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By means of extensive three dimensional Contact Dynamics simulations, we analyse the strength
properties and microstructure of a granular asteroid, modeled as a self-gravitating cohesive granular
aggregates composed of spherical particles, and subjected to diametrical compression tests. We show
that, for a broad range of system parameters (shear rate, cohesive forces, asteroid diameter), the
behaviour can be described by a modified inertial number that incorporates inter-particle cohesion
and gravitational forces. At low inertial numbers, the behaviour is ductile with a well defined stress
peak that scales with internal pressure with a pre-factor ' 0.9. As the inertial number increases,
both, the pre-factor and fluctuations around the mean, increase, evidencing a dynamical crisis
resulting from the destabilizing effect of particle inertia. From a micro-mechanical description of
the contact and force networks, we propose a model that accounts for solid fraction, local stress,
particle connectivity and granular texture. In the limit of small inertial numbers, we find a very
good agreement of the theoretical estimate of compressive strength, evidencing the major role of
these structural parameters for the modelled aggregates.

PACS numbers: 96.30.Ys, 81.05.Rm, 83.80.Fg

Understanding the physical and mechanical properties
of small planetary bodies (comets, asteroids, small satel-
lites) is essential not only for the study of the Solar Sys-
tem and its origins, but also as a basis for future space
exploration and mining missions [1]. Until very recently,
it was assumed that the smallest of asteroids were mono-
lithic rocks with a bare surface [2, 3], but recent space
missions and observations have established that not only
their surfaces are covered by regolith, but that their in-
ternal structure is not monolithic either [4–6]. From
these observations, the concept of “Granular Asteroid”
has progressively emerged [7, 8].

Granular asteroids are naturally occurring gravita-
tional aggregates (rubble piles) bound together by grav-
itational and possibly cohesive forces. They have large
interior voids which allow them to support large plastic
deformations [9]. Their macroscopic behaviour and inter-
nal structure are still not well known and how to predict
their mechanical strength, based on their microstructure
and dynamics, is still an open question [1, 10]. However,
in view of their discrete nature, it is reasonable to use
the theoretical concepts and numerical tools developed
for granular media to study them.

After more than fifteen years of research, the two fol-
lowing general features have been well established for
granular materials (with some caveats for real geologi-
cal systems [11]): (1) their dynamical behaviour, under
various boundary conditions and confining geometries, is
well captured through the so-called inertial number I, de-
fined as the ratio of the particle relaxation time d

√
ρ0/p,
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under a confining stress p and for a particle of density
ρ0 and diameter d, to shear time ts = γ̇−1 imposed by
the shear rate γ̇ [12–14] and, (2) their strength properties
result from the buildup of anisotropic structures at the
particle scale which are induced by steric effects, force
transmission and friction mobilisation [15–18].

In granular asteroids, long-range gravitational forces
have to be taken into account along with cohesive forces
and so, the generalisation of these “granular concepts”
is highly non-trivial. However, some recent simulations
have started to include these effects; this has led re-
searchers to propose new microscopic mechanisms [19, 20]
to explain the behaviour of some of the small members of
the Near Earth Object (NEO) population. For example,
the fact that small asteroids (< 150 m) can have a rota-
tion rate higher than what a purely gravitational model
would predict [21] can be attributed to local cohesion [22–
24], where the smallest particles agglomerate in the form
of a weak cohesive matrix that binds the larger particles
[19, 20]. Unfortunately, a general framework for the anal-
ysis of such bodies is still lacking. In this letter we lay
the foundation of a framework that unifies the I-rheology
with the overburden pressure given by self-gravity.

Considering that several forces come into play [19],
it may be assumed that internal stresses result from
two characteristic stresses acting on particles: 1) inter-
particle tensile strength η = f0/d

2, where f0 is the
cohesive force, and 2) interior stress given by P(r) =
0.25ρ0g0D(1− 4r2/D2), with g0 = GMa/D

2 where G is
the gravitational constant, Ma and D the total mass and
diameter of the asteroid, r the distance from the centre,
assuming a constant bulk density and spherical geometry.
The pressure at the centre is given by P0 = ρ0g0D/4 and
can be used as a referential interior stress. Two different
particle relaxation times can be built as tη = d

√
ρ0/η and
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tg0 = d
√
ρ0/P0, leading, in combination with ts, to the

definition of two dimensionless numbers: Iη = γ̇d
√
ρ0/η

and Ig0 = γ̇d
√
ρ0/P0. From these two numbers, we

can also find a modified version of the Bond Number:
λ = η/P0 = (Ig0/Iη)2, which has been originally defined
as the ratio of cohesive to gravitational forces [19, 25].
We thus expect that the rheology of a granular asteroid
will be governed by two of these three numbers.

