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Controllability of Formation Systems on Special
Orthogonal Groups over Directed Graphs
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Abstract—Gradient flows provide a means for a networked
formation system to reach and stabilize at a target configuration.
However, the decentralization constraints and the geometry of
the state space makes the appearance of stable but undesired
configurations inevitable. The presence of these undesired stable
configurations precludes global convergence to the target con-
figuration. In this paper, we address the issue by considering
a controlled formation system on special orthogonal groups
over a directed graph. Agents of the system are tasked with
stabilizing from others at target relative attitudes. The nominal
dynamics of the agents are gradient flows of certain potential
functions. These functions are parameter dependent, pretuned
by the controller. To prevent the formation system from being
trapped at an undesired configuration, we formulate and address
the problem of whether the controller can steer the system from
any configuration to any other configuration by retuning, on
the fly, the parameters of the potential functions. We show that
the answer is affirmative provided that the underlying graph is
rooted with a single root node being fully actuated. We formulate
the result as a main theorem and provide a complete proof of
the result.

Index Terms—Formation systems, control-linear systems, Lie
groups, geometric control

I. INTRODUCTION

Gradient descent has been widely used in multi-agent con-
trol for guiding a networked system to reach and stabilize at
a target configuration. Often, individual agents in a system
are assigned with certain potential functions, which depend
only on the local information accessible to the agents. The
dynamics of each agent are then realized as the gradient
flow of the associated potential function. Stabilization at the
nominal operation point can be achieved if the potential
functions are pre-tuned such that the target configuration is a
global (or at least a local) minimum point of the cost function
for the entire networked system, defined as the sum of all the
potential functions associated with the individual agents.

If a networked system needs to transition between distinct
operation points from time to time, then we face the control
problem of steering the system from one target configuration
to another. Such steering operations can be achieved if we
allow the potential functions to depend on certain time-varying
tuning parameters, which can also be viewed as reference
points for the system. The controller thus steers the networked
system by retuning, on the fly, the potential functions for
the individual agents. For example, if the retuning is made
such that the new target configuration emerges as a global (or
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local) minimum point of the corresponding cost function, then
one would expect that the dynamics of the networked system
will converge asymptotically to the new target configuration
provided that it is not too far away from the last one.

A. Motivating Example

To illustrate, we take an example from distance-based
formation control [1]–[3]. Consider a networked system of
N autonomous agents evolving in an Euclidean space, tasked
with stabilizing at target distances from other agents. By
convention, we use an undirected graph G = (V,E) to rep-
resent the information flow topology of the formation system.
Specifically, agents are assigned to nodes vi of G. Edges vivj
mean that agents vi and vj can access the relative distance
‖xj(t)− xi(t)‖ between them at all times. To stabilize agent
vi from its neighbors vj at target distances d̄ij , the controller
can assign the agent the following potential function:

ξi(x1, . . . , xN ) :=
1

4

∑
vj∈Vi

(
‖xj − xi‖2 − d

2

ij

)2

,

where Vi is the collection of neighbors of agent vi. The
potential function is minimized if the target distances are
achieved, i.e., ‖xj − xi‖ = d̄ij for all vj ∈ Vi. The agent vi
implements the following gradient-dynamics for minimizing
ξi:

ẋi = − ∂ξi
∂xi

=
∑
vj∈Vi

(
‖xj − xi‖2 − d

2

ij

)
(xj − xi). (1)

Local and global convergence of the above dynamics and
various variations have been investigated extensively in the
literature (see a survey paper [4] and references therein). In the
example, the target distances d̄ij are the tuning parameters. By
setting the values of d̄ij appropriately, any given configuration
can be realized as a global minimum point of the cost function
J := 1/2

∑N
i=1 ξi. Thus, the controller can manage to stabilize

the formation system at different target configurations.
However, for the above control scheme to work, a critical

assumption is that for a given cost function (which is param-
eterized by the tuning parameters), all of its local minimum
points need to be the target configurations. To see this, we
first note that having a target configuration as a local, or even
global, minimum point of the cost function guarantees only
local convergence. By resetting the target distances and, hence,
having the new target configuration to be a local (or global)
minimum point of the corresponding cost function does not
necessarily make the formation system converge to it unless
the previous target configuration lies in the basin of attraction
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of the new one. On the other hand, it is well known that the
cost function possesses multiple local minimum points after
modulo translations and rotations [3], [5]–[7]. It still remains
an open problem to determine when the local minimum points
comprise only target configurations. A partial solution was
provided in Chen et al. [3]. Similar stabilization problems, but
for bearing- or angle-based formation control, can be found,
for example, in Zhao and Zelazo [8] and Jing et al. [9].
We also refer the reader to some other relevant problems
in formation control, such as formation tracking [10] and
formation containment [11].

The approach we take to address the steering problem is
to simply allow the tuning parameters to be time-varying
during the transition from one target configuration to another,
i.e., we treat the tuning parameters as “control inputs.” If the
resulting system is controllable, then the transition can always
be achieved by manipulating, on the fly, the tuning parameters.
In the example of distance-based formation control, the asso-
ciated control system, adapted from the gradient dynamics (1),
is given by the following:

ẋi(t) =
∑
vj∈Vi

uij(t)(xi(t)− xj(t)), ∀vi ∈ V, (2)

where we have replaced the tuning parameters d
2

ij with uij(t)
to indicate that they are now treated as control inputs. We
allow uij(t) to take values in R. Note that the drifting
term

∑
vj∈Vi

||xj − xi||2(xj − xi) has been omitted for ease
of presentation. We can do this because (2) is a bilinear
control system [12]. Specifically, if system (2) is controllable,
then so is the system obtained by adding a drifting term
to (2). Controllability of bilinear systems of type (2) has been
investigated in Chen and Brockett [13] for the case where G
is undirected with uij(t) = uji(t) being reciprocal, and, in
Chen et al. [14] for the case where G is a directed graph. In
the latter case, the summation in (2) is over the in-neighbors
of vi and the reciprocity uij(t) = uji(t) is not required.

B. Formation Control on Special Orthogonal Groups

The steering problem we consider in the paper is similar to
the example given in the previous subsection. But, instead of
treating agents as points, we consider agents as rigid bodies,
whose states are represented by 3 × 3 special orthogonal
matrices. Thus, the underlying configuration space is now a
Cartesian product of special orthogonal groups. The change
of configuration space makes the formation system essentially
different from the one that is defined on a Euclidean space.
The rigid body formation system is tasked with stabilizing the
agents at certain relative attitudes from their neighbors. The
dynamics of each agent will again be realized as the gradient
flow of a certain potential function that depends on (controlled)
tuning parameters. The problem we are concerned with is
manipulating the tuning parameters to steer the formation
system from one target configuration to another.

