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Abstract. Remote sensing analysis is routinely used to map
flooding extent either retrospectively or in near-real time.
For flood emergency response, remote-sensing-based flood
mapping is highly valuable as it can offer continued obser-
vational information about the flood extent over large geo-
graphical domains. Information about the floodwater depth
across the inundated domain is important for damage as-
sessment, rescue, and prioritizing of relief resource alloca-
tion, but cannot be readily estimated from remote sensing
analysis. The Floodwater Depth Estimation Tool (FwWDET)
was developed to augment remote sensing analysis by calcu-
lating water depth based solely on an inundation map with
an associated digital elevation model (DEM). The tool was
shown to be accurate and was used in flood response ac-
tivations by the Global Flood Partnership. Here we present
a new version of the tool, FwWDET v2.0, which enables wa-
ter depth estimation for coastal flooding. FWDET v2.0 fea-
tures a new flood boundary identification scheme which ac-
counts for the lack of confinement of coastal flood domains
at the shoreline. A new algorithm is used to calculate the lo-
cal floodwater elevation for each cell, which improves the
tool’s runtime by a factor of 15 and alleviates inaccurate
local boundary assignment across permanent water bodies.
FwDET v2.0 is evaluated against physically based hydrody-

namic simulations in both riverine and coastal case studies.
The results show good correspondence, with an average dif-
ference of 0.18 and 0.31 m for the coastal (using a 1 m DEM)
and riverine (using a 10 m DEM) case studies, respectively.
A FwDET v2.0 application of using remote-sensing-derived
flood maps is presented for three case studies. These case
studies showcase FWDET v2.0 ability to efficiently provide a
synoptic assessment of floodwater. Limitations include chal-
lenges in obtaining high-resolution DEMs and increases in
uncertainty when applied for highly fragmented flood inun-
dation domains.

1 Introduction

Flooding is the most destructive natural disaster on Earth.
About 100 000 people lost their lives due to floods in the last
decade of the 20th century (Higgins et al., 2014). The high-
est loss proportion of the global insured catastrophes in 2017
(USD 144 billion) came from Hurricanes Harvey, Irma, and
Maria, resulting in combined insured losses of USD 92 bil-
lion (Swiss Re, 2018). Of the global disasters between 1994
and 2013, 43 % were floods, affecting approximately 2.5 bil-
lion people (CRED, 2015). Coastal regions are particularly
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susceptible to flooding due to their low gradient terrain and
exposure to storm surges and tsunamis (Li et al., 2018). Sea
level rise, coupled with land subsidence and rapid urban-
ization, has led to increased flood risk in many coastal re-
gions worldwide (Tessler et al., 2015). Monitoring, analyz-
ing, and forecasting floods is commonly based on numeri-
cal models of hydrodynamic and meteorological processes,
in situ gaging, and remote sensing analysis. The applica-
tion of these tools and techniques for the unique topogra-
phy of coastal flooding events is often problematic due to
the low topographic gradients, greater diversity in flooding
mechanisms, and complex riverine—coastal interactions. Hy-
drodynamic models typically rely on terrain data to simu-
late flood fluid dynamics (e.g., the GSSHA and LISFLOOD-
FP models). Low variability in coastal topography heightens
the requirements of high-resolution elevation data (e.g., lidar
DEM), which, if available, can increase runtime and intro-
duce numerical instabilities. Unlike confined floodplains, in
situ gaging (e.g., tide gaging) cannot be easily translated into
flood extent and severity estimates. This challenge is a prod-
uct of coastal terrain and floodwater origin complexity (i.e.,
coastal, river, and pluvial water accumulation).

Remote-sensing-based analysis of flooding, which is
largely agnostic with respect to flooding mechanisms and
sources, can be used to rapidly generate flood extent maps
in near-real time. These analyses often apply standard al-
gorithms and tools, and for most first-order remote sensing
approaches there is no need for supplementary data. Re-
mote sensing has substantial advantages over modeling ap-
proaches, especially for emergency response and large-scale
analyses, and particularly in coastal regions where accurate
flood extent simulations can be challenging (Gallien, 2016).
However, the disadvantages of remote sensing approaches in-
clude limitations in imagery availability and acquisition time,
coarseness of resolution, cloud cover (for optical sensors),
nonlinearities in signal reflectance (particularly for radar sen-
sors), and view obstruction by vegetation, topography, build-
ings, and their shadows. Remote sensing also cannot be read-
ily used to map water depths.

