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Human Manual Control Precision Depends on Vestibular Sensory Precision 1 
and Gravitational Magnitude 2 

Running title: Manual Control Depends on Vestibular Precision and Gravity 3 
 4 

Abstract 5 

Precise motion control is critical to human survival on Earth and in space. Motion 6 

sensation is inherently imprecise, and the functional implications of this 7 

imprecision are not well understood. We studied a “vestibular” manual control 8 

task in which subjects attempted to keep themselves upright using a rotational 9 

hand controller (i.e., joystick) to null out pseudo-random, roll tilt motion 10 

disturbances of their chair in the dark. Objective 1: Study the relationship 11 

between intersubject differences in manual control performance and sensory 12 

precision, determined by measuring vestibular perceptual thresholds. Objective 13 

2: Examine the influence of altered gravity on manual control performance. 14 

Subjects performed the manual control task while supine during short-radius 15 

centrifugation, with roll tilts occurring relative to centripetal accelerations of 0.5, 16 

1.0 and 1.33 GC (1 GC=9.81 m/s2). Roll-tilt vestibular precision was quantified 17 

using roll-tilt vestibular direction-recognition perceptual thresholds, the minimum 18 

movement that one can reliably distinguish as leftward vs. rightward. A significant 19 

intersubject correlation was found between manual control performance (defined 20 

as the standard deviation of chair tilt) and thresholds, consistent with sensory 21 

imprecision negatively affecting functional precision. Furthermore, compared to 22 

1.0 GC manual control was more precise in 1.33 GC (-18.3%, p=0.005) and less 23 

precise in 0.5 GC (+39.6%, p<0.001). The decrement in manual control 24 

performance observed in 0.5 GC and in subjects with high thresholds suggest 25 
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potential risk factors for piloting and locomotion, both on Earth and during human 26 

exploration missions to the Moon (0.16 G) and Mars (0.38 G).  27 

New & Noteworthy 28 

The functional implications of imprecise motion sensation are not well 29 

understood. We found a significant correlation between subjects’ vestibular 30 

perceptual thresholds and performance in a manual control task (using a joystick 31 

to keep their chair upright), consistent with sensory imprecision negatively 32 

affecting functional precision. Furthermore, using an altered-gravity centrifuge 33 

configuration, we found that manual control precision was improved in 34 

“hypergravity” and degraded in “hypogravity”. These results have potential 35 

relevance for postural control, aviation, and spaceflight.  36 

  37 
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Introduction 38 

Precise and accurate motion control is important for survival, such as in older 39 

individual climbing stairs in the dark or pilots landing an aircraft or spacecraft. 40 

Sensorimotor responses and perception are inherently imprecise because of 41 

noise in neural systems (Faisal et al. 2008). Imprecision includes trial-by-trial and 42 

temporal variations in sensations, as opposed to overall systematic errors such 43 

as bias. In this study, we aimed to focus on imprecision arising in the vestibular 44 

system. The vestibular system includes the semicircular canals, which sense 45 

angular rotation, and the otolith organs, which sense the combination of inertial 46 

acceleration and gravity. While other sources of sensory information play a role 47 

in motion sensation in the dark (Mittelstaedt 1996; Valko et al. 2012), the 48 

predominant role of the vestibular organs has been demonstrated for whole-body 49 

motion perception with the head held so that the neck is straight (Valko et al. 50 

2012). Thus, we use the term “vestibular,” while recognizing that our self-motion 51 

perception and control tasks involve other sensory contributors to some degree. 52 

A number of studies have measured the precision of vestibular responses at 53 

varying levels (i.e. neuronal, perceptual, motor). The precision of afferent signals 54 

has been characterized by measuring variability in firing rate in squirrel 55 

(Fernandez and Goldberg 1971) and macaque monkeys (Jamali et al. 2009; 56 

Sadeghi et al. 2007). Perceptual precision has been characterized by measuring 57 

inter-trial variability in subjective visual vertical tasks in humans (De Vrijer et al. 58 

2009; Tarnutzer et al. 2009). On the other hand, vestibular perceptual thresholds 59 

in humans (Benson et al. 1989; Benson et al. 1986; Grabherr et al. 2008; Valko 60 
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et al. 2012) have been determined by repeatedly exposing subjects to small 61 

motions to the left or right in the dark, and asking them to report their perceived 62 

motion direction. Using signal detection theory, we can relate the thresholds 63 

determined in these studies to the imprecision or noise associated with the 64 

underlying sensory signal (Green and Swets 1966; Merfeld 2011). Motor 65 

variability in reflexive eye movements (vestibulo-ocular reflex; VOR) evoked by 66 

yaw rotation in rhesus monkeys (Haburcakova et al. 2012) and humans (Nouri 67 

and Karmali 2018; Seemungal et al. 2004) are similar to human perceptual yaw 68 

rotation thresholds suggesting a common, sensory source of noise. Finally, the 69 

potential impact of vestibular imprecision on VOR and perceptual dynamics has 70 

been examined using computational models (Borah et al. 1988; Karmali and 71 

Merfeld 2012; Karmali et al. 2018; Laurens and Angelaki 2017; Laurens and 72 

Droulez 2007; MacNeilage et al. 2008; Paulin et al. 1989). 73 

Vestibular perceptual thresholds vary dramatically across individuals, even 74 

amongst normal, healthy individuals that could pass a modified Romberg balance 75 

test (Bermudez Rey et al. 2016). It is unclear what functional implications may 76 

arise from this intersubject variability in sensory precision. To more directly 77 

address this question, we studied whether vestibular precision, measured using 78 

vestibular perceptual thresholds, underlies performance in a functional task. 79 

Specifically, we determined whether roll-tilt vestibular perceptual thresholds 80 

predict performance in a manual control task (Clark et al. 2015a; Merfeld 1996; 81 

Panic et al. 2015; Riccio et al. 1992; Vimal et al. 2016). We hypothesized that 82 

manual control performance would be correlated with thresholds across subjects. 83 
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The potential relevance and application of these results to our understanding of 84 

postural control and piloting are detailed in the Discussion.  85 

Furthermore, we examined whether manual control performance would change 86 

in an altered gravity environment. Previous studies have done so in a 87 

hypergravity environment (i.e., >1 G) using a long-arm centrifuge (Clark et al. 88 

