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Abstract
The lack of sensory feedback provided by prosthetic hands dramatically limits the utility of the device. Peripheral nerve
interfaces are now able to produce stable somatosensory percepts for upper limb amputees. Sensors must be able to
detect forces across the fingers of the prosthesis in a repeatable and reliable fashion. We solved this concern with a
novel multi-modal tactile sensor which consists of an infrared proximity sensor and a barometric pressure sensor
embedded in an elastomer layer with potential use in prosthetic devices. Signals from both sensors measure proximity
(0–10 mm), contact (0 N), and force (0–50 N) and are combined to localize impact at five spatial locations and three
angles of incidence. Here, we describe the sensor design, its characterization, and data analysis. We use Gaussian pro-
cess regression to fuse the signals from both sensors to obtain calibrated force in Newton with an R2 value of 0.99. We
use supervised learning to localize probe position and direction with classification accuracies of 96% and 89%, respec-
tively. The complementary nature of both sensors leads to several sensing modalities that no one sensor can provide on
its own and the repeatable, reliable, and compact form of the sensor enables use in multi-functional prosthetic hands.
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Introduction

The field of upper limb prosthetic design has made
great progress toward recreating what was lost after
amputation. Multi-functional prosthetic hands include
up to six independent actuators, can produce closing
speeds of less than 1 s, and forces as high as 100 N that
enable everyday use1 (Figure 1). Now, advanced feed-
forward control algorithms which enable more intuitive
use of the prosthesis are becoming clinically relevant
through many commercial partners.2–4 These myoelec-
tric control algorithms provide improved control of the
multi-functional prosthesis over the standard direct
control techniques used previously.3 Now, the largest
deficiency in our field is the lack of feedback systems to

provide sensory restoration for the user.5,6 A sensory
restoration system must include both sensors which
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monitor the position and forces on the prostheses as
well as a biological interface to the intact neural system.

Current prosthetic hands are essentially numb; the
user is not directly aware of the tactile interactions
between the hand and the environment. However, it is
well known that somatosensory information is essential
for effective grasping and manipulation.7 The most crit-
ical element in order to provide sensory restoration for
upper limb amputees is a stable and precise neural
interface which provides physiologically appropriate
sensory feedback. The most promising sensory restora-
tion techniques today use the peripheral nervous system
as the portal to the afferent pathways. In the peripheral
nervous system, nerve fibers are organized in a somato-
topic manner such that the nerve fascicles which inner-
vate specific areas of the hand form distinct clusters in
the nerve.8 This organization allows empirical mapping
of electrode sites in a peripheral nerve implant to spe-
cific skin areas in the hand. Several technologies in this
area have progressed dramatically in recent years to the
point that human trials took place.9–13

Raspopovic et al.9 demonstrated a transversal multi-
channel intrafascicular electrode as a method to distin-
guish three distinct force levels in a single upper limb
amputee. However, long-term use was not demon-
strated in this study but is certainly a critical element of
any neural interface. The Utah Slant Electrode Array is
a well-established device for recording and stimulating
from the peripheral nervous system.12 Recently, the
Utah Slant Electrode Arrays were first implanted in
two upper limb amputees for a 30-day time period.

These implants were able to elicit over 80 sensory per-
cepts (as well as feedforward control of a virtual robotic
hand).13

The most mature peripheral neural interface is the
flat interface nerve electrode (FINE).10,14 This system
allowed subjects to discriminate and match intensity of
sensation and recognize changes in magnitude of the
stimulation.11 Also, subjects were shown to experience
improved object discrimination, object manipulation,
and embodiment when provided sensory restoration.15

However, these remarkable results were produced with
simple fingertip sensors: force-sensitive resistors
(Tekscan FlexiForce A201) which only measured loads
normal to the surface of the sensor between the loads
of 0 and 4 N. A sensor with richer information and the
ability to detect loads away from the center of the sen-
sor could benefit the field of upper limb prosthetic
design.

Most research and commercially available prosthetic
hands lack sensors which can provide feedback required
for effective grasping and manipulation. The measure-
ment of the position of the digits in the hand (proprio-
ception) and the forces applied to the digits (tactile) is a
necessary component of any closed-loop prosthetic limb
system.

