 0 or X7 < 0 because of the discontinuity in mi. I use the multivariate
Nadaraya-Watson estimator to estimate E(Y|X1,Z2...,2Zp) at (X1, 24, Zi,—q) for i = 1,--- ,n.
Note that among these evaluation points, only one of them, (X1, Zi4, Z; —q) where Z;g = z4, is
observed; all others are not observed. Since I do not know the marginal density f_4(X1,Z_4),
to estimate integration, I use empirical density 1/n'. After performing n multivariate regres-
sion estimations on m(X;1,...,2q4...,%;p) for i = 1,...,n, and taking an average, I get &(z4) =
% iim(Xit,...,24...,2Z;ip). 1 then repeat the process n times to get &(z;q) for j =1,...,n .
Lastly, I calculate 1q(Z;q) = &(Zjq) — %2?21 &(Zjq) to ensure my(Z;q) = 0.

The MI estimators are oracle efficient and have desirable asymptotic properties, but the method
is computationally intensive due to a large number of multivariate regression estimations. This can
be seen from a simple calculation. For a sample of size n with D regressors, to evaluate each

2

regression function at n points, the number of multivariate regressions is n°. For D regression

functions , the number of multivariate regressions is D % n?. In a special case, when D = 2,
evaluation points for the two regressions are the sample points, so I can save calculations by

using each bivariate regression twice, and the number of multivariate regressions is n? rather than

f I want this joint density to be estimated, I need to know how to estimate a multivariate density with one
dimension, such as Xi, bounded. Here I rely on the assumption of RDD that all regressors, including X;, have
continuous densities.
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2 x n2.

From the estimation procedure, it is clear that additivity does not come into play when
the estimation is performed; it only plays a role later when obtaining the regression component

functions.

3.3.2 Instrument Variable Estimation

Marginal integration estimators are computationally expensive. Kim et al. (1999) propose a
two-stage estimator that is oracle efficient and reduces the computation to the order of n univariate
estimations. As I mentioned in the last subsection, conditional expectation with respect to regressor
Xy in general does not give us the regression component mg(Xy), because regressors are correlated.
Only when regressors are uncorrelated, the conditional expectation and the regression component
function are equal. For example, if Xjand Xy are independent, fi2(z1,22) = fi(z1)f2(22), then
mi(x1) = E(y|z1). Therefore, the idea of IV estimation is to remove the correlation among regres-

sors by using instrument variables.

Consider the following D-dimensional additive model:
Y:ml(Xl)+m2(Zg)+-~—|—mD(ZD)+u (36)

where E(u|X1, Zo,...Zp) = 0, mx is discontinuous at z = 0 and my is continuous for d = 2,..., D.

The marginal density functions of all regressors are continuous, and E(mg(Z)) = 0.

Let fz(Z) = fz(zl,. . .,ZD), fxz<X, Z) = sz(.’L'l,ZQ, - ,ZD>, and

fxz_d(XZ,d) :/fxz(xl,zl,...,ZD)dZd.

Define wx (X, Z7) = % and wy(X,Z) = fd(Zd;i);i}f(Zf27d). Using Rosenblatt density
estimators, I can estimate wx (X, Z) by wx(X,Z) = % and wq(X,Z) by wy4(X,Z) =
fd(Zd)AfXZ_d(Xzfd)
Ifxz(X,2)
Multiply both sides of (3.6) by wx:
D
wxY =wxmi(Xy) + Z wxmg(Zq) + u.
d=2

100



and take conditional expectation on both sides,

D
E(wxY|X =z) = E(wxm(X)|X =xz) + Z E(wxmg(Zg)| X = x).
d=2
The first term,
v e (xX)f2(2) _
E(wxmi(X)|X =2) = E ( AR m (01X = 3:)
f2(Z)

E
/ fz(Z)ma(Zq) fXZ(:E,Z)dZ>

Thus, E(wxY|X = ) = my(x). Since mi(x) is discontinuous at x = 0, I use the Hestenes estimator
to estimate F(wxY|X = z). That is mf(z) = E(wxY|X = z).
Now, multiply both sides of (3.6) by wy:

D
waY = wgm1(X1) + Y wama(Za) + u,
d=2

and take conditional expectation,
D

E(wqY|Zq = z4) = E(wgm1(X1)|Za = zq) + Y E(wama(Z4)|Za = za).-
=2
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The first term,

falZa)fxz (X Z_q) B
E(wam:1(X)|Zq = z4) =E< ez (X.2) 1(X)|Z—Zd>
fxz (XZ_q) B
= fa(za)E (fXZ(XaZ)ml(X”Z = Zd)
_ fXZ—d(XZ—d)m fxz(X,Z)
= fa(za) / (sz (X, 2) (X )7& ) dXdZ_d>
= E(m1(X)),
and the second term,
D
Z E(wdmi(Zl-)|Zd = Zd) = E(wdmd(Zd)]Zd = Zd)
i=2

- (fd(ZC?){)Z((ZngZ_d)md(Zd)|Zd = zd>

XZ_
Ixz_,( d) 7, = Zd>

= fa(za)ma(zq) E ( fxz(X, Z)

- steomited | (S PR e

= mq(2a)-

Thus, E(wgY|Zg = zg) = E(mi(X)) + ma(zq). 1 estimate E(mi(X)) by E(mi(X)) = E(Y) =

(
LS | Y;, and Lestimate E(wgY|Zy = 24) using the NW estimator. T obtain ri))(z4) = E(wgY|Zg =

n 1=

A

za) — E(mi(X).
Following the explanation by Kim et al. (1999), I call i} (z) and 1!} (z4) pilot estimators because
they are not oracle efficient. To get oracle efficient estimators, I perform a one-step backfitting

estimation. I define regression as
D
Y = iig(Za) = mi(X1) +7,
d=2

where E(y|X1, Za,...,Zp) = 0. Then E(Y — 2, mh(Z4)| X1 = x) = mi(x). Using the Hestenes

estimator to estimate my(x), I obtain iy (z) = E(Y — X2, mh(Zq)| X1 = ).
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Then I define regression as
D
Y — iy (X1) = Y ml(Zy) = ma(Za) + A,
i#d

where E(M X1, Zs,...,Zp) = 0. E(Y —11(X)|Zg = z4) = ma(zq). Using the NW estimator to
estimate mg(zq), I obtain mg(zq) = E(Y —m1(X)|Zg = 2q).

In summary, using instrument variables, I obtain the pilot estimators. Then, with the one-
step backfitting estimation, I obtain the oracle efficient estimators for the continuous components
of additional covariates. Generally speaking, IV estimation is computationally faster than MI
estimation. For a sample of size n with D regressors, it performs 2D % n univariate estimations

rather than D % n2 multivariate estimations as in MI .

3.3.3 Backfitting Estimation

A widely used backfitting procedure for additive models was initially proposed by Buja et al.
(1989). Through iterations and updating, backfitting estimation is another method to use univariate
regressions instead of multivariate regressions to estimate an additive model. However, as shown
by Opsomer et al. (1997) and Opsomer (2000) on their asymptotic properties, the backfitting

estimators are not oracle efficient.

I use the following iterated procedure to estimate my(Zy) for d = 2,..., D. I start by defining
D
Vi =Y =Y ma(Zia) = Yi = mi(Xq) + ua.
d=2

Since m; is discontinuous, I split the sample by X7 > 0 or X7 < 0, and use the Hestenes estimator

to obtain m[l” (Xi1) , fori=1,...,n. I then define
. D
Yio = Y; — ml(Xi) - > ma(Za) = ma(Ziz) + wia-
d=3

Since my is continuous, I use the NW estimator to obtain m[z” (Zia), for i = 1,...,n. Next I define
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D
Yis = Y — i (Xi1) — mbl(Zin) - > ma(Za) = ms(Zis) + wis,

R

and use the NW estimator to obtain 7y (Z;3), for i = 1,...,n. I repeat these steps until

D—1
Yip = Yi — ) (Xa) = Y ml (Zia) = mp(Zip) + wip.