2015a), and in astronauts after returning from microgravity (Merfeld 1996). Since 89 

no study has examined the effects of hypogravity (i.e. between 0 and 1 G) on 90 

manual control, we studied manual control in hypergravity and hypogravity 91 

analogs, in which subjects perform the manual control task relative to centripetal 92 

acceleration during short-arm centrifugation (details in methods).  There is 93 

evidence that orientation perception depends on the “shear component” of the 94 

forces acting on the otolith organ (Bortolami et al. 2006; Clark et al. 2015c; 95 

Schöne 1964; Young 1982), although with a non-linear relationship (Bortolami et 96 

al. 2006). Thus, we hypothesized that the sensory information available to the 97 

subject to perform the manual control task would be more salient in the 98 

hypergravity analog, resulting in more precise manual control, and less salient in 99 

the hypogravity analog, resulting in less precise manual control. The potential 100 

application of these results to piloting and locomotion in hypogravity 101 

environments like the Moon and Mars are detailed in the Discussion.  102 
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 103 

Methods  104 

Overview 105 

Eleven subjects were studied by measuring their thresholds and manual control 106 

performance. For the remainder of the manuscript, we will use the term 107 

“threshold” to refer to roll-tilt vestibular perceptual direction-recognition thresholds 108 

unless otherwise stated. Thresholds were assayed in roll tilt with subjects upright 109 

relative to gravity and no centrifugation. Manual control was studied during 110 

centrifugation in the presence of different centripetal accelerations (GC, where 111 

1 GC=9.81 m/s/s), in two different sub-experiments (Table 1). Seven subjects 112 

(N=7, 26.6±6.3 years) participated in sub-experiment 1, which consisted of a 113 

manual control task performed with 1.0 GC and 1.33 GC centripetal acceleration. 114 

Ten subjects (N=10, 27.9± 6.0 years) participated in sub-experiment 2, which 115 

consisted of the same manual control task with 1.0 GC and 0.5 GC centripetal 116 

acceleration. Six subjects overlapped between the two groups, yielding a total of 117 

11 subjects. In the threshold task, subjects were asked to report their perception 118 

of small tilts either to the left or right, and thresholds were computed by fitting a 119 

cumulative Gaussian psychometric curve to binary responses. In the manual 120 

control task, subjects were asked to use a joystick to keep their chair aligned in 121 

roll tilt with their perception of down while the chair tilt was randomly perturbed. 122 

Performance was determined by calculating the variability of the chair position.   123 

 124 
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 125 

Sub-experiment Experimental protocol 

Sub-experiment 1 
1.0 GC & 1.33 GC 
7 Subjects 

1.0 GC practice 
(218 °/s) 
3 trials 

1.0 GC test 
(218 °/s) 
3 trials 

1.33 GC practice 
(254 °/s) 
3 trials 

1.33 GC test 
(254 °/s) 
3 trials 

Sub-experiment 2 
1.0 GC & 0.5 GC  
10 Subjects  
(6 overlapping subjects, 
who performed this sub-
experiment second)  

1.0 GC practice 
(218 °/s) 
9 trials 

1.0 GC test 
(218 °/s) 
3 trials 

0.5 GC practice 
(154 °/s) 
3 trials 

0.5 GC test 
(154 °/s) 
3 trials 

Table 1: Manual control testing order for the two sub-experiments. 126 

 127 

Subjects 128 

All subjects performed the experiment after giving written informed consent and 129 

all experiments were approved by the local human studies committees at 130 

Massachusetts Eye and Ear Infirmary (MEEI) and Massachusetts Institute of 131 

Technology (MIT). Subjects completed a three-tier screening process before 132 

recruitment. The first tier was a secure web-based Subject Health Screening 133 

questionnaire on Research Electronic Data Capture (REDCap) (Harris 2012). 134 

Based on this questionnaire we included subjects aged 18 to 45 who were able 135 

to fit comfortably in the motion devices and were in good health. Exclusion 136 

criteria included cardiovascular disease, severe diabetes, respiratory condition 137 

(including asthma and emphysema), neurologic disorders, prostatic hypertrophy, 138 

gastrointestinal disorders, treatment for cancer, severe neck and spinal injuries 139 

and pregnant women. Second, an MEEI physician reviewed subjects’ medical 140 

history during an office visit and determined fitness to undergo centrifugation. No 141 

subjects were screened out during either of these two phases. Finally, subjects 142 
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underwent a clinical vestibular screening that consisted of angular VOR 143 

measurement during sinusoidal vertical-axis rotation in the dark, 144 

electronystagmogram (ENG) without calorics, and visual-vestibular interaction 145 

testing in which subjects viewed a chair-fixed target during vertical-axis rotation. 146 

Clinical vestibular screening exclusion factors included evidence of asymmetric 147 

VOR responses during rotational testing and age-adjusted VOR time constant 148 

<12.6 s. Here, three subjects were excluded after a clinician (not associated with 149 

the study) determined that they had signs of abnormal vestibular function, 150 

specifically: 1) an abnormal rightward VOR bias; 2) a reduced VOR gain and 151 

shortened time constant; 3) a borderline reduction in VOR time constant. 152 

Subjects that met the inclusion criteria participated in one or both of the sub-153 

experiments, based on their availability.  154 

 155 

Artificial Gravity Environment 156 

The experiments used the Eccentric Rotator (Neuro Kinetics, Inc., Pittsburgh, 157 

USA), a multi-actuator motion device. The subject was supine in the Earth 158 

horizontal plane on a chair mounted on the device. The primary centrifuge spin 159 

axis rotated clockwise (as seen from above) about an Earth-vertical axis at a 160 

constant velocity to create a centripetal acceleration. Subjects were positioned 161 

with the ear 0.68 m from the centrifuge spin axis with feet pointing outwards. Spin 162 

rate was determined for each of the GC levels at the head (154°/s for 0.5 GC, 163 

218°/s for 1.0 GC, 254°/s for 1.33 GC). Subjects spent 60 seconds spinning at the 164 

specified constant velocity before performing a manual control task. On top of 165 
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this rotating platform, the roll actuator rotated the subject about an Earth-vertical, 166 

head-centered axis about which the manual control task was performed (roll tilt in 167 

Figure 1). The subject was instructed to keep his or her body aligned with the 168 

centripetal acceleration vector, while being tilted leftward and rightward with 169 

respect to the subject’s frame of reference (Figure 1). 170 

 171 

Figure 1.  A diagram of the experimental setup, with the chair positioned such 172 
that the subject’s head is 0.68 m from the center of rotation, the joystick is 173 

mounted in front of the subject’s chest, and the roll-tilt axis centered at the level 174 
of the subject’s vestibular system.  175 

