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Abstract. The Orbiting Carbon Observatory-2 has been on
orbit since 2014, and its global coverage holds the potential
to reveal new information about the carbon cycle through the
use of top-down atmospheric inversion methods combined
with column average CO2 retrievals. We employ a large en-
semble of atmospheric inversions utilizing different transport
models, data assimilation techniques, and prior flux distribu-
tions in order to quantify the satellite-informed fluxes from
OCO-2 Version 7r land observations and their uncertainties
at continental scales. Additionally, we use in situ measure-
ments to provide a baseline against which to compare the
satellite-constrained results. We find that within the ensemble
spread, in situ observations, and satellite retrievals constrain
a similar global total carbon sink of 3.7± 0.5 PgC yr−1, and
1.5±0.6 PgC yr−1 for global land, for the 2015–2016 annual
mean. This agreement breaks down in smaller regions, and
we discuss the differences between the experiments. Of par-

ticular interest is the difference between the different assim-
ilation constraints in the tropics, with the largest differences
occurring in tropical Africa, which could be an indication of
the global perturbation from the 2015–2016 El Niño. Evalu-
ation of posterior concentrations using TCCON and aircraft
observations gives some limited insight into the quality of the
different assimilation constraints, but the lack of such data in
the tropics inhibits our ability to make strong conclusions
there.
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1 Introduction

Understanding the global carbon cycle and how it responds
to human and natural forcing is a first-order requirement for
predicting the future trajectory of Earth’s climate (Friedling-
stein et al., 2013). Our current understanding is embodied
in models of the oceans and land biosphere, which charac-
terize processes such as photosynthesis, respiration, nutrient
uptake and transport, fire, and chemical cycling, as well as
fossil fuel inventories. Measurements of CO2 dry air mole
fraction in the atmosphere serve as an integral constraint on
the sum of these in the form of a net flux of CO2 to and from
the atmosphere at the surface.

Many studies have used atmospheric transport models in
conjunction with in situ CO2 observations to infer surface
fluxes of CO2 (Gurney et al., 2002; Rödenbeck et al., 2003;
Peylin et al., 2005; Baker et al., 2006a; Peters et al., 2007;
Chevallier et al., 2010a; Schuh et al., 2010; Feng et al., 2011;
Feng et al., 2017; Basu et al., 2013; Deng et al., 2014; Lau-
vaux et al., 2016) at various spatiotemporal scales. An ex-
tremely comprehensive review of these studies can be found
in Ciais et al. (2010). All of these studies note that the un-
certainty in these estimates grows quickly as we move down-
scale in space and time, particularly for regions in the tropics
and Southern Hemisphere. This is partially due to the errors
present in coarse global transport models, and partially due
to a paucity of observations outside of North America and
Europe.

To improve upon the sparse spatial coverage provided by
the in situ CO2 network, estimates of column-averaged CO2
mole fraction (XCO2 ) have been derived from a variety of
satellite-based instruments. XCO2 can be retrieved from high-
spectral-resolution measurements of reflected sunlight. The
first space-based instruments designed for this application
include ENVISAT SCIAMACHY (Buchwitz et al., 2005),
Greenhouse gases Observing SATellite (GOSAT) TANSO-
FTS (Kuze et al., 2009), and Orbiting Carbon Observatory-2
(OCO-2) spectrometer (Crisp, 2015).

Three and a half years after launch, XCO2 retrievals from
OCO-2 are maturing as observational constraints on the car-
bon cycle. At this time, however, there are only a few pub-
lications that utilize the OCO-2 retrievals explicitly for top-
down flux estimation (Liu et al., 2017). In this work, we in-
vestigate the constraint on surface fluxes of CO2 provided
by OCO-2 using an ensemble of atmospheric transport inver-
sion frameworks. By characterizing the impact of transport
model and inversion method on the flux estimates using our
model suite, and by performing separate inversions with each
OCO-2 retrieval type (land nadir, land glint, ocean glint) and
with traditional in situ observations, we hope to deduce what
aspects of our estimates are robust. What is the constraint of

OCO-2 on the partitioning of the global land flux between
the north and tropics/south? Was the tropical land biosphere
responsible for the CO2 outgassing seen globally during the
2015–2016 El Niño? Are we able to use the OCO-2 retrievals
to estimate CO2 fluxes robustly at regional scales?

The paper is structured as follows. Section 2 discusses pre-
vious work with GOSAT and OCO-2 retrievals. Section 3
outlines the protocol used to define the experiments that
were performed, including a description of the data assim-
ilated and data that was used to evaluate the results. Sec-
tion 4 presents optimized flux estimates and uncertainties
from global to regional scales, along with evaluation using
independent data, and discusses implications for our under-
standing of the carbon cycle. Section 5 examines the results
in a broader context and suggests a few ways forward to re-
duce the remaining uncertainties. Finally, Sect. 6 provides a
summary and overall conclusions.

2 Background

2.1 GOSAT

The Thermal And Near-infrared Sensor for carbon Observa-
tion (TANSO) aboard GOSAT is a Fourier transform spec-
trometer (FTS) that measures radiances in the near-infrared
(NIR), shortwave infrared (SWIR), and thermal infrared
(TIR) bands. The NIR and SWIR bands are used to retrieve
XCO2 at a spatial scale of approximately 100 km2. GOSAT
retrievals have been analyzed by a variety of teams using dif-
ferent schemes for retrieving column CO2 from the measured
radiances (Takagi et al., 2014).

GOSAT XCO2 retrievals have been used in global CO2 flux
inversions by a number of groups. Houweling et al. (2015)
compared results from a number of modeling frameworks
for 2009–2010 and found that the GOSAT retrievals con-
straint resulted in a strong annual sink of 1.0 PgC in Eu-
rope, in agreement with Reuter et al. (2014); Reuter et al.
(2017), which was balanced mainly by outgassing in north-
ern Africa. Biases in the GOSAT retrievals were determined
to be a potential cause of the large European sink obtained
(Feng et al., 2016), as Houweling et al. (2015) also found
that the simulated north–south gradient was too large rela-
tive to independent data from the HIAPER Pole-to-Pole Ob-
servations (HIPPO, Wofsy, 2011) flight campaign. The ini-
tial work in Houweling et al. (2015) is currently being ex-
panded to a longer time period by the GOSAT team to assess
the constraint provided by GOSAT and the impacts of biases
(Takagi et al., 2019).

2.2 OCO-2

OCO-2 measures radiances in the spectral bands near 0.765,
1.61, and 2.06 µm. These radiances are returned as eight dis-
tinct soundings across a narrow swath no wider than 10 km.
Each sounding has a spatial footprint that is less than 1.29 km
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by 2.25 km projected onto the surface. This fine spatial reso-
lution is expected to increase the number of cloud-free scenes
and thus allow more successful retrievals with lower errors,
as clouds are known to be a source of error in retrievals
(O’Dell et al., 2018). Additionally, this high spatial resolu-
tion permits the detection of some systematic biases which
can appear as a set of unrealistically varying XCO2 over so-
called “small areas” (O’Dell et al., 2018). OCO-2 flies in the
EOS Afternoon Constellation (A-Train) with a 705 km sun-
synchronous orbit and Equator crossing time between 13:21
and 13:30 local time. The A-Train orbit has a 16 d ground
track repeat cycle, which allows for complete global XCO2

coverage twice per month, with approximately 150 km hori-
zontal offsets between nearby revisiting orbits. Observations
are made in one of three modes: nadir (looking at the sub-
satellite point), directed toward the solar glint spot, or in the
so-called target mode.

Both OCO-2 and GOSAT have been extensively evaluated
against the Total Carbon Column Observing Network (TC-
CON) (Wunch et al., 2017). These validation activities re-
veal systematic errors in both datasets that must be removed
using empirical corrections (Wunch et al., 2011). Even after
bias correction, Wunch et al. (2017) demonstrated significant
residual bias in the OCO-2 Version 7 glint soundings taken
over the high-southern-latitude oceans. The land nadir and
land glint observations contain residual bias (Wunch et al.,
2017), but the magnitudes and spatial patterns of that bias
are difficult to detect at regional scales with the TCCON
network alone. Comparisons to in situ-constrained models
clearly highlight some of these differences, but it is difficult
to distinguish between bias and real signal in regions with
sparse data density.

2.3 Flux estimates with satellite observations

In addition to Houweling et al. (2015), numerous other stud-
ies have demonstrated that inference of fluxes with atmo-
spheric transport inversions, or “top-down” estimates, can be
sensitive to modeled transport (Gurney et al., 2002; Baker
et al., 2006a; Stephens et al., 2007; Houweling et al., 2010;
Chevallier et al., 2010b; Nassar et al., 2011; Deng et al.,
2015; Basu et al., 2018; Schuh et al., 2019). The covariance
of errors due to seasonal sampling and transport has been
studied in a series of idealized simulation experiments by
Basu et al. (2018), who reported that this can be a significant
source of error that may not be reflected in the spread for
inversions constrained with OCO-2 retrievals. For example,
Fig. 5 in Basu et al. (2018) shows that for the boreal regions,
the efflux due to the onset of senescence in the fall is overesti-
mated with the OCO-2 retrievals by more than 0.1 PgC yr−1,
but the spread in flux estimates due to transport is insufficient
to differentiate between models and source data. Addition-
ally, Schuh et al. (2019) showed that vertical and meridional
mixing differences between two widely used transport mod-
els, TM5 and GEOS-Chem, lead to large differences in the

inferred Northern Hemisphere meridional gradient, particu-
larly when separated along the storm track in the northern
midlatitudes. These findings, as well as those of Peylin et al.
(2013) and others, show that inference using a single model is
problematic, and an ensemble of models with varying trans-
port, prior fluxes, and data assimilation methodologies gives
an estimate of the sensitivity of inferred flux to the assump-
tions spanned by the ensemble of models.

