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Abstract: We review theoretical studies of the attosecond streaking time delay concept in
photoionization via the investigation of the electron dynamics in the streaking field after the transition
of the photoelectron into the continuum upon absorption of an extreme ultraviolet photon. Based on
the results, a so-called finite range interpretation was introduced, which highlighted that the delay
is accumulated until the streaking pulse ends and, hence, over a finite range of the potential of the
parent ion. Following a discussion of the analysis leading to this interpretation, we summarize a
few applications which provide insights into different aspects of the streaking time delay concept
in photoionization. Besides a review of previously presented results, we give an analysis of the
relevance of the first half-cycle of the streaking field and an outlook regarding the perspective of
using the streaking method to resolve dynamical changes in the potential that the photoelectron
explores during its propagation in the continuum.

Keywords: ultrafast laser science; photoionization; attosecond measurement techniques; streaking
time delays

1. Introduction

To resolve dynamics in matter on ultrashort time scales, a variety of pulse technologies,
e.g., ultrashort electron pulses, femtosecond (1 fs = 10−15 s) and attosecond (1 as = 10−18 s) laser
pulses, and X-ray free electron laser pulses have been developed. Among these, attosecond pulses
are, in general, not yet intense enough to be used in pump-probe measurements. To gain resolution
on the attosecond time scale, a number of methods have been explored in which a combination of
an attosecond extreme ultraviolet (XUV) pulse and a second femtosecond (near-)infrared (IR) laser
pulse is applied (for recent overviews, see e.g., [1–3]). One of these techniques is the attosecond streak
camera method [4], in which an attosecond pulse photoionizes a target (via the absorption of a single
photon) and a few-cycle infrared pulse is used to modulate the final momentum of the photoelectron.
By varying the relative delay between the two pulses, an oscillating streaking pattern for the final
photoelectron momentum k f is observed, which can be represented by:

k(n,l)
f (ti) = k0 −As(ti + ∆t(n,l)

s ), (1)

where k0 is the field-free momentum of the electron, initially bound in the |n, l〉 state of an atom, upon
release into the streaking field, represented by the vector potential A(t), at time ti. The offset ∆t(n,l)

s
with respect to the release time of the photoelectron in the argument of the vector potential is typically
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referred to as the streaking time delay. Hence, the time delay is visualized as the offset in the streaking
trace of the momentum of the photoelectron propagating in the Coulomb potential as compared to that
of a free photoelectron (c.f., Figure 1). We note that, in an attosecond streaking experiment (e.g., [5]),
the temporal information is usually gained via the comparison of streaking traces from photoelectrons
exposed to the same streaking field, but which populated different orbitals initially. This corresponds
to the difference of streaking time delays from the two states involved (c.f., Figure 1). However, in
theoretical analysis, the focus of studies is primarily the streaking time delay ∆t(n,l)

s , as defined in
Equation (1). Since in the remainder of the article the initial state is typically implied, we simply refer
to this quantity as ∆ts below.

Various theoretical work has established that the streaking time delay obtained in numerical
simulations can be written as a sum:

∆ts = ∆tWS + ∆tCLC, (2)

where ∆tWS is the Wigner–Smith time delay [6,7] and ∆tCLC is a term that accounts for the coupling
between the streaking field and long-range Coulomb potential. Justification of this approach as well as
theoretical analysis of additional effects, such as multielectron contributions or the role of the attochirp,
have been discussed in review articles recently (e.g., [8–10]). Here, we focus on a review of recent
analysis of the streaking time delay via the investigation of the electron dynamics in the streaking field
after transition of the photoelectron into the continuum upon absorption of an XUV photon. Classical
estimates and predictions of model formulas related to this analysis have been found to be in good
agreement with results of ab initio numerical simulations. This established a basis to use the approach
to gain insights into the interpretation and analysis of various aspects of the streaking time delay in
photoionization. Specifically, it leads to the interpretation that the delay in photoionization is only
accumulated until the streaking pulse ceases. Hence, the streaking measurement probes the (long
range) potential of the parent ion over a finite range only. While we focus here on interpretation and
applications related to streaking time delays in one-photon ionization, we may note that recently the
extension of the streaking concept to two-photon ionization within the present approach [11,12] as
well as in other context [13–16] has been considered.
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Figure 1. Conceptual visualization of the different streaking time delays in photoionization, namely the