 176 

We emphasize that for this centrifuge, the subject always rotated in the horizontal 177 

plane, and thus there were no dynamic cues resulting from movement relative to 178 

Earth gravity. Specifically, both the roll tilt axis and centrifugation axis were 179 

parallel to gravity. The subject’s longitudinal (z) axis was perpendicular to both. 180 

Thus, despite the total gravito-inertial acceleration being >1G, the only useful tilt 181 

displacement cue was the angle between the centripetal acceleration vector and 182 

the subject’s body longitudinal axis. One of the concerns with head rotations 183 

within a centrifuge environment is the Coriolis cross-coupled illusion (i.e., an 184 

illusory tumbling sensation that occurs when “out of plane" head tilts are made in 185 
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the spinning environment; Guedry and Montague (1961); Melvill Jones (1970)). 186 

However, since the head roll tilts/rotations occurred about an axis parallel to the 187 

centrifuge spin axis the illusion was not provoked. Additional considerations 188 

relevant to this configuration are detailed in the Discussion. 189 

 190 

Manual Control Procedure 191 

To reduce non-vestibular motion cues, subjects were tested in complete 192 

darkness and wore long pants and long sleeves. Noise-canceling headphones 193 

played white noise during active roll tilt/rotation motions to mask auditory cues 194 

regarding device motion. Subjects also were provided with a microphone and 195 

were secured with a five-point harness. Foam pads were used for comfort and to 196 

evenly distribute haptic sensory cues. The subjects’ heads were immobilized by a 197 

head restraint. It consisted of two aluminum plates attached to a ratchet system 198 

that allowed the plates to be moved so that the subject’s head was firmly held. 199 

Thin (~1 cm), high density foam was attached to the inside of the plates for 200 

subject comfort. Subjects were asked to report when the head was held firmly, 201 

but comfortably.  202 

Subjects were instructed: “the chair will be tilting left and right randomly, and your 203 

goal will be to use the joystick to null out the motion. This means keeping the 204 

chair in its current configuration, not tilted to either side, so that it remains aligned 205 

with the rotation arm." The joystick was a 30-cm-long rod that rotated about its 206 

midpoint and was located approximately 35 cm from the midriff of the seated 207 

subject. Subjects held the joystick at its central rotation axis such that no large 208 
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hand or arm displacements were required to make control inputs. The joystick 209 

was spring loaded such that it tended to return to alignment with the subject’s 210 

body longitudinal axis, and increased resistance proportional to deflection. The 211 

joystick could only be rotated in roll and there were mechanical stops to limit 212 

deflections to ±45°/s. The subject was asked to use their dominant hand to hold 213 

the joystick (all subjects were right handed). The joystick deflection was recorded 214 

(Posital Fraba IXARC absolute optical rotary encoder) and was fed back into the 215 

roll tilt command (Figure 2B). The joystick control dynamics were rate-control-216 

attitude-hold, such that the amount of joystick deflection was proportional to the 217 

commanded roll rate of the cab (0.44°/s of roll rate was commanded per degree 218 

of joystick deflection with a maximum commanded roll rate of 20°/s). Without any 219 

disturbance, if the joystick was not deflected from its center position, the chair 220 

would remain at its current roll orientation (sometimes referred to as attitude 221 

hold). These first-order dynamics (i.e., where the subject controls roll rate to null 222 

out roll angle) are typically easy to learn and can be mastered by subjects 223 

without relevant experience (i.e., non-pilots) (McRuer and Weir 1969). Software 224 

and actuation delays were less than human sensorimotor delays; the update rate 225 

for the feedback was 600 Hz and the latency was 10-18 ms. Subjects familiarized 226 

themselves with the manual control task without centrifugation in the light before 227 

centrifugation began.  228 
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 229 

Figure 2. A: The pseudo-random sum-of-sines roll-tilt disturbance profile (gray) 230 

and centrifuge chair position (black) for one trial of one subject. B: Subject 231 
joystick deflection angle used for controlling chair orientation in a rate-control-232 

attitude-mode. The dynamics of subject inputs to the joystick were similar to 233 
those recently reported (Vimal et al., 2016). 234 

 235 

As shown in Figure 2, the roll-tilt disturbance was a pseudo-random zero-mean 236 

sum-of-sines made from 12 independent sinusoidal profiles, with similar 237 

characteristics to the motion profiles used in other studies (Clark et al. 2015a; 238 

Merfeld 1996). This profile was used for all trials and all conditions. The specific 239 

frequencies, phases, and amplitudes are shown in Table 2. A full trial was 120 s, 240 

with 5 s ramp-up and ramp-down phases at the beginning and end of the trial. 241 

The trial duration was selected to allow sufficient time to quantify performance 242 

yet short enough to maintain subject focus. The chair roll-tilt motion was limited 243 
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to ±15°. At these tilt limits the chair would not continue to a larger angle, but was 244 

free to move to a smaller angle. Potential confounds and strategic changes due 245 

to this limit are considered in the Results and the Discussion.   246 

Table 2. Frequencies, tilt amplitudes, and phases of the pseudo-random sum-of-247 
sines used to create the roll-tilt disturbance motion profile. 248 

Number Frequency (Hz) Tilt amplitude (°) Phase (°) 

1 0.018 2.65 112.5 

2 0.027 2.65 75.7 
3 0.046 2.65 65.0 
4 0.064 2.65 127.1 

5 0.100 2.65 44.9 
6 0.155 2.65 170.1 
7 0.209 0.26 192.7 

8 0.264 0.26 152.7 
9 0.336 0.26 25.7 

10 0.427 0.26 78.5 

11 0.536 0.26 24.7 
12 0.664 0.26 116.0 

 249 

 250 

Table 1 shows the experimental protocol for the two manual control sub-251 

experiments. Subjects performed three practice trials to get accustomed to the 252 

task in each GC condition (except in 1.0 GC in sub-experiment 1, which had three 253 

practice trials because our protocol was still being refined). Analyses presented 254 

in the Results showed that there was no evidence of order or practice effects. 255 

