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Abstract. We develop an automated controller tuning procedure for wind turbines that uses the results of non-
linear, aeroelastic simulations to arrive at an optimal solution. Using a zeroth-order optimization algorithm, sim-
ulations using controllers with randomly generated parameters are used to estimate the gradient and converge to
an optimal set of those parameters. We use kriging to visualize the design space and estimate the uncertainty,
providing a level of confidence in the result.

The procedure is applied to three problems in wind turbine control. First, the below-rated torque control is
optimized for power capture. Next, the parameters of a proportional—integral blade pitch controller are optimized
to minimize structural loads with a constraint on the maximum generator speed; the procedure is tested on rotors
from 40 to 400 m in diameter and compared with the results of a grid search optimization. Finally, we present
an algorithm that uses a series of parameter optimizations to tune the lookup table for the minimum pitch setting
of the above-rated pitch controller, considering peak loads and power capture. Using experience gained from
the applications, we present a generalized design procedure and guidelines for implementing similar automated

controller tuning tasks.

1 Introduction

In this article, we present a data-driven, simulation-based op-
timization procedure for tuning wind turbine controllers us-
ing measures that are directly related to component design.
Controller tuning influences the power capture and structural
loading on wind turbines, which are directly related to the
cost of the wind energy generated. At the same time, different
turbine models require different control parameters. As ro-
tor designs are iterated upon and also customized, e.g., with
larger towers, tip extensions, or for site-specific turbulence,
an updated (and ideally optimized) controller is required for
component design and cost specification. Given the aeroe-
lastic turbine model, the algorithm presented in this article
automatically finds the optimized parameters of the prede-
fined control architecture, reducing the effort required of the
control designer.

The wind turbine control tuning can be automated, but de-
sign choices for the various parameters often require expert

knowledge of the controller and turbine operation. An auto-
mated procedure to determine these choices could reduce the
design cycle time of a manufacturer’s research and develop-
ment process or aid researchers in other disciplines of wind
engineering that require a well-tuned controller without wor-
rying about its finer details. Several control parameters are
directly related to the performance of the turbine and must be
tuned for each design iteration or model update. The simplest
method to determine these design choices using simulation
results is to exhaustively search the design space and then
make an educated design choice of the parameter. However,
exhaustive search may become computationally intractable
for fine discretizations of the search space; on the other hand,
coarse discretizations may lead to suboptimal design choices.

A systematic, simulation-based parameter search of the
pitch control gains for generator speed control was first pub-
lished in Hand and Balas (2000). On a single turbine, tur-
bulent simulations were used to sample and visualize the
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design space against competing design measures: generator
speed regulation versus blade pitch actuation. A similar data
processing flow was used in Hansen et al. (2005) while the
problem was formulated in a numerical optimization frame-
work for structural load reduction; the authors concluded that
a good initial guess was only marginally worse than the op-
timized result and that the effort required to set up the opti-
mization procedure was not profitable for the benefit in struc-
tural loading. Shortly thereafter, an adaptive control frame-
work was found to be beneficial for reconciling plant—-model
mismatches in field testing, especially for control parameters
that affect power production (Johnson et al., 2006), where
even small benefits are profitable to the operator.

As the wind industry has matured and computational cost
has decreased, wind turbine design increasingly relies on
simulation of power capture and structural loads for design
analysis. As a result, system engineering tools for wind tur-
bine design have been developed and refined, leading to up-
dated efforts in automated controller development, with the
aim of deploying tuning methods for many different turbines.
One approach is to use a model-based control scheme in or-
der to limit the control tuning effort (Bottasso et al., 2012).
Model-based pitch (Hansen et al., 2005) and torque (Johnson
et al., 2006) controllers usually result in functioning con-
trollers but require rules of thumb to determine the closed-
loop characteristics and can be inaccurate when there are un-
certainties in the model.

A scalar cost function was presented in Tibaldi et al.
(2014) using measures that are directly related to wind tur-
bine component design, like peak and fatigue loads. The cost
function included terms for each turbine part, with factors to
capture its relative cost to the turbine. Using measures di-
rectly related to the component design, like fatigue and ex-
treme loads in turbulent simulations, is ideal because it most
accurately reflects the eventual component design, but these
simulations require more detailed and computationally ex-
pensive methods to generate the measures.

Simulation-based optimization has been used to solve
these problems, where solving for the value of the cost func-
tion is expensive compared to the optimization procedure.
One approach to solving these types of problems is using re-
sponse surface methodology (RSM) (Fu, 2014). RSM was
originally developed for experimental design (Box and Wil-
son, 1951) but has increasingly been used with simulation
information; it works by fitting a cost function to the simula-
tion results, finding the local gradient of the fit, and optimiz-
ing the fitted cost function. The question of how to sample
the parameter space remains an open question. Samples can
be generated using a grid search or random sampling. An
example in the wind energy community by Moustakis et al.
(2019) samples the parameter space based on a cost func-
tion that considers both where the cost is expected to be opti-
mal and also where it is unknown. Our approach to sampling
the parameter space is based on stochastic approximation
or “zeroth-order optimization,” which uses the sampled cost
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function to estimate the local gradient and then optimizes the
function with proven convergence results (Ghadimi and Lan,
2013). Other optimization algorithms require an analytical
model; the proposed method relies on functional evaluations
(e.g., simulation data) and does not require a model to com-
pute gradient information. In one of the original stochastic
approximations methods (Kiefer and Wolfowitz, 1952), each
dimension of the decision variable is perturbed and a finite-
difference method is used to approximate the gradient. Multi-
point methods were developed for higher-dimensional cases,
where the decision variable can be perturbed in a direction
containing multiple dimensions and the directional deriva-
tive is used to estimate the gradient (Duchi et al., 2015). If
multiple directions are randomly sampled using a normal
Gaussian distribution and then averaged to find the direc-
tional derivative, it is known as Gaussian smoothing, which
has been shown to improve convergence rates (Hajinezhad
etal., 2017).

We use a Gaussian smoothing approach to generate sam-
ples, estimate the gradient, and identify a (possibly local)
minimum point. Then we use the samples to visualize the de-
sign space and provide a level of confidence in the result. Pre-
vious work in controller optimization usually only provides
the cost function and goals of the optimization, whereas this
work explicitly details the method for determining the sam-
ple simulations and how their results are used to iterate on
control designs.

Instead of using cost functions directly related to over-
all wind turbine performance, our work solves specific wind
turbine control problems that are related to the cost of en-
ergy. First, the optimization procedure is demonstrated on
below-rated torque control to increase power capture. Next,
the pitch control parameters for above-rated pitch control are
optimized to reduce fatigue or extreme loads on the tower or
blades with a maximum generator speed constraint. Finally,
the minimum pitch setting of the pitch controller is optimized
in a series of parameter optimizations aimed at reducing peak
blade loads.

This article is organized as follows. The optimization al-
gorithm and visualization method are presented in Sect. 2.
Applications of the algorithm for wind turbine control tun-
ing are presented in Sect. 3, followed by a generalization of
the design procedure and guidelines for parameter selection
in Sect. 4. Conclusions are presented in Sect. 5, and the gen-
eralized wind turbine controller that is tuned in Sect. 3 is
described in Appendix A.

Mathematical notation

Superscript notation will be used to index the stage r of the
zeroth-order optimization algorithm: e.g., z”. Additionally,
FT is the transpose of F. If the power of any value is com-
puted, the base will appear in parentheses: e.g., (y)".
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2 Method: zeroth-order optimization

The zeroth-order optimization algorithm uses J random sam-
ples near the current iteration to estimate a gradient. Then, a
typical first-order method ensues: using the estimated gra-
dient, the descent direction and step size are chosen to pro-
duce the next iterate. The process is repeated for a number
of stages Niuge until convergence is observed. Using the cost
function samples, an estimation of the design space is gener-
ated to visually verify the results. In each control tuning ex-
ample presented in this article, the following unconstrained
optimization problem is solved:

25 C(2), (1

where z € X C RM is the M-dimensional parameter or vec-
tor of control parameters, constrained to be in a set X that is
convex and compact; C : RM — Ris the cost function, which
we assume is differentiable, bounded from below, and its gra-
dient is Lipschitz (Ghadimi and Lan, 2013). However, we
only have access to the cost function via samples of poten-
tially noisy simulation results.