Numerous tactile sensors have been designed in both
the robotics16–18 and the prosthetics literature.19,20

Balek and Kelley21 provide one of the earliest applica-
tions of proximity sensors for control of a robot arm.
More recent studies demonstrate the use of proximity
information for pre-grasp alignment and reactive grasp-
ing,22,23 for point-cloud construction of objects24 and
slip detection,25 and for learning a sequential manipula-
tion task.26 However, many barriers remain for these
sensors to be integrated into self-contained prosthetic
hands including the digital communication systems, the
multiplexing of multiple sensors, and the wiring of the
sensors throughout the device. In particular, none of
these proximity sensors can classify spatial position and
angular orientation of forces, which ensures that sen-
sory restoration can take place reliably and repeatedly
even when the external forces are not centered and/or
to the fingertip surface.10,11 During grasping tasks, the
digits conform around objects using a variety of grasp
postures.27 The forces applied to the fingertips during
those grasps can vary in both spatial location and angu-
lar orientation with respect to the fingertip surface. A
reliable tactile sensor must be able to detect these off-
centered and non-normal loads in order to provide rele-
vant sensory information back to the user.

This article presents a new prosthetic fingertip sen-
sor which integrates an infrared (IR) emitter-detector
and barometer to form a proximity, contact, and force
(PCF) sensor (Figures 1 and 3). The technology

Figure 1. Modified Bebionic hand (RSL Steeper, Inc.) with
multi-modal PCF tactile sensors at each finger.
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presented here is a combination of work previously pre-
sented by Patel and Correll18 and Tenzer et al.28 Here,
similar integrated chip sensors were integrated into a
prosthetic finger and overmolded with an elastomer to
create a robust contact surface for the prostheses.
Standard I 2C communication between sensors and
prosthetic hand controller ensures stable and reliable
communication. This multi-modal sensory information
provides rich data to perform sensory fusion to derive
additional information not available from each sensor
independently. The resulting multi-modal fingertip sen-
sors provide proximity sensing, zero-force contact sen-
sing, linear force readings from 0 to 50 N, and the
ability to classify five spatial locations and three angles
of incidence in a repeatable, reliable, and compact fin-
gertip sensor.

Methods

PCF sensor design

The PCF sensor presented here is a combination of two
IC sensors: a microelectromechanical system (MEMS)-
based barometric pressure sensor (MS5637-02BA03)
and an IR proximity sensor (VCNL4010). Thanks to
the recent availability of electromechanically dense sen-
sors which include auxiliary circuitry like instrumenta-
tion amplifiers, analog-to-digital converters, and
standard bus interfaces into small packages, we were
able to integrate these sensors into a durable, self-
contained system. The assembly of the PCF sensor con-
sists of several steps. We arranged the sensors (IR prox-
imity and barometer sensor) on a custom printed
circuit board (PCB) along the mid-line of the fingertip.
We modeled the original fingers of the Bebionic v2
hand (RSL Steeper) and added a cavity for the PCF
sensor (Figure 1). We also created a mold for the elas-
tomer as described below. The fingertip bodies were
prototyped using standard three-dimensional (3D)
printing techniques. A liquid silicon polymer (Dragon
skin 10) was poured into the mold with the fingertip

sensor. This elastomer was chosen due to its low viscos-
ity when pouring into molds and mechanical robust-
ness post curing. A vacuum was applied28 before
pouring the liquid silicon into the mold to completely
remove air from the polymer.

We designed an additional PCB to multiplex the sen-
sor’s I 2C signals for access by a host computer (two
signals per finger, 10 signals in total) via an Arduino
microcontroller. The Arduino firmware performs the
proximity calculation for the IR sensor as well as the
calibration and temperature compensation for the bar-
ometer (using algorithms provided by the sensor manu-
facturer). The firmware then sends the calibrated
proximity and pressure data to the laptop computer
through a serial USB interface. A custom LabVIEW
(National Instruments Inc.) program is used to visua-
lize the real-time signals and store the data for off-line
processing and analysis.