Improving our understanding of the controllability of rigid
body formations has ramifications for various applications,
such as satellite formations. Recent NASA mission examples
include GRACE, which measures the Earth’s gravitational and

magnetic fields [15]; TanDEM-X, which provides imaging and
elevation mapping of the Earth’s surface [16]; and TROPICS,
which measures global pollution and climate change [17].
Satellite formations offer an effective alternative for wide-
field, distributed data collection missions where single-vehicle
solutions would be infeasible. Coordination of satellite for-
mations with appropriate attitudes is critical for enhancing
the capability of the overall system to collect high-value data
and for extending the lifetime of the system by improving the
quality of local state estimations (e.g., to avoid collisions).

We will now provide a precise description of the aforemen-
tioned control problem. Let SO(3) be the special orthogonal
group for R3 and θi(t) ∈ SO(3) be the state of agent vi. Note
that θi(t) is the absolute attitude of agent vi with respect to a
global framework. We do not assume that all the agents in the
formation system are able to access their own states. Instead,
there is only one agent, termed the leader and denoted by v1,
that can access its state θ1(t) for all time. The other agents
will be referred to as followers, which can only access relative
attitudes with respect to their in-neighbors. Specifically, if
there is an edge vjvi from vj to vi in G (in the sequel, we will
assume that the information flow topology is directed), then
agent vi is able to access the following special orthogonal
matrix for all t:

φij(t) := θ>i (t)θj(t). (3)

We call φij the relative attitude and note that θj = θiφij . Note
also that φji = φ>ij , although vivj may not be an edge of the
directed graph G.

To stabilize agents vi from their in-neighbors at relative
attitudes, we consider assigning to the agents the following
quadratic potential functions:

ξi(θ1, . . . , θN ) :=
∑

vj∈V +
i

∥∥θ>i θj − Uij∥∥2

F
, (4)

where V +
i is the collection of in-neighbors of vi and

‖A‖F :=
√

tr(AA>) is the Frobenius norm of an arbitrary
real matrix A. The matrix Uij ∈ R3×3 is a tuning parameter
determined by the controller. The nominal gradient dynamics
of (4) with respect to the normal metric (see Section II-B) for
the agent vi are then given by

θ̇i(t) =
∑

vj∈V +
i

θi(t)
(
φij(t)U

>
ij − Uijφji(t)

)
. (5)

Note, in particular, that if each Uij is a scalar multiple of
identity, i.e., Uij = uijI with uij positive, then (5) is reduced
to the “gradient consensus algorithm” [18], the goal of which
is to drive all the θi(t) to converge to the same value (see,
also, the Lohe model [19], [20] on the unitary group as a
non-abelian generalization of the Kuramoto model [21]). A
similar consensus algorithm, defined on Stiefel manifolds, can
be found in the recent work of Markdahl et al. [22]. Note that
global convergence to a consensus state is not always guaran-
teed on those non-Euclidean spaces and, in fact, the system
dynamics often possess multiple attractors (see, for example,
DeVille [23] and reference therein). This is in contrast to the
standard consensus dynamics over Euclidean spaces either in



3

v1

vj viφij

Fig. 1: Rooted digraph G. Nodes represent agents, and relative attitude
information φij is available if and only if vjvi belongs to E. The red
triangular node represents the (fully actuated) leader. A directed spanning
tree T of G can be obtained by removing the dashed edges, which is realized
by setting the corresponding controls uij equal to zero for all time.

discrete- or continuous-time [24]–[29]. Thus, in these cases,
controlling the agents by manipulating the tuning parameters
becomes essential for escaping from undesired, but stable,
configurations.

We let U ⊆ R3×3 be the collection of tuning parameters,
which can be viewed as the set of admissible control inputs for
the steering problem. The larger the set U is, the easier it is for
the controller to steer the system. On the other hand, having
a larger U implies that more information needs to be sent by
the controller in real-time communication. In this paper, we
focus on a relatively small set U that comprises only the scalar
multiples of the identity, i.e.,

U := {uI | u ∈ R}. (6)

We investigate the feasibility of steering the agents using
tuning parameters limited to the above set U .

We now introduce the system model and controllability
problem precisely. We assume that the leader v1 is fully
actuated. Specifically, let e1, e2, and e3 be the standard basis
of R3. We let

Ωa := ebe
>
c − ece>b , (7)

where (a, b, c) is a cyclic rotation of (1, 2, 3). Then, the
dynamics of the leader are given by

θ̇1(t) =

3∑
a=1

ua(t)θ1(t)Ωa, (8)

where each ua(t) is a scalar control input. For the followers,
the system dynamics are adapted from (5) and (6):

θ̇i(t) =
∑

vj∈V +
i

uij(t)θi(t)(φij(t)− φji(t)), (9)

where each uij(t) is a scalar control input. Combining (8)
and (9), we arrive at the following dynamics for the entire
formation system:

θ̇i =

{ ∑3
a=1 uaθiΩa, if vi = v1,∑
vj∈V +

i
uijθi(φij − φji), otherwise. (10)

The time arguments have been omitted in the above equation
for ease of presentation. This paper investigates the relation
between controllability of (10) and the structure of G. A
main contribution of this work is to show that the formation
system (10) is controllable as long as G is a rooted directed
graph with v1 a root (see Fig. 1).

The remainder of the paper is organized as follows. We
introduce preliminaries and state the main result in Section II.
An outline of the proof of the main result will be given after

the statement. A complete proof of the main result, along with
detailed analysis, is given in Section III. We also propose
a method of steering between target configurations in that
Section. The paper ends with conclusions.

II. PRELIMINARIES AND MAIN RESULT

We now present basic notions and preliminaries on graph
theory (Section II-A), gradient flows on the special orthogonal
group (Section II-B), and theory of control-linear systems
(Section II-C) before stating the main result of the paper,
on the controllability of the formation system (10), in Sec-
tion II-D. An outline of the proof will be given after the
statement.

A. Basic Notions from Graph Theory

Let G = (V,E) be a directed graph (or simply digraph),
with V = {v1, . . . , vn} the node set and E the edge set. An
edge from vi to vj is denoted by vivj ∈ E. The node vj is
said to be an out-neighbor of vi and, correspondingly, vi is
an in-neighbor of vj . We denote by V −i and V +

i the set of
out-neighbors and in-neighbors of vi, respectively.

A path from vi to vj is a sequence of nodes vp1 , . . . , vpn ,
with vp1 = vi and vpn = vj , such that each vpkvpk+1

, for
k = 1, . . . , n−1, is an edge of G and there is no repetition of
nodes in the sequence. The length of the path is the number
of edges contained in it.

A subgraph G′ = (V ′, E′) of G satisfies V ′ ⊆ V and
E′ ⊆ E. Given a subset V ′ of V , a subgraph G′ = (V ′, E′)
is said to be induced by V ′ if the edge set E′ satisfies the
following condition: for any two nodes vi and vj in V ′, vivj
is an edge of G′ if and only if it is an edge of G.

