1 2	Towards Grid Friendly Zero Energy Buildings
3	
4	Philipp Bruggmann ^{a,*}
5	^a University of Colorado Boulder
6	Civil, Environmental and Architectural Engineering
7	UCB 428, Boulder, CO 80309-0428
8	USA
9	philipp.bruggmann@colorado.edu
10	* Corresponding Author
11	
12	Gregor P. Henze ^a
13	^a University of Colorado Boulder
14	Civil, Environmental and Architectural Engineering
15	UCB 428, Boulder, CO 80309-0428
16	USA
17	gregor.henze@colorado.edu
18	
19	Total number of words used: 5172
20	
21	

22 Abstract

23 High performance buildings such as zero energy buildings (ZEB) are an important step towards a 24 reduction in greenhouse gas emissions. Since ZEB may exhibit large differences between demand and 25 onsite generated electricity, residual electrical loads imposed by the building may fluctuate between 26 positive and negative values. Furthermore, such buildings can be characterized by large temporal 27 changes in residual load, commonly caused by clouds passing on a sunny day. Today, electricity grid 28 operators can easily deal with a single ZEB with this behavior. But what happens if large portfolios of 29 ZEB have the same behavior? In this study, a highly efficient office building with a total floor area of 8'355m² located in Denver, Colorado was designed and simulated using a detailed building energy 30 31 modeling approach. Combining the building energy model with a photovoltaic model showed that the 32 building reached net positive status on an annual basis. Further analysis of residual loads as well as 33 strategies for their reduction revealed the limited potential due to the comparatively high shares from interior lighting and equipment in the energy use distribution. Using a multiple objective optimization 34 35 approach for optimizing several simplified electric and thermal storage systems allowed comparing 36 different strategies for residual load reduction. Although electrical storage may not yet be economical 37 given today's system costs, it could be shown that the residual loads can be effectively managed and 38 reduced, while at the same time, an increase in photovoltaic self-consumption can be achieved. The 39 analysis concludes with the presentation of a multi-objective optimal solution (Pareto front) for a 40 battery storage model, indicating what utility incentives would be required to achieve cost 41 effectiveness for a range of battery system price scenarios.

42 Keywords

- 43
- 44 Zero Energy Building Model
- 45 OpenStudio & EnergyPlus
- 46 Renewable Energy
- 47 Ramping Rate Reduction
- 48 Residual Load

49 1. Introduction

50 1.1 Motivation

51 The building sector in the U.S. consumes approximately 41% of the nation's total primary energy use. 52 Additionally, the building sector is by far the largest consumer of electricity, representing 74% of 53 annual electricity sales. Considering that 66% of the total electricity production is coming from fossil 54 fuels, makes the greenhouse gas footprint of buildings even worse (U.S. Department of Energy 2015). 55 Undoubtedly, there is a wide range of improvement opportunities. One of them are zero energy 56 buildings: Using highly efficient appliances, daylight optimized designs, high performance envelopes 57 and windows reduces their energy consumption to a minimum, while on-site energy production 58 systems decrease the annual energy consumption to zero or even into positive territory. Aside from 59 all advantages there is one major drawback: high residual loads (RL). Electricity grid operators who 60 provide and maintain the electrical grid do not gain a profit at the end of the year, and even worse, 61 they must ensure grid stability which is jeopardized by the highly volatile residual loads of zero energy 62 buildings. Extensive literature about the design of zero energy buildings is available (Hall 2014; Athienitis, O'Brien 2015; Kolokotsa et al. 2011; Judex 2012). The UW Building Energy Research Group 63 64 (BERG) for example has over thirty publications about zero energy buildings and related topics (UW Berg). Furthermore, there are numerous studies ongoing investigating the influences and risks of feed-65 66 in electricity from onsite PV generation as well as distributed and centralized energy storage strategies 67 aimed at maintaining grid stability (Milo et al. 2011). To the authors' knowledge, no prior work 68 combined these topics and elaborated a whole building simulation modeling approach in terms of grid 69 friendliness.

71 1.2 Problem Statement

High performance buildings such as ZEB are a step towards a reduction in greenhouse gas emissions.
Nonetheless, one of their major drawbacks as mentioned above needs deeper examination. Fig. 1
shows the uncontrolled residual load profile over one day of the Research Support Facility at the
National Renewable Energy Laboratory in Golden, Colorado (Shanti Pless). A peak residual load
difference of about 2 MW can be seen at this specific day. Even worse, there are also significant high
ramping events in the morning, probably due to clouds, and in the evening when the sun sets.

79

80

Fig. 1. Uncontrolled Load Profile for a Zero Energy Building NREL RSF

81 1.3 Objectives

The first objective was an identification of optimal design approaches for a zero energy building. Hence, different building shapes, envelope alternatives, insulation types, orientations and other variations have been considered for possible improvements. The second objective was an analysis of the dynamic residual electrical loads and appropriate strategies for their mitigation and reduction.

86

87 1.4 Zero Energy Building Definition

This work adopts the current official definition of a zero energy building authored by the Department of Energy (DOE): "An energy-efficient building where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy." (U.S. Department of Energy).