Timely information about floodwater depth is important
for directing rescue and relief resources and determining road
closures and accessibility. Once available, flood depth in-
formation can also be used for post-event analysis of prop-
erty damage and flood-risk assessment (Islam and Sadu,
2001; Nadal et al., 2009; Nguyen et al., 2016). Several
approaches for quantifying floodwater depth using remote-
sensing-based flood maps have been proposed. Nguyen et
al. (2016) combine a flood extent map with hydrodynamic
simulations. While accurate, this approach is both data- and
computation-expensive, thus hindering its usability for data-
scarce, near-real-time, and large-scale applications. Schu-
mann et al. (2007) develop a floodwater depth calculation
model based on high-resolution flood extent and DEM lay-
ers. Their model uses regression analysis to interpolate be-
tween Hydrologic Engineering Center River Analysis Sys-
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tem (HEC-RAS) cross sections along the flooded domain.
Cohen et al. (2018a) use a somewhat similar concept but in-
stead of cross sections, their Floodwater Depth Estimation
Tool (FwWDET) identifies the floodwater elevation for each
cell within the flooded domain based on its nearest flood-
boundary grid cell (described in more detail below). As a
result, FWDET removes the need for specific data while re-
taining its usability with complex and fragmented flood ex-
tent maps from any source and resolution (i.e., sensor and
platform independent).

Since its development in 2017, FWDET has been used in
support of emergency response as part of activations of the
Global Flood Partnership (GFP; https://gfp.jrc.ec.europa.eu,
last access: 6 September 2019; Alfieri et al., 2018), includ-
ing the 2017 and 2018 US hurricane seasons (Cohen et al.,
2018b) and 2018 Philippine and Nigeria flooding. It was also
recently used for disaster resilience research (Loftis et al.,
2018; Rogers et al., 2018; NASA CAIR, 2018). Findings
from these activities are described in Cohen et al. (2018b), in-
cluding the previously described challenges in coastal flood
analysis. The need for fine-resolution terrain data (to account
for low gradients) mandates considerable improvements in
FwDET computational efficiency to reduce runtime. Flood
inundation polygons, used in FWDET to identify flooded do-
main boundary locations (grid cells), inevitably include those
on the shoreline or ocean water (where elevation is equal to
or below mean sea level), and both introduce erroneous wa-
ter depth calculations in nearby grid cells. Furthermore, com-
plex shorelines (e.g., small bays, inlets, barrier islands) can
result in the nearest flood-boundary cells being erroneously
located across a waterbody. In this paper, we describe and
evaluate version 2.0 of FWDET, which was developed to alle-
viate these issues. FWDET v2.0 was developed as part of the
NASA Applied Sciences Mid-Atlantic Communities and Ar-
eas at Intensive Risk (CAIR) demonstration project (Rogers
etal., 2018) and its application within the project is described
here. While developed primarily to address coastal issues,
FwDET v2.0 retains its applicability to estimating riverine
floodwater depth. The use of FWDET v2.0 for riverine flood-
ing is also analyzed herein.

2 Methodology
2.1 FwDET v2.0

FwDET calculates water depth by subtracting the calculated
floodwater elevation (above mean sea level, a.m.s.l.) from
topographic elevation at each grid cell within the flooded
domain. The flooded domain is provided as a GIS polygon
layer to FWDET, making the tool agnostic to the source and
method used to derive the inundation extent. Elevation of
each grid cell and the floodwater is derived from a digital
elevation model (DEM). While any DEM can be used, its
horizontal and vertical resolutions can have a major impact
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on the tool’s accuracy. This is discussed in more detail be-
low as well as in Cohen et al. (2018a, b). The core of the
FwDET algorithm is the identification of local floodwater el-
evation. FwWDET water depth calculation follows this follow-
ing procedure (described and illustrated in detail in Cohen
et al., 2018a): (1) conversion of the inundation polygon to a
line layer, (2) creation of a raster layer from the line layer that
has the same grid cell size and alignment as the DEM, (3) ex-
traction of the DEM value (elevation) for these grid cells (re-
ferred to as boundary grid cells), (4) allocation of the local
floodwater elevation for each grid cell within the flooded do-
main from its nearest boundary grid cell, and (5) floodwa-
ter depth calculation by subtracting local floodwater eleva-
tion from topographic elevation at each grid cell within the
flooded domain.

For flooding within a river floodplain, associating the ap-
propriate boundary grid cell is relatively straightforward as
illustrated in Fig. 1 (top) with a cross section. In noncontin-
uous flood domains (e.g., in floodplains of braided rivers),
isolated areas of non-flooded land can, and do quite often,
exist. Non-flooded isolated areas can be real or represent an
error in the remote sensing analysis due to, for example, un-
detected flooding under dense vegetation. FWDET identifies
the cells around these areas as boundary grid cells, which, if
these are real non-flooded (elevated) areas, is expected to im-
prove the water depth calculations as it provides more local-
ized floodwater elevation data. In coastal floods, the inunda-
tion polygon boundary at the coastline or ocean waters can-
not be used as boundary grid cells since the DEM-extracted
elevation will not represent the floodwater depth as illustrated
in Fig. 1 (bottom). These boundary grid cells should, there-
fore, be excluded from the analysis. In FWDET v2.0 this is
done by removing all boundary grid cells that have or are im-
mediately adjacent to grid cells that have an elevation equal
to or less than zero. The inclusion of adjacent cells in this
conditioning is done as coastal inundation polygons will of-
ten end at the coastline and the conversion to a raster will
often result in a boundary grid cell immediately inland of the
coastline, resulting in elevation (depending on the DEM res-
olution) that can be slightly greater than zero.