A digraph G is rooted if there is a node v1 such that for any
other vi in G, there is a path from v1 to vi. The node v1 is a
root of G. A digraph G is acyclic if it does not contain any
cycle as its subgraph. If G is also rooted, then it has a unique
root v1. A directed tree T is a special rooted, acyclic digraph
such that every node, except the root node v1, has only one
in-neighbor. A node vi is a leaf of the directed tree if it does
not have any out-neighbors (V −i = ∅). For any given node vi
other than v1, there is a unique path from v1 to vi. The depth
of the node vi is the length of that path. The depth of the root
v1 is 0 by default. The depth of the tree is the maximal value
of depths of all the nodes. Note that if G = (V,E) is rooted
with v1 a root, then it contains as a subgraph a directed tree
T = (V,E′), with the same node set V , such that v1 is the
root of T . The subgraph T is called a directed spanning tree
of G (see Fig. 1).

B. Normal Metric and Gradient Flow

In this section, we show that (5) is the gradient flow of (4)
with respect to the normal metric. To that end, we let TθSO(3)
be the tangent space of SO(3) at θ. Let so(3) be the space of
all 3× 3 skew-symmetric matrices. Then,

TθSO(3) = {θΩ | Ω ∈ so(3)}.

The so-called normal metric 〈·, ·〉 on SO(3) is

〈θΩ1, θΩ2〉θ := − tr(Ω1Ω2), ∀θ ∈ SO(3).
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Let ξ : SO(3) → R be an arbitrary continuously differen-
tiable function. For a vector W ∈ TθSO(3), we denote by
DW ξ(θ) the directional derivative of ξ at θ along W :

DW ξ(θ) := lim
ε→0

ξ(θ + εW )− ξ(θ)
ε

.

Then, the gradient of ξ at θ, ∇ξ(θ), with respect to the normal
metric is a vector in TθSO(3) that satisfies

〈∇ξ(θ),W 〉θ = DW ξ(θ), ∀W ∈ TθSO(3). (11)

Because the metric 〈·, ·〉θ is positive definite, the above con-
dition determines ∇ξ(θ) uniquely.

In the case here, the potential function ξi for agent vi is
given by

ξi(θi) =
∑

vj∈V +
i

‖θ>i θj − Uij‖2F ,

where only θi is treated as a variable (so that the gradient
of ξi(θi) may be considered as the partial derivative of
ξi(θ1, . . . , θN ) with respect to θi). For any tangent vector
W = θiΩ, we obtain by computation

DW ξi(θi) = tr
(

Ω
∑
vj∈V +

i
(φijU

>
ij − Uijφji)

)
.

To find the potential function gradient ∇ξi(θi) ∈ TθiSO(3),
we set ∇ξi(θi) = θiΩ

∗ for some Ω∗ ∈ so(3), where Ω∗ is
to be determined (and depends on θi and the θj). Using the
defining condition (11), we have

− tr (Ω∗Ω) = tr
(

Ω
∑
vj∈V +

i
(φijU

>
ij − Uijφji)

)
,∀Ω ∈ so(3).

Note that the matrix on the right-hand side of the above
expression is skew-symmetric since φji = φ>ij . It thus follows
that

Ω∗ = −
∑
vj∈V +

i
(φijU

>
ij − Uijφji),

resulting in the gradient dynamics (5). In particular, if
Uij = uijI is a scalar multiple of identity, then

Ω∗ = −
∑
vj∈V +

i
uij(φij − φji).

C. Control-linear Systems

Consider the following control system on a differentiable
manifold M embedded in an Euclidean space:

ẋ(t) =

m∑
i=1

ui(t)fi(x(t)), (12)

where each ui(t) is a scalar control input and each fi is a
control vector field. We first have the following definition
about controllability of (12) over an arbitrary subset of M :

Definition 1. Let M ′ be an open and path-connected subset of
M . System (12) is controllable over M′ if for any initial con-
dition x(0) ∈ M ′, any target x̂ ∈ M ′, and any time τ > 0,
there are bounded, integrable functions ui : [0, τ ] → R,
for i = 1, . . . ,m, as control inputs such that the solution
x(t) generated by (12) belongs to M ′ for all t ∈ [0, τ ] and,
moreover, x(τ) = x̂. If M ′ can be chosen to be the entire
space M , then system (12) is controllable.

The path-connectivity of the subset M ′ is necessary as the
solution x(t) is a continuous path that connects the two points
x(0) and x̂ in M ′. The openness of M ′ is not required, but is
often needed for local controllability analysis [30]. If, further,
M ′ is dense in M , then system (12) is controllable almost
everywhere. It is well known that system (12) is controllable
over M ′ if it satisfies the so-called Lie algebra rank condition
(LARC) over the subset. We review this fact, also known as
the Chow-Rashevsky theorem [31], below.

First, for any two given vector fields f1 and f2 on M , we
let [f1, f2] be the Lie bracket, which produces another vector
field on M defined as follows:

[f1, f2](x) :=
∂f2

∂x
(f1(x))− ∂f1

∂x
(f2(x)) , ∀x ∈M.

We now let L be the finite-dimensional vector space (over R)
spanned by {f1, . . . , fm} and L be the Lie algebra generated
by L, i.e., the smallest vector space that contains L as a
subspace and is closed under the Lie bracket.

For a given point x ∈ M , we let Lx be the evaluation of
the Lie algebra L at x:

Lx := {h(x) | h ∈ L}.

Note that each Lx is a subspace of the tangent space of M at
x, which we denote by TxM . We now recall the LARC:

Lemma 1 ([31]). Let M ′ be an open and path-connected
subset of M . If Lx = TxM for all x ∈M ′, then system (12)
is controllable over M ′.

We next introduce the notion of kth bracket controllability.
To that end, we define induction vector spaces L(k), for k ≥ 0,
as follows: For k = 0, we let L(0) := L and for k ≥ 1, we
let

L(k) := [L(k − 1), L],

which is, by convention, the vector space spanned by all the
elements [h1, h2] with h1 ∈ L(k− 1) and h2 ∈ L. We call an
element h ∈ L a Lie product if h belongs to L(k) for some
k ≥ 0. The depth of the Lie product h is the number of Lie
brackets required to produce it: if h ∈ L(k), then the depth
of h is k. Note that every element h in L can be written as
a linear combination h =

∑n
i=0 hi, with each hi belonging to

L(ki) for some ki ≥ 0. This holds due to the anti-symmetry
of Lie brackets and the Jacobi identity. For example, we can
write the iterative Lie bracket [[f1, f2], [f3, f4]] ∈ L as

[[f1, f2], [f3, f4]] = [[[f1, f2], f3], f4]− [[[f1, f2], f4], f3],

where each of the right-hand side terms are in L(3) (but the
left-hand side is not in any L(k)).