experimentally observed delay ∆t(nl,n′ l′)
s,expt between streaking traces for emission from initial states |n, l >

and |n′, l′ > and the theoretically considered delays ∆t(nl)
s and ∆t(n

′ l′)
s with respect to the streaking

trace of a free electron. Panel (b) is an enlargement of the full traces shown in panel (a).

Before proceeding, we may briefly mention that results of ab initio numerical calculations as well
as other theoretical work showed a significant discrepancy with the data of the original streaking
experiment [5]. Only recently, new insights into the origin of this disagreement has been achieved
via an alternative measurement [17] based on the RABBITT (Reconstruction of attosecond beating
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by interfering two-photon transitions, [18]) technique. Due to the better spectral resolution in the
RABBITT experiment signals from the direct photoionization and a shake-up process, in which a
second electron is excited along with the photoionization of the first (streaked) electron, could be
disentangled, which overlapped in the original streaking experiment. The time delay measurement
for the photoionization signal in the RABBITT experiment is in much better agreement with the
theoretical predictions.

The article is organized as follows: in Section 2, we briefly discuss the finite range interpretation,
which arises from a classical analysis of the streaked electron dynamics and comparison with results
of quantum simulations. Furthermore, we show that the finite-range feature allows for developing
an analytical formula, which provides accurate estimates of the time delay. Beyond this capability,
applications of the formula provide insights in different aspects of the streaking time delay, which we
will discuss in Section 3. The latter part includes, besides a review, discussion of the relevance of the
first half-cycle of the streaking field (Section 3.2) and the resolution of dynamics (Section 3.4), which
have not been analyzed before. We end with a brief summary.

2. Finite-Range Interpretation

2.1. Analysis of Streaking Time Delays Using Classical Electron Dynamics

It has been shown (e.g., [19,20]) that predictions for the streaking time delay determined by
solving the classical dynamics of the electron ionized by the XUV field and streaked by the IR field are
in good agreement with results from ab initio solutions of the time-dependent Schrödinger equation
(TDSE) simulating a streaking measurement. For further analysis of the physical meaning of the time
delay, one may therefore consider the solution of the Newton equation for the propagation of the
photoelectron in the streaking field after its transition in the continuum:

dk(t)
dt

= −Es(t)−∇V(r). (3)

In Equation (3), k(t) represents the momentum of the photoelectron, Es is the streaking field, and
V(r) is the Coulomb potential of the residual atom (in the single-active-electron approximation). For a
linearly polarized streaking field the interaction with the streaking field takes effect along the direction
of the laser polarization, say z-direction, and the corresponding component of the final momentum
k f ,z can be written as:

k f ,z(ti) =

√√√√√k2
0,z − 2

Ts∫
ti

Es(t)kz(t)dt = k0,z − As(ti + ∆ts) , (4)

where k0,z is the field-free asymptotic momentum, ti is the time of transition of the photoelectron in
the continuum, As and Ts are the vector potential and duration of the streaking field, and ∆ts is the
streaking time delay, as in Equation (1).