Then, I use the NW estimator to obtain m%] (Zip),fori=1,...,n. Lcall m[l” (Xi1),m [1]( Zi9)y ey m%} (Zip)

the one step backfitting estimators for m1,...,mp. Now, I choose ¢ > 0 and evaluate whether or
not

n n 2

ZYiQ Z <Y m[ll] Xi1) — me Zid ) < €.

i=1 i=1

If yes, I stop. Otherwise, I define,
1 1
il = Z k) (Zia) = ma(Xan) +ul),
and use the Hestenes estimator to obtain m[{” (Xi1), for i =1,...,n. Next, I define

D
Yol = vi -l (x;0) - > ) (Zia) = ma(Zio) + uly,

(]

and use the NW estimator to obtain T?L[QQ}(ZZ-Q), for i = 1,...,n. I repeat these steps until I
obtain m%](zm). I call m[ﬂ (Xﬂ),m[;](Zig), e m%](ZiD) the second step backfitting estimators
for my,...,mp. I evaluate whether or not

n n D 2
Z <Y m[ll] Xi1) Z m ) Z <Y m[12] (Xin) — Z mg](zid)> < €.
d=2

i=1 =1

If yes, I stop. Otherwise I repeat the backfitting steps until the step J such that

n n D
> ( b =1 (x Zm[‘] Uz ) -> ( Yl (xa) - ng‘”(zid)>
= d=2

=1
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I call m[l“’] (Xil),m[éﬂ (Zia), - - ,m[b]] (Zip) the J step backfitting estimators for my, ..., mp. A process

with J iterations performs J * D % n univariate regression estimations.

3.3.4 B-Splines Estimation

As nonparametric estimation, spline estimators compute significantly faster than kernel estima-
tors (Chen, 2007; Wang et al., 2007). Similar to global polynomial estimation, in spline estimation,
coefficients of the basis functions come into the model in linear form. It only takes one ordinary
least squared (OLS) estimation to estimate all coefficients. In contrast, kernel estimators perform n
local estimations at n evaluation points. The advantage becomes even greater when a large number
of regressors are present in the model — still, spline estimators only need one OLS estimation to
obtain all coefficients. Of course, as the dimension of regressors and the sample size increases, the
number of coefficients increases. The computational burden is to compute the inverse of a matrix

of the size of the number of coefficients.

Consider an interval [a,b] € R, on which I define a knot set 7= {t1, . IN ENF1, - ENSR )
witht; =to = =ty = a, tyy1 = tNgo = -~ =tnyg = b, and t; < ;41 forall i =k, ..., N.
Thus I have N + k knots, which consists of N — k interior knots and 2k boundary knots. I choose
N according to the sample size n : N = /n. k is the order of the polynomial of basis functions.
For example, if £ = 1, a the basis function is a constant function, k = 2,a linear function , £ = 3,a

quadratic function, and so on.

Basis functions,B; (), are defined recursively. At the first level, I = 1,

17 thk+]*1§xgtk+j7]:177N_k+1
Biyj-11(z) = 7

0, otherwise

if tj = tj+1, BjJ = 0. That iS, Bl,l == Bk*l,l = O, and BN+1,1 == BN+]C71,1 =0.

At the levels up to the kth level, 1 < < k,

Bjy=wjiBji1+ (1 —wjy11)Bjy1-1,
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where w;; = forj=1,.... N+k—1L

t+z 1= ta

Now, I define a B-Splines of order k as

N
Fa) =Y A\Bji(z)
j=1

where \; € R,and Bj ;(z) are basis functions. The space of the spline function is of NV dimensions,
N =k + N — k, where k is the order of the polynomial of basis functions and N — k is the number

of interior knots.

Using the B-Splines function to approximate the components of regression function in equation

(3.5), I have

D
E(Y|X1,Z...,2p) = S¥(X1) + > SK(Zg) + N71O(1)
d=2
D N

_ZAﬂBﬂk (X1) + >3 NjaBjap(Za) + +NTO(1).
j=1 d=2j=1

Let B be the (N % D) x n matrix of the basis functions,

Bi1p(X11) ... Bing(X11) Bi2k(Za1) ... Bypi(Zp1)
B_ B x(X12) ... Bing(Xi2) Biox(Ze2) ... Bnpr(Zp2)
| Biie(Xin) .. Binvg(Xin) Biak(Zen) ... Bnpx(Zpn) |

and A be the (N x D) x 1 matrix of the coefficients,

A= )\11 )\Nl )\12 )\NQ )\lD >\ND

I can write E(Y|X1,Z2...,Zp) = BA+ N7'O(1). Then, using OLS estimation, I get the

estimates of the coefficients, A = (B'B)"'B'Y. Lastly, I calculate

3

G N 1 n N
= > NaBjar(Zia) — ~ Z Z jaBjax(
= i=1j=1
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for d =2,...,D to ensure 1mq(Z;q) = 0.

An issue with spline estimators is the singularity problem. Basis functions, Bj(x), are piece-
wise functions whose values are non-zeros only in k intervals of the knot set, so most elements in
the matrix B are zeros. This causes the matrix to be close to singularity and generates inaccurate
estimates of the coefficients ,S\jd , of the spline function. The problem becomes more severe when
the sample size n increases since the number of knots N increases with the sample size n and the

size of interval, ]l{,:al

, becomes smaller.

3.4 Simulation

To investigate the finite sample performance of covariates-adjusted RD estimators, I conduct
simulations to compare the four two-stage RD estimators in which I use MI, IV, BF, or SP esti-
mators respectively as the first-stage estimators, and the Hestenes estimators as the second-stage
estimators. I compare the performance of these estimators and with the four benchmark estima-
tors that represent four different cases. In the first and second cases, I use the univariate Hestenes
estimator and local linear estimators to estimate the jump without accounting for the additional
covariates in the regression. The third case is the estimator proposed by Calonico et al., 2018,
where they use a local linear estimator to estimate an additive linear model. T describe the im-
plementation in the next subsection. The last case considers oracle estimators in which the true
regression components of the additional covariates are known.The descriptions of these estimator

are as follows.

HT: the univariate Hestenes estimator that does not account for the additional covariates in

the regression.

LL: the univariate local linear estimator that does not account for the additional covariates in

the regression.

Cal: the estimator described in Calonico et al., 2018 that uses additive linear model to account
for the additional covariates in the regression.
Oracle: the oracle estimator in which the true regression components of the additional covari-

ates are known,
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MI-HT: the two-stage estimator that uses the marginal integration estimator at the first stage

and the Hestenes estimator at the second stage.

IV-HT: the two-stage estimator that uses the instrument variable estimator at the first stage

and the Hestenes estimator at the second stage.

BF-HT: the two-stage estimator that uses the backfitting estimator at the first stage and the

Hestenes estimator at the second stage.

SP-HT: the two-stage estimator that uses the B-Splines estimator at the first stage and the

Hestenes estimator at the second stage.

3.4.1 RD Estimators Using Additive Linear Model

I implement the jump estimator & described in Calonico et al., 2018, which is a local linear
estimator with additional covariates in linear form. For ease of notation, consider a bivariate
regression model:

Y=m(X)+Zy+e

The estimator is obtained from

Bl
22
~ = n 5£
f=|pL | = argmin Y |V;—I(X;—z<0)[1X;—uz]
o BL.B% 8L .83 v i=1 B2
Jr
- //y -
2
ok X —
I Xi—z>0)[1Xi—a | T | =2 K< ”3>
8 h

where I(A) is the indicator function of event A, z is the thresh hold, and K(-) is a kernel function.
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Write R(z) = [[(Xi—x<0)[1 X;—a] I(X;—2>0)[1X,—2] Z | ,and P(x) =
diag{K (X5=2)}1L,, then f = (R(z) P(z) R(z)) "' R(z)Y,

3.4.2 The Data Generating Process (DGP)

I specify the following bivariate additive model,
Y=m(X)+9(Z)+e,

X if —1<X<0
where m(X) = , 9(2) = sin(nZ/2),and € ~ N(0,0?).