The first version of FWDET (v1.0) was implemented using
a Python script, which utilizes ArcGIS tools (ArcPy library)
for its core data analysis (available at https://sdml.ua.edu/
models/, last access: 6 September 2019, and https://csdms.
colorado.edu/wiki/Model:FwWDET, last access: 6 Septem-
ber 2019). Floodwater elevation of the nearest boundary grid
cell is allocated in FWDET v1.0 by iterating over increas-
ing neighborhood sizes of the ArcGIS Focal Statistics tool
(ESRI, 2019a). The iteration includes a condition to ensure
newly allocated flooded grid cells receive elevation values
from their closest computed neighbor (i.e., nearest bound-
ary grid cell). This approach has three disadvantages: (1) it
requires running the “Focal Statistics” tool multiple times,
reducing FWDET computational efficiency; (2) the size of
the largest neighborhood needed to cover the entire flooded
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Figure 1. Theoretical floodplain (a) and coastal (b) cross sec-
tions illustrating a FWDET floodwater depth calculation approach.
The elevation (a.m.s.l.; black numbers) of the floodwater boundary
(100 m at the top and 3 m in the bottom) are used to calculate water
depth (blue numbers) for each grid cell within the flooded domain
(point A). In riverine flooding (a) underestimation of water depth is
expected over the river (point B) as DEMs typically capture the wa-
ter surface elevation. In coastal flooding (bottom panel) the seaward
flood boundary can be at the coastline (point B) or over the ocean
(point C) and cannot be used to estimate floodwater depth (eleva-
tion <0). In FWDET v2.0 these boundary locations are excluded,
which means that only the inland flood boundary is used.

domain varies depending on the domain size and the DEM
resolution, requiring an a priori estimation of the number of
iterations, often resulting in the need to rerun the tool; and
(3) it ignores permanent water features (rivers, inlets), and
thus can erroneously assign boundary grid cell elevations to
flooded grid cells on the opposite bank because their Euclid-
ian distance is shorter than to the boundary grid cells on their
side of the waterbody.

In FWDET v2.0, allocation of the nearest boundary grid
cell elevation is done with the ArcGIS “Cost Allocation” tool
(ESRI, 2019b). Cost Allocation changes the way in which
nearest boundary grid cells are allocated to a non-iterative
approach. This drastically reduces the run time, as the tool
uses one linear process to allocate the value of the input
raster’s (boundary elevation raster) nearest grid cell for all
cells within the output domain. The tool’s “cost” input raster
is used in FWDET v2.0 to prevent boundary grid cell eleva-
tion allocation over permanent water by assigning such grid
cells with high-cost value. The cost raster is calculated by
assigning all grid cells with elevation equal to or less than
zero a value of 1000 and all other grid cells a value of 1.
For inland water bodies (e.g., rivers; where permanent water
bodies have greater than zero elevation), a cost raster can be
calculated from a land-cover map (through identification of
permanent water bodies) and used as input to FWDET v2.0.
The Cost Allocation tool only accepts integers, consequently
creating a vertical elevation data resolution of 1 elevation
unit (e.g., meter), which was the main reason this tool was
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not used in previous versions of FWDET. In FWDET v2.0, a
float—integer—float conversion (multiplication of the DEM by
10° and then dividing it by the same factor after the tool run)
is employed to maintain the DEM vertical resolution.
FwDET v2.0 is also available as a Python script and as
an ArcGIS script tool (see Conclusions section). A QGIS
Python script and tool were developed to eliminate depen-
dency on ArcGIS licensing. The QGIS script runtime is
shorter than the ArcPy-dependent script but does not yet in-
clude a cost raster input and therefore does not solve the
above-indicated issue of allocation across permanent water.
It is therefore not a full solution of FWDET v2.0 but it does
include the coastline boundary cell identification procedure.

2.2 Evaluation

FwDET v2.0 water depth estimations are evaluated here
against calibrated hydrodynamic simulations. A similar ap-
proach was used in Cohen et al. (2018a) to evaluate
FwDET v1.0. The flood extent used as input for FwDET v2.0
is derived from the modeled water depth rasters. The rasters
were converted to FWDET inundation extent input polygons
by reclassifying all nonzero water depth cells as 1 and us-
ing the ArcGIS “Raster to Polygon” tool to generate a fea-
ture layer. This allows for the evaluation of the FWDET v2.0
floodwater depth calculation approach without introducing
potential biases by using different inundation extent data.
The same DEMs were used for the model simulations and
FwDET v2.0 calculation in each case study. The (calibrated)
model-simulated water depth is assumed here to be the true
water depth. Biases in this analysis are therefore solely a
function of FWDET v2.0 algorithm results relative to the
model’s fluid dynamic simulation.
Two evaluation case studies are presented.