2.1 Generating samples

The algorithm begins with an initial guess z!. During each
stage r = 1,2, ..., Nyuage, the gradient is estimated by ran-
domly sampling the design space. During each stage, sample
directions ¢; eRM, j=12,---, J are parameters drawn
from a random distribution. In the most general case, a stan-
dard normal distribution is used for each dimension and the
vectors are normalized to have a unit magnitude; this re-
sults in a uniformly random distribution of directions in M-
dimensions (Hajinezhad et al., 2017). In this article, we focus
on one- and two-dimensional parameter optimizations and
will make changes to the generation of the sample directions
¢; to ensure an even distribution for a small number of sam-
ples.
A search sample z; in stage r is generated according to

2y =2"+uej, @

where p is a smoothing parameter that determines the
amount of space over which the parameter space is searched.
A large value for u helps to estimate the value of the cost
function over a larger area (Sect. 2.6), but smaller values of
u tend to result in more accurate convergence.

The number of stages and samples per stage must also be
chosen by the designer. A large number of samples per stage
gives the best estimate for the gradient but requires more sim-
ulations. During the development of this work, it was found
that a smaller number of samples per stage and more stages
resulted in better convergence using the same total number
of simulations (e.g., in Sect. 3.2.2).
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2.2 Gradient estimation

At each stage r, the cost C(z) is computed via simulation at
each search sample and used to estimate the gradient

— o 1 CE ) -CE
G=53 n ¢’ 3)

j=1

Note that Eq. (3) differs from a finite-difference method of
estimating the gradient, where the factor q); would be in the
denominator. Because there is uncertainty expected in the
computed cost, small perturbations (pL¢’/.) and a nonsmooth
cost function C(z) could result in noisy gradients. The gradi-
ent estimator in Eq. (3) is referred to as the random direction
gradient estimator (Fu, 2014, p. 110) and maintains the con-
vergence criterion when used in a first-order algorithm (Ha-
jinezhad et al., 2017).

2.3 Determine descent direction

From the estimated gradient, the possible descent direction is
computed:

d, = DG, (4)

where a diagonal matrix D of positive scalars is used to rela-
tively increase d, in the directions where the sensitivities of
the cost function to parameter changes are smallest, provid-
ing a diagonal approximation to Newton’s method and im-
proving convergence rates (Bertsekas, 1999), which leads to
the following stage gain:

zr+1 = Proj(l_p)X{zr +dra}7 (5)

where « is the step size and Projy{y} := argminycx||x —
y||% finds the closest point within the parameter bounds X,
offset with p = u so that search samples in the next stage
can be generated within the parameter bounds. The algorithm
described in Eqs. (2)—(5) is proven to converge to a ball cen-
tered around an optimal solution (Hajinezhad et al., 2017).
Next, we describe two adjustments to the original algorithm
that improve performance when used in the control tuning
applications presented in this article.

2.4 Adjustment 1: decreasing step size and line search

A decreasing step size rule ensures convergence and a line
search is used so that the cost function does not increase in
successive iterations. After choosing a base step size o, the
cost of test samples

Zg i = Proj_px (2" +drag} (6)

are evaluated (through simulation) along the descent direc-
tion, where the step size

ak = ao(B) ! 7
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decreases for a number of iterations k < kpax. An upper limit
kmax on the number of step size samples is chosen to cap
the number of simulations that may be performed along di-
rections that could increase the cost function. To ensure that
the cost function is nonincreasing during each iteration, the
Armijo rule for step size is used (Boyd and Vandenberghe,
2004):

CE@)~C(E ) > —oaG d; >0, @®)

where, for all examples in the following section, o = 0.05 is
chosen, a conservative value that only requires a small de-
crease in the cost function.

2.5 Adjustment 2: resetting parameter update

Once an adequate step size is found, the parameter z is up-
dated using

zr+l — Proj(l_p)X{Zr + dr(xk}, (9)

which is the z;,k in Eq. (6) with the first k that satis-
fies Eq. (8); since this value has already been computed, the
simulation for determining C(z"*!) does not need to be per-
formed.

If the maximum number of step size simulations (k =
kmax) 1s performed and the step size rule in Eq. (8) is not
satisfied, the next iteration of the parameter z is chosen as

! = argmin C(r), 10)
zeX

where C(r) is the enumeration of the cost function at all stage

samples z", all search samples z}, and all step size samples

z;k within the parameter bounds defined by &, up until the

current stage r:

C(r)={C(z"),C(z}), C(zg 1)} Y

where C(r) € R"% has ngamp < Nstage X J X kmax €lements,
r={1,....r}, j=A{1,...,J}, and k ={1,..., kmax}. As be-
fore, with the step size sample, since the value of the cost
at this point has already been computed, it is unnecessary
to compute it again for r > 1. Since the resetting parame-
ter update in Eq. (10) results in a sequence of C(z") that is
nonincreasing, the convergence properties of the original al-
gorithm are maintained; the same argument applies to Ad-
justment 1 in Sect. 2.4. The solution z°°" of the zeroth-order
optimization is determined by the updated parameter of the
final stage:

zsoln — ZNS[age+1’ (12)

where the number of stages Niage is determined before run-
ning the algorithm. A typical stopping condition involves
checking whether the norm of the gradient is less than a given
threshold or dictating a budget on the number of simulations
that are to be performed. We investigate the performance ver-
sus Ngage in Sect. 3.2.2.
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2.6 Visualization

To provide confidence in the result of the zeroth-order op-
timization, we visualize the cost, and the measures associ-
ated with it, over the parameter space. If the minimum of the
zeroth-order parameter optimization matches that of the vi-
sualization, the user can be confident in the result. The visu-
alization method also provides a quantitative measure of the
uncertainty of the estimated cost over the parameter space.

To estimate the cost and its variance over the parameter
space, we use ordinary kriging. Kriging was originally de-
veloped for mining applications, where sparsely sampled in-
formation over a geographical space was used to estimate
the quantity over the whole area. More recent applications
of kriging include engineering design and computer experi-
ments.

Kriging, or Gaussian process regression, is a method of in-
terpolation that incorporates uncertainty in the area between
samples. Using all the observed data from the zeroth-order
parameter search at stage r, C(r) from Eq. (11), ensuring
there are no repeated values, the estimated cost at z is

C@) = T@RB+V @ N(C(r)—Fp). (13)

where the first term in Eq. (13) is the generalized least-
squares estimate

B=CF"v'F'Fv'cw). (14)

Since we are using ordinary kriging, which assumes a con-
stant mean across the parameter space, the regression basis
function

f(z)=1andF = f(Z)=1 e R'smp, (15)

where Z is the enumeration of all nsmp sample points like
in Eq. (11). The correlation matrix W represents the influence
that nearby samples have on each other; it has the form

V(z1,21) V(z1,22) V(21 Zngmp)
V(z2,21) V(z2,22) VY (22, Zngmp)
U= . . . (16)
V@ 21V Crgy 22) Y g Zrsamy)
and is made up of scalar Gaussian correlation functions
M
V¥(z1.22) = exp (—Z(m,i —zz,,-|/v,-)2>, (17)
i=1

where v; is the distance at which the influence is e~! or

37 % in the ith dimension (Martin and Simpson, 2008). The
second term in Eq. (13) interpolates or “pulls” the estimate
towards the observed values using the correlation vector

WT(Z) =[v(z.21) ¥(z.22) V(2 Zngmy)] - (18)

The mean squared error, or variance, of the cost at z is
determined by

N - T "
MSE[C(zn:oﬁmc(l—[f(z) v [8 ﬂ][%ﬂ) (19)

https://doi.org/10.5194/wes-5-1579-2020



D. S. Zalkind et al.: Automatic controller tuning using a zeroth-order optimization algorithm 1583

where

AT N
0200 = b (C(r) - Fﬂ) v (C(r) - Fﬂ) (20)
Nsamp

is the process variance. As the unobserved point z moves
away from the observed samples, the second term in Eq. (19)
approaches zero and the variance approaches apzroc.

The correlation function parameters v; are estimated us-
ing a maximum likelihood estimator to be consistent with
the observed data. To perform this optimization, we use the
00DACE toolbox to fit the correlation function and kriging
model (Couckuyt et al., 2013). Problems can arise when us-
ing kriging for simulation-based optimization because of ill-
conditioned correlation matrices (Booker et al., 1999). When
samples cluster near the optimal solution, closely spaced
samples with different values can result in very small values
of v; and ill-conditioned correlation matrices. One solution
is to add a constant to the diagonal of ¥ (Sasena, 2002). We
implement this using “stochastic kriging”, where the samples
are assumed to have uncertainty and is equivalent to adding
their variance to the diagonal of ¥ (Couckuyt et al., 2013).
Additionally, the lower and upper bounds on the values of v;
depend on the minimum and maximum spacing of the dis-
tance between samples, respectively (Martin and Simpson,
2008).