Multi-modal signals

The multiple sensing modalities of the sensor are
depicted in Figure 2. In order to highlight the various
modalities of the sensor, a small piece of cotton is
dropped from a fixed height onto the sensor. We
choose cotton because of its light weight and to show
that the IR sensor can detect contact forces close to 0
N that the barometer sensor is unable to measure. The
contact detection is clearly visible as a small peak in the
green curve. The cotton is then gently pressed against
the sensor. This change in the force is picked up by the
barometer in a (nearly) linear manner. Notice that the
barometer signal shows no noticeable change when the
contact event is detected by the IR sensor. The proxim-
ity signal includes some non-linear elements which are
visible in the curve at the time force is applied on the
cotton. The contact signal is derived by passing the raw
IR signal through a first-order Butterworth high-pass
filter. The barometer provides a proportional measure-
ment of the pressure within the fingertip sensor which
is stable across all loads (tested up to 50 N).

Experimental characterization

To experimentally characterize the performance of the
sensors, multiple fingertip sensors were fabricated and
tested. An Instron material testing machine (MTS
Insight II—low capacity: 2 kN maximum) applied cali-
brated loads at various spatial positions and angles of
incidence on the fingertip as detailed below. The loads
were applied using a probe with a flat circular tip (15
mm diameter) and monitored using a 250 N load cell
(model: M569326-06). The MTS machine applied pre-
scribed loads ranging from 1 to 50 N at a rate of 1 mm/
s with a sampling rate of 16 Hz. Additional fingertip
‘‘pillows’’ were prototyped in order to locate the

Figure 2. Multi-modal sensor response when a small piece of
cotton is dropped onto the sensor and pressed.
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fingertip sensor in the prescribed spatial and angular
orientations with respect to the probe. The spatial data-
set measured contact events at the center, 2.5 mm dis-
tally, 2.5 mm proximally, 2.5 mm medially, and 2.5 mm
laterally and the angular orientation dataset measured
contact events at the angles of 0, 20, and –20 degrees
(Figure 3). These spatial and angular conditions were
chosen in order to span the entire range of the detect-
able volume of the fingertip sensor. The center location
was defined as directly above the midpoint of the PCB.
The angular orientations were defined with respect to
the normal vector of the PCB. In each condition, a
sequence of 10 contact events at each maximum load
took place. Each contact event was separated by a 1-s
delay. The maximum loads tested were 1, 5, 30, and 50
N. These loads were chosen to span a typical range of
loads seen by prosthetic fingers in everyday use.

The sensor fusion study followed the following pro-
cedure: We fixed the direction of probing angle to 0
degrees to obtain the mapping from the analog proxim-
ity and pressure readings to true force in Newton. We
perform 10 dynamic loading and unloading cycles on
the finger using the same Instron machine described
above. Hoping to generalize these loading and unload-
ing cycles to everyday forces that the sensor would
experience, we perform this test with multiple maxi-
mum load forces (1, 5, and 50 N). Note that the finger
and the probing location are kept constant for this

calibration. In total, we have 10 curves for each maxi-
mum load force from the barometer sensor, IR sensor,
and the load cell for a total of 90 curves (10 3 3 3 3).

To collect data for classifying the direction of prob-
ing, we perform 10 dynamic loading and unloading
cycles with the Instron machine for the maximum peak
forces of 1, 5, 30, and 50 N at 0, 20, and –20 degrees of
probing direction. We use custom-made 3D-printed pil-
lows for the finger that align it at various angles with
respect to the probe. In total, we have 120 combined
loading and unloading curves.

To determine the spatial location of impact on the
finger, the data were collected by probing the finger at
different locations with respect to the center of the fin-
ger (Figure 3). We again make use of custom-made 3D-
printed pillows to align/offset the finger with respect to
the center of the probe. Our data collection procedure
consists of 10 dynamic trials of loading and unloading
for each of the maximum forces of 1, 5, 30, and 50 N
for five spatial locations with respect to the barometer.
The data are segmented into a single combination of
loading and unloading curves summing to a total of 200
curves (10 3 4 3 5).

Data analysis

The calibration of multi-modal analog data to actual
force is non-trivial. The combined signals from the fin-
gertip vary based on the position and orientation of con-
tact. Therefore, it is challenging to estimate a single
function with a fixed number of parameters that will
map the raw barometer and IR readings to true force.
In result, we relied on Gaussian process (GP) regression.