1. Portsmouth and Norfolk (Virginia, USA) includes
coastal flooding in a relatively flat tidewater urban
environment during Hurricane Irene in 2011. A 1m
topobathymetric lidar DEM, developed by Danielson
et al. (2016), provided elevation inputs to two sepa-
rate hydrodynamic models. These models operate at
two different scales, large scale (20 m—10 km) to street-
level scale (1-10m). SCHISM (Semi-implicit Cross-
scale Hydroscience Integrated System Model) covered
half of the North Atlantic Ocean to the coastal zone
with individual grid cells ranging from 20 m to 10km.
The UnTRIMV version 3 hydrodynamic model (Ca-
sulli, 2019) resolved an area the size of Portsmouth
and Norfolk and their adjacent waterway systems at
the street-level scale (1-10m resolution grid, Wang et
al., 2014). SCHISM is an open-source hydrodynamic
model (Zhang et al., 2016), which provided tidal har-
monic inputs at the open boundary and atmospheric in-
puts for Hurricane Irene from two different atmospheric
model simulations. These atmospheric models were the
Weather Research and Forecasting (WRF) model using
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nested 9, 3, and 1 km resolution grids, with hourly time
intervals, and the European Centre for Medium-Range
Weather Forecasts (ECMWF) model at 12 km resolu-
tion using 3 h time intervals. Water level outputs from
SCHISM were used as Dirichlet open-boundary inputs
for the street-level model to drive inundation into urban
environments and highlight vulnerable infrastructure
impacted during the storm. These urban structures were
extracted from lidar as in Loftis and Taylor (2018) and
directly embedded in the model to account for volume
displacement within the structure’s surface area and
form drag as the storm surge flows around each build-
ing within the urban environment (Loftis et al., 2014,
2016). The street-level model subsequently generated
hourly inundation outputs for floodwater depths in me-
ters, which compared favorably with three municipally
owned water level sensors (RMSE =4.61cm) and 18
USGS-reported high water marks (RMSE =9.73 cm) in
southeast Virginia, as noted in Loftis et al. (2018, 2019).
A more complete description of this case study is avail-
able in Loftis et al. (2018) and Rogers et al. (2018). In
this paper, the maximum water depth output was used
along with the 1m DEM for the FWDET v2.0 calcula-
tion.

2. Brazos River (Texas, USA) riverine flooding during
the May 2016 flood event. The same event was used
to evaluate FWDET v1.0 and is used here to compare
the two FwDET versions for riverine flooding. The
iRIC-FaSTMECH hydrodynamics model (Nelson et
al., 2016; https://www.i-ric.org, last access: 6 Septem-
ber 2019) was used to simulate the flood. The iRIC-
FaSTMECH model simulates water velocity and water
surface elevation using gauged discharge input at the
reach’s upstream location and stage at its downstream
outlet. Manning’s roughness parameter was calibrated,
the pressure distribution was assumed hydrostatic, and
the flow was considered quasi-steady in the model. A
more detailed description of this case study is pro-
vided by Zhang et al. (2018) and Cohen et al. (2018a).
In this paper, the maximum water depth model output
along with the 10m DEM (NED) were used for the
FwDET v1.0 and v2.0 calculations.

2.3 Applications

Evaluation of FwWDET v2.0 operational applications for three
case studies is provided.

1. Hurricane Irene made landfall along the mid-Atlantic
coast in late August 2011. To assess flooding from Irene,
as part of the CAIR demonstration project, optical re-
mote sensing approaches were used to map water ex-
tent, limited to views unobstructed by cloud, high ob-
jects like buildings, and vegetation. In this study, the
highest-quality satellite overpass from Landsat was de-
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termined to be a Landsat 5 scene obtained on 31 August
2011, 5d after the storm made landfall. To identify sur-
face water areas, Landsat 5 surface reflectance was used
to compute the modified normalized difference water
index (mNDWI; Xu, 2006). Water detections from the
Landsat 5 mNDWI product were then combined with
the 2011 National Land Cover Dataset (NLCD) to sepa-
rate flood areas from known permanent water locations.
Areas that were identified as water in the mNDWI prod-
uct and overlapped with identified water pixels in the
NLCD were classified as persistent water. Pixels that
were identified as water in mNDWI but not classified as
water in the NLCD were determined to be flooded. Due
to Landsat 5 imaging occurring after the initial landfall,
the scene does not capture the maximum extent of flood-
ing and omits significant flooding from a storm surge
that had receded. A 30 m DEM (NED) was used as in-
put for the FWDET v2.0.

2. Hurricane Florence made landfall in North Carolina
on 14 September 2018. The slow-moving storm gen-
erated large amounts of rainfall over the Carolinas,
resulting in widespread and severe riverine and plu-
vial flooding. GFP was activated on September 15.
One of the products shared through the GFP network
was a daily map of maximum detected flooding at
90m resolution based on downscaled Advanced Mi-
crowave Scanning Radiometer 2 (AMSR2) and GPM
Microwave Imager (GMI) passive microwave satellite
observations from the Atmospheric and Environmental
Research, Inc. (AER) FloodScan system (http://product.
aer.com/index.php/floodscan/, last access: 6 Septem-
ber 2019). Whereas higher-resolution remote sensing
products were shared by GFP members, the FloodScan
maximum flooding product, which included flooding in
woody wetland regions adjacent to observed floodwa-
ter, resulted in the most continuous and spatially exten-
sive flood maps. A 30m DEM (NED) was used for the
FwDET v2.0.