2.7 Settling function

To measure the number of stages the optimization procedure
requires to find the minimum of the cost function, we define
the settling function

C(zsoln) _ C(zr)
C(Zsoln) _ C(zl)’

which is a linear transformation that represents the fraction
of change in cost at each stage C(z"), compared to the over-
all change in cost function. The initial cost C(z!) is mapped
to s(1) = 1 and the cost of the solution C(z*°!") is mapped to
5(Nstages+1) = 0. Often, we perform more stages than is nec-
essary and use this settling function to determine how many
stages are required to achieve some percentage of the change
in cost function.

s(r) = ey

3 Applications in wind turbine control tuning

In this section, we present three examples of using zeroth-
order parameter optimization to tune the parameters of wind
turbine controllers. As an initial demonstration, we opti-
mize a one-dimensional parameter to maximize power cap-
ture through torque control in below-rated operation. Next,
we present the motivating example for this work, a two-
dimensional parameter optimization for a standard pitch con-
troller, with the goal of regulating generator speed so that
loads are minimized, subject to a constraint on the maxi-
mum generator speed. Finally, we demonstrate how a series

https://doi.org/10.5194/wes-5-1579-2020

of one-dimensional parameter optimizations can be used to
determine the minimum pitch setting of the pitch controller
for controlling peak blade loads.

3.1 Optimal torque control gain

In below-rated (region II) operation, the generator torque is
typically controlled using 7, = kopta)é, which controls the ro-
tor speed to its optimal tip speed ratio, where wy is the gen-
erator speed. The optimal gain ko, depends on a number of
aerodynamic properties (Johnson et al., 2006):

V4 ,OairR5 CP,max

, 22
203, G? 22

kopt =

where p,ir is the air density, R is the rotor radius, Cp max is
the maximum power coefficient, Aqp is the optimal tip speed
ratio, and G is the gearbox ratio. We add a multiplicative fac-
tor to account for uncertainties in the aerodynamic properties
and to allow the gain to be increased or decreased, resulting
in the control law

Tg = Ktactkopt}.- (23)

In practice, a value other than kg, = 1 is found to be optimal
for a realistic turbulent wind input.

The goal of this optimization procedure is to find the gain
kract that results in the greatest energy capture. To maintain
the form of a minimization problem, we solve

min _?avg(z)v (24)
z2=kfact
where the cost function C(z) = —?avg(z) is the negative of

the weighted average mean generator power

_ P@'pw)
T e p@)

using the average generator power of a simulation with mean
wind speed u, and p(u) is the Weibull wind speed distribu-
tion. The optimization parameter z = kgac¢; the Weibull shape
and scale parameters are 2.17 and 10.3, respectively; and we
used U =6, 8, and 10ms~! to span the below-rated wind
speeds.

At each stage, J =2 samples are simulated to compute
the cost function and estimate the gradient. In this one-
dimensional problem, no dimensional scaling is required;
thus D = 1. With J =2, we set the search direction to

P, (25)

¢ ={(—1.1}for j=12, (26)

which simplifies Eq. (3) to a centered finite-difference ap-
proximation of the gradient for this one-dimensional appli-
cation.

The optimal value of kg, is expected to be between 0.3
and 1.7, so these values are set as hard bounds. A search
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Figure 1. The first iteration of the one-dimensional parameter tun-
ing for the optimal torque control gain. Starting with the initial pa-
rameter z!, random samples z% and zé are generated to estimate the
gradient. The test sample z [11,1 is evaluated in the gradient direction
until the cost decreases and the next stage parameter z2 is deter-
mined. The estimated cost and uncertainty shown are determined af-
ter r = 1 stage (four parameters and 12 total simulations) and found

using Eqgs. (13) and (19), respectively, where o(z) =4/ MSE[@(Z)].

range of u = 0.05 is set to adequately search the space and
estimate meaningful gradients. For tuning controllers of tur-
bines with different power ratings, the base step size is scaled
with the inverse of the initial simulation’s average power
P(z'). Larger power values result in larger gradients; since
the scale of the parameter is constant for all rotors (it should
ideally be 1), the step size should be reduced to maintain
the same rate of descent. Note that a positive step size is re-
quired, even though the cost is negative, and a maximum of
three step size sample simulations are performed (kmax = 3).
A summary of the parameters used in the torque control pa-
rameter optimization is shown in Table 1, and an illustration
of the first iteration is shown in Fig. 1.

The parameter optimization was performed on the NREL-
SMW reference turbine with the standard lookup-table-based
torque controller in Jonkman et al. (2009). The algorithm
finds close to the optimal kg, in five stages and realizes di-
minishing returns thereafter (Fig. 2b). The full procedure,
with seven stages, performs 81 simulations in total, which
includes step size samples and the initial guess. If only a
single simulation at 8§ ms~! is used and the controller is ex-
clusively in region II, we find a lower optimal kg, than is
shown in Fig. 2a (Zalkind et al., 2020). By including other
wind speeds and the transition region, as shown in Fig. 2c, d,
and e, the optimal kg, is nearly 1. The use of turbulent sim-
ulations contributes noise to the signal that determines the
cost function, which is apparent by the nonsmooth behavior
of the cost samples with respect to the gain factor parame-
ter in Fig. 2a. However, the algorithm appears to be robust to
these uncertainties.
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3.2 Pitch control for generator speed regulation

In this section, we optimize the parameters of an above-
rated blade pitch controller for load reduction and genera-
tor speed regulation. Each time a new rotor is designed, the
pitch controller should be tuned so that the structural loads
can be computed to design the various hardware compo-
nents of the wind turbine. As will be seen, the pitch con-
troller affects the loads that drive turbine design. The proce-
dure for tuning the gain-scheduled proportional—integral (PI)
controller is detailed in Appendix A. First, steady-state sim-
ulations at above-rated wind speeds are used to determine
the turbine operating points and aerodynamic parameters at
various pitch angles, which parameterizes the gain schedul-
ing. The final, and most involved, step is to tune the natural
frequency (wreg) and damping ratio ({reg) of the “regulator
mode,” which represents the generator speed response to a
disturbance (wind) input. The following optimization proce-
dure aims to find an optimal set of parameters (weg, {reg) SO
that structural loads are minimized and adequate generator
regulation is maintained.

In general, changing the bandwidth of the pitch controller
via wyeg alters the structural loading of various components,
which we denote generically with M in the following. In this
section, we use M to denote tower fatigue or peak blade load-
ing, though any load could be used that results in a feasi-
ble optimization problem; the control and hardware design-
ers must determine what loads are important to the overall
turbine design. However, controllers with lower natural fre-
quencies allow greater generator speed transients, which is
acceptable up to some maximum constraint. If the genera-
tor speed exceeds some threshold wg hard, most turbines enter
into a shutdown procedure to avoid further damage, which re-
duces the availability of the turbine and the net annual energy
production; this must be avoided.

First, we reformulate the constrained optimization

min M(z) (27)

Zz(wrega greg

subject to wg < Wg hard (28)

as an unconstrained problem to use the algorithm described
in Sect. 2. The cost function is augmented so that the opti-
mization problem has the form in Eq. (1), namely

C(z)=M(z)+ B(z), (29)

where B(z) is a boundary function that penalizes samples
that have a maximum generator speed that exceeds some
“soft” generator speed constraint wg soft,
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Table 1. Design choices for 1-D parameter search to optimize the torque gain in below-rated control.

Parameter Variable Value
Stage and Number of stages Nstage 7
sample size ~ Samples per stage J 2
Newton’s method approximation D 1
Lower and upper bounds on search kpp and kyg 0.3 and 1.7
Sample search radius and smoothing parameter 0.05
Base step size ap 10/P(z})
Step Armijo decrement factor B 0.5
size Armijo threshold o 0.05
Maximum step size iterations kmax 3
I : : -1785F
-1780 \\ . Stage params., 2" N g 1790 11
T i~ —
\\ ®  Stage samples, 2] = 1795 1os %
\ @  Step size samples, 2], 8 1800k
o . © (b) 0
_1785 - Optimal parameter 4 -1805 [
Est. cost 1 2 3 4 5 6 7
\ Stage, r
— — — -Est. cost £+ 30
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~-1790 I g
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Torque control tuning param., z = Kt (-)
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Figure 2. One-dimensional parameter tuning for the optimal torque control gain of the 5SMW reference turbine in Class A turbulence
using the negative mean generator power (— P) as the cost function. In below-rated control, the generator speed (wg) is controlled using the

generator torque (tg). The estimated cost and uncertainty are found using Egs. (13) and (19), respectively, where o'(z) = +/ MSE[C (2)]. The
settling function s(r) is defined in Eq. (21) and the cost estimate is determined using all of the simulation results (27 unique parameters in 81

total simulations).

if a)g,max(z) < Wg soft (30)

B(Z) = ) .
kp(wgmax(2) — wg soft)”  otherwise.