Assuming that the streaking field is weak, the vector potential in Equation (4) can be expanded as:

As(ti + ∆ts) ' As(ti)− Es(ti)∆ts, (5)

and the streaking time delay can be written as (for Es(ti) 6= 0):

∆ts '

√√√√k2
0,z − 2

Ts∫
ti

Es(t)kz(t)dt− k0,z + As(ti)

Es(ti)
. (6)
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This expression can be further simplified by noting that the momentum shift is usually small if
the streaking field is weak, and expanding the square root in Equation (6) to first order to obtain (for
Es(ti) 6= 0) [20,21]:

∆ts '
1

Es(ti)

Ts∫
ti

Es(t)
[

1− kz(t)
k0,z

]
dt. (7)

Although Equation (7) already provides the interpretation of the streaking time delay as a
finite-range time delay, it has been sometimes found instructive to also write it using a finite-difference
approximation (for Es(ti) 6= 0):

∆ts '
N

∑
j=1

Es(tj)

Es(ti)

[
1− kz(t)

k0,z

]
δt '

N

∑
j=1

Es(tj)

Es(ti)
∆t(j)

ff , (8)

in which one assumes that the streaking field and the electron momentum are approximately constant
for the short time intervals [tj, tj + δt] = [tj, tj+1] while propagating over the short distance [rj, rj + δr] =
[rj, rj+1], i.e., Es(t) ' Es(tj) and k(t) ' k(tj). In the last part of Equation (8), we identified the term in

the square brackets times δt to be approximately equal to the instantaneous field-free time delay ∆t(j)
f f ,

which the electron accumulates in the potential V as compared to the propagation of a free particle.
The field-free time delays can be also written as

∆t(j)
ff = ∆tff(k j+1, rj+1)− ∆tff(k j, rj), (9)

where ∆t f f (k, r) is the field-free time delay accumulated during the propagation from the origin
of the transition into the continuum to location at a finite distance r with momentum k = k(r) =√

2(Easym −V(r)) and Easym is the asymptotic kinetic energy of the photoelectron. It has been
found [20–23] that the classical estimates for the streaking time delays remain approximately constant
while varying ti over one field cycle. However, we point out that, independent of the representation
of the streaking time delay as integral (Equation (7)) or in its finite-difference approximation
(Equation (8)), these classical predictions diverge for Es = 0 and, hence, are not applicable at the
corresponding times ti. For further discussion of the derivation, please see Refs. [20,21].

In order to apply the classical estimates, the corresponding predictions have to be validated
against results of ab initio numerical calculations. It has been shown [11,12,20,21] that the classical
results, based on Equations (7) and (8), are in good agreement with ab initio TDSE results for the
streaking time delay. This is exemplified in Figure 2 for (a) hydrogen atoms, (b) helium atoms and
(c) neon atoms, where the classical estimates (solid lines) are compared with the results of ab initio
calculations from Refs. [24,25]. Please note that Figure 2 also includes a comparison with predictions
from an analytical formula (dashed lines), which will be discussed in Section 2.3. The level of agreement
within the range of a few attoseconds provides the basis to use the classical analysis to gain insights
into an interpretation and various aspects of the streaking time delay.
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Figure 2. Streaking time delays for hydrogen atom (a); helium atom (b); and neon atom (c): a comparison
of results of ab initio calculations is shown (open squares, taken from [24] for hydrogen and helium, [25] for
neon), classical calculations (solid lines, Equation (8)) and predictions of analytical model formula (dashed
lines, Equation (11)). For neon atoms, only the d-channel is considered in the analytical calculation.

2.2. Accumulation over Finite Time and Finite Range

The formulas, Equations (7) and (8), give an interesting interpretation of the streaking time delay,
namely that it can be viewed as the field-free time delay ∆tff, obtained by a photoelectron without
the streaking field, weighted by the (instantaneous) streaking field strength as the photoelectron
propagates through the potential. An important consequence of this interpretation is that the time delay
is determined by the electron over a finite time interval between the time of transition in the continuum
t = ti and the end of the streaking pulse at t = Ts. During this time interval, the photoelectron explores
a finite range in space only.