By means of extensive 3D Contact Dynamics simula-
tions [26–28][49], we analyse the stress-strain behavior
and microstructure of a granular asteroid, modelled as a
cohesive granular agglomerate of spherical particles, sub-
jected to vertical compression together with gravitational
forces and for a broad range of parameters Iη, Ig0 and
η. As we shall see, the peak strength, as well as the mi-
crostructure, scale with a modified inertial number that,
in fact, combines two of these three numbers, so extend-
ing the granular paradigm to these ideal self-gravitating
systems.

First, we build a large sample of 10 000 spherical par-
ticles under isotropic compression inside a box. The par-
ticles have a diameter d ∈ [0.6dmax, dmax], with a uni-
form distribution per volume fraction. Friction, cohesion
and gravitational forces are not yet activated. Density
ρ0 of the particles is fixed to 3200kg/m3. We extract
spherical agglomerates of diameter D from this sample
comprising nearly Np = 5000 particles. In order to an-
alyze the effect of aggregate size, four aggregates were
built, with dmax ∈ [3, 6, 12, 18]m, so D is approximately
[50, 100, 190, 375]m. Then, the friction coefficient is fixed
to 0.4, cohesive forces, modeled as a constant reversible
attractive force −f0 with a short range action of the or-
der of 0.01d, are activated. Gravitational forces are rep-
resented by the force Fg0 = πd3ρ0g0r/(6D) acting on the
centre of each particle at a distance r of the centre of
the aggregate and pointing towards it. The aggregates
are then subjected to diametrical compression between
two platens, with a prescribed velocity Vwall = γ̇D (see
Fig. 1(a)). Iη and η were varied between [5.10−4, 0.1] and
[0.1Pa, .., 100MPa], respectively. We performed 192 sim-
ulations for a broad range of combinations of these two
parameters for both, non-gravitational and gravitational
aggregates. When gravitational forces are considered, P0

increases with D, from ∼ 0.48Pa, to ∼ 30Pa.
During diametrical compression, the vertical stress σzz

acting on an aggregate is given by 4F/πD2, where F
is measured on the platen. It can be also calculated
from the micro-mechanical expression of the stress tensor
σij = nc〈f ci `cj〉c [27], where nc = Nc/V with Nc the total

number of contact in the volume V = πD3/6; the aver-
age 〈...〉c is taken over the contacts c with contact force
component f ci and branch vector component `cj (i.e. the
vector joining the centroids of two contacting particles).

Figure 2 shows σzz as a function of the axial defor-
mation εh for η = 1Pa, D = 50m and different values
of Iη, and for Iη = 5 × 10−4 with different values of
η(inset). εh is the classical cumulative vertical deforma-
tion defined as ∆D/D where ∆D = D −Dt and Dt the

(a) (b)
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Vwall

FIG. 1: (Color online) Snapshots of a simulated
granular asteroid under diametrical compression for

εh = 0(a) and εh = 0.1(b). Forces chains are represented
by lines joining the centres of two touching particles.

Compressive forces in red, tensile forces in blue.
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FIG. 2: (Color online) Typical curve showing the
vertical strength as a function of the cumulative vertical
deformation for η = 1Pa, D = 50m and various values
of Iη (gravitational forces are not activated). The inset

show the same curve for Ic = 5.10−5,
η = {1, 3, 10, 30, 50}Pa for D = 190m considering

gravitational forces.

height of the wall at the time t. As a general observa-
tion, at small Iη values, the stress-strain curve is well
defined and has very small deviations around the mean.
The stress increases to a peak value at small strain (≈
2%) before relaxing to a constant plateau (plastic be-
haviour) at larger strain. Deformations are localized in
the vertical plane of the aggregate, where compressive
force chains are mainly vertical and tensile force chains
lie horizontally (see Fig. 1(b)). This ductile behavior
results from particle rearrangements, dissipation due to
friction and the short-range action of cohesive forces. As
Iη increases, fluctuations in the stress-strain responses
increase both in number and magnitude revealing a dy-
namical crisis. Thus, in the following we consider only
results for Iη < 0.035 for non-gravitational aggregates
and Iη < 0.1 for gravitational ones; the peak stress σ∗zz
is defined as an average stress around a deformation of
2%.