A quadratic boundary function is used so that the cost is dif-
ferentiable, even when a nonfeasible solution is sampled. The
factor kp is chosen to provide a sufficient penalty on high
generator speeds but not so high that exceedingly large gra-
dients are determined from the gradient estimation in Eq. (3),
which can be problematic for the algorithm.

https://doi.org/10.5194/wes-5-1579-2020

Cmax

(wg,hard - wg,soft)z

kg (€2
ensures that the barrier function B(z) = cmax When the max-
imum generator speed equals the hard generator speed con-
straint weg hard-

To adapt the cost function to different rotors and load mea-
sures,

1
Cmax = EM(H), (32)
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where M(z') is the load measure of the initial stage sample
and the factor ﬁ is based on experience gained using the
algorithm with simulation results. A smaller factor does not
penalize maximum generator speeds enough, leading to pos-
sibly infeasible solutions that violate Eq. (28). Factors greater
than % were found to create large gradients that lead the it-
erates away from the constraint boundary; typically, the op-
timal solution is found close to that boundary.

In most cases, the initial parameter set z!' is chosen to
be near values that were tuned manually but offset (usu-
ally with a higher natural frequency) to allow the algorithm
to converge properly. If the parameters were not previously
tuned, the values suggested in the NREL-SMW reference
manual (Jonkman et al., 2009) are chosen as the initial pa-
rameter set. A summary of the parameters used to tune all
the rotors in this study is presented in Table 2. The algorithm
is tested using different numbers of stages Nyage and samples
per stage J in Sect. 3.2.2. The best results were achieved us-
ing a quasi-deterministic search direction,

¢, = [cosy;, siny;]", (33)
where

2 j
Y =vo+ 3 (34)

is used to evenly space the samples in the two dimensions
(@reg, Creg), and Vg is randomly generated according to g ~
U(0,2m), resulting in the generated samples z} in Fig. 3.

The cost function is more sensitive to changes in wyeg than
it is to changes in e, s0 D = diag([0.25, 1]) was chosen to
relatively increase the search direction in the e dimension.
Hard bounds on (wreg, ¢reg) are chosen to avoid unstable pa-
rameter sets. The base step size o scales with the inverse
of the initial load M(z') so that the algorithm works for tur-
bine models of different sizes, with initial loads specified in
Table 3.

The algorithm was tested on a range of rotor models with
different wind classes and load measures. First, the pitch con-
trol parameters of the NREL-5MW reference model are opti-
mized, starting from the parameters specified by the NREL-
SMW reference manual (Jonkman et al., 2009), and using the
tower base moment (fore—aft) damage equivalent load (DEL)
as the load measure. For three different wind classes (1A, 1B,
and 1C), with different turbulence levels (A — highest and C
— lowest), the parameters were optimized, and an example is
shown in Fig. 4. In Fig. 5, the estimated cost (a), load (c), and
maximum generator speed (e) across the parameter space is
shown, along with the estimated uncertainty in (b), (d), and
(f). The lowest turbulence level (Class 1C) has the lowest
optimal natural frequency wreg, since the reduced turbulence
results in lower generator speed transients. In each case of
the NREL-5MW reference model, the optimized parameters
have a lower natural frequency and higher damping ratio than
the original setting.
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Figure 3. First iteration of the zeroth-order parameter optimization
algorithm for the two-dimensional pitch control tuning. Random
samples z}., j =1...4, are generated near the initial guess 7l to
estimate the gradient. Note that u = 0.15 in this figure for clarity.
The sample ztll’ x» k=1, is tested along the descent direction until
a sample with a decreasing cost function is found, which becomes
the next guess 22 for the pitch control parameter. The cost estimate
(background image) is determined after the first stage (r = 1, six
total simulations).

The optimization procedure was also performed for each
rotor design in the Segmented Ultralight Morphing Rotor
(SUMR) project (Loth et al., 2016); for these rotors, the de-
sign driving load case for blade design was the maximum
blade root bending moment. In practice, the combined edge-
wise and flapwise load is used for design, but since the edge-
wise load is deterministic, we used the maximum flapwise
load as the load measure for optimization, which is a good in-
dicator of maximum combined loads. The SUMR rotor radii
range in size from 22 to 240 m (Appendix Table B1), and
the same optimization parameters (Table 2) were used for
each optimization procedure, albeit with different initial con-
ditions and loads, which adapt the cost function and step size
accordingly. The optimization procedure generally settles on
a lower natural frequency and higher damping ratio than the
initial guesses (Table 3), which has the effect of producing
the lowest control bandwidth (for reducing loads) but only
to the point so that the generator speed constraint is not ex-
ceeded.

3.2.1 Discussion of low natural frequency, high damping
ratio regulator mode

For most of the rotors in this section, the baseline rotor speed
proportional—integral (PI) control parameters are optimized
to have a regulator mode with a lower natural frequency and
higher damping ratio than the initial guess (Table 3). To un-
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Table 2. Parameters used for the 2-D speed regulator control tuning procedure for all rotors tested. The effects of the number of stages Nstage

and samples per stage J on the algorithm’s performance are investigated in Section 3.2.2.

Parameter Variable Value

Soft constraint Wg soft 1300 rpm
Cost model  Hard constraint ®g hard 1400 rpm

Cost at hard constraint Cmax M(z")/12
Stage and Number of stages Nstage 7, 12%
sample size  Samples per stage J 3,4, and 10*
Newton’s method approximation matrix D diag([0.25, 1])
Lower and upper parameter (wreg, ¢reg)Ls  (0.01,0.1)
Bounds on search samples (wreg, Creg)up  (1,3)

Base step size o 3/M(zh)
Step Armijo decrement factor B 0.5
Size Armijo threshold o 0.05

Maximum step size iterations kmax 3
Sample search radius and smoothing parameter @ 0.05

* In Sect. 3.2.2, we compare the performance of using different numbers of stages Ngtage and samples per

stage J.

Table 3. Summary of test cases and results from a single zeroth-order parameter tuning for speed regulation control using the parameters in

Table 2 with Ngtage =7 and J = 3.

1587

1

Test case Load measure Start load, M(z!)  Start param., z Final load, M(z°P")  Final param., z°P"
. . opt , opt

Turbine Wind class (MNm) (a)rleg, {rgg) (MNm) (wré)g, Cre[;; )
NREL-SMW 1A Tower 175 (0.60, 0.70) 11.8 (0.10, 2.08)
1B base DEL 16.3 (0.60, 0.70) 10.7 (0.11, 1.52)

1C (fatigue) 15.0 (0.60, 0.70) 8.94 (0.085, 1.60)

CONR-13 2B 44 .4 (0.60, 0.70) 41.7 (0.57, 1.46)
SUMR-13A 69.5 (0.45, 1.00) 63.2 0.21, 1.11)
SUMR-13B Maximum blade 76.4 (0.60, 0.70) 65.4 (0.59, 1.59)
SUMR-13C root 105 (0.50, 1.25) 65.1 (0.18, 1.87)
SUMR-25 (extreme) 180 (0.25,0.70) 151 (0.06, 0.76)
SUMR-50 451 (0.19,0.47) 423 (0.36, 1.75)
SUMR-D Custom 0.137 (0.60,0.70) 0.121 (0.46, 1.46)

derstand why this is the case, we must consider the cost func-
tion of the optimization. In this tuning procedure, our goal
is to minimize structural loading with a constraint on the
maximum generator speed. From Fig. 4c and d, we see that
the collective blade pitch angle 6, has a large effect on the
thrust-based structural loading; this includes tower fatigue
and blade peak loads. Figure 4 shows that, in most cases,
pitch and loads mirror each other: when pitch increases, loads
decrease, and vice versa. A good example occurs between
230 and 250 s in the time series of Fig. 4. The direct effect of
the blade pitch signal on the load signal is the primary rea-
son for the optimal PI gains (or regulator mode parameters)
found in this section.

https://doi.org/10.5194/wes-5-1579-2020

PI gains derived from a regulator mode with a low natural
frequency result in less pitch actuation and thus less change
in the load. Higher natural frequencies result in faster and
more frequent pitch control variations, which translate to the
structural load signals and increase fatigue loading. A con-
troller with a high natural frequency can also be problematic
when the wind speed decreases. Because the underlying con-
troller is trying to regulate the generator speed, the pitch will
decrease during a wind lull to maintain the generator speed
at its rated value, which can also lead to large peak loads,
especially when an increase in wind speed follows.