The GP approach is a non-parametric approach in
that it finds a distribution over the possible functions
f (x) that are consistent with the observed data. In a
regression setting, we aim at finding the function
y=f (x)+E with y being the observations, x a set of
independent variables, and E being an error term. A
GP is defined by a mean function m(x) and covariance
function k(x, xt), otherwise known as the kernel func-
tion. GP defines a prior over the possible functions,
which can be converted to posterior once data are
available. In other words, we have some known para-
meters x for which we have some observed outcome f
(x). Suppose that there are some points x* for which we
would like to estimate f(x*).

We estimate the conditional probability p(f*|x, x*, f)
on the assumption that the functions f and f* are drawn
from a joint distribution defined by the GP. A specific
advantage of GPs in our case is that they are computa-
tionally affordable on small datasets and have a well-
tuned smoothing property.

We frame the problem of localizing external loads
on the finger into two separate supervised learning

Figure 3. Tested locations of spatial positions (left) and angular
orientations (right) on the PCF sensor. These positions and
angles span the range of the fingertip sensors.
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problems: (1) classification of the spatial location of
load and (2) classification of the angle of incidence of
the force at the angles of 0, 20, and –20 degrees (Figure
3). The organization of the machine learning methods
here was used as a proof of concept for a more sophis-
ticated algorithm that could classify both spatial and
angular orientation in real time.

Support vector machine (SVM), k-nearest neighbor
(kNN), dynamic time warping (DTW), naive Bayes,
and so on are very popular due to their high computa-
tional efficiency and high resistance to noise.29–31

However, it is inherently difficult to design good fea-
tures that can capture intrinsic properties embedded in
various time series data. Several deep learning frame-
works are better in such cases as they do not need any
handcrafted features by people, instead they can learn
a hierarchical feature representation from raw data
automatically.32–34 To compare these two supervised
learning frameworks, we train an SVM classifier and a
convolutional neural network (CNN) for each of the
supervised learning problems.

Results

The PCF sensors were characterized and shown to be
able to detect five spatial locations and three angles of
incidence. The PCF sensor utilized both the IR and
barometer signals in order to produce a more repeata-
ble, reliable, and compact sensor design. IR proximity
sensor signals are heavily dependent on the object

surface reflectivity. This makes it challenging to cali-
brate the sensor. Using the barometric sensor signal,
we are able to fuse the IR proximity with the baro-
metric sensor signal to measure calibrated forces inde-
pendent of the position/angle of contact. The responses
of the barometer and IR proximity sensor to the
applied force at any spatial location on the finger are
also distinctively different. Figure 4 shows the response
of both sensors at 30 N load and 0 degree probing
angle for all spatial conditions (images placed in the
form of a ‘‘+ ’’ sign).
Figure 4 also shows the response
of both sensors at 30 N load across all angles of inci-
dence (bottom right/left images). The barometer shows
a linear behavior to applied force after its minimum
range has been crossed, whereas the IR sensor shows a
non-linear behavior while being sensitive in a range
below that of the barometer. Their behavior is repeata-
ble over a fixed location (each curve is an average of 10
contact events) on the finger over multiple days, but
varies in an irregular manner across those positions on
the finger. These variations are more dramatic for the
IR sensor compared to the barometer sensor. These
repeatable, yet irregular signals across spatial position
and angular orientation allow us to localize force on
the sensor’s surface.

Sensor fusion

The raw signal data are preprocessed through a low-
pass filter to remove unwanted noise. To segment out

Figure 4. PCF sensor readings as a result of multiple contact and lift events at five spatial locations and three angles of incidence.
Each curve is an average of 10 contact events (with shaded bar as the standard deviation).
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an individual curve consisting of loading and unloading
cycles at a particular maximum peak load force, we first
locate the peaks from each contact. After locating the
peaks, we take a window of 180 samples (90 samples on
each side of the peak) and segment out the individual
loading and unloading curves. We then concatenate
individual peaks from each sensor at the peak load
forces of 1, 5, and 50 N into a single array. This gives
us a 3 3 10 set of data: 3 sensors (two on the finger
and the external force sensor) and 10 measured contact
events.