3. In Sri Lanka torrential monsoon rainfall led to major
flooding across the country in May 2018. GFP was ac-
tivated on 22 May. As part of the GFP activation, the
DFO Flood Observatory (hereafter DFO) published a
flood map online based on 10 m resolution Sentinel-1b
imagery (see DFO event page: http://floodobservatory.
colorado.edu/Events/4619/2018Somalia4619.html, last
access: 6 September 2019). Several DEM products were
tested here as input for the FWDET v2.0 (described
later).
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3 Results and discussion
3.1 FwDET v2.0 evaluation

Floodwater depth estimates by FwDET v2.0 correspond
well with model-simulated water depth for the Norfolk—
Portsmouth case study (Fig. 2). Maximum floodwater depth
(the grid cell with the highest value) is overestimated by
FwDET v2.0 but the water depth rasters yielded similar av-
erages (0.77 and 0.65 m for the model and FwWDET v2.0, re-
spectively) and standard deviation (0.56 and 0.58 m for the
model and FWDET v2.0, respectively). The mean difference
in floodwater depths, calculated by averaging the raster val-
ues of the [FWDET v2.0 — model] map algebra expression, is
—0.16 m with a standard deviation of 0.29 m, meaning that
FwDET v2.0 slightly underestimates floodwater depth. The
average absolute difference ([|(FWDET v2.0 — model)|]) is
0.18 m (23 % of the model mean average depth) with a stan-
dard deviation of 0.28 m. The histogram distribution (Fig. 2e)
of the difference map (Fig. 2d) shows that the vast majority
of grid cells have a bias of between 0 and —0.33 m and that
biases below —1 m and above 0.33 m are rare.

Although the mean difference in water depth estimations
by FWDET v2.0 and the hydrodynamics model are small,
the difference map (Fig. 2d) reveals a heterogenous tapestry
of values, some of which are quite considerable and many
with sharp (straight line) transitions, not readily apparent in
the water depth maps (Fig. 2a and b). They are attributed to
FwDET v2.0 reliance on nearest boundary cell elevation to
calculate water depth. The use of Euclidian distance to as-
sign the nearest boundary grid cell can lead to these straight-
line transitions as well as inaccuracies in water depth where,
for example, backwater effects are driven by complex flow
paths. In urban environments, streets and buildings can am-
plify these biases. In this case study, in which a 1 m lidar
DEM was used, buildings were identified as having a higher
elevation. This created non-flooded areas within the flooded
domain which FwDET v2.0 identified as boundary locations.
Consequently, some nearby grid cells erroneously assigned
values depicting unrealistic flood boundary elevations. These
errors stem from false elevation reflections of sometimes
multistory building roofs instead of the actual (street level)
floodwater elevation. Similarly, other structures (e.g., high-
ways, overpasses, dikes) can lead to these considerable over-
estimations. Effects of these are visible throughout Fig. 2d
but are not consistent as some locations around buildings are
actually underestimated. Underestimation by FWDET v2.0 is
most common near banks and shorelines. This is due to the
boundary grid cells assigned for these locations, which were
not from the actual maximum inland extent of floodwater in
that location, but of a nearer boundary grid cell which under-
represents the true local floodwater elevation.

A comparison to FWDET 1.0 is not valuable for this (or
any coastal) case study. This is because FWDET 1.0 does not
work at coastal regions as the boundary elevation at the coast-
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Figure 2. The Norfolk—Portsmouth August 2011 Hurricane Irene flooding case study: (a) simulation domain, location overview map (bottom
right inset), and the zoom-in extent used in panels (b)—(d) over the Lafayette River tidal estuary (red box); (b) model-simulated maximum
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Aerogrid, IGN, IGP, swisstopo, and the GIS user community.
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line is lower than the flooded domain. As a result, all the cells
closest to the coastline (relative to the inland boundary) re-
ceive a no-data value.

Floodwater depth estimates by FWDET v2.0 also corre-
spond well with model-simulated water depth for the Bra-
zos River case study (Fig. 3). Maximum water depths are
similar (Fig. 3a and b). Average water depth calculated by
FwDET v2.0 is 2.1 m, compared to the model’s 2.2 m pre-
diction. The standard deviation was also very similar with
values of 2.51 m for FWDET v2.0 and 2.56 m for the model.
The difference between the model and FWDET v2.0 wa-
ter depth calculation is small with an average of —0.16 m
[FWDET v2.0 — model] and a standard deviation of 0.46 m.
Similar to the Norfolk—Portsmouth case study, FWDET v2.0
slightly underestimates floodwater depth. The absolute dif-
ference in water depth is 0.31 m (14 % of the model mean
average depth) with a standard deviation of 0.46m. The
lower relative bias in the Brazos case study compared to the
Norfolk—Portsmouth case study is likely due to the inclusion
of the river itself in the statistical calculations. The river seg-
ment is relatively deep, and its water depth is relatively easy
to estimate (not considering its true bathymetry). The his-
togram distribution (Fig. 3e) of the difference map (Fig. 3¢c)
shows that the vast majority of grid cells have a bias of be-
tween —0.33 and 0.33 m with a small proportion of grid cells
having a bias of over 1 and below —1.33 m.