This interpretation has been tested in quantum streaking simulations for photoemission of an
electron initially bound in a 1D model potential [20]. To illustrate the conclusions from that work,
we consider here calculations using the model potential:

Vx = − Z√
x2 + α

+ V0 exp−(|x|−x0)/σ)2
, (10)

which consists of a (soft-core) Coulomb potential with α = 2.0 centered at the origin and an effective
charge Z = 3 and an additional Gaussian-shaped potential with depth V0 = −0.5 a.u. and width
σ = 2.0 centered at a distance x0 = 850 a.u. from the center of the Coulomb potential. Choosing the
initial state to be the ground state of the Coulomb potential solutions of the corresponding 1D TDSE in
the fields of a XUV pulse and an IR streaking pulse have been obtained and the streaking time delay
has been extracted from the results (for methods to obtain streaking time delays from simulations,
see e.g., [21]). Each of the calculations has been performed over a long propagation times such that the
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outgoing photoelectron wavepacket reaches distances of more than 1000 a.u., i.e., distances beyond the
range of the Gaussian potential, at the end of the simulation.

In Figure 3b, we compare the results for the streaking time delay with (stars) and without (circles)
the additional Gaussian potential as a function of the number of cycles of the streaking pulse. For short
streaking pulses, the delay is found to be essentially identical with and without the Gaussian potential.
In each of these simulations with short pulses, the center of the outgoing wavepacket is located at the
x < x0 = 850 a.u. at the end of streaking pulse (Figure 3a). In contrast, as soon as the center of the
photoelectron wavepacket reaches the Gaussian potential, centered at x = 850 a.u., before the end
of the pulse, the results from the simulations with and without Gaussian potential differ. Thus, the
streaking time delay accounts for the presence of the Gaussian potential only when the electron wave
packet reaches the potential before the interaction with the streaking pulse ceases, in agreement with
the finite-range interpretation put forward based on the classical analysis.
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Figure 3. (a) Range of wavepacket propagation in an 800 nm streaking pulse after emission at the peak
of the pulse as a function of the number of cycles for 1D soft-core model; (b) streaking time delay in
a potential with additional perturbation (stars) at x0 = 850 a.u. as compared to the delay obtained
without the additional potential (circles) as a function of the number of cycles.

2.3. Analytical Formula

Based on the interpretation that the streaking time delay is accumulated by the photoelectron
over a finite time only, and hence can be understood as a probe of the (long-range) atomic potential
over a finite distance, one can proceed to consider cut-off potentials for a further analysis of the time
delay. In order to do so, one may assume a classical-quantum correspondence for the field-free time
delay, in which the classical estimate, Equation (8), is decomposed in a sum as [23]:

∆ts '
N

∑
j=1

Es(tj)

Es(ti)

[
∆t(j)

short + ∆t(j)
phase + ∆t(j)

log

]
, (11)

where the terms in the brackets are the well-known short-range, Coulomb-phase and logarithmic
contributions to the quantum field-free time delay. Note that each of the terms represents the derivative
of a contribution to the quantum mechanical phase shift with respect to the photoelectron’s energy.

For example,

∆tphase(k, r) =
1
k

∂

∂k
arg [Γ(1 + l + iη)] (12)

and

∆tlog(k, r) =
1
k

∂

∂k

[
Z
k

ln(2kr)
]

, (13)

where l is the angular momentum of the photoelectron, η = −Z/k, and Z is the charge of the residual
ion. Specifically, ∆tshort is the contribution related to the short-range part of the atomic potential,
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while the other two terms result from the scattering off the −Z/r part of the ionic potential for nuclear
charge Z. Note that, for an infinite range, Coulomb potential ∆tlog diverges, while ∆tphase converges.
Therefore, one typically refers to the sum of the short-range and Coulomb-phase term as the widely
known Wigner–Smith time delay ∆tWS in the context of scattering off an ionic core with a long-range
Coulomb potential [6,7].