For convenience, we further let

L[k] :=

k∑
`=0

L(`),

defined as the vector space spanned by all the elements in
L(`) for all ` ≤ k. Note that we have the following increasing
sequence:

L := L[0] ⊆ L[1] ⊆ L[2] ⊆ · · · ⊆ L[∞] = L.
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Similarly, we let

Lx[k] := {h(x) | h ∈ L[k]} (13)

be the evaluation of L[k] at x. We now have the following
definition for kth bracket controllability:

Definition 2. Let M ′ be an open and path-connected subset
of M . System (12) is kth bracket controllable over M′, for
k ≥ 0, if Lx[k] = TxM for all x ∈M ′.

From (13), if system (12) is kth bracket controllable over
M ′ for some k, then it is `th bracket controllable over M ′

for all ` ≥ k. We also note that if M ′ and M ′′ are two open
and path-connected subsets of M , with M ′′ ⊆ M ′, and if
system (12) is kth bracket controllable over M ′, then by Def. 2
the system is also kth bracket controllable over the smaller
subset M ′′. In general, the fewer Lie brackets required, the
easier it is for the controller to generate inputs to steer the
system within M ′. A small number k is thus desired for motion
planning.

D. Main Result

In this section, we state the main results about controllability
of the formation system (10). Recall that agent v1 is the
leading agent whose dynamics is fully actuated and all the
other agents are followers whose dynamics are adapted from
the gradient flows (5). For convenience, we reproduce below
the (control-linear) system dynamics:

θ̇i =

{ ∑3
a=1 uaθiΩa, if vi = v1,∑
vj∈V +

i
uijθi(φij − φji), otherwise, (14)

where Ωa and φij are defined in (7) and (3), respectively. Let

Θ(t) := [θ1(t); · · · ; θN (t)]

be the collection of the states of the N individual agents at
time t. We call Θ(t) a configuration of the formation system.
Correspondingly, let

P := SO(3)N

be the configuration space. In case we need to emphasize the
underlying network topology G, we will write P (G). During
the analysis, we will consider different subformation systems
of (14) induced by subgraphs of G: a subformation system
induced by G′ = (V ′, E′) is obtained by considering only
the agents vi ∈ V ′ and setting uij = 0 for all time if
vjvi does not belong to E′. Correspondingly, we will use
P (G′) to denote the configuration space associated with the
subformation system.

We are now in a position to state the main result of the
paper.

Theorem 1. Let G be a rooted digraph with v1 the root.
Then, system (14) is controllable over the entire configuration
space P .

We provide below an outline of the proof of Theorem 1.
Detailed arguments will be given in the next section.

θj θi

w = [1; 0; 0] w = [0; 1; 0]

w = [0; 0; 1] w = [cos π/6; sin π/6; 0]

Fig. 2: Illustration of relative attitudes φij = θ>i θj between agents vi and
vj . The attitude of each agent is represented by an orthonormal frame (with
the three axes highlighted in red, blue, and green, respectively). The attitude
θj of agent vj is shown on the left and is fixed. Four different attitudes θi of
agent vi are shown on the right. Every such θi can be obtained by a rotation
of π of θj about a certain axis. The axis is represented by the dashed line
and is aligned with a vector w. Consequently, for every attitude θi shown in
the figure, the relative attitude φij belongs to Φ.

Outline of proof. The controllability analysis revolves around
a key subset of the configuration space P , termed the set of
nonsingular configurations. We introduce the set below.

To proceed, we first introduce a subset of SO(3) defined as
follows:

Φ :=
{
−I + 2ww> | w ∈ R3 with ‖w‖ = 1

}
. (15)

Algebraically, the set Φ comprises all symmetric special
orthogonal matrices in SO(3) whose eigenvalues are given by
−1, −1, and 1; the only other symmetric, special orthogonal
matrix is the identity matrix. Note that w is the eigenvector of
(−I + 2ww>) corresponding to the eigenvalue 1. Geometri-
cally, Φ comprises all special orthogonal matrices representing
a rotation of π of a rigid body around a certain axis (which
is aligned with the vector w) that runs through a fixed point
of the rigid body. In Fig. 2, we illustrate pairs of rigid bodies
with relative attitudes belonging to the set Φ.

Since the underlying digraph G of the formation system (14)
is rooted, it contains a directed spanning tree T with v1 the
root. Note that G may have several different directed spanning
trees; we choose one and fix it in the sequel.

For each edge vjvi of T and for each configuration
Θ = [θ1; · · · ; θN ], we recall that φij = θ>i θj is the relative
attitude between agents vi and vj . For the given edge, we let
Pij be the collection of configurations with φij belonging to
Φ, i.e.,

Pij := {Θ ∈ P | φij = θ>i θj ∈ Φ}. (16)

Since every matrix in Φ is symmetric, if φij ∈ Φ, then
φji ∈ Φ. We further define

Ps := ∪vjvi∈E′Pij and Pns := P\Ps. (17)

Note that the definitions of Ps and Pns implicitly depend on
the choice of spanning tree T . If we need to indicate explicitly
the dependence, we will write Ps(T ) and Pns(T ). The two sets
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defined in (17) are particularly relevant to us in determining
the depth of Lie products required to make the LARC hold.
We introduce the following definition:

Definition 3. If a configuration Θ belongs to Ps(T ), then it
is singular with respect to T . Otherwise, Θ is nonsingular.

The “singularity” of a configuration Θ ∈ Ps comes from the
fact that the computational results for Lie brackets of control
vector fields of the formation system (14) differ from those
for the case where Θ ∈ Pns. We will elaborate on this in
the next section. With the above definition of (non)singular
configurations, we provide below the major components of
the proof of Theorem 1:

1) Topological properties of Pns. We show that the set of
nonsingular configurations Pns is open and dense in P by
identifying each Pij , defined in (16), with a submanifold
of P of codimension 1. It then follows that Pns can be re-
alized by removing from P a finite union of submanifolds
of codimension 1, which implies that Pns is open and
dense. Besides openness and density of Pns, we further
show that the set Pns is path-connected. The proof will
be carried out by explicit construction of a continuous
path that connects two arbitrary configurations in Pns.
These topological properties of Pns will be established
in Section III-A.

2) Controllability over Pns. We next show that the formation
system (14) is dth bracket controllable over the set of
nonsingular configurations Pns, where d is the depth of
the directed spanning tree T of G. The proof of this result
relies on the use of the LARC (see Lemma 1). By explicit
computation, we show that the LARC can be satisfied
over any nonsingular configuration if all the Lie products
of the control vector fields of depth less than or equal
to d are included. Note that the result holds under the
assumption that the configurations are nonsingular. The
computation of the Lie brackets will be carried out in
Section III-B.

3) Complete controllability. Finally, we bridge the gap be-
tween “controllability almost everywhere” (since Pns is
open, dense, and path connected) and “controllability ev-
erywhere.” Specifically, we show that it is feasible to steer
from every singular (resp. nonsingular) configuration to
every nonsingular (resp. singular) configuration. This will
be established by induction on the number of agents. The
proof is given in Section III-C.