High damping ratios are also found to be optimal when us-
ing the described cost function. A generator speed response
and pitch control response with a high damping ratio lacks

Wind Energ. Sci., 5, 1579-1600, 2020
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Figure 4. Results of using the zeroth-order optimization for tuning the pitch control regulator mode (natural frequency wreg and damping
ratio {reg) of the 5SMW reference turbine in Class B turbulence using the tower base fore—aft (m;y) DEL as the load measure, which is
indirectly controlled via 0, the collective blade pitch control; 6 is primarily responsible for regulating the generator speed wg. The settling
function s(r) is defined in Eq. (21). The cost estimate (background image in Fig. a) is determined after r = Ngtage = 7 stages (a total of 42

parameter pairs and simulations).

any overshoot and secondary transients when the system is
subjected to a disturbance (wind). Secondary transients and
overshoot in the pitch command result in load transients. The
original NREL-5MW controller (where wre; = 0.6rad s—L,
reg = 0.7) has regulator mode poles at —0.35 & j0.45, in-
dicative of a fast response with overshoot and transients
in the pitch and generator speed signals. The optimized
controller in Class 1A turbulence (with we; = 0.10rad s—1
Sreg = 2.08) has two real poles at —0.40 and —0.025, which
results in a fast initial pitch response and a slower secondary
response.

When comparing the PI gains of the original versus op-
timized controller, we see that the proportional gains are of
similar magnitudes, but the integral gain is much less in the
optimized set of gains. The original NREL-5MW gains are
kpo=2.3x10"2sand k; o = 1.0 x 1072, whereas the opti-
mized gains (in Class 1A turbulence) are kp o = 1.1 x 10725
and k; o0 =0.023 x 1072, These optimized gains reflect the
cost function and control goal and environmental setting; we
assume that special and fault cases would be handled by a su-
pervisory controller. The optimized proportional gain is still
large enough to mitigate generator speed transients, ensur-
ing that the generator speed does not exceed the maximum
threshold, while the integral gain is reduced because it causes
transients in the blade pitch and structural loads. Since our
primary goal is not to regulate the generator speed to some
fixed set point but instead constrain its maximum value, inte-
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gral control is less important. If the cost function included a
term related to regulating the generator speed to its rated set
point, using, e.g., mean squared error compared to the rated
generator speed, the optimal integral gains might be larger.
However, we believe that a controller that constrains extreme
events and maximizes power capture better reflects the over-
all wind turbine design goals. Typical pitch controllers are
designed to regulate the generator speed to some fixed ro-
tor speed with a high enough bandwidth so that the maxi-
mum generator speed constraint is not violated. Instead of
focusing on a quantity that measures how well the generator
speed is regulated, we focus on whether or not the maximum
generator speed constraint is violated. An initial investiga-
tion (Zalkind and Pao, 2019) of the loads on the other turbine
components shows a reduction in blade and low-speed shaft
fatigue and pitch actuation, but a more in-depth load investi-
gation is left for future work.

3.2.2 Results: comparison with grid searching

To quantify the performance of the zeroth-order optimiza-
tion (ZOO) for this pitch control application, we compare it,
in terms of the number of simulations and optimal cost, with
a grid search optimization for tuning the pitch controller of
the NREL-5MW reference turbine in Class 1A turbulence.
The same area spanned by the hard bounds of the zeroth-
order method (Table 2) is sampled by a Ngiiq X Ngrig grid,
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Figure 5. Cost (a), load (c), and generator speed (e) estimated values and standard deviations (SD; b, d, and f) using the kriging visualization
described in Sect. 2.6. The sample values are shown in (a), (c), and (e), and their locations are depicted in (b), (d), and (f).

with Ngiq =6, 8, and 10. The cost, defined by Egs. (29)-
(32) and sampled using the Ngig = 10 grid search, is shown
in the background of Fig. 6a—e. The parameter z with the
minimum cost over all simulations in the search is the opti-
mal parameter z°". In practice, we would refine the search
area and resample based on experience. However, different
models may change the resampled area and would add a
manual step that we can avoid when using the zeroth-order
optimization procedure.

The ZOO procedure outlined in Sect. 2 is performed three
times for each of the following cases. Each procedure uses
randomly generated samples that should result in different
optimal parameters for each instance. We use four different
initial conditions, distributed so that one is in each of the four
quadrants spanning the bounded parameter space. The start-
ing location in each quadrant was generated randomly, ex-
cept for the bottom, right quadrant in Fig. 6d, which is the
suggested parameter set, z°'® = (Wreg, {reg) = (0.6,0.7), de-
fined in the NREL-5MW reference manual (Jonkman et al.,
2009). The ZOO was performed with Nyiage = 7 stages using
J =3, 4, and 10 samples per stage and also with Nyge = 12
using J =3 samples per stage. Theoretical results suggest

https://doi.org/10.5194/wes-5-1579-2020

that better gradient estimates (from a larger number of sam-
ples per stage J) result in convergence within a ball with
a smaller radius centered around an optimal solution (Ha-
jinezhad et al., 2017). The optimal parameter set z°"* found
in each instance of the ZOO is shown in Fig. 6a—d. We com-
pare the cost of the ZOO method with the grid search opti-
mization in terms of the defined cost function in Egs. (29)-
(32) (Fig. 6f). The results are normalized to the cost function
found using the suggested parameter set €.

Compared to z%“8, all of the methods result in a 20 % to
26 % reduction in the cost function, with about a 1 % stan-
dard deviation in the results. For fewer than 80 simulations
in this application, ZOO performs better than the grid search
benchmark in almost every case. The optimal cost decreases
with increasing J and total number of simulations on av-
erage, but not necessarily always. However, in terms of ef-
ficiency on a per-simulation basis, J =3 (blue in Fig. 6)
achieves similar results to those found using J = 10 (yel-
low in Fig. 6). Additional stages (Nstage = 12) with J =3
(purple in Fig. 6) decrease the cost function further; the op-
timal cost of this case is the best we tested in terms of the
number of simulations and cost reduction. By a small margin
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Figure 6. Panels (a)—(d) show the result of performing the zeroth-order optimization (ZOO) for the baseline rotor speed controller using
Nstage =7 and 12 stages and J = 3, 4, and 10 samples per stage, using four different initial conditions (z!). The background image of
panels (a)—(e) is of the cost function, sampled using a grid search with a 10 x 10 level of precision using the hard bounds in Table 2 and
normalized to the cost when z! = z5". Panel (e) shows the optimal solutions of three different grid search resolutions. Panel (f) compares
the optimal costs, normalized to the initial cost when 7l =70, compared with the number of simulations used to find the result.

(1 %-2 %), using the initial parameter z' = z°“¢ in the bot-
tom, right quadrant in Fig. 6d performed better than the other
z! locations shown in Fig. 6a—c. In Fig. 6a—d, we see that if
we use a z! that is closer to the area where z°P! is found,
there is less variation in z°P; there is also less variation in
the minimum cost C(z°P").

We should note that the comparison presented in this sec-
tion applies only to this pitch control tuning application. To
compare the efficacy of the zeroth-order optimization with a
grid search more generally would require comparing func-
tions of different complexities and dimensions, which is out-
side the scope of this article and we leave for future work.

Wind Energ. Sci., 5, 1579-1600, 2020

3.3 Minimum pitch setting for peak load reduction

In this final example, a series of one-dimensional parameter
optimizations will be used to tune the minimum pitch setting
of the above-rated pitch controller described in Appendix A
and shown in Fig. Al. Increasing the minimum pitch setting
can reduce the peak blade and tower loads. However, it also
slightly reduces power capture. To represent this trade-off,
the cost function

P(z%
1 —K)—
+ (1 —x) )

M(z)

Cix)=« M@0

(35)
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will be minimized, quantifying the relative importance «
between reducing peak loads and reducing power capture,
where z = Opin(#) is the minimum pitch setting at wind
speed u, M is the maximum blade flapwise load (over all
blades), and P is the mean generator power of a turbulent
simulation with mean wind speed u. A value of x = 0.01 is
used, which represents a 10 % reduction in peak load being
roughly equal to a 0.1 % decrease in power capture; this pa-
rameter can be tuned by the control designer based on the
goals of the design; however, the feasibility of the optimiza-
tion problem should be verified. In future work, a family of
optimal minimum pitch control laws, using different values
for k, could be generated but would require more global wind
turbine design information to determine the design choice.