In the absence of gravitational forces, we naturally
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FIG. 3: (Color online) Peak stress σ∗zz normalized by
the cohesive stress η as a function of Iη (a) without

gravitational forces (i.e. Ig0 = 0), and (b) with
gravitational forces (i.e. Ig0 6= 0), in which only one or

two parameters were varied.

expect σ∗zz to scale with η since cohesion is homoge-
neously distributed in all contacts. This is well observed
in Fig. 3(a) for a wide range of values of Iη, η and D. In
contrast, when gravitational forces are active, the scal-
ing with η is not verified (see Fig. 3(b)). This is because
the effect of gravity is to increase the local stresses act-
ing on the particles, so that interparticle tensile strength
and interior stresses become additive. We can thus pos-
tulate that the mean pressure is p = η + αP0, where α
is a weight parameter that represents the stress gradient
produced by the radial variation of the gravitational field
inside an aggregate. A similar approach has been used for
the scaling of shear stresses in dense suspensions [29, 30]
and in cohesive granular flow [31], where the fluid or co-
hesive forces and grain stresses are responsible for the
effective friction angle. Accordingly, the inertial number
can be re-written as:

I ′ = γ̇d

√
ρ0

η + αP0
=

Iη√
1 + αλ−1

=
Iη.Ig0√
I2
g0 + αI2

η

(1)

Figure 4 shows σ∗zz normalized by (η+αP0) as a func-
tion of I ′, for α = 0.48. We observe the collapse of all our
simulation data with a pre-factor ' 0.9 for small I ′ val-
ues. This pre-factor (and fluctuations around the mean)

I ′

σ∗
zz

η + αP0

FIG. 4: (Color online) Peak stress σ∗zz normalized by
additive stress p = η+αP0 as a function of the modified
inertial number I ′ for the raw data (color coding as in

Fig 3). Error bars represent the standard deviation
around the peak state.

increases with I ′ to 1.3 in the range of values tested here,
evidencing the dynamical crisis resulting from the desta-
bilizing effect of particle inertia. It is thus crucial to
explore the extent at which the texture related to the
contact and force network is controlled by I ′.

At the lowest order, the contact network is charac-
terized by the coordination number Z = 2Nc/Np (aver-
age number of contacts per particle). Much more accu-
rately, the anisotropy of the contact network, evidenced
in Fig. 1(b) through a typical representation of forces, is
characterized by the probability density functions P (n),
〈fn〉(n) and 〈ft〉(n) of contact normal, mean normal
force and mean tangential force, respectively. In 3D, n is
defined by the angles (θ, φ), but given the spherical ge-
ometry of our aggregates, it may be argued that all these
distributions are independent of the azimuthal angle φ,
so in the following, we will consider only the probability
densities Pθ(θ), 〈fn〉(θ) and 〈ft〉(θ) of the radial angles θ
(see Fig.5 insets). These distributions are π-periodic and,
at the peak state, an approximation based on spherical
harmonics at leading terms (only those compatible with
the symmetries) can capture their anisotropic behaviour
[17, 32]:

Pn(θ) ' 1/(4π){1 + a∗c [3 cos2(θ − θ∗c )− 1]},
〈fn〉(θ) ' 〈fn〉{1 + a∗n[3 cos2(θ − θ∗n)− 1]},
〈ft〉(θ) ' −〈fn〉a∗t sin 2(θ − θ∗t ), (2)

where 〈fn〉 is the mean normal force, a∗c , a
∗
n, and a∗t are

anisotropy parameters, and θ∗c ' θ∗n ' θ∗t are the cor-
responding privileged directions which coincide with the
major principal stress direction θσ = π/2 in the peak
state.