J+EXP if 0<X <1
The spline estimator is defined on samples with compact support, so I generate independent
variables X and Z with uniform distributions: X ~ U[—1,1] and Z ~ U[-2,2]. Figure 3.1 provides

the graph of the model over the relevant range of X and Z.

Figure 3.1: Regression Components of the True Model
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E(g(2)) = [2,9(2)[2(2)dZ = |2, sin(nZ/2)dZ = 0, and E(m(X)) = [, m(X) fx(X)dX =

1+ 4+ 3557 fk=2p=3 and J = 0,then E(m(X)) = 4.

To examine other sample distributions, I also generate X and Z with truncated normal distri-
butions: X ~ N(0,1) between (—1,1) and Z ~ N(0,2) between (—2,2). In both cases, I generate

samples of size n = 200, 500, 1000 respectively and conduct the simulation with 2000 repetitions.
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3.4.3 Estimation Results

The findings of the finite performance of these estimators are in Table 3.1. To compare per-
formance among nonparametric estimators, it is essential to choose a bandwidth that is fair to all
estimators rather than favor some estimators. The common bandwidth selection methods include
the plug-in, cross-validation, and the rule of thumb method. Optimally choosing the bandwidth is
complicated for two-stage estimators of the additive model with discontinuity because it means to
choose the bandwidths for each regressor at the first stage and for the regressor with the discon-
tinuous component at the second stage to minimize the MSE at the discontinuous point. Since I
do not have asymptotic properties of these estimators, I am not able to use plug-in methods. For
simplicity and being fair to all estimators, I use the rule of thumb proposed by Kim et al. (1999) to
choose bandwidth for all estimators. hy = n~/std(X;) and hy = n~'/5std(Zy), ford = 2,...,D.
The bandwidths depend only on the sample size and variance, so all estimators have the same

bandwidth.

For all sample sizes and distributions in my experiments, I observe these results: the Oracle,
IV-HT, and BF-HT estimators have the smallest root mean squared error (RMSE), followed by
the HT, MI-HT, and SP-HT estimators. The ones that have the largest RMSE are LL and Cal
estimators. These results agree with my predictions. The Oracle estimators have the small RMSE
because the model is correctly specified and the additional components are known. The four
two-stage estimators use nonparametric functions to account for the additional components that
are nonlinear, so they have smaller MSE than the estimators by Calonico et al., 2018 who use
linear functions to account for the additional components. The univariate Hestenes estimators
have smaller RMSE than the univariate LL estimators, which is in accordance with my findings in

Chapter 2.

It might be a little unexpected that the best performer is the IV-HT estimator rather than
the Oracle estimator. This could be because the IV-HT estimator is an oracle efficient estimator.
As n — oo, it has the same asymptotic distribution as the Oracle estimator whereas in finite
samples, it could outperform the Oracle estimator. It is also evident in the experiment that as n

increases, the RMSE of the two estimators become ever closer to each other. Another surprise is
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Table 3.1: Simulation Results

Sample Bias and Mean Squared Error of the Jump Estimators

Estimators HT LL Cal Oracle MI-HT IV-HT BF-HT SP-HT

Uniform distributions: X ~ U[—1,1] and Z ~ U[-2, 2]
Bias 0.678 -0.366 -0.366 0.679  0.681  0.671  0.667  0.685
Variance  0.381 1.375 1.361 0.374  0.408 0.372 0.378 0.427

n=200 RMSE 0917 1.228 1.222 0914 0.933 0.906 0.907 0.947
Rel_R 1.011 1.355 1.348  1.008 1.030 1.000 1.001 1.045

Bias 0.580 -0.280 -0.282 0.580 0.577 0.577 0.575 0.577

H=500 Variance  0.162 0.543 0.540  0.158 0.169 0.158 0.161 0.174
RMSE 0.706 0.789 0.787  0.703 0.708 0.700 0.701 0.712

Rel_R 1.008 1.126 1.124 1.004 1.011 1.000 1.001 1.016

Bias 0.466 -0.256 -0.257  0.466 0.467 0.464 0.463 0.468

1=1000 Variance  0.092 0.283 0.276  0.089 0.099 0.089 0.091 0.097

RMSE 0.555 0.590 0.585  0.553 0.563 0.551 0.553 0.562
Rel_R 1.007 1.071 1.061 1.004 1.021 1.000 1.003 1.020

Truncated normal : X ~ N(0,1) between (—1,1) and Z ~ N(0,2) between (—2,2).
Bias 0.624 -0.283 -0.282 0.620 0.624 0.617 0.617 0.622
Variance  0.373 1.277 1.228 0.354 0.390 0.354 0.370 0.418

n=200 RMSE 0.873 1.164 1.143 0.860 0.883 0.857 0.866 0.897
Rel R 1.019 1.359 1.334 1.003 1.030 1.000 1.011 1.047

Bias 0.515 -0.262 -0.261 0.513 0.512 0.510 0.511 0.514

H—500 Variance  0.161 0.533 0.524  0.158 0.168 0.157 0.160 0.172
RMSE 0.653 0.775 0.769  0.649 0.656 0.646 0.649 0.660

Rel R 1.010 1.199 1.190 1.004 1.015 1.000 1.004 1.022

Bias 0.428 -0.222 -0.222 0.428 0.426 0.426 0.426 0.425

n=1000 Variance  0.091 0.269 0.262  0.088 0.094 0.088 0.091 0.097

RMSE 0.523 0.564 0.557 0.521 0.526 0.519 0.521 0.527
Rel R 1.007 1.086 1.073  1.003 1.012 1.000 1.004 1.014
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that the univariate Hestenes estimators that do not account for the additional components have
smaller RMSE than the estimator by Calonico et al., 2018 that account for the additional covariates.
The explanation could be that the presence of additional variables make the regression component

function with discontinuity less linear.

The reduction of RMSE by estimators that accounting for additional covariates is achieved
through the reduction of variance. If I compare the LL estimator with the Cal estimator, and the
HT estimator with the four two-stage estimators: MI-HT, IV-HT, BF-HT, and SP-HT, I can see
that adding covariates has little or no effects on bias but significantly reduce the variance so the

RMSE decreases.

The differences in performance among the four two-stage estimators are not dramatic. The
estimators using instrument variable and backfitting as the first-stage estimators have the smallest
RMSE, which is in line with the findings from Martins-Filho and Yang (2007), who conclude the
backfitting estimators have the best finite performance among other estimators, such as MI and
IV estimators, for additive models with continuous regression components. As the sample size
increases, the RMSE of every estimator has reduced significantly. Noticeably, at small sample size
n = 200, the mean squared error of each of the four two-stage estimators is about half of the mean

squared error of the estimator by Calonico et al., 2018.

The results suggest that in estimating a RDD model when additional covariates are present,
researchers should first consider the IV-HT estimator because they have the best performance
among the four two-stage estimators and outperform the commonly used local linear estimation with
additional covariates in linear form. The second best choice is my Hestenes univariate regression
estimators. They have similar RMSE to my two-stage estimators and smaller RMSE than both

univariate and multivariate local linear regression estimators.