After practice trials, subjects performed three manual control test trials. Subjects 256 

always performed 1.0 GC trials first. The centrifuge was accelerated over 120 s to 257 

the appropriate spin rate corresponding to the desired GC level. Then after a 258 

period of at least 60 s of acclimatization, subjects performed practice and test 259 

trials as shown in Table 1. Between each trial, the subject had a 30 s break 260 
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during which the chair was realigned with the centrifuge rotation arm. The 261 

centrifuge was then spun down to a stop over 60 s. Subjects had a 30 minute 262 

break between conditions to prevent fatigue. Sub-experiment 1 was completed 263 

before sub-experiment 2 began and thus subjects who participated in both 264 

always did sub-experiment 1 first.  265 

 266 

Roll-tilt Vestibular Perceptual Direction-Recognition Thresholds 267 

Thresholds were estimated using identical methods to those we have recently 268 

used (Karmali et al. 2014; Valko et al. 2012), which are similar to those used by 269 

other groups (Benson et al. 1989; Benson et al. 1986; Butler et al. 2010; Crane 270 

2012; Soyka et al. 2011). Subjects were seated upright on a Stewart type six 271 

degrees-of-freedom motion platform (MOOG CSA Engineering, Mountain View 272 

CA, Model 6DOF2000E). Thresholds were measured relative to Earth gravity 273 

(i.e., there was no centrifugation). As in the manual control tests, non-vestibular 274 

cues were reduced by testing in the dark, playing white noise in headphones, 275 

and having subjects wear long sleeves and pants. While we call these 276 

“vestibular" thresholds, we acknowledge that proprioceptive or somatosensory 277 

cues may have some contribution. However, we note that subjects with bilateral 278 

vestibular ablation have thresholds 2-4x higher than normal subjects for the 279 

threshold task used, suggesting the predominance of vestibular cues (Valko et al. 280 

2012). 281 

Test sessions consisted of 75-100 trials. Each trial was a leftward or rightward 282 

0.2 Hz (5 second motion duration) single cycle sinusoid of acceleration (Figure 3) 283 
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about the head-centered roll tilt axis (Lim et al. 2017). We selected roll-tilt at 0.2 284 

Hz because thresholds at this frequency depend on both otolith and semicircular 285 

canal contributions and because our manual control task likely relies upon both 286 

otolith and canal cues, based on the disturbance frequencies applied and subject 287 

reports about the strategy used. The brain performs integration of the two cues 288 

(Lim et al. 2017) to precisely distinguish between leftward and rightward motion, 289 

which is the most analogous to the integration required to perform our manual 290 

control task that also occurs in the roll-tilt plane. Future studies might look at the 291 

relationship between manual control performance and otolith and canal 292 

thresholds separately to determine the relative contributions of each cue, and 293 

also investigate other tests such as subjective visual vertical.  294 

 295 

Figure 3. Characterization of an example motion for a 0.2 Hz roll-tilt stimulus in 296 
the threshold task. Here, A is acceleration, f is frequency, and T is period. 297 

 298 
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Subjects heard white noise to indicate that they were about to move, and which 299 

continued throughout the motion profile. The end of the white noise indicated the 300 

end of motion and subjects were asked to report their perceived direction of 301 

motion by pressing a left or a right button, and to make their best guess if unsure. 302 

Subjects were tilted back to upright after they reported their perceived motion 303 

direction. A series of practice trials were given to the subject beforehand to 304 

familiarize them with the motions and task. 305 

The amplitudes of the motions were selected by a three-down, one-up adaptive 306 

staircase (Chaudhuri and Merfeld 2013; Leek 2001; Taylor and Creelman 1967), 307 

where stimulus magnitude would decrease after three consecutive correct 308 

responses and would increase after one incorrect response. Using this adaptive 309 

sampling procedure with 75-100 trials yields reasonably low measurement error 310 

for the threshold parameter (i.e., with 100 trials the coefficient of variation is 311 

18.5%; Karmali et al. (2016)).  312 

 313 

Data Analysis 314 

Thresholds were determined using a cumulative Gaussian distribution 315 

psychometric curve fit relating stimulus amplitude to perceived motion direction 316 

(Chaudhuri et al. 2013; McCullagh 1989). The cumulative Gaussian was selected 317 

based on use in previous work (Butler et al. 2010; MacNeilage et al. 2010; Roditi 318 

and Crane 2012; Soyka et al. 2011; Valko et al. 2012) and is defined by standard 319 

deviation (𝜎) and mean (𝜇). The mean of this curve fit represents the perceptual 320 

bias, the point at which a subject is equally likely to perceive a motion as leftward 321 
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or rightward. One standard deviation of the distribution was defined as the 322 

subject’s threshold and is related to imprecision, or sensory noise, according to 323 

signal detection theory (Green and Swets 1966; Merfeld 2011). At this level, 324 

subjects will correctly identify 84% of stimuli. Psychometric curve fits were 325 

performed using the brglmfit.m function (Chaudhuri et al. 2013) in Matlab 2014a 326 

(TheMathworks, MA, USA) which includes a generalized linear model and probit 327 

link function with improved parameter estimation for the case of serially-328 

dependent data points (Kaernbach 2001; Leek 2001; Leek et al. 1992; Treutwein 329 

and Strasburger 1999).To characterize manual control performance, we defined 330 

the Position Variability Metric (PVM) as the standard deviation of the chair tilt 331 

angle over time, which indicated the precision of nulling. We excluded the first 332 

and last 5 s of each trial during which the disturbance was ramping up or down, 333 

leaving the middle 110 s.  All statistics were performed using the middle 110 s 334 

and the full trial and there was no substantial difference in the results. The metric 335 

was chosen because it directly corresponds to the definition of an 84% threshold, 336 

which is related by signal detection theory to the standard deviation of sensory 337 

noise (Green and Swets 1966). Specifically, both PVM and thresholds are 338 

measures of precision. Note that these measures of precision are distinct from 339 

measures of accuracy (e.g. how close, on average, the chair is to upright). PVM 340 

was averaged across the three test trials in each GC condition.  341 

All means, standard deviations, and tests of statistical significance were 342 

performed after taking the logarithm of the threshold and PVM. Population 343 

studies have shown that human vestibular thresholds follow a log-normal 344 
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distribution (Benson et al. 1989; Benson et al. 1986; Bermudez Rey et al. 2016). 345 