Each of the three contributions in Equaiton (11) can then be again written as a difference

∆t(j)
i = ∆ti(k j+1, rj+1)− ∆ti(k j, rj) , (14)

where ∆ti(k, r) (i = short, phase, log) is the respective contribution to the field-free time delay
accumulated during the propagation from the origin of the transition into the continuum to location at

a finite distance r with momentum k = k(r) =
√

2(Easym −V(r)). Thus, the terms ∆ti(k, r) correspond
to time delay contributions in a potential which is cut-off at r. Consequently, due to the finite-range
characteristic, none of the terms, including the logarithmic term, diverge here. This has the advantage
that the corresponding phase-shift in the wavefunction is finite and one does not encounter conceptual
issues like the divergence of the logarithmic term in a Coulomb potential.

It has been shown [23] that each of the terms in Equation (11) can be evaluated analytically for an
atom using standard methods, such as the distorted Born approximation and the single-active-electron
approximation. Estimates based on the analytical formula (dashed lines, Equation (11)) are found to be
in good agreement with the results of ab initio simulations and those of classical calculations for the
streaking time delay (see Figure 2, [23]). This validation puts us in the position to use this analytical
formula for further analysis of certain aspects of the streaking time delay.

3. Applications

The finite-range interpretation and, specifically, the validation of the classical and analytical formulas,
Equations (8) and (11), against results of ab initio quantum simulations provide the opportunity to obtain
estimates for the streaking time delay with good accuracy in short computation time. In this section, we
review applications of this approach that enable additional insights into electron dynamics gained by
determination of the streaking time delay.

3.1. Relation to Wigner–Smith Time Delay

As mentioned in the Introduction, the streaking time delay is often represented as a sum of
the Wigner–Smith time delay and a Coulomb–laser coupling term. To gain further insights into
this interpretation, the analytical formula, Equation (11), has been used to study the effect of the
streaking field on each of the three contributions (short-range, Coulomb phase and logarithmic) [23].
The absolute difference of the results obtained for each contribution with and without considering
the prefactor Es(tj)/Es(ti) in Equation (11) is shown as a function of XUV photon energy in Figure 4.
The results reveal that for the short-range (a) and the Coulomb phase (b) terms, the effect of the
streaking field is significant at photon energies near the threshold only. On the other hand, the effect
on the logarithmic term (c) is much larger.

Based on this comparison, the analytical estimate of the time delay, Equation (11), can be further
approximated as:

∆ts ' ∆tshort + ∆tphase +
N

∑
j=1

Es(tj)

Es(ti)
∆t(j)

log ' ∆tWS + ∆tCLC , (15)

where ∆tWS = ∆tshort + ∆tphase represents the Wigner–Smith time delay, while ∆tCLC =
N
∑

j=1

Es(tj)

Es(ti)
∆t(j)

log

can be interpreted as the Coulomb–laser coupling term. Thus, the finite-range interpretation provides
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an alternative route to justify the widely used decomposition of the streaking time delay into the
Wigner–Smith term and Coulomb–laser coupling term.
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Figure 4. Absolute difference for the different contributions to the time delay of neon atom
with and without the effect of the streaking field as a function of electron energy and streaking
field wavelength: (a) short-range contribution; (b) Coulomb phase contribution; and (c) Coulomb
logarithmic contribution. Parameters of the streaking field: wavelength λs = 800 nm, peak intensity
Is = 1× 1012 W/cm2, and pulse duration of three cycles is used [23].

3.2. Relevance of the First Half-Cycle of Streaking Field

In an analysis of a RABBITT experiment, it has been recently suggested [26] that the information
extracted from the measurement mainly depends on the dynamical interactions during the first half
cycle of the IR field after the transition of the electron into continuum at ti. Since it has been shown [8]
that RABBITT and streaking measurements provide equivalent information concerning the time delay,
the model implies that the observed streaking (or RABBITT) time delay is essentially determined
within one half cycle of the streaking field, i.e., according to the finite-range model between ti and
ti + T/2, where T is the period of the streaking field. Both the classical estimates, Equations (7) and
(8), or the analytical formula, Equation (11), allow for testing this assumption used in the model by
Kiesewetter et al. For example, the streaking time delay can be evaluated as a function of time after
transition in the continuum from the expression in Equation (7) by varying the upper limit of the
integral between ti and Ts, i.e.,