3.5 Conclusions

In regression discontinuity designs, it is very common for empirical researchers to include addi-
tional covariates when estimating the jump discontinuity. In this chapter, using an additive model

and allowing flexible functional form for all components of covariates, I explore issues regarding the
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estimation of the jump discontinuity in the presence of additional covariates. I find that accounting
for additional covariates reduces the variance of estimates, and therefore, improves the precision of
the estimation. Choosing from available nonparametric estimation alternatives for additive models,
I find that instrument variable and backfitting estimators have the smallest RMSE in estimating the
jump discontinuity. If the additional components of the regression function are nonlinear, ignoring
the non-linearity results in larger RMSE. My findings recommend that when additional covariates
are available, it is advantageous for empirical researchers to use my two-stage estimators to estimate

the jump discontinuity. The second best choice is my Hestenes univariate regression estimator.

For future work, I plan to research asymptotic properties of the two-stage estimators that use
B-splines as first-stage estimators for continuous components of the regression and use Hestenes
estimators as the second-stage estimators for the discontinuous component. Spine estimators are
computationally expedient, especially when a large number of regressors are present. However, in
general, it is complicated to derive asymptotic properties of a second-stage estimator (Wang et al.,
2007). Specifically, no one has derived properties for estimator in this context— a second-stage
kernel estimator that is subsequently dependent on the first-stage series estimators with a known
discontinuity in one of the regression component function. A computational challenge for spline

estimator is to solve the singularity problem regarding its matrix.

In a broader sense, spline estimators have great potential but are less explored as nonparametric
estimators. They possess both the local characteristics of nonparametric estimation and the global
characteristics of parametric estimation. Kernel estimators are extensively explored partly because
they have tractable asymptotic properties, but they are myopic: the estimation ignores the global
trend in data and only uses local observations. Furthermore, they can be computationally intense
and wasteful. Evaluation and estimation are the same: to evaluate a regression at m points means
to estimate m times. Besides, only part of the estimation outcome is useful. For example, the
estimates of local linear estimators naturally provide the intercept and slope of the local regression

while only the intercept is the object of interest. Spline estimators do not have these problems.
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Appendix A

Supporting Lemmas

Lemma 1. Suppose the assumptions of Theorem 8 are holding and h — 0 and nh — 0o asn — oo

The covariance of §(z) and f( ) for © > 0 has the following representation
(“_)du+o(1)}, x=0

1 + 0 S+1 kj
Cov(§(x), f(x)) = nh {m (0)7(0) 250 w; I K w;
e Amt () f(2) [ K2 (u)du + o(1)} x>0
A 1 1k Ti+o
Proof. Let g(x) = > lK( x) —1—25"'1 qu( i )] Yid;, wg = =1, kg = =1, u; =
+1 k i X . ..
Z?:o w”] = and K(=5-%) K;. Then, since {X;}i=12.. forms an ii.d. sequence and
E(Y|X =2)=m*(z) for x >0,
Cov(§(z), f(x)) = ﬁE [ (X1 )i K | + ”((Zh_);)E [t (Xt yuds | E[K]
— %E [ +(X1)u1d1} E [Kl]
1 1
= WE [ +(X1)U1d1K1] — WE {m+(X1)’U,1d1} E [Kl] .
flx) = 51—

Put + E [m™(X1)uid1 K1] = Ty and 75 E [m™*(X1)urdi] E [K1] = T, then Cov(§(z),
=T5. As with the variance, the covariance will be different for x = 0 and x > 0
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Case (z > 0):

1 [ X1 —
T = 7/ K? (””) mT(X1) f(X1)dX,
h Jo h
X3
1 fo° X1 —=x s k; wi t
- K LK | ZL— | m"(X1) f(X1)dX
el x (P S 2t eseaan
X X1
letting z N ! — 4 in the first term and w’T = u in the second
= /E K2(u)ym™(x — hu) f(x — hu)du
—0o0
s+1 ) T s+1
#3007 (g g+ DT ) Kam Gy = ) f (s = )du = oo + Y- Ky
J=1 2 j=1
where
Ipo = /ﬁ K2(uw)m™ (z — hu) f(z — hu)du,
and

Ioj = /:O K (wju — (wj + 1)2) K (w)m™ (w;(hu — @)) f(w; (hu — z))du.

h

Now,

Too — m* (2) f () /]R K2 (u)du

= ’/}R K% (u) [m+(x — hu) f(x — hu) — mﬂx)f(ac)} du

- /:O K2(uw)m™ (z — hu) f(z — hu)du

<

/u|<C KQ(U) [m“'(aj — hu) f(x — hu) — m+($)f(:1:)] du

" /u|>c K2(u) [m* (2 — hu)f(z = hu) = m* (2) f (2)] du

+ K2 (uw)ym™(z — hu) f(z — hu)du|, for C >0
0
< Cp(Ch, ) / K*(u)du + C K*(u)du+ C / K*(u)du,
lul<C u|>C £

where the last equality follows from the uniform boundedness of K, f and m™ and where p(Ch, z)

is as defined in the proof of Theorem 2. By continuity of f and the fact that [ K?(u)du < C, for
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all € > 0,

Too — m+(x)f(3:)/ K2 (w)du| < e (1.1)
R
Similarly,
| Ioj] < C/ u) du < € for all n sufficiently large. (1.2)
Consequently, |71 — m™(z) f(z) g K?(u)du| < €.
Turning to T5, 1 first observe that from standard properties of f I have
1 X1 —
- (K( 1h x)) — f(2). (1.3)
X1
Now, letting % =u and 45— = u I have
h_lE [ (Xl)uldl} =h" lE( )

A

> FX1)dX,
Xi

) (X)) f(X1)dX,

= K(u)m*(x — hu) f(z — hu)du

s+1

+Zk/ K (wym* (w; (hu — 2)) f (w; (hu — ))du
s+1

=1 + Z I2j.
j=1

Using arguments similar to those used in the study of 77, I have

I — m*(2) f(x) /R K(u)du

< Cp(Ch, z) / K(u)du +2C K(u)du
lu|<C |u|>C

+ C'/ K(u)du
r
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By continuity of f(z) I have, for all € > 0, [I; — m™ () f(z) [g K*(u)du| < e. Similarly,

s+1 o

Iy <O ky [ 1K)l du <e,

7=0 h

for sufficiently large n. Therefore,

B (i () = m (@) (@) [ K| < e (1.4)

Thus for 2 > 0, Cov(g§(x), f(x)) = LT — 1Tp = L (m™*(2) f(2) [z K2(u)du+ o(1)).
Case (x = 0): Repeating the change in variables used above, I have

s+1 Lk

Ty =Too+ ) =L Ij,
—
j=1"
where
0
Too = / K2(w)ym™ (—hu) f(—hu)du
and
In; = /OOK (u) KX m™ (hu) f (hu)du.
0 wo wj
Now,

e
_ ‘ /_ K2(u) [m* (—hu) f(—h) = m™* (0) £(0)] du

s [0 K2 [t () () — it (0)£0)]

—C C
<cC / K2(u)du + 5(Ch, 0) / K2(u)du.
—00 0
For n sufficiently large and all € > 0,

Too — m* (0) £(0) /_ OOO K2 (uw)dul < e. (1.5)

122



Similar arguments give,

< e. (1.6)

Ioy — m*(0)£(0) /OOK(U)K (“) du
0 W

Consequently, (1.5) and (1.6) give

< €.

s kj o0 u
Ty — m™(0)£(0) ]Z : /0 K (u) K <w]> du

oW

Turning to Ty = 72 E [m™* (X1 )uidy] E [K(%)] I have from the properties of f that + F (K (%)) -

f(0). Now, again changing variables,

1, . IS AN
EE(m (X1)urdy) =4 K(h)m (X1)f(X1)dX,
18k >~ (X
+ o3 LK (S | m (X)) £(X)dX
h ~— w; Jo wih
j=1 J J
s+1 4.
=1L+ LI,
j=1"7

where I = [°_ K(u)ym*(—hu)f(—hu)du and Ir; = [3° K(u)m*(wjhu)f(wjhu)du. Using the

same arguments as in the first case (z > 0),

I — m™(0)£(0) /_ OOO K(u)du| < C /_ j K (u)du + p(Ch, 0) /0 “ K(w)du.