Since our hypothesis is that sensory noise is a critical determining factor of 346 

manual control PVM (also the standard deviation of performance), we expected 347 

PVM to be log-normally distributed as well. Statistical testing confirmed that the 348 

distributions of PVMs across subjects were not significantly different from a 349 

lognormal distribution (Kolmogorov-Smirnov test, p=0.75 for 1.0 GC, p=0.996 for 350 

1.33 GC and p=0.993 for 0.5 GC). Standard parametric comparisons (linear 351 

regression and paired t-test) were used to compare subjects’ thresholds and 352 

PVM along with mean PVM at different GC levels. Statistical tests were 353 

performed using the Statistics and Machine Learning Toolbox in Matlab 2016b 354 

(The Mathworks, MA, USA). 355 

Most analyses were done by fitting a linear mixed-effects model with threshold 356 

(log-transformed) as a continuous predictor, subject as a random effect, GC-level 357 

as a categorical predictor, and PVM (log-transformed) as the dependent variable. 358 

GC was a categorical predictor as not to impose an assumption of linearity 359 

between GC and PVM. For subjects who performed sub-experiments 1 and 2, the 360 

PVM for 1.0 GC was calculated as the average across the two sessions. 361 

Results 362 

We found large intersubject differences in both thresholds and manual control 363 

performance. For example, across both sub-experiments, thresholds (i.e., roll-tilt 364 

vestibular perceptual direction-recognition thresholds) ranged from 0.59° to 2.11° 365 

for the 11 subjects. It is common to report thresholds in terms of peak velocity, in 366 
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addition to net displacement. The range of thresholds presented as peak 367 

velocities is 0.24°/s to 0.84°/s for our 11 subjects. PVM had similarly large 368 

intersubject variation, ranging from 1.27° to 5.05° in 1.0 GC. For reference, the 369 

PVM of the chair motion without any joystick input was 4.58°. 370 

Figure 4 presents the PVM as a function of threshold for all GC levels from both 371 

sub-experiments. The following analyses were performed using the mixed-effect 372 

model described in Methods. We found a significant, positive, linear influence of 373 

threshold on PVM (coefficient: 0.81 log units of degrees of PVM per log unit of 374 

threshold in degrees; t(24)=5.66, p<0.001), which is illustrated by the fit line. The 375 

coefficient of determination between log(threshold) and log(PVM) for 1.0 GC is 376 

R2=0.59 (p=0.006). In addition, relative to the 1.0 GC condition, we found 377 

significant effects of 0.5 GC (coefficient: 0.12 log units of degrees of PVM; 378 

t(24)=3.70, p=0.001) and 1.33 GC (coefficient: -0.11 log units of degrees of PVM; 379 

t(24)=-3.2, p=0.004). Thus, individuals with higher thresholds tended to have 380 

higher PVM (worse nulling performance) and PVM increased in 0.5 GC and 381 

decreased in 1.33 GC.  382 
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 383 

Figure 4. Manual control PVM as a function of threshold for each subject in 0.5 384 

GC (blue), 1.0 GC (black), and 1.33 GC (orange). Individual subjects are displayed 385 
with unique symbols. 386 

 387 

 388 

To study how the gravity environment may impact manual control performance, 389 

the PVM in 1.0 GC was compared to the PVM in 1.33 GC for 7 subjects in sub-390 

experiment 1 (Figure 5A). Each individual subject (grey lines) is represented with 391 

a different symbol, corresponding to the symbols in Figure 4. Averaged across all 392 

subjects (black line), the mean PVM in 1.33 GC was 18.3% lower than in 1.0 GC, 393 

which was statistically significant (paired t-test, t(6)=-4.4, p=0.005).  394 

Figure 5B compares the PVM in 1.0 GC to the PVM in 0.5 GC for 10 subjects in 395 

sub-experiment 2. Each individual subject (grey lines) is represented with a 396 
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different symbol, corresponding to the symbols in Figure 4. Averaged across all 397 

subjects (black line), the PVM in 0.5 GC is 39.6% higher than in 1.0 GC. This 398 

corresponds to subjects having significantly worse performance in 0.5 GC (paired 399 

t-test, t(9)=6.8, p<0.001).  400 
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 401 

Figure 5. A: Manual control PVM in 1.0 GC and 1.33 GC (sub-experiment 1). 402 

Individual subjects are displayed in gray with unique symbols corresponding to 403 
Figure 4. The intersubject mean is plotted in black with error bars indicating 95% 404 
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confidence intervals. B: Manual control PVM in 1.0 GC and 0.5 GC (sub-405 
experiment 2). 406 

 407 

 408 

We examined whether measurements were influenced by order of testing, by 409 

prior experience for subjects who participated in both sub-experiments, and by 410 

task learning or practice effects. For subjects who did both sub-experiments, we 411 

compared their 1.0 GC PVMs between the two sessions and found no evidence 412 

that it changed from the first session to the second session (paired t-test, t(5)=-413 

0.2, p=0.86), suggesting no effect of the prior experience. We also compared the 414 

PVMs for the second session of 1.0 GC with the PVMs for the subjects who were 415 

only tested once in 1.0 GC, and found no significant difference between the two 416 

(unpaired t-test, t(9)=-0.7, p=0.52). Comparing PVMs in 0.5 GC between subjects 417 

who did and did not previously do the 1.33 GC condition, we found no significant 418 

difference between the two (unpaired t-test, t(8)=-0.2, p=0.83). To examine 419 

whether there were any residual learning or training effects present during the 420 

test trials, we looked for downward or upward trends in PVM across the three test 421 

trials. Specifically, we performed a repeated measures ANOVA, with the trial 422 

numbers as the only factor. We found there to be no significant effect of trial 423 

number in 1.33 GC (F(2,12)=2.09, p=0.17), in 0.5 GC (F(2,18)=0.29, p=0.75), nor 424 

in 1.0 GC before either condition (F(2,32)=0.15, p=0.87). These results together 425 

suggest that additional sources of measurement error or bias due to order or 426 

training effects were minimal.  427 
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We found that, on average, subjects were at the physical tilt limits of the device 428 

for 1.0% of the time (1.0% for 1.0 GC, 1.7% for 0.5 GC, 0.1% for 1.33 GC), and 10 429 

of 11 subjects reached the limits at least once during testing trials. We conducted 430 

a sensitivity analysis to determine if this affected the results, by repeating the 431 

mixed-effect model analysis after excluding the chair position during the time that 432 

the chair was at the tilt limits. We found that the coefficient between PVM and 433 

threshold was 0.81 log units of degrees of PVM per log unit of threshold in 434 

degrees (t(24)=5.62 p<0.001). In addition, relative to the 1.0 GC condition, we 435 

found significant effects of 0.5 GC (coefficient: 0.11 log units of degrees of PVM; 436 

t(24)=3.64, p=0.001) and 1.33 GC (coefficient: -0.11 log units of degrees of PVM; 437 

t(24)=-3.17, p=0.004). Thus, there is no evidence that our conclusions arise from 438 

an artifact due to subjects reaching the tilt limit.    439 

Discussion 440 

In this study, we investigated the relationship between vestibular perceptual 441 

thresholds and manual control performance. Manual control performance was 442 

tested in different artificial gravity environments created by short-arm 443 

centrifugation, specifically in 1.0 GC, 0.5 GC, and 1.33 GC, whereas thresholds 444 

were measured with the subject upright relative to Earth’s gravity. We found that: 445 