The difference map (Fig. 3c) shows that the largest biases
in FWDET v2.0 are mostly concentrated along the river chan-
nel. These are likely due to the hydraulic slope, which is sim-
ulated by the hydrodynamic model but are not expressed in
the FWDET topography-based approach. As these biases re-
late to the active river channel, their implications for flood
applications are small. Other regions of relatively high biases
are along the western edges of the flooded domain. These are
artifacts of the model domain setup. As described in Cohen
et al. (2018a) and Zhang et al. (2018), the iRIC simulation
grid extent and resolution must be manually defined by the
user affecting the fluid dynamics along the edges of the sim-
ulation domain.

FwDET v2.0 shows a slight improvement over v1.0,
which had a mean water depth of 1.95m and an abso-
lute difference of 0.37m. A comparison of the two ver-
sions bias against the model results (Fig. 3d), calculated as
[[FWDET v2.0 — model | — | FWDET v1.0 — model|], has an
average value of 0.01 m and standard deviation of 0.33 m.
The differences between v1.0 and v2.0 are expected to
be small for riverine flooding. The small improvement in
FwDET v2.0 is primarily due to the use of a different tool
for assigning the nearest boundary elevation (Focal Statistics
loop in v1.0 vs. Cost Allocation in v2.0).

The Brazos River case study was also used to compare the
runtime improvement of FWDET v2.0. At 10 m resolution
the domain has 2087 x 1816 (3789 992) grid cells requiring
100 iterations of the Focal Statistics loop in FWDET v1.0.
FwDET v1.0, v2.0, and QGIS versions were run on a Win-
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dows 7 desktop with two Intel Xenon E5 2670 2.5 GHz
processors and 64 GB of RAM. FwDET v1.0 runtime was
24 min and 14 s, FWDET v2.0 runtime was 1 min 33s, and
FwDET QGIS runtime was 49 s. This is a runtime improve-
ment of over a factor of 15 between v1.0 and v2.0 and a fur-
ther improvement by a factor of nearly 2 between v2.0 and
QGIS. Faster runtime by FWDET QGIS is due to its use of
GDAL’s raster clipping tool, which is written in C (GDAL,
2019) and, similar to v2.0, there is no iterative loop. This
clipping procedure (used in all FwWDET versions) ensures that
floodwater depth is rendered only within the flooded domain
(see Cohen et al., 2018a). FWDET v2.0 ArcGIS script tool
allows users to provide a pre-clipped DEM to reduce run-
time. This is mostly useful when repeated runs for the same
inundation extent are conducted.

3.2 FwDET v2.0 application results

Large-scale coastal flooding, typically associated with trop-
ical cyclones, is challenging to analyze from both observa-
tional (remote sensing, point data) and modeling perspec-
tives. This is because of the diversity in land cover and flood-
ing sources. Storm surge, for example, can be highly ener-
getic but short in duration relative to riverine flooding. That
could create observational challenges for remote sensing ap-
plications. The NASA CAIR project (Rogers et al., 2018;
NASA CAIR, 2018) utilized FWDET v2.0 to demonstrate
the ability to integrate satellite-derived Earth observations
and physical models into actionable knowledge. The inte-
gration of observations and models allows for a more com-
prehensive understanding of the compounding risk experi-
enced in coastal regions. The demonstration produced flood
inundation maps to predict building-level impacts of a rep-
resentative storm in the mid-Atlantic region for Hurricane
Irene. FWDET v2.0 used best-available remotely sensed im-
agery to determine inundation depth immediately following
the storm.