During the load analysis of a control design, a number
(Ngeeds) of randomly generated turbulent seeds are used to
simulate the turbine across wind speeds to identify peak
loads on the various components. Often, peak loads on the
blade and tower occur in situations where there is first a lull
in the wind speed, which causes the pitch angle to decrease,
followed by an increase in wind speed. If the pitch controller
does not react in time, the combination of high wind speeds
and low pitch angles causes a large thrust on the rotor. How-
ever, if the minimum allowable pitch is increased, the peak
loads resulting from wind speed lulls can be reduced. An ex-
ample is shown in Fig. 7c and d at 275 s. While these events
are fairly common in simulation, not all produce equal peak
loads; the minimum pitch setting is optimized for the worst-
case simulation.

A wind speed estimate, which can be found using, e.g., one
of the methods in Soltani et al. (2013), is used to determine
the minimum pitch setting of the above-rated pitch controller.
A smooth lookup table is generated using a cubic spline in-
terpolation and a table of three minimum blade pitch settings
with breakpoints at above-rated wind speeds, in addition to
a breakpoint in below-rated wind speeds and one above the
cut-out wind speed. The minimum pitch setting is nonde-
creasing with respect to wind speed. An example is shown
in Fig. 8. The minimum pitch at each above-rated breakpoint
will be optimized using the zeroth-order optimization proce-
dure previously described.

The algorithm (presented in Algorithm 1) is initialized by
choosing an initial lookup table for the minimum blade pitch,
Omin(u;) in Table 4. In Step 1, Ngeeqs random seeds are simu-
lated to find the worst-case seed nmax With the maximum load
at that breakpoint Mu,.(zo). The optimization procedure in
Step 2 is only performed if the current breakpoint has a prob-
lematic peak load: one that is greater than loads seen at the
other mean wind speeds (line 4 of Algorithm 1). The start-
ing loads are initialized to M,,, (zo) = —0o0 so that at least the
first active breakpoint is optimized. At the low wind speed
breakpoint ug = 5ms~!, the minimum pitch angle is set to
the aerodynamically optimal angle 6y ; and at the high wind
speed breakpoint u 41 =50 ms~!, the optimal minimum
pitch angle is set to the feather pitch angle. Neither uy nor
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UNy,+1 18 an actively optimized breakpoint; they are, how-
ever, used as lower and upper bounds for the first #; and last
up,, active breakpoints.

In Step 2, the initial guess that is used by the optimization
procedure (z!) is offset from the lower and upper bounds by
the sample search area p (lines 11-19 of Algorithm 1). Step
3 is optionally performed to recheck the other random turbu-
lent seeds using the new, optimized minimum pitch lookup
table. In some cases, a different random seed will have a peak
load that exceeds that of the wind input that was originally
optimized; if this is the case, Step 2 is repeated up to three
times, using the previously optimized pitch angle as a lower
bound.

Algorithm 1 is used to optimize the minimum pitch table
in Fig. 8 using the parameters in Table 4 and the SUMR-13A
wind turbine model. Six random turbulent seeds are initially
simulated and only the 14 and 18 ms~! breakpoints require
optimization (the peak loads of the 24 ms~! simulations are
all less than the 14 and 18 ms~! loads). Nitage = 4 stages with
J =2 samples per stage are used to optimize the 14 ms™!
breakpoint; the results of the procedure are depicted in Fig. 7.

3.4 Coupling between control optimizations and
systems engineering considerations

Changing the minimum pitch setting of the controller can
have an effect on the below-rated power production (opti-
mized in Sect. 3.1) and peak and fatigue loads (optimized in
Sect. 3.2). Though this coupling exists, in our experience, the
effect on the optimized parameters is small.

In future work, a multiobjective optimization might be
more suitable, where all the tuning procedures are simulta-
neously performed; the zeroth-order method is suitable in
this case. A potential challenge would be determining what
simulations should be used to efficiently optimize all of the
control parameters. Currently, each control tuning procedure
requires running different simulations. Additionally, the goal
of this work was to automate design choices, rather than hav-
ing to choose from a set of possible choices that would result
from a multiobjective optimization.

However, with additional resources, our goal could shift
from efficient optimization of smaller problems to larger op-
timizations of the overall turbine system. Within a system
engineering framework, more information might determine
which simulations and loads are sensitive to control param-
eter changes. In this article, we focused on minimizing the
peak blade loads of the SUMR rotors because those were the
design driving load of those blades. Other loads could cer-
tainly be used, but all loads are not important to the overall
design: some components are overdesigned, and others drive
design; this information depends on the specific design but
could be determined using detailed system engineering tools.

Our goal was to reduce the design cycle times for pro-
cesses that already occur during control design. Rather than
solving all problems at once, we propose solving them in se-
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Figure 7. A zeroth-order optimization for the minimum pitch setting at 14 ms~! for the NREL-5MW reference turbine. The cost C(z)
in Eq. (35) is a function of the peak tower load m;y and mean of the generator power P in the simulation, where 6 is the collective pitch
angle. The settling function s(r) is defined in Eq. (21) and the cost estimate is determined using all of the simulation results (15 unique pitch

settings and simulations).

Table 4. Parameters used to optimize the minimum pitch lookup table.

Parameter Variable  Value
Cost model Load importance K 0.01
Load simulations ~ Number of turbulent seeds at each wind speed ~ Ngeeds 6
Stage and Number of stages Nstage 4
sample size Samples per stage J 2
Base step size ag 1500
Step Armijo decrement factor B 0.5
size Armijo threshold o 0.05
Maximum size iterations kmax 3
Newton’s method approximation D 1
Sample search radius and smoothing parameter 7 0.5
Initial Number of actively optimized breakpoints Nyp 3
lookup Total lookup-table breakpoints U {5,14, 18,24, SO}ms_l
table Minimum pitch setting at breakpoints Omin®;)  {Ofine> Ofine> 4,9, 90}°

quence, in the order they are presented: first optimizing the
torque and pitch controllers and then tuning the minimum
pitch setting for peak loads. Then with the new minimum
pitch table, a designer could optionally reoptimize the torque
and pitch gains; we have done this and witness little change.
Solving smaller problems tends to be more efficient in terms
of the number of simulations and more transparent in terms
of how control parameters affect different performance mea-
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sures during specific simulations. We discuss setting up sim-
ilar optimization problems for future work in Sect. 4.

4 Generalized design procedure

In this section, we present guidelines for performing similar
optimization procedures. Experience gained in problem for-
mulation, the usefulness of performing a preliminary offline
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Figure 8. Minimum pitch setting as a function of wind speed. Each
active breakpoint is tuned in a series of one-dimensional parameter
optimizations. There is an additional high wind speed breakpoint at
50ms~1.

analysis, and the determination of the parameters of the
solver is shared.

4.1 Determine problem and goals

Using the zeroth-order optimization procedure described in
this article for determining control parameters through simu-
lation requires effort in setting up the problem and develop-
ing software. In order to justify the up-front effort, the task
would ideally be one that is repeated for many different rotor
models, like the examples in Sect. 3. A task that is repeat-
edly performed also allows the designer to gain a deeper un-
derstanding for how control inputs (gains, parameters) affect
simulation outputs of the wind turbine.