1) There was a strong, statistically significant, linear correlation between an 446 

individual’s log of roll-tilt 0.2 Hz threshold and the log of manual control PVM; 2) 447 

manual control performance was consistently and significantly worse in 0.5 GC 448 

than 1.0 GC; and 3) manual control performance was significantly improved in 449 

1.33 GC compared to 1.0 GC performance. We note that our measurements were 450 
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made with less than 15 minutes of exposure to an altered gravity environment, 451 

and thus they do not aim to characterize anatomical (Boyle et al. 2010) and 452 

behavioral (Paloski et al. 2008) adaptations that have been demonstrated during 453 

longer-term exposure to altered gravity environments.  454 

Vestibular precision affects manual control performance 455 

The correlation between manual control performance and threshold suggests 456 

that vestibular precision determined performance. Since thresholds reflect 457 

random neural activity (i.e. no functional information conveyed) (Green and 458 

Swets 1966; Merfeld 2011) that originate at every stage of neural processing 459 

(Faisal et al. 2008), it is important to examine which sources of neural 460 

imprecision (e.g., sensory, central, motor) contribute to behavioral imprecision. 461 

Our results are aligned with other work showing that sensory noise is an 462 

important contributor to perceptual and motor imprecision (Haburcakova et al. 463 

2012; Liston and Krauzlis 2003; Medina and Lisberger 2007; Nouri and Karmali 464 

2018; Osborne et al. 2005; Rasche and Gegenfurtner 2009; Schoppik et al. 465 

2008; Stone and Krauzlis 2003). Our results suggest that manual control 466 

imprecision occurs because of noise originating in the sensory periphery or early 467 

in central processing, rather than being dominated by other sources, such as 468 

motor noise; of course we cannot rule out a smaller contribution from these 469 

sources. Emphasizing the relationship between our measurements, we 470 

calculated PVM as the standard deviation of manual control system response, 471 

and similarly, thresholds reflect the standard deviation of sensory noise. These 472 

noise measures are also equivalent to those used in stochastic models of spatial 473 
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orientation (Borah et al. 1988; Karmali and Merfeld 2012; Karmali et al. 2018; 474 

Laurens and Angelaki 2017) and postural control (Assländer and Peterka 2016; 475 

Goodworth et al. 2018; van der Kooij et al. 1999; van der Kooij et al. 2001; van 476 

der Kooij and Peterka 2011), and future work could extend these models to 477 

stochastic closed-loop manual control tasks. Demonstrating the broader utility of 478 

precision measures, we also note that roll tilt and linear translation vestibular 479 

perceptual thresholds have been shown to be sensitive to disorders such as 480 

vestibular migraine and Meniere’s disease (Bremova et al. 2016; Lewis et al. 481 

2011). 482 

Although our sample consisted of only 11 people, statistical testing found that the 483 

results were unlikely to have arisen by chance, providing confidence in the 484 

conclusions. The moderate sample size was constrained by the expense of 485 

performing these experiments (including device utilization fees and roughly 10 486 

person-hours of operator time per subject per condition). The subject group was 487 

also relatively homogenous and included mostly young individuals who passed 488 

the screening. While we do not claim that our study generalizes to older 489 

individuals, it does indicate the need for future studies in light of two recent 490 

findings. First, we found that both age and vestibular perceptual thresholds make 491 

substantial contributions to balance test performance (Karmali et al. 2017). 492 

Second, roll tilt thresholds were 2.7x higher for a group of subjects 60-80 years 493 

vs. 30-39 years (Bermudez Rey et al. 2016).  494 

There are factors that likely affect PVM other than sensory precision. These 495 

include the time it takes to sense tilt, the error and delay in mapping the 496 
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sensation to a motor control action, the time it takes to perform that motor action, 497 

the time for the chair to move, and the difference between the frequency 498 

dynamics of the operator and the disturbance. Time delays allow errors to 499 

propagate throughout the period after initial stimulation.  500 

All motions used in this study were about a head-centered roll tilt axis. Based on 501 

our results, we hypothesize that our results would generalize to other axes; e.g., 502 

there would be a correlation between translation thresholds and translation 503 

manual control.  504 

 505 

Manual control in altered gravity environments  506 

We now discuss our findings in relation to other published studies on manual 507 

control in altered gravity environments. Clark et al. (2015a) studied manual 508 

control performance in a hypergravity environment created by a long-arm 509 

centrifuge, and found an initial performance decrement proportional to gravity 510 

level that improved within a few minutes. As in our study, subjects controlled roll 511 

tilt motion using a joystick in the presence of a disturbance, but the cab tilted 512 

relative to the gravitoinertial acceleration (i.e., the net direction of the sum of 513 

gravity and centripetal acceleration, G) rather than relative to centripetal 514 

acceleration (GC). In subjects well-trained to perform the manual control task in 515 

Earth gravity, when performance stabilized after approximately 600 s of doing the 516 

task in hyper-G, the authors did not report a statistically significant difference 517 

between hypergravity performance (1.5 and 2.0 G) and 1.0 G baseline. 518 

Nonetheless, there was a trend towards better steady-state performance in 1.5 G 519 
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vs. 1.0 G, although such a trend was not obviously apparent in 2.0 G. This lack of 520 

a significant effect of G-level on steady-state manual control performance may 521 

result from differences in the methods vs. our study, including: a) the use of an 522 

exponential decay model to identify steady-state performance as opposed to 523 

using only test trials that occurred after sufficient practice; b) the potential 524 

presence of Coriolis cross-coupling illusions due to the tilt axis not being aligned 525 

with the spin axis; c) testing relative to the gravitoinertial acceleration vs. the 526 

centripetal acceleration; d) testing at different G levels; and e) the use of longer 527 