92 1.5 Residual Load Definition

93	While the term residual load may have different interpretations, throughout this study the term
94	residual load is defined as the difference between electricity demand and the on-site electricity
95	production; positive residual loads imply demand from the grid and negative residual loads feed-in
96	electricity to the grid.
97	

100 2. Methods

101 To achieve the objectives of this study, it was necessary to focus on several different characteristics of 102 zero energy buildings. Building geometry, orientation, envelope types, fenestration, heating, 103 ventilation and air conditioning (HVAC) systems, and on-site renewable energy systems are just a few 104 among them. Since this study will serve as a foundation for future studies and many aspects of building 105 design had to be considered, a simulation approach was chosen. Because OpenStudio provides an 106 easy-to-use building simulation environment and additionally is open source it was used as modeling 107 software. To compare different concepts, the Parametric Analysis Tool (PAT) also provided by the 108 National Renewable Energy Laboratory (NREL) was adopted. Since OpenStudio does not yet allow 109 implementing advanced HVAC system controls, the Energy Management System (EMS) for EnergyPlus 110 was used. The photovoltaic model for the on-site renewable energy production was developed in the 111 System Adviser Model (SAM) software provided by NREL. It is open source and has a large library with 112 photovoltaic panels and inverter specifications from various manufacturers. Once the building and the 113 photovoltaic model was established, the residual loads were assessed. OpenStudio and EnergyPlus 114 building models provide high accuracy modeling due to the heat balance method for the coupled 115 thermal zones, (U.S. Department of Energy et al. 2015; Zhu et al. 2012). However, since a multiple 116 objective optimization approach was chosen for the residual load reduction strategies and the building 117 simulation required considerable processing power, reduced order models for the heat pump and the 118 storage systems were developed in the technical computing environment MATLAB.

119 The climate where a building is located has a dominant impact on the design and the U.S. has been 120 divided into eight primary climate zones (ASHRAE 2010). Each climate zone is grouped by the number 121 of heating and cooling degree days (HDD65 and CDD50). These climate zones are further subdivided by three moisture levels, humid (A), dry (B) and marine (C). For each climate zone, different provisions 122 123 in the salient standards and codes are enforced. Climate zone 5B is valid for Denver where the 124 proposed building is located (ASHRAE 2014a). Proper weather data is crucial for building energy 125 simulation. Fortunately, NREL provides a free library with typical meteorological year (TMY) weather 126 data for simulation purposes, which can be found in the National Solar Radiation Data Base (NSRDB) 127 archive (NSRDB). It has to be noted that TMY data is not suitable for analyzing worst-case scenarios 128 with extreme weather conditions (NSRDB). In the beginning of the design process, TMY data from the 129 Denver International Airport was used for simulations. As the design process evolved, data at higher 130 temporal resolution as described further below had to be used. The dynamic behavior of the electricity 131 production from the photovoltaic (PV) system is important for subsequent residual load analysis; thus, a higher resolution weather data was therefore needed. Since one-minute based data was only 132 133 available for the location in Golden, Colorado, the solar radiation, temperature and humidity values 134 for Golden were used in the context building simulation. For the remaining values, TMY data from the 135 Denver International Airport were used.

137 3. Simulation Model Development

138 3.1 OpenStudio Building Model

139 3.1.1 Building Envelope

The surface-area-to-volume-ratio is an important factor affecting the energy needs of a building. A 140 141 large surface area leads to a significant energy exchange between the envelope and the environment. Hence, the higher the area-to-volume (A/V) ratio, the higher the energy needs should be. Considering 142 a floor height of 3.8 meters and a total floor area of 8'500 m², the lowest A/V ratio was evaluated for 143 144 different number of floors. From 4 to 8 floors, the ratio is about 15%. Reducing the number of floors, 145 leads to an increase in A/V ratio up to approximately 30% for a single-storey building. Since the influence of weather impacts, ground heat exchange and other interactions are not considered by the 146 147 A/V ratio, a parametric analysis for different number of floors, window-to-wall ratios, aspect ratios and 148 orientations has been conducted. The simulation for this analysis were highly simplified. The option 149 "Ideal Air Loads" was used in OpenStudio (NREL 2015), therefore neither a ventilation nor a heating 150 and cooling system had to be designed. In this case, EnergyPlus assumes perfectly met comfort 151 conditions. For the sake of simplicity, no shading and daylight control were considered. Analyzing the 152 results from the Parametric Analysis Tool (PAT) revealed a surprising outcome. The single-storey building has the lowest combined cooling and heating demand. Since this result, due to the high A/V 153 154 ratio, was not expected, a reason for this behavior had to be found. Changing the ground surface 155 conditions as adiabatic, effected the expected behavior; a taller building has lower cooling and heating 156 demand than a single-storey building. Thus, the reason for the unexpected results is the strong impact 157 of the ground heat exchange. Constant ground temperatures from the EnergyPlus Weather (.epw) data 158 Denver International Airport were used (U.S. Department of Energy et al.). Considering the land price 159 in Denver and the use of daylight, further simulations adopted a three-storey building.

161 3.1.2 Window-to-Wall Ratio

The optimal window-to-wall (W/W) ratio is challenging to choose but essential for a zero energy 162 163 building. An optimum between heating and cooling losses, daylight savings and solar gains must be 164 found. Fig. 2 shows the energy needs depending on the W/W ratio. The dashed line illustrates the total source energy needs without windows whereas the dotted line shows a baseline case with 40% W/W 165 166 ratio and American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2004 window specifications (U-factor 3.12 W/m², SHGC 0.4, VLT 0.31), but without daylight control. 167 168 The total source energies are on the primary y-axis whereas the energy use of the interior lighting, 169 district heating and cooling are on the secondary y-axis. As expected, the total source energy needs 170 are a lot lower with triple pane windows. Due to the large savings, the designed building was finally 171 equipped with triple pane windows. Regarding Fig. 2, the total source energy needs are lowest at 20% W/W ratio (U-factor 0.785 W/m2, SHGC 0.474, VLT 0.661). Therefore, approximately this ratio was 172 adopted in the proposed building design. The fact that daylight also has an important role considering 173 174 employees comfort, would justify percentages higher than the energy optimum.

Fig. 2. Evaluation of the Window to Wall Ratio

178 3.1.3 Aspect Ratio

179 The aspect ratio (ratio of building length to width) was varied from 1.0 (square) up to 3.0. Since the 180 cooling and heating energy demand did not change significantly but daylight penetration at the preferred south and north façade is favored with higher ratios, a ratio of 2.0 was chosen. The 181 182 orientation (0° represents a southern orientation) of the building was changed from 0° up to 60°. Since 183 south-north orientated buildings have better daylight penetration and east and west facing surfaces 184 are hard to shade effectively, a south orientation was considered in the designed building. Square and 185 rectangular shapes have less dead space and are cheaper to build compared to other shapes. On the 186 other hand, wind optimized shapes could have a beneficial impact on the total energy use . Since 187 Denver does not have constant high wind velocities, the building was designed in a rectangular shape 188 using the aspect ratio of 2.0. Because Denver features an almost optimal climate for natural ventilation 189 (dry and low temperatures during the night), an atrium was included in the center of the building.