3 Experimental design

The work reported here emerges from a large model inter-
comparison project (MIP) organized by the OCO-2 Science
Team in order to understand how flux estimates using OCO-2
retrievals and in situ measurements depend on (1) transport,
(2) data assimilation methodology, (3) prior flux (and its as-
sociated uncertainty), and (4) systematic errors in the OCO-2
retrievals. The OCO-2 MIP is composed of modelers using
four different transport models with varying configurations,
multiple different data assimilation frameworks, and diverse
prior fluxes and uncertainties. This information is summa-
rized in Table 2 and detailed in the supplementary informa-
tion. We treat the scatter in the posterior fluxes across this
ensemble induced by variability across these parameters as a
proxy for the uncertainty in optimized fluxes.

In order to control the drivers of ensemble spread, sev-
eral assumptions for the different modeling efforts were stan-
dardized. The OCO-2 MIP team utilized standard 10 s aver-
age XCO2 values for the time period from 6 September 2014
through 1 April 2017, with appropriate model–data mis-
match values as described below to avoid spread due to data
handling. Peylin et al. (2013) noted a difference in flux esti-
mates due to different assumed fossil fuel emissions, which
are not typically optimized in global top down studies. To
avoid this, all group members utilized the same fossil emis-
sions, namely the Open-source Data Inventory for Anthro-
pogenic CO2 monthly fossil fuel emissions (ODIAC2016;
Oda and Maksyutov, 2011, Oda and Maksyutov, Reference
Date: September 23, 2016, Oda et al., 2018) together with the
TIMES diurnal and weekly scaling (Nassar et al., 2013). The
OCO-2 MIP results are connected to other modeling stud-
ies such as Transcom (Gurney et al., 2002) and RECCAP
(Peylin et al., 2013) through another set of inversions that
were performed by each group using a standardized set of in
situ measurements (described below).

3.1 OCO-2 retrievals

This work utilizes the Version 7 retrospective (V7r) OCO-2
retrieval dataset with a few modifications. The V7 dataset
was released in late 2015 and was the first retrieval ver-
sion from the OCO-2 mission with the precision and accu-
racy in XCO2 required for scientific use. Initial work with
these retrievals indicated a residual bias that was correlated
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with regions of high albedos in the 2 µm band and relatively
low albedos in the O2 A band. An additional correction was
added to reduce the effects of this “s31” bias, which is related
to the signal-to-noise ratio in the O2 band vs. the strong CO2
band. The fine-scale detail contained in individual OCO-2 re-
trievals is not resolvable by global transport models, which
provide CO2 values for large grid boxes that are at least
100 km in each dimension, with specific values given in Ta-
ble 2. Rather than ingesting each OCO-2 retrieval falling in-
side a model grid cell separately, we compute a single repre-
sentative retrieval value for a grid cell with appropriate un-
certainty and assimilate that single value. The appropriate un-
certainty to assign that representative retrieval is a function of
the number of soundings it represents, their individual uncer-
tainties, representativeness of soundings for the grid box, and
the correlations between their individual errors. Since differ-
ent models use grid boxes of different sizes, we grouped indi-
vidual retrievals into 10 s bins (groundtrack swaths of 67 km
in length), and we assume that the uncertainties between dif-
ferent 10 s averages are independent. This assumption is in
line with the conclusions of Worden et al. (2017). The spa-
tial scale represented by the 10 s averages is small enough to
provide enough detail for the highest resolution global mod-
els included in this study. The OCO-2 10 s sounding locations
for nadir and glint retrievals over land are shown in the top
row of Fig. 1. The number of glint and nadir retrievals varies
by month, but the total fraction of good quality retrievals is
roughly equivalent between the two modes due to the ob-
serving strategy after mid-2015, in which nadir and glint ob-
serving modes are interleaved on each orbit that passes over
significant land mass. For reference, there are 445 113 nadir
soundings and 550 008 glint soundings in Fig. 1a and b for
June 2016, while there are 261 380 nadir and 268 359 glint
observations over land in March 2016. Glint retrievals tend
to have larger sun–surface–satellite path lengths and hence
are screened out at higher solar zenith angles when in some
cases nadir observations may not be.

Each 10 s average consists of a single observing geometry
(glint or nadir). In line with the conclusions of Wunch et al.
(2017), the ocean glint retrievals are not assimilated due to
poorly understood biases, particularly in the high southern
latitudes. All OCO-2 experiments detailed in the Results and
Discussion sections assimilate land glint and land nadir re-
trievals only.

We de-emphasize soundings that are taken close together
in time and space, since their errors are likely to be strongly
correlated. In the absence of a good description of spatial er-
ror correlations, we (1) averaged the retrievals into 1 s bins
along track (6.7 km) and then (2) averaged all 1 s spans with
good retrievals within the 10 s span to get the 10 s values for
a given observation geometry. The weighting of each indi-
vidual value within the 1 s and 10 s spans is done accord-
ing to the uncertainty in each sounding, so that assimilating
the summary value will give the same result as assimilating
the individual values separately (assuming they are indepen-

dent), although we assign an uncertainty to each aggregate
value that is higher to reflect the fact that errors in the in-
dividual retrievals are highly correlated, and to account for
transport errors.

3.1.1 Computing the 1 s averages:

We first select only those retrievals in the OCO-2 Lite files
(from the “lite_test_20170410” build) with “good” retrievals
according to the “xco2_quality_flag” variable. The inverse
of the reported single sounding L2 posterior error variances
is used to construct a weighted average of many of the vari-
ables in the Lite files (time, latitude, longitude, surface pres-
sure, prior, retrieved and bias-corrected XCO2 , averaging ker-
nel vector, CO2 vertical profile, pressure weighting function,
and independent variables used as part of the bias correction
procedure to screen and correct the retrievals) is computed
from these selected retrievals across each 1 s span as follows:

X̂CO2 =

∑
i

XCO2, iσ
−2
i /

∑
i

σ−2
i , (1)

where X̂CO2 denotes the 1 s average, XCO2, i denotes the val-
ues from each sounding, and σi is the uncertainty in XCO2, i

for each shot (from variable xco2_uncert). If each shot in the
span were independent, X̂CO2 would have a theoretical un-
certainty of

σIND = 1/
√∑

i

σ−2
i , (2)

where the uncertainty of the average drops approximately by
√
N , where N is the number of shots in the average. How-

ever, since we believe the XCO2 retrievals in the small area
viewed inside 1 s are actually highly correlated, we instead
use an average uncertainty of the N shots to represent the
uncertainty of the average:

σIVE, 1 s = 1/
√
N−1

∑
i

σ−2
i . (3)

Because even this average uncertainty is sometimes too low
(since it captures only the random estimation errors in the
retrieval and not any systematic errors), we compare it to
the standard deviation of all retrieved XCO2 in the 1 s inter-
val, denoted by σspread, as well as to a minimum uncertainty
threshold (for those cases in which there are too few shots to
compute a realistic spread), denoted σfloor, and we then set
the uncertainty for X̂CO2 , denoted by σ̂ , to be the maximum
of σIVE, 1 s, σspread, and σfloor.

3.1.2 Computing the 10 s averages:

10 s average values are computed across all 1 s spans j with
valid retrievals again as the inverse variance weighted esti-
mate (IVE):

XCO2 =

∑
j

X̂CO2 j σ̂j
−2
/
∑
j

σ̂−2
j . (4)
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Again, we compute the average uncertainty as

σ IVE, 10 s = 1/
√
J−1

∑
j

σ̂−2
j , (5)

where J is the number of 1 s values in the sum (just those
with good data available). An additional uncertainty repre-
senting the variability across models at the OCO-2 sounding
locations, denoted σmodel, is added in quadrature to σ IVE, 10 s,
and this value is treated as the uncertainty for the 10 s average
XCO2 , which is often referred to as the model–data mismatch
(MDM) uncertainty. The MDM is effectively a weighting
factor for each retrieval, with small values representing re-
trievals with the greatest expected utility in the assimilation.

3.2 In situ CO2 measurements

CO2 measurements collected in flasks or by continuous an-
alyzers at surface, tower, and aircraft sites are an impor-
tant anchor for this exercise because their error character-
istics are generally well-known, being directly established
via calibration traceable to WMO standards. Additionally,
these measurements provide traceability to a long history
of flux estimates derived from these data as an atmospheric
constraint. The in situ measurements used in these simu-
lations come from the GLOBALVIEW+ project (Cooper-
ative Global Atmospheric Data Integration Project, 2016),
and from a system developed for this project to deliver near-
real-time (NRT) CO2 measurements (Carbontracker Team,
2017), with spatial locations depicted in Fig. 1. Both of
these efforts are coordinated by collaborators at NOAA Earth
Systems Research Laboratory (ESRL). Each August, the
GLOBALVIEW+ project publishes a collection of CO2 mea-
surements from academic and institutional data providers
covering the previous calendar year. Measurements for this
study were compiled from the GLOBALVIEW+ 2.1 and
3.1 releases. As of version 3.1, GLOBALVIEW+ contains
more than 14 million individual measurements of CO2 in
353 datasets from 46 contributing laboratories, spanning the
time range 1957 to 2016.

Several international measurement networks and cam-
paigns are able to provide CO2 observations with little or
no delay, and NOAA has collected and published these
measurements from many different sites in the NRT for-
mat. Because many laboratories are not configured to de-
liver measurements in NRT, there are far fewer datasets avail-
able in the NRT CO2 product. These include provisional
flask measurements from NOAA surface and aircraft sites,
made available as soon as laboratory analysis is complete
but without final quality-control procedures. Some of the fi-
nal quality-control analyses require a full year’s worth of
data. In other cases, analysis of multiple species measured
from the same sample of air reveals contamination from local
sources; this is a more involved process with longer delays.
Among the data streams for NRT measurements are those

Table 1. TCCON stations used in this work for evaluation of inverse
models.