(214.8 second) trials. Despite these differences, the trends observed in Clark et 528 

al. (2015a) are consistent with the statistically significant better performance in 529 

1.33 GC vs. 1.0 GC that we found. To our knowledge, the only other study of roll-530 

tilt manual control related to altered gravity (Merfeld 1996) studied astronauts 531 

before and after exposure to microgravity. Because measurements were not 532 

made in altered gravity, it is difficult to compare those results to our study. Future 533 

work will be required to separate the various contributors to these changes, 534 

including the reinterpretation of otolith cues in microgravity (Young et al. 1984). 535 

The impact of the otolith organ cue in the horizontal plane which is relevant to the 536 

task might be explained through simple geometry. The effective mechanical 537 

stimulus to the otolith organ is considered to be the “shear component” of the 538 

gravito-inertial force, acting in the dominant plane of the utricular macular (Clark 539 

et al. 2015c; Schöne 1964; Young 1982). For any tilt angle, this otolith organ cue 540 

is diminished when gravitational forces are reduced. This is supported by our 541 

recent work that found that perception of roll tilt is underestimated in a 542 
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hypogravity analog (Galvan-Garza et al. 2018, revisions submitted to J 543 

Neurophysiol JN-00140-2018R1). Likewise, we assume that noise is relatively 544 

unchanged, although future studies could investigate whether noise varies with 545 

GC by performing the threshold task during centrifugation. Thus, in hypogravity 546 

(e.g. 0.5 GC) the shear signal is diminished while presumably the noise is 547 

unchanged, resulting in a reduced signal-to-noise ratio. In hypergravity, however, 548 

the shear force at any tilt angle is increased, resulting in an increased signal-to-549 

noise ratio.  Even if the brain properly interprets the otolith signal in altered 550 

gravity, this change in signal-to-noise ratio regarding tilt information likely 551 

explains the observed impaired manual control performance in our nulling task. 552 

Similar logic applies to other graviceptors, although evidence suggests vestibular 553 

cues are the primary graviceptive cue for threshold-level motion (Valko et al. 554 

2012). Functionally, the reduced signal-to-noise ratio in 0.5 GC causes the 555 

subject to require a larger tilt angle before they can reliably determine the 556 

corrective joystick response. This translates into an increased range of the 557 

“dead-zone" where subjects cannot reliably sense tilt and thus cannot null the 558 

motion. Conversely, in 1.33 GC, the otolith signal is amplified for a given tilt, 559 

increasing the signal-to-noise ratio. This allows the subject to reliably perceive 560 

smaller tilt angles, increasing their ability to detect changes early and react. 561 

While evidence suggests that the brain relies on the lateral (i.e. interaural) 562 

component of the gravitational vector sensed by the otolith organ to determine tilt 563 

angle (Clark et al. 2015c; Schöne 1964; Young 1982), this reasoning is 564 
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independent of the mechanism used to determine tilt angle from the three-565 

dimensional vector sensed by the otolith organ.  566 

Subjects occasionally reached the physical tilt limits of the device. Our analyses 567 

showed that this had a marginal impact on the conclusions of the study. It is 568 

possible that the limits influenced perception since subjects were aware that only 569 

a narrow range of tilt was possible. However, unlike some studies where prior 570 

knowledge affects tilt perception via Bayesian inference (Alberts et al. 2016), we 571 

cannot think of a mechanism by which subjects could improve precision based 572 

on knowledge of the device limits, since avoiding the limits and aligning with 573 

upright accomplish similar goals. 574 

 575 

Individual differences and hypogravity effects 576 

We found large individual differences in roll tilt 0.2 Hz thresholds ranging from 577 

0.59° to 2.11°, which is consistent with a previous study using identical methods 578 

that found a range of roll tilt 0.2 Hz thresholds from 0.375 to 2.7° across 95% of 579 

healthy subjects (Bermudez Rey et al. 2016). Similarly, there is a high degree of 580 

intersubject variability in manual control.  PVM ranged from 1.27° to 5.05° in 581 

1.0 GC. The individual differences in threshold contribute much more to variations 582 

in performance than GC level (Figure 4), which changed only 36% between 0.5 583 

GC and 1.0 GC. In comparison, the expected PVM for the subject with the highest 584 

threshold is 298% of that for the subject with the lowest threshold, emphasizing 585 

that individual differences have a larger effect on PVM than GC levels.   586 
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 587 

Centrifuge configuration 588 

 589 

The centrifuge configuration used for this study (which to our knowledge is novel 590 

for human studies) should have applications for certain classes of studies; we 591 

now discuss relevant considerations. Although short-radius and long-radius 592 

centrifuge paradigms have been used to study human performance in 593 

hypergravity environments (e.g.,Clark et al. 2015a; Clark et al. 2015b; Glasauer 594 

and Mittelstaedt 1992; Schöne 1964; Tribukait and Eiken 2005), it is not possible 595 

to study a pure hypogravity environment on Earth because of the presence of 596 

Earth’s gravitational field. However, our hypogravity analog allows for studies in 597 

which the centripetal acceleration cue relevant to the task is less than 1.0 GC. 598 

While Earth’s gravity is statically present, it does not provide a useful roll tilt cue 599 

to the subject, and was consistently present across all GC conditions. Therefore, 600 

the ability to null the pseudo-random disturbance is only dependent on the 601 

magnitude of tilt perceived relative to the centripetal acceleration. This approach 602 

would not be appropriate for studies where the total force is likely more important 603 

than the longitudinal force. While only the centripetal acceleration is a useful task 604 

cue for the subject, the cognitive experience of the subject is somewhat more 605 

complex, since they would be expected to perceive a somatogravic pitch tilt out 606 

of the horizontal plane that aligns with the net gravitoinertial acceleration. For 607 

example, with 0.5 GC and 1 G gravity, they would perceive a head-down pitch tilt 608 

of 26°. Furthermore, when the subject roll tilts relative to centrifuge axis, there is 609 

a slight reduction in the component of centripetal acceleration along the subject’s 610 
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longitudinal axis, which causes the somatogravic pitch tilt to reduce slightly – 611 

approximately 1° of pitch for 10° of roll tilt. Future studies will be needed to 612 

determine whether the presence of Earth gravity affects results, which could 613 

include parabolic flight studies (Karmali and Shelhamer 2008) which provide a 614 

net gravitoinertial acceleration between 0 and 1 G. Another distinguishing 615 

attribute of this configuration is that there was no Coriolis cross-coupling illusion, 616 

in contrast with configurations that align the subject with the total gravitoinertial 617 

acceleration. In our configuration, subjects experienced some wind cues, 618 

although these could be diminished in future studies by enclosing the subject. 619 