We trained the kernel of the GP by providing it a set
of inputs xTrain and targets yTrain. Inputs correspond to
concatenated raw IR and barometer values, and targets
correspond to forces in Newton from the external load
cell. We then normalize all the values. The Gaussian
kernel that we are using is a radial basis function (RBF)
kernel (also known as squared exponential kernel)
implemented in the scikit-learn library. After the kernel
has learned the relationships within the data (xTrain and
yTrain), we present it with the testing dataset to predict
the labels yPred given the xTest. The accuracy of the fit is
determined using the root mean square error (RMSE)
and R2 score. Figure 5 shows the individual curve fit for
the barometer and IR readings (before concatenating
them) and the fit in 3D after concatenating them and
learning the kernel. Note that the kernel parameters are
the same for all three fits and are experimentally calcu-
lated to have minimal error in the 3D plot. The RMSEs
and R2 scores of the three fits are shown in Table 1.

Force localization

The interaction between the elastomer mold and the
sensors itself is difficult to model due to the non-linear
nature of the geometry and loading conditions. This
interaction leads to proximity and pressure signals of
varying nature from the sensor when it is impacted
from different directions and at different locations. To
localize impact on such a dynamic sensor, we break
down the problem into two smaller subproblems. First,
we identify the angular direction of probing and second
the spatial location of impact with respect to the center
of the fingertip. We frame this as a classification prob-
lem in supervised learning framework and train an
SVM and a CNN for each of the subproblems.

Probing direction. The raw data are arranged for post-
processing and then we locate the peaks from a single
loading and unloading curve of every data collection
trial. After locating the peaks, we take a window size of
150 samples (75 samples on each side of the peak) and
segment out the individual loading and unloading
curves. We then standardize the individual loading and
unloading curves to have zero mean and one variance.

We use SVM as a baseline classifier since the amount
of data collected for classification is small. An advan-
tage of such a model is that fewer parameters are
needed to be learned and the user has greater control
over the model itself. We extracted several parameters
from the barometer and IR sensor signals to create fea-
tures for the SVM. The most promising feature was the
ratio of the IR and barometer values which gave us a
significant rise in testing accuracy.

We also included the data points of maximum force
and minimum force from the sensor into our feature
vector. We used a polynomial kernel with a penalty fac-
tor of C = 1. In order to avoid overfitting of our mod-
els to the data, we perform cross validation on all of
the models described below. The accuracy obtained

Figure 5. Gaussian process regression fit for (a) barometer sensor values, (b) infrared sensor values, and (c) combined, to force in
Newton (the barometer and infrared sensor values are normalized). Measures of the fits are listed in Table 1.

Table 1. Root mean square and R2 error measure for curve
fitting (Figure 5).

Barometer IR Both

RMSE 0.02 0.03 0.01
R2 0.98 0.96 0.99

IR: infrared; RMSE: root mean square.
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after sixfold cross validation is shown in Table 2. In
addition, we trained a small neural network to classify
the probing direction. Since convolution inherently
captures the relation between the signals it is convol-
ving across, we did not have to hand engineer the fea-
tures ourselves. We feed the raw data directly into the
network. The network consists of two 2D convolution
layers followed by a flattened layer and finally a dense
output layer of 3 neurons with softmax activation. The
accuracy obtained after sixfold cross validation on the
training and testing datasets is shown in Table 2.

Spatial location. The features extracted for training the
SVM were similar to those described previously. An
RBF kernel with a penalty factor of C = 8 was experi-
mentally found to give a mean classification accuracy of
0.959 (6 0.0354) after sixfold cross validation (Table 3).

The neural network architecture is also the same as
described previously, except for an increase in the num-
ber of output neurons on the dense layer from 3 to 5,
as we now have five labels to classify. The number of
filters, their size, and kernel parameters were kept con-
stant to compare the results. The accuracy obtained
after sixfold cross validation on the training and testing
datasets is shown in Table 3.

Discussion

We believe that the sensor presented here has a large
variety of potential applications in prosthetic and
robotic grasping due to its ability to estimate proxim-
ity, contact, force, location, and direction of impact.

This work was motivated by the need in the field of
prosthetic limb design for better fingertip sensors in

prosthetic hands. The advancements in the field of
robotics can provide great value if designed properly
for prosthetic hand use. These multi-modal fingertips
provide supplemental information compared to stan-
dard tactile sensors which only provide force measure-
ments. The proximity sensing can be useful in grasp
planning and other shared control methods of prosthe-
tic hands.35 In these semi-autonomous feedforward
control methods, the user commands a specific desired
grasp and then the prosthesis can adapt that command
based on the feedback from peripheral sensors. The
proximity sensory presented here would enable this
type of control in a myoelectric prosthetic hand. The
utility of the proximity data for sensory restoration is
not yet known. Of course, the physiology of human fin-
gers cannot detect proximity to nearby objects so this
measurement does not have a physiologically appropri-
ate mapping. However, novel mappings between the
proximity signal and other tactile percepts are now pos-
sible using the technology presented here.