TCCON station Reference

Ascension Island Feist et al. (2014)
Białystok, Poland Deutscher et al. (2015)
Bremen, Germany Notholt et al. (2014)
Caltech, Pasadena, CA, USA Wennberg et al. (2015)
Darwin, Australia Griffith et al. (2014a)
Edwards (Armstrong), CA, USA Iraci et al. (2016)
Eureka, Canada Strong et al. (2016)
Karlsruhe, Germany Hase et al. (2015)
Lamont, OK, USA Wennberg et al. (2016)
Lauder, New Zealand Sherlock et al. (2014)
Manaus, Brazil Dubey et al. (2014)
Orléans, France Warneke et al. (2014)
Park Falls, WI, USA Wennberg et al. (2014)
Réunion Island De Mazière et al. (2014)
Saga, Japan Kawakami et al. (2014)
Sodankylä, Finland Kivi and Heikkinen (2016)
Tsukuba, Japan Morino et al. (2016)
Wollongong, Australia Griffith et al. (2014b)

from NOAA observatories and tall tower systems, and tower
sites from Environment and Climate Change Canada. These
sites run quasi-continuous analyzers with time-averaged ob-
servations being available at approximately hourly frequen-
cies. Other data available in the NRT ObsPack include mea-
surements from the ACT-America (https://act-america.larc.
nasa.gov/, last access: 1 January 2019), ORCAS (Stephens
et al., 2018; Stephens, 2017) and ATom (Wofsy et al., 2018)
campaigns. Both GLOBALVIEW+ and NRT CO2 measure-
ment compilations may be downloaded in ObsPack format
(Masarie et al., 2014) from https://www.esrl.noaa.gov/gmd/
ccgg/obspack/data.php (last access: 15 April 2019). The ob-
servations provided for assimilation in this study are taken
from GLOBALVIEW+ v2.1 and NRT v3.3.

Available in situ CO2 measurements vary widely in their
levels of usable information content and the level to which
they can be simulated and interpreted by coarse-resolution
global models. To express this level of interpretability, each
measurement is assigned a MDM value. For convenience,
many modelers have used the “adaptive” model–data mis-
match scheme used by the CarbonTracker project (CT2016
release; Peters et al., 2007, with updates documented at http:
//carbontracker.noaa.gov, last access: 1 September 2018).
This scheme is unique in that it assigns temporally vary-
ing MDM values to account for large seasonal variabil-
ity in the performance of models. Many measurements are
deemed unsuitable for assimilation into models of this class,
due to excessive vertical stratification during stable planetary
boundary layer conditions, proximity to large anthropogenic
sources, the influence of complex terrain, and other reasons.
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Figure 1. Sample locations of different data sources described in the text: locations of OCO-2 nadir (a) and glint (b) 10 s retrievals for
June 2016; in situ assimilation data (c).

3.3 TCCON

The Total Carbon Column Observing Network (TCCON) is
a global network of Fourier-transform near-infrared (FTIR)
spectrometers that retrieve the column average dry air mole
fraction of trace gases such as CO2 and CH4 by analyz-
ing the absorption of incident sunlight. The current version
(GGG2014) of XCO2 from TCCON instruments is available
at http://tccondata.org/ (last access: 2 June 2019), and a sum-
mary of all sites is given in Table 1. For this work, we down-
loaded all TCCON retrievals available as of 6 July 2017.
We filtered the retrievals for outliers and averaged them to
create 30 min average XCO2 values. Details are given in Ap-
pendix C.

4 Results

Each posterior flux is constrained by a single observation
type. Posterior flux estimates are presented for in situ (IS) ob-
servations, with locations shown in Fig. 1, and OCO-2 land
nadir (LN) and land glint (LG) observations only, due to the
obvious bias present in the OCO-2 ocean glint observations
as previously mentioned. Ocean nadir data is not provided
as a standard data product due to low signal-to-noise ratios
in the nadir viewing geometry over the ocean. Unless other-
wise stated, prior and posterior fluxes have fossil fuel emis-
sions pre-subtracted, meaning that fluxes over land are the
sum of the photosynthesis, respiration, fires, and any effects
from land use changes. Details of the different modeling as-
sumptions are summarized in Table 2, and in greater detail in
Appendix A.

We present the fluxes at the largest (i.e., global) scales first,
and then move to zonal bands, and then finally to regional
scales for the regions depicted in Fig. 2.

Figure 2. Regions on which prior and posterior gridded fluxes are
aggregated for comparison.

The complete collection of regional flux datasets and im-
agery, as well as evaluation results, can be found at the OCO-
2 MIP portal, found at https://www.esrl.noaa.gov/gmd/ccgg/
OCO2/ (last access: 30 July 2019).

4.1 Global flux estimates

Since CO2 is conserved at the global scale in these sim-
ulations, we expect that fluxes at that scale should be
well-constrained even with a modest collection of observa-
tions. As we see in Fig. 3a, this is the case. As panel (b)
shows, all observation types constrain a similar seasonal cy-
cle with comparable peak sinks during the Northern Hemi-
sphere growing season. Interestingly, this peak sink is about
0.75 PgC per month larger than that of the prior emissions,
and with a smaller spread. Additionally, all observations lead
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to a shifted seasonal cycle in which the Northern Hemisphere
growing season begins earlier and ends earlier than assumed
in the prior. All datasets produce similar annual mean non-
fossil fluxes, −3.5 to −4 PgC yr−1, with a standard devia-
tion of about 0.5 PgC yr−1 across the ensemble. Schuh et al.
(2019) showed some dependence of this number upon the
transport model, implying that further reduction of spread is
likely still possible. Additionally, the satellite retrievals sug-
gest a slightly stronger peak growing season sink in 2016
than 2015, though this is not affirmed by the in situ mea-
surements and is within the uncertainty as seen in the model
spread. The global mean sink for all three results is larger
than the results of Peylin et al. (2013) (for 2000–2004) but is
consistent with those in Houweling et al. (2015) (for 2009–
2010), which agrees with increasing uptake of CO2 by the
global land and ocean as deduced by the in situ-derived at-
mospheric growth rate (Ballantyne et al., 2012).

Figure 3 also depicts the global fluxes for land (mid-
dle row) and ocean (bottom row) separately. Land fluxes
drive the patterns seen in Fig. 3a and b. The summertime
drawdown is shifted earlier in the year, and the peak of
the drawdown is significantly larger, relative to the prior.
Global ocean fluxes are largely unchanged relative to the
prior. The shaded regions that pass outside of the prior spread
are driven by three models that use larger prior uncertainties
for ocean fluxes, allowing larger flux increments from atmo-
spheric data, which indicates that the land data could provide
some constraint on ocean fluxes were the prior constraint suf-
ficiently weak. This pattern is repeated in the annual ocean
fluxes in the left-hand panels.

4.2 Zonal flux estimates

OCO-2 observes across the sunlit portion of the Earth 14–
15 times per day, spanning a large latitudinal range. This
fact, combined with the general zonal structure of large-
scale winds in the atmosphere, suggests that the observations
should constrain fluxes in zonal bands. The difference in sea-
sonality in the Northern and Southern Hemispheres, even in
the tropics, leads us to examine fluxes split by hemisphere,
together with the distinction of tropics and extratropics. Fig-
ure 4 shows prior and posterior fluxes at the monthly and
annual timescales in the same manner as Fig. 3, but split into
zonal bands: northern extratropics (23–90◦ N), northern trop-
ics (Equator – 23◦ N), southern tropics (23◦ S – Equator), and
southern extratropics (90–23◦ S).

Figure 4a and b depict the results for the northern extra-
tropics. The global seasonality patterns in Fig. 3 are repro-
duced in the northern extratropics, with deeper sinks relative
to the prior, and a growing season that is shifted earlier in the
year. Interestingly, LG fluxes in this region have a weaker
annual mean sink (2.6 PgC yr−1) than the other two experi-
ments (−3 and −3.3 PgC yr−1 for IS and LN, respectively),
which is largely driven by enhanced outgassing in autumn
2016. OCO-2 land glint observations are limited to lower lat-
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http://carbontracker.noaa.gov
https://atmosphere.copernicus.eu/sites/default/files/2018-10/CAMS73_2015SC3_D73.1.4.2-1979-2017-v1_201807_v1-1.pdf
https://atmosphere.copernicus.eu/sites/default/files/2018-10/CAMS73_2015SC3_D73.1.4.2-1979-2017-v1_201807_v1-1.pdf


9804 S. Crowell et al.: The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network

Figure 3. Prior (black) and posterior 2015–2016 mean (a, c, e) and monthly (b, d, f) fluxes constrained by in situ (red), OCO-2 land nadir
(green), and OCO-2 land glint (blue) observations. (a, c, e) The shaded bar represents 1 standard deviation of the model ensemble about the
ensemble mean annual mean flux (dashed line). The solid horizontal line for each bar depicts the median of the ensemble annual mean fluxes.
(b, d, f) For each time series, the solid line represents the mean of the OCO-2 MIP ensemble, while the shading represents the ensemble
standard deviation.
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itudes during the NH winter as a result of the longer path
lengths than nadir at higher solar zenith angles and high lati-
tudes, and hence there are fewer observations during this time
period to constrain the LG results than in the other two ex-
periments. Additionally, retrieval biases are expected to grow
with sensor and solar zenith angles (O’Dell et al., 2018), and
thus we speculate that this extra outgassing at higher lati-
tudes is perhaps an artifact of the observations, either due to
sampling or retrieval bias.