For h be sufficiently small and continuity of f I have, for all € > 0, |I; — m™(0)f(0) LOOO K(u)du‘ <
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+ [Tk (“) [ () £ (hu) = m* (0)(0)] d
C W
<]§(hC,0)/OC K (;‘) du+C COOK (750) K <;‘> du

where for all € > 0, ’fgo K ( j) du’ < € and for sufficiently small h, p(hC,0) < €. Thus

I, — m™(0)£(0) /OOO K <“> du

<€
w;
Consequently,
L g (m*(x O LN A TEAY 1.7)
7 (m(l)ul)—m()f()]z_%%o w u| < e (1.
Thus, for z = 0, Cov(§(x), f(2)) = =115 = 5 [m*(0)£(0) £52 12 [5° K (u) K (3£) du + o(1)]
In summary, I have
. Lt (0)£(0) 25 & [ K (u) K (&) du+o(1)}, &=0
Cov(j(x), f(x)) = 2 20w b () )
A Amt (@) f () fg K2 (w)du+o(1)}, z > 0.
O

Lemma 2. Under the assumptions of Theorem 3, E (|Z,(x)|) = O ((ﬁ)%)
Proof.

Zn(x)

N ~ £ F 2 ' (
3(g(z) — Eg(x))(f(x) — Ef(x)) /0 [Ef(z) + t(
st — Bian [ = g2 B9 + (@) — 2
3(f(z) — Ef(x)) /0(1 t) [Ef(x) + t(f(z) — Ef(z))]*
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Letting,

n = B (9(a) ~ Bg@) X1+, Xa) = 3 (s — Blzin)),
=1
where z; , = K (—) Iix,;>0pm *(x;), I have that
B = [satfte) -~ B [ O e,
o [Ef(x) +t(f(x) — Ef(z))]?

and

B() = (f@) - Ef @) EG@) [ U0 pxax
0 [Ef(x) +t(f(x) - Ef (@)
. . 1 t(1—1t)?
sp(f(x) — Ef(2))? dtf(x)dx.
+ $n(f(2) — Ef(2)) /0[ ErT e R

By the Cauchy-Schwartz inequality

2(f(@) - B (@)’ Lo (11 ) :
B < ([ (@) - Bf@) (X)) (/ (/O O f(X)dX) .

Now, since (1 —#)2 < 1for 0 < ¢ < 1, letting d = (1 — t)Ef(z) + tf(x) I see that d > 0 since
E(f(x)) > 0. Consequently, [, (1 —t)%dt < [, Jrdt. But,

V1, f@+Ei@ 1

o T St (Bite) | H@EF@Y " 2fwPE )

. ; 11 1 1 1 - 1 1
< —_ < = = = . = = =
Now, since 0 < B < Ef(x) I have [y mdt < 3 max{f(z)QB, f(ac)Q} Taking max{f(ac)B, f(x)}

1
f(z)B

B < (/ 2(f(x) —Ef(a:))‘lf(X)dX)% (;2/ <@>2f(x)dx>2.
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Now,

|E(J2)]

< |J21| + |J2.2]

N[

) :
< (/ (@~ Bf)pa) sx)ax) (/ </01 [Ef(a:)+t<(1fzxt))2— Ef<x>>]4dt> f(X)dX)

R R 1 1 ny: 2
# ([ (soth@) - Bf@P) 000x) (/ (h e ez f(X)dX) |

Now, (1 —t)? <t < 1, hence

NI

1 1
/ . _
0 [Ef(z)+t(f(z z) - Ef (@)
_ (Bf@)) + Bf(0)f(2) + f(2)?
3Ef(2)3f(x)?
! + I
3Ef(2)f(z)3  BEf(z)2f(x)? 3Ef(x)3f(x)

/
1 { 1 1 1 }
< —mazx | = ,—= , ~ .
B f(z)3 Bf(x)? B?f(x)

Suppose max { = - ;B?. Then,

1
f(2)3” Bf()?’ B?f(a)

1

Byl < {( [ (@) - Bfe )>3E9($))2f(x)d:c)% ([ (saFa) - Ef(w))3)2f<X>dX)2}

. L2 3
(G

Now,

/(f?@)Qf(X)dX_/om/“m X)dXd\ = / e M@)?

Under the conditions of Theorem 3, and by Slutsky Theorem, f(z)2 % f(z)2. Thus, by Lebesgue’s

126



dominated convergence Theorem
hn(x,\) =F (6—)\f(z)2) — FE (e_)‘f(m)2) = (e_Af(a’)Q) = h(z, \).

since |hp(z,A)| < [ |e_/\f(x)2|f(x)da: < 1 for all n, A\. Thus, hy,(x,\) is bounded and convergent on

[0,00). Then, by Arzela’s Theorem Apostol, 1974, p. 228

n—oo

[o.¢] [o.¢] ~ 1

lim / B (2, \)dX — / E (e*Af<x>2) d\ = <C
0 0

since 0 < B < f(z). Thus,

[B(h) + E()| < (( [ sitda) - B 100X )+ ( [ (o) - BA@) Ba@) 7(X)ax)

+ ( [ (suf@) - Ef@)?)’ f(w)dxf)

Now,

N A\ 4
by Hélder’s Inequality and the fact that E ( f-E f) = O((nh)~2) from Zicgler, 2001. Then,

E|f — EfP < (nh)~2(nh)~'0O(1) = (nh)"20(1),

sn = (9(x) = B(x)| X1, , Xp) = Op((nh) 2.
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Appendix B

Matlab Codes for Simulations

In this appendix, I provide Matlab codes that construct the regression estimators under the
study. They are not the complete list of codes but building blocks to implement the simulation,

empirical application, and estimation strategy described in Chapter 2 and 3.

B.1 Regression Estimators

Listing B.1: kays.m Generate Hestenes Parameters

% This function calculates Hetenes coefficients.

%INPUTS:

% s: a natural number denotes the smoothness of the function.
% b: If b=0, the sequence w_i=1/i; if b=1, w_i=i.

% OUTPUTS:

% Hetenes coefficients, an (s+1)X2 matrix of {kj, wj} for j = 1,..,s+1
function res_out = kays(s,b)
if b==
w = 1./(1:1:8+1); Yelementary wise division
M = ones(s+1,s+1);

for r=2:s+1
M(r,:)=(-w). (r-1);
end
k=M\ones (s+1,1);
res_out = [w' k];
elseif b==
w = (1:1:8+1); Ystart from 1, increase by 1, until s+1
M = ones(s+1,s+1);
for r=2:s+1
M(r,:)=(-w). " (r-1);

end
k=M\ones(s+1,1); %M~ (-1)*ones
res_out = [w' k];

end
end

Listing B.2: unw.m Univariate Nadaraya-Watson Estimator

% This function performs univariate Nadaraya-Watson estimation
% INPUTS:
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y: an (nX1l) column vector containing the observations on the regressand

% x: an (nX1l) matrix containing the observations on the regressors
% evl: a (pX1l) matrix containing the points where it is desired to
yA evaluate the estimator. p can be any integer {1,2,...}

% Kn: the kernel. if Kn=1 the gaussian kernel is used; if K=2 the
% Epanechnikov kernel is used; if K=3 the triangular kernel is used;
pA if K=4 the rectangular kernel is used;

% h: a scaler of bandwidths.

% s: a natural number. the smoothness of the function

% b: If b=0, the sequence w_i=1/i; if b=1, w_i=i.