The GP method enabled us to fuse the barometer
and IR sensor values to form a calibrated force signal.
For the classification task, SVM outperforms the CNN
approach, which we believe to be due to overfitting.

Although the numerical values are a good fit, the
proposed methods might not necessarily generalize
over different probing shapes and material since the
shape of indentation on the elastomer drives the signals
in an unpredictable manner. Even though GP regres-
sion is the most accurate regression method, it has an
exceptionally high computational complexity which
prevents its usage for large numbers of samples or
learning online. The IR proximity sensor has a strong
dependence on the surface properties (i.e. color and
reflectivity) of an object which can throw off the

Table 3. Accuracies for spatial location classification.

Trial 1st 2nd 3rd 4th 5th 6th

SVM 94% 94% 97% 100% 90% 100%
Average accuracy: 96% ( 6 3.5%)

CNN 88.5% 91% 97% 97% 87% 93%
Average accuracy: 92% ( 6 3.9%)

SVM: support vector machine; CNN: convolutional neural network.

Table 2. Accuracies for probing angle classification.

Trial 1st 2nd 3rd 4th 5th 6th

SVM 95% 95% 81% 90% 83% 89%
Average accuracy: 89% ( 6 5.4%)

CNN 86% 76% 86% 81% 89% 77%
Average accuracy: 83% ( 6 4.6%)

SVM: support vector machine; CNN: convolutional neural network.
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calibration for objects. However, we believe that the
sensor’s multiple sensing modalities will help mitigate
some of the challenges discussed above. The linear
behavior of the barometer could help calibrate the sen-
sor against objects with a variety of surface properties.
The non-linear response of the IR sensor could be used
to identify those surface properties.

At the very least, our sensor’s extended spatial cap-
abilities will provide relevant force feedback to ampu-
tees even when an object is not centered against each
digit. This fact will provide a better sensor for the
advanced neural interfaces since we can ensure a reli-
able source of force feedback during the complex activi-
ties of daily life. This is possible due to the effectiveness
of these two distinct signals: (1) the reflectance of IR
light off a reflecting surface and (2) the change in pres-
sure due to the compression of an elastomer. Here we
show that in combination these signals can be utilized
to create an even richer picture of the interactions
between the outside world and the fingertips of a pros-
thetic hand.

Conclusion

In this work, we describe the utility of a multi-modal
prosthetic fingertip sensor which consists of an IR prox-
imity sensor and a barometer embedded in an elastic
polymer. The compact sensors include all of the instru-
mentation, analog-to-digital conversion, and control
circuitry which ensure reliable signal quality using the
standard I 2C communication protocol. The molded
elastomer fingertip surface provides a durable interface
to manipulate objects while allowing reliable measure-
ments of those interactions. We characterized the fin-
gertip sensor over loads varying between 1 and 50 N,
and measured the system’s response to loads applied
spatially about the center and angled with respect to the
normal surface of the fingertip. This characterization
encompassed 28 distinct loading scenarios. We designed
a GP model to fuse the raw barometer and IR sensor
readings to determine the applied force with an R2

value of 0.99. Then, we identified the location of load-
ing using supervised learning methods and obtained the
classification accuracies of 96% and 92% using SVM
and CNN, respectively. We similarly classified the
probing angle and obtained the classification accuracies
of 89% and 83%, respectively.

In the future, our development will focus on the
integration of these sensors with neural interfaces in
order to provide rich sensory information to upper
limb amputees. The calibrated force signal will provide
a reliable tactile signal, while the proximity and contact
signals allow for investigations of new sensory para-
digms. The proximity signal can be mapped to non-
physiological percepts, while the contact signal can be

utilized in a DESC-based manner. Furthermore, we
plan to implement real-time sensor fusion classification.
Once accomplished, the spatial and angular informa-
tion may be relevant to certain neural interfaces and/or
may be used in shared control paradigms of the pros-
thetic limb. The multi-modal fingertip sensors assist the
field of upper limb prosthetic design to provide rich
sensory information back to upper limb amputees.
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