It is important to determine how the turbine should be sim-
ulated in order to generate the measures that are used for the
optimization; they should highlight some problematic or in-
dicative case that the control solution is trying to solve. For
example, when optimizing the torque control gain for below-
rated operation in Sect. 3.1, a below-rated wind field should
be used, and the power should be used as the cost function.
The cost function should reflect the goals of wind turbine
design (e.g., increasing power capture or decreasing loads),
have a basis in the reality of wind turbine operation (e.g., us-
ing gains that provide a stable control input), and also have
a feasible solution. The optimization procedure presented in
this article is only useful if the cost function represents the
design goal, is represented well by the simulation informa-
tion, and is simulated in a realistic environment.

https://doi.org/10.5194/wes-5-1579-2020

4.2 Perform preliminary analysis

It is often helpful to perform a preliminary offline analysis to
fine-tune the cost function and optimization parameters. In
an offline analysis, a grid search of the optimization param-
eter is used to estimate the output space of the simulations
(e.g., maximum generator speed and blade loads), using a
linear or quadratic estimate of the cost function. To clarify,
the results in Sect. 3 are of online optimizations, where ac-
tual simulation data are used to compute the cost function and
perform the optimization procedure. While one of the goals
in developing this optimization procedure is to eliminate the
large number of simulations associated with grid searching,
a grid search does help fine-tune the parameters of future,
similar control tuning procedures that use zeroth-order opti-
mization. If multiple measures are used in the cost function
(e.g., in the pitch control tuning of Sect. 3.2), it is important
to determine whether the cost function has a minimum within
the parameter bounds. Otherwise, the cost function must be
further refined. A preliminary offline analysis can be used
to more quickly determine the optimization parameters (e.g.,
step size or smoothing parameter) that converge in the fewest
number of simulations to some ground truth determined from
the estimated cost function based on the initial grid search.

4.3 Set simulation parameters

As the examples of Sect. 3 illustrate, each optimization pro-
cedure requires slightly different parameters. While the pa-
rameters presented in Tables 1, 2, and 4 may not necessarily
be the best ones, they have been fine-tuned through extensive
offline testing and evaluating online tests that use actual sim-
ulation data as the measures used in the cost function. The
goal of this section is to provide general guidelines and rules
of thumb, where possible, for choosing the parameters of the
optimization procedure.

4.3.1 Sample search range and Newton’s approximation

The smoothing parameter ¢ should be based on the optimiza-
tion parameter z. The sample z + ¢ should result in an ad-
equate change to the cost function so that good gradients can
be used for the descent algorithm; note that the magnitude
of the direction ||¢|| = 1. From the examples in Sect. 3, a
different p is required because the cost function of each ap-
plication has a different magnitude and changes at different
rates. Too large of a x can result in samples that violate the
hard bounds or gradients that do not represent the local gra-
dient at the stage sample. On the other hand, a u that is too
small can result in noisy gradients, the result of possibly non-
smooth simulation information for samples that are close to
each other.

When optimizing over multiple parameters, the D ma-
trix is used to approximate Newton’s method for optimiza-
tion. D increases or decreases the descent direction d,,

Wind Energ. Sci., 5, 1579-1600, 2020
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Algorithm 1 Optimize Minimum Pitch Lookup Table

1: Initialize: Start with an initial guess for the pitch lookup table: @y (u;), €.g., in Table 4. Set starting maximum load M,,, (2°) = —oo,

for all actively optimized breakpoints ¢ = {1,..., Nup}, Where Ny, is the number of wind speed breakpoints.

2: for Each breakpoint u; € U, i = {1,..., Nep} do

3:  Step 1: Simulate Nseeqs random turbulent seeds with a mean wind speed of u; and the initial lookup table. Find the worst-case seed

Tmax With the maximum load M., (zo) over all seeds at breakpoint u;; the starting power Pui (zo) is the mean generator power of this

simulation.
4 if Mo, (2°) < My, (2°), j={1,...,Nop} \ i then
5: Skip Step 2 and Step 3
6:  endif

7:  Step 2: Initialize and perform zeroth-order parameter optimization using the parameters in Table 4 and the cost function in (35), where

8 M(2°) + M,,(2°)
9:  P(2%) « P, (")

10:  Hard bounds on the pitch setting at the current breakpoint are set so that the minimum pitch table is non-decreasing:

Omin,LB = Omin(wi—1) and Ominus = Omin(Wit1)-

11:  The initial condition to the optimization procedure z! is set to enable an adequate search of the parameter space, i.e.

12: 2= Gm;n(ui)

13: if 2° < Opinrp + 1 then

14: 2= OminB + (4

15 else if 2° > Ominus — 4« then
16: 2= Omin,uB — [L

17:  else

18: =2

19:  endif

20:  The zeroth-order optimization procedure described in Section 2 is used to find

Omin(u;) = argmin C(z), (36)
where 2 = 6min(u;) is the optimization parameter and the cost function C'(2) is defined in (35).
21:  Step 3: (Optional) Re-check the random turbulent seeds n = {1, ..., Neds } using the new optimal pitch table and compute maximum

load of each M, [n], finding the new worst-case seed 7.

22:  if There is a new worst case: n, 7 Nmax then

23: Return to Step 2 with 2° = Oin(u;) from (36).
24:  endif
25: end for

where the sensitivity of the cost function to that parame-
ter (dimension) is small or large, respectively. Ideally, the
matrix D incorporates second-order information to scale
the gradient estimate in each dimension. In a true New-
ton method, where second-order information is available,
D = [HC(z)]™!, where HC(z) is the Hessian of the cost func-
tion C at the parameter z. To approximate Newton’s method,
we use D = diag([ Dy, ..., Dy]), where

2%c \
7~ (5) o
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and z(7) is the ith element of the parameter set z. The el-
ements D; of D can be determined from offline simula-
tion analysis, where Eq. (37) can be estimated by finding a
quadratic regression of the cost space. Alternatively, D; can
be manually tuned, i.e., if the dimension 7 is not being ade-
quately searched, D; should be increased.

For example, in the pitch controller tuning (Sect. 3.2),
the cost function (shown in Fig. 3) is less sensitive to the
damping ratio z(2) = {reg than it is to the natural frequency
Z(1) = Wreg, 50 we use D = diag([0.25, 1]). If only the first-
order (estimated) information were used and the direction of
the maximum gradient were exactly followed, the solution

https://doi.org/10.5194/wes-5-1579-2020
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would zigzag in the wey direction and take longer to con-
verge to the optimal solution in both the wreg and reg direc-
tions.

4.3.2 Step size

The initial step size «p is an important parameter to test
offline and also fine-tune when using online simulations to
compute the gradient. It was found that for all optimization
examples in this article, the product of the initial step size and
the norm of the gradient should be on the order of a magni-
tude of 1, namely

aC
0z
The parameters used in the Armijo step size rule were the
same for all examples. Conservative values were used, which

essentially only ensures a nonincreasing cost function with-
out a requirement on the rate of descent of the cost function.

‘a9~ 0.5t0 1.5. (38)

4.3.3 Stages and samples per stage

Enough stages should be evaluated so that the cost function
converges to some value; this is typically learned through
offline analysis or by trial and error in online tests. For exam-
ple, when analyzing the pitch control tuning results of Fig. 4,
the results suggest that the procedure could be performed
with fewer stages, whereas it seems more stages could be
used in the minimum pitch control tuning of Fig. 7. In gen-
eral, it is found that fewer samples per stage (along with more
stages) result in the fastest convergence with respect to the
total number of simulations.

4.3.4 Parameter bounds and initial guess

Hard constraints on the parameter should reflect the set of
feasible parameters for the control task being optimized.
However, the bounds should not be so small as to restrict the
space and possibly miss nonobvious control solutions. The
initial guess provided to the algorithm should also allow for
the space to be adequately searched.

4.4 Perform optimization and evaluate visualization

After performing initial, offline analysis and running the
zeroth-order optimization algorithm using online simulation
data, the whole procedure should be evaluated with the fol-
lowing questions:
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1. Does the algorithm converge to a feasible solution?

2. Does the optimized parameter appear to be near the
minimum of the visualized cost over the parameter
space?

An affirmative answer to both of these questions should pro-
vide confidence in the optimized result.

5 Conclusions

In this article, we developed a data-driven approach for opti-
mizing controller parameters using simulation results. By us-
ing a zeroth-order optimization algorithm, random samples
are generated near an initial guess, which are used to com-
pute the local gradient. A standard gradient descent method
ensues, where a step size rule is used to ensure convergence
and attempt to decrease in the cost function before the next
guess is chosen and the process is repeated. We also use ordi-
nary kriging to visualize the design space and its uncertainty
to provide a level of confidence in the optimized result.

The zeroth-order algorithm was applied to three differ-
ent applications in wind turbine control. To demonstrate the
process on a one-dimensional parameter optimization, the
torque control gain was tuned to optimize power capture in
below-rated operation. The baseline pitch controller param-
eters were tuned in a two-dimensional optimization prob-
lem with the goal of minimizing structural loads and in-
clude a constraint on the maximum generator speed. Using
an adaptable cost function and step size, the algorithm was
able to tune the baseline rotor speed control for rotors rang-
ing from 40 to 400 m in diameter. We compare the results,
in terms of accuracy, convergence, and number of function
evaluations (simulations) for different optimization parame-
ters and against the standard grid search method. In a series
of one-dimensional parameter optimizations, we also deter-
mined the settings of a lookup table for the minimum pitch
limit of the pitch controller, reflecting the overall blade de-
sign process and system-level goals.