III. ANALYSIS AND PROOF OF THEOREM 1

We will now follow the steps outlined at the end of the last
section to establish Theorem 1.

A. Topological Properties of Nonsingular Configurations

Let G = (V,E) be a rooted digraph and T = (V,E′) be a
directed spanning tree of G. We will establish the following
result:

Proposition 2. The set of nonsingular configurations Pns(T )
is open, dense in P and, moreover, path-connected.

The proposition will be established after a sequence of
lemmas. To proceed, we first recall that the set Φ is a subset of
SO(3) defined in (15). Each matrix φ ∈ Φ is symmetric and
has eigenvalues −1, −1, and 1. Let RP2 be the real projective
space defined as the manifold of all straight lines in R3 passing
through the origin. We make the following observation:

Lemma 2. The set Φ is diffeomorphic to RP2.

Proof. Let w1 and w2 be two vectors in R3 of unit norm. Sup-
pose that two matrices (−I +w1w

>
1 ) and (−I +w2w

>
2 ) in Φ

are identical to each other; then, we have that w>1 w1 = w>2 w2,
which holds if and only if w1 = w2 or w1 = −w2. We thus
conclude that Φ ≈ RP2. �

We next recall that the set of singular configurations Ps is
defined as the union of Pij , for vjvi ∈ E′, where each Pij
is defined in (16) by requiring that the relative attitude φij
belongs to the set Φ. We now have the following fact:

Lemma 3. Each Pij is diffeomorphic to SO(3)N−1 × RP2.

Proof. Note that by (16), each Pij is diffeomorphic to
SO(3)N−1 × Φ. To see this, we let Θ = [θ1; · · · ; θN ] be a
configuration in P and Θ′−j ∈ SO(3)N−1 be obtained from
Θ by omitting its jth component θj . Then, the map

ρ : Pij → SO(3)N−1 × Φ

defined by
ρ : Θ 7→ (Θ′−j , θ

>
i θj)

is a diffeomorphism. The inverse ρ−1 sends a pair
(Θ′−j , φ) ∈ SO(3)N−1 × Φ to a singular configuration Θ ∈ Ps

obtained by inserting θiφ into Θ′−j so that θiφ is the jth
component of Θ. The lemma then follows from the fact that
Φ is diffeomorphic to RP2. �

To establish Prop. 2, we further need the following fact:

Lemma 4. For any φ ∈ SO(3), there exists a ψ ∈ SO(3) and
an angle α ∈ (−π, π] such that

ψφψ> = Rα :=

1 0 0
0 cosα − sinα
0 sinα cosα

 . (18)

In particular, the matrix φ belongs to Φ if and only if α = π.

Proof. The decomposition (18) directly follows from Euler’s
rotation theorem [32]. Since ψφψ> is a similarity transfor-
mation, from (18), the eigenvalues of φ are eiα, e−iα, and 1.
Thus, φ belongs to Φ if and only if α = π. �

With the above preliminaries, we now prove Prop. 2:

Proof of Prop. 2. We first show that Pns is open and dense
in P . By Lemma 3, the codimension of each Pij is 1, i.e.,
dim(P ) − dim(Pij) = 1. Because Pns = P\Ps and because
Ps is a finite union of Pij , we have that Pns is open and dense
in P .

We now show that Pns is path-connected. The proof will
be carried out by induction on N , the number of nodes in G.
For the base case, N = 1, there does not exist any singular
configuration, so Pns = P = SO(3). The result then follows
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from the fact that SO(3) is path-connected. For the inductive
step, we assume that the result holds for (N − 1) and prove
for N .

Consider two nonsingular configurations

Θ = [θ1; · · · ; θN ] and Θ̂ = [θ̂1; · · · ; θ̂N ].

We exhibit below a path p in Pns that connects Θ and Θ̂.
Note that we are now using the term ‘path’ to describe a
continuous function from a closed interval to P , as opposed
to a sequence of nodes in G. The path p will be obtained by
concatenating three subpaths p1, p2, and p3, which will be
constructed subsequently.

We first construct p1. Without loss of generality, we assume
that vN is a leaf of the directed spanning tree T and vN−1

is the in-neighbor of vN within T . Let φN−1,N := θ>N−1θN
be the relative attitude. Using Euler’s rotation theorem, we let
φN−1,N = ψ>Rαψ, where Rα is the matrix defined in (18),
with α ∈ (−π, π]. Because Θ is nonsingular, φN−1,N does
not belong to Φ. It follows from Lemma 4 that α 6= π. We
then define the subpath p1 : [0, 1]→ P as follows:

p1(t) := [θ1; · · · ; θN−1; θN−1ψ
>R(1−t)αψ].

Along the path p1, only the relative attitude between agents
vN and vN−1, which is given by ψ>R(1−t)αψ, changes. Since
α < π, (1−t)α 6= π for all t ∈ [0, 1]. By Lemma 4, the relative
attitude ψ>R(1−t)αψ does not belong to Φ, so p1(t) lies in
Pns for all t ∈ [0, 1]. By the construction of p1,

p1(0) = Θ and p1(1) = [θ1; . . . , θN−1; θN−1]

since R0 = I .
We next construct p2. Let G′ and T ′ be the subgraphs of

G and T induced by the first (N − 1) nodes. Since vN is a
leaf of T , T ′ is a directed spanning tree of G′. Consider the
following subconfigurations of Θ and Θ̂:

Θ′ := [θ1; · · · ; θN−1] and Θ̂′ := [θ̂1; · · · ; θ̂N−1].

Because Θ and Θ̂ belong to Pns(T ) and because T ′ is a
subgraph of T , we have that both Θ′ and Θ̂′ belong to Pns(T

′).
Thus, by the induction hypothesis, there exists a continuous
path q : [0, 1]→ Pns(T

′) such that q(0) = Θ′ and q(1) = Θ̂′.
Let qN−1(t) be the last component of q(t). We then define
the subpath p2 : [0, 1]→ P by augmenting q as

p2(t) := [q(t); qN−1(t)].

By construction, the attitudes of agents vN−1 and vN are
identical to each other along the path p2. In particular, the
relative attitude between the two agents is the identity matrix,
which does not belong to the set Φ. Combining this with the
fact that q(t) ∈ Pns(T

′) for all t ∈ [0, 1], we have that the
entire subpath p2 is in Pns(T ). Note that

p2(0) = p1(1) and p2(1) = [θ̂1, . . . , θ̂N−1, θ̂N−1].

Finally, the construction of the subpath p3 is similar to
that of p1. We let φ̂N−1,N := θ̂>N−1θ̂N and decompose it
as φ̂N−1,N = ψ̂>Rα̂ψ̂. Since Θ̂ is nonsingular, α̂ 6= π. We
then define

p3(t) := [θ̂1; · · · ; θ̂N−1; θ̂N−1ψ̂
>Rtα̂ψ̂].