The above microscopic descriptors, calculated in the
peak state, are displayed in Fig. 5 as a function of I ′.
We obtain a very clear collapse of the data points (ex-
cept maybe for a∗n), which provides factual evidence for a
unified scaling of gravitational and non-gravitational ag-
gregates with the I ′ formalism. As often observed, a∗c and
Z∗ vary oppositely, so the reduction of Z∗ with I ′ repre-
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FIG. 5: (Color online) Coordination number Z∗ and
anisotropies descriptors (a∗c , a

∗
n, a
∗
t ), as a function of I ′

(the same color coding as in Fig 3). The inset shows the
polar diagrams of the angular distributions (black dot)

together with harmonic approximations Eq.2(solid
lines) for the smallest I ′.

sents the loss of contact in the extension direction [33].
The fact that force chains are increasingly destabilised
as I ′ increases is captured by the decrease of a∗n together
with the fact that at, which reflects friction mobilisation
(〈|ft|〉/〈fn〉 ∝ at [17]), remains constant.

Now, let us remark that the stress tensor can be re-
written as an integral as follows [17, 32]:

σij = nc

∫ ∫ ∫
fα`β P`fn df d` dn, (3)

where P`fn is the joint probability density of forces and
branch vectors ` = `n. Neglecting the force-contact cor-
relations (which is numerically always verified), P can be
split as P`fn = P`(`)Pf (f)Pn(n). Integrating over f and
` and considering the normal and tangential components
of the forces, we get the following relation [15, 17]:

σij = nc`0

∫
Ω

[〈fn〉(n)ni〈ft〉(n)ti]P (n)njdn, (4)

where Ω is the angular domain of integration, and 〈`〉 =
`0 ' d (because of the weak size span [34, 35]). More-
over, it is easy to show that nc is related to both, Z and

the solid fraction ν = Npπd
3/(6V ) by, nc = 3Zν/(πd3)

[36]. We assume also that an extreme value of the nor-
mal force f∗n is (η+αP0)d2, on the basis that at the peak
state all contacts in a given direction are mobilized in
extension and have reached their limit value. In absence
of gravitational forces this means that f∗n = f0. A simi-
lar hypothesis, which provided a correct estimate of the
strength in direct shearing, was used by Richefeu, et al
[36] for wet granular media.

Thus, introducing the expressions of nc and f∗n in Eq.4
together with Eq.2, we may introduce a theoretical peak
strength for a gravitational aggregate as:

σtheoriczz

η + αP0
=
Z∗ν∗

π
(1 +

4

5
a∗ca
∗
n), (5)

where ν∗ is the solid fraction at the peak state. Note that
this equation can be reduced to the well known “first or-
der” Rumpf’s formula for P0 = 0 [37, 38]. For all our
simulated data we have ν∗ ' 0.60. The theoretical val-
ues of σtheoriczz are shown in Fig. 6 as a function of I ′,
together with those obtained directly from the stress ten-
sor. We observe that Eq. 5 approximates very well the
peak stress at low I ′ values, which explains the micro-
scopic origin of the value of ' 0.90, but underestimates
it at larger values, where impulsive forces prevail, defying
the hypothesis done on normal forces at peak state. In
the limit of small inertial numbers (i.e. for quasi-static
deformation) the important parameters are related to the
compactness (solid fraction and number of contacts) and
to a lesser extent, to the way in which the contacts and
forces are distributed inside the aggregate. Equation 5
provides a clear evidence for the role of these structural
parameters for a granular asteroid.

I ′

σ∗
zz

η + αP0

FIG. 6: (Color online) Peak stress σ∗zz normalized by
additive stress p = η + αP0 as a function of I ′ for the

raw data (stars) same as Fig. 4, together with the
prediction given by Eq. 5 (color coding as in Fig. 3).