190 3.1.4 Floor Plan

Following the analyses described in the sections given above, the floor plan could be sketched using common space program assumptions shown in Table 1 (ASHRAE 2014b). In category Others, a printing room as well as an information technology (IT) room were considered. The total needed ground area is 2'850 m².

196 3.1.5 Roof Type

Pitched roofs come in a variety of styles, such as gable, cross gable and hipped, all sloped to different degrees. Their installation cost is usually higher than a flat roof, but since flat roofs need more maintenance regarding the sealing, the long-term costs are similar. Another important point to mention is the dead volume. Office buildings usually do not have an attic. Hence, the lost volume related to the pitched roof cannot be used as effectively as in residential buildings. Since a photovoltaic system is very likely on a ZEB and pitched roofs are less flexible concerning later orientation changes, a flat roof was considered for the designed building model.

- 204
- 205

206 3.1.6 Wall Construction

207 To reach the goal of a zero energy building, the energy demand should be as low as possible but the 208 building should still be affordable. Exterior walls including their insulation play an important role in this 209 case. To evaluate the exterior walls, different wall types and insulation thicknesses were compared, 210 shown in Fig. 3. The first construction uses the OpenStudio default recommendations for an exterior 211 mass wall according to ASHRAE 90.1-2010 (ASHRAE 2010). This construction consists of an interior 212 insulation and a concrete mass wall. Since exterior insulations have different benefits such as reduced 213 condensation problems and the use of thermal mass, the construction layers were switched. Just by 214 doing so, the combined heating and cooling needs could be reduced by 2.6%. Increasing the insulation 215 thickness effected a decrease in cooling and heating energy as well. The two other construction types, 216 as well OpenStudio default recommendations, a steel-framed and a wood-framed wall increased the 217 energy demand. In order to make a decision on the insulation thickness, different studies on 218 economical insulation thickness optima were reviewed (Jozsef Nyers, Slavica Tomic, Arpad Nyers 2014; 219 Çomaklı, Yüksel 2003; Martin Jakob 2004; Nematchoua et al. 2015). Summarizing the literature, an 220 insulation layer of about 10 cm is considered the optimum economical thickness. One study showed 221 that if longer payback times were permitted, thicker layers are favored (Martin Jakob 2004). Thermal 222 mass is another important factor for an exterior wall construction. The higher it is, the more thermal 223 storage capacity is available and this in turn increases comfort, due to slower changing zone 224 temperatures. Furthermore, it allows shifting the supplied cooling and heating to economically 225 favorable hours. These considerations lead to three additional wall constructions. Thanks to the 226 assistance received from a wall construction company, the wall construction previously used in the 227 Research Support Facility building on the campus of the National Renewable Energy Laboratory could 228 be modeled (U.S. Department of Energy). Moreover, they suggested a construction set located in 229 Denver. Considering thermal mass and insulation, a custom assembled construction was introduced as 230 well.

232

233 Fig. 3. Exterior Wall Performance Comparison including their U-Value

The wall construction company provided one overall R-Value which also considers wall connectors. Since OpenStudio requests values for each layer, they were evaluated using literature for the material properties (Fundamentals 1997). Comparing the evaluated with the provided R-Value showed an error of about 3%, which was assumed to be sufficiently accurate. Fig. 4 shows the selected wall construction suggest by Thermomass.

240 241

Fig. 4. Suggested Wall Construction

The exterior roof was selected following the Advanced Energy Design Guide from ASHRAE that recommends an R-Value greater than 4.56 m²K/W for climate zone 5 (ASHRAE 2014b). A preassembled construction from the building component library (BCL) with a matching R-value was adopted in the building model (Building Component Library). The construction consists of three layers: a metal decking, an insulation layer with a thickness of 26 cm and a roof membrane.

247 3.1.7 Thermally Activated Building Systems (TABS) Floor Construction

248 OpenStudio uses internal source constructions to model radiant floor and ceiling systems. Therefore, 249 each surface which is part of the radiant cooling or heating system needs to be assigned to this 250 construction set. The different construction layers must be manually specified in OpenStudio. 251 Furthermore, the location of the hydronic piping and the temperature sensor must be assigned to the 252 desired layer. The implemented internal source construction sets are shown in Fig. 5 and Fig. 6. Using 253 an application handbook and a TABS control guide developed by a building automation manufacturer 254 lead to the selected interior floor thickness of 203 mm (Siemens; Faktor Verlag AG - Architektur, 255 Technik. Energie. Informationen zur Nachhaltigkeit am Bau - TABS-Tool). The piping as well as the 256 temperature sensor were located in the center. No insulation layer was added to the interior 257 construction set. The construction facing the ground consists of a 102 mm concrete layer followed by 258 a 25 mm insulation layer and another 102 mm concrete layer. Thermally activated building systems 259 (TABS) are typically operated at low hot water and high chilled water supply temperatures. Since heat 260 pumps are more efficient in this context, the decision was made to use this system.