Since α̂ < π, we have that tα̂ 6= π for all t ∈ [0, 1]. Thus, the
entire path p3 is in Pns. Note that

p3(0) = p2(1) and p3(1) = Θ̂.

By concatenating p1, p2, and p3, we obtain a continuous path
p in Pns that connects Θ and Θ̂. �

B. Controllability over Nonsingular Configurations

In this section, we establish the following result:

Proposition 3. Let G be rooted and T be a directed spanning
tree of G, with v1 the root and d the depth. Then, system (14)
is dth bracket controllable over Pns(T ).

The proof of the result will rely on the computation of Lie
brackets of control vector fields over the set Pns. To proceed,
we first note that the tangent space of P at Θ = [θ1; · · · ; θN ]
is given by the Cartesian product

TΘP = Tθ1SO(3)× · · · × TθN SO(3).

For a given tangent vector

[θ1A1; · · · ; θNAN ] ∈ TΘP,

with Ai ∈ so(3) for all i = 1, . . . , N , we refer to θkAk as the
kth component of the vector.

We next introduce shorthand notations for the control vector
fields. For each a = 1, 2, 3, we let

fa(Θ) := [θ1Ωa; 0; · · · ; 0], (19)

where Ωa is defined in (7). For each edge vjvi of G, we define
the vector field gij by specifying its kth component as

the kth component of gij(Θ) :={
θi(φij − φji), if vk = vi,
0, otherwise, (20)

where φij = θ>i θj as defined in (3). With the above notations,
we re-write the formation system (14) as

Θ̇(t) =

3∑
a=1

ua(t)fa(Θ(t)) +
∑

vjvi∈E
uij(t)gij(Θ(t)).

We will now evaluate the Lie products of the control
vector fields at a nonsingular configuration. The following
computational result is key to the proof of Prop. 3:

Lemma 5. Let vjvi be an edge of G and gij be defined in (20).
Let h be an arbitrary differentiable vector field on P with kth
component θkAk(Θ) for some Ak(Θ) ∈ so(3). Suppose that
the ith component of h is identically zero, and further, that no
component of h depends on θi, i.e.,

h = [θ1A1(Θ′−i); · · · ; 0; · · · ; θNAN (Θ′−i)]

where the zero is the ith component and Θ′−i ∈ SO(3)N−1

is obtained by omitting θi from Θ. Then, only the ith
component of [gij , h](Θ) is nonzero and it is given by
θi (φijAj(Θ) +Aj(Θ)φji).

A proof of the result is provided in the Appendix. With the
preliminaries above, we now establish Prop. 3.
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Proof of Prop. 3. The proof will be carried out by induction
on the depth d of the directed spanning tree T . For the base
case where d = 0, there is only one single node, namely
v1. The leader v1 has dynamics (8) that are fully actuated,
so the system is 0th bracket controllable everywhere. For the
inductive step, we assume that the result holds for (d−1) and
prove for d. Specifically, we show that if Θ belongs to Pns,
then TΘP = LΘ[d].

Recall that the depth of a node vi within T is the length of
the unique path from the root v1 to vi. Let V ∗ be the set of
nodes in T whose depths are d and let V ′ := V \V ∗. Let G′

and T ′ be the subgraphs of G and T , respectively, induced by
the subset V ′. Then, T ′ is a directed spanning tree of G′ and
the depth of T ′ is (d− 1). We further denote by E′ the edge
set of G′.

Now, consider the subformation system formed by the
agents vj in V ′. By the induction hypothesis, the subformation
system is (d − 1)th bracket controllable over Pns(T

′). More
specifically, we let L′ be the Lie subalgebra of L generated
by the collection of the fa, for a = 1, 2, 3, and the gj` for
v`vj ∈ E′. Note that if h ∈ L′, then it has zero as its
ith component, for any vi ∈ V ∗. This holds because it is
constructed by taking Lie brackets of the fa and the gj`,
which, by (19) and (20), have zero as their ith components.
Further, since no agent vj ∈ V ′ can have an agent vi ∈ V ∗
as its in-neighbor in G′, h does not depend on the θi. For
any Θ ∈ P (G), we let Θ′ ∈ P (G′) be the corresponding
subconfiguration formed by the θj , for vj ∈ V ′. Since T ′ is
a subgraph of T , it follows that if Θ is in Pns(T ), then Θ′

is in Pns(T
′). Thus, by the induction hypothesis, we have the

following spanning condition for all Θ belonging to Pns(T ):

L′Θ[d− 1] = TΘ′P (G′)× {0}, (21)

where 0 belongs to
∏
vi∈V ∗ TθjSO(3).

We fix in the sequel a configuration Θ ∈ Pns(T ). For each
vi ∈ V ∗, we let Wi be the subspace of TΘP defined as follows:

Wi := {[θ1A1; · · · ; θNAN ] | Ak = 0 if k 6= i, Ai ∈ so(3)} .

Let vj be the unique in-neighbor of vi within T . We show
below that there exist Lie products ha, for a = 1, 2, 3, in
L′Θ[d− 1] such that

Span {gij(Θ), {[gij , ha](Θ) | a = 1, 2, 3}} = Wi. (22)

Note that if (22) holds for all vi ∈ V ∗, then L′Θ[d − 1] and
the Wi, for vi ∈ V ∗, span the tangent space of P at Θ.

To construct the Lie products ha, we let φij = θ>i θj be the
relative attitude and decompose it as φij := ψ>Rαψ. Because
Θ is nonsingular, α 6= π. We next define three skew-symmetric
matrices as follows:

Ω̃a := ψ>Ωaψ, ∀a = 1, 2, 3,

where Ωa is defined in (7). Because the matrices Ωa span so(3)
and because the map Ω 7→ ψ>Ωψ is a linear automorphism
from so(3) to itself, the matrices Ω̃a span so(3) as well.

By the spanning condition (21), there exist ha, for
a = 1, 2, 3, in L′[d−1] with the jth component at Θ given by
θjΩ̃a. Note that each ha satisfies the hypothesis of Lemma 5,

namely, ha does not depend on θi and the ith component of
ha is identically zero.

By the definition (20) of gij and by Lemma 5, the following
condition holds for the four vector fields gij and [gij , ha] (for
a = 1, 2, 3): all but their ith components are zero. Moreover,
their ith components are given by

θi(φij − φji) and θi(φijΩ̃a + Ω̃aφji),

respectively. It remains to show that

Span
{
φij − φji,

{
φijΩ̃a + Ω̃aφji | a = 1, 2, 3

}}
= so(3).

(23)
By direct computation,

φij − φji = −2 sin(α)Ω̃1,

φijΩ̃1 + Ω̃1φji = 2 cos(α)Ω̃1,

φijΩ̃2 + Ω̃2φji = (1 + cos(α))Ω̃2 + sin(α)Ω̃3,

φijΩ̃3 + Ω̃3φji = (1 + cos(α))Ω̃3 − sin(α)Ω̃2.