The southern extratropics in Fig. 4g and h are character-
ized by very little land mass, and hence much less land re-
trieval data to constrain fluxes. Coupled with the fairly large
uncertainty on land fluxes in this region and potential satellite
bias at the larger solar zenith angles, we see an unsurprising
lack of agreement for each experiment’s ensemble. Given the
global minimization structure of modern data assimilation
systems, it is possible that the fluxes in this region represent
a “residual” from matching stronger data constraints in other
regions, though this is difficult to test directly. We also note
the similar relative differences between the modes, between
the southern extratropics and the northern extratropics, sug-
gesting that biases between modes may drive differences at
high latitudes.

The northern and southern tropics are displayed in Fig. 4c–
f. OCO-2 observations have the potential to significantly im-
prove our understanding of the tropical carbon cycle, given
their relatively frequent coverage in a region that is poorly
observed by the existing in situ network. However, persis-
tent cloudiness during the wet season and biomass burning
aerosol in the dry season in the tropics can lead to both fewer
observations and residual bias in those that occur in the vicin-
ity of clouds and aerosols (Merrelli et al., 2015; Massie et al.,
2017). Examining Fig. 4, we see that the seasonal cycles re-
sulting from the assimilation of OCO-2 data have a larger-
amplitude seasonal cycle (0.8 and 1.5 PgC per month max–
min in tropical northern Africa and tropical southern Africa,
respectively) than the inversions in which in situ measure-
ments were assimilated (0.6 PgC per month in both regions).
The differences in the peak-to-trough fluxes were determined
to be statistically significant for both the northern and south-
ern tropics (not shown). OCO-2 sees a source in 2016 in the
northern tropics, though the inferred source from the LN ob-
servations is larger than that from LG (1.5±0.6 PgC yr−1 and
0.8± 0.6 PgC yr−1 for LN and LG, respectively), while the
in situ measurements place a source of 0.75± 0.6 PgC in the
southern tropics. The in situ results follow the pattern of the
prior at both the monthly and annual timescales, as expected
due to the sparse coverage in the tropics, while the ampli-
tude of the satellite-data-informed fluxes depart significantly
from the prior. However, neither the satellite nor the in situ
fluxes deviate significantly from the phase of the prior en-
semble mean. The results for the annual source in the tropics
from LN agree with the findings of Houweling et al. (2015)
for GOSAT, being about 1.5 PgC yr−1 for 2009–2010, while
the LG fluxes are nearly neutral due to an inferred sink in

the southern tropics (Houweling et al., 2015, only used nadir
data over land from GOSAT). Since 2009–2010 was also an
El Niño event (Kim et al., 2011), this suggests that the tropics
experienced a similar response to El Niño conditions during
those two periods, or that GOSAT and OCO-2 retrievals have
similar biases in the tropics. Importantly, the prior fluxes in
our study have a stronger mean tropical source than those
in Houweling et al. (2015) (0.7 PgC yr−1 vs. 0.3 PgC yr−1),
which may account for the stronger IS source in our study
relative to Houweling et al. (2015). In all cases, these conclu-
sions are based primarily on the ensemble mean and spread,
and individual models may respond differently, though the
comparison of individual models is beyond the scope of this
work.

The annual mean flux from the northern extratropics and
tropics are expected to be strongly anti-correlated with one
another across the ensemble, as atmospheric inversions at-
tempt to match the annual growth rate in the global carbon
sink. Houweling et al. (2015) found that the surface flask
network and GOSAT-constrained meridional gradients were
indistinguishable above the ensemble spread, though there
is a suggestion of a stronger tropical source. We found that
the annual mean flux in the northern extratropics and tropics
are also of similar magnitude in the IS, LN, and LG experi-
ments when the northern and southern tropics are combined,
in agreement with Houweling et al. (2015). The in situ mea-
surements used to produce the IS results are different than
the data used in Houweling et al. (2015), as are the time peri-
ods being studied (2009–2010 vs. 2015–2016). Nonetheless,
the flux gradient between the two regions is similar between
Houweling et al. (2015) and the results in our study.

4.3 Northern extratropical region flux estimates

The posterior ensembles for the IS, LN, and LG experiments
exhibit similar seasonality, though different annual sinks, in
the Northern Hemisphere extratropical zonal band, and so we
examine the fluxes there by continent to determine whether
this agreement extends to smaller regions. As is apparent in
Fig. 5, the different experiments agree over Europe. This con-
trasts with Houweling et al. (2015), who found that GOSAT
retrievals called for a European sink that was much larger
than that inferred from in situ measurements, though for a
different year. North American fluxes show a more complex
pattern, with the LN experiment evincing a larger drawdown
in 2016 than 2015 that is not present in the other two experi-
ments. Additionally, the annual flux for the LN experiment is
less than that from the IS or LG experiments. This is driven
by suppressed wintertime efflux for the LN experiment. In-
terestingly, both sets of OCO-2 retrievals suggest a peak sink
that is a month earlier than the in situ measurements for
both 2015 and 2016. In both Europe and northern Asia (i.e.,
TransCom 7+ 8), the LG experiment yields a stronger out-
gassing in the autumn than the other two experiments, which
has the same potential explanation as for the northern extra-

www.atmos-chem-phys.net/19/9797/2019/ Atmos. Chem. Phys., 19, 9797–9831, 2019
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Figure 4. As in Fig. 3, but for zonal regions described by intervals of latitude: 23–90◦ N (Northern Hemisphere extratropics), 0–23◦ N
(northern tropics), 23◦ S–0◦ (southern tropics), 90–23◦ S (southern hemisphere extratropics). As in the case of global land, posterior net
fluxes in the northern extratropics all demonstrate a larger peak drawdown as well as a different seasonality from the prior, with the net
drawdown period beginning earlier and ending earlier. The satellite retrievals imply a much more dynamic seasonality than either the prior
or the in situ-constrained fluxes, particularly in the tropics, where the amplitudes of the seasonal cycles are significantly larger.

Atmos. Chem. Phys., 19, 9797–9831, 2019 www.atmos-chem-phys.net/19/9797/2019/
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tropics taken as a whole that was discussed above. Interest-
ingly, both North America (i.e., TransCom 1+ 2) and north-
ern Asia show larger sinks for 2015–2016 than is explicable
by the ensemble spread present in Peylin et al. (2013), which
could indicate that the sinks in these regions are growing with
time, though our experiments encompass only a 2 year time
period that is influenced by the El Niño, and further years of
data are required to test this hypothesis.

4.4 Tropical region flux estimates

The in situ measurements and OCO-2 land retrieval inver-
sions give significantly different results for the two zonal
bands focused on the tropics. In order to gain further in-
sight, we examine fluxes for six smaller regions that com-
pose the signal for these bands to look for meridional infor-
mation. These regions are subdivisions of the regions from
the Transcom 3 project, split at the Equator to avoid mixing
the seasonality in the Northern and Southern Hemispheres
(see Fig. 2). The results are displayed in Figs. 6 and 7, and
demonstrate that the largest differences between the satellite-
driven and in situ-driven experiments are in Tropical Africa
(TransCom 05b+ 06a), and that the annual fluxes for LN and
LG differ most in tropical Asia (TransCom 09a+ 09b). Per-
haps unsurprisingly, the flux patterns are different north and
south of the Equator and follow, to a large extent, the phase
of the mean prior, which tends towards dry season sources
and wet season sinks. In northern tropical Africa (TransCom
05b), the difference between the in situ and satellite in-
versions is largely found during the drier part of the year
(November–March), indicating a much larger source from
this region inferred from the OCO-2 retrievals than from in
situ measurements. In southern tropical Africa (TransCom
06a), the OCO-2 experiments indicate a larger amplitude in
both dry and wet seasons (which anti-phased with the sea-
sons in northern tropical Africa) and some indication of a
shift of about a month later in the year for peak carbon efflux.
The other four regions are somewhat more difficult to inter-
pret, given the disagreement between models for any of the
assimilation constraints. In particular, the different viewing
modes of OCO-2 are seeing different things in tropical South
America (TransCom 03b), likely due to residual biases in the
observations.

These differences must be interpreted in the context of the
density and quality of measurements and the priors. There are
more OCO-2 retrievals in this region relative to in situ mea-
surements, but there are relatively fewer successful retrievals
during the wet season due to the prevalence of clouds. Ad-
justments to the prior occur mainly during the dry season
when there are more satellite measurements, although this
is more true for northern tropical Africa; significant adjust-
ments from the mean prior in southern tropical Africa oc-
cur during the wet season as well. Additionally, cloud edges
could potentially bias retrievals and lead to spurious patterns

in the posterior fluxes. This hypothesis is difficult to reject
given the dearth of evaluation data in the tropics.

When Africa as a whole is considered, the total annual
CO2 surface emissions from OCO-2 inversions are in bet-
ter agreement with bottom-up estimates (e.g., Table 1 in
Williams et al., 2007) than the prior and in situ experiment
flux estimates. Of further note is the similarity of flux sea-
sonality in these regions derived from OCO-2 retrievals to
land surface models employing prognostic phenology (i.e.,
ORCHIDEE and SiB4, which are used as prior fluxes by the
CAMS and CSU models as described in Appendix A). These
two factors indicate that the OCO-2 inferred fluxes may not
be driven by retrieval biases.

4.5 Evaluation against independent data

The fluxes discussed in the previous sections indicate differ-
ent signals present in the OCO-2 land retrievals than from
the global network of in situ measurements, particularly in
the tropics. Given the scarcity of in situ measurements in
these regions, particularly when compared to the number of
OCO-2 soundings, this is not surprising. However, perennial
cloudiness in the Tropics, as well as aerosols arising from
biomass burning and dust, both reduce the number of OCO-
2 soundings and potentially induce biases in the remaining
data. These facts leave the question of accuracy in the poste-
rior fluxes unanswered. In order to explore this question, we
evaluate the posterior fluxes by sampling the resultant con-
centrations for comparison with TCCON and aircraft mea-
surements.