To estimate floodwater depth following Irene, the Land-
sat 5 floodwater classification was converted to a polygon
layer (Fig. 4) to be used as input for FWDET v2.0. A DEM for
the region was compiled by mosaicking the corresponding
30 m spatial resolution NED tiles. While 10 m NED products
are available for this region, the 30 m product was used given
the resolution of the flood inundation source (30 m Landsat 5
images) and the size of the domain (Fig. 4). Although there
are insufficient ground-based observations to make a quan-
titative accuracy determination, overall the spatial trends in
water depth estimation seem reasonable. The average flood-
water depth for the entire domain was 0.64 m with a max-
imum of 41.7m. The latter is obviously an overprediction
resulting from the misclassification of floodwater from the
satellite imagery or spatial mismatch between the inundation
map and the DEM. Zooming in on the Norfolk—Portsmouth
area reveals (Fig. 4 right panel) a much smaller flooding ex-
tent compared to the model simulation results (Fig. 2). This
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Figure 3. The May 2016 flood event for the Brazos River (Texas) case study: (a) model-simulated maximum water depth; (b) FWDET v2.0
estimated floodwater depth; (c) difference map between panels (a) and (b) [FWDET v2.0 — model]; (d) comparison between FwDET v1.0
and v2.0 estimation accuracy [|v2.0 —model | — | v1.0 — model|] (positive values indicate smaller bias by FWDET v2.0); (e) histogram of
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Aerogrid, IGN, IGP, swisstopo, and the GIS user community.
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Figure 4. Flooded domain and overview map (left panel) of the 2011 flooding following Hurricane Irene landfall on the US mid-Atlantic
coast. The flood inundation was classified from two Landsat TM images which were used as input in FWDET v2.0 to calculate floodwa-
ter depth (right panel zooming-in on the Norfolk—Portsmouth area). Background sources: Esri, DeLorme, HERE, MapmyIndia. © Open-
StreetMap contributors 2019. Distributed under a Creative Commons BY-SA License.

is reasonable given that the model simulated the maximum
flooding conditions during the event while the flood inun-
dation layer used here is based on a Landsat 5 image cap-
tured 5d past the hurricane’s landfall. Underprediction of
flood extent may also be due to challenges in floodwater
classification in urban environments at this resolution. Av-
erage floodwater depth calculated by FWDET v2.0 for the
Norfolk—Portsmouth domain was 0.85 m, which is slightly
higher than water depth predictions for the same domain in
the high-resolution maximum-extent case study (Fig. 2; 0.77
and 0.65m for the model and FWDET v2.0, respectively).
The likely cause for this overestimation in this coastal urban
region is the resolution of the inundation map and DEM rel-
ative to the area’s small topographic gradient and fragmen-
tation of the flooded domain. Thus, the use of FWDET v2.0
over large coastal flood domains can be useful for providing
a synoptic overview of flood severity, but its localized anal-
ysis, especially for urban areas, should be considered in the
context of the input data used (mainly its resolution).

For the Hurricane Florence application case study,
FwDET v2.0 estimates (Fig. 5) show high water depths
(over 3 m) within the major river floodplains and shallow to
medium water depths (below 3 m) across the flooded domain.
Average floodwater depth is 0.92 m with a standard deviation
of 1.7 m. This is a reasonable result given the other case stud-
ies (we do not have comprehensive observed or simulated
water depth data for a quantitative assessment). Maximum
estimated water depth is 39.6 m, which is clearly an overes-
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timation, even though calculations include permanent water
features. That is because DEMs typically capture the water
surface elevation of permanent water features (see Fig. 1).

For the Sri Lankan application case study, the flood in-
undation map produced by DFO was highly fragmented in
most parts of the country leading to many small inundation
polygons (Fig. 6). The remote sensing classification used ap-
pears to be an accurate representation of ground conditions
given the sensor resolution. As described earlier, fragments
in the inundation extent, assuming it represents reality, can
be advantageous as it can shorten the distance to the nearest
boundary grid cells, which may yield more accurate (local-
ized) water elevation estimation by FwWDET v2.0. However,
a highly fragmented inundation extent can be problematic if
the flooded sections are small relative to the input DEM res-
olution and the local terrain gradient. For example, a flooded
area with an extent of only a few DEM grid cells in a flat
area may result in a negligible water depth because the ele-
vations of the boundary and inundated grid cells are similar.
High-resolution DEMs outside the US are often difficult to
obtain as most countries do not openly share national DEMs,
or they do not exist. As a result, in emergency response situa-
tions, we often can only use global DEMs as input to FWDET
(see Cohen et al., 2018a, b). For this event three DEM prod-
ucts were tested:

1. HydroSHEDS (based on the Shuttle Radar Topography
Mission (SRTM) DEM); 3 arcsec (~ 90 m) resolution.
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2. Multi-Error Improved-Terrain (MERIT; Yamazaki et
al., 2017); 3 arcsec (~ 90 m) resolution; http://hydro.iis.
u-tokyo.ac.jp/~yamadai/MERIT_DEM/index.html (last
access: 6 September 2019).

3. ALOS; 30m resolution; http://www.eorc.jaxa.jp/
ALOS/en/aw3d30/index.htm (last access: 6 Septem-
ber 2019).

While ALOS offers the highest spatial resolution, it is dis-
tributed as an integer raster, which means that its vertical
resolution is effectively 1 m. This is a considerable disad-
vantage, especially in low slope terrains. MERIT resulted in
improved depth estimations over using HydroSHEDS (not
shown here) but its horizontal resolution is inadequate con-
sidering the resolution of the remote sensing inundation map
(10m) and the high degree of fragmentation in the inunda-
tion extent input. Use of the ALOS DEM yielded the most
appropriate floodwater depth map (Fig. 6) for the Sri Lankan
flood, but with a relatively high degree of uncertainty due
to its limited vertical resolution, a high degree of fragmenta-
tion relative to the DEM vertical resolution, and mismatch
in horizontal resolution between the inundation map and
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DEM. This event demonstrated challenges associated with
high-resolution DEM availability. This case study highlights
the need to carefully consider the appropriateness of DEM
choice in the context of the resolution and nature of the inun-
dation extent map.