(24)

Because α 6= π, every Ω̃a, for a = 1, 2, 3, can be written
as a linear combination of the above four matrices. Since the
matrices Ω̃a, for a = 1, 2, 3, span so(3), we conclude that (23)
holds. Thus,

L[d] = L′[d− 1] +
∑
vi∈V ∗

Wi = TΘP.

This completes the proof. �

Remark 1. In the above computation (24), the condition that
α 6= π is also necessary for the four matrices to span so(3).
Indeed, if α = π, then only the second expression of (24)
is nonzero. In this case, by Lemma 4, the relative attitude
φij belongs to Φ and the configuration Θ is singular. Note
that the above arguments do not imply that the LARC fails at
singular configurations. Instead, they imply that Lie products
of greater depths are needed for the LARC to hold at the
singular configurations.

C. Proof of Theorem 1

In this section, we show that system (14) is controllable
everywhere. We have already shown that the system is con-
trollable over the set of nonsingular configurations Pns; the
gap we need to bridge is the case where either the initial
configuration Θ(0) or the target Θ̂ is singular.

The proof will be carried out by induction on the number of
nodes N in the formation system. We also provide examples
to illustrate the key idea of the proof at the end of the section.
For the base case where N = 1, there is only one agent, the
leader. Since its dynamics (8) are fully actuated, the system
is controllable over P = SO(3). For the inductive step, we
assume that the result holds for (N − 1) and prove for N .

Let the initial and the target configurations be given by

Θ(0) = [θ1(0); · · · ; θN (0)] and Θ̂ = [θ̂1; · · · ; θ̂N ],

respectively. We exhibit below control inputs uij : [0, τ ]→ R,
for vjvi ∈ E, that steer the formation system (14) from
Θ(0) to Θ(τ) = Θ̂. To construct the control inputs, we
divide the time interval [0, τ ] into three subintervals [0, τ/3),
[τ/3, 2τ/3), and [2τ/3, τ ]. We construct the control inputs for
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each subinterval and specify the solution Θ(t) generated by
the system (14) at t1 = τ/3 and t2 = 2τ/3.

We again let T be a directed spanning tree of G with v1

the root. Without loss of generality, we assume that vN is a
leaf of T . Let G′ = (V ′, E′) be the subgraph of G induced
by the first (N − 1) nodes, i.e., V ′ := {v1, . . . , vN−1}. Then,
G′ is rooted with v1 a root. Consider the subformation system
formed by the first (N − 1) agents, with G′ the underlying
digraph. The initial configuration of the subformation system
is given by

Θ′(0) := [θ1(0); · · · ; θN−1(0)] ∈ P (G′).

By the induction hypothesis, the subformation system is con-
trollable over the entire configuration space P (G′). Thus, there
exist control inputs uij : [0, τ/3)→ R, for vjvi ∈ E′, to steer
the subformation system from Θ′(0) to

Θ′(τ/3) = [θN (0); · · · ; θN (0)] ∈ P (G′),

i.e., the state for every agent vi, for vi ∈ V ′, is the same as the
initial condition θN (0) of agent vN . Note that any edge vivN
is not in E′ since vN is not in V ′. We let the corresponding
control inputs uNi be identically zero over the period [0, τ/3).
Then, by construction of the control inputs, the solution Θ(t)
of the complete formation system satisfies

Θ(τ/3) = [θN (0); · · · ; θN (0)] ∈ P (G).

We next construct the control inputs over the period
[τ/3, 2τ/3). The final configuration Θ(τ/3) of the previous
subinterval now becomes the initial condition. Note that
Θ(τ/3) is nonsingular because the relative attitudes between
the agents are I /∈ Φ. By Prop. 3, the formation system (14)
is controllable over Pns(T ). Thus, there exist control inputs
uij : [τ/3, 2τ/3) → R, with vjvi ∈ E, such that the solution
Θ(t) generated by the system satisfies

Θ(2τ/3) = [θ̂N ; · · · ; θ̂N ] ∈ Pns(T ).

Note that by t2 = 2τ/3, agent vN reaches its target state θ̂N .
To steer the formation system (14) to reach the target Θ̂, it

now suffices steer the subformation system from

Θ′(2τ/3) = [θ̂N ; · · · ; θ̂N ] ∈ P (G′)

to the target
Θ̂′ := [θ̂1; · · · ; θ̂N−1].

This is feasible by the induction hypothesis. We let
uij : [2τ/3, τ ]→ R, for vjvi ∈ E′, be the control inputs that
accomplish the task. The proof is then completed by setting
the other control inputs uNi, for vivN ∈ E, identically to zero
over the last period [2τ/3, τ ]. �

Illustration. We first consider a simple formation system
composed of only two agents, namely a leader v1 and a single
follower v2. Let the initial and target configurations be

Θ(0) = [I; diag(−1, 1,−1)] and Θ̂ = [I; diag(−1,−1, 1)],

both of which are singular. We illustrate in Fig. 3 how to steer
from Θ(0) to Θ(τ) = Θ̂.

v1

v2

φ12 ∈ Φ φ12 = I φ12 = I φ12 ∈ Φ

0 τ/3 2τ/3 τ
t

Fig. 3: Simple formation system comprised of a leader and a single follower.
We illustrate how to steer the system from one singular configuration to
another. The arrows indicate the maneuvers of the agents along the time axis.
A dashed arrow indicates that the corresponding agent is stationary in the
subinterval. The relative attitudes φ12 between agents v1 and v2 at τ/3 and
2τ/3 are the identity matrix.

The steering process has three steps. 1) Since the leader
v1 is fully actuated, one can steer v1 from θ1(0) = I to
θ1(τ/3) = θ2(0). The follower v2 remains stationary along
the process. By doing so, we have a nonsingular configuration
Θ(τ/3) = [θ2(0); θ2(0)] at time τ/3. This step can be omitted if
the initial configuration Θ(0) is itself non-singular. 2) Because
the set of nonsingular configurations is open, dense, and path
connected and because the formation system is controllable
over the set of nonsingular configurations, by Prop. 3, one
is able to steer from the nonsingular configuration Θ(τ/3) to
another nonsingular one Θ(2τ/3) = [θ̂2, θ̂2]. Note that agent
v2 achieves its target attitude θ̂2 at the end of this step,
and will remain stationary in the remainder of the steering
process. 3) Finally, one steers the leader v1 (fully actuated)
from θ1(2τ/3) to its own target attitude θ̂1 at time τ .