Since each optimization procedure depends on the spe-
cific control problem, we have provided a set of guidelines
based on the experience gained during this study for devel-
oping future, similar optimization procedures. The methods
presented in this article automate a usually manual process,
reduce designer effort, and require fewer simulations com-
pared with grid searching methods. These methods can be
used for repeated control tuning processes that are required
for continually updating designs that must be evaluated in
simulation using a well-functioning controller.
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Appendix A: Generalized baseline rotor speed pitch
controller

The pitch controller described in Sect. 3.2 and 3.3 is based on
the controller presented in the NREL-5MW reference man-
ual (Jonkman et al., 2009); this standard control scheme is
widely used as a reference for comparing control schemes
and evaluating different aspects of turbine design. As shown
in Fig. A1, the controller is a gain-scheduled proportional—
integral (PI) controller with constant torque above rated. The
PI control architecture allows the generator speed dynamics
to be represented as a second-order system. Since the sensi-
tivity of aerodynamic torque to blade pitch changes with the
blade pitch, the PI gains are scheduled on the blade pitch.
The pitch command is saturated to some minimum setting
to control power or reduce blade loads; thus, an antiwindup
scheme is necessary.

A1 Regulator mode and Pl gains

To derive the PI gains for a generic rotor model, a rigid model
of the drivetrain is used:

g = JE(‘L’a - Gr1y), (Al)
tot

where wy is the generator speed; Jyo is the total drivetrain in-
ertia; including the rotor and generator components; G is the
gearbox ratio between the low-speed rotor shaft and the high-
speed generator shaft; t, is the aerodynamic rotor torque
caused by the wind and controlled via blade pitch; and 7,
is the generator torque, which is a control input. The rotor
torque is nonlinearly dependent on the blade pitch 6. The
linearization with respect to a perturbation in blade pitch §6
is

S = — —250), (A2)

where the differential torque 8ty = 0 because the torque is
constant in above-rated operation. The sensitivity of the aero-

. 9t \ - . . .
dynamic torque to rotor speed (a—ai‘) is omitted since it has a

much smaller magnitude than %. In terms of power P,

G 0P
=——, (A3)
Wg=Wrat @rat 90

PO i,
BT T 96

where wry is the rated generator speed, which is a constant
operating point since it is the desired set point of the con-
troller. The proportional-integral control is

86 = kpdwg + ki / Swgdr, (A4)

where kp and k; are the proportional and integral control
gains, respectively, and g represents a generator speed per-
turbation.
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Figure A1. Proportional—-integral control with antiwindup scheme
used for above-rated control. The difference between the pitch con-
trol set point wrar and the generator speed wg is multiplied with the
gain-correction factor GK(favg), which is a function of the current
collective blade pitch 6;. The proportional—-integral gains at zero
pitch, kp o and kj ¢, are derived in Egs. (A15) and (A16). The pitch
command 6;p,q is saturated to some minimum pitch setting 6,,;, and
the output Osy¢ is the input to the blade pitch actuator.

By defining a new state, q5=8wg, and combining
Egs. (A2), (A3), and (A4), the generator speed dynamics are

. 1 apP . 1 apP

Joth + — (== ) kpG?p+ — —*>k1G2¢ =0, (A5)
Wrat a0 Wrat 20

which can be represented by a second-order dynamic system

in the form of

1V[reg<}5 + Dreg(i) + Kreg(l5 =0, (A6)

where Mieg, Dreg, and Ko are the mass, damping, and stiff-
ness of the regulator mode, respectively. Alternatively, the
regulator mode can be represented by its natural frequency
wreg and damping ratio e, defined by

(A7)

By defining the desired properties of the generator speed
dynamics, wreg and {reg, the proportional and integral gains
are defined as follows:

2Jiot WratWregCreg

kp=—F"—p— (A8)

P
G*(~%)

and

Jrot@rat wrzeg
= o (A9)

G* (= %)

A1.1 Power—pitch sensitivity and gain scheduling

Both the proportional Eq. (A8) and integral Eq. (A9) gains
depend on the sensitivity of power to blade pitch

A

A10
a0 lo ( )
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Figure A2. Sensitivity of power to pitch used for gain scheduling
the pitch controller for a selection of rotors in this article. The sensi-
tivity values obtained from FAST linearizations are fit linearly and
used to determine the gain-scheduling parameters for the pitch con-
troller.

which we will define as S(0) because it is a function of the
blade pitch. Simulations in FAST are used to determine the
pitch operating points at various above-rated wind speeds.
The operating points are used in FAST linearizations, with all
the degrees of freedom disabled, providing the input—output
sensitivity from pitch to power. The results of performing this
sensitivity analysis for several rotors are shown in Fig. A2.

Because of the near-linear relationship with blade pitch 6,
the sensitivity can be parameterized by

SO) = [&} 0+ 5(0) = S(0) (1 + £> )
Ok Ok

(A11)
where S(0) is the sensitivity at & = 0° and 6 is the pitch
angle at which the sensitivity doubles:

S(k) =25(0). (A12)

From simulation results like those in Fig. A2, the parameters
in Eq. (All) can be estimated; they are used to define the
gain-correction factor

GK(9) = I ! (A13)

Ok
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and the final, gain-scheduled PI gains:
kp =kp oGK(0) and k; = k7, 0GK(6), (A14)
where
2Jtota)ratwregé‘reg
kpo=————= AlS
P.0 G21_S(0)] (A15)
and
JrotWrat wrzeg
kro=———. Al6
10= GI80)] (A16)

Figure A1 depicts the implementation in block diagram form.

A1.2  Summary of pitch control tuning procedure

To derive the parameters from simulations and tune the reg-
ulator mode, we use the following procedure:

1. Simulate the operating points in FAST using a steady
wind input across above-rated wind speeds. Choose a
S(0) so that the PI gains produce a stable result. Simu-
late for enough time for the values to reach steady state
and record the blade pitch at each wind speed.

2. Linearize the turbine in FAST, disabling all of the de-
grees of freedom, at the wind speeds and pitch angles
found from the previous step. Use the element of the
input—output matrix that corresponds to the pitch input
and power output matrix to determine the sensitivity
of power to pitch at the various pitch angle operating
points. Plot the values and fit the parameters S(0) and
O as in Fig. A2.

3. Tune the regulator mode (wyeg, {reg) using the de-
sired design measure. Usually, larger natural frequen-
cies (wreg) result in better generator regulation but also
higher structural loads. A grid search could be used or
an optimization procedure like the one in Sect. 3.2.
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Appendix B: Turbine model summary
The turbine models summarized in Table B1 were used to

perform the control tuning optimization procedures detailed
in this article.

Table B1. Summary of turbine models used in this study.

Turbine model SUMR-D NREL-5MW  CONR-13 SUMR-13A
Rated power 54.5kW SMW 13.2MW 13.2MW
Rated rotor speed  21.5rpm 12.1rpm 7.44pm 9.90rpm
Rated wind speed  5.05 ms™! 11.3ms™! 113ms~!  11.3ms™!
Hub height 34.86m 87.0m 142.4m 142.4m
Rotor radius 22.8m 63.0m 102.5m 101.2m
Rotor position Downwind  Upwind Upwind Downwind
Blade mass 997 kg 17.7Mg 49.5Mg 51.8 Mg
Number of blades 2 3 3 2
Maximum chord 1.56m 4.65m 5.23m 7.22m
Cone angle 12.5° —2.5° —2.5° 12.5°

Turbine model SUMR-13B  SUMR-13C ~ SUMR-25  SUMR-50

Rated power 13.2MW 13.2MW 25 MW 50MW
Rated rotor speed ~ 7.99 rpm 6.87 rpm 6.13 rpm 4.19 rpm
Rated wind speed  103ms~™!  9.30ms™! 105ms~! 103 ms™!
Hub height 142.4m 168 m 210m 280 m
Rotor radius 125.4m 1459 m 171.9m 239.7m
Rotor position Downwind  Downwind Downwind  Downwind
Blade mass 83.2Mg 105Mg 127Mg 426 Mg
Number of blades 2 2 2 2
Maximum chord 6.79m 9.29m 10.7m 16.6m
Cone angle 12.5° 12.5° 12.5° 12.5°
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