As explained in the introduction of this article, under-
standing the physical and mechanical properties of small
planetary bodies is an essential step to understand their
formation and to plan present and future space missions.
One of the outstanding questions in Planetary Sciences
was the observation that, though most Near Earth Aster-
oids (NEAs) had a maximum spin period of ≈ 2.2 h [21],
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some of the small members of the population (<150 m)
could reach spin periods of just a few minutes. This of
course implied that these bodies had an amount of cohe-
sive strength [23, 24] that held them together beyond the
gravitational limit; however, no explanation was given to
the source of this strength. Prompted by this, [19, 39]
proposed that cohesive Van der Waals forces among the
small regolith and dust of an asteroid acted as a weak
matrix that could hold the larger boulders in place and
provide the cohesive strength necessary for the elevated
spin rates that had been observed. The specifics of this
were explored in [20] arriving to the conclusion that the
strength of this matrix was inversely proportional to the
average particle radius. This finding, or its principle, has
been later used by others [40–42] in their own research. In
spite of this, the study of the dynamics of cohesive gran-
ular asteroids has been limited to either specific asteroids
or to bodies with specific sizes and cohesive strength [43].

To this moment, and even after obtaining a sam-
ple from asteroid Itokawa, little is known about the
structural strength of small planetary bodies and this
was evidenced by the events of the Hayabusa mission
to asteroid Itokawa and the Rosseta mission to comet
67P/Churyumov-Gerasimenko. The spacecraft of the
Hayabusa mission seems to have touched the surface
without piercing it [44] which would imply a cohesive
strength of at least some tens of Pascals. These values
are in complete agreement with what would be expected
if the findings of [20] were applied to a soil formed by
mainly micron-size dust and small pebbles. Whereas the
lander of the Rosseta mission sank in the regolith of 67/P
to then bounce off an underlying more rigid layer which
would imply an almost cohesionless upper layer [45].

At this moment, the Hayabusa 2 [46] and OSIRIS-REx
[47] missions to asteroids Ryugu and Bennu respectively
are scheduled to obtain a sample from their target as-
teroids. The strength of their surfaces and interiors has
been the topic of large research efforts, but they have
been focused on the macroscopic strength of the soil dis-
joint from the global mechanics of the asteroid. The
upcoming DART [48] mission is also running into the
same question about the strength of asteroid Didymos.
Other efforts related to planetary defence and asteroid

mining can also be added to the interested parties, but
no theoretical explanation has been provided to establish
how cohesive and gravitational forces interact to support
the structural integrity of granular asteroids or how they
scale. This is what we have tried to do with this paper.

The numerical experiments we have carried out do not
reflect events that asteroids could undergo; rotational fis-
sion, collisions, gravitational tides are not represented
by them. However, they allowed us to directly measure
characteristics of a self-gravitating aggregate that are in-
dependent of the measuring technique. We used an ide-
alised, simpler system that served as a proxy for an aster-
oid and this is the strength of this work. Given that now
we have a theoretical framework, we can explore ways
to make our simulations more realistic and applicable to
other scenarios. This will be the focus of future research.

To summarize, in this Letter we have defined a con-
sistent framework for the analysis of the behaviour of
self-gravitating aggregates, which we used as a proxy
for granular asteroids, by extending the I-rheology
paradigm. Our extensive numerical simulations provide
clear evidence that both macro and microstructure are
well captured through a modified inertial number incor-
porating inter-particle cohesive and gravitational forces.
A theoretical model, relating the peak stress to granu-
lar texture at sufficiently small I ′ values, is introduced
and shown to be in good agreement with measured data.
The present study sheds some new light on a vast and
substantial scientific domain given the multitude of open
questions related to granular asteroids. The above frame-
work may now be used and extended to analyse much
more “complex” self-gravitating systems by incorporat-
ing a wide range of particle and asteroid sizes and shapes,
and various sources of cohesion (which are generally cou-
pled with particle size [19]) so that they can better repre-
sent real asteroids. This will also allow us to explore vari-
ous dynamical scenarios, such as the rotational evolution
of granular asteroids and comets, their reshaping due to
planetary tides, or even their exploration, exploitation,
redirection or destruction for planetary defence.

Research at the University of Colorado was supported
by a grant from NASA’s SSERVI program.
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[31] N. Berger, E. Azéma, J.-F. Douce, and F. Radjai, Euro-

pean physical Letters 112 (2015).
[32] H. Ouadfel and L. Rothenburg, Mechanics of

Materials 33, 201 (2001), ISSN 01676636, URL
http://linkinghub.elsevier.com/retrieve/pii/

S0167663600000570.
[33] F. Radjai, J.-Y. Delenne, E. Azéma, and S. Roux, Gran-
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