% QUTPUTS:

% mhat: a vector of estimates of dimension p X 1

function mhat = unw(y,x,evl,Kn,h)

d=(1/h)*gsubtract(x,evl');

if Kn== % Gaussian Kernel

k = (1/sqrt (2*pi))*exp(-0.5*%d."2);
elseif Kn== % Epanechnikov

k = (0.756%(1-d.72)) .*%(abs(d)<= 1);
elseif Kn== % Triangular

k = (1-abs(d)).*(abs(d)<= 1);
elseif Kn== % Rectangular kernel

k = double(abs(d)<= 1);

end

mhat = ((y'*k)./sum(k))"';

end
Listing B.3: mvnw.m Multivariate Nadaraya-Watson Estimator
% This function performs multivariate Nadaraya-Watson estimation
% based the Gaussian kernel.
% INPUTS:
% y: an (nX1l) column vector containing the observations on the regressand
% x: an (nXnreg) matrix containing the observations on the regressors
% evl: a (pXnreg) matrix containing the points where it is desired to
yA evaluate the estimator. ©p can be any integer {1,2,...}
% h: is a (nregXl) vector of bandwidths.
% OUTPUTS:
% mhat: a matrix of estimates of dimension p X nreg
function mvnw = mvow(y,x,evl,h)

n=size(y,1);
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p=size(evl,h1);
K=ones (n,p);
nreg=size (x,2);
for j=1l:nreg

a=(1/h(j))*gsubtract(x(:,j),evl(:,j)");
k=(1/sqrt (2*pi))*exp(-0.5%a."2); 7 Gaussian Kernel
K=K.*k;

end

mvonw = ((y'*K)./sum(K))"';
end

h
h
h

Listing B.4: ulle.m Univariate Local Linear Estimator

This code does the Fan modification for a univariate local linear C(help

avoiding) singularity. Univariate local linear estimation with different

kernels

INPUTs

y: a vector of regressands of dimension n X 1

x: a vector of regressors of dimension n X 1

e: a vector with points of evaluation of dimension p X 1

h: bandwidth

Kn: the kernel. if Kn=1 the gaussian kernel is used; if K=2 the
Epanechnikov kernel is used; if K=3 the triangular kernel is used;
if K=4 the rectangular kernel is used;

OUTPUTS

mhat: a vector of estimates of dimension p X 1

function [ mhat ] = ulle(y,x,e,Kn,h)

n=size(y,1);
p = size(e,1);
mhat=zeros (p,1);
diff=gsubtract(x,e');  estimate point
d=(1/h) *diff;
if Kn== % Gaussian Kernel

K = (1/sqrt (2*pi))*exp(-0.5%d."2);
elseif Kn== % Epanechnikov

K = (0.75%x(1-d.72)) .%(abs(d)<= 1);
elseif Kn== % Triangular

K = (1-abs(d)) .*x(abs(d)<= 1);
elseif Kn==4 7, Rectangular kermnel

K = double(abs(d)<= 1);

end

130



for j=1:p
R = [ones(n,1) diff(:,j)];

P = diag(K(:,3));

m = R'xPx*R;

s(j,:) = (1/(det(m)+n~(-2)))*[m(2,2) -m(1,2)]*R'*P;
end

mhat = s*y;

end

Listing B.5: mvllin.m Multivariate Local Linear Estimator

% This function performs multivariate local linear estimation

% based the Gaussian kernel.

%SINPUTS:

% y: an (nX1l) column vector containing the observations on the regressand
% x: an (nXnreg) matrix containing the observations on the regressors

% evl: a (pXnreg) matrix containing the points where it is desired to

% evaluate the estimator. p can be any integer {1,2,...}

% h: is a (nregXl) vector of bandwidths.

function mvllin = mvllin(y,x,evl,h)

n=size(y,1);

p=size(evl,h1);

nreg=size (x,2);

K=ones(n,p);

s=zeros(p,n);

e = [1 zeros(l,nreg)];

for j=l:nreg
a=(1/h(j))*gsubtract (x(:,j),evl(:,3)"');
k=(1/sqrt (2*pi))*exp(-0.5%a."2); % Gaussian Kernel
K=K.*k;

end

for i=1:p

b=gsubtract (x,evl(i,:)); %b: nXnreg

R=[ones(n,1) bl;

P=diag(X(:,1i));

s(i,:)=ex((R'*P*R)\(R'*P)); ' R: nX(l+nreg) p: nXn s: pXn
end
mvllin = sx*xy;

end

Listing B.6: uhest.m Univariate Hestenes Estimator

% This function performs univariate Hestenes estimation

% INPUTS:

% y: an (nX1l) column vector containing the observations on the regressand
% X: an (nX1l) matrix containing the observations on the regressors

% x: a (pX1l) matrix containing the points where it is desired to

yA evaluate the estimator. p can be any integer {1,2,...}

% Kn: the kernel: if Kn=1 the gaussian kernel is used; if K=2 the
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% Epanechnikov kernel is used; if K=3 the triangular kernel is used;
pA if K=4 the rectangular kernel is used;

% h: is a scaler of bandwidths.

% s: a natural number denotes the smoothness of the function.

% b: If b=0, the sequence w_i=1/i; if b=1, w_i=i.

% OUTPUTS:

% mhat: vector of estimates of dimension p X 1

function m = uhest(Y,X,x,K,h,s,b)

d=(1/h)*gsubtract (x,X')"';
result=kays (s,b);
w=result (:,1);
k=result(:,2);

ratio = k./w;
nk = zeros(size(X,1),size(x,1));
if K ==1 Y Gaussian Kernel
kO = (1/sqrt(2*pi))*exp(-0.5%d."2);

elseif K==2 Y Epanechnikov

kO (0.75%x(1-d."2)) .*x(abs(d)<= 1);

elseif K==3 J Triangular

kO (1-abs(d)) .*(abs(d)<= 1);

elseif K==4 J Rectangular kernel

kO

double (abs(d) <= 1);

end

for j=1:s+1
Z=X./w(j);
a=(1/h)*gsubtract(x,-Z') ';
nk = nk+ratio(j)*(1/sqrt (2*pi))*exp(-0.5%a."2);
end
denom =sum(kO+nk) ;
m = ((Y'*(kO+nk))./denom)';
end

B.2 Density Estimators

Listing B.7: mvfrp.m Multivariate NW Density Estimator

% This function calculates the Rosenblatt-Parzen kernel density estimator.
% The output is a column vector with dimension equal to that of the vector
% x. X is a column vector of dimension n (number of observations), K=1
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% means a standard gaussian kernel is used, K=2 means an Epanechnikov
% kernel is used. x is a m X 1 vector, where m is the number of points
% where the estimator is evaluated.

% based the Gaussian kernel

%SINPUTS:

% x: an (nXnreg) matrix containing the observations on the regressors
% evl: a (pXnreg) matrix containing the points where it is desired to
% evaluate the estimator. p can be any integer {1,2,...}

% h: is a (nregXl) vector of bandwidths.

function fhat = mvfrp(x,evl,h)

n=size(x,1);
p=size(evl, 1) ;
nreg=size(x,2);
K=ones (n,p);
H=1;
s=zeros(p,n);
for j=1l:nreg
a=(1/h(j))*gsubtract (x(:,j),evl(:,j)"');
k=(1/sqrt (2*pi))*exp(-0.5%xa.”~2); I Gaussian Kermnel
K=K.*xk;
H=H*h(j) ;
end
fhat =(1/(n*H))*sum(K) ';

end

Listing B.8: Univariate LL Density Estimator with a Boundary on the Right

% This function calculates the local linear binning density estimates on
% the left side of the discontinuity point. The method is proposed by
% Cheng (1994) .

% INPUTS:
% X: an n X 1 vector containing all observations (left and right of the
yA discontinuity)

% x: an p X 1 vector containing all points of desired evaluation
yA (left and right of the discontinuity)
% Kn: the kernel. if Kn=1 the gaussian kernel is used; if K=2 the

pA Epanechnikov kernel is used; if K=3 the triangular kernel is used;
pA if K=4 the rectangular kernel is used;

% h: a scaler of bandwidths.