Fig. 5. Internal Source Construction (interior)

Fig. 6. Internal Source Construction (exterior)

261

262 3.1.8 Daylight Analysis

263 Energy use for electrical lighting represent a significant share of the total energy consumption of a 264 building. At the same time, it is known that daylight has an important impact to human health and can 265 increase productivity significantly. The fact that north and south facing offices provide the best daylight 266 conditions was already considered by selecting an appropriate building aspect ratio. OpenStudio has a dedicated tool for daylight analysis: The daylight analysis tool Radiance is based on raytracing and has 267 268 recently been integrated with OpenStudio (Rob Guglielmetti). The downside of the accuracy of 269 raytracing are its high computational requirements, making it currently impossible to simulate the 270 entire building at once. Hence, several representative zones had to be selected and simulated 271 separately. At least one zone per orientation must be selected to get a robust analysis of daylight availability. Obviously, the more zones are simulated the more accurate the total savings estimates 272 273 are. Simulations showed that interior zones are not affected significantly if interior windows are 274 applied and both zones (exterior and interior) are simulated together. This outcome reduced the simulation effort significantly. Radiance provides three different daylight metrics. Daylight autonomy 275 276 (DA), continuous daylight autonomy (cDA) and useful daylight illuminance (UDI). By using eight 277 representative zones it was possible to compare several different measures to increase and optimize 278 daylight savings. Based on the more accurate evaluation algorithm of Radiance those results are more 279 accurate than the radiosity (split flux) based approach that OpenStudio uses in the EnergyPlus engine.

As mentioned above, the annual electrical lighting distribution of the entire building could not be evaluated by the Radiance approach. Therefore, the best options evaluated with the Radiance approach were applied to the whole building model and simulated again. Table 2 shows the tests options for daylight optimization for which the illuminance set point was set at 500 lux. Fig. 7 shows the site energy savings with total annual savings of 10%. The difference between the Radiance and radiosity based approaches was smaller than 1%, so the inaccuracy was deemed acceptable.

286

287

288

Fig. 7. Energy Savings due to Daylight Control

289

290 3.1.9 Final Building Design

The findings described in Sections 3.1.1 to 3.1.7 resulted iteratively to the three-dimensional building model. Fig. 8 shows the final building model with the entrance on the east side. Using the same window and shading objects for the whole building is favorable for cost reasons. In total, 6'638 m² are conditioned and 1'718 m² are unconditioned. The south and north façade have a window-to-wall ratio of 22% whereas the east and west façade have one of 15%.

Fig. 8. Final 3-D Building Model

302 3.1.10 HVAC System

303 Heating, ventilating and air conditioning (HVAC) systems provide heating, cooling, humidification, 304 dehumidification and air quality control to satisfy the occupant needs. There are two main system 305 options: Central HVAC systems which are, for example used in commercial office buildings and 306 decentralized HVAC systems, such as an individual room air conditioner, as they can be found in motels 307 or smaller office buildings. Even though decentralized HVAC system can be appropriate for very specific 308 applications, higher maintenance costs, construction constraints, noise, and commonly a lower overall 309 efficiency make them second choice for newly constructed buildings. Due to the stated reasons, a 310 decentralized system was not considered in the designed building (U.S. Department of Energy; Henze 311 2016).

312 Due to the low heating and high cooling supply water temperatures, a thermally activated building 313 system (TABS) combined with a heat pump can be one of the most efficient HVAC system 314 configurations available; therefore, a TABS combined with a ground source heat pump was selected 315 for the designed building (Informationsdienst). In order to meet air quality standards, a demand 316 controlled ventilation, dedicated outdoor air system (DOAS) with a heating and cooling heat recovery system was used. It provides the occupied zones with 22°C pre-tempered fresh air. In addition to the 317 318 DOAS, natural ventilation was implemented for night pre-cooling. Since office buildings have very low 319 service hot water needs, those systems offer a lower potential for energy savings, but nevertheless a 320 heat pump water heater was used. Fig. 9 shows a simplified schematic of the modeled HVAC system. 321 The key performance metrics of the proposed building are described in Chapter 4.

325 3.2 On-Site Renewable Energy

326 ZEB's, as described in Section 1.5, have to have a zero or a negative source energy balance on an annual 327 base, requiring on-site renewable energy generation such as solar or wind power. In this study, only a 328 photovoltaic system was considered. The PV system was modeled with the System Advisor Model 329 Software (SAM) (System Advisor Model 2016). It is capable of simulating various types of on-site energy 330 production plants but for this project only the photovoltaic tool was used. Since hundreds of PV panel 331 and inverter specifications from several suppliers are preloaded, it is a lot easier to model the system. 332 SAM allows the user to set the numbers of strings and rows manually. By selecting the orientation and 333 the ground coverage ratio, SAM considers self-shading losses. Furthermore, it was possible to consider 334 the adjacent buildings as shading objects. Selecting soiling and balance-of-system losses completes the 335 technical design of the system. The effects of dynamic weather changes on the electricity production 336 is crucial for residual load analysis, therefore weather data at higher temporal resolution had to be 337 used for the simulation. Fortunately, minute-by-minute data was available from the solar radiation 338 research laboratory (BMS) at NREL (Stoffel, Andreas 1981). The photovoltaic array was designed in an 339 iterative approach by comparing the total on-site electricity production and the annual electricity 340 demand. It turned out that the annual production of the roof array was not high enough to achieve 341 ZEB status. Therefore, the south, east and the west façades were also considered as solar collection 342 area. Since the vertically mounted façade panels have a lower efficiency, cheaper thin film panels were 343 considered there. On the roof, 612 PV panels with an installed capacity of 200 kW and on all three 344 facades combined 954 thin film PV panels with an installed capacity of 112 kW were considered. The 345 characteristics of the PV system are shown in Table 3. The differences of the energy production from 346 the east and west façade are explained due to shading from surrounding buildings.

347

348

350 3.3 Reduced Order Model for Controls Analysis

351 3.3.1 Controls

352 Fig. 10 shows a schematic of the reduced order model developed for the residual load reduction. The 353 residual loads were used as input signal whereas the heating and cooling demand, the reduction of 354 ramping, the additional energy losses and the incremental costs are use as output signals. Inside the 355 model, the heat pump (HP), the hot and cold water storage systems (HWS & CWS) as well as the battery 356 are illustrated. The applied control strategies for the storage systems and heat pump only consider 357 current and past data, i.e., involve no prediction. Thus, the residual load at each time step was used as 358 the input signal. As soon as the residual load becomes negative, the state-of-charge (SOC) of the HWS, 359 CWS and the battery was checked, and depending on their state-of-charge (SOC), charging, discharging 360 or a dormant state of that was selected. For the thermal storage system, an SOC from 0 to 1 and for 361 the battery an SOC from 0.2 to 0.85 was considered. The battery is, because it can be charged and 362 discharged independently from the heating and cooling demand, is more flexible than the thermal 363 energy storage; therefore the HWS and CWS control was prioritized. The thermal storage systems were 364 discharged depending on the heating and cooling demand. As soon as their SOC fell below 10%, the 365 heat pump was turned on and tracked the demand power. This control ensured that the comfort level 366 was never jeopardized. The battery was discharged if the SOC was in between the mentioned range 367 and the residual load was above zero.