∆ts(t′ − ti) =
1

Es(ti)

t′∫
ti

Es(t)
[

1− kz(t)
k0,z

]
dt. (16)

Equivalently, in the finite-difference approximations, Equations (8) and (11), the upper limit of
the sum can be varied to obtain ∆ts(t′ − ti). In the present study, we have considered streaking of the
photoionization of the hydrogen atom, applied the analytical formula, Equation (11), and have chosen
the time of ionization ti to coincide with the peak of the streaking pulse.

In Figure 5a, we present the accumulated streaking time delay ∆ts as a function of time, t′ − ti,
after the transition in the continuum for a streaking wavelength of 800 nm and seven different
XUV central frequencies. To guide the eyes and, for further comparison, the first quarter cycle,
t′ − ti = T/4 = 27.5 a.u. (vertical blue dashed line), and the first half cycle, t′ − ti = T/2 = 55 a.u.,
are also marked (vertical black dashed line), after liberation of the photoelectron.
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We first discuss the general trend of the results in Figure 5a. It is seen that in each case the streaking
time delay oscillates as a function of time before it converges towards its final value. This can be
understood as follows: in the region 0 ≤ t′− ti ≤ T/4, the influence of the Coulomb potential is strong,
and, accordingly, there is a sharp increase in the magnitude of the time delay. Beyond t′ − ti = T/4,
the field changes sign and then oscillates until the end of the pulse. Consequently, the accumulated
streaking time delay as a function of time oscillates as well. The magnitude of the oscillation decreases
since the amplitude of the streaking electric field decreases (reducing the weight of the field-free time
delays in Equation (11)) and the Coulomb potential decreases in strength (reducing the magnitude of
the field-free time delays in Equation (11)).

In order to quantify how fast the time delay is accumulated towards its final value, we have
further determined times beyond which the magnitude of the streaking time delay remains within a
certain range of its final value. For example, t90% is defined as∣∣∆ts(t′ − ti)

∣∣ ≤ 0.9 |∆ts(Ts − ti)| for t′ ≥ t90% (17)

and t99% is analogous. The times t90% (stars) and t99% (circles) are marked on each of the curves
in Figure 5a. As one can see from the comparison, in each case t90% < T/2, which means that the
accumulated time delays ∆ts reaches 90% of the final value before the end of the first half cycle of
the streaking field after transition of the photoelectron in the continuum. Furthermore, it is seen that
the rate of convergence within the first half cycle of the streaking field improves as the XUV photon
energy increases. The reason for this trend is that, as the kinetic energy of the photoelectron becomes
higher, the faster it propagates away from the core. Therefore, by the time the sign of the field changes,
due to the large decrease in the magnitude of the Coulomb potential, the remaining terms in the sum
are sufficiently small such that they do not contribute significantly to the total value. We have found a
similar trend (not shown) if the wavelength of the streaking field is increased.

The conclusion that the accumulated streaking time delay achieves 90% of its final value within
the first half cycle of the streaking pulse holds independent of the streaking pulse duration. This can be
seen from the results in Figure 5b, in which the times t90% are presented for different pulse durations
(symbols) as a function of the XUV frequency. For comparison, T/4 = 27.5 a.u. (horizontal green
lines) and T/2 = 55 a.u. (horizontal blue dashed line) are also indicated. Again, for each case
studied, we find that t90% < T/2. Therefore, overall the results of our theoretical analysis support
the assumption by Kiesewetter et al. [26] that the time delay is essentially obtained within the first
half-cycle of the streaking field after the transition of the photoelectron in the continuum.