% OUTPUTS:

% mhat: a vector of estimates of dimension p X 1
function fhat_ng = f11_jn(X,x,K,h)

n=size(X,1);
%Rule of Thumb Bin Size (b) for the entire line
b=2xstd (X,1)*(n"~(-1/2));

J=floor ((max(X)-min(X))/b)+1;
c=zeros (2*xJ,1);
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G=zeros (2xJ,1);
Y=zeros (2%J,1);

for i=1:2%J
G(i)=((i-J) -0.5) *b;
c(i)=sum( G(i)-0.5%b<=X & X<G(i)+0.5%b);
Y(i)=(1/(n*b))*c(i);

end

% Grid (G) and normalized counts (Y) over the entire real line

D=[G Y];

%» Choose only the negative side for points of evaluation, grid and counts
xn = x(x<=0);%

Dn D(G<O0, :);
fhat_ng = ulle(Dn(:,2),Dn(:,1),xn,K,h);

end

Listing B.9: Univariate LL Density Estimator with a Boundary on the Left

% This function calculates the local linear binning density estimates on
% the right side of the discontinuity point. The method is proposed by
% Cheng (1994) .

% INPUTS:
% X: an n X 1 vector containing all observations (left and right of the
yA discontinuity)

% x: an p X 1 vector containing all points of desired evaluation
yA (left and right of the discontinuity)
% Kn: the kernel. if Kn=1 the gaussian kernel is used; if K=2 the

yA Epanechnikov kernel is used; if K=3 the triangular kernel is used;
% if K=4 the rectangular kernel is used;

% h: a scaler of bandwidths.

% OUTPUTS:

% mhat: a vector of estimates of dimension p X 1
function fhat_pg = fll_jp(X,x,K,h)

% X: an n X 1 vector containing all observation (left and right of the
% discontinuity)

% x: an n X 1 vector containing all points of desired evaluation

%(left and right of the discontinuity)

% K is the kernel: if K=1 the gaussian kernel is used, if K=2 the

% Epanechnikov kernel is used and if K=3 the triangular kernel is used.

n=size(X,1);
%Rule of Thunb Bin Size (b) for the entire line
b=2xstd (X,1)*(n"~(-1/2));

J=floor ((max(X)-min(X))/b)+1;
c=zeros (2*xJ,1);
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G=zeros (2xJ,1);
Y=zeros (2%J,1);

for i=1:2%J
G(i)=((i-J) -0.5) *b;
c(i)=sum( G(i)-0.5%b<=X & X<G(i)+0.5%b);
Y(i)=(1/(n*b))*c(i);

end

% Grid (G) and normalized counts (Y) over the entire real line
D=[G Y];

% Choose only the positive side for points of evaluation, grid and counts
xp = x(x>=0);

Dp = D(G>=0,:);

fhat_pg = ulle(Dp(:,2),Dp(:,1),xp,K,h);

end

Listing B.10: Univariate Hestnes Density Hestenes Estimator with a Boundary on the Right

% This function calculates the Hestenes density estimates on

% the left side of the discontinuity point. The method is proposed by

% Mynbaev and Martins-Filho (2018)

% INPUTS:

% X: an n X 1 vector containing all observations (left and right of the
yA discontinuity)

% x: an p X 1 vector containing all points of desired evaluation

yA (left and right of the discontinuity)

% Kn: the kernel. if Kn=1 the gaussian kernel is used; if K=2 the

% Epanechnikov kernel is used; if K=3 the triangular kernel is used;
yA if K=4 the rectangular kernel is used;

% h: a scaler of bandwidths.

% s: a natural number denotes the smoothness of the function.

% b: If b=0, the sequence w_i=1/i; if b=1, w_i=i.

% OUTPUTS:

% mhat: a vector of estimates of dimension p X 1

function fhat_ = fhest_jn(X,x,K,h,s,b)
n = size(X,1);

X_ = X(X<0);

X _=(-1)*X_;

x_ = x(x<=0);

x_ = (-1)*x_;

a0

(1/h) *gsubtract (x_,X_")"';

result=kays(s,b);
w=result(:,1);
k=result (:,2);
ratio = k./w;
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nk_

if

= zeros(size(X_,1) ,size(x_,1));
K==
kO_ = (1/sqrt(2*pi))*exp(-0.5*%al0_."2);
for j=1:s+1
Z_= X_./w(j);
a_=(1/h)*gsubtract(x_,-Z_"')"';

nk_ = nk_+ratio(j)*(1/sqrt (2*pi))*exp(-0.5%a_."2);
end

fhat_ =(1/(n*h))*sum(k0_+nk_)"';

elseif ==2

kO_ = 0.75%(1-a0_."2) .*(abs(a0_)<=1);

for j=1:s+1

Z_= X_./w(i);

a_=(1/h)*gsubtract(x_,-Z_"')"';

nk_ = nk_+ ratio(j)*0.75*%(1-a_."2).*(abs(a_)<=1);
end

fhat_ =(1/(n*h))*sum(kO_+nk_)';

elseif K==

kO_=(1-abs(al0_)) .*x(abs(al_)<=1);

for j=1:s+1
Z_= X_./w(j);
a_=(1/h)*gsubtract(x_,-Z_"')"';
nk_ = nk_+ ratio(j)*(l-abs(a_)).*x(abs(a_)<=1);
end

fhat_ =(1/(n*h))*sum(kO_+nk_)"';

end

end

Listing B.11: Univariate Hestnes Density Hestenes Estimator with a Boundary on the Left

This function calculates the Hestenes density estimates on

the left side of the discontinuity point. The method is proposed by

Mynbaev and Martins-Filho (2018)

INPUTS:

X: an n X 1 vector containing all observations (left and right of the
discontinuity)

x: an p X 1 vector containing all points of desired evaluation
(left and right of the discontinuity)

Kn: the kermel. if Kn=1 the gaussian kernel is used; if K=2 the

Epanechnikov kernel is used; if K=3 the triangular kernel is used;
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pA if K=4 the rectangular kernel is used;

% h: a scaler of bandwidths.

% s: a natural number denotes the smoothness of the function.
% b: If b=0, the sequence w_i=1/i; if b=1, w_i=i.

% QUTPUTS:

% mhat: a vector of estimates of dimension p X 1

function fhat = fhest_jp(X,x,K,h,s,b)

= size(X,1);
= X(X>=0);

n
X
x x(x>=0) ;

_pb
-p

a0 = (1/h)*gsubtract(x_p,X_p')"';

result=kays(s,b);
w=result (:,1);
k=result (:,2);

ratio = k./w;
nk = zeros(size(X_p,1),size(x_p,1));
if K==
kO = (1/sqrt(2*pi))*exp(-0.5%a0.72);

for j=1l:s+1

Z = X_p./w(j);

a=(1/h)*gsubtract(x_p,-Z2')"';

nk = nk +ratio(j)*(1/sqrt(2*pi))*exp(-0.5%a.”~2);
end

fhat =(1/(a*h))*sum(kO+nk) ';
elseif K==
k0 = (0.75%¥(1-a0.72)) .*x(abs(a0)<=1);
for j=1:s+1
Z = X_p.-/w(j);
a=(1/h)*gsubtract(x_p,-Z2"')"';
nk = nk + ratio(j)*0.75*%(1-a."2).*x(abs(a)<=1);
end
fhat =(1/(n*h))*sum(kO+nk) ';
elseif K==

k0O = (1-abs(a0)) .x*x(abs(al)<=1);

for j=1:s+1
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zZ =

X_p./w(j);

a=(1/h)*gsubtract(x_p,-Z2')"';

nk
end

fhat

end

end

nk + ratio(j)*(l-abs(a)).x(abs(a)<=1);

=(1/(nx*h)) *sum (kO+nk) ';

B.3 Estimators for the Additive Model

Listing B.12: Multivariate Marginal Integration Estimator

% This function performs multivariate marginal integration estimation

based

% on the Gaussian kernel

% INPUTS:

% y: an (nX1l) column vector containing the observations

% x: an (nXD) matrix containing the observations on the regressors
% evl: a (pXD) matrix containing the points where it is desired to
yA evaluate the estimator. ©p can be any integer {1,2,...}

% h: a (DX1) matrix of bandwidths.