368 3.3.2 Model

The heat pump was modeled as having a constant coefficient-of-performance (COP). Thus, the input electrical power multiplied by the rated COP leads to the heating, respectively, cooling delivered. Neither a start-up time nor a minimum run time was considered. The hot water as well as the chilled water storage was modeled by aggregating the HP's output energy for each time step. A heat transmission loss term is adopted to take heat losses and gains through the storage tank envelope into account. Neither loading nor unloading effects were considered. Because the reduced order model has no interconnection with the thermal building model, heating and cooling demand could not be shifted. The battery was modeled by integrating the power which was transmitted. A charging and discharging rate of 0.5 C was considered. An alternating current to alternating current (AC-AC) as well as an alternating current to direct current (AC-DC) inverter efficiency of 95% was assumed. Even though the constant losses of a battery are low over 24 hours they were also considered. No battery degradation and cycle stability was considered.

381

383 Fig. 10. Reduced Order Model for Residual Load Reduction

384

385 3.3.3 Multiple Objective Optimization

A comparison between three different strategies was made to find the most appropriate solution. A thermal storage only, battery only, and a combined configuration were compared. The thermal only storage case could, due to the low heating and cooling demand, not significantly reduce the ramping. To compare the battery only and the combined configuration, a multiple objective optimization was performed. The thermal storage size and the battery capacities were used as decision variables (5). The ramping ratio, which is used for quantifying the fluctuations of the residual load time series, incremental investment costs and the energy losses were selected as objective functions (2) - (4).

393 The optimization problem is defined as in (1).

394

$$\min_{\mathbf{x}\in\mathbf{X}} (f_1(\mathbf{x}), f_2(\mathbf{x}), f_3(\mathbf{x}))$$
(1)

$$f_1(\mathbf{x}) = \left(\frac{\sum_{k}^{n} |P_k^*(\mathbf{x}) - P_{k-1}^*(\mathbf{x})|}{\sum_{k}^{n} |P_k - P_{k-1}|}\right)$$
(2)

$$f_2(\mathbf{x}) = (C_{Therm}\mathbf{x}(1)\mathbf{x}(1)^{-0.3464} + C_{Therm}\mathbf{x}(2)\mathbf{x}(2)^{-0.3464} + C_{Batt}\mathbf{x}(3)\mathbf{x}(3)^{-0.1})$$
(3)

$$f_{3}(\boldsymbol{x}) = \left(E_{Therm,Loss}(\boldsymbol{x}(1)) + E_{Therm,Loss}(\boldsymbol{x}(2)) + E_{Batt,Loss}(\boldsymbol{x}(3))\right)$$
(4)

$$\boldsymbol{x} = [V_{Cool}, V_{Hot}, C_{Batt}]^T, \begin{cases} V_{Cool} \in [0, 100] \\ V_{Hot} \in [0, 100] \\ C_{Batt} \in [0, 2500] \end{cases}$$
(5)

395

396 $f_1(\mathbf{x})$ is the first objective function where the new ramping is divided by the old ramping; a time step k of 15 minutes was considered for a full year (n). $f_2(x)$ considers the incremental costs of the two 397 thermal and the battery storage. Specific costs of 3'500 \$/m³ (C_{Therm}) with an exponential scaling term 398 of -0.3464 were selected for the thermal storages (Vogelsanger et al. 2008). The scaling effect 399 400 represents a nonlinear price trend if the storage size is increased. For the battery, a specific price of 401 1'000 \$/kWh with an exponential scaling term of -0.1 was considered (IRENA 2015). $f_3(x)$ considers 402 the additional energy losses for both the thermal energy and the battery storage systems depending 403 on their storage capacity. Thus, the larger the thermal storage or the battery is selected, the greater the energy losses that will occur. For the thermal energy storage, a specific loss of 10 W/m² was 404

405	selected (AGFW 2015). Losses for the battery were considered with 5%/24 hours (Buchmann 2016). x
406	is a vector with the three decision variables including V_{Cool} as the cold water storage volume in cubic
407	meters, V_{Hot} as the hot water storage volume in cubic meters, and C_{Batt} the battery capacity in
408	kilowatt hours.

4. Results and Discussion 412

Zero Energy Building Model 413 4.1

414 Table 4 shows the key performance metrics of the proposed building, while Fig. 11 illustrates the 415 distribution of the annual site energy use. It is remarkable to note that all conditioning systems 416 combined (heating, cooling and fans) only have a share of 17%. This indicates, on one hand, that the 417 designed building is indeed very efficient, on the other hand, it lets one recognize that the potential 418 for residual load reduction through demand side management (DSM) is low. Even though the Advanced Energy Design Guide (AEDG) was used for lighting and equipment, they account for 81 % of 419 420 the annual energy use. It can be argued, that the used energy needs from the AEDG are still too high 421 for interior lighting and equipment but since the specific energy needs were in a plausible range, no 422 further efforts were mad to reduce this energy needs. Because office buildings have low service hot 423 water use, the low energy consumption was expected.