4.5.1 TCCON

All modelers sampled their posterior concentration fields at
TCCON retrieval locations and times to compare directly to
the TCCON dataset as available during the full period start-
ing 1 January 2015 and ending 1 April 2017. Not all sites
have the same length of record due to latency in the release
of quality controlled data. Time series of simulated and re-
trieved XCO2 at TCCON sites are shown in Figs. C2–C4,
from which the length of the available records for each site
can be seen.

Figure 8 depicts the overall error statistics for each model
by site and data constraint. The model concentrations are
sampled for each 30 min average TCCON retrieval, as de-
scribed in the experimental design, and then subtracted from
the TCCON values to calculate statistics. For comparison to
OCO-2 retrievals, available 10 s retrievals from OCO-2, us-
ing a 5◦ latitude and longitude geometric coincidence cri-
teria, were averaged and compared to TCCON observations
occurring within 1 h of the overpass time, in much the same
way that a coarse global transport model would be sampled
for this purpose. For the LN and LG experiments in the mid-
dle and bottom rows of Fig. 8, error statistics for co-located
OCO-2 observations are also displayed in the first column

www.atmos-chem-phys.net/19/9797/2019/ Atmos. Chem. Phys., 19, 9797–9831, 2019
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Figure 5. As in Fig. 3, but for three continental-scale land regions in the northern extratropics. The monthly fluxes show broad agreement
between the in situ and OCO-2 experiments in terms of seasonality and peak drawdown. The fluxes show differences in North America,
where the summertime peak sink is larger and wintertime respiration is smaller in the LN experiment results than the other two. The three
experiments agree for Europe, which diverges from results in Houweling et al. (2015) in which GOSAT retrievals lead to a much stronger
sink in Europe than the in situ measurements. In both Europe and Asia, LG experiment results display the enhanced outgassing in the autumn
in 2016 present in the northern extratropics seen in Fig. 4.

Atmos. Chem. Phys., 19, 9797–9831, 2019 www.atmos-chem-phys.net/19/9797/2019/
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Figure 6. As in Fig. 3, but for selected terrestrial regions in the northern tropics on different continents. Among the three continents, satellite-
derived posterior fluxes differ substantially from the prior and in situ-constrained fluxes only in northern tropical Africa, where the outgassing
in the dry season is about double the magnitude. The phasing in the posterior fluxes is also different in southern tropical Africa, where the
peak outgassing is shifted later in the year by a few months.
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Figure 7. As in Fig. 3, but for selected terrestrial regions in the southern tropics on different continents. Among the three continents, satellite-
derived posterior fluxes differ substantially from the prior and in situ constrained fluxes only in tropical Africa, where the peak outgassing is
shifted later in the year by a few months.
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of the panel to give a sense of the correlation between the
OCO-2 retrievals and the resulting modeled concentrations
at each TCCON site. Of note is the strong correlation be-
tween OCO-2 mismatches with TCCON and the posterior
simulated concentration mismatches with TCON. For exam-
ple, the OCO-2 land nadir retrievals are biased high relative
to most TCCON sites, in line with estimates from Chatter-
jee et al. (2019), and the LN-inversion-simulated concentra-
tions show a similar high bias across models. The European
TCCON sites show a consistent pattern, in which all model
concentrations are biased high. This indicates an issue with
representativeness of coarse global transport models at these
sites or with the accuracy of the TCCON retrievals, though
no evidence for the latter has been presented in the literature.
Another similarity across the results is the strong difference
between residuals for the Dryden and Caltech sites, which
are located very close to one another. This is due to the highly
local nature of these observations and the relatively broad co-
incidence criteria used in the comparison. Coarse models are
unable to simulate all of the variability at these sites. Caltech
in particular is highly influenced by the Los Angeles basin,
while Dryden, though geographically close to Caltech, is sep-
arated from the basin by mountains and thus samples the rel-
atively clean environment outside the basin (Kort et al., 2012;
Schwandner et al., 2017). The high bias at Dryden is likely
due in part to models simulating conditions from inside the
Los Angeles basin, and the low bias at Caltech due to mod-
els simulating some of the cleaner air north of the basin. The
challenges of comparing point data to model grid cell con-
centrations highlights that representativeness and model res-
olution are key issues for using TCCON and other datasets
to evaluate model results.

There are four TCCON sites in the tropics: Manaus, As-
cension Island, Réunion Island, and Darwin. These sites all
have different seasonal flow patterns that result in varying up-
wind source regions that may make it difficult to use TCCON
column data to validate inverse model fluxes. The time series
of residuals are shown in Fig. C4. LN posterior concentra-
tions have a similar high bias for all four sites. LG posterior
samples are biased high at Ascension and low at Réunion,
with a seasonally varying bias sign at Darwin. The biases in
the IS posterior concentrations are scattered around zero at
Darwin and Réunion, though they are uniformly high at As-
cension. Correlating these residuals to flux patterns is diffi-
cult for the reasons listed above. For example, the LG and LN
posterior ensembles have similar ensemble mean monthly
fluxes in the north and south tropics as zonal bands as well
as the land regions that make up these zonal bands, but time
series comparisons of each to TCCON do not demonstrate
this.

4.5.2 Surface and aircraft in situ observations

The posterior concentrations were sampled at the locations
and times of the surface sites shown in Fig. 1 as well as dur-

ing the CONTRAIL flights for 2015 and the available ATom
and ORCAS flight campaigns in the time period of the exper-
iments, i.e., 2016–2017. The results of the comparisons are
shown in Fig. 9, including both bias and error standard de-
viation for different latitudes (along the horizontal axis) and
altitudes by row.

As depicted in Fig. 9a, the IS posterior concentrations
compare well with the PBL measurements; this is expected
as they assimilate these data to optimize the surface fluxes.
However, LN, LG, and the prior all have a positive bias in
the in the northern extratropics, indicating too much overall
CO2 in that region at all three atmospheric layers. Interest-
ingly, above the PBL in the tropics, LN has the lowest bias of
the three experiments, though with the important caveat that
this comparison is driven totally by two seasons (boreal win-
ter and spring) of ATom aircraft measurements with flights in
the Atlantic and the Pacific. Thus, we cannot draw the con-
clusion that the enhanced tropical outgassing in the northern
tropics in the OCO-2 constrained fluxes is correct, particu-
larly since LG posterior samples resemble the IS posterior
samples more so than LN in the tropics, while the LG fluxes
are more in line with LN. Lastly, none of the observational
constraints improves the overall simulated variability in at-
mospheric concentrations relative to the observations in any
of the three atmospheric layers presented, at all latitudes, as
shown in Fig. 9b, d, and f. This is likely due to the coarse
spatial resolution of the models included in this study.

It is tempting to draw conclusions about surface fluxes
from these comparisons with independent data. However, the
general sparseness of these samples in space and/or time as
well as the seeming lack of correspondence between the pos-
terior flux differences across experiments and their poste-
rior concentrations across experiments makes this difficult to
do. For example, as mentioned above, LN and LG posterior
monthly fluxes are similar in the tropics, but the posterior
concentrations of LG compare better with IS than LN in the
tropics in the mean. A detailed examination of the goodness
of fit of the experimental posterior concentrations with each
observational dataset is beyond the scope of this work.

5 Discussion

We have used a suite of atmospheric inverse models to an-
alyze the OCO-2 XCO2 retrieval data to identify CO2 flux
signals that stand out above the noise of transport model
error and inversion assumption differences. The OCO-2 re-
trievals for different viewing modes (LN, LG) were assimi-
lated in separate experiments given the differences between
the signals present in each, as detailed in Chatterjee et al.
(2019). We have presented these flux results starting at the
global scale, then moving to broad zonal results, and focus-
ing finally on results at the continental scale; at this finest
scale, we present results for the land regions only, since we
do not expect the satellite data taken over land to provide a
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Figure 8. Bias (a, c, e) and standard deviation (b, d, f) for all TCCON sites by model (ordered by latitude). Statistics are computed from all
residuals: simulated – retrieved XCO2 . For the OCO-2 LN (c, d) and OCO-2 LG (e, f) statistics, the first column depicts the statistics for the
residuals between collocated OCO-2 10 s values and TCCON retrievals. Of note is the correlation between the bias in the OCO-2 retrievals
and the resultant bias in the posterior concentrations. In general, LN experiment posterior samples show a high bias relative to TCCON at all
except a few sites. IS and LG show similar biases over most of the sites. According to O’Dell et al. (2018), land nadir observations are biased
high by about 0.5 ppm relative to land glint observations. The LN experiment also has a larger standard deviation at most TCCON sites than
the IS and LG experiments. Of particular interest are the various European sites, for which all models and data constraints show a high bias
relative to TCCON.
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Figure 9. Comparisons between in situ measurements and unoptimized and optimized posterior concentrations using different observational
constraints. Panels (a), (c), and (e) depict the overall bias and (b), (d), and (f) the standard deviation of the errors, each plotted against latitude.
The rows distinguish between measurements in the PBL (a, b), aircraft below 3000 m a.s.l. (c, d), and aircraft above 3000 m (e, f). Aircraft
measurements include the NOAA light aircraft profiles (Sweeney et al., 2015), CONTRAIL flask and analyzer data, and observations from
the ORCAS and ATom campaigns. The PBL measurements were assimilated in the IS experiments, which is apparent given the very low
bias in (a, b) for the red curve. The IS experiments exhibit the smallest bias throughout the atmosphere in the northern extratropics and above
the PBL in the southern extratropics (largely driven by ORCAS data), while the LN posterior concentrations have the lowest bias above the
PBL in the tropics. LG posterior concentrations in general follow the unoptimized concentrations, with a slight negative or positive shift that
depends on latitude and altitude. None of the observational constraints improves the match to the variability in the observations much over
the prior mean.

strong constraint on the ocean fluxes. The inversions point to
several areas where the OCO-2 data drive robust differences
from our prior flux estimates, in some cases differing from
the results given by the in situ data and in other cases show-
ing agreement.