Finally, we also consider the different contributions to the time delay (short-range, Coulomb-phase
and logarithmic, see Equation (11)), separately. In Figure 5c, we compare the times at which each
of these contributions reaches 90% of its final value with each other and with the time t90% for the
total accumulated time delay. The results clearly show that it is the long-range logarithmic term
(diamonds) that essentially determines the time after transition of the photoelectron in the continuum,
at which the full time delay (stars) approaches its final value. On the other hand, the short-range
(circles) and Coulomb (squares) terms converge much faster, clearly within much less than one quarter
cycle of the streaking pulse (solid line). This is in agreement with the results discussed in Section 3.1
that the streaking pulse has a small effect on these two contributions to the streaking time delay.
Furthermore, it supports another assumption in Ref. [26] that the information about the differences
between short-range parts of different atomic potentials is incorporated in the streaking time delay
accumulated within the first quarter cycle of the streaking field after emission of the photoelectron in
the continuum.
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Figure 5. (a) Analytical predictions for the streaking time delay (in attoseconds) of hydrogen atom as
a function of time t′ − ti (in atomic units) for electron kinetic energies corresponding to XUV central
frequencies of ω = 44.22 eV (blue), ω = 55.27 eV (black), ω = 68.03 eV (red), ω = 82.48 eV (green),
ω = 98.64 eV (yellow), and ω = 116.49 eV (pink) and a three-cycle streaking pulse. The times t90%

and t99% are shown as stars and circles, respectively, and T/4 and T/2 are denoted with dashed
vertical lines; (b) time t90% (in atomic units) is shown as a function of XUV central frequency for
different streaking pulse durations; Ns = 3 cycles (circles), Ns = 4 cycles (stars), Ns = 5 cycles
(diamonds), and Ns = 6 cycles (squares). Further shown is T/2 (dashed light blue) and T/4 (solid
green); (c) same as panel (b) but for helium atom and the separate contributions, short-range (circles),
Coulomb-phase (squares), logarithmic (diamonds), and the total (stars) in a three-cycle streaking pulse.
For all calculations, a streaking pulse of wavelength λs = 800 nm and Is = 1× 1012 W/cm2 has
been considered.

3.3. Role of Attochirp

The analytical formula has also been applied to study the effects of properties of the ionizing XUV
pulse on the streaking time delay. For example, it has recently been suggested [27] that attosecond
time measurements may depend on the chirp of the XUV pulse. This conjecture was related to the
presumption that the asymptotic kinetic energy of the photoelectron would depend on the time of
transition into the continuum during the interaction with a chirped XUV pulse. To study the effect
of the attochirp on the streaking time delay, the expectation value in the chirped laser pulse was
determined as [28]:

〈∆ts〉(ω0, b) =
∫

dω
∫

dtiP(ω, ω0, ti, b)∆ts(ω, ti) '
∫

dωPavg(ω, ω0, b)∆ts(ω), (18)

where P(ω, ω0, ti, b) is the probability distribution for a transition at a certain frequency ω at a given
time ti; ω0 is the central frequency of the pulse, and b is related to the chirp in the spectral distribution
of a linearly chirped Gaussian pulse,
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g(ω, ω0, t, b) = exp
[
− (ω−ω0 − bt)2

γ2/4ln2

]
, (19)

with γ2 = Γ2 − τ2b2

4 , where Γ = 1
τ

[
64(ln 2)2 + τ4b2]1/2 and τ is the full-width at half maximum

(FWHM) pulse duration. Since it has been shown that the streaking time delay does not vary
significantly with the time of ionization, in Equation (18), the first expression has been further
approximated using the time averaged probability distribution Pavg.