424

431 Fig. 12 is a psychrometric chart and shows the comfort level of all conditioned zones during occupied 432 hours at an hourly time step. The two dashed rhomboids are illustrating the comfort zones for summer 433 and winter. The control of a TABS is quite complex: Using constant supply temperatures and a simplified control strategy did not allow for an effective setback during unoccupied hours. 434 435 Nevertheless, it was possible to control the radiant system so that the comfort levels were met almost during the whole year. The very dry climate in Denver explains the low relative humidity. The slightly 436 437 too high relative humidity values on the top right corner of the summer comfort zone are caused by 438 the restrooms as well as the meeting rooms, whereas the outliers on the right side are only caused by the closed offices. 439

440

444 4.2 Reduced Order Model

445 Fig. 13 shows the Pareto fronts of both configurations. The Pareto front represents the trade-off 446 among the different objective functions. These points are called non-inferior or non-dominated points 447 (Caramia, Dell'Olmo 2008). The points on the Pareto front indicate the final optimization results 448 whereas the dashed lines represent the exponential fit. Surprisingly, as it can be seen in Fig. 13 the 449 combined configuration is more expensive at every reduction of ramping compared to the battery 450 only. One reason for that may be the fairly high losses of the thermal energy storage system. Since one 451 objective function minimizes them, the battery only configuration always performs better. According 452 to the outcomes of this comparison, the battery only configuration was selected for further techno-453 economic analyses. The impact of a smaller HP in combination with a thermal storage as well as 454 redundancy aspects have not been considered.

Fig. 13. Pareto Front Costs

457 The Pareto fronts in Fig. 13 clearly show that a reduction of ramping can be achieved by using a storage 458 system. Nevertheless, such a system is only cost effective if there is an additional economic benefit for 459 the building owner. According to current literature (Merei et al. 2016; Kosten für PV-Stromspeicher -460 Wirtschaftlichkeit im Detail), battery systems are not quite economical today. This statement does not include systems which are subsidized nor does it include systems where DSM is used for increasing the 461 462 self-consumption rate. More detailed information about the potential value of battery storage can be found in the comprehensive report from the Rocky Mountain Institute (Rocky Mountain Institute 463 2015). One paper even considered retail electricity prices of 25ct/kWh and feed-in compensations as 464 465 low as 2.5ct/kWh. The configuration with storage could only show its profitability when battery system

466 prices are below 200\$/kWh (Merei et al. 2016). Since the impact of ramping caused by ZEB is not significant yet, no literature related to the value of ramping reduction incentives could be found. 467 Therefore, the optimization problem was conducted several times with different battery system costs 468 (colored curves in Fig. 14). While utilities are currently not rewarding customers for a reduction of 469 470 ramping, in the future this could become an option for them when feed-in power from decentralized 471 electricity production increases rapidly. Fig. 14 shows the Pareto front family with four linear benefit 472 curves (hypothetical incentives paid by the utility). Since a ZEB with a large PV system requires a larger 473 battery system to adequately reduce ramping, the benefits depend on the PV system's peak installed power. In this study, neither the electricity price nor the feed-in compensation were considered. The 474 475 incremental costs are investments cost.

476 477

478 4.3 Residual Loads

The results from the building simulation as well as the PV system model allowed a deeper examination of the changes in residual loads. Fig. 15 illustrates the annual and weekly residual loads as well as the residual load duration curve. For the weekly graph, a typical week in July was considered. Due to the combination of roof and façade mounted PV panels, no production drop can be noticed in winter. Subtracting the PV production from the total consumption, leads to an annual PV overproduction of 34 MWh. Hence, the designed building is not just net zero, it is net positive.

485

487 Even though today it may not be economical to purchase a battery system in combination with the PV 488 system, a case study was used to show the effect on the residual loads. A capacity of 250 kWh which 489 reaches a reduction of ramping of 50 % was selected. Fig. 15 reveals the differences in residual loads with and without battery storage. Because no predictive control strategy was considered and because 490 491 the selected battery capacity was not sufficiently large, the peak demand as well as the peak feed-in power could not be lowered. Nevertheless, the hours of negative residual loads, where electricity is 492 493 feed into the grid could be reduced by 1948 hours. This is a very significant reduction by a factor of 494 3.6.

495

496

497

Fig. 15. Residual Loads with Battery System (normalized)

499

500 5. Conclusion

501 Though OpenStudio does not provide the same functionality as EnergyPlus yet, it was possible to 502 design and simulate a zero energy building with an advanced HVAC system in the OpenStudio 503 environment. Combining the building model with a photovoltaic model showed that the proposed 504 building not only reaches net zero, it even reaches net positive status. Further analysis of residual loads 505 as well as strategies for their reduction, showed the limited potential due to the comparatively high 506 shares from interior lighting and equipment to the end energy use breakdown. Using a multiple 507 objective optimization approach in combination with a simplified storage model allowed comparing 508 different control strategies for residual load reduction. The Pareto front family illustrates which 509 monetary incentives would be required at different battery storage prices to achieve profitability of a 510 battery storage system.

511

512 5.1 Future Work

513 While the main objectives have been achieved, there are open questions and opportunities for 514 improvements. Since the building model was quite complex, it would make sense to reduce the 515 complexity such that the whole HVAC system could be included in the residual load reduction strategy 516 or the entire model could be optimized. One possibility would be a reduction in the count of thermal 517 zones or the adoption of a reduced order model. To maintain a high level of accuracy, the reduced 518 order model could also be trained with data taken from the whole building model. At this point the 519 storage model and its control are highly simplified; further analysis would therefore focus on a more 520 detailed model and control. Additionally, different control strategies should be elaborated and compared. In this respect, a sensitivity analysis could help identifying the dominant factors. Residual 521 load swings due to widespread construction of ZEB's may pose a risk for regional transmission 522 523 operators (RTO) and utilities in the future, and thus, a collaboration with these entities could help 524 identifying key risks and possible solutions for individual ZEB's or portfolios thereof.

525 Acknowledgements

- 526 This research did not receive any specific grant from funding agencies in the public, commercial, or
- 527 not-for-profit sectors.