First, we note that even with the global coverage provided
by OCO-2, we do not see a reduction in ensemble spread, the
possibility of which is alluded to in the Introduction. Given
the work shown in Schuh et al. (2019) and Basu et al. (2018),
we suspect that this is at least partially driven by transport
differences. There are also likely residual regional biases in
the OCO-2 data themselves, and the way they manifest in the
fluxes is going to be highly dependent on the transport model
and inversion framework.

In the northern extratropics, the most robust signal in the
inversion results is the phase adjustment of the seasonal cy-
cle of net ecosystem exchange on land, as well as a deeper

maximum summertime drawdown relative to the prior mean
fluxes. Peak carbon drawdown appeared approximately a
month early than expected, as did the onset of net positive
fluxes in the early fall. In future work, it would be useful
to see how these shifts in net ecosystem exchange (NEE)
agree with the solar-induced fluorescence products that are
now being produced by OCO-2 (Frankenberg et al., 2014;
Sun et al., 2017) and the TROPOspheric Monitoring Instru-
ment (TROPOMI). In the southern extratropics, we did not
find significant differences from the a priori fluxes, proba-
bly because the limited amount of land data available that far
south precluded inference about the fluxes there. The OCO-2
data hint at a somewhat higher-amplitude seasonal cycle in
the global ocean fluxes than we had in our priors, but the ex-
periments of Basu et al. (2018) caution us that ocean fluxes
inferred from land data only may be particularly suscepti-
ble to sampling bias, transport errors, over-reliance on prior
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fluxes, and the inability of coarse models to constrain land
and ocean fluxes separately.

As mentioned previously, a key promise of satellite data
is to provide new information relative to the global in situ
network in the tropics, where the in situ data provide a min-
imal constraint, and that is in fact the case: the OCO-2 data
imply a significantly larger seasonal cycle in the tropics than
given in our prior or given by the in situ data, in terms of the
land+ ocean flux total. This greater seasonality is driven by
the land fluxes, and most of it occurs in Africa, both north
and south of the Equator. The strongest of these deviations
is evident in northern Africa, where annual net fluxes of car-
bon were 1.5± 0.6 PgC yr−1 for LN and 0.8± 0.6 PgC yr−1

for LG (carbon efflux to atmosphere). The seasonality of
fluxes in this area was also much stronger than in many of
the prior land fluxes, which in our experiments arise from
terrestrial ecosystem models. For example, in tropical north-
ern Africa, the LN and LG mean seasonal amplitude (i.e.,
max minus min flux) was about 1 PgC per month, while in
the prior fluxes, the amplitude was about 0.4 PgC per month.
In particular, the positive adjustment in carbon fluxes in the
November to June time frame were the driving force be-
hind posterior adjustments to both annual fluxes and sea-
sonal amplitude. While this topic is beyond the scope and
focus of this paper, we feel obliged to discuss possible candi-
date processes that might contribute to what we see in north-
ern Africa. The positive flux adjustments we obtain there fall
squarely within the strong local dry season, raising stronger
carbon inputs from fire as an obvious possibility. However,
fires are imposed within most of the modeling systems, and
the likelihood of fire emissions being wrong by 1 PgC or
more seems slim, which implies that fires alone cannot ex-
plain the results. Liu et al. (2017) found that respiration was
an important part of the anomalous efflux (relative to a La
Niña period) from this region during the time period of in-
terest, which offers a potential explanation. Northern Africa
is an area with large expanses of high surface albedo and
aerosols due to wind and dust sources. Reasonable effort has
been made to evaluate the potential biases in the area by
running atmospheric inversions with simulated biases in ar-
eas of concern (not shown) as well as analysis of downwind
TCCON sites such as Ascension Island. With no clear indi-
cators of bias and given the sparseness and representative-
ness of the available evaluation data, we cannot falsify either
the IS-constrained tropical fluxes or the satellite-constrained
fluxes, despite the large difference between them. Therefore,
we must move forward with the hypothesis that this signal
may be valid and is tied to variations in respiration, photo-
synthesis, or both.

Next, we point to the observation made in Sect. 4.4, where
the suite of inversion results for northern tropical Africa
tend to move toward the fluxes from the SiB4 and OR-
CHIDEE prognostic biosphere models. An analysis of the
SiB4 prior fluxes indicates very strong seasonal flux sig-
nals from C4 grasslands in the region. Grasslands have large

quick-turnover carbon pools and thus it is not surprising that
respiration and photosynthesis are strongly correlated sea-
sonally. There are also strong respiration and photosynthe-
sis fluxes in deciduous and evergreen broad-leaf plant types
in this area, although the longer-turnover wood pools imply
that the seasonality in the NEE for this vegetation is likely
driven more strongly by photosynthesis. Grasslands have his-
torically been very difficult to model with diagnostic bio-
sphere models such as CASA and thus seem a natural can-
didate to explain higher posterior NEE amplitude. The larger
amplification in the dry season could also point to more sub-
tle reductions in photosynthesis across forested regions not
being captured by the diagnostic models, where there is of-
ten difficulty due to the saturation of vegetation indexes such
as NDVI. The posterior adjustments from the models seem
to imply stronger annual sources and a stronger seasonal cy-
cle, likely implying some combination of effects from both
forests and grasslands.

We also note the difficulty in constraining ocean fluxes
with only LN data and in partitioning land and ocean fluxes
due to inconsistencies between land nadir and ocean glint
modes (Basu et al., 2018). Ocean glint retrievals in v7 of
the data were unusable due to systematic biases discovered
during this exercise. In light of this, several improvements
were made in Version 8 (O’Dell et al., 2018) and retained
in Version 9 (Kiel et al., 2019) of the OCO-2 retrievals, and
we hope will make the ocean glint data more informative in
the next round of experiments. The continued difficulty of
using data with biases between different modes (e.g., ocean
glint vs. land nadir) emphasizes the potential value of “on-
line” bias correction methods which allow for the post hoc
OCO-2 bias correction to be performed in a consistent fash-
ion within the atmospheric inversion framework, as well as
alternate methods of using information on the CO2 vertical
information present in the retrievals.

6 Conclusions

Satellite retrievals have tremendous potential for constrain-
ing surface fluxes of CO2 (Rayner and O’Brien, 2001). In
this study, we employ an ensemble of inversion models with
different assumptions to estimate surface CO2 fluxes in 2015
and 2016, and their uncertainties. We find that OCO-2 re-
trievals inform fluxes that agree at global scales with those
of in situ data. Furthermore, agreement is found where both
satellite and in situ data are dense enough to provide suffi-
cient constraint. The inferred fluxes differ significantly in the
tropics, where the satellite retrievals suggest a much stronger
seasonal cycle than the in situ measurements over most of
the zone, and in particular a much stronger outgassing from
the northern tropics, with the main differences occurring in
Africa. Ocean fluxes generally remain close to the prior in all
experiments.
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Evaluating this new flux information is a difficult task. The
TCCON retrievals suggest that the tropical outgassing in the
LN experiments is too large, but this is weakened by the site
dependence of the errors in these TCCON comparisons. PBL
and aircraft observations lead to different conclusions, but
again these are sparse and potentially do not capture the in-
fluence of fluxes from the regions in question.

Despite the difficulties in evaluating the OCO-2-derived
flux estimates obtained here, the comparison to more tra-
ditional in situ-based estimates has been illuminating. The
satellite results have exposed the sensitivity of the in situ re-
sults to the transport used, especially the vertical transport:
spread in the in situ results is largest over tropical land re-
gions, and the satellite results provide their most robust new
insight into the global carbon cycle, especially in terms of the
magnitude and timing of the seasonal cycle of flux. This pro-
cess of questioning old results and testing the new results will
continue as the satellite data are used in new ways. The im-
pact of using vertical information from the satellite retrievals
(instead of just the straight vertical mean given by XCO2 ) is
a notable area of ongoing research: the bias correction of the
OCO-2 retrievals with respect to TCCON XCO2 should be
expected to change considerably as the information from the
satellites closer to the surface is emphasized more.

In the future, the analysis shown here will be repeated with
updated OCO-2 retrievals, and new analyses performed for a
longer period that includes 2017 onwards. The new Version
9 OCO-2 retrievals should have lower overall biases com-
pared to Version 7, used for these experiments. In particular,
the ocean glint retrievals should be significantly improved,
due to the inclusion of aerosol dynamics that are expected
to eliminate the bias in the high southern latitudes (O’Dell
et al., 2018). This will provide an exciting opportunity for
constraining ocean fluxes. Additionally, an updated ACOS
GOSAT product for the entire data record is due to be re-
leased in 2019, and the comparison of OCO-2 constrained
fluxes with the much longer GOSAT record is critical for un-
derstanding the long-term behavior of the tropical carbon cy-
cle.

Data availability. The surface flux time series, observations, and
evaluation data presented in this manuscript are located at https:
//www.esrl.noaa.gov/gmd/ccgg/OCO2/ (Jacobson, 2019).
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Appendix A: Model information

This section contains the description of each modeling
framework, including key references that describe the
methodology.