4 Conclusions

The Floodwater Depth Estimation Tool (FwDET) calculates
water depth based solely on an inundation polygon and a
DEM. This enables rapid application over large domains and
globally, which is highly advantageous for disaster response
and large-scale or frequent (many flood map) uses. The first
version (v1.0) of FWDET was used extensively in the last
2 years as part of flood response activations by the Global
Flood Partnership. A new version of FWDET is presented
here. FWDET v2.0 enables floodwater depth calculation in
coastal areas (while maintaining its riverine capabilities) by
modifying the flood boundary identification approach and
improving runtime. The latter is important given the need for
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Figure 6. A floodwater depth map shared during the GFP activation for the 2018 flooding in Sri Lanka, zooming in on the southeast part of
the country. Water depth was calculated using FwDET v2.0 with a 10 m flood inundation map (for 19 May 2018) and 30 m DEM (ALOS).
Background sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the

GIS user community.

hyper-fine-resolution DEMs to represent low slope coastal
topography.

FwDET v2.0 calculation accuracy was estimated by com-
paring its water depth calculations against those from phys-
ically based hydrodynamic simulations. Two case studies
were used here for evaluation: coastal flooding in Norfolk—
Portsmouth during the 2011 Hurricane Irene, using a 1 m
lidar DEM, and riverine flooding in Brazos River (TX) in
2016, using a 10 m DEM. In both cases FWDET v2.0 cor-
responded well with the hydrodynamic simulations, yield-
ing an average differences of 0.18 and 0.31m for the
Norfolk—Portsmouth and Brazos case studies, respectively.
The average and standard deviation of the two water depth
products (FWDET and model-simulated) were also similar.
FwDET v2.0 considerably overpredicted maximum flood
depth (a grid cell with the highest value). This can be due
to mismatches between the flood boundary and the DEM
or inaccurate identification of the flood boundary grid cell.
In FwDET the nearest boundary grid cell for each grid cell
within the flooded domain is identified based on Euclidian
distance. However complex fluid dynamics and flow paths
can result in local floodwater elevation, which differs from
the nearest boundary grid cell. These errors are due to the
simplicity of FWDET and can lead to unrealistic water depth
patters in some locations. The results from this and past pa-
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pers demonstrate that FWDET can be considered a first-order
tool for providing a synoptic overview of floodwater depth
distribution. Its ability to provide estimates at finer scales de-
pends on the spatial complexity of the flooded domain and
the resolution of the flood extent map and DEM. Generally,
simple flood extents and good correspondence between the
inundation map and DEM will yield more accurate depth es-
timations.

FwDET v2.0 was compared to v1.0 using the Brazos
case study. Results show that, as expected, the two ver-
sions yielded very similar water depth maps for this river-
ine case study. FWDET 2.0 was able to achieve a consid-
erable improvement in runtime (by a factor of 15) and an
additional improvement (by a factor of 2) with its QGIS ver-
sion. The QGIS version does not yet include all the method-
ological improvements of FWDET v2.0 and should not be
applied for coastal flood analysis. FWDET v1.0 and v2.0
are freely available as Python scripts and ArcGIS and QGIS
tools are available through the Community Surface Dynam-
ics Modeling System (CSDMS) Model Repository (https:
//csdms.colorado.edu/wiki/Model:FWDET) and the Surface
Dynamics Modeling Lab (SDML) website (https://sdml.ua.
edu/models/).

A FwDET application using remotely sensed flood maps
to estimate flood depth was demonstrated for large-scale
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flooding during the 2011 Hurricane Irene on the mid-Atlantic
US coast (30m Landsat multispectral images), the 2018
Hurricane Florence that affected North and South Carolina
(90 m downscaled AMSR?2 and GMI passive microwave im-
ages), and the 2018 flooding in Sri Lanka (10 m Sentinel-
1 SAR image). These case studies demonstrated the func-
tionality of FWDET v2.0 in providing a synoptic assess-
ment of floodwater depth. Limitations in using FWDET were
highlighted, including challenges in obtaining high-spatial-
resolution DEMs and increases in uncertainty when applied
to highly fragmented flood inundation extents. The accuracy
and timing, relative to the flood peak, of the remotely sensed
flood map, are likely to be the greatest source of uncertainty
in FWDET flood depth estimations.

Code and data availability. FWDET v1.0 and 2.0 ArcGIS and
QGIS script code (Python) and demo data are accessible via Sur-
face Dynamics Modeling Lab (SDML, https://sdml.ua.edu/models/,
Cohen and Raney, 2019a), the Community Surface Dynamics Mod-
eling System (CSDMS, https://csdms.colorado.edu/wiki/Model
download_portal, Cohen and Raney, 2019b), and GitHub (https:
//github.com/csdms-contrib/fwdet, Cohen and Raney, 2019c).
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