528

530 Publication bibliography

- AGFW (2015): Calculation of Thermal Losses of Thermal Energy Storages, checked on 3/28/2017.
- 532 ASHRAE (2010): Energy Standard for Buildings Except Low-Rise Residential Buildings. 90.1-2010.
- ASHRAE (2014a): Advance Energy Design Guide for Small to Medium Office Buildings, checked on
 5/28/2016.
- 535 ASHRAE (2014b): Advance Energy Design Guide for Small to Medium Office Buildings.
- 536 Athienitis, Andreas K.; O'Brien, William (2015): Modelling, design, and optimization of net-zero 537 energy buildings (Solar heating and cooling).
- 538 Buchmann, Isidor (2016): What does Elevated Self-discharge do? Available online at
- 539 http://batteryuniversity.com/learn/article/elevating_self_discharge, checked on 5/28/2016.
- 540 Building Component Library. Available online at https://bcl.nrel.gov/, checked on 5/28/2016.
- 541 Caramia, Massimiliano; Dell'Olmo, Paolo (2008): Multi-Objective Management in Freight Logistics.
- 542 Increasing Capacity, Service Level and Safety with Optimization Algorithms. London: Springer,
- 543 checked on 6/5/2016.
- Çomaklı, Kemal; Yüksel, Bedri (2003): Optimum insulation thickness of external walls for energy
 saving. In *Applied Thermal Engineering* 23 (4), pp. 473–479. DOI: 10.1016/S1359-4311(02)00209-0.
- Faktor Verlag AG Architektur, Technik. Energie. Informationen zur Nachhaltigkeit am Bau TABSTool. Available online at http://www.faktor.ch/tabs-tool.html, checked on 5/28/2016.
- 548 Fundamentals. Chapter 28 (1997), checked on 5/28/2016.
- 549 Hall, Monika (2014): Nullenergiebeäude die nächste Generation energieeffizienter Bauten.
- 550 Henze, Gregor P. (2016): HVAC Systems: Overview. University of Colorado Boulder, 2016.
- Informationsdienst, BINE: Thermoaktive Bauteilsysteme. Nichtwohnungsbauten energieeffizient
 heizen und kühlen auf hohem Komfortniveau, checked on 5/29/2016.
- IRENA (2015): BATTERY STORAGE FOR RENEWABLES. MARKET STATUS AND TECHNOLOGY OUTLOOK.
 With assistance of International Renewable Energy Agency.
- Jozsef Nyers, Slavica Tomic, Arpad Nyers (2014): Economic Optimum of Thermal Insulating Layer for
 External Wall of Brick. In *APH* 11 (7). DOI: 10.12700/APH.11.07.2014.07.13.
- 557 Judex, Florian (2012): Grid Friendly Building.
- 558 Kolokotsa, D.; Rovas, D.; Kosmatopoulos, E.; Kalaitzakis, K. (2011): A roadmap towards intelligent net
- zero- and positive-energy buildings. In *Solar Energy* 85 (12), pp. 3067–3084. DOI:
- 560 10.1016/j.solener.2010.09.001.
- 561 Kosten für PV-Stromspeicher Wirtschaftlichkeit im Detail. Available online at
- 562 http://www.energieheld.de/photovoltaik/stromspeicher/kosten, checked on 5/29/2016.
- 563 Martin Jakob (2004): Die optimale Dämmstärke. Wo liegt das wirtschaftliche Optimum der
- 564 Wärmedämmung bei Neubauten und Gebäudeerneuerungen?, 2004, checked on 5/28/2016.
- 565 Merei, Ghada; Moshövel, Janina; Magnor, Dirk; Sauer, Dirk Uwe (2016): Optimization of self-
- 566 consumption and techno-economic analysis of PV-battery systems in commercial applications. In
- 567 *Applied Energy* 168, pp. 171–178. DOI: 10.1016/j.apenergy.2016.01.083.

- 568 Milo, Aitor; Gaztañaga, Haizea; Etxeberria-Otadui, Ion; Bacha, Seddik; Rodríguez, Pedro (2011):
- 569 Optimal economic exploitation of hydrogen based grid-friendly zero energy buildings. In *Renewable* 570 *Energy* 36 (1), pp. 197–205. DOI: 10.1016/j.renene.2010.06.021.
- 571 Nematchoua, Modeste Kameni; Raminosoa, Chrysostôme R.R.; Mamiharijaona, Ramaroson; René,
- 572 Tchinda; Orosa, José A.; Elvis, Watis; Meukam, Pierre (2015): Study of the economical and optimum
- 573 thermal insulation thickness for buildings in a wet and hot tropical climate: Case of Cameroon. In
- 574 *Renewable and Sustainable Energy Reviews* 50, pp. 1192–1202. DOI: 10.1016/j.rser.2015.05.066.
- 575 NREL (2015): OpenStudio QuickStart Guide. Available online at https://nrel.github.io/OpenStudio-
- 576 user-documentation/img/pdfs/openstudio_interface_quickstart.pdf, checked on 4/1/2017.
- 577 NSRDB (Ed.): Alphabetical List by State and City. Available online at
- 578 http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html, checked on
 579 5/28/2016.
- 580 NSRDB (Ed.): Brief Summary of the TMY3. Available online at
- 581 http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/, checked on 5/28/2016.
- 582 Rob Guglielmetti: Daylighting: Strategies, Simulation and Metrics. University of Colorado Boulder.
- 583 Rocky Mountain Institute (2015): THE ECONOMICS OF BATTERY ENERGY STORAGE. HOW MULTI-USE,
- 584 CUSTOMER-SITED BATTERIES DELIVER THE MOST SERVICES AND VALUE TO CUSTOMERS AND THE 585 GRID.
- Shanti Pless: Net Zero Energy Buildings Research and Practice at NREL. NREL. University of ColoradoBoulder.
- 588 Siemens: Energieeffizienz in der Gebäudeautomation, checked on 5/28/2016.
- Stoffel, T.; Andreas, A. (1981): NREL Solar Radiation Research Laboratory (SRRL): Baseline
 Measurement System (BMS); Golden, Colorado (Data).
- 591 System Advisor Model (SAM) | (2016). Available online at https://sam.nrel.gov/, updated on 592 6/5/2016, checked on 6/5/2016.
- 593 U.S. Department of Energy: A Common Definition for Zero Energy Buildings, checked on 5/27/2016.
- 594 U.S. Department of Energy (Ed.): Ductless Mini-Split Air Conditioners | Department of Energy.
- Available online at http://energy.gov/energysaver/ductless-mini-split-air-conditioners, checked on
 5/29/2016.
- 597 U.S. Department of Energy: The Design-Build Process for the Research Support Facility (RSF), checked598 on 5/28/2016.
- 599 U.S. Department of Energy (2015): Quadrennial Technology Review An Assessment of Energy
 600 Technologies and Research Opportunities, pp. 11–32, checked on 5/26/2016.
- 601 U.S. Department of Energy; University of California; University of Illinois: Weather Data by Location.
- 602 Denver Intl AP 725650 (TMY3). Available online at https://energyplus.net/weather-
- location/north_and_central_america_wmo_region_4/USA/CO/USA_CO_Denver.Intl.AP.725650_TMY3, checked on 4/2/2017.
- 605 U.S. Department of Energy; University of Illinois; University of California (2015): Engineering
- 606 Reference. The Reference to EnergyPlus Calculations.
- 607 UW Berg: Berg Publications. Available online at http://www.uwberg.org/publications/, checked on608 4/3/2017.