A1 Baker

This set of results uses the variational carbon data assim-
ilation system of Baker et al. (2006a), which solves for
weekly corrections to a set of net surface CO2 fluxes on
the latitude–longitude grid of an underlying transport model.
This transport model is the parameterized chemical trans-
port model (PCTM) of Kawa et al. (2004), driven by me-
teorological and mixing parameters from the MERRA-2 re-
analysis (Bosilovich et al., 2017). The MERRA-2 fields
are coarsened from their original 0.5◦× 0.625◦ (latitude–
longitude) resolution on 72 vertical levels to 40 vertical lev-
els at 2.0◦× 2.5◦ resolution for forward runs of the prior
fluxes and 6.67◦× 6.67◦ resolution for the assimilation of
the measurements. Prior fluxes included gross primary pro-
ductivity (GPP), autotrophic and heterotrophic respiration,
wildfire, and biofuel burning fluxes from the CASA land
biosphere model (van der Werf et al., 2004), as well as air–
sea CO2 fluxes from a suite of four ocean models: NOBM,
Takahashi et al. (2009), Landschützer et al. (2015), and the
same Landschuetzer fluxes with a Southern Ocean sink of
0.95 PgC yr−1 added on, with a separate set of inversions
performed for each of the four ocean priors. For each of the
four sets of priors, a multiple of the CASA global respiration
fluxes plus a global offset are solved for to force the prior
to match the 2008–2015 trend at NOAA’s Mauna Loa flask
site. The net flux for these four sets of priors are run forward
through PCTM at 2.0◦× 2.5◦ (latitude–longitude) resolution
for 2008–2018, starting from a realistic initial 3-D CO2 field;
the resulting CO2 fields are sampled at the times and places
of the in situ, TCCON, and OCO-2 measurement locations
used here with a suitable vertical weighting, as well as the
mismatches to the actual measurements used to estimate cor-
rections to the prior fluxes using the variational method run-
ning PCTM at 6.67◦× 6.67◦ resolution. Separate assimila-
tions are done starting from each of the four sets of priors,
and the average fluxes from these four cases are used here.
The prior flux uncertainties used are those from Baker et al.
(2006b).

A2 CAMS

CAMS uses the CO2 inversion system of the Copernicus At-
mosphere Monitoring Service (http://atmosphere.copernicus.
eu/, last access: 30 July 2019), called PyVAR-CO2 (Cheval-
lier et al., 2005, 2010a; Chevallier et al., 2017) and directly
adapted to the OCO-2 MIP protocol. It solves the Bayesian
inference problem by the minimization of a cost function us-

ing the Lanczos version of the conjugate gradient algorithm
(Fisher, 1998; Desroziers and Berre, 2012).

The transport model in the configuration of PyVAR-CO2
for this study is the global general circulation model LMDZ
in its version LMDZ3 (Locatelli et al., 2015), which uses the
deep convection model of Tiedtke (1989). This version has a
regular horizontal resolution of 3.75◦ in longitude and 1.875◦

in latitude, with 39 hybrid layers in the vertical. It is nudged
towards the ERA-Interim reanalysis (Dee, 2011). Note that
the official CAMS releases use a different, more computa-
tionally expensive, convection model (Emanuel, 1991). For
the computational efficiency of the variational approach,
PyVAR-CO2 uses the tangent-linear and adjoint codes of
LMDZ.

The inferred fluxes are estimated in each horizontal grid
point of the transport model with a temporal resolution of 8 d,
separately for daytime and nighttime. The state vector of the
inversion system is therefore made of a succession of global
maps with 9200 grid points. Per month it gathers 73 700 vari-
ables (four daytime maps and four nighttime maps). It also
includes a map of the total CO2 columns at the initial time
step of the inversion window in order to account for the un-
certainty in the initial state of CO2.

The prior values of the fluxes combine estimates of
monthly ocean fluxes (Landschützer et al., 2015), 3-
hourly (when available) or monthly biomass burning emis-
sions (GFAS, http://atmosphere.copernicus.eu/, last access:
30 July 2019) and climatological 3-hourly biosphere–
atmosphere fluxes taken as the 1989–2010 mean of a simu-
lation of the ORganizing Carbon and Hydrology In Dynamic
EcosystEms model (ORCHIDEE, Krinner et al., 2005), ver-
sion 1.9.5.2. The mass of carbon emitted annually during
specific fire events is compensated for here by the same
annual flux of opposite sign representing the regrowth of
burnt vegetation, which is distributed regularly throughout
the year. The gridded prior fluxes exhibit 3-hourly variations,
but their inter-annual variations over land are only caused by
anthropogenic emissions.

Over land, the errors of the prior biosphere–atmosphere
fluxes are assumed to dominate the error budget and the
covariances are constrained by an analysis of mismatches
with in situ flux measurements (Chevallier et al., 2006,
2012): temporal correlations on daily mean net carbon ex-
change (NEE) errors decay exponentially with a length of
1 month, but nighttime errors are assumed to be uncorre-
lated with daytime errors; spatial correlations decay expo-
nentially with a length of 500 km; standard deviations are set
to 0.8 times the climatological daily varying heterotrophic
respiration flux simulated by ORCHIDEE with a ceiling of
4 gC m−2 d−1. Over a full year, the total 1σ uncertainty for
the prior land fluxes amounts to about 3.0 GtC yr−1. The er-
ror statistics for the open ocean correspond to a global air–
sea flux uncertainty of about 0.5 GtC yr−1 and are defined
as follows: temporal correlations decay exponentially with
a length of one month; unlike land, daytime and nighttime
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flux errors are fully correlated; spatial correlations follow an
e-folding length of 1000 km; standard deviations are set to
0.1 gC m−2 d−1. Land and ocean flux errors are not corre-
lated.

A3 CMS-Flux

CMS-Flux, where CMS stands for Carbon Monitoring Sys-
tem, optimizes monthly terrestrial biosphere and ocean car-
bon fluxes using a four-dimensional variational (4D-Var) in-
version approach with a GEOS-Chem adjoint model. The
model is run at 4◦ (latitude)× 5◦ (longitude) spatial resolu-
tion driven by GEOS-FP meteorology. The prior biosphere
fluxes are based on CASA-GFED3 (van der Werf et al.,
2004), while ocean carbon fluxes are from ECCO2-Darwin
(Dutkiewicz et al., 2009; Follows et al., 2007; Follows and
Dutkiewicz, 2011). Both ocean and biosphere fluxes are 3-
hourly. We assumed no correlation in prior flux uncertainties
in both space and time.

A4 CSU-Schuh

We use a Bayesian technique with SiB4 as the carbon
flux prior model for respiration and gross primary produc-
tion (GPP). SiB4 is an integration of heterogeneous land–
atmosphere fluxes, environmentally responsive prognostic
phenology, dynamic carbon allocation, and cascading car-
bon pools from live biomass to surface litter to soil organic
matter. Rather than relying on satellite data for the vegeta-
tion state, SiB4 brings together biological phenology, plant
physiology, and ecosystem biogeochemistry to fully simu-
late the terrestrial carbon cycle, predicting consistent en-
ergy exchanges, carbon fluxes, and carbon pools. To cap-
ture vegetation-specific phenology and biological processes,
SiB4 uses 24 plant functional types (PFTs), including three
specific crops (maize, soybean, and winter wheat). For this
work, SiB4 fluxes were provided at 1◦× 1◦ resolution. Each
1◦× 1◦ box could consist of up to 24 PFTs, responding in a
joint way to the atmosphere. Thus there is no effective “round
off” error from using a single dominant PFT or biome on a
coarse land surface grid.

We use a conceptually simple inversion framework with
the goal of providing optimized CO2 fluxes for PFTs on con-
tinental scales. In particular, for each of 25 possible PFTs,
and each of 11 Transcom land regions, we solve for β, the
amplitudes of the Fourier harmonics, in the following equa-
tions:

OptGPP(DOY)= PriorGPP(DOY)

·

(
βc0 +

3∑
k=1

βsk sinDOY/365 · 2πk+
3∑
k=1

βck cosDOY/365 · 2πk

)
,

OptRESP(DOY)= PriorRESP(DOY)

·

(
βc0 +

3∑
k=1

βsk sinDOY/365 · 2πk+
3∑
k=1

βck cosDOY/365 · 2πk

)
.

This framework optimizes the seven β coefficients shown
above for each of up to 25 PFTs for each of 11 Transcom
Regions for GPP and respiration (separately) for a total of up
to 7·25·11·2= 3696 parameters. To illustrate this, two trivial
univariate examples are presented for GPP in the Missouri
Ozarks AmeriFlux site and total respiration in the Howland
Forest AmeriFlux site in Maine. Ocean regions are divided
into 30 regions according to Jacobson et al. (2007) and solved
for in a similar fashion to land but with only 2 harmonics.

In practice, each of the stochastically fixed coefficients
to the betas are run through GeosCHEM v11 as individual
pulses. We only need to run each of these pulses once, and it
is not necessary to split up the pulse in time (e.g., months) be-
cause this is what one gets from the posterior reconstruction
of the flux signals. The number of harmonics determine the
highest-frequency flux signals to be expected. With three har-
monics, we expect to be able to recover seasonal corrections
on timescales down to about 2 months. Each pulse provides
a vector of sensitivities of the observations to that particular
pulse. We then concatenate these vectors into a large Jaco-
bian (sensitivity matrix) and solve for the regression coeffi-
cients.

A5 CT-NRT

CarbonTracker Near-Real Time (CT-NRT) is an extension
of the formal CarbonTracker CO2 analysis system, designed
to bridge the gap between annual updates of NOAA’s for-
mal CarbonTracker product. It extends model results beyond
the most recent CarbonTracker release until the end of avail-
able ERA-Interim meteorology needed to drive its transport
model, TM5. The release of CT-NRT used in this study,
CT-NRT.v2017, was initialized in September 2014 from the
CT2016 release of CarbonTracker (Peters et al., 2007, with
updates documented at http://carbontracker.noaa.gov (last
access: 1 August 2018)). CT-NRT uses a unique set of flux
priors, derived from the optimized fluxes of CT2016. The
2001–2015 climatology of these optimized terrestrial fluxes
is augmented with a statistical model of flux anomalies, also
derived from CT2015 results. Ocean and wildfire prior fluxes
are set to the seasonally varying climatology of optimized
CT2016 fluxes without interannual variability. This prior not
only has a long-term mean terrestrial sink, but also attempts
to represent interannual variability in land CO2 flux due to
anomalies of temperature, precipitation, and solar insolation.
This prior was developed to mitigate the smaller number of
in situ CO2 measurements available for assimilation in near-
real time, as it is presumably less biased than the standard
CarbonTracker prior with its small land sink.