Using the analytical estimates, Equation (11), in Equation (18) and the time averaged probability
distribution for photoionization in a Gaussian pulse [29], the time delay has been evaluated as a
function of the XUV central frequency ω0 and chirp parameter b. From Equation (18), one expects that
the influence of the chirp is large when the time delay and/or the photoionization cross section changes
rapidly as a function of the laser frequency. It is well known that the cross section varies strongly
near the frequency for a Cooper minimum. Indeed, the predictions for the time delay, presented as a
difference between delays obtained in a chirped and an unchirped pulse in Figure 6, show that the
attochirp has a rather small effect for (a) Ne(2p) while it is significant in a certain range of frequencies
for (b) Ar(3p). This is in agreement with the fact that the photoionization cross section for neon
atom is rather smooth as a function of laser frequency. In contrast, the Cooper minimum in Ar(3p)
photoemission leads to variations of up to a couple of tens of attoseconds in the streaking time delay at
small XUV frequencies.

3.4. Resolution of Dynamics

Since the streaking method accounts for the potential that the photoelectron crosses until the
streaking pulse ceases, it is also interesting to study if the streaking time delay is sensitive to dynamical
changes in the potential. This would open up the perspective to not only image static potentials, which
are related to the conventional Wigner–Smith time delay, but also open the perspective to use the
streaking method as an ultrafast imaging method. Because our analysis, c.f. Equation (8), shows that
the delay consists of instantaneous field-free time delays weighted by the instantaneous streaking field
strength as the photoelectron propagates through the potential, we expect that dynamics of the order
of the oscillation period of the streaking field may be resolved. For a typical near-infrared streaking
field, this would correspond to a resolution down to a few femtoseconds.

Figure 6. Difference between streaking time delays ∆ts (b)− ∆ts (b = 0) (in attoseconds) in a chirped
to those in an unchirped pulse for photoemission from (a) 2p shell of neon atom and (b) 3p shell of
argon atom as function of electron energy and chirp parameter.

In order to provide first insights, we have performed a model study using the 1D potential given
by Equation (10), where the additional Gaussian potential now oscillated 20 a.u. in each direction
about the center at x0 = 850 a.u. The oscillation period of the potential was varied and for each
period we performed a series of ab initio calculations, as described in Section 2.1, in order to obtain
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the streaking time delay. The results of these simulations are shown in Figure 7a as a function of
the oscillation period of the Gaussian potential. For comparison, the time delay obtained for a static
Gaussian potential is also shown. As can be seen, the time delay differs from the static value for a large
oscillation period; however, at small periods below 1 fs (for zoom-in, see Figure 7b), the time delay
agrees with the static value. This indicates that, while the time delay cannot account for dynamics
faster than about one-third of the period of the applied streaking field (here, 800 nm corresponding to
a period of about 2.7 fs), the delay is clearly sensitive to dynamics in the few femtosecond regime.
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Figure 7. (a) Streaking delay as a function of the period of oscillation of the additional Gaussian
potential (diamonds). The same potential and XUV pulse as in Figure 3 with a 11-cycle streaking pulse
of 800 nm wavelength is used. Also shown is the time delay for the same parameters, but with the
additional Gaussian potential remaining fixed (dotted horizontal line); (b) zoom-in of (a) for small
oscillation periods.

4. Conclusions

We have presented a review of theoretical studies leading to the finite-range interpretation of
the attosecond streaking time delay. Classical analysis of the dynamics of the photoelectron in the
streaking field following absorption of the XUV photon, along with a comparison with results of ab
initio quantum calculations, led to the conclusion that the streaking time delay is accumulated until the
streaking field ends over a finite range of the potential of the residual ion only. This analysis further
gave rise to an analytical model formula that was used to provide insights into various aspects of the
streaking time delay. For example, an alternative justification into the widely used decomposition of
the streaking time delay into a Wigner–Smith time delay and a Coulomb–laser coupling term has been
given. The role of the attochirp of the ionizing XUV pulse as well as the relevance of the first-half cycle
of the streaking field for the observed streaking time delay have been studied and discussed. Finally,
we have discussed the perspective of using the streaking time delay to resolve dynamical aspects,
namely temporal changes of the potential explored by the photoelectron.
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