- Vogelsanger, Peter; Haberl, Robert; Frank, Elimar; Brunold, Stefan (2008): Dimensionierung solarer
 Kombisysteme. SPF Institut für Solartechnik. 18. OTTI Symposium Thermische Solarenergie.
- 211 Zhu, Dandan; Hong, Tianzhen; Yan, Da; Wang, Chuang (2012): Comparison of Building Energy
- 612 Modeling Programs: Building Loads. Tsinghua University, China; Environmental Energy Technologies613 Division.
- 614
- 615

616 Tables

617

618 Table 1: Standard Percentage Assumptions by Space Type

Space Type	Percentage of Floor Area (Guideline)	Floor Area in m ² (Applied)	Percentage of Floor Area (Applied)
Open Office	15 %	1'397.0	17 %
Private Office	29 %	2'370.0	28 %
Conference / Meeting Room	8 %	698.0	8 %
Corridor	12 %	1'161.0	14 %
Active Storage Area	14 %	1'254.0	15 %
Restroom	4 %	312.0	4 %
Lounge	2 %	220.5	3 %
Electrical / Mechanical Room	2 %	162.0	2 %
Stairway	3 %	336.0	4 %
Lobby	6 %	350.0	4 %
Others	5 %	94.5	1 %
Total	100 %	8'355.0	100 %

619

620 Table 2: Associated measures for daylight and energy saving optimization

Option	Measure
1	Illuminance Sensors
2	Illuminance Sensors, Daylight redirection
3	Illuminance Sensors, Daylight redirection, interior shades
4	Illuminance Sensors, Daylight redirection, interior blinds
5	Illuminance Sensors, Daylight redirection, interior blinds, higher reflective wall and ceiling
6	Illuminance Sensors, Daylight redirection, interior blinds, higher reflective wall and ceiling, exterior shading triangle 80cm
7	Illuminance Sensors, Daylight redirection, interior blinds, higher reflective wall and ceiling, exterior shading triangle 50cm
8	Illuminance Sensors, Daylight redirection, interior blinds, higher reflective wall and ceiling, exterior shading triangle 30cm
9	Illuminance Sensors, Daylight redirection, interior blinds, higher reflective wall and ceiling, exterior shading cube 80cm
10	Illuminance Sensors, Daylight redirection, interior blinds, higher reflective wall and ceiling, exterior shading cube 50cm
11	Illuminance Sensors, Daylight redirection, interior blinds, higher reflective wall and ceiling, exterior shading cube 30cm

621

622 Table 3: PV System Characteristics

PV System	Capacity	Energy Production
Roof	200.0 kW	296'811 kWh
South Façade	52.6 kW	56'986 kWh
East Façade	29.5 kW	27'603 kWh
West Façade	29.5 kW	22'248 kWh

623

624

626 Table 4: Annual Building Performance Key Values

Building Performance	Site Energy	Normalized Site Energy
Total Site Energy	373'292 kWh	44.68 kWh/m ²
Total Source Energy	1'175'869 kWh	141.50 kWh/ m ²
Total EUI	-	44.68 kWh/ m ²
Interior Lighting	157'081 kWh	18.80 kWh/ m ²
Interior Equipment	146'628 kWh	17.55 kWh/ m ²
Heating	13'069 kWh	1.56 kWh/ m ²
Cooling	17'114 kWh	2.05 kWh/ m ²
Pumps	19'336 kWh	2.31 kWh/ m ²
Fans	11'642 kWh	1.39 kWh/ m ²
Service Hot Water	8'419 kWh	1.01 kWh/ m ²
EUI Conditioning	_	7.32 kWh/ m ²

629 List of Figures

631	Fig. 1. Uncontrolled Load Profile for a Zero Energy Building NREL RSF4
632	Fig. 2. Evaluation of the Window to Wall Ratio9
633	Fig. 3. Exterior Wall Performance Comparison including their U-Value12
634	Fig. 4. Suggested Wall Construction13
635	Fig. 5. Internal Source Construction (interior)14
636	Fig. 6. Internal Source Construction (exterior)14
637	Fig. 7. Energy Savings due to Daylight Control15
638	Fig. 8. Final 3-D Building Model16
639	Fig. 9. Simplified HVAC Schematic18
640	Fig. 10. Reduced Order Model for Residual Load Reduction21
641	Fig. 11. Annual Energy Use Distribution in kWh/m ² 24
642	Fig. 12. Annual Comfort Chart during Occupied Hours25
643	Fig. 13. Pareto Front Costs
644	Fig. 14. Pareto Front Family Battery System27
645	Fig. 15. Residual Loads with Battery System (normalized)28