This centrifuge configuration would be particularly relevant to characterize 620 

piloting during landing or ascent, locomotion, orientation perception, and 621 

cardiovascular responses for conditions on or near the surface of the Moon or 622 

Mars.  623 

 624 

 625 

Relevance and applications 626 

We now describe the relevance and eventual applications of this line of research.  627 

Our results are related to a growing body of research suggesting that sensory 628 

imprecision worsens postural performance. Manual control and postural control 629 

are similar because both use closed-loop feedback control and are approximated 630 

by a single-link inverted pendulum (Panic et al. 2015; Riccio et al. 1992). 631 

Modeling of postural responses to perturbations using closed-loop models 632 
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suggest that postural variability and sway arise from imprecision in vestibular 633 

sensation, vision, proprioception and muscle control (Goodworth et al. 2018; 634 

Mergner et al. 2005; Peterka 2002; van der Kooij et al. 1999; van der Kooij et al. 635 

2001; van der Kooij and Peterka 2011). Furthermore, age and vestibular roll tilt 636 

0.2 Hz thresholds are both correlated (using a multiple variable logistic 637 

regression) with pass/fail performance in a balance test in which subjects are 638 

asked to stand on foam with eyes closed (Bermudez Rey et al. 2016; Karmali et 639 

al. 2017). Our results build on these studies showing that sensory precision 640 

underlies functional performance – specifically by providing experimental 641 

evidence of a continuous (vs. pass/fail) relationship between thresholds and 642 

performance. This has potential public health relevance given postural errors are 643 

correlated with debilitating falls (Overstall et al. 1977), and sensory precision is 644 

an incompletely understood source of postural errors. 645 

Errors in sensing motion and orientation have contributed and continue to 646 

contribute to many fatal aviation accidents (Gibb et al. 2011). Substantial risks 647 

have also been identified for manned spacecraft landings and near-miss 648 

incidents have occurred (Karmali and Shelhamer 2010; McCluskey et al. 2001; 649 

Moore et al. 2008; Paloski et al. 2008). Paloski et al. (2008) states that "neuro-650 

vestibular dysfunction [is] generally correlated with poorer flying performance, 651 

including a lower approach and landing shorter, faster and harder." If vestibular 652 

precision is indeed a critical factor in vehicle control performance then our 653 

approach could provide a tool to predict which individuals may have enhanced 654 

piloting performance, which could reduce risk. This is especially important given 655 
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the potential synergistic risk arising from hypogravity and individuals with high 656 

thresholds. Of course vision also plays a critical role and further research is 657 

required to understand the relative contributions of visual and vestibular cues. 658 

Notably, vestibular roll tilt thresholds are lower than visual roll tilt thresholds for 659 

certain temporally frequencies, and even when visual thresholds are lower, 660 

vestibular cues still contribute to visual-vestibular precision via Bayesian 661 

integration (Karmali et al. 2014). Thus, even with visual cues available, individual 662 

differences in vestibular precision could potentially still contribute to differences in 663 

manual control performance. Future investigations will be required to determine 664 

how these effects combine with adaptation to a novel gravity environment and 665 

long-term compensatory adaptation mechanisms that may also affect 666 

performance. We further note that the joystick rate-control, attitude-hold control 667 

dynamics used in this study were similar to those of a helicopter or a lunar 668 

landing vehicle. 669 

Astronauts walking on the surface of the Moon experienced a large number of 670 

falls, which placed them at risk of injury. Considering that balance test 671 

performance is correlated with roll tilt 0.2 Hz thresholds (Bermudez Rey et al. 672 

2016; Karmali et al. 2017), PVM is correlated with roll tilt 0.2 Hz thresholds, and 673 

PVM is diminished in hypogravity, a reasonable prediction is that diminished 674 

postural control on the Moon or Mars occurs because of diminished vestibular 675 

sensation. There could also be a potential interaction with a motion sickness drug 676 

commonly used by astronauts, promethazine, which also increases roll tilt 0.2 Hz 677 
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thresholds (Diaz-Artiles et al. 2017). These factors may be exasperated because 678 

visual tilt perception is difficult on the Moon (Brady and Paschall 2010).  679 

While speculative, to illustrate that large intersubject differences may have 680 

operational relevance and modulate risks, we provide an example from piloting a 681 

helicopter. This example does not consider the impact of visual cues, as could 682 

occur in certain brown-out or white-out conditions (e.g., obscuration by sand, 683 

dust or snow). The critical rollover angle for a helicopter is between 5 and 8° 684 

(Department of Transportation 2012). Our worst performer has a PVM of 5.05° 685 

which assuming a Gaussian distribution with a standard deviation of 5.05°, 686 

corresponds roughly to a 6% chance of them experiencing a tilt greater than 8° 687 

when they intend to be upright. On the other hand, the best performer has a PVM 688 

of 1.27°, corresponding to less than 0.0001% chance of exceeding a tilt of 8° 689 

when they intend to be upright. Thus, risk might be mitigated by assigning pilots 690 

with lower thresholds, if our laboratory results transfer to real-world piloting tasks. 691 

A similar analysis applies to Moon/Mars landings; the Apollo lunar module was 692 

required to land with less than 11° of roll tilt to ensure a successful ascent launch 693 

(Rogers 1972).  694 

 695 

Summary 696 

In this study, we demonstrated a relationship between an individual’s roll tilt 697 

vestibular perceptual threshold and their performance in a manual control task. 698 

This suggests that sensory precision is a critical determining factor in manual 699 
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control performance. Using a short-radius centrifuge, we also showed that, as 700 

expected, performance was better in 1.33 GC versus 1.0 GC, and worse in 0.5 GC 701 

versus 1.0 GC. The performance decrement observed in hypogravity is 702 

particularly relevant for future human exploration missions to the Moon and Mars 703 

where gravity is less than on Earth, potentially increasing risk during piloted 704 

landing, standing balance and locomotion. 705 
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