A6 TM54DVAR-NOAA

The TM5 4DVAR system is a Bayesian inverse modeling
framework that infers surface fluxes of a tracer given mea-
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sured tracer mole fractions in the atmosphere (Meirink et al.,
2008). It uses the TM5 atmospheric chemistry transport
model to connect atmospheric measurements with surface
fluxes (Krol et al., 2005). TM5 and its adjoint are used for
a variational estimate of surface fluxes. For this work, we
ran TM5 globally at 3◦ longitude× 2◦ latitude with 25 verti-
cal layers. We used TM5 4DVAR to solve for terrestrial and
oceanic CO2 fluxes, with fixed fossil fuel fluxes described
elsewhere in this paper. Prior oceanic fluxes were constructed
from a climatological average of CT2015 oceanic flux esti-
mates. Terrestrial CO2 fluxes – the sum of net ecosystem ex-
change and fire fluxes – were taken from SiB CASA GFED 4
(van der Velde et al., 2013). The uncertainty on the terrestrial
fluxes were fixed to be 0.5 times the heterotrophic respira-
tion from SiB CASA, while the uncertainty on oceanic fluxes
was fixed at 1.57 times the absolute flux at each grid cell
and time step. The uncertainty of the prior flux is assumed to
have exponential spatiotemporal correlation, with length and
timescales of 1000 km and 3 weeks for the oceanic compo-
nent and 250 km and 1 week for the terrestrial component.
OCO-2 retrievals assimilated are described elsewhere in this
document, while the in situ CO2 measurements assimilated
were identical to the set used by CT-NRT.

A7 University of Oklahoma (OU)

The OU results utilize the same model and data assimilation
framework as the TM54DVAR-NOAA group, but with dif-
ferent inputs. The OU experiments utilize the CT-NRT unop-
timized prior emissions, and uncertainties derived from dif-
ferent climatological fluxes. The initial conditions are pro-
vided by CarbonTracker, and the model constrains monthly
6◦ by 4◦ emissions from 1 March 2014 though 1 April 2017.
The OU system uses the same prior fluxes as CT-NRT, and so
provides a measure of the contribution of the data assimila-
tion framework, prior uncertainties, and spatial resolution to
posterior emissions. Conversely, the OU experiment provides
the impact of prior emissions and uncertainties and spatial
resolution relative to the TM54DVAR-NOAA results.

A8 University of Edinburgh (UoE)

The UoE inversions are based on an ensemble Kalman fil-
ter framework (Feng et al., 2009, 2016) for inferring sur-
face CO2 fluxes by optimally fitting model simulation with
the in situ or space-based measurements of atmospheric CO2
concentrations. We use the global 3-D chemistry transport
model (CTM) GEOS-Chem version 9.02 to simulate model
CO2 concentrations at a horizontal resolution of 4◦ (latitude)
by 5◦ (longitude), driven by the GEOS-FP meteorological
analyses from the Global Modeling and Assimilation Office
Global Circulation Model based at NASA Goddard Space
Flight Center.

The prior surface fluxes are taken from existing emission
inventories, including (1) monthly biomass burning emis-

sion (GFEDv4.0, Van der Werf et al., 2010), (2) monthly
climatological ocean fluxes (Takahashi et al., 2009), and
(3) three-hourly terrestrial biosphere fluxes (CASA, Olsen
and Randerson, 2004). We assume a 60 % uncertainty for
land monthly fluxes, and 40 % for oceanic fluxes. Errors for
land (ocean) prior fluxes are also assumed to be correlated
with each other with a correlation length of 500 (800) km.
By optimally fitting model simulation with observations, we
infer monthly CO2 fluxes over 792 geographic regions (475
land regions and 317 ocean regions), compared to the 199
global regions used in our previous experiments (Feng et al.,
2009).

A9 University of Toronto (UT)

UT results employ the GEOS-Chem (http://geos-chem.org,
last access: 30 July 2019) global three-dimensional chemical
transport model, driven by assimilated meteorological obser-
vations from the Goddard Earth Observing System version
5 of the NASA Global Modeling Assimilation Office. The
model configuration is the same as that used in Deng et al.
(2016). The resolution of the model is 4◦× 5◦, with 47 ver-
tical levels extending from the surface to 0.01 hPa. The as-
similation is carried out using a four-dimensional variational
(4D-Var) approach (Henze et al., 2007).

The a priori CO2 flux inventories are the following.
For biomass burning, we used monthly emissions from
the Global Fire Emissions Database version 4 (http://
www.globalfiredata.org/, last access: 30 July 2019). The
atmosphere–ocean flux of CO2 is based on the monthly cli-
matology of Takahashi et al. (2009). For the biospheric flux
of CO2, we use 3-hourly fluxes from the Boreal Ecosystem
Productivity Simulator (Chen et al., 2012). As in Deng et al.
(2014), it is assumed that the annual terrestrial ecosystem ex-
change is neutral in each grid box (Deng and Chen, 2011b).
Although the temporal resolution for the terrestrial ecosys-
tem exchange is 3 h, the optimized scaling factors are esti-
mated with a monthly temporal resolution.

A diagonal prior error covariance matrix was used, and it is
assumed (Deng et al., 2016) that the 1σ uncertainty for fossil
fuel emissions is 16 % of the fossil fuel emissions and 38 %
of the biomass burning emissions in each month and each
model grid box. The uncertainty of the ocean flux is assumed
to be 44 %, and for both gross primary production and total
ecosystem respiration we assumed an uncertainty of 22 % in
each 3 h time step and in each model grid.

ObsPack NRT was used, but observations from “SCT”,
“STR”, “TPD”, “PUY”, “KAS”, and “SSL” were removed.

Appendix B: Level 4 Transcom region fluxes

Figures B1–B4 depict both annual and monthly fluxes for
Transcom regions (Gurney et al., 2002). These are provided
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for direct comparison to previous literature, and so that the
reader can easily seek out specific regions of interest.

Figure B1. Ensemble annual fluxes for the 11 Transcom land regions. The bars each represent the trimmed range of the model ensemble
posterior fluxes for 2015 (left bar) and 2016 (right bar). The solid line represents the median, and the dotted line represents the mean. The
colors denote the prior fluxes (grey), as well as the posterior fluxes constrained by in situ (IS, red), land nadir (LN, green), and land glint
(LG, blue) data.
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Figure B2. As in Fig. B1, but for the 11 Transcom ocean regions.
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Figure B3. As in Fig. B1, except that the fluxes are by month.

Figure B4. As in Fig. B3, but for the 11 Transcom ocean regions.
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Appendix C: Comparisons against TCCON

TCCON XCO2 was binned to 30 min averages as follows:

1. We first filtered all retrievals by TCCON’s own quality
flag to select only “good-quality” retrievals, and to clas-
sify them by site and date.

2. For each day at each site, we fit a function of the
form α cos(ωt+φ)+β through the remaining retrievals,
where t is the local solar time (LST) in hours, ω =
2π/(24h), and α, β and φ are free parameters to be fit.

3. We calculate σ , the standard deviation of the residu-
als from the fit, and reject the sounding with the largest
residual if it is more than 3σ away from the fit function.
Then we recalculate the function fit with the updated set
of retrievals and repeat until no more retrievals are being
rejected by the 3σ cutoff.

4. If at any stage the number of remaining soundings in a
day falls below 3, or the total time spanned by the re-
maining soundings falls below 1 h, we reject all sound-
ings for that day.

5. If σ > 1 ppm for the remaining soundings, we reject all
soundings for that day.

6. Once this outlier selection is done, we reject sound-
ings with solar zenith angle SZA> 60◦ and average the
remaining soundings in 30 min windows. The window
edges are aligned to integers and half-hours of the LST.
The solar zenith angle is likewise averaged, and then
used to look up the averaging kernel according to the
TCCON prescription.

Our outlier filtering and averaging helps us create a dataset
which is more appropriate for comparing to coarse-resolution
global models, which are unlikely to reproduce local XCO2

fronts and high-frequency features. Figure C1 shows our fil-
tering and averaging in action on a typical day’s TCCON re-
trievals at Park Falls.

Comparisons of posterior simulated concentrations to TC-
CON data are given in this section as time series of residuals.
An example of the TCCON data used for comparison from a
single day at Park Falls, Wisconsin, is shown in Fig. C1. For
ease of viewing, TCCON sites are split into three regions in
Figs. C2–C4.

Figure C1. An example of TCCON XCO2 retrievals at Park Falls on
27 June 2015. Red circles denote retrievals that were rejected by the
outlier filter, SZA filter, and TCCON flagging, while blue plus signs
denote retrievals that passed those filters. Green diamonds denote
the 30 min averages of the accepted retrievals that were eventually
used by the modelers for this study.
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Figure C2. The time series of monthly mean residuals between simulated XCO2 and TCCON-observed XCO2 by site and data constraint for
sites in North America. Each line represents a different model. The sites are arranged from north to south by site latitude. The colors denote
the prior concentrations (grey), as well as the posterior concentrations from forward runs using fluxes constrained by in situ (IS, red), land
nadir (LN, green), and land glint (LG, blue) data. For the LN and LG residuals, monthly OCO-2 overpass residuals are displayed as stars
over the model residuals. Plots are ordered by site latitude.
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Figure C3. As in Fig. C2, but for European TCCON sites.
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Figure C4. As in Fig. C2, but for sites in Japan, the tropics, and the Southern Hemisphere.
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