% OUTPUTS:

% mhat: a (PXD) vector of estimates

function mhat = mi_estimate(y,x,evl,h)
P = size(evl,1); 7% the number of evaluation points
D = size(x,2); 7% the number of regressors
n = size(x,1); ’ sample size
for d = 1:D
for p = 1:P
% form the n evaluation points
Xg = X;
xlg = repmat(evl(p,d),n,1);
xg(:,d)=xl1g;
mdp = mvaw(y,x,xg,h);
mhat (d,p) = mean(mdp);
end
end
mhat = mhat';

end

Listing B.13: Multivariate Instrument Variable Estimator

% This function performs multivariate instrument variable estimation
% based on the Gaussian kermnel.

% INPUTS:
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% y: an (nX1l) column vector containing the observations on the regressand
% x: an (nXD) matrix containing the observations on the regressors

% evl: a (pXD) matrix containing the points where it is desired to

yA evaluate the estimator. p can be any integer {1,2,...}

% h: a (DX1) matrix of bandwidths.
% OUTPUTS:
% mhat: a (PXD) vector of estimates

function mhat = iv_estimate(y,x,evl,h)
P = size(evl,1); 7% the number of evaluation points
D = size(x,2); ¥% the number of regressors
n = size(x,1); ’ sample size

% First stage: get T and pilot estimators and evaluate on

all sample points
for d = 1:D

fd = mvfrp(x(:,d),x(:,d),h); % marginal density

fd: nX1

d X

"

xd(:,d) = [1; % delete the d column

[y

nX1

_d = mvfrp(xd,xd,h); % marginal density f(-d):

fj = mvfrp(x,x,h); 9’ joint density

T(:,d) = ((fd.x£_d)./fj).xy;

mhat(d,:) = mvaw(T(:,d),x(:,d),evl(:,d),h)";

univariate estimation nX1
end

mhat = mhat';

end

Listing B.14: Multivariate Backfitting Estimator

% This function performs multivariate Backfitting estimation

% based the Gaussian kernel.
% INPUTS:

% y: an (nX1l) column vector containing the observations on the regressand
% x: an (nXD) matrix containing the observations on the regressors

% evl: a (pXD) matrix containing the points where it is desired to

yA evaluate the estimator. p can be any integer {1,2,...}

% h: a (DX1) matrix of bandwidths.
% OUTPUTS:
% mhat: a (PXD) vector of estimates

function mhat = backfitting_estimate(y,x,evl,h)

% split the sample
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YX = sortrows([y,x,evl],2);
r =x(:,1)
Yn = YX(r<0,1);
Yp = YX(r>=0,1);
Xn = x(r<0,:);
Xp = x(r>=0,:);
x = [Xn ; Xpl;
En = evl(r<0,:);
Ep = evl(r>=0,:);
evl = [En ; Epl;
P = size(evl,1); 7 the number of evaluation points
D = size(x,2); ) the number of regressors
res2 (1) 0;
res2(2) = sum(y."2);
mhat (1:P,1:D) = 0;
j = 2; s=1; b =1 ;
while abs(res2(j)-res2(j-1))> 0.01
for d = 1:D
lag = mhat;
lag(:,d)=I[]1; % delete the current column
yd = y - sum(lag,2);
if 4 == 1
m_n = uhest(¥Yn,Xn(:,d),En(:,d),h,s,b);
m_p = uhest(Yp,Xp(:,d),Ep(:,d),h,s,b);
mhat (:,d) = [m_n ; m_pl;
else
mhat (:,d) = unw(yd,x(:,d),evl(:,d),h);
univariate estimation nX1
end
end
jo= 3+L
res2(j) = sum((y - sum(mhat,2)).72);
if j >100
break
end
end
yhat = sum(mhat,2); 7% sum of each row

end
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Listing B.15: Multivariate BSpine Estimator

% This function performs multivariate B_Spine estimation

% INPUTS:

% y: an (nX1l) column vector containing the observations on the regressand
% x: an (nXP) matrix containing the observations on the regressors

% K: the order of polynomial

% OUTPUTS:

% mhat: a (nXP) vector of estimates

function mhat = bspline_estimate(y,x,k,h)

n = size(y,1);

nk = sqrt(n); % it can be changed to other formulas

P = size(x,2) ; % the dimensions of X

X =[]; % basis functions evaluated at the evaluation points

% split the sample by X1
yx = sortrows ([y,x],2);
yxn yx(x(:,1)<0,:);
yXp yx(x(:,1)>=0,:);

% Get basis functions for X1

t = augknt(linspace(min(yxn(:,2)), max(yxn(:,2)), sqrt(size(yxn,1)
)), k);

vn = size(t,2)- k; I the # of control points v = the # of knots m
- the order k

% Produce B-Spline basis matrix evaluated at sample points

Bn = bspline_basismatrix(k,t,yxn(:,2)"');

A = zeros(size(yxp,1),size(Bn,2));

Bn = [Bnj;Al;

t = augknt(linspace(min(yxp(:,2)), max(yxp(:,2)), sqrt(size(yxp,1)
)), k);

vp size(t,2)- k; % the # of control points v = the # of knots m

- the order k

Bp bspline_basismatrix(k,t,yxp(:,2) ');

A = zeros(size(yxn,1) ,size(Bp,2));

Bp [A;Bp];

X = [X Bn Bpl;

% Get basis functions for X2, X3

for i = 3:P+1
% Construct all the knots
t = augknt(linspace(min(yx(:,1i)), max(yx(:,i)), nk), k);
v = size(t,2)- k; % the dimension v = the # of knots m - the
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order k
% Produce B-Spline basis matrix evaluated at sample points
B = bspline_basismatrix(k,t,yx(:,1i)"');
(X Bl ;

>
I

end
% estimate beta-hat

X = [ones(n,1) X]; % Add a column of ones to the matrix
beta = (X'*X)\(X'*yx(:,1));

% yhat = Xxbeta;

% estimate m-hat

mhat = zeros(n,1); 7 mhatl is a place holder
sp = 0;
ep = 1 + vn + vp; % skip the terms of ml
for i = 2:P
sp = ep + 1 ; 7, starting index
ep = ep + v ; 7% end index

C = beta(sp:ep);

m = X(:,sp:ep)*C ;

mhat = [mhat m];
end

Listing B.16: LL OLS Estimator

% This function calculates the local linear estimates for an addtitive

% linear model. The method is proposed by Calonico et al.(2016)

% INPUTS:

% y: an (nX1l) column vector containing the observations on the regressand

% x: an (nX1) matrix containing the observations on the regressors
% z: an (nX(nreg-1)) matrix containing additional covariates

% t: a (pX1l) matrix containing the points where it is desired to
pA evaluate the estimator. ©p can be any integer {1,2,...}

% h: a (pX1l) vector of bandwidths.

% OUTPUTS:

% mhat: a vector of estimates of dimension p X 1

function theta = localOLS(y,x,z,t,h)

n=size(y,1);

vect = t*ones(n,1);

a=(1/h)*(x-vect) ;

K=(1/sqrt (2*pi))*exp(-0.5%a."2);

R = [ (x-vect<0) x.*(x-vect<0) (x-vect>=0) x.*(x-vect >=0) z];
P=diag(X);

theta=((R'*P*R)\(R'*P))*y;
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