Next, to illustrate the inductive step of the proof, we
consider a formation system of 7 agents with the underlying
graph shown in Fig. 4a (reproduced from Fig. 1). The graph G
is rooted with v1 as the single root. The solid arrows indicate a
directed spanning tree T of G, with v7 a leaf. We illustrate in
Fig. 4b how to steer agent v7 from its initial attitude θ7(0) to its
target θ̂7 at time 2τ/3. Consider the path v1, v2, v5, v7 from the
root v1 to v7. The steering process for agent v7 involves only
the agents in the path and has two steps. 1) By the induction
hypothesis, the subformation system formed by agents v1, v2,
and v5 is completely controllable. Thus, one can steer each
of these three from its initial attitude to θ7(0) at time τ/3. By
doing so, the configuration formed by agents v1, v2, v5, and v7

is nonsingular because all the relative attitudes are the identity
matrix. 2) One is then able to steer the subformation system
formed by these four agents from [θ7(0); θ7(0); θ7(0); θ7(0)]
at time τ/3 to another nonsingular configuration [θ̂7; θ̂7; θ̂7; θ̂7]
at time 2τ/3.

The agent v7 will then remain stationary in the remainder of
the steering process (i.e., the control inputs corresponding to
the edges incident to v7 will be identically zero over [2τ/3, τ ]).
Note that the subgraph G′ induced by v1, . . . , v6 is rooted,
with one node less than G. Thus, by the induction hypothesis,
one is able to steer the subformation system corresponding to
G′ from Θ′(2τ/3) to the desired target Θ̂′ at time τ .
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v1 v2

v3

v4

v5

v6

v7

(a) Graph of a formation system. Solid arrows indicate a spanning tree.

v1

v2

v5

v7

φ12 ∈ Φ

φ25 ∈ Φ

φ57 ∈ Φ

φ12 = I

φ25 = I

φ57 = I

φ12 = I

φ25 = I

φ57 = I

0 τ/3 2τ/3
t

(b) Maneuvers taken by agents v1, v2, v5, and v7 to steer agent v7 from
its initial attitude at t = 0 to the target θ̂7 at t = 2τ/3.

Fig. 4: Illustration of the inductive step in the proof of Theorem 1.

Finally, we note that the steering processes described in the
above examples are by no means optimal with respect to a
certain metric. Rather, they demonstrate the key idea behind
the proof of Theorem 1.

IV. CONCLUSIONS

Gradient flows have widely been used in formation control
to provide a decentralized solution for stabilizing agents at
a target configuration. Often, the resulting dynamics possess
multiple stable, but undesired, equilibrium points. These equi-
librium points are problematic because the associated basins
of attraction are open subsets of the configuration space. Thus,
the nominal gradient flow can readily enter an undesired basin
of attraction, precluding the system from reaching the desired
equilibrium. This is especially likely if the target configuration
is not close to the starting point. To resolve this issue, we have
considered the problem of steering the formation system by
manipulating, on the fly, the tuning parameters of the potential
functions. Treating these parameters as control inputs, we
investigate the controllability problem for a formation system
over special orthogonal groups. We have shown that, with
some mild assumptions about the underlying information
flow topology and the availability of a single fully actuated
agent, the formation system is controllable over the entire
configuration space.

The proof of the result relies on introducing the nonsingular
configurations. We have shown that these configurations form
an open, dense, and path-connected subset of the configuration
space. We have computed Lie brackets of control vector field
and shown that the LARC is satisfied over the nonsingular
configurations. Moreover, we have shown that the number
of iterative brackets needed for the LARC is bounded above
by the depth of the underlying graph (more precisely, any
of its directed spanning trees). Finally, the extension of con-
trollability to the entire configuration space (including the
singular configurations) has been made. The analysis carried
out in the proof provides insights for constructing explicit
control laws for steering the formation system, which we
will aim to address in future work. There are a few other
extensions of the work that we consider interesting for future
research. First, we will aim to extend the results to the case
where the formation system has multiple leaders, but with the
underlying graph being only weakly connected. We will also
aim to address the case where the kinematic control model
of the individual agents is replaced by other types of system
dynamics. Furthermore, we will aim to address the feasibility
of reducing the number of control inputs in a formation system
to a single one that is common to all agents.
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APPENDIX A
PROOF OF LEMMA 5

The vector fields h and gij are defined on P = SO(3)N .
Each SO(3) is a closed subset of R3×3, so P is a closed subset
of Q := (R3×3)N . To compute the Lie bracket

[gij , h](Θ) =
∂h

∂Θ
(gij(Θ))− ∂gij

∂Θ
(h(Θ)) , (A.1)

we first appeal to the Whitney extension theorem [33] and
extend h and gij so that they are now defined over the entire
Euclidean space Q (the extensions are made such that their
values at Θ ∈ P do not change). With slight abuse of notation,
we will still use h and gij to denote the extended vector fields.

We consider the extension of gij to take the same form as (20),
i.e., for any Θ = [θ1; · · · ; θN ] ∈ Q, we let gij be defined by

the kth component of gij(Θ) :={
θi(φij − φji), if vk = vi,
0, otherwise,

where φij := θ>i θj is defined as usual, but θi and θj are
not necessarily in SO(3) anymore. For the extension of h,
we only require that h satisfies the hypothesis of Lemma 5,
i.e., h does not depend on θi and the ith component of h is
identically zero.

With the above extensions, we will now compute the Lie
bracket (A.1). For the first term, we have that

∂h

∂Θ
(gij(Θ)) = lim

ε→0

h(Θ + εgij(Θ))− h(Θ)

ε
.

Note that the only nonzero component gij is the ith compo-
nent, whereas h does not depend on the ith component of its
argument. Thus,

h (Θ + εgij(Θ)) = h(Θ)

for all ε ∈ R, which means that ∂h
∂Θ (gij(Θ)) = 0.

For the second term in (A.1), we have

∂gij
∂Θ

(h(Θ)) = lim
ε→0

gij(Θ + εh(Θ))− gij(Θ)

ε
.

Because the kth component of gij is zero, for vk 6= vi, we have
that the kth component of ∂gij

∂Θ h(Θ) is 0 for all vk 6= vi. It
remains to compute the ith component of ∂gij

∂Θ (h(Θ)). Recall
that the kth component, for any vk ∈ V , of h at Θ ∈ P is
given by θkAk(Θ), with Ak(Θ) ∈ so(3). Then,

the ith component of
∂gij
∂Θ

(h(Θ)) =

lim
ε→0

θ̃i(ε)(φ̃ij(ε)− φ̃ji(ε))− θi(φij − φji)
ε

,

where θ̃i(ε) := θi(I + εAi(Θ)) and φ̃ij(ε) := θ̃>i θ̃j(ε).
However, by the hypothesis of Lemma 5, Ai(Θ) = 0, so θ̃i
and φ̃ij reduce to θ̃i = θi and φ̃ij = θ>i θ̃j(ε), respectively. By
computation, the above limit is then given by

lim
ε→0

θi(φ̃ij(ε)− φ̃ji(ε))− θi(φij − φji)
ε

=

θi(φijAj(Θ) +Aj(Θ)φji),

which completes the proof. �
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